WO2022082788A1 - 电机、电机控制器、热交换系统和控制方法 - Google Patents

电机、电机控制器、热交换系统和控制方法 Download PDF

Info

Publication number
WO2022082788A1
WO2022082788A1 PCT/CN2020/123436 CN2020123436W WO2022082788A1 WO 2022082788 A1 WO2022082788 A1 WO 2022082788A1 CN 2020123436 W CN2020123436 W CN 2020123436W WO 2022082788 A1 WO2022082788 A1 WO 2022082788A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
battery
temperature
direct
motor
Prior art date
Application number
PCT/CN2020/123436
Other languages
English (en)
French (fr)
Inventor
毋超强
石超杰
周原
王少飞
谢小威
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to CN202080009778.2A priority Critical patent/CN113474973A/zh
Priority to EP20958370.7A priority patent/EP4181358A4/en
Priority to PCT/CN2020/123436 priority patent/WO2022082788A1/zh
Priority to JP2023512020A priority patent/JP2023538088A/ja
Publication of WO2022082788A1 publication Critical patent/WO2022082788A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • B60L1/04Supplying electric power to auxiliary equipment of vehicles to electric heating circuits fed by the power supply line
    • B60L1/06Supplying electric power to auxiliary equipment of vehicles to electric heating circuits fed by the power supply line using only one supply
    • B60L1/08Methods and devices for control or regulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/025Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using field orientation; Vector control; Direct Torque Control [DTC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/667Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an electronic component, e.g. a CPU, an inverter or a capacitor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/0094Structural association with other electrical or electronic devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/62Controlling or determining the temperature of the motor or of the drive for raising the temperature of the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/54Windings for different functions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/25Devices for sensing temperature, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/006Structural association of a motor or generator with the drive train of a motor vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present application relates to the field of motors, and in particular, to a motor, a motor controller, a heat exchange system and a control method.
  • lithium battery Take lithium battery as an example:
  • a battery heating method is to heat the battery by connecting a direct current to the winding of the motor stator, and using the copper loss of the winding to heat up the battery.
  • the heating power is also small, and the heating speed is slow.
  • Embodiments of the present application provide a motor, a motor controller, a heat exchange system and a control method, which are used to improve the heating efficiency of the motor.
  • a motor comprising a housing, a stator mounted inside the housing, a rotor coupled to the housing through a bearing, a winding wound on the stator, and a liquid inlet communicated with a cavity in the housing and the liquid outlet hole; the liquid inlet hole is used to flow into the insulating cooling liquid, and the liquid outlet hole is used to flow out the insulating cooling liquid; the rotor includes a rotating shaft, a rotor iron core installed around the rotating shaft, and a permanent magnet installed on the rotor iron core; the rotor iron core A first hole communicated with the cavity is provided; the winding is used for inputting direct-axis alternating current.
  • the rotating shaft of the motor rotor, the rotor iron core and the stator are heated due to the eddy current loss and hysteresis loss, and the permanent magnet of the rotor is heated due to the eddy current loss.
  • the winding generates heat due to copper loss, so it can provide higher heating power and heating efficiency and speed up the heating rate compared to simply relying on the copper loss of the winding to generate heat.
  • the rotating shaft is provided with a second hole communicating with the cavity.
  • the insulating cooling liquid flowing in the second channel conducts heat exchange with the rotating shaft.
  • the liquid inlet hole includes a first liquid inlet hole, and the first liquid inlet hole is provided on the rotating shaft and communicated with the second hole. So that the insulating coolant can flow into the motor through the shaft.
  • a third hole is further provided between the rotating shaft and the rotor core, and the first hole and the second hole communicate with each other through the third hole.
  • the third hole is used for connecting the first hole with the second hole, so as to facilitate the flow of the insulating cooling liquid inside the motor.
  • the stator is provided with a fourth channel that communicates with the cavity.
  • the insulating cooling liquid flowing in the fourth channel is used for heat exchange with the stator.
  • the liquid inlet hole includes a second liquid inlet hole, and the second liquid inlet hole is provided at a position at the top of the casing opposite to the winding.
  • the insulating cooling liquid flowing in from the second liquid inlet hole is made to flow onto the winding under the action of gravity, so as to exchange heat with the winding.
  • the liquid outlet hole is arranged at the bottom of the casing. Make the insulating coolant flow out of the motor from the liquid outlet hole under the action of gravity.
  • a motor controller comprising: an inverter circuit and a control device, the control device is configured to control the inverter circuit to output a direct shaft to the winding of the motor according to the first aspect and any of the embodiments thereof alternating current.
  • the motor controller provided by the embodiments of the present application, by inputting quadrature-axis alternating current into the windings of the motor, the rotating shaft of the motor rotor, the rotor iron core and the stator are heated due to eddy current loss and hysteresis loss, and the permanent magnet of the rotor generates heat due to eddy current loss.
  • the winding generates heat due to copper loss. Therefore, it can provide higher heating power and heating efficiency and speed up the heating rate compared to simply relying on the copper loss of the winding to generate heat.
  • control device is further configured to: if the temperature of the battery is lower than the battery temperature threshold, adjust the frequency of the direct-axis alternating current according to whether the battery is connected to an external charging power source and the output voltage of the battery.
  • This embodiment provides a way to adjust the frequency of the direct axis alternating current.
  • the control device is specifically configured to: if the battery is externally connected to a charging power source, or, if the battery is not externally connected to a charging power source and the output voltage of the battery is greater than a first voltage threshold, adjust the frequency of the direct-axis alternating current to be the first frequency; if the battery is not connected to an external charging power supply and the output voltage of the battery is less than or equal to the first voltage threshold but greater than the second voltage threshold, adjust the frequency of the direct-axis alternating current to the second frequency; wherein, the first voltage threshold is greater than the second voltage threshold, The first current intensity is greater than the second current intensity, and the first frequency is greater than the second frequency.
  • This embodiment provides one way of specifically how to adjust the frequency of the direct-axis alternating current.
  • control device is further configured to: if the temperature of the battery is lower than the battery temperature threshold, according to the temperature of the casing of the motor, the temperature of the winding, the temperature of the insulating cooling liquid flowing out of the motor and the ambient temperature At least one item determines the temperature of the rotor of the electric machine; adjusts the amperage of the direct-axis alternating current according to the temperature of the rotor. This embodiment provides a way to adjust the amperage of the direct axis alternating current.
  • control device is specifically configured to: if the temperature of the rotor is greater than the first rotor temperature threshold, adjust the current intensity of the direct-axis alternating current to the first current intensity; if the temperature of the rotor is less than the second rotor temperature threshold , then adjust the current intensity of the direct-axis alternating current to the second current intensity; otherwise, keep the current intensity of the direct-axis alternating current; wherein, the first rotor temperature threshold is greater than the second rotor temperature threshold, and the first current intensity is smaller than the second current intensity.
  • This embodiment provides a way of specifically how to adjust the amperage of the direct-axis alternating current.
  • control device is further configured to adjust the frequency of the direct-axis alternating current to the second frequency if the temperature of the rotor is greater than the first rotor temperature threshold.
  • the frequency of the direct-axis alternating current can also be adjusted according to the temperature of the rotor.
  • control device is further used for: outputting quadrature axis current to the winding.
  • the motor can be heated while driving the motor to rotate.
  • a heat exchange system including a motor as in the first aspect and any embodiment thereof, a motor controller as in the second aspect and any embodiment thereof, a heat exchanger and a liquid pump; the liquid pump , heat exchanger and the liquid outlet and inlet holes of the motor are connected to flow insulating coolant; the motor controller is used to output direct-axis alternating current to the windings of the motor, and is also used to control the operation of the liquid pump.
  • a control method comprising: outputting direct-axis alternating current to the windings of the motor according to the first aspect and any of the embodiments thereof.
  • the method further includes: if the temperature of the battery is lower than the battery temperature threshold, adjusting the frequency of the direct-axis alternating current according to whether the battery is connected to an external charging power source and the output voltage of the battery.
  • the frequency of the direct-axis AC power is adjusted, including: if the battery is externally connected to a charging power source, or, if the battery is not connected to an external charging power source and the output voltage of the battery is greater than The first voltage threshold, adjust the frequency of the direct-axis alternating current to the first frequency; if the battery is not connected to an external charging power supply and the output voltage of the battery is less than or equal to the first voltage threshold but greater than the second voltage threshold, adjust the frequency of the direct-axis alternating current to the first frequency. Two frequencies; wherein the first voltage threshold is greater than the second voltage threshold, the first current intensity is greater than the second current intensity, and the first frequency is greater than the second frequency.
  • the method further includes: if the temperature of the battery is lower than the battery temperature threshold, performing at least one of the temperature of the casing of the motor, the temperature of the winding, the temperature of the insulating cooling liquid flowing out of the motor, and the ambient temperature One determines the temperature of the rotor of the motor; adjusts the amperage of the direct-axis alternating current according to the temperature of the rotor.
  • adjusting the current intensity of the direct-axis alternating current according to the temperature of the rotor includes: if the temperature of the rotor is greater than a first rotor temperature threshold, adjusting the current intensity of the direct-axis alternating current to be the first current intensity; If the temperature is lower than the second rotor temperature threshold, adjust the current intensity of the direct-axis alternating current to the second current intensity; otherwise, keep the current intensity of the direct-axis alternating current; wherein, if the first rotor temperature threshold is greater than the second rotor temperature threshold, the first current The intensity is less than the second current intensity.
  • the method further includes: if the temperature of the rotor is greater than the first rotor temperature threshold, adjusting the frequency of the direct-axis alternating current to the second frequency.
  • the method further includes: outputting quadrature axis current to the winding.
  • a fifth aspect provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when it is run on a computer or a processor, the computer or the processor is made to execute the fourth aspect and any one thereof. The method described in this embodiment.
  • a computer program product comprising instructions which, when run on a computer or processor, cause the computer or processor to perform the method of the fourth aspect and any one of the embodiments.
  • FIG. 1 is a schematic diagram of a straight axis and an orthogonal axis provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a positive and negative alternating current value Id of a direct-axis alternating current provided by an embodiment of the present application;
  • FIG. 3 is a schematic structural diagram of a heat exchange system provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of heating a battery by a motor according to an embodiment of the present application
  • FIG. 5 is a schematic structural diagram of a motor according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a rotor of a motor provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart 1 of a control method provided by an embodiment of the present application.
  • FIG. 8 is a second schematic flowchart of a control method provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart three of a control method provided by an embodiment of the present application.
  • FIG. 10 is a fourth schematic flowchart of a control method provided by an embodiment of the present application.
  • 11 is a schematic diagram of the relationship between the current intensity and the frequency of the direct-axis alternating current in a coordinate system established by the temperature of the rotor and the output voltage of the battery according to an embodiment of the application.
  • the motors involved in the embodiments of the present application may be permanent magnet motors, asynchronous motors, excitation motors, synchronous reluctance motors, and the like.
  • U/V/W three-phase coordinate axis At present, the motor of electric vehicle is generally an AC motor, and the battery is a DC source. Therefore, the DC power output by the battery is converted into the three-phase AC power of the motor through the inverter.
  • the coordinates of the three-phase AC power The axes are U-axis, V-axis and W-axis respectively.
  • the direct axis also known as the D-axis or d-axis, is a time-varying DC coordinate axis obtained from a stationary U/V/W three-phase coordinate axis through Park Transformation.
  • the quadrature axis also known as the Q-axis or the q-axis, is a time-varying AC coordinate axis obtained from a stationary U/V/W three-phase coordinate axis through Parker transformation.
  • Parker transformation is to convert the analysis method of U/V/W three-phase AC motor into the analysis method of direct axis and quadrature axis of DC motor, which is convenient to realize the electromagnetic field decoupling control of three-phase AC motor.
  • Winding The coil wound on the stator iron teeth of the motor is used to provide a path for the current, and the part that protrudes from the rotor core at both ends of the motor shaft is called the end winding.
  • the material of the winding is generally copper.
  • Copper Loss Losses caused by the flow of electric current in a copper conductor.
  • the loss of the rotor core the loss of the rotor core in the alternating magnetic field, including the eddy current loss caused by the induced eddy current and the hysteresis loss caused by the hysteresis effect.
  • the rotating shaft of the rotor and the stator will also generate eddy current loss and hysteresis loss in the alternating magnetic field.
  • the above losses will cause heat generation, but the heat generation of the rotor shaft and the stator is small, while the heat generation of the rotor core is relatively large.
  • Eddy current loss of permanent magnets Permanent magnets generate eddy currents in the alternating magnetic field, which in turn cause corresponding eddy current losses.
  • Pulsed magnetic field a magnetic field with a fixed orientation in space, and only the amplitude of the magnetic field intensity changes alternately with time.
  • the first battery heating method is to connect the DC current to the windings of the motor stator, so that the windings are heated due to copper loss, and the heat of the motor is conducted by the coolant to the replacement. Heater, the battery is heated by the heat exchanger.
  • the motor is an AC motor, the motor cannot run when the DC power is turned on, so the battery cannot be heated during the operation of the motor (for example, when the vehicle is running).
  • the second battery heating method is to lead the three-phase winding of the motor out of the neutral point and connect it with an energy storage device.
  • the battery charges the windings of the motor and the energy storage device through the inverter, and then the windings of the motor and the energy storage device discharge to the battery through the same circuit, and the two processes are alternately performed.
  • the current in the above process flows through the three-phase winding and then flows through the energy storage device through the neutral point, so it is a zero-sequence current, that is, the current waveform and phase flowing through the three-phase winding are the same.
  • This technology also uses the copper loss of the winding. fever.
  • the motor winding needs to lead out the neutral point to connect with the energy storage device, which increases the equipment cost. Only use the copper loss of the winding to generate heat, the heating power is small, and the heating speed is slow. In addition, this method conflicts with the normal operation of the motor, and cannot heat the battery during the operation of the motor (eg, the vehicle is running).
  • the third battery heating method is to heat the battery through an external heater. But this way will increase the battery heater and increase the cost of the equipment.
  • the fourth battery heating method is to heat the battery through an external heating film.
  • the heating film is composed of a variety of high temperature resistant organic materials, polymer materials, carbon and high temperature resistant fibers. Likewise, because the heating film material is expensive, its cost is much higher than that of the heater, and additional control circuits need to be added, which increases the equipment cost.
  • the embodiment of the present application provides a battery heating method.
  • direct-axis alternating current to the winding, as shown in FIG. 2 , that is, the current value Id of the direct-axis alternating current changes alternately, instead of the currently commonly used direct-axis direct current, so that the winding can be heated.
  • a magnetic field is generated, the direction of the magnetic field does not change, and only the amplitude of the positive and negative changes alternately, that is, the pulse vibration magnetic field.
  • the magnetic field will cause the shaft of the motor rotor, the rotor core and the stator to generate heat due to eddy current loss and hysteresis loss, the permanent magnet of the rotor will generate heat due to eddy current loss, and the winding will generate heat due to copper loss.
  • the copper is lost to generate heat, and the method provided by the embodiment of the present application can provide higher heating power and speed up the heating speed.
  • the battery heating method provided by the embodiments of the present application does not require adding other devices and does not increase additional costs.
  • the winding, stator and rotor shaft, rotor core and permanent magnet are all heated to prevent uneven heating of the motor and damage the motor, and disperse the heat source to make the motor heat more evenly. Under the same heating power, it can be heated for a longer time, or , the same overheating protection limit can have greater heating power.
  • the quadrature-axis current is input to the motor to drive the rotor of the motor to rotate, and the direct-axis alternating current is input to heat the motor, thereby realizing the heating of the battery during the operation of the motor (for example, when the vehicle is running).
  • FIG. 3 it is a schematic diagram of a heat exchange system provided in an embodiment of the present application.
  • the heat exchange system includes: a battery 31 , a motor controller 32 , a motor 33 , a heat exchanger 34 and a liquid pump 35 .
  • the battery 31 and the motor controller 32 are coupled through a high-voltage DC bus, the motor controller 32 and the motor 33 are coupled through a three-phase line, and the motor 33, the heat exchanger 34 and the liquid pump 35 are coupled through a pipeline, and the pipeline is flow-insulated Coolant.
  • the insulating coolant may include mineral insulating oil, synthetic insulating oil, vegetable oil, and the like.
  • the battery 31 is used to output direct current, and includes, for example, a storage battery, a lithium battery, a fuel cell, a super capacitor, and the like.
  • the motor controller 32 is also called a motor control unit (MCU), and includes a control device 321 and an inverter circuit 322.
  • the control device 321 is used to control the inverter circuit 322 to output three-phase (U/V/W) to the motor 33 .
  • Electric current eg, direct-axis alternating current
  • the inverter circuit 322 in the figure is an exemplary three-phase full-bridge inverter circuit, and may also be other inverter circuits, which are not limited in this application.
  • the motor 33 is a three-phase AC motor.
  • the insulating cooling liquid flows in the motor 33, and when the motor 33 generates heat, the heat is transferred to the insulating cooling liquid.
  • the heat exchanger 34 is arranged around the battery 31 for exchanging heat with the battery 31 , and an insulating cooling liquid flows in the heat exchanger 34 .
  • the liquid pump 35 is used to drive the insulating cooling liquid to flow between the heat exchanger 34 and the motor 33 .
  • the liquid pump 35 When the liquid pump 35 is energized and working, it will also generate heat and heat the insulating cooling liquid, which can improve the heating efficiency.
  • the process of heating the battery by the motor includes S401-S404, wherein, if the temperature of the battery is lower than the battery temperature threshold, then execute the steps S401-S403, otherwise execute the step S404:
  • the control device 321 controls the liquid pump 35 to operate, and the insulating cooling liquid circulates among the liquid pump 35 , the motor 33 and the heat exchanger 34 .
  • control device 321 controls the inverter circuit 322 to output the direct-axis alternating current to the motor 33, so that the motor 33 heats the insulating cooling liquid.
  • the insulating cooling liquid in the heat exchanger 34 heats the battery 31 , and the battery 31 cools the insulating cooling liquid.
  • the control device 321 controls the inverter circuit 322 not to output direct-axis alternating current to the motor 33 and stops heating.
  • the motor 33 includes a casing 331 , a stator 332 installed inside the casing 331 , a rotor 333 coupled to the casing 331 through a bearing, a winding 334 wound on the stator 332 , and, with the inside of the casing 331 , a rotor 333 .
  • the liquid inlet hole 336 and the liquid outlet hole 337 communicate with the cavity 335 .
  • the rotor 333 includes a rotating shaft 3331 , a rotor iron core 3332 installed around the rotating shaft 3331 , and a permanent magnet (not shown) installed on the rotor iron core 3332 .
  • the permanent magnets are used to generate an excitation magnetic field, and the permanent magnets may include stacked magnetic steel sheets, magnetic tiles, and the like.
  • the rotor core 3332 includes soft magnetic materials such as silicon steel sheets.
  • the rotor core 3332 is provided with a first hole H1 that communicates with the cavity 335
  • the rotating shaft 3331 is provided with a second hole H2 that communicates with the cavity 335
  • a second hole is also provided between the rotating shaft 3331 and the rotor core 3332 .
  • Three holes H3, the first hole H1 and the second hole H2 can be communicated through a third hole H3, and the stator 332 can be provided with a fourth hole H4 that communicates with the cavity 335.
  • the above-mentioned holes are used to flow insulating cooling liquid, wherein the insulating cooling liquid flowing in the first hole H1 is used for heat exchange with the rotating shaft 3331, and the insulating cooling liquid flowing in the second hole H2 is used for heat exchange with the rotor core 3332.
  • the third hole H3 is used to connect the first hole H1 with the second hole H2, so as to facilitate the flow of insulating cooling liquid inside the motor; the stator 332, like the rotor core 3332, generates heat due to eddy current loss and hysteresis loss, and also In order to conduct heat for the windings 334 , the insulating cooling liquid flowing in the fourth hole H4 is used for heat exchange with the stator 332 .
  • the first hole H1 and the second hole H2 may be parallel to the radial direction of the rotating shaft 3331 , and the third hole H3 may be perpendicular to the radial direction of the rotating shaft 3331 .
  • the fourth hole may be parallel or perpendicular to the radial direction of the rotating shaft 3331 .
  • the present application does not limit the number of the first hole H1, the second hole H2 and the third hole H3, that is, there may be one or more.
  • the liquid inlet hole 336 is used to flow in the insulating cooling liquid, and the liquid outlet hole 337 is used to flow out the insulating cooling liquid.
  • the flow direction of the insulating coolant in the figure is just an example.
  • the liquid inlet hole 336 includes a first liquid inlet hole, and the first liquid inlet hole can be arranged on the rotating shaft 3331 and communicate with the second hole H2, so that the insulating cooling liquid can flow in through the rotating shaft 3331 inside the motor.
  • the liquid inlet hole 336 includes a second liquid inlet hole, and the second liquid inlet hole is provided at the top of the casing 331 at a position opposite to the winding 334, so that the insulation flowing from the second liquid inlet hole is cooled The liquid flows onto the windings 334 by gravity, thereby exchanging heat with the windings 334 .
  • the liquid outlet hole 337 may be provided at the bottom of the housing 331, so that the insulating cooling liquid flows out of the motor from the liquid outlet hole 337 under the action of gravity.
  • control device outputs three-phase (U/V/W) current (eg, direct-axis alternating current) to the motor by controlling the inverter circuit to heat the battery in conjunction with a specific control method.
  • the control method can be applied to various states of the electric vehicle. For example, it can be detected that the battery is connected to an external charging power source, detected that the key is turned to the self-check gear, detected that the start button has been pressed, detected that the keyless start is disabled. Triggered, during EV driving, etc.
  • control method includes S701-S702:
  • control device controls the inverter circuit to output direct-axis alternating current to the winding.
  • the control device can control the inverter circuit to output direct-axis alternating current to the winding to heat the battery.
  • the present application does not limit the waveform of the direct-axis alternating current, for example, it can be a sine wave, a triangular wave, a sawtooth wave, or the like.
  • the frequency and current intensity of the direct-axis alternating current may adopt fixed values, or may be dynamically adjusted. If the frequency or current intensity of the direct-axis alternating current is larger, the heating power of the motor will be larger, and the heating time of the battery will be shorter; The longer the heating time, but can prevent the motor from overheating and damage the motor.
  • the specific adjustment process refer to the related descriptions of FIG. 8 and FIG. 9 .
  • control device can control the inverter circuit to output the quadrature axis current to the winding, that is, the quadrature axis current can be zero or not zero. Since the motor will generate torque when the quadrature axis current is not zero, when the electric vehicle is stationary, the quadrature axis current can be zero in order to avoid motor vibration. When the electric vehicle is running, the quadrature-axis current can be non-zero to drive the shaft of the motor to rotate and drive the electric vehicle to drive normally. Heat the battery.
  • control device controls the inverter circuit not to output the direct-axis alternating current to the winding.
  • the control device can control the inverter circuit to output the quadrature axis current to the windings, and stop outputting the direct axis AC current to the windings, and the saved power is used to generate the torque of the motor, thereby improving the efficiency of the motor.
  • the above process can be performed again at a certain interval. If the temperature of the battery is greater than or equal to the battery temperature threshold, the direct-axis alternating current will not be output to the winding, and the heating of the battery will be stopped.
  • control method may further include steps S801-S802, and step S803.
  • steps S801-S802 and step S803 have no sequential execution order:
  • the control device determines the temperature of the rotor of the motor according to at least one of the temperature of the housing of the motor, the temperature of the windings, the temperature of the insulating cooling liquid flowing out of the motor, and the ambient temperature.
  • the temperature of the rotor will be very high, and the permanent magnet will be demagnetized at high temperature. Therefore, the temperature of the rotor should be monitored to prevent Its temperature is too high.
  • the rotor will rotate, so it is not suitable to install a temperature sensor to directly measure its temperature. Therefore, it is possible to establish at least the temperature of the casing of the motor, the temperature of the windings, the temperature of the insulating coolant flowing out of the motor, and the ambient temperature by means of experimental calibration.
  • a mapping table with the temperature of the rotor, the temperature of the rotor can be determined by a similar way of looking up Table 1.
  • control device adjusts the current intensity of the direct-axis alternating current according to the temperature of the rotor.
  • step S802 includes:
  • the control device adjusts the current intensity of the direct-axis alternating current to be the first current intensity.
  • control device adjusts the current intensity of the direct-axis alternating current to the second current intensity.
  • the first rotor temperature threshold is greater than the second rotor temperature threshold, and the first current intensity is smaller than the second current intensity, that is, the first current intensity is a small current, and the second current intensity is a large current.
  • the temperature of the rotor is high, heating the motor with a small current can prevent the motor from overheating and avoid the demagnetization of the permanent magnet; when the temperature of the rotor is low, heating the motor with a large current can increase the heating power and reduce the battery consumption. heating time.
  • control device adjusts the frequency of the direct-axis alternating current according to whether the battery is connected to an external charging power source and the output voltage of the battery.
  • step S803 includes S8031-S8032:
  • the control device adjusts the frequency of the direct-axis alternating current to the first frequency.
  • the inverter circuit can be controlled to output to the winding at a higher current intensity and/or a higher frequency Direct-axis alternating current to improve the heating efficiency of the motor and reduce the heating time of the battery.
  • the terminal voltage of the motor is proportional to the frequency of the input direct-axis alternating current.
  • the terminal voltage of the motor is higher than the output voltage of the battery (ie, the bus voltage), the battery will not be able to supply power to the motor normally.
  • the direct-axis alternating current is output to the winding at a high frequency, so as to improve the heating efficiency of the motor and reduce the heating time of the battery.
  • the control device adjusts the frequency of the direct-axis alternating current to the second frequency.
  • the first voltage threshold is greater than the second voltage threshold, and the first frequency is greater than the second frequency, that is, the first frequency is a high frequency and the second frequency is a low frequency.
  • step S8031 when the output voltage of the battery is low, the direct-axis alternating current can be output to the winding at a low frequency to prevent the terminal voltage of the motor from being too large and the battery cannot supply power to the motor.
  • step S702 is performed. At this time, the power of the battery is too low to be heated by the motor heating.
  • the current intensity and frequency of the direct-axis alternating current can be independently controlled.
  • the current intensity and frequency of the direct-axis alternating current are both controlled by the temperature of the rotor, that is, if the temperature of the rotor is greater than the first rotor temperature threshold, then steps S8021 and S8021 are executed. S8032.
  • a coordinate system is established based on the temperature of the rotor and the output voltage of the battery, and the relationship between the current intensity and frequency of the direct-axis alternating current is shown in Figure 11.
  • the motor, the motor controller, the heat exchange system and the control method provided by the embodiments of the present application by inputting the quadrature-axis alternating current into the winding of the motor, make the rotating shaft of the motor rotor, the rotor iron core and the stator generate heat due to eddy current loss and hysteresis loss.
  • the permanent magnet of the rotor generates heat due to eddy current loss, and the winding generates heat due to copper loss. Therefore, it can provide higher heating power and heating efficiency and speed up the heating rate compared to relying solely on the copper loss of the winding to generate heat.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer-readable storage medium runs on a computer or a processor, the control methods involved in FIGS. 7-10 are executed .
  • the embodiment of the present application also provides a computer program product containing instructions, when the instructions are executed on a computer or a processor, the control methods involved in FIGS. 7-10 are executed.
  • An embodiment of the present application provides a chip system, where the chip system includes a processor for the motor controller to execute the control methods involved in FIGS. 7 to 10 .
  • the chip system further includes a memory for storing necessary program instructions and data.
  • the chip system may include chips, integrated circuits, or chips and other discrete devices, which are not specifically limited in this embodiment of the present application.
  • the computer-readable storage medium, computer program product or chip system provided in this application are all used to execute the above-mentioned method, therefore, for the beneficial effects that can be achieved, reference may be made to the beneficial effects of the above-mentioned embodiments. The effect will not be repeated here.
  • the processor involved in the embodiments of the present application may be a chip.
  • it can be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or a central processing unit.
  • It can be a central processor unit (CPU), a network processor (NP), a digital signal processing circuit (DSP), or a microcontroller (MCU) , it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processing circuit
  • MCU microcontroller
  • PLD programmable logic device
  • the memory involved in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the disclosed systems, devices and methods may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • a software program it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server or data center via wired (eg coaxial cable, optical fiber, Digital Subscriber Line, DSL) or wireless (eg infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or data storage devices including one or more servers, data centers, etc. that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a Solid State Disk (SSD)), and the like.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a DVD
  • a semiconductor medium for example, a Solid State Disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

一种电机、电机控制器、热交换系统和控制方法。该电机(33)包括壳体、安装于壳体内的定子、通过轴承联接壳体的转子、缠绕在定子上的绕组,以及与壳体内的腔体连通的入液孔和出液孔,入液孔用于流入绝缘冷却液,出液孔用于流出绝缘冷却液,转子包括转轴、围绕转轴安装的转子铁芯以及安装于转子铁芯上的永磁体,转子铁芯设置有与腔体连通的第一孔道,绕组用于输入直轴交流电。通过在电机的绕组输入直轴交流电,使电子转子的转轴和转子铁芯以及定子因为产生涡流损耗和磁滞损耗而发热,转子的永磁体因为产生涡流损耗而发热,绕组因为产生铜损耗而发热,相对于单纯依靠绕组的铜损耗而发热,可以提供更高的发热功率和发热效率,加快加热速度。

Description

电机、电机控制器、热交换系统和控制方法 技术领域
本申请涉及电机领域,尤其涉及一种电机、电机控制器、热交换系统和控制方法。
背景技术
随着新能源汽车技术的发展和市场日益壮大,电动汽车越来越受到消费者的青睐。但目前电动汽车的电池适合工作在一定温度范围,当温度过低时对电池性能响应很大。以锂电池为例:
(1)电池的正极材料活性降低,电池内部运动的锂离子数量下降,电池容量降低。
(2)电解液固化,造成电池正负极材料中的带电离子扩散运动能力变差,电能传递速度降低,电池放电速率下降。
(3)负极材料晶格收缩,锂离子嵌入困难,充电速度下降。
因此,在低温环境中要对电池进行加热以避免出现上述问题。目前一种电池加热方式是通过对电机定子的绕组接通直流电,利用绕组的铜损耗发热来对电池进行加热。但是这种方式,由于绕组较小所以发热功率也小,加热速度较慢。
发明内容
本申请实施例提供一种电机、电机控制器、热交换系统和控制方法,用于提高电机加热的效率。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种电机,包括壳体、安装于壳体内部的定子、通过轴承联接壳体的转子、缠绕在定子上的绕组,以及,与壳体内的腔体连通的入液孔和出液孔;入液孔用于流入绝缘冷却液,出液孔用于流出绝缘冷却液;转子包括转轴、围绕转轴安装的转子铁芯以及安装于转子铁芯上的永磁体;转子铁芯设置有与腔体连通的第一孔道;绕组用于输入直轴交流电。
本申请实施例提供的电机,通过在电机的绕组输入交轴交流电,使电机转子的转轴和转子铁芯以及定子因为产生涡流损耗和磁滞损耗而发热,转子的永磁体因为产生涡流损耗而发热,绕组因为产生铜损耗而发热,因此相对于单纯依靠绕组的铜损耗而发热,可以提供更高的发热功率和发热效率,加快加热速度。
在一种可能的实施方式中,转轴中设置有与腔体连通的第二孔道。第二孔道中流动的绝缘冷却液与转轴进行热交换。
在一种可能的实施方式中,入液孔包括第一入液孔,第一入液孔设置在转轴上,并且,与第二孔道连通。使得绝缘冷却液可以通过转轴流入电机内部。
在一种可能的实施方式中,转轴和转子铁芯之间还设置有第三孔道,第一孔道与第二孔道之间通过第三孔道连通。第三孔道用于将第一孔道与第二孔道连通,从而利于绝缘冷却液在电机内部的流动。
在一种可能的实施方式中,定子上设置有与腔体连通的第四孔道。第四孔道中流动的绝缘冷却液用于与定子进行热交换。
在一种可能的实施方式中,入液孔包括第二入液孔,第二入液孔设置在壳体顶部与绕组相对的位置。使得从第二入液孔流入的绝缘冷却液在重力作用下流至绕组上,从而与绕组进行热交换。
在一种可能的实施方式中,出液孔设置在壳体底部。使得绝缘冷却液在重力作用下从出液孔流出电机。
第二方面,提供了一种电机控制器,包括:逆变电路和控制装置,控制装置用于控制逆变电路,向如第一方面及其任一实施方式所述的电机的绕组输出直轴交流电。
本申请实施例提供的电机控制器,通过在电机的绕组输入交轴交流电,使电机转子的转轴和转子铁芯以及定子因为产生涡流损耗和磁滞损耗而发热,转子的永磁体因为产生涡流损耗而发热,绕组因为产生铜损耗而发热,因此相对于单纯依靠绕组的铜损耗而发热,可以提供更高的发热功率和发热效率,加快加热速度。
在一种可能的实施方式中,控制装置还用于:如果电池的温度小于电池温度门限,则根据电池是否外接充电电源以及电池的输出电压,调节直轴交流电的频率。该实施方式提供了调节直轴交流电的频率的一种方式。
在一种可能的实施方式中,控制装置具体用于:如果电池外接充电电源,或者,如果电池未外接充电电源并且电池的输出电压大于第一电压门限,则调节直轴交流电的频率为第一频率;如果电池未外接充电电源并且电池的输出电压小于等于第一电压门限而大于第二电压门限,则调节直轴交流电的频率为第二频率;其中,第一电压门限大于第二电压门限,第一电流强度大于第二电流强度,第一频率大于第二频率。该实施方式提供了具体如何调节直轴交流电的频率的一种方式。
在一种可能的实施方式中,控制装置还用于:如果电池的温度小于电池温度门限,则根据电机的壳体的温度、绕组的温度、流出电机的绝缘冷却液的温度以及环境温度中的至少一项确定电机的转子的温度;根据转子的温度调节直轴交流电的电流强度。该实施方式提供了调节直轴交流电的电流强度的一种方式。
在一种可能的实施方式中,控制装置具体用于:如果转子的温度大于第一转子温度门限,则调节直轴交流电的电流强度为第一电流强度;如果转子的温度小于第二转子温度门限,则调节直轴交流电的电流强度为第二电流强度;否则,保持直轴交流电的电流强度;其中,第一转子温度门限大于第二转子温度门限,第一电流强度小于第二电流强度。该实施方式提供了具体如何调节直轴交流电的电流强度的一种方式。
在一种可能的实施方式中,控制装置还用于:如果转子的温度大于第一转子温度门限,则调节直轴交流电的频率为第二频率。根据转子的温度还可以调节直轴交流电的频率。
在一种可能的实施方式中,控制装置还用于:向绕组输出交轴电流。可以在驱动电机转动的同时对电机进行加热。
第三方面,提供了一种热交换系统,包括如第一方面及其任一实施方式的电机、如第二方面及其任一实施方式的电机控制器、换热器和液泵;液泵、换热器以及电机的出液孔和入液孔连通,用于流动绝缘冷却液;电机控制器用于向电机的绕组输出直轴交流电,还用于控制液泵的运行。
第四方面,提供了一种控制方法,包括:向如第一方面及其任一实施方式所述的 电机的绕组输出直轴交流电。
在一种可能的实施方式中,该方法还包括:如果电池的温度小于电池温度门限,则根据电池是否外接充电电源以及电池的输出电压,调节直轴交流电的频率。
在一种可能的实施方式中,根据电池是否外接充电电源以及电池的输出电压,调节直轴交流电的频率,包括:如果电池外接充电电源,或者,如果电池未外接充电电源并且电池的输出电压大于第一电压门限,则调节直轴交流电的频率为第一频率;如果电池未外接充电电源并且电池的输出电压小于等于第一电压门限而大于第二电压门限,则调节直轴交流电的频率为第二频率;其中,第一电压门限大于第二电压门限,第一电流强度大于第二电流强度,第一频率大于第二频率。
在一种可能的实施方式中,该方法还包括:如果电池的温度小于电池温度门限,则根据电机的壳体的温度、绕组的温度、流出电机的绝缘冷却液的温度以及环境温度中的至少一项确定电机的转子的温度;根据转子的温度调节直轴交流电的电流强度。
在一种可能的实施方式中,根据转子的温度调节直轴交流电的电流强度,包括:如果转子的温度大于第一转子温度门限,则调节直轴交流电的电流强度为第一电流强度;如果转子的温度小于第二转子温度门限,则调节直轴交流电的电流强度为第二电流强度;否则,保持直轴交流电的电流强度;其中,第一转子温度门限大于第二转子温度门限,第一电流强度小于第二电流强度。
在一种可能的实施方式中,该方法还包括:如果转子的温度大于第一转子温度门限,则调节直轴交流电的频率为第二频率。
在一种可能的实施方式中,该方法还包括:向绕组输出交轴电流。
第五方面,提供了一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序,当其在计算机或处理器上运行时,使得计算机或处理器执行如第四方面及其任一项实施方式所述的方法。
第六方面,提供了一种包含指令的计算机程序产品,当指令在计算机或处理器上运行时,使得计算机或处理器执行如第四方面及任一项实施方式所述的方法。
第三方面到第六方面的技术效果参照第一方面至第二方面的内容,在此不再重复。
附图说明
图1为本申请实施例提供的一种直轴和交轴的示意图;
图2为本申请实施例提供的一种直轴交流电的电流值Id正负交替变化的示意图;
图3为本申请实施例提供的一种热交换系统的架构示意图;
图4为本申请实施例提供的一种通过电机加热电池的流程示意图;
图5为本申请实施例提供的一种电机的结构示意图;
图6为本申请实施例提供的一种电机的转子的结构示意图;
图7为本申请实施例提供的一种控制方法的流程示意图一;
图8为本申请实施例提供的一种控制方法的流程示意图二;
图9为本申请实施例提供的一种控制方法的流程示意图三;
图10为本申请实施例提供的一种控制方法的流程示意图四;
图11为本申请实施例提供的一种以转子的温度和电池的输出电压建立坐标系,直轴交流电的电流强度和频率的关系的示意图。
具体实施方式
首先对本申请实施例涉及的概念进行描述。
本申请实施例涉及的电机可以是永磁电机、异步电机、励磁电机、同步磁阻电机等。
U/V/W三相坐标轴:目前电动汽车的电机一般为交流电机,而电池为直流源,因此通过逆变器将电池输出的直流电转换为电机的三相交流电,这三相交流电的坐标轴即分别为U轴、V轴和W轴。
直轴(direct axis)又称D轴或d-axis,是由静止的U/V/W三相坐标轴经过派克变换(Park Transformation)得到的时变的直流坐标轴。
交轴(quadrature axis)又称为Q轴或q-axis,是由静止的U/V/W三相坐标轴经过派克变换得到的时变的交流坐标轴。
如图1所示,直轴与交轴垂直,直轴与U轴的夹角θ是时变的,满足θ=ωt,其中,ω为电频率,t为时间。
派克变换是将U/V/W三相交流电机的分析方式转换成直流电机的直轴和交轴的分析方式,便于实现三相交流电机的电磁场解耦控制。
绕组:缠绕在电机的定子铁齿上的线圈,用于为电流提供通路,其中在电机转轴轴向两端伸出转子铁芯的部分被称为端部绕组。绕组的材料一般为铜。
铜损耗:电流在铜导体中流通所产生的损耗。
转子铁芯的损耗:转子铁芯在交变的磁场中所产生的损耗,包括感应产生涡流所引起的涡流损耗和由于磁滞效应所引起的磁滞损耗。同理,转子的转轴以及定子同样会在交变的磁场中产生涡流损耗和磁滞损耗。上述损耗均会引起发热,只不过转子的转轴以及定子的发热较小,而转子铁芯的发热较大。
永磁体的涡流损耗:永磁体在交变的磁场中产生涡流,进而引起相应的涡流损耗。
脉振磁场:空间上方位固定,仅磁场强度幅值随时间交替变化的磁场。
目前,在电动汽车领域中,有多种电池加热方式,第一种电池加热方式是通过对电机定子的绕组接通直流电,使得绕组因为铜损耗而发热,由冷却液将电机的热量传导至换热器,由换热器对电池进行加热。这种方式存在以下缺点:
(1)只利用了电机的绕组的铜损耗发热,由于电机中的绕组电阻较小,因此发热功率也小,加热速度较慢。
(2)电机中仅有绕组进行加热,而电机其他部分不参与加热,因此电机发热不均匀,有可能造成绕组局部过热,影响绕组寿命。
(3)绕组温度升高很快,达到一定温度后会触发过热保护,因此加热持续时间很短。
(4)由于电机是交流电机,接通直流电则电机无法运行,因此无法在电机运行(例如车辆行驶)过程中为电池加热。
第二种电池加热方式是将电机的三相绕组引出中性点,与一个储能装置相连。在加热模式下,电池通过逆变器向电机的绕组和储能装置充电,之后电机的绕组和储能装置再通相同回路向电池放电,这两个过程交替进行。上述过程中的电流流经三相绕组后再经过中性点流经储能装置,因此是零序电流,即流经三相绕组的电流波形及相 位相同,该技术同样是利用绕组的铜损耗发热。
这种方式中,电机绕组需要引出中性点与储能装置相连,增加了设备成本。只利用绕组的铜损耗发热,发热功率小,加热速度较慢。另外,该方式与电机正常运行相冲突,无法在电机运行(例如车辆行驶)过程中为电池加热。
第三种电池加热方式是通过外接加热器对电池加热。但是这种方式会增加电池加热器,增加了设备成本。
第四种电池加热方式是通过外接加热膜对电池加热,加热膜由多种耐高温有机材料、高分子材料、碳素及耐高温纤维复合而成。同样地,由于加热膜材料价格昂贵,其成本要远高于加热器,另外还需要增加额外的控制电路,增加了设备成本。
本申请实施例提供了一种电池加热方式,通过向绕组输入直轴交流电,如图2所示,即直轴交流电的电流值Id正负交替变化,而非目前常用的直轴直流电,使得绕组产生磁场,该磁场方向不变,仅幅值正负交替变化,即为脉振磁场。
该磁场将引起电机转子的转轴和转子铁芯以及定子因为产生涡流损耗和磁滞损耗而发热,转子的永磁体因为产生涡流损耗而发热,绕组因为产生铜损耗而发热,因此相对于单纯依靠绕组的铜损耗而发热,本申请实施例提供的方式可以提供更高的发热功率,加快加热速度。
另外,本申请实施例提供的电池加热方式,不需要增加其他装置,不会增加额外的成本。通过绕组、定子以及转子的转轴、转子铁芯和永磁体均发热,防止电机加热不均匀而损坏电机,而且分散了热源,使电机发热更均匀,同样发热功率下,可以加热更持久,或者说,同样过热保护限制下可以拥有更大发热功率。而且,在电机正常运行过程中,向电机输入交轴电流以驱动电机的转子旋转,另外输入直轴交流电使电机进行加热,实现了在电机运行(例如车辆行驶)过程中为电池加热。
如图3所示,为本申请实施例提供的一种热交换系统的示意图。该热交换系统包括:电池31、电机控制器32、电机33、换热器34和液泵35。电池31与电机控制器32通过高压直流母线相耦合,电机控制器32与电机33通过三相线相耦合,电机33、换热器34和液泵35通过管路相耦合,管路中流动绝缘冷却液。绝缘冷却液可以包括矿物绝缘油、合成绝缘油和植物油等。
电池31用于输出直流电,包括例如蓄电池、锂电池、燃料电池、超级电容等。
电机控制器32也称电机控制单元(motor control unit,MCU),包括控制装置321和逆变电路322,控制装置321用于控制逆变电路322向电机33输出三相(U/V/W)电的电流(例如,直轴交流电),以及,控制液泵35的停止和运行。图中逆变电路322为一种示例性的三相全桥逆变电路,还可以是其他逆变电路,本申请不作限定。
电机33为三相交流电机。电机33中流动绝缘冷却液,电机33发热时将热量传递给绝缘冷却液。
换热器34设置于电池31周围,用于与电池31进行热交换,换热器34中流动绝缘冷却液。
液泵35用于驱动绝缘冷却液在换热器34与电机33之间流动。液泵35在通电工作时,自身也会产生热量,并对绝缘冷却液进行加热,可以提升制热效率。
如图4所示,通过电机加热电池的流程包括S401-S404,其中,如果电池的温度 小于电池温度门限,则执行步骤S401-S403,否则执行步骤S404:
S401、如果电池的温度小于电池温度门限,则控制装置321控制液泵35运行,绝缘冷却液在液泵35、电机33和换热器34之间循环流动。
S402、控制装置321控制逆变电路322向电机33输出直轴交流电,使电机33对绝缘冷却液进行加热。
S403、换热器34中的绝缘冷却液对电池31进行加热,电池31冷却绝缘冷却液。
S404、如果电池的温度大于等于电池温度门限,则控制装置321控制逆变电路322不向电机33输出直轴交流电,停止加热。
需要说明的是,可以间隔一段时间重复执行上述过程,不必频繁检测电池的温度。
下面结合图5和图6对电机33的结构进行说明:
如图5所示,电机33包括壳体331、安装于壳体331内部的定子332、通过轴承联接壳体331的转子333、缠绕于定子332上的绕组334,以及,与壳体331内的腔体335连通的入液孔336和出液孔337。
如图5和图6所示,转子333包括转轴3331、围绕转轴3331安装的转子铁芯3332以及安装于转子铁芯3332上的永磁体(图中未示出)。
其中,永磁体用于产生励磁磁场,永磁体可以包括堆叠的磁钢片、磁瓦等。转子铁芯3332包括硅钢片等软磁材料。
可选的,转子铁芯3332设置有与腔体335连通的第一孔道H1,转轴3331中设置有与腔体335连通的第二孔道H2,转轴3331和转子铁芯3332之间还设置有第三孔道H3,第一孔道H1与第二孔道H2之间可以通过第三孔道H3连通,定子332可以设置有与腔体335连通的第四孔道H4。上述孔道用于流动绝缘冷却液,其中,第一孔道H1中流动的绝缘冷却液用于与转轴3331进行热交换,第二孔道H2中流动的绝缘冷却液用于与转子铁芯3332进行热交换,第三孔道H3用于将第一孔道H1与第二孔道H2连通,从而利于绝缘冷却液在电机内部的流动;定子332与转子铁芯3332一样由于涡流损耗和磁滞损耗而发热,并且还为绕组334导热,所以第四孔道H4中流动的绝缘冷却液用于与定子332进行热交换。
第一孔道H1和第二孔道H2可以平行于转轴3331的径向方向,第三孔道H3可以垂直于转轴3331的径向方向。第四孔道可以平行或垂直于转轴3331的径向方向。
本申请不限定第一孔道H1、第二孔道H2和第三孔道H3的数量,即可以有一个或多个。
入液孔336用于流入绝缘冷却液,出液孔337用于流出绝缘冷却液。图中绝缘冷却液流动方向仅为一种示例。
在一种可能的实施方式中,入液孔336包括第一入液孔,第一入液孔可以设置在转轴3331上,并且,与第二孔道H2连通,使得绝缘冷却液可以通过转轴3331流入电机内部。
在另一种可能的实施方式中,入液孔336包括第二入液孔,第二入液孔设置在壳体331顶部与绕组334相对的位置,使得从第二入液孔流入的绝缘冷却液在重力作用下流至绕组334上,从而与绕组334进行热交换。
在一种可能的实施方式中,出液孔337可以设置在壳体331底部,使得绝缘冷却 液在重力作用下从出液孔337流出电机。
下面结合具体的控制方法对控制装置如何通过控制逆变电路向电机输出三相(U/V/W)电的电流(例如,直轴交流电),从而对电池进行加热进行说明。该控制方法可以应用于电动汽车的各种状态中,例如,可以是检测到电池外接了充电电源,检测到钥匙拨动至自检档位,检测到按下启动按钮,检测到无钥匙启动被触发,在电动汽车行驶过程中等。
具体的,如图7所示,该控制方法包括S701-S702:
S701、如果电池的温度小于电池温度门限,则控制装置控制逆变电路向绕组输出直轴交流电。
如果电池的温度小于电池温度门限,说明电池的温度过低,影响电池的性能,因此,控制装置可以控制逆变电路向绕组输出直轴交流电,来对电池进行加热。
本申请不限定直轴交流电的波形,例如,可以是正弦波、三角波、锯齿波等。
其中,直轴交流电的频率和电流强度可以采用固定值,或者,可以进行动态调节。如果直轴交流电的频率或电流强度越大,则电机的发热功率越大,对电池的加热时间越短;如果直轴交流电的频率或电流强度越小,则电机的发热功率越小,对电池的加热时间越长,但是能防止电机过热而损坏电机。具体调节过程参照图8及图9的相关描述。
另外,控制装置可以控制逆变电路向绕组输出交轴电流,即交轴电流可以为零或不为零。由于交轴电流不为零时会使电机产生转矩,因此当电动汽车静止时,为了避免电机振动,交轴电流可以为零。当电动汽车在行驶时,交轴电流可以不为零,以驱动电机的转轴旋转,带动电动汽车正常行驶,在电动汽车行驶过程中,由于仍可以通过直轴交流电来使电机加热,所以仍可以对电池加热。
S702、否则,控制装置控制逆变电路不向绕组输出直轴交流电。
即不必对电池进行加热,以节省电池的能量。例如,在车辆行驶过程中,控制装置可以控制逆变电路向绕组输出交轴电流,而停止向绕组输出直轴交流电,节省的电量用于产生电机的转矩,从而提高电机效率。
需要说明的是,在对电池加热过程中,可以间隔一定时间重新执行上述过程,如果电池的温度大于等于电池温度门限,不向绕组输出直轴交流电,停止对电池加热。
可选的,如图8所示,上述控制方法还可以包括步骤S801-S802,以及,步骤S803。其中,步骤S801-S802与步骤S803无先后执行顺序:
S801、控制装置根据电机的壳体的温度、绕组的温度、流出电机的绝缘冷却液的温度以及环境温度中的至少一项确定电机的转子的温度。
本申请实施例中,由于发热的转轴、转子铁芯、永磁体均位于转子上,因此转子的温度会很高,而永磁体在高温时会发生退磁,因此要对转子的温度进行监测,防止其温度过高。而转子会转动,不适合安装温度传感器来直接测量其温度,因此可以通过实验标定的方式,建立电机的壳体的温度、绕组的温度、流出电机的绝缘冷却液的温度以及环境温度中的至少一项与转子的温度的映射表,通过类似查表1的方式可以确定转子的温度。
表1
壳体温度 绕组温度 绝缘冷却液温度 环境温度 转子温度
A1 B1 C1 D1 E1
A2 B2 C2 D2 E2
A3 B3 C3 D3 E3
A4 B4 C4 D4 E4
S802、控制装置根据转子的温度调节直轴交流电的电流强度。
可选的,如图9或图10所示,步骤S802包括:
S8021、如果转子的温度大于第一转子温度门限,则控制装置调节直轴交流电的电流强度为第一电流强度。
S8022、如果转子的温度小于第二转子温度门限,则控制装置调节直轴交流电的电流强度为第二电流强度。
否则,保持直轴交流电的电流强度不变。即如果转子的温度小于等于第一转子温度门限,并且大于等于第二转子温度门限,则保持直轴交流电的电流强度不变。
其中,第一转子温度门限大于第二转子温度门限,第一电流强度小于第二电流强度,即第一电流强度为小电流,第二电流强度为大电流。在转子的温度较高时,以小电流对电机进行加热,可以防止电机过热,避免永磁体退磁;在转子的温度较低时,以大电流对电机进行加热,可以提高加热功率,减少对电池加热的时间。
S803、控制装置根据电池是否外接充电电源以及电池的输出电压,调节直轴交流电的频率。
可选的,如图9或图10所示,步骤S803包括S8031-S8032:
S8031、如果电池外接充电电源,或者,如果电池未外接充电电源并且电池的输出电压大于第一电压门限,则控制装置调节直轴交流电的频率为第一频率。
在电池外接充电电源时,不会消耗电池能量,不会造成电池电量过低无法正常启动的情况,此时,可以控制逆变电路以较高的电流强度和/或较高的频率向绕组输出直轴交流电,以提高电机加热效率,降低对电池加热的时间。
电池未外接充电电源时,在电机输入的直轴交流电的幅值一定的情况下,电机的端电压与输入的直轴交流电的频率呈正比,直轴交流电的频率越高,电机的端电压越大。当电机的端电压高于电池的输出电压(即母线电压)时,电池将无法正常向电机供电。
因此,在电池的输出电压较高时,以较高的频率向绕组输出直轴交流电,以提高电机加热效率,降低对电池加热的时间。
S8032、如果电池未外接充电电源并且电池的输出电压小于等于第一电压门限而大于第二电压门限,则控制装置调节直轴交流电的频率为第二频率。
其中,第一电压门限大于第二电压门限,第一频率大于第二频率,即第一频率为高频,第二频率为低频。
如步骤S8031所描述的,在电池的输出电压较低时,可以以较低的的频率向绕组输出直轴交流电,以防止电机的端电压过大而导致电池无法向电机供电。
另外,如果电池未外接充电电源并且电池的输出电压小于等于第二电压门限,则 执行步骤S702。此时,电池的电量过低,无法通过电机加热来对电池进行加热。
需要说明的是,如图9所示,在一种可能的实施方式中,直轴交流电的电流强度和频率可以独立控制。
如图10所示,在另一种可能的实施方式中,直轴交流电的电流强度和频率均受转子的温度的控制,即如果转子的温度大于第一转子温度门限,则执行步骤S8021和步骤S8032。以转子的温度和电池的输出电压建立坐标系,直轴交流电的电流强度和频率的关系如图11所示。
本申请实施例提供的电机、电机控制器、热交换系统和控制方法,通过在电机的绕组输入交轴交流电,使电机转子的转轴和转子铁芯以及定子因为产生涡流损耗和磁滞损耗而发热,转子的永磁体因为产生涡流损耗而发热,绕组因为产生铜损耗而发热,因此相对于单纯依靠绕组的铜损耗而发热,可以提供更高的发热功率和发热效率,加快加热速度。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当其在计算机或处理器上运行时,图7-图10中涉及的控制方法被执行。
本申请实施例还提供了一种包含指令的计算机程序产品,当指令在计算机或处理器上运行时,图7-图10中涉及的控制方法被执行。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于电机控制器执行图7-图10中涉及的控制方法。
在一种可能的设计中,该芯片系统还包括存储器,该存储器,用于保存必要的程序指令和数据。该芯片系统,可以包括芯片,集成电路,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
其中,本申请提供的计算机可读存储介质、计算机程序产品或芯片系统均用于执行上文所述的方法,因此,其所能达到的有益效果可参考上文所提供的实施方式中的有益效果,此处不再赘述。
本申请实施例涉及的处理器可以是一个芯片。例如,可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
本申请实施例涉及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、 双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体 介质(例如固态硬盘(Solid State Disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种电机,其特征在于,包括壳体、安装于所述壳体内部的定子、通过轴承联接所述壳体的转子、缠绕在所述定子上的绕组,以及,与所述壳体内的腔体连通的入液孔和出液孔;所述入液孔用于流入绝缘冷却液,所述出液孔用于流出所述绝缘冷却液;
    所述转子包括转轴、围绕所述转轴安装的转子铁芯以及安装于所述转子铁芯上的永磁体;
    所述转子铁芯设置有与所述腔体连通的第一孔道;
    所述绕组用于输入直轴交流电。
  2. 根据权利要求1所述的电机,其特征在于,所述转轴中设置有与所述腔体连通的第二孔道。
  3. 根据权利要求2所述的电机,其特征在于,所述入液孔包括第一入液孔,所述第一入液孔设置在所述转轴上,并且,与所述第二孔道连通。
  4. 根据权利要求2或3所述的电机,其特征在于,所述转轴和所述转子铁芯之间还设置有第三孔道,所述第一孔道与所述第二孔道之间通过所述第三孔道连通。
  5. 根据权利要求1-4任一项所述的电机,其特征在于,所述定子上设置有与所述腔体连通的第四孔道。
  6. 根据权利要求1-5任一项所述的电机,其特征在于,所述入液孔包括第二入液孔,所述第二入液孔设置在所述壳体顶部与所述绕组相对的位置。
  7. 根据权利要求1-6任一项所述的电机,其特征在于,所述出液孔设置在所述壳体底部。
  8. 一种电机控制器,其特征在于,包括:逆变电路和控制装置,所述控制装置用于控制所述逆变电路,向如权利要求1-7任一项所述的电机的绕组输出直轴交流电。
  9. 根据权利要求8所述的电机控制器,其特征在于,所述控制装置还用于:
    如果电池的温度小于电池温度门限,则根据所述电池是否外接充电电源以及所述电池的输出电压,调节所述直轴交流电的频率。
  10. 根据权利要求9所述的电机控制器,其特征在于,所述控制装置具体用于:
    如果所述电池外接充电电源,或者,如果所述电池未外接充电电源并且所述电池的输出电压大于第一电压门限,则调节所述直轴交流电的频率为第一频率;
    如果所述电池未外接充电电源并且所述电池的输出电压小于等于所述第一电压门限而大于第二电压门限,则调节所述直轴交流电的频率为第二频率;
    其中,所述第一电压门限大于所述第二电压门限,所述第一电流强度大于所述第二电流强度,所述第一频率大于所述第二频率。
  11. 根据权利要求8-10任一项所述的电机控制器,其特征在于,所述控制装置还用于:
    如果电池的温度小于电池温度门限,则根据所述电机的壳体的温度、所述绕组的温度、流出所述电机的绝缘冷却液的温度以及环境温度中的至少一项确定所述电机的转子的温度;
    根据所述转子的温度调节所述直轴交流电的电流强度。
  12. 根据权利要求11所述的电机控制器,其特征在于,所述控制装置具体用于:
    如果所述转子的温度大于第一转子温度门限,则调节所述直轴交流电的电流强度为第一电流强度;
    如果所述转子的温度小于第二转子温度门限,则调节所述直轴交流电的电流强度为第二电流强度;
    否则,保持所述直轴交流电的电流强度;
    其中,所述第一转子温度门限大于所述第二转子温度门限,所述第一电流强度小于所述第二电流强度。
  13. 根据权利要求12所述的电机控制器,其特征在于,所述控制装置还用于:
    如果所述转子的温度大于第一转子温度门限,则调节所述直轴交流电的频率为第二频率。
  14. 根据权利要求8-13任一项所述的电机控制器,其特征在于,所述控制装置还用于:
    向所述绕组输出交轴电流。
  15. 一种热交换系统,其特征在于,包括如权利要求1-7任一项所述的电机、如权利要求8-14任一项所述的电机控制器、换热器和液泵;
    所述液泵、所述换热器以及所述电机的出液孔和入液孔连通,用于流动绝缘冷却液;
    所述电机控制器用于向所述电机的绕组输出直轴交流电,还用于控制所述液泵的运行。
  16. 一种控制方法,其特征在于,包括:向如权利要求1-7任一项所述的电机的绕组输出直轴交流电。
  17. 根据权利要求16所述的控制方法,其特征在于,所述方法还包括:
    如果电池的温度小于电池温度门限,则根据所述电池是否外接充电电源以及所述电池的输出电压,调节所述直轴交流电的频率。
  18. 根据权利要求17所述的控制方法,其特征在于,所述根据所述电池是否外接充电电源以及所述电池的输出电压,调节所述直轴交流电的频率,包括:
    如果所述电池外接充电电源,或者,如果所述电池未外接充电电源并且所述电池的输出电压大于第一电压门限,则调节所述直轴交流电的频率为第一频率;
    如果所述电池未外接充电电源并且所述电池的输出电压小于等于所述第一电压门限而大于第二电压门限,则调节所述直轴交流电的频率为第二频率;
    其中,所述第一电压门限大于所述第二电压门限,所述第一电流强度大于所述第二电流强度,所述第一频率大于所述第二频率。
  19. 根据权利要求16-18任一项所述的控制方法,其特征在于,所述方法还包括:
    如果电池的温度小于电池温度门限,则根据所述电机的壳体的温度、所述绕组的温度、流出所述电机的绝缘冷却液的温度以及环境温度中的至少一项确定所述电机的转子的温度;
    根据所述转子的温度调节所述直轴交流电的电流强度。
  20. 根据权利要求19所述的控制方法,其特征在于,所述根据所述转子的温度调 节所述直轴交流电的电流强度,包括:
    如果所述转子的温度大于第一转子温度门限,则调节所述直轴交流电的电流强度为第一电流强度;
    如果所述转子的温度小于第二转子温度门限,则调节所述直轴交流电的电流强度为第二电流强度;
    否则,保持所述直轴交流电的电流强度;
    其中,所述第一转子温度门限大于所述第二转子温度门限,所述第一电流强度小于所述第二电流强度。
  21. 根据权利要求20所述的控制方法,其特征在于,所述方法还包括:
    如果所述转子的温度大于第一转子温度门限,则调节所述直轴交流电的频率为第二频率。
  22. 根据权利要求16-21任一项所述的控制方法,其特征在于,所述方法还包括:
    向所述绕组输出交轴电流。
PCT/CN2020/123436 2020-10-23 2020-10-23 电机、电机控制器、热交换系统和控制方法 WO2022082788A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080009778.2A CN113474973A (zh) 2020-10-23 2020-10-23 电机、电机控制器、热交换系统和控制方法
EP20958370.7A EP4181358A4 (en) 2020-10-23 2020-10-23 ELECTRIC MOTOR, ELECTRIC MOTOR CONTROL DEVICE, HEAT EXCHANGER SYSTEM AND CONTROL METHOD
PCT/CN2020/123436 WO2022082788A1 (zh) 2020-10-23 2020-10-23 电机、电机控制器、热交换系统和控制方法
JP2023512020A JP2023538088A (ja) 2020-10-23 2020-10-23 モーター、モーター・コントローラ、熱交換システム、及び制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/123436 WO2022082788A1 (zh) 2020-10-23 2020-10-23 电机、电机控制器、热交换系统和控制方法

Publications (1)

Publication Number Publication Date
WO2022082788A1 true WO2022082788A1 (zh) 2022-04-28

Family

ID=77868485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123436 WO2022082788A1 (zh) 2020-10-23 2020-10-23 电机、电机控制器、热交换系统和控制方法

Country Status (4)

Country Link
EP (1) EP4181358A4 (zh)
JP (1) JP2023538088A (zh)
CN (1) CN113474973A (zh)
WO (1) WO2022082788A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114604103B (zh) * 2022-03-17 2024-02-02 威睿电动汽车技术(宁波)有限公司 电机的主动加热方法、装置、设备、存储介质及程序产品
CN116760252B (zh) * 2023-08-16 2023-10-24 成都理工大学 一种基于轴向双定子/双转子结构的永磁同步电机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105281456A (zh) * 2014-06-27 2016-01-27 丰田自动车株式会社 旋转电机的转子
CN208401714U (zh) * 2018-07-13 2019-01-18 江苏独角客电机科技有限公司 一种径向磁通电机
WO2019072489A1 (de) * 2017-10-13 2019-04-18 Continental Automotive Gmbh Rotorhohlwelle mit integriertem pumpenelement
CN110022034A (zh) * 2019-03-11 2019-07-16 华中科技大学 一种电机和驱动控制器集成的冷却油路系统
CN110299777A (zh) * 2018-03-22 2019-10-01 本田技研工业株式会社 旋转电机的转子
CN210536437U (zh) * 2019-08-29 2020-05-15 上海蔚来汽车有限公司 电机及其冷却结构
CN111347935A (zh) * 2018-12-21 2020-06-30 比亚迪股份有限公司 一种车辆及其动力电池加热装置与方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4797476B2 (ja) * 2005-07-12 2011-10-19 トヨタ自動車株式会社 二次電池の制御装置
US8896167B2 (en) * 2012-05-25 2014-11-25 Deere & Company Electric machine rotor cooling method
JP2014023338A (ja) * 2012-07-20 2014-02-03 Aida Engineering Ltd 永久磁石モータとその駆動方法、並びに、永久磁石モータの制御装置
HUE053732T2 (hu) * 2016-06-07 2021-07-28 Tesla Inc Villamos motor forgórész kisülésvédelem
US11137060B2 (en) * 2017-06-30 2021-10-05 Tesla, Inc. Electric drive unit cooling and lubrication system with bearing shims and rotor shaft channel
CN111354999B (zh) * 2018-12-21 2021-07-09 比亚迪股份有限公司 一种车辆及其动力电池加热装置与方法
CN111355001B (zh) * 2018-12-21 2022-10-18 比亚迪股份有限公司 一种动力电池加热装置与方法、车辆及终端设备
CN111347928B (zh) * 2018-12-21 2021-09-03 比亚迪股份有限公司 车辆及其动力电池温度控制装置
CN110048192A (zh) * 2019-03-20 2019-07-23 石不凡 一种动力电池预加热方法
CN110126678A (zh) * 2019-05-15 2019-08-16 北京长城华冠汽车科技股份有限公司 一种电动汽车的动力电池加热方法和装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105281456A (zh) * 2014-06-27 2016-01-27 丰田自动车株式会社 旋转电机的转子
WO2019072489A1 (de) * 2017-10-13 2019-04-18 Continental Automotive Gmbh Rotorhohlwelle mit integriertem pumpenelement
CN110299777A (zh) * 2018-03-22 2019-10-01 本田技研工业株式会社 旋转电机的转子
CN208401714U (zh) * 2018-07-13 2019-01-18 江苏独角客电机科技有限公司 一种径向磁通电机
CN111347935A (zh) * 2018-12-21 2020-06-30 比亚迪股份有限公司 一种车辆及其动力电池加热装置与方法
CN110022034A (zh) * 2019-03-11 2019-07-16 华中科技大学 一种电机和驱动控制器集成的冷却油路系统
CN210536437U (zh) * 2019-08-29 2020-05-15 上海蔚来汽车有限公司 电机及其冷却结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4181358A4 *

Also Published As

Publication number Publication date
EP4181358A1 (en) 2023-05-17
EP4181358A4 (en) 2024-01-17
JP2023538088A (ja) 2023-09-06
CN113474973A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
Zhu et al. Comprehensive sensitivity analysis and multiobjective optimization research of permanent magnet flux-intensifying motors
JP7232913B2 (ja) 車両及びその動力電池加熱装置及び加熱方法
Zhou et al. Multi-objective optimization design of variable-saliency-ratio PM motor considering driving cycles
WO2022082788A1 (zh) 电机、电机控制器、热交换系统和控制方法
WO2023284785A1 (zh) 电池包加热方法、电机控制器、电动汽车及系统
WO2023272527A1 (zh) 加热控制方法、装置、油泵电机和热交换系统
EP2686949A2 (en) Device and method for generating an initial controller lookup table for an ipm machine
EP2681831A1 (en) Method and system for calibrating rotor position offset of an electric motor
CN104753188A (zh) 电机、压缩机及控制电机或压缩机的方法
CN114096435B (zh) 一种电驱动系统、动力总成、加热方法及电动车辆
WO2021253694A1 (zh) 永磁电机的控制方法、装置、动力系统及电动汽车
CN102694493A (zh) 一种故障模式下永磁电机转矩估算方法
Dong et al. Innovated approach of predictive thermal management for high-speed propulsion electric machines in more electric aircraft
WO2023040730A1 (zh) 电机控制方法、设备、动力系统、车辆以及存储介质
Zhu et al. Cooling system design optimization of a high power density PM traction motor for electric vehicle applications
Zhou et al. Rotor temperature safety prediction method of PMSM for electric vehicle on real-time energy equivalence
US20230130303A1 (en) Control method, device, power system and electric vehicle
CN107482978B (zh) 一种基于有限时间算法的永磁同步电机在线参数辨识方法
WO2022160286A1 (zh) 一种电机控制器、动力总成、控制方法及电动车辆
Wang et al. Design optimization and analysis of a segmented-rotor switched reluctance machine for BSG application in HEVs
CN117227509A (zh) 一种均衡多相加热功率的电机控制器、动力总成和方法
Cui et al. Design optimization for unified field permanent magnet dual mechanical ports machine
Luo et al. Study on temperature field of in-wheel motor for electric vehicle based on magnetothermal coupling method
US11418143B2 (en) Control method and apparatus, power system, and electric vehicle
Kong et al. Temperature Rise Analysis of High Power Density Permanent Magnet Motor Based on Fluid-solid Coupling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958370

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023512020

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020958370

Country of ref document: EP

Effective date: 20230210

NENP Non-entry into the national phase

Ref country code: DE