WO2022082705A1 - 显示用电极、显示基板和显示装置 - Google Patents

显示用电极、显示基板和显示装置 Download PDF

Info

Publication number
WO2022082705A1
WO2022082705A1 PCT/CN2020/123138 CN2020123138W WO2022082705A1 WO 2022082705 A1 WO2022082705 A1 WO 2022082705A1 CN 2020123138 W CN2020123138 W CN 2020123138W WO 2022082705 A1 WO2022082705 A1 WO 2022082705A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
display
display electrode
electrodes
sides
Prior art date
Application number
PCT/CN2020/123138
Other languages
English (en)
French (fr)
Inventor
刘勇
李姣
彭晓青
王凯旋
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202080002449.5A priority Critical patent/CN115023648B/zh
Priority to US17/428,857 priority patent/US11947226B2/en
Priority to PCT/CN2020/123138 priority patent/WO2022082705A1/zh
Publication of WO2022082705A1 publication Critical patent/WO2022082705A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/122Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode having a particular pattern
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/128Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode field shaping

Definitions

  • the present disclosure relates to the field of display, and in particular, to a display electrode, a display substrate and a display device.
  • fringe field switching (FFS) technology is two commonly used wide viewing angle liquid crystal display technologies. It rotates in the plane of the substrate, thereby improving the light transmission efficiency of the liquid crystal layer.
  • FFS fringe field switching
  • the present disclosure aims to solve at least one of the technical problems existing in the prior art, and proposes a display electrode, a display substrate and a display device.
  • an embodiment of the present disclosure provides a display electrode, which includes: at least two display electrodes spaced along a first direction and a first connection electrode connected to one end of the display electrodes, the display electrodes It comprises: a main body electrode and an end electrode, one end of the main body electrode is connected with the first connection electrode, and the other end of the main body electrode is connected with the end electrode;
  • the at least two display electrodes include: a first display electrode and a second display electrode, the main body electrode in the first display electrode and the main body electrode in the second display electrode are parallel in the first direction and have a first preset spacing;
  • the end electrode in the first display electrode is close to one side of the second display electrode and the end electrode in the second display electrode is close to one side of the first display electrode.
  • the minimum distance of the sides in the first direction is greater than or equal to the first preset distance.
  • the at least two display electrodes further comprise: a third display electrode, the second display electrode and the third display electrode are respectively located on different sides of the first display electrode;
  • the main body electrode in the first display electrode and the main body electrode in the third display electrode are parallel in the first direction and have a second preset distance;
  • the end electrode in the first display electrode is close to one side of the third display electrode and the end electrode in the third display electrode is close to one side of the first display electrode.
  • the minimum distance of the sides in the first direction is greater than or equal to the second preset distance.
  • the shape of the end electrode in the second display electrode and the shape of the end electrode in the third display electrode are axially symmetric, and the symmetry axis extends along a second direction, the second direction is the same as the shape of the end electrode in the third display electrode.
  • the first direction is vertical.
  • the shape of the end electrode of the first display electrode is an axisymmetric figure, and the symmetry axis extends along the second direction;
  • the shape of the end electrode in the second display electrode and the shape of the end electrode in the third display electrode are axisymmetric with respect to the symmetry axis of the end electrode in the first display electrode.
  • the end electrode in the first display electrode is close to a side of the second display electrode and the end electrode in the second display electrode is close to a side of the first display electrode edge, along the direction away from the main body electrode, the distance between the two side edges in the first direction gradually increases;
  • the end electrode in the first display electrode is close to a side of the third display electrode, and the end electrode in the third display electrode is close to a side of the first display electrode, and the edge is away from the main electrode. direction, the distance between the two sides in the first direction gradually increases.
  • the end electrodes are strip electrodes, and the end electrodes are in the first direction along the second direction and away from the body electrode.
  • the width remains the same or decreases gradually.
  • the shape of the end electrode in the first display electrode is a rectangle, an inverted trapezoid or an inverted triangle.
  • the end electrodes are strip electrodes and the shape of the center line is a line segment or an arc.
  • the shape of the center line of the end electrode is a line segment and the extending direction intersects the second direction.
  • the width of the end electrode in the first direction is maintained unchanged or gradually decreased.
  • the at least two display electrodes further include: at least one fourth display electrode having the same shape as the second display electrode and at least one fifth display electrode having the same shape as the third display electrode;
  • the fourth display electrode is located at a side of the second display electrode away from the first display electrode
  • the fifth display electrode is located at a side of the third display electrode away from the first display electrode.
  • the number of the fourth display electrodes and the fifth display electrodes are the same, and the fourth display electrodes and the fifth display electrodes are in relation to the end electrodes in the first display electrodes.
  • the axis of symmetry is axisymmetric.
  • the electrodes for display are electrodes for liquid crystal display.
  • the boundary of the end electrode close to the main electrode and the boundary of the main electrode close to the end electrode completely overlap .
  • the portion of the end electrodes in the two adjacent display electrodes away from the main electrode is formed as an opening.
  • a second connection electrode is provided between the parts of the end electrodes in two adjacent display electrodes that are far away from the main body electrode, and the second connection electrode is connected to the part of the end electrode far away from the main body electrode. connected at one end.
  • an embodiment of the present disclosure further provides a display substrate, comprising: a base substrate, a first electrode and a second electrode, the second electrode is located on a side of the first electrode away from the base substrate , the display electrode provided in the first aspect of the second electrode;
  • One of the first electrode and the second electrode is a common electrode, and the other is a pixel electrode.
  • an embodiment of the present disclosure further provides a display device, which includes: the display substrate provided in the second aspect, a cell assembling substrate disposed opposite to the display substrate, and a cell assembly substrate located on the display substrate and the display substrate.
  • the liquid crystal layer between the cell substrates.
  • FIG. 1 is a schematic top view of a pixel region in a display substrate according to an embodiment of the present disclosure
  • FIG. 2 is a schematic cross-sectional view of the pixel region shown in FIG. 1;
  • FIG. 3 is a schematic top view of a slit electrode in the related art
  • FIG. 4 is a schematic diagram of analyzing the generation mechanism of the Trace Mura problem in an embodiment of the present disclosure
  • FIG. 5 is a schematic top view of a display electrode according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic top view of another display electrode provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic top view of yet another display electrode according to an embodiment of the present disclosure.
  • FIGS. 8 to 10 are schematic top views of three different display electrodes according to embodiments of the present disclosure.
  • FIG. 11 is a different top schematic view of a single display electrode in an embodiment of the disclosure.
  • FIG. 12 is a schematic top view of still another display electrode according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic top view of still another display electrode provided by an embodiment of the present disclosure.
  • FIG. 14 is a schematic top view of still another display electrode provided by an embodiment of the present disclosure.
  • FIG. 15 is a schematic top view of still another display electrode according to an embodiment of the present disclosure.
  • FIG. 16 and FIG. 17 are schematic top views of two display electrodes provided by embodiments of the present disclosure.
  • FIG. 18 is another schematic cross-sectional view of the pixel region shown in FIG. 1 .
  • the Trace Mura test is an important test item used to evaluate the performance of the display device.
  • the specific test process is as follows: first, the liquid crystal display panel is lit to present the preset test gray-scale brightness (usually the maximum gray-scale brightness of the display device is L255); Then press or slide the liquid crystal display panel to make the cell gap of the liquid crystal panel change, causing the liquid crystal molecules to be chaotically arranged and the brightness of the corresponding position to decrease; then check whether the brightness of the corresponding position can be restored within a specified time (for example, 2s). Among them, if the brightness of the corresponding position cannot be restored to the preset test gray-scale brightness within the specified time, it means that there is an obvious Trace Mura problem on the LCD panel.
  • a specified time for example, 2s
  • the techniques of the present disclosure can be used to improve Trace Mura in liquid crystal display panels.
  • the display substrate includes: a substrate The substrate 6, the gate line 4 and the data line 5 located on the substrate substrate 6, the gate line 4 and the data line 5 define a pixel area, and the thin film transistor 3, the first electrode 1 and the second electrode 2 are arranged in the pixel area; wherein , one of the first electrode 1 and the second electrode 2 is a common electrode, and the other is a pixel electrode; the gate electrode of the thin film transistor 3 is electrically connected to the gate line 4, the source electrode of the thin film transistor 3 is electrically connected to the data line 5, and the thin film transistor 3 is electrically connected to the data line 5.
  • the drain of the transistor 3 is electrically connected to the pixel electrode, and the common electrode is electrically connected to the common voltage line (also called the Vcom line, not shown in the figure);
  • the first electrode 1 is a common electrode
  • the second electrode 2 is a pixel electrode
  • the pixel electrode is located on the side of the common electrode away from the base substrate 6
  • the pixel electrode adopts a slit electrode.
  • the liquid crystal deflection is controlled by fringe field effect between the common electrode and the pixel electrode, so as to realize gray scale control.
  • the pixel electrode is located on the side of the common electrode away from the base substrate 6 shown in the drawings is only for exemplary purposes, and does not limit the technical solution of the present disclosure.
  • the common electrode may also be located on the side of the pixel electrode away from the base substrate 6, and in this case, the common electrode is a slit electrode.
  • the "shape" of an electrode or a certain part on the electrode specifically refers to the cross-sectional shape of the electrode or a certain part on the electrode on a cross-section parallel to the base substrate 6 .
  • FIG. 3 is a schematic top view of the slit electrode in the related art.
  • the slit electrode in the related art includes: at least two display electrodes 7 arranged at intervals along the first direction and connected to one end of the display electrode 7 The first connection electrode 8 and the second connection electrode 9 connected to the other end of the display electrode 7, wherein the line width (width in the first direction) of the first connection electrode 8 is much larger than the line width of the second connection electrode 9 , the display electrode 7 is a strip electrode and the overall shape is a rectangle.
  • the first connecting electrode 8 in the slit electrode is often used to connect with the drain electrode in the thin film transistor; if the common electrode adopts a slit electrode, the first connecting electrode 8 in the slit electrode 8 is often used to connect to the common voltage line.
  • FIG. 4 is a schematic diagram of analyzing the generation mechanism of the Trace Mura problem in an embodiment of the present disclosure.
  • the liquid crystal molecules 10 when no voltage is applied to the common electrode and the pixel electrode, the liquid crystal molecules 10 are Horizontal initial state; as shown in part (b), when a voltage is applied to the common electrode and the pixel electrode to control the pixel area to present the preset test grayscale brightness, a middle strong field strength area 702 and an end weak field strength area are formed in the pixel area 701, 703, wherein the deflection angle of the liquid crystal molecules 10 in the middle strong field strength region 702 is larger, and the deflection angle of the liquid crystal molecules 10 in the end weak field strength regions 701, 703 is smaller; see part (c) as shown in the trace During the Mura pressing test, the liquid crystal molecules 10 in the middle strong field strength area 702 and the end weak field strength area are deflected; as shown in part (d), after the end of pressing and a specified time, the liquid crystal molecules are
  • the reason for the formation of Trace Mura in the terminal weak field strength region 701 corresponding to one end of the second connection electrode 9 is that the field strength in the terminal weak field strength region 701 corresponding to one end of the second connection electrode 9 is uneven and varies Irregularity makes the arrangement of the liquid crystal molecules 10 disordered.
  • the deflection directions of the liquid crystal molecules 10 in the weak field strength region 701 at the end are inconsistent, and it is easy to cause the liquid crystal molecules 10 to be stacked to form a stable state.
  • the stacked liquid crystal molecules 10 It is difficult to loosen the self-release space, resulting in slow recovery after compression or failure to return to the state before compression.
  • the structure of the slit electrode is improved in the embodiments of the present disclosure, which can effectively improve the problem of Trace Mura.
  • FIG. 5 is a schematic top view of a display electrode provided by an embodiment of the present disclosure.
  • the display electrode is a slit electrode, and the display electrode includes: at least two spaced apart along the first direction.
  • the display electrodes 11 and 12 include: body electrodes 11a and 12a and end electrodes 11b and 12b. One end of the body electrodes 11a and 12a is connected to The first connection electrodes 8 are connected to each other, and the other ends of the main electrodes 11a and 12a are connected to the end electrodes 11b and 12b.
  • the at least two display electrodes include: a first display electrode 11 and a second display electrode 12, and the main body electrode 11a in the first display electrode 11 and the main body electrode 12a in the second display electrode 12 are parallel in the first direction and have The first preset spacing.
  • the two sides 10a, 10b of the end electrode 11b in the first display electrode 11 are oppositely arranged in the first direction and the two sides of the end electrode 12b in the second display electrode 12 are oppositely arranged in the first direction 10c, 10d, at least two side edges are not parallel in the four side edges 10a, 10b, 10c, 10d.
  • the end electrode 11b in the first display electrode 11 is close to one side 10b of the second display electrode 12 and the end electrode 12b in the second display electrode 12 is close to one side 10c of the first display electrode 11.
  • the minimum distance of the sides 10b, 10c in the first direction is greater than or equal to the first predetermined distance.
  • the electrode for display is an electrode for liquid crystal display, which can be used as a common electrode or a pixel electrode in a liquid crystal display panel.
  • the two side edges 10a and 10b of the end electrode 11b in the first display electrode 11 opposite to each other in the first direction and the end electrode 12b in the second display electrode 12 are in the first direction
  • the two opposite sides 10c, 10d at least two sides are not parallel in the four sides 10a, 10b, 10c, 10d. Therefore, the four sides cannot be line segments whose extension direction is the first direction at the same time, so there must be at least one of the four sides to form a corner with the same side of the connected main body electrode.
  • This corner design can make the end The deflection direction of the liquid crystal molecules in the area where the end electrode is located changes steadily, and it is not easy to form a sudden change in the deflection direction of the liquid crystal; when the area where the end electrode is located is pressed, the deflection direction of the liquid crystal molecules in this area tends to be consistent, so there will be no The problem of liquid crystal accumulation; after pressing, the liquid crystal molecules in this area can quickly loosen themselves to release space, and the liquid crystal molecules can quickly return to the level before pressing; it can be seen that the technical solution of the present disclosure can effectively improve the performance of Trace Mura. question.
  • the left side 10a and the right side 10b of the end electrode 11b in the first display electrode 11 are line segments whose extension direction is parallel to the second direction; the end electrode 12b in the second display electrode 12
  • the left side 10c is a line segment whose extension direction intersects the second direction
  • the right side 10d of the end electrode 12b in the second display electrode 12 is a line segment whose extension direction is parallel to the second direction. That is, the side 10c is not parallel to the other three sides 10a, 10b and 10d; form corners.
  • FIG. 6 is a schematic top view of another display electrode provided by an embodiment of the present disclosure.
  • the left side 10a and the right side 10b of the end electrode 11b in the first display electrode 11 are both extending directions A line segment parallel to the second direction; the left side 10c and the right side 10d of the end electrode 11b in the first display electrode 11 are both line segments whose extension direction intersects the second direction.
  • the side 10a is not parallel to the side 10c and the side 10d
  • the side 10b is not parallel to the side 10c and 10d
  • the left side 10c of the end electrode 12b in the second display electrode 12 is not parallel to the first
  • the left side of the main electrode 12a in the second display electrode 12 forms a corner
  • the right side 10d of the end electrode 12b in the second display electrode 12 and the right side of the main electrode 12a in the second display electrode 12 form a corner.
  • FIG. 7 is a schematic top view of another display electrode provided by an embodiment of the present disclosure.
  • the left side 10a and the right side 10b of the end electrode 11b in the first display electrode 11 are both extending directions A line segment parallel to the second direction;
  • the left side 10c of the end electrode 12b in the second display electrode 12 is a line segment whose extension direction is parallel to the second direction, and the right side of the end electrode 12b in the second display electrode 12 10d is a line segment where the extending direction intersects the second direction; that is, the side 10d is not parallel to the other three sides 10a, 10b, 10c;
  • the right side of the end electrode 12b in the second display electrode 12 is not parallel to the second display
  • the left side of the body electrode 12a in the electrode 12 forms a corner.
  • first direction is a horizontal direction
  • second direction is a vertical direction
  • the situation that the first direction is perpendicular to the second direction is only for exemplary purposes, and does not limit the technical solutions of the present disclosure. In this embodiment of the present disclosure, it only needs to ensure that the first direction intersects with the second direction.
  • the Trace Mura test is performed on the end region where the end electrode in the slit electrode shown in Fig. 3 and Fig. 5 to Fig. 7 is located.
  • the time period for the liquid crystal molecules to return to the state before pressing is 13ms
  • the time period for the liquid crystal molecules to return to the state before pressing after the end region of the slit electrode in the embodiment of the present disclosure shown in FIG. 5 is 12.7ms, as shown in FIG. 6 .
  • the time for the liquid crystal molecules to return to the state before pressing after the end region of the slit electrode in the embodiment of the present disclosure is 12.5 ms. As shown in FIG.
  • the end region of the slit electrode in the embodiment of the present disclosure is pressed After the liquid crystal molecules return to the state before pressing, the duration is 12.8ms. It can be seen that the technical solution of the present disclosure can effectively improve the Trace Mura problem in the inner end region of the slit electrode.
  • a second connection electrode 9 is provided between the parts of the end electrodes in two adjacent display electrodes that are far away from the main electrode, and the second connection electrodes 9 are connected to the end electrodes. One end of the electrode away from the main electrode is connected.
  • the arrangement of the second connection electrodes 9 can effectively reduce the overall resistance of the display electrodes.
  • FIGS. 8 to 10 are schematic top views of three different electrodes for display provided by the embodiments of the present disclosure. As shown in FIGS. 8 to 10 , what is different from that shown in FIGS. 5 to 7 is that shown in FIGS. 8 to 10
  • the display electrodes are not provided with the second connection electrodes 9, that is, the portions of the end electrodes 11b, 12b in the adjacent two display electrodes 11, 12 away from the main electrodes 11a, 12a are formed as openings.
  • the electric field intensity in the end regions can be reduced, and the deflection angle of the liquid crystal molecules in the end regions can be reduced. decrease, the deflection difference of the liquid crystal molecules in the end area is reduced; the consistency of the deflection direction of the liquid crystal molecules in this area can be improved; when the end area is pressed, the deflection directions of the liquid crystal molecules in this area tend to be consistent, Therefore, liquid crystal accumulation will not occur, which can effectively improve the Trace Mura problem.
  • the Trace Mura test is performed on the end region where the end electrode in the slit electrode shown in Fig. 8 to Fig. 10 is located. After the end region of the slit electrode shown in Fig. 8 is pressed, the liquid crystal molecules return to the state before pressing. The duration is 11.7ms, and the time for the liquid crystal molecules to return to the state before pressing is 11.5ms at the end region of the slit electrode shown in Figure 9, and the liquid crystal molecules at the end region of the slit electrode shown in Figure 10 are pressed The time to return to the state before pressing was 11.9ms. It can be seen that, compared with the technical solution in which the second connection electrode 9 is provided as shown in FIGS. 5 to 7 , the slit can be further improved by removing the second connection electrode 9 to form the opening in the embodiment of the present disclosure. Trace Mura problem in the inner end region of the electrode.
  • the corner design of the end region of the display electrode and the opening design of the end region of the adjacent display electrodes can effectively improve the Trace Mura problem in the end region of the slit electrode.
  • FIG. 11 is a different top schematic view of a single display electrode in an embodiment of the present disclosure.
  • the left side and the right side of the display electrode shown in parts (a) and (b) are both corner design and are directed toward each other.
  • the display electrode shown in part (c) only has a corner design on the left side and turns to the left
  • the left side and right side of the display electrode shown in part (d) are both corner design and the corner is turned to the left
  • the side transitions are smooth. Parts (e) to (h) are obtained by horizontal flipping of parts (a) to (d).
  • the left and right sides of the display electrodes shown in part (i) are designed with corners and the left The side plate is turned to the left and the right side is turned to the right.
  • the left and right sides of the display electrode are designed with corners, and the left side plate is turned to the right and the right side is turned to the left.
  • each display electrode in the display electrodes may be independently selected from the shapes of the display electrodes shown in FIG. 11 .
  • each of the display electrodes in the display electrodes provided in the embodiments of the present disclosure may also adopt other shapes, which will not be described one by one here.
  • This setting is to ensure that the electric field intensity near the end of the end electrode 7b close to the main electrode 7a is equal or approximately equal to the electric field intensity near the end of the main electrode 7a close to the end electrode 7b, so as to avoid the area where the end electrode 7b is connected to the main electrode 7a
  • the disorder of the electric field intensity occurs, so that the disorder of the liquid crystal molecules in the connected region can be avoided, which can effectively ensure the display effect of the pixel region and improve the Trace Mura problem.
  • FIG. 12 is a schematic top view of another display electrode provided by an embodiment of the present disclosure. As shown in FIG. 12 , the at least two display electrodes not only include the first display electrode 11 and the second display electrode 12 , but also include: a third display electrode Electrode 13.
  • the second display electrode 12 and the third display electrode 13 are respectively located on different sides of the first display electrode 11; the main body electrode 11a in the first display electrode 11 and the main body electrode 13a in the third display electrode 13 are in the first direction parallel and have a second preset spacing; the two sides of the end electrodes 11b in the first display electrode 11 are opposite in the first direction and the end electrodes 13b in the third display electrode 13 are opposite in the first direction At least two of the four sides are not parallel to the set two sides; the end electrode 11b in the first display electrode 11 is close to one side of the third display electrode 13 and inside the third display electrode 13 The end electrode 13b is close to one side of the first display electrode 11, and the minimum distance between the two sides in the first direction is greater than or equal to the second preset distance.
  • the shape of the end electrode 12b in the second display electrode 12 and the shape of the end electrode 13b in the third display electrode 13 are axially symmetric, and the symmetry axis extends along the second direction, the second direction is the same as the shape of the end electrode 13b in the third display electrode 13.
  • the first direction intersects.
  • the first direction is the horizontal direction
  • the second direction is the vertical direction
  • the situation that the first direction is perpendicular to the second direction is only an example, and will not limit the technical solutions of the present disclosure .
  • the shape of the end electrode 11b of the first display electrode 11 is an axisymmetric figure, and the symmetry axis extends along the second direction; the shape of the end electrode 12b in the second display electrode 12 is the same as that of the third display electrode.
  • the shape of the end electrode 13b in the first display electrode 13 is axisymmetric with respect to the symmetry axis of the end electrode 11b in the first display electrode 11 .
  • the shapes formed by all the display electrodes are axially symmetric, which can effectively improve the uniformity of electric field distribution in the pixel area.
  • the side wall of the end electrode and the side wall corresponding to the connected main electrode form a corner
  • the liquid crystal molecules near the corner will be deflected towards the corner of the corner, and at this time, the liquid crystal molecules around the corner will be turned to one side and the corner.
  • the shape of the end electrode 12b in the second display electrode 12 and the shape of the end electrode 13b in the third display electrode 13 are related to the symmetry axis of the end electrode 11b in the first display electrode 11 It is axially symmetrical.
  • the observed brightness is the same, that is, the observed brightness under different viewing angles is the same, which can improve product performance.
  • the end electrode 11b in the first display electrode 11 is close to one side of the second display electrode 12 and the end electrode 12b in the second display electrode 12 is close to one side of the first display electrode 11, In the direction away from the body electrodes 11a and 12a, the distance between the two sides in the first direction gradually increases.
  • the electric field strength in the spaced region gradually weakens , so that the deflection direction of the liquid crystal molecules located in the spacer region changes smoothly, which is beneficial to improve the problem of Trace Mura.
  • the end electrode 11b in the first display electrode 11 is close to one side of the third display electrode 13 and the end electrode 13b in the third display electrode 13 is close to one side of the first display electrode 11, along the distance away from the main electrode 11a, 13a, the distance between the two sides in the first direction gradually increases.
  • the electric field strength in the spaced region gradually weakens , so that the deflection direction of the liquid crystal molecules located in the spacer region changes smoothly, which is beneficial to improve the problem of Trace Mura.
  • the end electrodes 11b of the first display electrodes 11 are rectangular in shape
  • the end electrodes 12b of the second display electrodes 12 are parallelograms and turn to the right
  • the end electrodes 13b of the third display electrodes 13 are Parallelogram and turn left. The width of the end electrodes in each display electrode in the first direction remains unchanged.
  • FIG. 13 is a schematic top view of yet another display electrode provided by an embodiment of the present disclosure, as shown in FIG. 13 , and the width of the end electrodes in each display electrode shown in FIG. 12 in the first direction remains the same The situation is different.
  • the end electrodes 11b in the first display electrode 11 are strip electrodes, and the end electrodes 11b in the first direction are along the second direction and away from the main electrode. The width gradually decreases.
  • the shape of the end electrodes 11b in the first display electrodes 11 is an inverted trapezoid or an inverted triangle (this case is not shown).
  • the end electrodes 12b and 13b are strip electrodes and the shape of the center line is a line segment (for example, in FIG. 11 (a). ) to (c) and (e) to (g)) or arcs (such as the cases shown in (d) and (h) in FIG. 11 ).
  • the center lines of the end electrodes 12b and 13b (the line connecting the center points in the width direction, which determine the turning direction of the end electrodes)
  • the shape is a line segment and the extension direction intersects the second direction. That is, the inflection direction of the end electrode 12 b in the second display electrode 12 is different from the inflection direction of the end electrode 13 b in the third display electrode 13 .
  • the inner end electrode 12 b of the second display electrode 12 turns to the right
  • the inner end electrode 13 b of the third display electrode 13 turns to the left.
  • FIG. 14 is a schematic top view of still another display electrode provided by an embodiment of the present disclosure, as shown in FIG. Unlike the case where the width remains the same, the widths of the end electrodes 12b and 13b in the second display electrode 12 and the third display electrode 13 in the case shown in FIG. 14 are changed. Specifically, in the second display electrode 12 and the third display electrode 13, the width of the end electrodes 12b, 13b in the first direction gradually decreases along the second direction and the direction away from the body electrodes 12a, 13a.
  • the interval area between adjacent end electrodes can be made, along the direction away from the main electrode, the electric field strength in the interval area. gradually weakened; on the other hand, the overall electric field strength in the spaced region can be reduced.
  • FIG. 15 is a schematic top view of another display electrode provided by an embodiment of the present disclosure.
  • the at least two display electrodes not only include the first display electrode 11 to the third display electrode 13 , but also include: at least one first display electrode Four display electrodes 14 and at least one fifth display electrode 15 .
  • the fourth display electrode 14 has the same shape as the second display electrode 12
  • the fifth display electrode 15 has the same shape as the third display electrode 13 ; the fourth display electrode 14 is located on the side of the second display electrode 12 away from the first display electrode 11 .
  • the fifth display electrode 15 is located on the side of the third display electrode 13 away from the first display electrode 11 .
  • the number of the fourth display electrodes 14 and the fifth display electrodes 15 may also be multiple, the multiple fourth display electrodes 14 are arranged in parallel along the first direction, and the multiple fifth display electrodes 15 are arranged along the first direction Parallel arrangement, no corresponding drawings are given in this case.
  • the number of the fourth display electrodes 14 and the fifth display electrodes 15 are the same, and the fourth display electrodes 14 and the fifth display electrodes 15 are axes with respect to the symmetry axis of the end electrode 11 b in the first display electrode 11 symmetry. At this time, the shapes formed by all the display electrodes are axially symmetric, which can effectively improve the uniformity of electric field distribution in the pixel area.
  • the appropriate number of display electrodes can be selected according to the required product display performance and Trace Mura performance.
  • FIGS. 16 and 17 are schematic top views of two display electrodes provided by the embodiments of the present disclosure.
  • the number of display electrodes 11 , 12 , and 13 in the display electrodes shown in FIG. 16 is three.
  • the number of display electrodes 11 , 12 , 13 , 14 and 15 in the display electrodes shown in FIG. 16 is five.
  • the display electrodes shown in FIGS. 16 and 17 do not include the second connection electrodes 9, that is, the electrodes in the adjacent two display electrodes.
  • a portion of the end electrode away from the body electrode is formed as an opening.
  • the electric field intensity in the end regions can be reduced, and the deflection angle of the liquid crystal molecules in the end regions can be reduced. If it decreases, the uniformity of the deflection direction of the liquid crystal molecules in this region can be improved.
  • the display electrodes provided by the embodiments of the present disclosure may be used as all or part of a pixel electrode/common electrode in a display substrate.
  • any one of the display electrodes in FIGS. 5 to 10 and 12 to 17 can be independently used as a pixel electrode or a common electrode, or a plurality of display electrodes can be combined as a pixel electrode or a common electrode. , all of which belong to the protection scope of the present disclosure.
  • an embodiment of the present disclosure further provides a display substrate, including: a base substrate, a first electrode and a second electrode, the second electrode is located on a side of the first electrode away from the base substrate, and the second electrode adopts the upper
  • the display electrode provided in any one of the embodiments; one of the first electrode and the second electrode is a common electrode, and the other is a pixel electrode.
  • the first electrode is a common electrode
  • the second electrode is a pixel electrode
  • the pixel electrode is a slit electrode and adopts the display electrode provided by the embodiment of the present disclosure.
  • FIG. 18 is another schematic cross-sectional view of the pixel region shown in FIG. 1.
  • the first electrode in the situation shown in FIG. 18 is the pixel electrode
  • the second electrode is the pixel electrode.
  • It is a common electrode
  • the common electrode is a slit electrode and adopts the display electrode provided by the embodiment of the present disclosure.
  • the pixel electrode can be a plate electrode or a slit electrode, and the same is true for the common electrode. It can be a plate electrode or a slit electrode.
  • at least the upper slit electrode adopts the display electrodes provided in the previous embodiments; in some embodiments, when the lower electrode is also a slit electrode, the lower electrode can also adopt the previous implementation. Examples of display electrodes provided.
  • Embodiments of the present disclosure also provide a display device, which includes: the display substrate provided in the above embodiments, a cell assembling substrate disposed opposite to the display substrate, and a liquid crystal layer between the display substrate and the cell assembling substrate.
  • the display device provided by the embodiments of the present disclosure may be any product or component with a display function, such as a liquid crystal panel, a mobile phone, a tablet computer, a TV, a monitor, a notebook computer, a digital photo frame, and a navigator.
  • the display device provided by the embodiments of the present disclosure has the beneficial effects of the display electrodes provided by the embodiments of the present disclosure. For details, reference may be made to the specific descriptions of the display electrodes in the above embodiments, which will not be repeated here.

Abstract

一种显示用电极,包括:沿第一方向间隔设置的至少两个显示电极(11、12),显示电极(11、12)包括:主体电极(11a、12a)和端部电极(11b、12b);至少两个显示电极(11、12)包括:第一显示电极(11)和第二显示电极(12),第一显示电极(11)内的主体电极(11a)与第二显示电极(12)内的主体电极(12a)在第一方向上平行且具有第一预设间距;第一显示电极(11)内的端部电极(11b)在第一方向上相对设置的两条侧边(10a、10b)以及第二显示电极(12)内的端部电极(12b)在第一方向上相对设置的两条侧边(10c、10d),在该四条侧边(10a、10b、10c、10d)中存在至少两条侧边不平行;第一显示电极(11)内的端部电极(11b)靠近第二显示电极(12)的一条侧边(10b)与第二显示电极(12)内的端部电极(12b)靠近第一显示电极(11)的一条侧边(10c),该两条侧边(10b、10c)在第一方向上的最小距离大于或等于第一预设间距。

Description

显示用电极、显示基板和显示装置 技术领域
本公开涉及显示领域,特别涉及一种显示用电极、显示基板和显示装置。
背景技术
在液晶显示技术领域,边缘场开关(Fringe Field Switching,FFS)技术是两种常用的宽视角液晶显示技术,该两项技术的特点是像素电极和公共电极设置于同一基板,使液晶分子在平行于基板的平面内旋转,从而提高液晶层的透光效率。然而,在实际应用中发现,现有的FFS型显示装置存在明显的按压云纹(Trace Mura)问题。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一,提出了一种显示用电极、显示基板和显示装置。
第一方面,本公开实施例提供了一种显示用电极,其中,包括:沿第一方向间隔设置的至少两个显示电极和与所述显示电极一端相连的第一连接电极,所述显示电极包括:主体电极和端部电极,所述主体电极的一端与所述第一连接电极相连,所述主体电极的另一端与所述端部电极相连;
所述至少两个显示电极包括:第一显示电极和第二显示电极,所述第一显示电极内的主体电极与所述第二显示电极内的主体电极在第一方向上平行且具有第一预设间距;
所述第一显示电极内的端部电极在第一方向上相对设置的两条侧边以及所述第二显示电极内的端部电极在第一方向上相对设置的两条侧边,在该四条侧边中存在至少两条侧边不平行;
所述第一显示电极内的端部电极靠近所述第二显示电极的一条侧边与所述第二显示电极内的端部电极靠近所述第一显示电极的一条侧边,该两条侧边在第一方向上的最小距离大于或等于所述第一预设间距。
在一些实施例中,所述至少两个显示电极还包括:第三显示电极,所述第二显示电极和所述第三显示电极分别位于所述第一显示电极的不同侧;
所述第一显示电极内的主体电极与所述第三显示电极内的主体电极在第一方向上平行且具有第二预设间距;
所述第一显示电极内的端部电极在第一方向上相对设置的两条侧边以及所述第三显示电极内的端部电极在第一方向上相对设置的两条侧边,在该四条侧边中存在至少两条侧边不平行;
所述第一显示电极内的端部电极靠近所述第三显示电极的一条侧边与所述第三显示电极内的端部电极靠近所述第一显示电极的一条侧边,该两条侧边在第一方向上的最小距离大于或等于所述第二预设间距。
在一些实施例中,第二显示电极内的端部电极的形状与所述第三显示电极内的端部电极的形状呈轴对称,且对称轴沿第二方向延伸,所述第二方向与所述第一方向垂直。
在一些实施例中,所述第一显示电极的端部电极的形状为轴对称图形,且对称轴沿所述第二方向延伸;
第二显示电极内的端部电极的形状与所述第三显示电极内的端部电极的形状关于所述第一显示电极内的端部电极的对称轴呈轴对称。
在一些实施例中,所述第一显示电极内的端部电极靠近所述第二显示电极的一条侧边与所述第二显示电极内的端部电极靠近所述第一显示电极的一条侧边,沿远离主体电极的方向,该两条侧边在第一方向上的距离逐渐增大;
所述第一显示电极内的端部电极靠近所述第三显示电极的一条侧边 与所述第三显示电极内的端部电极靠近所述第一显示电极的一条侧边,沿远离主体电极的方向,该两条侧边在第一方向上的距离逐渐增大。
在一些实施例中,在所述第一显示电极内,所述端部电极为条形电极,沿所述第二方向且远离所述主体电极的方向,所述端部电极在第一方向上的宽度保持不变或逐渐减小。
在一些实施例中,所述第一显示电极内的所述端部电极的形状为矩形、倒梯形或倒三角形。
在一些实施例中,在所述第二显示电极和所述第三显示电极内,所述端部电极为条形电极且中心线的形状为线段或弧线。
在一些实施例中,在所述第二显示电极和所述第三显示电极内,所述端部电极的中心线的形状为线段且延伸方向与所述第二方向相交。
在一些实施例中,在所述第二显示电极和所述第三显示电极内,沿所述第二方向且远离所述主体电极的方向,所述端部电极在第一方向上的宽度保持不变或逐渐减小。
在一些实施例中,所述至少两个显示电极还包括:与所述第二显示电极形状相同的至少一个第四显示电极和与所述第三显示电极形状相同的至少一个第五显示电极;
所述第四显示电极位于所述第二显示电极远离所述第一显示电极的一侧,所述第五显示电极位于所述第三显示电极远离所述第一显示电极的一侧。
在一些实施例中,所述第四显示电极和所述第五显示电极的数量相同,且所述第四显示电极和所述第五显示电极关于所述第一显示电极内的端部电极的对称轴呈轴对称。
在一些实施例中,所述显示用电极为液晶显示用电极。
在一些实施例中,在同一所述所述显示电极中,所述端部电极靠近所述主体电极一端的边界与所述主体电极靠近所述端部电极一端的边 界,该两个边界完全重叠。
在一些实施例中,相邻的两个所述显示电极内的端部电极远离主体电极的部分形成为开口。
在一些实施例中,相邻的两个所述显示电极内的端部电极远离主体电极的部分之间设置有第二连接电极,所述第二连接电极与所述端部电极远离主体电极的一端相连。
第二方面,本公开实施例还提供了一种显示基板,包括:衬底基板、第一电极和第二电极,所述第二电极位于所述第一电极远离所述衬底基板的一侧,所述第二电极第一方面中提供的所述的显示用电极;
所述第一电极和所述第二电极中之一公共电极,另一为像素电极。
第三方面,本公开实施例还提供了一种显示装置,其中,包括:第二方面中提供的所述显示基板、与所述显示基板相对设置的对盒基板以及位于所述显示基板和所述对盒基板之间的液晶层。
附图说明
图1为本公开实施例提供的显示基板中一个像素区域的俯视示意图;
图2为图1所示像素区域的一种截面示意图;
图3为相关技术中狭缝电极的一种俯视示意图;
图4为本公开实施例中对Trace Mura问题的产生机理进行分析的示意图;
图5为本公开实施例提供的一种显示用电极的俯视示意图;
图6为本公开实施例提供的另一种显示用电极的俯视示意图;
图7为本公开实施例提供的又一种显示用电极的俯视示意图;
图8~图10为本公开实施例提供的三种不同显示用电极的俯视示意图;
图11为本公开实施例中单个显示电极的不同俯视示意图;
图12为本公开实施例提供的再一种显示用电极的俯视示意图;
图13为本公开实施例提供的再一种显示用电极的俯视示意图;
图14为本公开实施例提供的再一种显示用电极的俯视示意图;
图15为本公开实施例提供的再一种显示用电极的俯视示意图;
图16和图17为本公开实施例提供的两种显示用电极的俯视示意图;
图18为图1所示像素区域的另一种截面示意图。
具体实施方式
为使本领域的技术人员更好地理解本公开的技术方案,下面结合附图对本公开提供的一种显示用电极、显示基板和显示装置进行详细描述。
Trace Mura测试是用于评价显示装置性能的一项重要测试项目,具体测试过程如下:首先将液晶显示面板点亮以呈现预设测试灰阶亮度(一般为显示装置的最大灰阶亮度L255);然后重压或者滑动液晶显示面板,使得液晶面板的盒厚(Cell Gap)变化,导致液晶分子排列混乱,对应位置亮度降低;接着检测在规定时间(例如2s)内对应位置的亮度是否能够恢复。其中,若对应位置的亮度在规定时间内无法恢复至预设测试灰阶亮度,则表示液晶显示面板存在明显的Trace Mura问题。一般而言,对应位置的亮度恢复至预设测试灰阶亮度的时间越短,则表示液晶显示面板在Trace Mura方面的性能越佳。本公开的技术可用于改善液晶显示面板中的Trace Mura。
图1为本公开实施例提供的显示基板中一个像素区域的俯视示意图,图2为图1所示像素区域的一种截面示意图,如图1和图2所示,该显示基板包括:衬底基板6、位于衬底基板6上的栅线4和数据线5,栅线4和数据线5限定出像素区域,像素区域内设置有薄膜晶体管3、第一电极1和第二电极2;其中,第一电极1和第二电极2中之一为公 共电极,另一为像素电极;薄膜晶体管3的栅极与栅线4电连接,薄膜晶体管3的源极与数据线5电连接,薄膜晶体管3的漏极与像素电极电连接,公共电极与公共电压线(也称为Vcom线,图中未示出)电连接;
在图1所示情况中,第一电极1为公共电极,第二电极2为像素电极,像素电极位于公共电极远离衬底基板6的一侧,像素电极采用狭缝电极。公共电极与像素电极之间通过边缘场效应来控制液晶偏转,以实现灰阶控制。
需要说明的是,附图中所示像素电极位于公共电极远离衬底基板6一侧的情况,仅起到示例性作用,其不会对本公开的技术方案产生限制。在一些实施例中,也可以是公共电极位于像素电极远离衬底基板6的一侧,此时公共电极采用狭缝电极。
另外,在本公开的描述中,电极或电极上某个部分的“形状”具体是指:电极或电极上某个部分在平行于衬底基板6的截面上的截面形状。
图3为相关技术中狭缝电极的一种俯视示意图,如图3所示,相关技术中的狭缝电极包括:沿第一方向间隔设置的至少两个显示电极7、与显示电极7一端相连的第一连接电极8,以及与显示电极7另一端相连的第二连接电极9,其中第一连接电极8的线宽(在第一方向上的宽度)远大于第二连接电极9的线宽,显示电极7为条形电极且整体形状为矩形。
其中,若像素电极采用狭缝电极,则狭缝电极中的第一连接电极8常用作与薄膜晶体管中的漏极相连;若公共电极采用狭缝电极,则狭缝电极中的第一连接电极8常用作与公共电压线相连。
图4为本公开实施例中对Trace Mura问题的产生机理进行分析的示意图,如图4所示,参见(a)部分所示,在公共电极和像素电极上未加载电压时,液晶分子10呈水平初始状态;参见(b)部分所示,在向公共电极和像素电极施加电压以控制像素区域呈现预设测试灰阶亮度时, 像素区域内形成中间强场强区702和末端弱场强区701、703,其中位于中间强场强区702内液晶分子10偏转角度较大,位于末端弱场强区701、703内液晶分子10偏转角度较小;参见(c)部分所示,在进行Trace Mura按压测试时,中间强场强区702和末端弱场强区内的液晶分子10均发生了偏转;参见(d)部分所示,在按压结束且经过规定时间后,位于中间强场强区702和第一连接电极8一端所对应的末端弱场强区703内的绝大部分液晶分子10已恢复至(b)部分中所示呈现预设测试灰阶亮度时所对应的状态,而位于第二连接电极9一端所对应的末端弱场强区701内的绝大部分液晶分子10未能恢复至(b)部分中所示呈现预设测试灰阶亮度时所对应的状态,从而形成Trace Mura。
经过分析发现,导致第二连接电极9一端所对应的末端弱场强区701内形成Trace Mura的原因是:第二连接电极9一端所对应的末端弱场强区701内场强不均且变化不规律,使得液晶分子10排列紊乱,在进行Trace Mura按压测试时,该末端弱场强区701内的液晶分子10的偏转方向不一致,容易产生液晶分子10堆积形成稳态,堆积的液晶分子10难以松动自身释放空间,因而导致按压后恢复较慢或无法恢复至按压前的状态。基于上述对Trace Mura产生机理的分析结果,本公开实施例中对狭缝电极的结构进行了改进,可有效改善Trace Mura问题。
图5为本公开实施例提供的一种显示用电极的俯视示意图,如图5所示,该显示用电极为一种狭缝电极,该显示用电极包括:沿第一方向间隔设置的至少两个显示电极11、12和与显示电极11、12一端相连的第一连接电极8,显示电极11、12包括:主体电极11a、12a和端部电极11b、12b,主体电极11a、12a的一端与第一连接电极8相连,主体电极11a、12a的另一端与端部电极11b、12b相连。
其中,至少两个显示电极包括:第一显示电极11和第二显示电极12,第一显示电极11内的主体电极11a与第二显示电极12内的主体电 极12a在第一方向上平行且具有第一预设间距。第一显示电极11内的端部电极11b在第一方向上相对设置的两条侧边10a、10b以及第二显示电极12内的端部电极12b在第一方向上相对设置的两条侧边10c、10d,在该四条侧边10a、10b、10c、10d中存在至少两条侧边不平行。第一显示电极11内的端部电极11b靠近第二显示电极12的一条侧边10b与第二显示电极12内的端部电极12b靠近第一显示电极11的一条侧边10c,该两条侧边10b、10c在第一方向上的最小距离大于或等于第一预设间距。
在一些实施例中,显示用电极为液晶显示用电极,可用作液晶显示面板中的公共电极或像素电极。
在本公开实施例中,第一显示电极11内的端部电极11b在第一方向上相对设置的两条侧边10a、10b以及第二显示电极12内的端部电极12b在第一方向上相对设置的两条侧边10c、10d,在该四条侧边10a、10b、10c、10d中存在至少两条侧边不平行。因此,该四条侧边不能同时为延伸方向为第一方向的线段,故该四条侧边中必然至少存在一条侧边与所相连主体电极的同侧侧边形成拐角,这种拐角设计可使得端部电极所处区域内的液晶分子的偏转方向平稳变化,不易形成液晶偏转方向突变;该端部电极所处区域被按压时,该区域内的液晶分子的偏转方向趋于一致,因而不会产生液晶堆积的问题;在按压结束后,该区域内的液晶分子能够快速的松动自身释放空间,液晶分子能够快速回复至按压前的水平;由此可见,本公开的技术方案能够有效改善Trace Mura的问题。
以第一方向为附图中的水平方向,第二方向为附图中的竖直方向为例。参见图5所示,第一显示电极11内的端部电极11b的左侧边10a和右侧边10b均为延伸方向与第二方向平行的线段;第二显示电极12内的端部电极12b的左侧边10c为延伸方向与第二方向相交的线段,第二显示电极12内的端部电极12b的右侧边10d为延伸方向与第二方向平 行的线段。即,侧边10c与其他三条侧边10a、10b、10d均不平行;第二显示电极12内的端部电极12b的左侧边10c与第二显示电极12内的主体电极12a的左侧边形成拐角。
图6为本公开实施例提供的另一种显示用电极的俯视示意图,如图6所示,第一显示电极11内的端部电极11b的左侧边10a和右侧边10b均为延伸方向与第二方向平行的线段;第一显示电极11内的端部电极11b的左侧边10c和右侧边10d均为延伸方向与第二方向相交的线段。即,侧边10a与侧边10c和侧边10d均不平行,侧边10b与侧边10c和侧边10d均不平行;第二显示电极12内的端部电极12b的左侧边10c与第二显示电极12内的主体电极12a的左侧边形成拐角,第二显示电极12内的端部电极12b的右侧边10d与第二显示电极12内的主体电极12a的右侧边形成拐角。
图7为本公开实施例提供的又一种显示用电极的俯视示意图,如图7所示,第一显示电极11内的端部电极11b的左侧边10a和右侧边10b均为延伸方向与第二方向平行的线段;第二显示电极12内的端部电极12b的左侧边10c为延伸方向与第二方向平行的线段,第二显示电极12内的端部电极12b的右侧边10d为延伸方向与第二方向相交的线段;即,侧边10d与其他三条侧边10a、10b、10c均不平行;第二显示电极12内的端部电极12b的右侧边与第二显示电极12内的主体电极12a的左侧边形成拐角。
需要说明的是,上述第一方向为水平方向,第二方向为竖直方向,第一方向与第二方向垂直的情况仅起到示例性作用,其不会对本公开的技术方案产生限制。在本公开实施例中,仅需保证第一方向与第二方向相交即可。
对图3、图5~图7所示狭缝电极内的端部电极所处的端部区域进行Trace Mura测试,图3中所示相关技术中的狭缝电极的端部区域在被按 压后液晶分子恢复至按压前状态的时长为13ms,图5所示本公开实施例中的狭缝电极的端部区域在被按压后液晶分子恢复至按压前状态的时长为12.7ms,图6所示本公开实施例中的狭缝电极的端部区域在被按压后液晶分子恢复至按压前状态的时长为12.5ms,图7所示本公开实施例中的狭缝电极的端部区域在被按压后液晶分子恢复至按压前状态的时长为12.8ms。由此可见,本公开的技术方案可有效改善狭缝电极内端部区域的Trace Mura问题。
参见图5~图7所示,在一些实施例中,相邻的两个显示电极内的端部电极远离主体电极的部分之间设置有第二连接电极9,第二连接电极9与端部电极远离主体电极的一端相连。第二连接电极9的设置可有效减少显示用电极的整体电阻。
图8~图10为本公开实施例提供的三种不同显示用电极的俯视示意图,如图8~图10所示,与图5~图7所示不同的是,图8~图10中所示显示用电极内未设置第二连接电极9,即相邻的两个显示电极11、12内的端部电极11b、12b远离主体电极11a、12a的部分形成为开口。
在本公开实施例中,通过将相邻的两个显示电极内的端部电极远离主体电极的部分设置为开口,可使得端部区域的电场强度减小,端部区域内液晶分子的偏转角度减小,端部区域内液晶分子偏转差异减小;可提升该区域内液晶分子的偏转方向的一致性;在该端部区域被按压时,该区域内的液晶分子的偏转方向趋于一致,因而不会产生液晶堆积,从而能有效改善Trace Mura问题。
对图8~图10所示狭缝电极内的端部电极所处的端部区域进行Trace Mura测试,图8所示狭缝电极的端部区域在被按压后液晶分子恢复至按压前状态的时长为11.7ms,图9所示狭缝电极的端部区域在被按压后液晶分子恢复至按压前状态的时长为11.5ms,图10所示狭缝电极的端部区域在被按压后液晶分子恢复至按压前状态的时长为11.9ms。由 此可见,相较于图5~图7中所示设置有第二连接电极9的技术方案,本公开实施例中通过将第二连接电极9去除以形成开口的设计,可进一步改善狭缝电极内端部区域的Trace Mura问题。
基于前面内容可见,通过对显示电极的端部区域进行拐角设计以及将相邻显示电极的端部区域进行开口设计,均可以有效改善狭缝电极内端部区域的Trace Mura问题。
图11为本公开实施例中单个显示电极的不同俯视示意图,如图11所示,(a)部分和(b)部分所示显示电极的左侧边和右侧边均呈拐角设计且均向左侧拐,(c)部分所示显示电极仅左侧边呈拐角设计且向左侧拐,(d)部分所示显示电极的左侧边和右侧边均呈拐角设计且拐角处向左侧圆滑过渡,(e)部分~(h)部分为(a)部分~(d)部分通过水平翻转得到,(i)部分所示显示电极的左侧边和右侧边均呈拐角设计且左侧板向左拐、右侧边向右拐,(j)部分所示显示电极的左侧边和右侧边均呈拐角设计且左侧板向右拐、右侧边向左拐。
在一些实施例中,显示用电极中的各显示电极可以分别独立选自图11中所示显示电极的形状。当然,本公开实施例所提供显示用电极中的各显示电极还可以采用其他形状,此处不再一一举例描述。
继续参见图11中(a)部分~(j)部分,优选地,在同一显示电极中,端部电极7b靠近主体电极7a一端的边界17与主体电极7a靠近端部电极7b一端的边界16,该两个边界16、17完全重叠。这种设置是为了保证端部电极7b靠近主体电极7a一端附近的电场强度与主体电极7a靠近端部电极7b一端附近的电场强度相等或近似相等,以避免端部电极7b与主体电极7a相连区域出现电场强度紊乱,从而能避免该相连区域内的液晶分子排列紊乱,可有效保证像素区域的显示效果以及改善Trace Mura问题。
图12为本公开实施例提供的再一种显示用电极的俯视示意图,如图 12所示,至少两个显示电极不但包括第一显示电极11和第二显示电极12,还包括:第三显示电极13。其中,第二显示电极12和第三显示电极13分别位于第一显示电极11的不同侧;第一显示电极11内的主体电极11a与第三显示电极13内的主体电极13a在第一方向上平行且具有第二预设间距;第一显示电极11内的端部电极11b在第一方向上相对设置的两条侧边以及第三显示电极13内的端部电极13b在第一方向上相对设置的两条侧边,在该四条侧边中存在至少两条侧边不平行;第一显示电极11内的端部电极11b靠近第三显示电极13的一条侧边与第三显示电极13内的端部电极13b靠近第一显示电极11的一条侧边,该两条侧边在第一方向上的最小距离大于或等于第二预设间距。
在一些实施例中,第二显示电极12内的端部电极12b的形状与第三显示电极13内的端部电极13b的形状呈轴对称,且对称轴沿第二方向延伸,第二方向与第一方向相交。
在图12所示情况中,第一方向为水平方向,第二方向为竖直方向,第一方向与第二方向垂直的情况仅起到示例性作用,其不会对本公开的技术方案产生限制。
在一些实施例中,第一显示电极11的端部电极11b的形状为轴对称图形,且对称轴沿第二方向延伸;第二显示电极12内的端部电极12b的形状与第三显示电极13内的端部电极13b的形状关于第一显示电极11内的端部电极11b的对称轴呈轴对称。此时,所有显示电极所构成的形状呈轴对称,可有效提升像素区域内电场分布的均匀性。
需要说明的是,在端部电极的侧壁与所连接主体电极相对应侧壁形成拐角时,会使得拐角附近的液晶分子朝拐角的拐向发生偏转,此时从拐角拐向一侧和拐角拐向相对侧分别观察拐角区域,可观察到不同亮度,即不同视角下的观察亮度不同。在本公开实施例中,将第二显示电极12内的端部电极12b的形状与第三显示电极13内的端部电极13b的形状关 于第一显示电极11内的端部电极11b的对称轴呈轴对称,在从该对称轴的左、右两侧分别观察整个端部区域,观察到的亮度相同,即不同视角下的观察亮度相同,可提升产品性能。
在一些实施例中,第一显示电极11内的端部电极11b靠近第二显示电极12的一条侧边与第二显示电极12内的端部电极12b靠近第一显示电极11的一条侧边,沿远离主体电极11a、12a的方向,该两条侧边在第一方向上的距离逐渐增大。
在第一显示电极11内的端部电极11b与第二显示电极12内的端部电极12b之间的间隔区域内,沿远离主体电极11a、12a的方向,该间隔区域内的电场强度逐渐减弱,从而使得位于间隔区域内的液晶分子的偏转方向平稳变化,有利于改善Trace Mura的问题。
第一显示电极11内的端部电极11b靠近第三显示电极13的一条侧边与第三显示电极13内的端部电极13b靠近第一显示电极11的一条侧边,沿远离主体电极11a、13a的方向,该两条侧边在第一方向上的距离逐渐增大。
在第一显示电极11内的端部电极11b与第三显示电极13内的端部电极13b之间的间隔区域内,沿远离主体电极11a、13a的方向,该间隔区域内的电场强度逐渐减弱,从而使得位于间隔区域内的液晶分子的偏转方向平稳变化,有利于改善Trace Mura的问题。
在一些实施例中,第一显示电极11的端部电极11b的形状为矩形,第二显示电极12的端部电极12b为平行四边形且向右拐,第三显示电极13的端部电极13b为平行四边形且向左拐。各显示电极内的端部电极在第一方向上的宽度保持不变。
图13为本公开实施例提供的再一种显示用电极的俯视示意图,如图13所示,与图12中所示各显示电极内的端部电极在第一方向上的宽度保持不变的情况不同,在图13所示显示用电极内,第一显示电极11内 端部电极11b为条形电极,且沿第二方向且远离主体电极的方向,端部电极11b在第一方向上的宽度逐渐减小。
在一些实施例中,第一显示电极11内的端部电极11b的形状为倒梯形或倒三角形(此种情况未示出)。
在一些实施例中,在一些实施例中,在第二显示电极12和第三显示电极13内,端部电极12b、13b为条形电极且中心线的形状为线段(例如图11中(a)部分~(c)部分以及(e)部分~(g)部分所示情况)或弧线(例如图11中(d)部分和(h)部分所示情况)。
在一些实施例中,在第二显示电极12和第三显示电极13内,端部电极12b、13b的中心线(宽度方向上中心点的连线,其决定了端部电极的拐向)的形状为线段且延伸方向与第二方向相交。即,第二显示电极12内端部电极12b的拐向与第三显示电极13内端部电极13b的拐向不同。在图13所示情况中,第二显示电极12内端部电极12b向右拐,第三显示电极13内端部电极13b向左拐。
图14为本公开实施例提供的再一种显示用电极的俯视示意图,如图14所示,与图13中所示第二显示电极12和第三显示电极13内端部电极12b、13b的宽度保持不变的情况不同,图14所示情况中的第二显示电极12和第三显示电极13内端部电极12b、13b的宽度发生变化。具体地,在第二显示电极12和第三显示电极13内,沿第二方向且远离主体电极12a、13a的方向,端部电极12b、13b在第一方向上的宽度逐渐减小。
在本公开实施例中,通过将显示电极内的端部电极逐渐减小,其一方面可使得相邻端部电极之间的间隔区域,沿远离主体电极的方向,该间隔区域内的电场强度逐渐减弱;另一方面,可使得间隔区域内的整体电场强度减小。基于前面分析可见,通过控制电场长度逐渐变化以及减小端部区域的电场长度,均可有效改善狭缝电极内端部区域的Trace  Mura问题。
图15为本公开实施例提供的再一种显示用电极的俯视示意图,如图15所示,至少两个显示电极不但包括第一显示电极11~第三显示电极13,还包括:至少一个第四显示电极14和至少一个第五显示电极15。
其中,第四显示电极14与第二显示电极12形状相同,第五显示电极15与第三显示电极13形状相同;第四显示电极14位于第二显示电极12远离第一显示电极11的一侧,第五显示电极15位于第三显示电极13远离第一显示电极11的一侧。
需要说明的是,图15中仅示例性画出了1个第四显示电极14和1个第五显示电极15的情况。在本公开实施例中,第四显示电极14和第五显示电极15数量还可以为多个,多个第四显示电极14沿第一方向平行设置,多个第五显示电极15沿第一方向平行设置,此种情况未给出相应附图。
在一些实施例中,第四显示电极14和第五显示电极15的数量相同,且第四显示电极14和第五显示电极15关于第一显示电极11内的端部电极11b的对称轴呈轴对称。此时,所有显示电极所构成的形状呈轴对称,可有效提升像素区域内电场分布的均匀性。
需要说明的是,在像素开口的尺寸、显示电极内主体电极的宽度一定的情况下,显示电极的数量越多,则相邻显示电极之间的间距越小,相邻显示电极之间的间隔区域内电场强度越强,整个像素区域可现实的最大亮度越高,产品的显示性能越佳;但是,由于相邻端部电极之间区域内的电场强度增大,则会导致Trace Mura问题越严重。因此,在实际应用中,可根据所需的产品显示性能和Trace Mura性能来选取合适的显示电极数量。
图16和图17为本公开实施例提供的两种显示用电极的俯视示意图,如图16和图17所示,图16中所示显示用电极内显示电极11、12、13 的数量为3个,图16中所示显示用电极内显示电极11、12、13、14、15的数量为5个。与图12~图15中所示显示用电极包括第二连接电极9不同,图16和图17中所示显示用电极内不包括第二连接电极9,即相邻的两个显示电极内的端部电极远离主体电极的部分形成为开口。
在本公开实施例中,通过将相邻的两个显示电极内的端部电极远离主体电极的部分设置为开口,可使得端部区域的电场强度减小,端部区域内液晶分子的偏转角度减小,可提升该区域内液晶分子的偏转方向的一致性。
需要说明的是,本公开实施例提供的显示用电极可作为显示基板中的一个像素电极/公共电极的全部或部分。示例性地,图5~图10、图12~图17中的任一显示用电极可独立作为一个像素电极或一个公共电极,或者是多个显示用电极拼接组合作为一个像素电极或一个公共电极,这些情况均属于本公开的保护范围。
第二方面,本公开实施例还提供了一种显示基板,包括:衬底基板、第一电极和第二电极,第二电极位于第一电极远离衬底基板的一侧,第二电极采用上面任一实施例提供的显示用电极;第一电极和第二电极中之一公共电极,另一为像素电极。
参见图2所示,图2所示情况中的第一电极为公共电极,第二电极为像素电极,像素电极为狭缝电极且采用本公开实施例所提供的显示用电极。
图18为图1所示像素区域的另一种截面示意图,如图18所示,与图2中所示情况不同的是,图18所示情况中的第一电极为像素电极,第二电极为公共电极,公共电极为狭缝电极且采用本公开实施例所提供的显示用电极。
本领域技术人员应该知晓的是,像素电极可以为板状电极或者狭缝电极,公共电极也是如此,像素电极和公共电极的上下顺序可颠倒,但 是在上的电极是狭缝电极,在下的电极可以是板状电极或狭缝电极。在本公开实施例中,至少在上的狭缝电极采用前面实施例所提供的显示用电极;在一些实施例中,当在下的电极也为狭缝电极时,在下的电极也可以采用前面实施例所提供的显示用电极。
本公开实施例还提供了一种显示装置,其中,包括:上面实施例提供的显示基板、与显示基板相对设置的对盒基板以及位于显示基板和对盒基板之间的液晶层。
本公开实施例提供的显示装置,可以是液晶面板、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。本公开实施例提供的显示装置,具有本公开实施例提供的显示用电极的有益效果,具体可以参考上面各实施例对于显示用电极的具体说明,此处不再赘述。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (18)

  1. 一种显示用电极,其中,包括:沿第一方向间隔设置的至少两个显示电极和与所述显示电极一端相连的第一连接电极,所述显示电极包括:主体电极和端部电极,所述主体电极的一端与所述第一连接电极相连,所述主体电极的另一端与所述端部电极相连;
    所述至少两个显示电极包括:第一显示电极和第二显示电极,所述第一显示电极内的主体电极与所述第二显示电极内的主体电极在第一方向上平行且具有第一预设间距;
    所述第一显示电极内的端部电极在第一方向上相对设置的两条侧边以及所述第二显示电极内的端部电极在第一方向上相对设置的两条侧边,在该四条侧边中存在至少两条侧边不平行;
    所述第一显示电极内的端部电极靠近所述第二显示电极的一条侧边与所述第二显示电极内的端部电极靠近所述第一显示电极的一条侧边,该两条侧边在第一方向上的最小距离大于或等于所述第一预设间距。
  2. 根据权利要求1所述的显示用电极,其中,所述至少两个显示电极还包括:第三显示电极,所述第二显示电极和所述第三显示电极分别位于所述第一显示电极的不同侧;
    所述第一显示电极内的主体电极与所述第三显示电极内的主体电极在第一方向上平行且具有第二预设间距;
    所述第一显示电极内的端部电极在第一方向上相对设置的两条侧边以及所述第三显示电极内的端部电极在第一方向上相对设置的两条侧边,在该四条侧边中存在至少两条侧边不平行;
    所述第一显示电极内的端部电极靠近所述第三显示电极的一条侧边与所述第三显示电极内的端部电极靠近所述第一显示电极的一条侧边, 该两条侧边在第一方向上的最小距离大于或等于所述第二预设间距。
  3. 根据权利要求2所述的显示用电极,其中,第二显示电极内的端部电极的形状与所述第三显示电极内的端部电极的形状呈轴对称,且对称轴沿第二方向延伸,所述第二方向与所述第一方向相交。
  4. 根据权利要求3所述的显示用电极,其中,所述第一显示电极的端部电极的形状为轴对称图形,且对称轴沿所述第二方向延伸;
    第二显示电极内的端部电极的形状与所述第三显示电极内的端部电极的形状关于所述第一显示电极内的端部电极的对称轴呈轴对称。
  5. 根据权利要求4所述的显示用电极,其中,所述第一显示电极内的端部电极靠近所述第二显示电极的一条侧边与所述第二显示电极内的端部电极靠近所述第一显示电极的一条侧边,沿远离主体电极的方向,该两条侧边在第一方向上的距离逐渐增大;
    所述第一显示电极内的端部电极靠近所述第三显示电极的一条侧边与所述第三显示电极内的端部电极靠近所述第一显示电极的一条侧边,沿远离主体电极的方向,该两条侧边在第一方向上的距离逐渐增大。
  6. 根据权利要求4所述的显示用电极,其中,在所述第一显示电极内,所述端部电极为条形电极,沿所述第二方向且远离所述主体电极的方向,所述端部电极在第一方向上的宽度保持不变或逐渐减小。
  7. 根据权利要求6所述的显示用电极,其中,所述第一显示电极内的所述端部电极的形状为矩形、倒梯形或倒三角形。
  8. 根据权利要求4所述的显示用电极,其中,在所述第二显示电极和所述第三显示电极内,所述端部电极为条形电极且中心线的形状为线段或弧线。
  9. 根据权利要求8所述的显示用电极,其中,在所述第二显示电极和所述第三显示电极内,所述端部电极的中心线的形状为线段且延伸方向与所述第二方向相交。
  10. 根据权利要求4所述的显示用电极,其中,在所述第二显示电极和所述第三显示电极内,沿所述第二方向且远离所述主体电极的方向,所述端部电极在第一方向上的宽度保持不变或逐渐减小。
  11. 根据权利要求4所述的显示用电极,其中,所述至少两个显示电极还包括:与所述第二显示电极形状相同的至少一个第四显示电极和与所述第三显示电极形状相同的至少一个第五显示电极;
    所述第四显示电极位于所述第二显示电极远离所述第一显示电极的一侧,所述第五显示电极位于所述第三显示电极远离所述第一显示电极的一侧。
  12. 根据权利要求11所述的显示用电极,其中,所述第四显示电极和所述第五显示电极的数量相同,且所述第四显示电极和所述第五显示电极关于所述第一显示电极内的端部电极的对称轴呈轴对称。
  13. 根据权利要求1所述的显示用电极,其中,所述显示用电极为液晶显示用电极。
  14. 根据权利要求1-13中任一所述的显示用电极,其中,在同一所述显示电极中,所述端部电极靠近所述主体电极一端的边界与所述主体电极靠近所述端部电极一端的边界,该两个边界完全重叠。
  15. 根据权利要求1-13中任一所述的显示用电极,其中,相邻的两个所述显示电极内的端部电极远离主体电极的部分形成为开口。
  16. 根据权利要求1-13中任一所述的显示用电极,其中,相邻的两个所述显示电极内的端部电极远离主体电极的部分之间设置有第二连接电极,所述第二连接电极与所述端部电极远离主体电极的一端相连。
  17. 一种显示基板,其中,包括:衬底基板、第一电极和第二电极,所述第二电极位于所述第一电极远离所述衬底基板的一侧,所述第二电极采用权利要求1-16中任一所述的显示用电极;
    所述第一电极和所述第二电极中之一公共电极,另一为像素电极。
  18. 一种显示装置,其中,包括:如权利要求17所述的显示基板、与所述显示基板相对设置的对盒基板以及位于所述显示基板和所述对盒基板之间的液晶层。
PCT/CN2020/123138 2020-10-23 2020-10-23 显示用电极、显示基板和显示装置 WO2022082705A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080002449.5A CN115023648B (zh) 2020-10-23 2020-10-23 显示用电极、显示基板和显示装置
US17/428,857 US11947226B2 (en) 2020-10-23 2020-10-23 Electrode for display, display substrate, and display device
PCT/CN2020/123138 WO2022082705A1 (zh) 2020-10-23 2020-10-23 显示用电极、显示基板和显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/123138 WO2022082705A1 (zh) 2020-10-23 2020-10-23 显示用电极、显示基板和显示装置

Publications (1)

Publication Number Publication Date
WO2022082705A1 true WO2022082705A1 (zh) 2022-04-28

Family

ID=81291443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123138 WO2022082705A1 (zh) 2020-10-23 2020-10-23 显示用电极、显示基板和显示装置

Country Status (3)

Country Link
US (1) US11947226B2 (zh)
CN (1) CN115023648B (zh)
WO (1) WO2022082705A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022120783A1 (zh) * 2020-12-11 2022-06-16 京东方科技集团股份有限公司 像素电极、像素结构、显示面板及显示装置
US20230047799A1 (en) * 2020-12-11 2023-02-16 Ordos Yuansheng Optoelectronics Co., Ltd. Pixel structure, display panel, and display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130100384A1 (en) * 2011-10-21 2013-04-25 Youichi ASAKAWA Liquid crystal display device
CN104570514A (zh) * 2014-12-30 2015-04-29 厦门天马微电子有限公司 电极结构及液晶显示面板
CN106019750A (zh) * 2016-08-10 2016-10-12 京东方科技集团股份有限公司 一种液晶显示面板及显示装置
CN107290902A (zh) * 2017-06-23 2017-10-24 南京中电熊猫平板显示科技有限公司 边缘电场液晶显示面板
CN110737141A (zh) * 2019-10-31 2020-01-31 厦门天马微电子有限公司 阵列基板、液晶显示面板及显示装置
CN111176034A (zh) * 2020-01-06 2020-05-19 京东方科技集团股份有限公司 阵列基板及显示装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100336885B1 (ko) * 1998-06-30 2003-06-12 주식회사 현대 디스플레이 테크놀로지 박막트랜지스터액정표시소자
AU2003226593A1 (en) * 2002-05-10 2003-11-11 Koninklijke Philips Electronics N.V. Bistable liquid crystal device with picture electrodes having comb structure
JP4829501B2 (ja) * 2005-01-06 2011-12-07 シャープ株式会社 液晶表示装置
CN101479656B (zh) * 2006-06-26 2012-01-11 夏普株式会社 显示装置
CN102388338B (zh) * 2009-05-13 2015-03-04 夏普株式会社 液晶显示装置及其制造方法
US8804084B2 (en) * 2010-12-22 2014-08-12 Japan Display West Inc. Liquid crystal display panel
KR101844015B1 (ko) * 2011-02-24 2018-04-02 삼성디스플레이 주식회사 액정 표시 장치
CN102193256B (zh) * 2011-06-03 2013-11-27 深圳市华星光电技术有限公司 像素电极和液晶显示阵列基板
US20130021570A1 (en) * 2011-07-18 2013-01-24 Shanghai Tianma Micro-electronics Co., Ltd. Pixel Electrode And Liquid Crystal Display Panel
KR101820966B1 (ko) * 2011-10-20 2018-01-23 삼성디스플레이 주식회사 액정표시장치, 배향막 및 이들을 제조하는 방법들
KR101960652B1 (ko) * 2012-10-10 2019-03-22 삼성디스플레이 주식회사 어레이 기판 및 이를 구비하는 액정 표시 장치
JP6100153B2 (ja) * 2013-12-11 2017-03-22 株式会社ジャパンディスプレイ 液晶表示装置及び電子機器
KR102423435B1 (ko) * 2015-11-04 2022-07-21 삼성디스플레이 주식회사 액정 표시 장치
CN106855667A (zh) * 2017-03-06 2017-06-16 友达光电股份有限公司 显示面板
TWM548832U (zh) * 2017-05-04 2017-09-11 凌巨科技股份有限公司 液晶面板之電極結構
CN109686311B (zh) * 2019-02-26 2020-11-03 上海天马有机发光显示技术有限公司 一种显示面板及显示装置
CN110618564B (zh) * 2019-10-30 2022-06-24 京东方科技集团股份有限公司 电极结构、阵列基板及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130100384A1 (en) * 2011-10-21 2013-04-25 Youichi ASAKAWA Liquid crystal display device
CN104570514A (zh) * 2014-12-30 2015-04-29 厦门天马微电子有限公司 电极结构及液晶显示面板
CN106019750A (zh) * 2016-08-10 2016-10-12 京东方科技集团股份有限公司 一种液晶显示面板及显示装置
CN107290902A (zh) * 2017-06-23 2017-10-24 南京中电熊猫平板显示科技有限公司 边缘电场液晶显示面板
CN110737141A (zh) * 2019-10-31 2020-01-31 厦门天马微电子有限公司 阵列基板、液晶显示面板及显示装置
CN111176034A (zh) * 2020-01-06 2020-05-19 京东方科技集团股份有限公司 阵列基板及显示装置

Also Published As

Publication number Publication date
CN115023648B (zh) 2023-09-29
US20220308406A1 (en) 2022-09-29
US11947226B2 (en) 2024-04-02
CN115023648A (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
US9025121B2 (en) Pixel unit comprising an inclined connection part and array substrate of a liquid crystal display device with a fringe field switching mode
US10401685B2 (en) Array substrate, manufacturing method thereof and display device
EP2743763B1 (en) Pixel structure, array substrate, liquid crystal display panel and driving method
WO2022082705A1 (zh) 显示用电极、显示基板和显示装置
CN103713432A (zh) 显示装置及电子设备
TWI526761B (zh) 液晶顯示面板
US8681298B2 (en) Liquid crystal display device
US10031373B2 (en) Liquid crystal display panel
US9778515B2 (en) Electrode structure, display panel and display device
CN107329311B (zh) 阵列基板及液晶显示面板
US20220043312A1 (en) Pixel electrode structure and liquid crystal display panel
TWI493250B (zh) 液晶顯示面板
US11892736B2 (en) Array substrate and display panel
CN107632470B (zh) 一种显示电极、阵列基板、显示面板及显示装置
CN110928066A (zh) 显示面板和显示装置
KR20140035242A (ko) 픽셀 유닛, 어레이 기판 및 액정 표시 장치
CN103676353B (zh) 像素结构、阵列基板及显示装置
CN109491152B (zh) 像素电极结构
CN110737141A (zh) 阵列基板、液晶显示面板及显示装置
US20180107076A1 (en) Pixel Structure, Display Panel and Display Device
CN103529603A (zh) 一种聚合物稳定配向的液晶面板
US10564490B2 (en) Array substrate, method for fabricating the same, and display device
US9513517B2 (en) Liquid crystal panel, display device, and manufacturing method and driving methods thereof
US20240053642A1 (en) Array substrate and liquid crystal display panel
TWI408479B (zh) 顯示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20958287

Country of ref document: EP

Kind code of ref document: A1