WO2022082877A1 - 数控机床主轴停转节能临界时间确定及节能方法 - Google Patents

数控机床主轴停转节能临界时间确定及节能方法 Download PDF

Info

Publication number
WO2022082877A1
WO2022082877A1 PCT/CN2020/126990 CN2020126990W WO2022082877A1 WO 2022082877 A1 WO2022082877 A1 WO 2022082877A1 CN 2020126990 W CN2020126990 W CN 2020126990W WO 2022082877 A1 WO2022082877 A1 WO 2022082877A1
Authority
WO
WIPO (PCT)
Prior art keywords
spindle
machine tool
time
energy saving
energy
Prior art date
Application number
PCT/CN2020/126990
Other languages
English (en)
French (fr)
Inventor
贾顺
周广锋
郑玉洁
胡罗克
侯东祥
关义浩
侯畋有
闵祥鹏
陈洪
王尚
姚文喜
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Priority to DE112020003251.5T priority Critical patent/DE112020003251T5/de
Publication of WO2022082877A1 publication Critical patent/WO2022082877A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/188Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by special applications and not provided for in the relevant subclasses, (e.g. making dies, filament winding)
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34314Slow down, limit speed for energy saving

Definitions

  • the invention relates to the field of energy saving by stopping the spindle of a numerically controlled machine tool, in particular to a method for determining the critical time for energy saving when the spindle of a numerically controlled machine tool stops rotating.
  • the purpose of the present invention is to provide a critical time that can accurately determine the spindle stop and save energy according to the target speed of the spindle before cutting, and based on the critical time and the time between two cutting activities, the spindle system of the CNC machine tool can be stopped to save energy, And evaluate its energy-saving effect according to the corresponding parameters.
  • a method for determining a critical time for energy saving when a spindle of a CNC machine tool stops rotating and a method for saving energy comprising the following steps:
  • Step 1 the motion process of the CNC machine tool spindle system is divided into two parts: steady state process and transient process, and the total energy consumption E of the CNC machine tool spindle system motion process is calculated as:
  • E represents the total energy consumption of the CNC machine tool spindle system during the movement process
  • ES represents the steady-state process energy consumption at the spindle speed n ;
  • Step 2 the steady-state process energy consumption of the spindle system of the CNC machine tool includes two parts, the spindle rotation energy consumption P SR (n) and the machine tool basic module energy consumption P B , which can be calculated as:
  • P S represents the steady state process power at the spindle speed n
  • P SR (n) represents the spindle rotation power at the spindle speed n
  • P B represents the basic module power of the machine tool
  • t represents the steady state process duration.
  • Step 3 the transient process energy consumption of the CNC machine tool spindle system can be calculated as:
  • t T1 represents the spindle rotation acceleration process time, s
  • P T1 represents the spindle rotation acceleration power, W
  • P B represents the basic module power of the CNC machine tool, W
  • t T2 represents the spindle rotation transition process time, s
  • P SR () represents Spindle rotation power function
  • n 0 represents the initial rotation speed of the spindle, r/min
  • represents the angular acceleration of the spindle rotation acceleration process
  • rad/s 2 T s represents the acceleration torque of the spindle rotation acceleration, N m
  • n 1 represents the spindle rotation acceleration The target speed of rotation acceleration, r/min.
  • Step 4 The following conditions should be met to save energy by stopping the spindle of the CNC machine tool:
  • the time between two cutting activities should be greater than the critical time for the spindle to stop and save energy.
  • the energy consumption in the process of restarting and accelerating to the target speed after the spindle stops should be less than the energy consumption of the spindle maintaining the original speed (the original speed is consistent with the target speed).
  • Step 5 the critical time for energy saving when the spindle system of the CNC machine tool stops running should meet the following conditions:
  • the critical time for energy saving at spindle stop should be greater than or equal to the transient process time of spindle rotation acceleration.
  • the energy consumption in the process of the spindle stopping for a period of time and restarting and accelerating to the target speed is equal to the energy consumption of the spindle maintaining the original speed (the original speed is consistent with the target speed) ).
  • t min represents the critical time for the spindle to stop and save energy, s;
  • t T represents the transient process time of the spindle rotation acceleration, s;
  • P SR ( ) represents the spindle rotation power function;
  • P B represents the basic module power of the machine tool, W;
  • E T Represents the transient process energy consumption of the spindle system, J.
  • Step 6 the critical time for energy saving when the spindle of the CNC machine tool is stopped can be calculated as:
  • t T1 represents the time of the spindle rotation acceleration process, s;
  • a SR represents the first-order coefficient of the spindle rotation power formula;
  • represents the angular acceleration of the spindle rotation acceleration process;
  • rad/s 2 represents the acceleration torque of the spindle rotation acceleration, N m;
  • B SR represents the constant term of the spindle rotation power formula;
  • t T2 represents the transition process time of the spindle rotation, s;
  • n 1 represents the spindle target speed, r/min.
  • Step 7 use the method of stopping the rotation of the spindle system of the CNC machine tool to save energy, and the energy saved can be calculated as:
  • step 3 the angular acceleration ⁇ and the acceleration torque T s in the process of spindle rotation acceleration can be obtained through the spindle start-up experiment, and t T2 can be obtained by collecting data through experiments and analyzing the data.
  • t T1 can be calculated as:
  • n 1 represents the target rotation speed of the spindle rotation acceleration, r/min
  • n 0 represents the initial rotation speed of the spindle rotation acceleration, r/min
  • represents the angular acceleration of the spindle rotation acceleration process
  • the present invention has the following beneficial effects:
  • the method of the invention obtains the energy consumption model of the transient process and the steady state process in the movement process of the spindle system of the CNC machine tool by collecting and processing some basic data of the CNC machine tool, and establishes the condition model and the critical condition for the energy saving when the spindle system of the CNC machine tool stops running.
  • the time model calculates the critical time for energy saving by stopping, and then calculates the energy saved by energy saving, so that the spindle of the CNC machine tool can be stopped at the right time to save energy.
  • the method of the invention is simple to operate and easy to popularize, can accurately calculate the critical time for energy saving when the spindle of the numerical control machine tool is stopped, and can more accurately evaluate the energy saving effect, and can provide theoretical and technical support for the mechanical processing manufacturing industry and even the national energy saving and emission reduction strategy.
  • Fig. 1 is the schematic flow chart of the method of the present invention
  • Fig. 2 is the basic parameter schematic diagram of the method of the present invention.
  • FIG. 3 is a schematic diagram of energy consumption involved in the method of the present invention.
  • the invention proposes a method for determining the critical time for energy saving when the spindle of a numerically controlled machine tool stops rotating and an energy saving method.
  • this method divides the machining process of the spindle system of the CNC machine tool into two parts: the steady state process and the transient process, respectively establishes the energy consumption models of the steady state process and the transient process of the CNC machine tool, and then establishes the spindle stop to save energy.
  • the condition model and critical time model are calculated, and the critical time is calculated, and the energy model saved by the spindle stop and energy saving is established according to the relevant data.
  • the embodiment of the present invention takes the CNC machine tool CK6153i as an example. Because the main transmission system of the CNC machine tool CK6153i includes four gears, the rotation speed is divided into AH, BH, AL and BL from high to low. Since the AH gear has the largest processing range and is the most commonly used Therefore, in this embodiment, the AH gear is used for calculation and description, and this method is used to obtain the power and energy consumption values of the spindle system in the AH gear, and to perform stop-run energy-saving control.
  • the basic module power P B of CNC machine tools is obtained by collecting the basic module power of multiple CNC machine tools and taking the average value. After starting the CNC machine tool CK6153i, do not perform any operation on the machine tool, let the CNC machine tool in the standby state, measure the power values of 100 groups of basic modules of CNC machine tools in this state, and then calculate the power according to the basic module power of CNC machine tools.
  • the basic module power of CNC machine tool CK6153i is calculated as
  • the CNC machine tool CK6153i controls the spindle to rotate at 500r/min for a period of time in the standby state, so that the CNC machine tool is fully preheated, and then controls the spindle to rotate at different speeds to obtain the spindle rotation power corresponding to the stable speed.
  • P SR (n) represents the spindle rotation power when the speed is n, W; n represents the spindle speed, r/min.
  • the steady-state process power P S of the CNC machine tool spindle system can be calculated from the basic module power P B of the CNC machine tool and the spindle rotation power P SR (n).
  • the calculation formula is expressed as:
  • n the spindle speed, r/min.
  • the steady-state process energy consumption of the spindle of CNC machine tools can be calculated from the spindle rotation power, the basic module power of the machine tool and the steady-state process duration.
  • P SR ( ) represents the spindle rotation power function
  • n represents the spindle speed, r/min
  • t represents the steady-state process duration of the CNC machine tool spindle, s.
  • P T1 P SR (n 0 +380t)+2.98n 0 +1130.7t (0 ⁇ t ⁇ t T1 )
  • P SR ( ) represents the spindle rotation power function
  • n 0 represents the initial spindle speed, r/min
  • t represents the spindle rotation acceleration time, s.
  • n 0 represents the initial speed of the spindle, r/min
  • n 1 represents the target speed of the spindle, r/min.
  • the process time t T2 of the spindle transitioning from peak power to stable power is related to the target speed n 1 of the spindle.
  • the process time t T2 corresponding to different target speeds n 1 is collected, and the process time t T2 is linearly regressed with the target speed n 1 .
  • t T 2.7791 ⁇ 10 -3 n 1 -0.002632n 0 +0.037
  • n 0 represents the initial spindle speed, r/min
  • n 1 represents the spindle target speed, r/min.
  • the energy consumption of the CNC machine tool spindle in the transient process can be calculated from the energy consumption of the spindle rotation acceleration process, the energy consumption of the spindle rotation transition process and the energy consumption of the basic module of the machine tool in the transient process.
  • the calculation formula is expressed as:
  • P SR ( ) represents the spindle rotation power function
  • n 0 represents the initial spindle speed, r/min
  • n 1 represents the spindle target speed, r/min.
  • the time between two cutting activities should be greater than the critical time for the spindle to stop and save energy. Since the critical time is the minimum time to achieve energy saving by stopping, when the time between two cutting activities is less than the critical time, the energy saving effect cannot be achieved, as shown in Figure 2.
  • the energy consumption in the process of restarting and accelerating to the target speed after the spindle stops should be less than the energy consumption of the spindle maintaining the original speed (the original speed is consistent with the target speed).
  • the energy consumption of the main shaft rotation at the target speed (the sum of the areas of energy consumption 2, 3, 4, 5, and 6 in Figure 3) is greater than the sum of the energy consumption during the acceleration process of the main shaft and the transition energy consumption of the main shaft rotation ( As shown in Figure 3, the energy consumption is the sum of the area of 1, 4, 5, and 6).
  • the critical time for energy saving when the spindle system of the CNC machine tool stops running should meet the following two conditions:
  • the critical time for energy saving at spindle stop should be greater than or equal to the transient process time of spindle rotation acceleration. If the critical time is less than the transient process time of spindle rotation acceleration, the acceleration activity cannot be completed within a limited time after the spindle stops, so that the spindle speed reaches the target speed, as shown in Figure 2.
  • the energy consumption in the process of the spindle stopping for a period of time and restarting and accelerating to the target speed is equal to the energy consumption of the spindle maintaining the original speed (the original speed is consistent with the target speed) ).
  • the energy consumption of the main shaft when it reaches the critical time at the target speed is equal to the sum of the energy consumption of the main shaft rotation acceleration process and the energy consumption of the main shaft rotation transition process. (As shown in Figure 3, the sum of the areas of energy consumption 1, 4, and 6) is equal.
  • t min represents the critical time for the spindle to stop and save energy
  • t T represents the duration of the transient process of the spindle system, s
  • P SR ( ) represents the spindle rotation power function
  • n 1 represents the target spindle speed, r/min
  • E T1 represents the energy consumption of the spindle rotation acceleration process, J
  • E T2 represents the transition energy consumption of the spindle rotation, J.
  • the critical time t min is calculated as:
  • t min represents the critical time for energy saving when the spindle system of the CNC machine tool stops running, s;
  • a SR is the first-order coefficient of the spindle rotation power formula;
  • B SR is the constant term of the spindle rotation power formula;
  • n 1 represents the spindle acceleration target speed, s.
  • E SA (t I -t min )(A SR n 1 +B SR )
  • a SR is the first-order coefficient of the spindle rotation power formula;
  • B SR is the constant of the spindle rotation power formula Item;
  • n 1 indicates the target speed of spindle acceleration, s.
  • the spindle can stop rotating after completing the previous stage of cutting activities, and then start to rotate 2.54s before the start of the next stage of cutting tasks, using the energy-saving effect prediction
  • the formula calculates that 1809.15J of energy can be saved.
  • the method of the invention can determine the critical time for energy saving when the spindle system of the CNC machine tool stops running and evaluate the energy saving effect, and the calculation result can be directly used for the energy saving of the spindle system of the numerical control machine tool when it stops running, which provides the mechanical processing manufacturing industry and even the national energy saving and emission reduction strategy. Theoretical and technical support.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

一种数控机床主轴停转节能临界时间确定及节能方法,包括:步骤1:将数控机床主轴系统加工过程分为瞬态过程和稳态过程;步骤2,计算数控机床主轴系统稳态过程能耗;步骤3,计算数控机床主轴系统瞬态过程能耗;步骤4,确定数控机床主轴停转节能满足条件;步骤5,确定数控机床主轴停转节能临界时间满足条件;步骤6,计算出数控机床主轴停转节能临界时间;步骤7,建立数控机床主轴停转节能方法节能预测模型。该方法操作简单且易为推广,能够精确计算数控机床主轴停转节能临界时间并评估节能效果,对数控机床节能具有较好的指导意义。

Description

数控机床主轴停转节能临界时间确定及节能方法 技术领域
本发明涉及一种数控机床主轴停转节能领域,尤其是一种数控机床主轴停转节能临界时间确定及节能方法。
背景技术
我国作为一个制造业大国,数控机床的保有量位于世界前列,能源消耗量巨大,由于数控机床加工过程中的非增值活动占比较多,造成了能源的大量浪费,所以对数控机床加工过程中的能量消耗与节能技术进行研究具有重大意义。
目前针对减少机床运行过程中能耗的研究中,一般采用的方法是对数控机床进行高能效改造、加工过程工艺调度优化、优化数控机床的工艺参数、机床的节能控制等方面,而在机床的节能控制方面,由于数控机床主轴系统的能耗在数控机床总体能耗中占比较大,而目前针对数控机床主轴系统的能耗节能问题仍缺乏一种完整有效的数控机床主轴系统的停转节能方法。
发明内容
本发明的目的在于提供一种能够在切削之前根据主轴目标转速精确确定主轴停转节能的临界时间,并基于临界时间与两个切削活动之间的时间实现对数控机床主轴系统的停转节能,并根据相应参数评估其节能效果。
一种数控机床主轴停转节能临界时间确定及节能方法,包括如下步骤:
步骤1,将数控机床主轴系统运动过程划分为稳态过程与瞬态过程两个部分,数控机床主轴系统运动过程总能耗E计算为:
E=E S+E T
其中,E表示数控机床主轴系统运动过程总能耗;E S表示主轴转速n下稳 态过程能耗;E T表示主轴从初始转速n 0加速至目标转速n 1的瞬态过程的能耗。
步骤2,数控机床主轴系统稳态过程能耗包括主轴旋转能耗P SR(n)和机床基本模块能耗P B两个部分,可计算为:
E S=P St=[P SR(n)+P B]t
其中:P S表示主轴转速n下稳态过程功率;P SR(n)表示主轴转速n下的主轴旋转功率;P B表示机床基本模块功率;t表示稳态过程持续时间。
步骤3,数控机床主轴系统瞬态过程能耗可计算为:
Figure PCTCN2020126990-appb-000001
其中,t T1表示主轴旋转加速过程时间,s;P T1表示主轴旋转加速功率,W;P B表示数控机床基本模块功率,W;t T2表示主轴旋转过渡过程时间,s;P SR()表示主轴旋转功率函数;n 0表示主轴初始转速,r/min;α表示主轴旋转加速过程的角加速度;rad/s 2;T s表示主轴旋转加速的加速转矩,N·m;n 1表示主轴旋转加速的目标转速,r/min。
步骤4,数控机床主轴停转节能应该满足以下条件:
(1)两次切削活动之间的时间应大于主轴停转节能的临界时间。
(2)主轴停转之后再启动并加速至目标转速过程中的能耗应小于主轴一直维持原转速转动的能耗(原转速与目标转速一致)。
其表达式为:
Figure PCTCN2020126990-appb-000002
其中,t I表示两次切削活动之间的时间,s;t min表示主轴停转节能的临界时间,s;P SR()表示主轴旋转功率函数;n 1表示主轴目标转速,r/min;P B表示机床基本模块功率,W;t T表示主轴旋转加速瞬态过程时间,s;E T表示主轴系统瞬态过程能耗,J。
步骤5,数控机床主轴系统停转节能临界时间应该满足以下条件:
(1)主轴停转节能的临界时间应该大于或等于主轴旋转加速瞬态过程时间。
(2)在相同时间(此为临界时间)之内,主轴停转一段时间和再启动并加速至目标转速过程中的能耗等于主轴一直维持原转速转动的能耗(原转速与目标转速一致)。
其表达式为:
Figure PCTCN2020126990-appb-000003
其中,t min表示主轴停转节能的临界时间,s;t T表示主轴旋转加速瞬态过程时间,s;P SR()表示主轴旋转功率函数;P B表示机床基本模块功率,W;E T表示主轴系统瞬态过程能耗,J。
步骤6,数控机床主轴停转节能临界时间可计算为:
Figure PCTCN2020126990-appb-000004
其中,t T1表示主轴旋转加速过程时间,s;A SR表示主轴旋转功率公式一次项系数;α表示主轴旋转加速过程的角加速度;rad/s 2;T s表示主轴旋转加速的加速转矩,N·m;B SR表示主轴旋转功率公式常数项;t T2表示主轴旋转过渡过程 时间,s;n 1表示主轴目标转速,r/min。
步骤7,使用数控机床主轴系统停转节能的方法进行节能,其节约的能量可计算为:
E SA=t I(P SR(n 1)+P B)-(t I-t T)P B-E T
其中,E SA表示使用停转节能方法节约的能量,W;T I表示两次切削活动之间的时间,s;P SR()表示主轴旋转功率函数;n 1表示主轴目标转速,r/min;P B表示机床基本模块功率,W;t T表示主轴旋转加速瞬态过程时间,s;E T表示主轴系统瞬态过程能耗,J。
其可进一步表示为:
E SA=(t I-t min)P SR(n 1)
其中,T I表示两次切削活动之间的时间,s;t min表示主轴停转节能的临界时间,s;P SR()表示主轴旋转功率函数;n 1表示主轴目标转速,r/min;
在步骤3中,主轴旋转加速过程中的角加速度α和加速转矩T s可以通过主轴启动实验获得,t T2可通过实验收集数据并对数据进行分析获得。
在步骤3中,t T1可计算为:
Figure PCTCN2020126990-appb-000005
其中,n 1表示主轴旋转加速的目标转速,r/min;n 0表示主轴旋转加速的初始转速,r/min;α表示主轴旋转加速过程的角加速度;rad/s 2
与现有技术相比,本发明具有如下有益效果:
本发明方法通过对数控机床的一些基本数据进行采集和数据处理,得到数控机床主轴系统运动过程中瞬态过程与稳态过程的能耗模型,建立数控机床主轴系统停转节能的条件模型与临界时间模型,计算停转节能的临界时间,随后再计算停转节能所节约的能量,使数控机床主轴可以在恰当时间停转以节约能量。
本发明方法操作简单且易于推广,能够精确计算数控机床主轴停转节能临界时间并可较为精确评估节能效果,可以为机械加工制造业乃至国家节能减排战略提供理论和技术上的支持。
附图说明
图1为本发明方法的流程示意图;
图2为本发明方法的基本参数示意图;
图3为本发明方法所涉及的能耗示意图。
具体实施方式
现结合实施例及附图对本发明进行详细解释。
本发明提出了一种数控机床主轴停转节能临界时间确定及节能方法。如图1所示,本方法是将数控机床主轴系统加工过程划分为稳态过程与瞬态过程两部分,分别建立数控机床稳态过程与瞬态过程的能耗模型,随后建立主轴停转节能的条件模型与临界时间模型,计算出临界时间,并根据相关数据建立主轴停转节能所节约的能量模型。
本发明实施例以数控机床CK6153i为例,因数控机床CK6153i的主传动系统包含四个档位,转速从高到低分为AH、BH、AL和BL,由于AH档位加工范围最大且最为常用,所以本实施例使用AH档位进行计算说明,采用本方法获取其主轴系统在AH档位下的功率及能耗值,并进行停转节能控制。
1.数控机床基本模块功率的获取
数控机床基本模块功率P B是通过采集多个数控机床的基本模块功率取平均值得到。启动数控机床CK6153i后,对机床不进行任何操作,让数控机床处于待机状态,在该状态下测量100组数控机床基本模块功率值,然后根据数控机床基本模块功率计算公式
Figure PCTCN2020126990-appb-000006
计算得出数控机床CK6153i的基本模块功率为
Figure PCTCN2020126990-appb-000007
2.数控机床主轴系统稳态过程功率的获取
数控机床CK6153i在待机状态下,控制主轴以500r/min旋转一段时间,使数控机床进行充分的预热,然后控制主轴在不同转速下进行旋转,获取对应稳定转速下的主轴旋转功率。
对采集到的数据进行处理后,得到如下主轴旋转功率模型,
P SR(n)=1.09n+41.12   (0r/min<n≤1000r/min)
其中,P SR(n)表示转速为n时的主轴旋转功率,W;n表示主轴转速,r/min。
数控机床主轴系统稳态过程功率P S可由数控机床基本模块功率P B和主轴旋转功率P SR(n)计算得到,计算公式表示为:
P S=1.09n+373.22    (0r/min<n≤1000r/min)
其中,n表示主轴转速,r/min。
3.数控机床主轴稳态过程能耗的获取
数控机床主轴稳态过程能耗可由主轴旋转功率、机床基本模块功率和稳态过程持续时间计算得到,计算公式可以表示为:E S=[P SR(n)+332.1]t
其中,P SR()表示主轴旋转功率函数;n表示主轴转速,r/min;t表示数控机床主轴稳态过程持续时间,s。
4.数控机床主轴瞬态过程能耗的获取
根据主轴启动实验得到的数控机床AH传动链的主轴旋转加速过程的角加速度α=39.78rad/s,主轴加速转矩T S=28.42N·m。将α和T S代入主轴旋转加速过程主轴功率P T1的计算公式中,得到主轴旋转加速过程主轴功率P T1表达式为:
P T1=P SR(n 0+380t)+2.98n 0+1130.7t  (0<t≤t T1)
其中,P SR()表示主轴旋转功率函数;n 0表示主轴初始转速,r/min;t表示主轴旋转加速时间,s。
主轴旋转加速过程时间t T1的表达式为:t T1=0.002632(n 1-n 0)
其中,n 0表示主轴的初始转速,r/min;n 1表示主轴的目标转速,r/min。
主轴从峰值功率过渡至稳定功率过程时间t T2与主轴的目标转速n 1有关,采集到不同目标转速n 1对应的过程时间t T2,将过程时间t T2与目标转速n 1做线性回归,其表达式为:t T2=0.037+1.471×10 -4n 1    (R 2=0.9479)
主轴系统瞬态过程时间t T的表达式为:t T=2.7791×10 -3n 1-0.002632n 0+0.037
其中,n 0表示主轴初始转速,r/min;n 1表示主轴目标转速,r/min。
数控机床主轴瞬态过程能耗可由主轴旋转加速过程能耗、主轴旋转过渡过程能耗和瞬态过程的机床基本模块能耗计算得出,其计算公式表示为:
Figure PCTCN2020126990-appb-000008
Figure PCTCN2020126990-appb-000009
其中,P SR()表示主轴旋转功率函数;n 0表示主轴初始转速,r/min;n 1表示主轴目标转速,r/min。
5.数控机床主轴停转节能应满足的条件
想要实现主轴系统停转节能需要满足以下两个条件:
(1)两次切削活动之间的时间应大于主轴停转节能的临界时间。由于临界时间是实现停转节能最小的时间,当两次切削活动之间的时间小于临界时间时,无法起到节能效果,如图2所示。
(2)主轴停转之后再启动并加速至目标转速过程中的能耗应小于主轴一直维持原转速转动的能耗(原转速与目标转速一致)。本质上是主轴在目标转速下的主轴旋转能耗(如图3中能耗2、3、4、5、6面积之和)要大于主轴旋转加速过程能耗与主轴旋转过渡能耗之和(如图3中能耗1、4、5、6面积之和)。
其表达式为:
Figure PCTCN2020126990-appb-000010
其中,t I表示两次切削活动之间的时间,s;t min表示主轴停转节能的临界时间,s;P SR()表示主轴旋转功率函数;n 1表示主轴目标转速,r/min;E T1表示主轴旋转加速过程能耗,J;E T2表示主轴旋转过渡能耗,J。
6.数控机床主轴系统停转节能临界时间应满足的条件
数控机床主轴系统停转节能临界时间应该满足以下两个条件:
(1)主轴停转节能的临界时间应该大于或等于主轴旋转加速瞬态过程时间。若临界时间小于主轴旋转加速瞬态过程时间,主轴停转之后在有限的时间之内无法完成加速活动,使主轴转速到达目标转速,如图2所示。
(2)在相同时间(此为临界时间)之内,主轴停转一段时间和再启动并 加速至目标转速过程中的能耗等于主轴一直维持原转速转动的能耗(原转速与目标转速一致)。本质上就是主轴在目标转速下在到达临界时间时的能耗(如图3中能耗3、4、6面积之和)等于主轴旋转加速过程的能耗与主轴旋转过渡过程的能耗之和(如图3中能耗1、4、6面积之和)相等。
Figure PCTCN2020126990-appb-000011
其中,t min表示主轴停转节能的临界时间,s;t T表示主轴系统瞬态过程持续时间,s;P SR()表示主轴旋转功率函数;n 1表示主轴目标转速,r/min;E T1表示主轴旋转加速过程能耗,J;E T2表示主轴旋转过渡能耗,J。
7.临界时间的计算
临界时间t min计算为:
Figure PCTCN2020126990-appb-000012
其中,t min表示数控机床主轴系统停转节能临界时间,s;A SR为主轴旋转功率公式一次项系数;B SR为主轴旋转功率公式常数项;n 1表示主轴加速目标转速,s。
8.数控机床主轴系统停转节能节能效果评估
使用数控机床主轴系统停转节能的方法进行节能,其节约的能量可计算为:E SA=(t I-t min)(A SRn 1+B SR)
其中,t I表示两次切削活动之间的时间,s;t min表示数控机床主轴系统停转节能临界时间,s;A SR为主轴旋转功率公式一次项系数;B SR为主轴旋转功 率公式常数项;n 1表示主轴加速目标转速,s。
例如,数控机床CK6153i主轴系统完成上一阶段切削活动后,距离下一次切削活动还有6.5s,下一阶段切削活动的主轴目标转速n 1为900r/min,由于主轴目标转速处于(0,1000]之内,所以主轴旋转功率公式一次项系数A SR为1.09,常数项系数B SR为41.12,将上述信息代入入临界时间t min求解公式中得到,
Figure PCTCN2020126990-appb-000013
由于主轴两次切削活动之间的时间6.5s大于临界时间4.73s,所以主轴在完成上一阶段切削活动后,可以停止转动,然后在下一阶段切削任务开始前2.54s开始转动,使用节能效果预测公式计算得出可以节约能量1809.15J。
本发明方法可以确定数控机床主轴系统停转节能的临界时间并对节能效果进行评估,计算结果可以直接用于对数控机床主轴系统的停转节能,为机械加工制造业乃至国家节能减排战略提供理论和技术上的支持。
最后说明的是,以上实施案例仅用以说明本发明的技术方案而非限制,对本发明的技术方案进行修改或者等同替换,而不脱离本发明方法的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (3)

  1. 一种数控机床主轴停转节能临界时间确定及节能方法,其特征在于,包括如下步骤:
    步骤1,将数控机床主轴系统运动过程划分为稳态过程与瞬态过程两个部分,数控机床主轴系统运动过程总能耗E计算为:E=E S+E T
    其中,E表示数控机床主轴系统运动过程总能耗;E S表示主轴转速n下稳态过程能耗;E T表示主轴从初始转速n 0加速至目标转速n 1的瞬态过程的能耗;
    步骤2,数控机床主轴系统稳态过程能耗包括主轴旋转能耗P SR(n)和机床基本模块能耗P B两个部分,可计算为:E S=P St=[P SR(n)+P B]t
    其中:P S表示主轴转速n下稳态过程功率;P SR(n)表示主轴转速n下的主轴旋转功率;P B表示机床基本模块功率;t表示稳态过程持续时间;
    步骤3,数控机床主轴系统瞬态过程能耗可计算为:
    Figure PCTCN2020126990-appb-100001
    其中,t T1表示主轴旋转加速过程时间,s;P T1表示主轴旋转加速功率,W;P B表示数控机床基本模块功率,W;t T2表示主轴旋转过渡过程时间,s;P SR()表示主轴旋转功率函数;n 0表示主轴初始转速,r/min;α表示主轴旋转加速过程的角加速度;rad/s 2;T s表示主轴旋转加速的加速转矩,N·m;n 1表示主轴旋转加速的目标转速,r/min;
    步骤4,数控机床主轴停转节能应该满足以下条件:
    (1)两次切削活动之间的时间应大于主轴停转节能的临界时间;
    (2)主轴停转之后再启动并加速至目标转速过程中的能耗应小于主轴一直维持原转速转动的能耗(原转速与目标转速一致);
    其表达式为:
    Figure PCTCN2020126990-appb-100002
    其中,t I表示两次切削活动之间的时间,s;t min表示主轴停转节能的临界时间,s;P SR()表示主轴旋转功率函数;n 1表示主轴目标转速,r/min;P B表示机床基本模块功率,W;t T表示主轴旋转加速瞬态过程时间,s;E T表示主轴系统瞬态过程能耗,J;
    步骤5,数控机床主轴系统停转节能临界时间应该满足以下条件:
    (1)主轴停转节能的临界时间应该大于或等于主轴旋转加速瞬态过程时间;
    (2)在相同时间(此为临界时间)之内,主轴停转一段时间和再启动并加速至目标转速过程中的能耗等于主轴一直维持原转速转动的能耗(原转速与目标转速一致);
    其表达式为:
    Figure PCTCN2020126990-appb-100003
    其中,t min表示主轴停转节能的临界时间,s;t T表示主轴旋转加速瞬态过程时间,s;P SR()表示主轴旋转功率函数;P B表示机床基本模块功率,W;E T表示主轴系统瞬态过程能耗,J;
    步骤6,数控机床主轴停转节能临界时间可计算为:
    Figure PCTCN2020126990-appb-100004
    其中,t T1表示主轴旋转加速过程时间,s;A SR表示主轴旋转功率公式一次项系数;α表示主轴旋转加速过程的角加速度;rad/s 2;T s表示主轴旋转加速的加速转矩,N·m;B SR表示主轴旋转功率公式常数项;t T2表示主轴旋转过渡过程时间,s;n 1表示主轴目标转速,r/min;
    步骤7,使用数控机床主轴系统停转节能的方法进行节能,其节约的能量可计算为:E SA=t I(P SR(n 1)+P B)-(t I-t T)P B-E T
    其中,E SA表示使用停转节能方法节约的能量,W;T I表示两次切削活动之间的时间,s;P SR()表示主轴旋转功率函数;n 1表示主轴目标转速,r/min;P B表示机床基本模块功率,W;t T表示主轴旋转加速瞬态过程时间,s;E T表示主轴系统瞬态过程能耗,J;
    其可进一步表示为:
    E SA=(t I-t min)P SR(n 1)
    其中,T I表示两次切削活动之间的时间,s;t min表示主轴停转节能的临界时间,s;P SR()表示主轴旋转功率函数;n 1表示主轴目标转速,r/min。
  2. 如权利要求1所述数控机床主轴停转节能临界时间确定及节能方法,其特征在于,在步骤3中,主轴旋转加速过程中的角加速度α和加速转矩T s可以通过主轴启动实验获得,t T2可通过实验收集数据并对数据进行分析获得。
  3. 如权利要求1所述数控机床主轴停转节能临界时间确定及节能方法,其特征在于,在步骤3中,t T1可计算为:
    Figure PCTCN2020126990-appb-100005
    其中,n 1表示主轴旋转加速的目标转速,r/min;n 0表示主轴旋转加速的初始转速,r/min;α表示主轴旋转加速过程的角加速度;rad/s 2
PCT/CN2020/126990 2020-10-21 2020-11-06 数控机床主轴停转节能临界时间确定及节能方法 WO2022082877A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112020003251.5T DE112020003251T5 (de) 2020-10-21 2020-11-06 Verfahren zur Bestimmung eines kritischen Zeitpunkts zur Energieeinsparung für den Stillstand der Spindel einer NC-Werkzeugmaschine sowie zur Energieeinsparung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011128991.3 2020-10-21
CN202011128991.3A CN112230601B (zh) 2020-10-21 2020-10-21 数控机床主轴停转节能临界时间确定及节能方法

Publications (1)

Publication Number Publication Date
WO2022082877A1 true WO2022082877A1 (zh) 2022-04-28

Family

ID=74117599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126990 WO2022082877A1 (zh) 2020-10-21 2020-11-06 数控机床主轴停转节能临界时间确定及节能方法

Country Status (4)

Country Link
CN (1) CN112230601B (zh)
DE (1) DE112020003251T5 (zh)
LU (1) LU500458B1 (zh)
WO (1) WO2022082877A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115660312A (zh) * 2022-09-06 2023-01-31 北京百度网讯科技有限公司 参数调整方法、装置、电子设备及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114415595B (zh) * 2021-11-05 2024-05-10 山东科技大学 一种车削优化方法、系统、计算机设备和存储介质
CN115903671A (zh) * 2022-09-08 2023-04-04 山东科技大学 数控机床相邻切削活动间空载过程的主轴减速节能方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101367173A (zh) * 2008-09-16 2009-02-18 重庆大学 一种数控机床相邻工步间空载运行时停机节能实施方法
CN104020721A (zh) * 2014-03-14 2014-09-03 浙江大学 数控机床主轴旋转加速功率能耗的获取和节能控制方法
KR101575144B1 (ko) * 2014-07-23 2015-12-08 한국전기연구원 에너지 절감형 수치 제어 장치
CN105204433A (zh) * 2015-09-30 2015-12-30 重庆大学 一种随机加工间隔内机床状态切换的机床节能运行方法
CN106249699A (zh) * 2016-09-23 2016-12-21 重庆大学 数控机床加工阶段节能运行方法、评估方法、装置及系统
CN109933002A (zh) * 2019-03-28 2019-06-25 河海大学常州校区 一种面向节能的机械加工过程数控机床能耗建模方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160140196A (ko) * 2015-05-29 2016-12-07 주식회사 남선기공 Nc 공작기계 냉각시스템의 에너지 절감을 위한 nc 데이터 작성 방법
CN105785924B (zh) * 2016-04-06 2018-03-30 哈尔滨工业大学 一种获取机床主轴系统功率的方法
JP6444933B2 (ja) * 2016-04-25 2018-12-26 ファナック株式会社 非切削状態において消費電力低減を行う数値制御装置
CN108037734A (zh) * 2017-12-07 2018-05-15 山东科技大学 数控机床钻削过程功率及能耗获取与节能控制方法
CN108320049B (zh) * 2018-01-11 2019-06-11 山东科技大学 数控车床多工位回转刀架自动换刀能耗准确预测方法
CN108803495A (zh) * 2018-07-30 2018-11-13 山东理工大学 一种执行车削加工程序时数控车床能耗预测方法
CN111158313B (zh) * 2020-01-14 2022-11-29 上海交通大学 数控机床能耗建模与加工过程优化的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101367173A (zh) * 2008-09-16 2009-02-18 重庆大学 一种数控机床相邻工步间空载运行时停机节能实施方法
CN104020721A (zh) * 2014-03-14 2014-09-03 浙江大学 数控机床主轴旋转加速功率能耗的获取和节能控制方法
KR101575144B1 (ko) * 2014-07-23 2015-12-08 한국전기연구원 에너지 절감형 수치 제어 장치
CN105204433A (zh) * 2015-09-30 2015-12-30 重庆大学 一种随机加工间隔内机床状态切换的机床节能运行方法
CN106249699A (zh) * 2016-09-23 2016-12-21 重庆大学 数控机床加工阶段节能运行方法、评估方法、装置及系统
CN109933002A (zh) * 2019-03-28 2019-06-25 河海大学常州校区 一种面向节能的机械加工过程数控机床能耗建模方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHI JINLIANG, LIU FEI, XU DIJIAN , CHEN GUORONG: "Decision Model and Practical Method of Energy-saving in NC Machine Tool", CHINA MECHANICAL ENGINEERING, ZHONGGUO JIXIE GONGCHENG ZAZHISHE, WUHAN, CN, vol. 20, no. 11, 1 June 2009 (2009-06-01), CN , pages 1344 - 1346, XP055924291, ISSN: 1004-132X *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115660312A (zh) * 2022-09-06 2023-01-31 北京百度网讯科技有限公司 参数调整方法、装置、电子设备及存储介质
CN115660312B (zh) * 2022-09-06 2023-12-22 北京百度网讯科技有限公司 参数调整方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN112230601A (zh) 2021-01-15
CN112230601B (zh) 2021-08-20
LU500458A1 (de) 2022-01-24
DE112020003251T5 (de) 2022-06-09
LU500458B1 (de) 2022-03-03

Similar Documents

Publication Publication Date Title
WO2022082877A1 (zh) 数控机床主轴停转节能临界时间确定及节能方法
CN100591472C (zh) 一种数控机床相邻工步间空载运行时停机节能实施方法
CN102621932B (zh) 一种数控机床服役过程的能量消耗预测方法
Guo et al. An operation-mode based simulation approach to enhance the energy conservation of machine tools
CN103419090B (zh) 一种机床的振动传感监测装置及方法
WO2018058932A1 (zh) 一种数控机床切削工步全过程中关键时刻的判断方法
CN104281090A (zh) 一种数控机床系统的功率建模方法
CN101493684A (zh) 伺服动态测试仪及其测试方法
CN103676782B (zh) 数控铣床加工过程中能量效率在线检测方法
CN102179727A (zh) 机床主传动系统加工过程能耗信息在线检测方法
CN101993006A (zh) 汽车起重机及其节能控制方法、节能控制系统
CN105204433B (zh) 一种随机加工间隔内机床状态切换的机床节能运行方法
CN109754332B (zh) 基于切削力的机床铣削加工过程的能耗模型建模方法
CN108133091A (zh) 一种基于刀具状态建立机床碳排放优化模型的方法
CN103150634B (zh) 一种面向机械车间加工任务的能耗仿真方法
CN109933002A (zh) 一种面向节能的机械加工过程数控机床能耗建模方法
CN105785924B (zh) 一种获取机床主轴系统功率的方法
CN104020721B (zh) 数控机床主轴旋转加速功率能耗的获取和节能控制方法
CN103345271B (zh) 一种基于嵌入式系统的燃气流量调节控制装置
WO2024050913A1 (zh) 数控机床相邻切削活动间空载过程的主轴减速节能方法
CN106002486B (zh) 基于微铣床主传动系统功率的微铣削力测量方法
CN112835326A (zh) 一种大型铸锻件加工智能化方法及系统
CN109799789A (zh) 一种采用nc数控代码的机床加工能效预测方法
Liu et al. Dynamic Control Method of Improving Extreme Learning Machine Algorithm in Wood Spinning Process
Li Research on big data acquisition bus technology of NC machine tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958457

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20958457

Country of ref document: EP

Kind code of ref document: A1