WO2022082627A1 - 超声成像方法和系统以及光声成像方法和系统 - Google Patents

超声成像方法和系统以及光声成像方法和系统 Download PDF

Info

Publication number
WO2022082627A1
WO2022082627A1 PCT/CN2020/122888 CN2020122888W WO2022082627A1 WO 2022082627 A1 WO2022082627 A1 WO 2022082627A1 CN 2020122888 W CN2020122888 W CN 2020122888W WO 2022082627 A1 WO2022082627 A1 WO 2022082627A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
photoacoustic
different
data
signal processing
Prior art date
Application number
PCT/CN2020/122888
Other languages
English (en)
French (fr)
Inventor
章希睿
桑茂栋
杨芳
朱磊
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2020/122888 priority Critical patent/WO2022082627A1/zh
Priority to CN202080104302.7A priority patent/CN116234499A/zh
Publication of WO2022082627A1 publication Critical patent/WO2022082627A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves

Definitions

  • the present application relates to the technical field of ultrasonic imaging, and more particularly, to an ultrasonic imaging method and system and a photoacoustic imaging method and system.
  • Ultra-wide beam emission technologies such as plane wave and diverging wave, adopt the imaging mode of one frame after excitation, which is the key to achieve high frame rate ultrasound imaging.
  • the ultra-wide beam means unfocused emission, which inevitably has the problem of insufficient lateral resolution and signal-to-noise ratio.
  • Coherent angle composite technology is the main method to solve this problem, which requires multi-angle deflection transmission at the front end, and coherent composite processing at the receiving end. As the number of angular recombinations increases, both the lateral resolution and the signal-to-noise ratio of the ultrasound image are improved, but the frame rate also decreases.
  • the existing high frame rate ultrasound imaging solutions cannot take into account the frame rate and image quality, and have to make trade-offs and trade-offs between the two according to different applications.
  • a first aspect of the embodiments of the present application provides an ultrasonic imaging method, the method comprising:
  • the ultrasonic waves are non-focused ultrasonic waves covering the target area;
  • the at least two different sets of ultrasound echo data are composited to obtain composite data, and an ultrasound image is generated based on the composite data.
  • a first aspect of the embodiments of the present application provides an ultrasonic imaging method, the method comprising:
  • the ultrasonic waves are non-focused ultrasonic waves covering the target area;
  • the at least two different sets of ultrasound echo data are composited to obtain composite data, and an ultrasound image is generated based on the composite data.
  • a second aspect of the embodiments of the present application provides a photoacoustic imaging method, the method comprising:
  • the at least two different sets of photoacoustic data are composited to obtain composite data, and a photoacoustic image is generated based on the composite data.
  • a third aspect of the embodiments of the present application provides an ultrasound imaging system, where the ultrasound imaging system includes:
  • a transmitting circuit configured to excite the ultrasonic probe to transmit ultrasonic waves to the target area of the measured object, and the ultrasonic waves are non-focused ultrasonic waves covering the target area;
  • a receiving circuit for controlling the ultrasonic probe to receive the ultrasonic echo signal of the ultrasonic wave
  • a signal processing module configured to perform at least two different signal processing on the ultrasonic echo signal to obtain at least two sets of different ultrasonic echo data
  • a processor for compounding the at least two different sets of ultrasound echo data to obtain compound data, and generating an ultrasound image based on the compound data.
  • a fourth aspect of the embodiments of the present application provides a photoacoustic imaging system, and the photoacoustic imaging system includes:
  • a laser emitting device for emitting laser light to the target area of the measured object
  • a receiving circuit for controlling the ultrasonic probe to receive the photoacoustic signal generated by the tissue in the target area being irradiated by the laser
  • a signal processing module for performing at least two different signal processing on the photoacoustic signal to obtain at least two different sets of photoacoustic data
  • the processor is configured to: composite the at least two sets of different photoacoustic data to obtain composite data, and generate a photoacoustic image based on the composite data.
  • the ultrasonic imaging method, ultrasonic imaging system, photoacoustic imaging method, and photoacoustic imaging system perform different signal processing on each received ultrasonic echo signal or photoacoustic echo signal to obtain composite data, and according to Imaging with composite data can improve the imaging quality while ensuring a high frame rate.
  • FIG. 1 shows a schematic diagram of a plane wave composite imaging of multiple transmissions and multiple receptions
  • FIG. 2 shows a schematic block diagram of an ultrasound imaging system according to an embodiment of the present application
  • FIG. 3 shows a schematic flowchart of an ultrasound imaging method according to an embodiment of the present application
  • FIG. 4 shows a schematic diagram of ultrasound imaging of single-shot, multi-angle reception of unfocused ultrasound waves according to an embodiment of the present application
  • FIG. 5 shows a comparison diagram of the normalized transverse envelope between the ultrasound imaging method of single transmission and multi-angle reception and the ultrasound imaging method of single transmission and single reception according to an embodiment of the present application
  • FIG. 6 shows a schematic diagram of ultrasound imaging of single-shot non-focused ultrasound transmission and multi-frequency reception according to an embodiment of the present application
  • FIG. 7 shows a schematic diagram of ultrasound imaging of single-shot, multi-frequency and multi-angle reception of unfocused ultrasound waves according to an embodiment of the present application
  • FIG. 8 shows a schematic block diagram of a photoacoustic imaging system according to an embodiment of the present application.
  • FIG. 9 shows a schematic flowchart of a photoacoustic imaging method according to an embodiment of the present application.
  • non-focused ultrasound imaging technology In order to improve the frame rate of ultrasound imaging, non-focused ultrasound imaging technology is introduced. Assuming that a frame of image has N receiving beams, when using traditional single-beam focusing imaging technology to image, the ultrasonic imaging system needs to transmit N transmitting beams, and each transmission is performed once; The array element can receive the whole field after excitation, and obtain a frame of ultrasonic image, so that the number of transmissions using the non-focused ultrasonic imaging technology is 1/N of that of the traditional single-beam focused imaging technology.
  • the intensity of the transmitted sound field of the unfocused ultrasonic wave gradually weakens, and the penetrating power is insufficient; and because the unfocused ultrasonic wave has no emission focusing, beamforming is only performed at the receiving end, resulting in poor lateral resolution of the ultrasonic image. Insufficient noise ratio. Therefore, the coherence angle composite technology is introduced to solve the above problems in unfocused ultrasound imaging.
  • Figure 1 shows an example of tertiary coherence angle recombination in linear plane wave imaging.
  • plane waves are respectively transmitted, and the ultrasonic echo signals returned by the imaging target are respectively received, and the The ultrasonic echo signals are subjected to beamforming processing to obtain beamforming data of angle #1, angle #2 and angle #3 respectively.
  • the three sets of beamforming data are superimposed to output coherent angle composite data for imaging. That is, plane waves with different deflection angles are emitted, the echo signals emitted by each plane wave are collected for beamforming, and then the beamforming data at multiple angles are superimposed to obtain a composite image. Since the useful signals at each angle are correlated and the noise is independent, the coherent angle composite technique can improve the penetrating power and lateral resolution of the plane wave image. However, as the number of shots required to form a frame increases, the frame rate decreases.
  • the embodiments of the present application propose an ultrasonic imaging method, an ultrasonic imaging system, a photoacoustic imaging method, and a photoacoustic imaging system.
  • the photoacoustic echo signal undergoes different signal processing to obtain composite data, and performs imaging according to the composite data, which can improve the imaging quality while ensuring a high frame rate.
  • FIG. 2 shows a schematic structural block diagram of an ultrasound imaging system 200 according to an embodiment of the present application.
  • the ultrasound imaging system 200 includes an ultrasound probe 210 , a transmitting circuit 212 , a receiving circuit 214 , a signal processing module 216 , a processor 218 and a display 220 . Further, the ultrasound imaging system may further include a transmit/receive selection switch 222 and a memory 224 , and the transmit circuit 212 and the reception circuit 214 may be connected to the ultrasound probe 210 through the transmit/receive selection switch 222 .
  • the ultrasonic probe 210 may include a plurality of transducer array elements, and the plurality of transducer array elements may be arranged in a row to form a linear array, a convex array, a phased array, or a two-dimensional matrix to form a surface array.
  • the transducer is used to transmit ultrasonic waves according to the excitation electrical signal, or convert the received ultrasonic waves into electrical signals, so each transducer array element can be used to realize the mutual conversion of electrical pulse signals and ultrasonic waves, so as to achieve the target area of the measured object.
  • the tissue emits ultrasonic waves, and can also be used to receive ultrasonic echoes reflected by the tissue.
  • transducer array elements are used to transmit ultrasonic waves and which transducer array elements are used to receive ultrasonic waves can be controlled through the transmitting sequence and receiving sequence, or the transducer array elements can be controlled to divide time slots for transmitting ultrasonic waves Or receive echoes of ultrasonic waves.
  • the transmitting circuit 212 sends the transmitting pulse to the ultrasonic probe 210 through the transmitting/receiving selection switch 222, and simultaneously excites the transducer elements in the ultrasonic probe 210 to transmit unfocused ultrasonic waves to the target area of the measured object.
  • Unfocused ultrasound can be either a plane wave or a diverging wave.
  • the sound field generated by unfocused ultrasound can cover all target areas.
  • the transducer array element After being scattered by the tissue, the transducer array element also receives the echo signal and re-converts the ultrasound echo into The electrical signal is transmitted and received once, and the obtained ultrasonic echo signal can obtain a complete ultrasonic image including the entire region of interest.
  • the receiving circuit 214 controls the ultrasonic probe 210 to receive the ultrasonic echo signal, and sends the ultrasonic echo signal to the signal processing module 216, which may include a beam forming module and/or a dynamic filtering processing module.
  • the signal processing module 216 performs at least two different signal processing on the ultrasonic echo signal, and then sends it to the processor 218 .
  • the processor 218 performs compound processing, envelope detection, logarithmic compression, spatial smoothing and other processing on at least two sets of ultrasonic echo data to form an ultrasonic image.
  • the ultrasound images obtained by the processor 218 can be displayed on the display 220 or stored in the memory 224 .
  • the processor 218 may be implemented as software, hardware, firmware, or any combination thereof, and may use single or multiple application specific integrated circuits (ASICs), single or multiple general-purpose integrated circuits, single or multiple microprocessors, single or multiple programmable logic devices, or any combination of the foregoing circuits and/or devices, or other suitable circuits or devices. Also, the processor 218 may also control other components in the ultrasound imaging system 200 to perform corresponding steps of the methods in the various embodiments in this specification.
  • ASICs application specific integrated circuits
  • the processor 218 may also control other components in the ultrasound imaging system 200 to perform corresponding steps of the methods in the various embodiments in this specification.
  • the display 220 is connected to the processor 218, and the display 220 may be a touch display screen, a liquid crystal display screen, etc.; or, the display 220 may be an independent display device such as a liquid crystal display, a television set, etc. independent of the ultrasound imaging system 200; or, the display 220 It can be a display screen of an electronic device such as a smartphone, tablet, etc.
  • the number of displays 220 may be one or more.
  • the display 220 may include a main screen and a touch screen, the main screen is mainly used for displaying ultrasound images, and the touch screen is mainly used for human-computer interaction.
  • Display 220 may display ultrasound images obtained by processor 218 .
  • the display 220 can also provide a graphical interface for the user to perform human-computer interaction while displaying the ultrasonic image, set one or more controlled objects on the graphical interface, and provide the user with a human-computer interaction device to input operation instructions to control these objects.
  • the controlled object so as to perform the corresponding control operation.
  • an icon is displayed on the graphical interface, and the icon can be operated by using a human-computer interaction device to perform a specific function, such as drawing a region of interest frame on the ultrasound image.
  • the ultrasound imaging system 200 may also include other human-computer interaction devices other than the display 220, which are connected to the processor 218.
  • the processor 218 may be connected to the human-computer interaction device through an external input/output port.
  • the output port can be a wireless communication module, a wired communication module, or a combination of the two.
  • External input/output ports may also be implemented based on USB, bus protocols such as CAN, and/or wired network protocols, and the like.
  • the human-computer interaction device may include an input device for detecting the user's input information, for example, the input information may be a control instruction for the ultrasonic transmission/reception sequence, or a point, line or frame drawn on the ultrasonic image. Manipulate input instructions, or may also include other instruction types.
  • the input device may include one or a combination of a keyboard, a mouse, a scroll wheel, a trackball, a mobile input device (eg, a mobile device with a touch display screen, a cell phone, etc.), a multi-function knob, and the like.
  • the human-computer interaction apparatus may also include an output device such as a printer.
  • the ultrasound imaging system 200 may also include a memory 224 for storing instructions executed by the processor, storing received ultrasound echoes, or storing ultrasound images, among others.
  • the memory may be a flash memory card, a solid state memory, or a hard disk, or the like. It may be volatile memory and/or non-volatile memory, removable memory and/or non-removable memory, and the like.
  • the components included in the ultrasound imaging system 200 shown in FIG. 2 are only illustrative, and it may include more or less components. This application is not limited to this.
  • FIG. 3 is a schematic flowchart of an ultrasonic imaging method 300 according to an embodiment of the present application.
  • the ultrasonic imaging method 300 includes the following steps:
  • step S310 ultrasonic waves are emitted to the target area of the measured object, and the ultrasonic waves are non-focused ultrasonic waves covering the target area;
  • step S320 receive the ultrasonic echo signal of the ultrasonic wave
  • step S330 different signal processing is performed on the ultrasonic echo signal at least twice to obtain at least two sets of different ultrasonic echo data
  • step S340 at least two different sets of ultrasonic echo data are composited to obtain composite data, and an ultrasonic image is generated based on the composite data.
  • the ultrasonic imaging method 300 in this embodiment of the present application performs different signal processing on the ultrasonic echo signals received after each ultrasonic transmission to obtain composite data, and performs imaging according to the composite data, which can greatly reduce the transmission cost and ensure a high frame rate while maintaining a high frame rate. while improving image quality.
  • the unfocused ultrasonic waves emitted to the target area of the measured object may be plane waves or divergent waves.
  • excitation is applied to the transducer array elements in the ultrasonic probe, and the generated ultrasonic waves propagate to the target area in the form of wave fronts.
  • the measured object may be a human body, and the target area may be a human tissue part such as a heart, a uterus, a liver, or a kidney, which is not specifically limited here.
  • the emission waveform of the plane wave is a plane.
  • the deflection angle of the plane wave is 0, that is, vertical emission; when the ultrasonic probe is controlled to transmit a plane wave with a deflection angle of 0 to the target area, the transducer array elements in the ultrasonic probe are set to be excited synchronously to generate parallel Ultrasonic waves in the plane of the transducer array; in other embodiments, the plane waves may also have a certain deflection angle. When the plane wave has a certain deflection angle, the transducer array elements can be set to be excited sequentially based on the delay time calculated by the deflection angle.
  • Divergent wave means that there are one or more virtual focal points behind the ultrasonic probe.
  • the emission waveform takes the virtual focal point as the center of the circle.
  • the arc-shaped emission waveform is obtained by setting the emission delay.
  • the divergent wave gradually diverges as the depth increases. , so as to obtain a larger field of view with a smaller aperture.
  • the virtual focus point may be distributed parallel to the ultrasound probe behind the ultrasound probe; in another embodiment, the virtual focus point may be distributed in an arc shape with the center of the ultrasound probe as the center and a fixed length as the radius .
  • transmitting the ultrasonic waves to the target area of the subject may include transmitting the ultrasonic waves to the target area at least once. Since at least two different signal processings are performed on the ultrasonic echo signal subsequently, at least two sets of different ultrasonic echo data are obtained, so in step S310, at least ultrasonic waves are emitted to the target area of the measured object at the same angle. Send ultrasonic waves to the target area of the object under test without deflecting the launch at multiple angles.
  • the ultrasonic probe can transmit one or more ultrasonic waves to the target area of the measured object at the same fixed angle, that is, the ultrasonic wave can be transmitted vertically or deflected at a fixed angle.
  • transmitting ultrasonic waves to the target area of the measured object may also be to transmit ultrasonic waves to the target area of the measured object at different angles.
  • step S320 the ultrasonic echo signal of the ultrasonic wave is received.
  • the receiving circuit 214 controls the transducer array elements in the ultrasonic probe 210 to receive the reflected echoes formed by each receiving point in the target area on the ultrasonic waves transmitted in step S210, and convert them into electrical echoes. signal to obtain ultrasonic echo signals.
  • the electrical signal may also be amplified by a time gain compensation amplifier to compensate for ultrasonic attenuation at different depths, and then transmitted to the beam forming module to perform subsequent steps.
  • step S330 at least two different signal processings are performed on the ultrasonic echo signal to obtain at least two different sets of ultrasonic echo data. Since at least two different sets of ultrasound echo data are processed by different signals, they contain different tissue information, and an effect similar to multiple transmissions can be obtained; the information in at least two different sets of ultrasound echo data can be combined for imaging subsequently. , to improve image quality.
  • At least two different signal processings may employ different reception angles.
  • the ultrasonic echo signal obtained in step S320 is sent to the beam forming module in the signal processing module, and the beam forming module uses different receiving angles to perform beam forming processing on the ultrasonic echo signal.
  • Beam synthesis is to superimpose the ultrasonic echo signals received by each transducer array element in the ultrasonic probe after a corresponding delay, and the obtained superimposed ultrasonic echo signals are the synthesized beams.
  • Different receiving angles are used for signal processing, that is, in each beamforming process, delays are calculated based on different receiving angles to obtain different ultrasonic echo data.
  • different receiving angles are used to perform beamforming processing on the ultrasonic echo signals respectively, so as to achieve an effect similar to multiple deflection transmissions through an algorithm, and at the same time avoid the disadvantage of reducing the frame rate due to multiple transmissions.
  • the ultrasonic imaging process of single transmission and multi-angle deflection reception is described by taking a linear array plane wave as an example.
  • the plane wave is only vertically transmitted once in the transmitting phase, and the ultrasonic echo data is subjected to 3 angles in the receiving phase (i.e. receiving angle #1: deflection -10°, receiving angle #2: deflection 0° and receiving angle # 3: Signal processing with a deflection of 10°), and perform composite processing on the ultrasonic echo data obtained from the receiving angle #1, receiving angle #2 and receiving angle #3 to obtain composite data, and finally generate a frame of ultrasonic image based on the composite data.
  • FIG. 5 shows a comparison diagram of the normalized transverse envelope between the ultrasound imaging method of single transmission and multi-angle reception according to an embodiment of the present application and the conventional ultrasound imaging method of single transmission and single reception.
  • the solid line and the dotted line are the envelope curves of single transmission and single reception, and the envelope curves of single transmission and multi-angle reception, respectively. It can be seen from Figure 5 that the lateral resolution of the latter is more obvious than that of the former. improve.
  • different frequencies are used for at least two different signal processings, that is, different frequencies are used to filter the beamformed ultrasonic echo signals to improve the signal-to-noise ratio.
  • the filtering processing may include dynamic filtering processing, for example, the dynamic filtering processing module in the signal processing module may use different frequencies to perform dynamic filtering processing on the ultrasonic echo signal.
  • the frequency and frequency band of the filter used in dynamic filtering processing vary with the echo depth. Because the components with high echo frequency have high longitudinal resolution in the image, but the attenuation with depth is greater, and the components with low echo frequency The vertical resolution in the image is low, but the attenuation with depth is slow, and a deeper depth can be detected.
  • the dynamic filtering realizes the selection of the high-frequency components of the signal at the position where the detection depth is shallower.
  • the deep position selects the low frequency content of the signal, thereby filtering out the noise signal outside the frequency band of interest.
  • using different frequencies for dynamic filtering may include using different filter center frequencies.
  • a single vertical transmission is performed, and N different frequencies are used to perform dynamic filtering processing on the ultrasonic echo signals to obtain ultrasonic echo data at each frequency.
  • N different frequencies are used to perform dynamic filtering processing on the ultrasonic echo signals to obtain ultrasonic echo data at each frequency.
  • the ultrasonic echo data corresponding to N different frequencies can be compounded in the future to synthesize the tissue information obtained at different frequencies.
  • An ultrasound image is generated based on the composite data.
  • different signal processing may employ both different reception angles and different frequencies. That is to say, firstly, different receiving angles are used for beamforming in the beamforming stage, and then different frequencies are used for filtering in the dynamic filtering processing stage. Referring to Figure 7, in this example, a single vertical transmission is performed, and N different signal processings are performed on the ultrasonic echo signal. In each signal processing process, different angles are used for beamforming and different frequencies are used for beamforming.
  • Dynamic filtering for example, the first signal processing uses frequency 1 and angle 1, the (N-1)/2nd signal processing uses frequency (N-1)/2 and angle (N-1)/2, and the Nth signal
  • the processing adopts frequency N, angle N, etc., so that more information is included in the ultrasonic echo data, and the subsequent imaging quality is further improved.
  • step S310 when transmitting ultrasonic waves to the target area of the measured object, ultrasonic waves are transmitted to the target area of the measured object at least once; in step S330, at least two different signals are performed on the ultrasonic echo signal.
  • step S330 at least two signal processings are performed based on the ultrasonic echo signals obtained by transmitting the ultrasonic waves at least once, so as to obtain at least two sets of different ultrasonic echo data.
  • step S330 at least two different signal processing may be performed based on the ultrasonic echo signal obtained by transmitting the ultrasonic wave once, so as to obtain at least two sets of different ultrasonic echo data.
  • Different ultrasound echo data generates one frame of ultrasound image; that is, one frame of ultrasound image can be obtained every time the ultrasound is transmitted.
  • ultrasonic waves are transmitted at least twice in step S310, in step S330, at least two different signal processings may be performed on the ultrasonic echo signals obtained by transmitting ultrasonic waves at least twice, so as to obtain more than two groups of different ultrasonic echo signals.
  • one frame of ultrasound image can be generated based on the obtained two or more different sets of ultrasound echo data, that is, one frame of ultrasound image can be obtained every time at least two ultrasound waves are transmitted.
  • step S330 since different signal processing is performed at least twice, different ultrasonic echo data can be obtained based on the ultrasonic echo signals of the ultrasonic waves emitted from the same angle, so the ultrasonic echo signals are processed at least twice with different signals.
  • the processing may be performing at least two different signal processing on the ultrasonic echo signals of the ultrasonic waves emitted at the same angle.
  • the ultrasonic echo signals are processed at least twice for different signal processing, and the ultrasonic echoes of the ultrasonic waves emitted at each angle may also be performed.
  • the signals are respectively subjected to at least two different signal processings.
  • step S340 at least two different sets of ultrasonic echo data obtained in step S330 are composited to obtain composite data, and an ultrasonic image is generated based on the composite data.
  • the compounding process is coherent compounding, that is, coherent compounding is performed on the ultrasonic echo data before the envelope detection.
  • Coherent compounding is to carry out weighted superposition processing of ultrasonic echo data obtained at each receiving angle with phase, and the superposition process does not need to take envelope or other nonlinear processing.
  • the weighted superposition process may employ adaptive weights, including but not limited to coherence factors and/or minimum variance. Among them, the coherence factor is the ratio of the coherent sum and the incoherent sum between the delayed array element signals.
  • On-axis signals can be enhanced and off-axis signals suppressed by coherent recombination, thereby improving imaging contrast. Unfocused ultrasound does not focus on transmission, but the process of coherent superposition is equivalent to the effect of mixed focusing of transmission and reception.
  • coherent compounding is a compounding process performed on a complex analytical signal that contains both phase and amplitude information, and the data after coherent compounding is still a complex analytical signal, which needs to be subjected to envelope detection to obtain the envelope of the echo signal.
  • the Hilbert transform method can be used to obtain the complex analytical signal to be processed, the original signal is subjected to the Hilbert transform to obtain an orthogonal signal of the original signal, and the original signal is taken as the real part, and the Hilbert transform is used to obtain The quadrature signal of is the complex analytical signal constructed by the imaginary part, and the modulus of the signal is the envelope of the original signal.
  • IQ demodulation can also be performed to obtain the complex analytical signal to be processed. The main difference between the two is that IQ demodulation has frequency selectivity, specific frequency components can be selected for final imaging, and the anti-interference ability is strong.
  • the compounding process may also include incoherent compounding, that is, coherent compounding is not performed before the detection is included, but incoherent compounding is performed on the ultrasonic echo data after envelope detection.
  • incoherent compounding that is, coherent compounding is not performed before the detection is included, but incoherent compounding is performed on the ultrasonic echo data after envelope detection.
  • coherent recombination superimposes magnitude information and phase information together, whereas incoherent recombination superimposes only magnitude information.
  • the performance is whether to composite before the envelope detection or after the envelope detection.
  • Incoherent compounding can suppress speckle noise in the image and thereby improve the contrast of the image.
  • the composite data After the composite data is obtained, it can be subjected to logarithmic compression, spatial smoothing and other signal processing links to obtain ultrasound images. Among them, spatial smoothing can be performed at any stage after beamforming. As a result, only one ultrasonic wave is transmitted, and one frame of ultrasonic image can be generated according to the obtained set of composite data, thereby greatly improving the frame rate compared with the ultrasonic imaging method of multiple transmissions and multiple receptions.
  • one frame of ultrasound image may also be generated based on at least two sets of composite data obtained by transmitting ultrasound waves at least twice.
  • at least two ultrasonic waves can be emitted at different emission angles, and each time ultrasonic waves are emitted, different signal processing is performed on the received ultrasonic echo signals at least twice to obtain at least two sets of different ultrasonic echo data, and
  • the composite data is obtained by coherent or incoherent composite, and finally composite data obtained from each transmission is further composited to obtain final composite data, and a frame of ultrasound image is generated based on the final composite data.
  • Using the imaging method of multiple transmissions and multiple receptions for each transmission can greatly improve the imaging quality.
  • the embodiment of the present application further provides an ultrasonic imaging system, and the ultrasonic imaging system can be used to implement the above-mentioned ultrasonic imaging method 300 .
  • the ultrasound imaging system 200 may include an ultrasound probe 210 , a transmit circuit 212 , a receive circuit 214 , a signal processing module 216 , a processor 218 , a display 220 , a transmit/receive selection switch 222 , and portions of memory 224 Or all components, the relevant description of each component can refer to the above. Only the main functions of the ultrasound imaging system 200 are described below, and the details that have been described above are omitted.
  • the transmitting circuit 212 is used to excite the ultrasonic probe 210 to transmit ultrasonic waves to the target area of the measured object, and the ultrasonic waves are non-focused ultrasonic waves covering the target area;
  • the receiving circuit 214 is used to control the ultrasonic probe 210 to receive ultrasonic echo signals of the ultrasonic waves;
  • the processing module 216 is configured to perform different signal processing on the ultrasonic echo signal at least twice to obtain at least two sets of different ultrasonic echo data;
  • the processor 218 is configured to composite at least two different sets of ultrasonic echo data, to obtain composite data, and to generate ultrasound images based on the composite data.
  • the ultrasonic waves emitted by the ultrasonic probe 210 are plane waves or divergent waves.
  • the signal processing module 216 performs at least two different signal processing on the ultrasonic echo signal using different receiving angles and/or different frequencies.
  • the signal processing module 216 may include a beam forming module and a dynamic filtering processing module, wherein the beam forming module is used to perform different signal processing on the ultrasonic echo signal at least twice by using different receiving angles. Different receiving angles are used in the process of beamforming.
  • the dynamic filtering processing module is used to perform different signal processing on the ultrasonic echo signal at least twice by using different frequencies, which is specifically implemented by using different frequencies in the process of dynamically filtering the ultrasonic echo signal.
  • combining at least two different sets of ultrasonic echo data includes: performing coherent combining on ultrasonic echo data before envelope detection, or performing incoherent combining on ultrasonic echo data after envelope detection .
  • the processor 218 generates one frame of ultrasound image based on a set of composite data obtained by transmitting ultrasound once, or the processor 218 generates one frame of ultrasound image based on at least two sets of composite data obtained by transmitting ultrasound at least twice .
  • the transmitting circuit 212 when the transmitting circuit 212 excites the ultrasonic probe 210 to transmit ultrasonic waves to the target area of the measured object, the ultrasonic probe 210 is excited to transmit ultrasonic waves to the target area of the measured object at least once; the signal processing module 216 processes the ultrasonic echo signal. During at least two different signal processings, at least two signal processings are performed based on the ultrasonic echo signals obtained by transmitting at least one ultrasonic wave to obtain at least two sets of different ultrasonic echo data.
  • the transmitting circuit 212 excites the ultrasonic probe 210 to transmit ultrasonic waves to the target area of the measured object includes: the transmitting circuit 212 excites the ultrasonic probe 210 to transmit ultrasonic waves to the target area of the measured object at the same angle.
  • the signal processing module 216 performs at least two different signal processing on the ultrasonic echo signal including: the signal processing module 216 performs at least two different signal processing on the ultrasonic echo signal of the ultrasonic wave emitted at the same angle.
  • the ultrasonic imaging method 300 and the ultrasonic imaging system of the embodiment of the present application perform different signal processing on the ultrasonic echo signals received after each ultrasonic transmission to obtain different ultrasonic echo data, and perform different signal processing on the ultrasonic echo signals of different ultrasonic echoes.
  • the wave data is coherently composited or incoherently composited to obtain composite data, and finally imaging is performed according to the composite data, which can greatly reduce the emission cost and improve the imaging quality while ensuring a high frame rate.
  • FIG. 8 shows a schematic structural block diagram of a photoacoustic imaging system 800 according to an embodiment of the present application.
  • the photoacoustic imaging system 800 includes an ultrasonic probe 810 , a laser emitting device 812 , a emitting circuit 814 , a signal processing module 816 , a processor 818 and a display 820 .
  • the photoacoustic imaging system 800 may be a pure photoacoustic imaging system, that is, only works in a photoacoustic imaging mode.
  • the photoacoustic imaging system 800 can also be a photoacoustic-ultrasonic dual-modality imaging system, that is, the imaging system can work in two imaging modes, a photoacoustic imaging mode and an ultrasonic imaging mode. Controls imaging in two imaging modes.
  • the photoacoustic image obtained by photoacoustic imaging can reflect the functional information of the tissue in the target area
  • the ultrasonic image obtained by ultrasonic imaging can reflect the structural information of the tissue in the target area.
  • the laser emitting device 812 may include at least one laser. After receiving the control signal sent by the processor 818, the laser emits laser light, and the tissue in the target area on the optical path irradiated by the laser is irradiated by the laser light, and the tissue has strong optical absorption.
  • the characteristic substance (such as blood) absorbs the light energy and causes local heating and thermal expansion, thereby generating a photoacoustic signal and propagating outward, and the photoacoustic signal is received by the ultrasound probe 810 .
  • the ultrasonic probe 810 includes a plurality of transducer array elements, and the plurality of transducer array elements can be arranged in a row to form a linear array, a convex array, a phased array, or a two-dimensional matrix to form an area array.
  • Transducers are used to convert the received ultrasonic waves into electrical signals.
  • the ultrasonic probe 810 only plays a receiving role, and does not emit ultrasonic waves to excite the target. Photoacoustic signal propagation is isotropic, therefore, the signal generated by photoacoustic imaging must be received by an ultra-wide beam.
  • the receiving circuit 816 controls the ultrasonic probe 810 to receive the photoacoustic signal, and sends the photoacoustic signal to the signal processing module 816, which may include a beam forming module and a dynamic filtering processing module.
  • the signal processing module 816 performs different signal processing on the photoacoustic signal at least twice, and then sends it to the processor 818 .
  • the processor 818 performs composite processing, envelope detection, logarithmic compression, spatial smoothing and other processing on at least two sets of photoacoustic data to form a complete photoacoustic image including the entire region of interest.
  • the photoacoustic image obtained by the processor 818 can be displayed on the display 820 or stored in the memory 822 .
  • the processor 818 may be implemented as software, hardware, firmware, or any combination thereof, and may use single or multiple application specific integrated circuits (ASICs), single or multiple general-purpose integrated circuits, single or multiple microprocessors, single or multiple programmable logic devices, or any combination of the foregoing circuits and/or devices, or other suitable circuits or devices. Also, the processor 818 may control other components in the photoacoustic imaging system 800 to perform corresponding steps of the methods in the various embodiments in this specification.
  • ASICs application specific integrated circuits
  • the processor 818 may control other components in the photoacoustic imaging system 800 to perform corresponding steps of the methods in the various embodiments in this specification.
  • the display 820 is connected to the processor 818, and the display 820 can be a touch display screen, a liquid crystal display screen, etc.; or, the display 820 can be an independent display device such as a liquid crystal display, a TV set, etc. independent of the photoacoustic imaging system 800; or, a display 820 may be a display screen of an electronic device such as a smart phone, a tablet computer, or the like.
  • the number of displays 820 may be one or more.
  • the display 820 may include a main screen and a touch screen, the main screen is mainly used for displaying photoacoustic images, and the touch screen is mainly used for human-computer interaction.
  • Display 820 may display the photoacoustic image obtained by processor 818 .
  • the display 820 can also provide a graphical interface for the user to perform human-computer interaction while displaying the photoacoustic image, set one or more controlled objects on the graphical interface, and provide the user with a human-computer interaction device to input operating instructions to control These controlled objects perform corresponding control operations.
  • an icon is displayed on a graphical interface, and the icon can be operated by using a human-computer interaction device to perform a specific function, such as drawing a region of interest frame on a photoacoustic image.
  • the photoacoustic imaging system 800 may also include other human-computer interaction devices other than the display 820, which are connected to the processor 818.
  • the processor 818 may be connected to the human-computer interaction device through an external input/output port, and the external The input/output port can be a wireless communication module, a wired communication module, or a combination of both.
  • External input/output ports may also be implemented based on USB, bus protocols such as CAN, and/or wired network protocols, and the like.
  • the human-computer interaction device may include an input device for detecting the user's input information, for example, the input information may be a control instruction for the ultrasonic transmission/reception sequence, and may be a point, line or frame drawn on the photoacoustic image, etc.
  • the operation input instruction or can also include other instruction types.
  • the input device may include one or a combination of a keyboard, a mouse, a scroll wheel, a trackball, a mobile input device (eg, a mobile device with a touch display screen, a cell phone, etc.), a multi-function knob, and the like.
  • the human-computer interaction apparatus may also include an output device such as a printer.
  • the photoacoustic imaging system 800 may also include a memory 822 for storing instructions executed by the processor, storing received ultrasound echoes, storing photoacoustic images, and the like.
  • the memory may be a flash memory card, solid state memory, hard disk, or the like. It may be volatile memory and/or non-volatile memory, removable memory and/or non-removable memory, and the like.
  • the components included in the photoacoustic imaging system 800 shown in FIG. 8 are only schematic, and it may include more or less components. This application is not limited to this.
  • FIG. 9 is a schematic flowchart of a photoacoustic imaging method 300 according to an embodiment of the present application.
  • a photoacoustic imaging method 900 includes the following steps:
  • step S910 control the laser emitting device to emit laser light to the target area of the measured object
  • step S920 receive a photoacoustic signal generated by the tissue in the target area being irradiated by the laser;
  • step S930 at least two different signal processings are performed on the photoacoustic signal to obtain at least two different sets of photoacoustic data;
  • step S940 at least two different sets of photoacoustic data are composited to obtain composite data, and a photoacoustic image is generated based on the composite data.
  • the ultrasonic imaging method 900 of the embodiment of the present application performs different signal processing on the photoacoustic signals received after each laser emission to obtain composite data, and performs imaging according to the composite data, which can greatly reduce the emission cost, and ensure a high frame rate while ensuring a high frame rate. At the same time improve the image quality.
  • the processor 818 can control the laser emitting device 812 to emit laser light to the target area of the measured object.
  • a substance with strong optical absorption properties such as blood
  • the tissue in the target area is irradiated by a short pulse laser on the order of nanoseconds
  • a substance with strong optical absorption properties such as blood
  • the tissue absorbs the light energy and causes local heating and thermal expansion, thereby generating ultrasonic waves and propagating outwards, and being Ultrasound probe 810 detects.
  • the ultrasonic signal and then using the corresponding reconstruction algorithm to perform photoacoustic imaging, the position and shape of the absorbing substance in the tissue can be reconstructed with high resolution.
  • step S920 a photoacoustic signal generated by the tissue in the target area being irradiated by laser light is received.
  • the receiving circuit 814 controls the transducer array elements in the ultrasonic probe 810 to simultaneously receive the ultrasonic waves generated by the laser irradiation at each receiving point in the target area, and convert them into electrical signals to obtain photoacoustic signals and transmit them to the signals Processing module 816 to perform subsequent steps.
  • step S930 at least two different signal processings are performed on the photoacoustic signal to obtain at least two different sets of photoacoustic data. Since at least two different sets of photoacoustic data are processed by different signals, they contain different tissue information, and an effect similar to that of multiple transmissions can be obtained; the information in at least two different sets of photoacoustic data can be combined for imaging in the future. Improve image quality.
  • At least two different signal processings employ different reception angles.
  • the photoacoustic signal obtained in step S920 is sent to the beam synthesizing module in the signal processing module 816, and the beam synthesizing module uses different receiving angles to perform beam synthesizing processing on the photoacoustic signal.
  • Beam synthesis is to superimpose the photoacoustic signals received by each transducer array element in the ultrasonic probe after corresponding delay, and the superimposed photoacoustic signal obtained is the synthesized beam.
  • Different receiving angles are used for signal processing, that is, in each beamforming process, delays are calculated based on different receiving angles to obtain different photoacoustic data.
  • different frequencies are used for at least two different signal processings, that is, different frequencies are used to filter the beamformed photoacoustic signals to improve the signal-to-noise ratio.
  • the filtering processing may include dynamic filtering processing, for example, the dynamic filtering processing module in the signal processing module may use different frequencies to perform dynamic filtering processing on the ultrasonic echo signal.
  • the frequency and frequency band of the filter used in the dynamic filtering process vary with the echo depth. Since the high-frequency components in the photoacoustic signal have high longitudinal resolution in the image, but the attenuation with depth is large, and the photoacoustic signal has a high vertical resolution.
  • the low-frequency components have low vertical resolution in the image, but the attenuation with depth is slow, and deeper depths can be detected. Therefore, dynamic filtering realizes the selection of high-frequency components of the signal at the position where the detection depth is shallower.
  • the low-frequency components of the signal are selected at deeper detection depths, thereby filtering out noise signals outside the frequency band of interest.
  • using different frequencies for dynamic filtering may include using different filter center frequencies.
  • different signal processing may employ both different reception angles and different frequencies. That is to say, firstly, different receiving angles are used for beamforming in the beamforming stage, and then different frequencies are used for filtering in the dynamic filtering stage, so that the photoacoustic data contains more information, which further improves the subsequent image quality.
  • step S910 when the laser emitting device is controlled to emit laser light to the target area of the measured object, the laser emitting device is controlled to emit laser light to the target area of the measured object at least once;
  • at least two signal processings are performed based on the photoacoustic signals obtained by emitting the laser light at least once to obtain at least two sets of different photoacoustic data.
  • at least two different signal processings may be performed based on the photoacoustic signal obtained by emitting the laser once to obtain at least two different sets of photoacoustic data, and then at least two different sets of photoacoustic data may be obtained subsequently.
  • the photoacoustic data generates one frame of image; that is, one frame of photoacoustic image is obtained every time the laser is fired.
  • the photoacoustic signal obtained by emitting the laser at least twice may be subjected to at least two different signal processing to obtain more than two sets of different photoacoustic data , and subsequently, one frame of photoacoustic image can be generated based on the obtained two or more different sets of photoacoustic data, that is, one frame of photoacoustic image can be obtained every time the laser is emitted at least twice.
  • step S940 at least two different sets of photoacoustic data obtained in step S930 are composited to obtain composite data, and a photoacoustic image is generated based on the composite data.
  • the compounding process is coherent compounding, that is, coherent compounding is performed on the photoacoustic data before the envelope detection.
  • Coherent compounding is to perform weighted superposition processing of the photoacoustic data obtained at each receiving angle with the phase, and the superposition process does not need to take the envelope or other nonlinear processing.
  • the weighted superposition process may employ adaptive weights, including but not limited to coherence factors and/or minimum variance. Among them, the coherence factor is the ratio of the coherent sum and the incoherent sum between the delayed array element signals. On-axis signals can be enhanced and off-axis signals suppressed by coherent recombination, thereby improving imaging contrast.
  • coherent compounding is a compounding process performed on a complex analytical signal that contains both phase and amplitude information, and the data after coherent compounding is still a complex analytical signal, which needs to be subjected to envelope detection to obtain the envelope of the echo signal.
  • the Hilbert transform method can be used to obtain the complex analytical signal to be processed, the original signal is subjected to the Hilbert transform to obtain an orthogonal signal of the original signal, and the original signal is taken as the real part, and the Hilbert transform is used to obtain The quadrature signal of is the complex analytical signal constructed by the imaginary part, and the modulus of the signal is the envelope of the original signal.
  • IQ demodulation can also be performed to obtain the complex analytical signal to be processed. The main difference between the two is that IQ demodulation has frequency selectivity, specific frequency components can be selected for final imaging, and the anti-interference ability is strong.
  • the compounding process may also include incoherent compounding, that is, coherent compounding is not performed before detection is included, but incoherent compounding is performed on the photoacoustic data after envelope detection.
  • incoherent compounding that is, coherent compounding is not performed before detection is included, but incoherent compounding is performed on the photoacoustic data after envelope detection.
  • the main difference between incoherent recombination and coherent recombination is that coherent recombination superimposes both magnitude and phase information together, whereas incoherent recombination superimposes only magnitude information.
  • the performance is whether to composite before the envelope detection, or to composite after the envelope detection.
  • Incoherent compounding can suppress speckle noise in the image and thereby improve the contrast of the image.
  • the composite data After the composite data is obtained, it can be subjected to logarithmic compression, spatial smoothing and other signal processing links to obtain photoacoustic images. As a result, one frame of photoacoustic image can be generated according to the obtained set of composite data by only emitting the laser once, thereby greatly improving the frame rate compared with the photoacoustic imaging method of multiple emission and multiple reception.
  • one frame of photoacoustic image may also be generated based on at least two sets of composite data obtained by emitting at least two lasers, and each time the laser is emitted, that is, at least two different signal processings are performed on the received photoacoustic signal.
  • at least two sets of different photoacoustic data and perform coherent or incoherent composite on them to obtain composite data, and finally composite the composite data obtained from each emission to obtain the final composite data, and based on the final composite data Generate a frame of photoacoustic image.
  • the imaging quality can be greatly improved by using the imaging method of transmitting laser multiple times and receiving multiple times for each transmission.
  • Embodiments of the present application further provide a photoacoustic imaging system, and the photoacoustic imaging system can be used to implement the above-mentioned photoacoustic imaging method 900 .
  • the photoacoustic imaging system 800 may include an ultrasound probe 810, a laser emitting device 812, a receiving circuit 814, a signal processing module 816, a processor 818, a display 820, and some or all of the components in the memory 822, each component
  • the related description can refer to the above. Only the main functions of the photoacoustic imaging system 800 are described below, and the details that have been described above are omitted.
  • the laser emitting device 812 is used to emit laser light to the target area of the object to be measured; the receiving circuit 814 is used to control the ultrasonic probe 810 to receive the photoacoustic signal generated by the tissue in the target area being irradiated by the laser light; the signal processing module 816 is used to The photoacoustic signal is subjected to at least two different signal processing to obtain at least two different sets of photoacoustic data; the processor 818 is configured to composite the at least two different sets of photoacoustic data to obtain composite data, and A photoacoustic image is generated based on the composite data.
  • the signal processing module 816 performs at least two different signal processing on the photoacoustic signal using different receiving angles and/or different frequencies.
  • the signal processing module 816 may include a beam forming module and a dynamic filtering processing module, wherein the beam forming module is used to perform at least two different signal processing on the photoacoustic signal using different receiving angles, which is specifically implemented by beam forming the photoacoustic signal. different receiving angles are used in the process.
  • the dynamic filtering processing module is used to perform different signal processing on the photoacoustic signal at least twice with different frequencies, and is specifically implemented by using different frequencies in the process of dynamically filtering the photoacoustic signal.
  • combining at least two different sets of photoacoustic data includes: performing coherent combining on photoacoustic data before envelope detection, or performing incoherent combining on photoacoustic data after envelope detection.
  • the processor 818 generates one frame of photoacoustic image based on a set of composite data obtained by emitting laser once, or the processor generates one frame of photoacoustic image based on at least two sets of composite data obtained by emitting laser at least twice image.
  • the laser emitting device 812 when the laser emitting device 812 emits laser light to the target area of the measured object, it emits laser light to the target area of the measured object at least once; when the signal processing module 816 performs different signal processing on the photoacoustic signal at least twice , and perform at least two signal processing based on the photoacoustic signal obtained by emitting at least one laser to obtain at least two different sets of photoacoustic data.
  • the photoacoustic imaging method 800 and the photoacoustic imaging system of the embodiments of the present application perform different signal processing on the photoacoustic signals received after each laser emission to obtain different photoacoustic data, and perform different signal processing on the different photoacoustic data.
  • Performing coherent compounding or incoherent compounding to obtain compound data, and finally performing imaging according to the compound data can greatly reduce the cost of emission and improve the imaging quality while ensuring a high frame rate.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or May be integrated into another device, or some features may be omitted, or not implemented.
  • the various component embodiments of the present application may be implemented in hardware, or in software modules running on one or more processors, or in a combination thereof.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all functions of some modules according to the embodiments of the present application.
  • DSP digital signal processor
  • the present application may also be implemented as a program of apparatus (eg, computer programs and computer program products) for performing part or all of the methods described herein.
  • Such a program implementing the present application may be stored on a computer-readable medium, or may be in the form of one or more signals. Such signals may be downloaded from Internet sites, or provided on carrier signals, or in any other form.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种超声成像方法(300)和系统(200)以及光声成像方法(900)和系统(800),超声成像方法(300)包括:向被测对象的目标区域发射超声波,超声波为覆盖目标区域的非聚焦超声波(S310);接收超声波的超声回波信号(S320);对超声回波信号进行至少两次不同的信号处理,以获得至少两组不同的超声回波数据(S330);对至少两组不同的超声回波数据进行复合,以得到复合数据,并基于复合数据生成超声图像(S340)。对每次接收到的超声回波信号或光声回波信号进行不同的信号处理以得到复合数据,并根据复合数据进行成像,能够在保证高帧率的同时提升成像质量。

Description

超声成像方法和系统以及光声成像方法和系统
说明书
技术领域
本申请涉及超声成像技术领域,更具体地涉及一种超声成像方法和系统以及光声成像方法和系统。
背景技术
平面波和发散波等超宽波束发射技术,采用激励一次即成一帧的成像模式,是实现高帧率超声成像的关键。但与此同时,超宽波束意味着非聚焦发射,势必存在横向分辨率和信噪比不足的问题。相干角度复合技术是解决该问题的主要手段,其要求在前端作多角度偏转发射,并在接收端进行相干复合处理。随着角度复合次数的增加,超声图像的横向分辨率和信噪比均得到了改善,但帧率也会随之下降。
因此,现有的高帧率超声成像方案无法兼顾帧率和图像质量,不得不根据不同的应用场合对二者进行权衡与取舍。
发明内容
在发明内容部分中引入了一系列简化形式的概念,这将在具体实施方式部分中进一步详细说明。本发明的发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
本申请实施例第一方面提供了一种超声成像方法,所述方法包括:
向被测对象的目标区域发射超声波,所述超声波为覆盖所述目标区域的非聚焦超声波;
接收所述超声波的超声回波信号;
对所述超声回波信号进行至少两次不同的信号处理,以获得至少两组不同的超声回波数据;
对所述至少两组不同的超声回波数据进行复合,以得到复合数据,并基于所述复合数据生成超声图像。
本申请实施例第一方面提供了一种超声成像方法,所述方法包括:
向被测对象的目标区域发射超声波,所述超声波为覆盖所述目标区域的非聚焦超声波;
接收所述超声波的超声回波信号;
对所述超声回波信号进行至少两次不同的信号处理,以获得至少两组不同的超声回波数据;
对所述至少两组不同的超声回波数据进行复合,以得到复合数据,并基于所述复合数据生成超声图像。
本申请实施例第二方面提供了一种光声成像方法,所述方法包括:
控制激光发射装置向被测对象的目标区域发射激光;
接收所述目标区域的组织受所述激光照射而产生的光声信号;
对所述光声信号进行至少两次不同的信号处理,以获得至少两组不同的光声数据;
对所述至少两组不同的光声数据进行复合,以得到复合数据,并基于所述复合数据生成光声图像。
本申请实施例第三方面提供了一种超声成像系统,所述超声成像系统包括:
超声探头;
发射电路,用于激励所述超声探头向被测对象的目标区域发射超声波,所述超声波为覆盖所述目标区域的非聚焦超声波;
接收电路,用于控制所述超声探头接收所述超声波的超声回波信号;
信号处理模块,用于对所述超声回波信号进行至少两次不同的信号处理,以获得至少两组不同的超声回波数据;
处理器,用于对所述至少两组不同的超声回波数据进行复合,以得到复合数据,以及基于所述复合数据生成超声图像。
本申请实施例第四方面提供了一种光声成像系统,所述光声成像系统包括:
超声探头;
激光发射装置,用于向被测对象的目标区域发射激光;
接收电路,用于控制所述超声探头接收所述目标区域的组织受所述激光照射而产生的光声信号;
信号处理模块,用于对所述光声信号进行至少两次不同的信号处理,以 获得至少两组不同的光声数据;
处理器,用于:对所述至少两组不同的光声数据进行复合,以得到复合数据,以及基于所述复合数据生成光声图像。
根据本申请实施例的超声成像方法、超声成像系统、光声成像方法和光声成像系统对每次接收到的超声回波信号或光声回波信号进行不同的信号处理以得到复合数据,并根据复合数据进行成像,能够在保证高帧率的同时提升成像质量。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
在附图中:
图1示出了一种多次发射、多次接收的平面波复合成像的示意图;
图2示出根据本申请一实施例的超声成像系统的示意性框图;
图3示出根据本申请一实施例的超声成像方法的示意性流程图;
图4示出根据本申请实施例的非聚焦超声波单次发射、多角度接收的超声成像的示意图;
图5示出根据本申请一实施例的单次发射、多角度接收的超声成像方法与单次发射、单次接收的超声成像方法的归一化横向包络对比图;
图6示出根据本申请实施例的非聚焦超声波单次发射、多频率接收的超声成像的示意图;
图7示出根据本申请实施例的非聚焦超声波单次发射、多频率及多角度接收的超声成像的示意图;
图8示出根据本申请一实施例的光声成像系统的示意性框图;
图9示出根据本申请一实施例的光声成像方法的示意性流程图。
具体实施方式
为了使得本申请的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本申请的示例实施例。显然,所描述的实施例仅仅是本申请的一 部分实施例,而不是本申请的全部实施例,应理解,本申请不受这里描述的示例实施例的限制。基于本申请中描述的本申请实施例,本领域技术人员在没有付出创造性劳动的情况下所得到的所有其它实施例都应落入本申请的保护范围之内。
在下文的描述中,给出了大量具体的细节以便提供对本申请更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本申请可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本申请发生混淆,对于本领域公知的一些技术特征未进行描述。
应当理解的是,本申请能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使公开彻底和完全,并且将本申请的范围完全地传递给本领域技术人员。
在此使用的术语的目的仅在于描述具体实施例并且不作为本申请的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
为了彻底理解本申请,将在下列的描述中提出详细的结构,以便阐释本申请提出的技术方案。本申请的可选实施例详细描述如下,然而除了这些详细描述外,本申请还可以具有其他实施方式。
为了提高超声成像的帧率而引入了非聚焦超声成像技术。假设一帧图像有N条接收波束,当利用传统单波束聚焦成像技术成像时,超声成像系统需要发射N条发射波束,每发射一次即进行一次接收;而非聚焦超声成像技术只需进行一次全阵元发射激励即可进行全域接收,得到一帧超声图像,使得利用非聚焦超声成像技术的发射次数为传统单波束聚焦成像技术的1/N。然而,随着发射深度的增加,非聚焦超声波的发射声场强度逐渐减弱,穿透力不足;并且由于非聚焦超声波无发射聚焦,仅在接收端进行波束合成,导致超声图像横向分辨率差,信噪比不足。故而,引入相干角度复合技术来解决非聚焦超声成像中的上述问题。
图1给出了线阵平面波成像中进行三次相干角度复合的例子。如图1所 示,在角度#1:偏转-10度、角度#2:偏转0度、以及角度#3:偏转10度上分别发射平面波,分别接收成像目标返回的超声回波信号,并对超声回波信号进行波束合成处理,从而分别得到角度#1、角度#2和角度#3的波束合成数据,最后将三组波束合成数据进行叠加,输出相干角度复合数据以进行成像。即发射不同偏转角度的平面波,采集各次平面波发射的回波信号进行波束合成,然后将多角度下的波束合成数据进行叠加,得到复合图像。由于各个角度下的有用信号相关而噪声独立,使得相干角度复合技术可以提高平面波图像的穿透力及横向分辨率。然而,随着形成一帧图像所需的发射次数的增加,帧率也随之下降。
基于此,本申请实施例提出了一种超声成像方法、超声成像系统、光声成像方法和光声成像系统,对每次超声发射所接收到的超声回波信号或每次激光照射所接收到的光声回波信号进行不同的信号处理以得到复合数据,并根据复合数据进行成像,能够在保证高帧率的同时提升成像质量。
下面,首先参考图2描述根据本申请一个实施例的超声成像系统,图2示出了根据本申请实施例的超声成像系统200的示意性结构框图。
如图1所示,超声成像系统200包括超声探头210、发射电路212、接收电路214、信号处理模块216、处理器218和显示器220。进一步地,超声成像系统还可以包括发射/接收选择开关222和存储器224,发射电路212和接收电路214可以通过发射/接收选择开关222与超声探头210连接。
具体地,超声探头210可以包括多个换能器阵元,多个换能器阵元可以排列成一排构成线阵,排成凸阵列、构成相控阵、或排布成二维矩阵构成面阵。换能器用于根据激励电信号发射超声波,或将接收的超声波转换为电信号,因此每个换能器阵元可用于实现电脉冲信号和超声波的相互转换,从而实现向被测对象的目标区域的组织发射超声波、也可用于接收经组织反射回的超声波回波。在进行超声检测时,可通过发射序列和接收序列控制哪些换能器阵元用于发射超声波,哪些换能器阵元用于接收超声波,或者控制换能器阵元分时隙用于发射超声波或接收超声波的回波。
在超声成像过程中,发射电路212将发射脉冲通过发射/接收选择开关222发送到超声探头210,同时激励超声探头210中的换能器阵元向被测对象的目标区域发射非聚焦超声波,该非聚焦超声波可以是平面波,也可以是发散波,非聚焦超声波产生的声场能够覆盖所有目标区域,经组织散射后,换 能器阵元也接收回波信号,并将此超声回波重新转换为电信号,通过一次发射、接收,所得的超声回波信号即可以得到包括整个感兴趣区域的一帧完整的超声图像。接收电路214控制超声探头210接收超声回波信号,并将超声回波信号送入信号处理模块216,信号处理模块216可以包括波束合成模块和/或动态滤波处理模块。信号处理模块216对超声回波信号进行至少两次不同的信号处理,然后送入处理器218。处理器218对至少两组超声回波数据进行复合处理、包络检测、对数压缩、空间平滑等处理,形成超声图像。处理器218得到的超声图像可以在显示器220上显示,也可以存储于存储器224中。
可选地,处理器218可以实现为软件、硬件、固件或其任意组合,并且可以使用单个或多个专用集成电路(Application Specific Integrated Circuit,ASIC)、单个或多个通用集成电路、单个或多个微处理器、单个或多个可编程逻辑器件、或者前述电路和/或器件的任意组合、或者其他适合的电路或器件。并且,处理器218还可以控制超声成像系统200中的其它组件以执行本说明书中的各个实施例中的方法的相应步骤。
显示器220与处理器218连接,显示器220可以为触摸显示屏、液晶显示屏等;或者,显示器220可以为独立于超声成像系统200之外的液晶显示器、电视机等独立显示设备;或者,显示器220可以是智能手机、平板电脑等电子设备的显示屏,等等。其中,显示器220的数量可以为一个或多个。例如,显示器220可以包括主屏和触摸屏,主屏主要用于显示超声图像,触摸屏主要用于人机交互。
显示器220可以显示处理器218得到的超声图像。此外,显示器220在显示超声图像的同时还可以提供给用户进行人机交互的图形界面,在图形界面上设置一个或多个被控对象,提供给用户利用人机交互装置输入操作指令来控制这些被控对象,从而执行相应的控制操作。例如,在图形界面上显示图标,利用人机交互装置可以对该图标进行操作,用来执行特定的功能,例如在超声图像上绘制出感兴趣区域框等。
可选地,超声成像系统200还可以包括显示器220之外的其他人机交互装置,其与处理器218连接,例如,处理器218可以通过外部输入/输出端口与人机交互装置连接,外部输入/输出端口可以是无线通信模块,也可以是有线通信模块,或者两者的组合。外部输入/输出端口也可基于USB、如CAN 等总线协议、和/或有线网络协议等来实现。
其中,人机交互装置可以包括输入设备,用于检测用户的输入信息,该输入信息例如可以是对超声波发射/接收时序的控制指令,可以是在超声图像上绘制出点、线或框等的操作输入指令,或者还可以包括其他指令类型。输入设备可以包括键盘、鼠标、滚轮、轨迹球、移动式输入设备(比如带触摸显示屏的移动设备、手机等等)、多功能旋钮等等其中之一或者多个的结合。人机交互装置还可以包括诸如打印机之类的输出设备。
超声成像系统200还可以包括存储器224,用于存储处理器执行的指令、存储接收到的超声回波或者存储超声图像,等等。存储器可以为闪存卡、固态存储器或者硬盘等。其可以为易失性存储器和/或非易失性存储器,为可移除存储器和/或不可移除存储器等。
应理解,图2所示的超声成像系统200所包括的部件只是示意性的,其可以包括更多或更少的部件。本申请对此不限定。
下面,参考图3描述根据本申请一个实施例的超声成像方法,图3是本申请一个实施例的超声成像方法300的示意性流程图。
如图3所示,本申请实施例的超声成像方法300包括如下步骤:
在步骤S310,向被测对象的目标区域发射超声波,超声波为覆盖目标区域的非聚焦超声波;
在步骤S320,接收超声波的超声回波信号;
在步骤S330,对超声回波信号进行至少两次不同的信号处理,以获得至少两组不同的超声回波数据;
在步骤S340,对至少两组不同的超声回波数据进行复合,以得到复合数据,并基于复合数据生成超声图像。
本申请实施例的超声成像方法300对每次超声波发射后接收到的超声回波信号进行不同的信号处理以得到复合数据,并根据复合数据进行成像,能够大幅降低发射成本,在保证高帧率的同时提升成像质量。
具体地,在步骤S310中,向被测对象的目标区域发射的非聚焦超声波可以是平面波或发散波。在发射非聚焦超声波时,对超声探头中的换能器阵元施加激励,产生的超声波以波阵面的形式向目标区域传播。其中,被测对象可以是人体,目标区域可以为心脏、子宫、肝脏或者肾脏等人体组织部位, 具体在此处不做限定。
其中,平面波的发射波形为平面。在一个实施例中,平面波的偏转角度为0,即垂直发射;当控制超声探头向目标区域发射偏转角为0的平面波时,设置超声探头中的换能器阵元同步激发,以产生平行于换能器阵列平面的超声波;在其他实施例中,平面波也可以具有一定偏转角度。当平面波具有一定偏转角度时,可以设置换能器阵元基于偏转角度计算的延迟时间依次激发。
发散波即在超声探头的后方有一个或多个虚拟的聚焦点,发射波形以虚拟聚焦点为圆心,通过设置发射延时而得到圆弧状的发射波形,随着深度的增加发散波逐渐发散,从而以较小的孔径获得较大的视场。在一种实施方式中,虚拟聚焦点可以在超声探头后方与超声探头平行分布;在另一种实施方式中,虚拟聚焦点可以以超声探头的中心为圆心、固定长度为半径呈圆弧状分布。
在一个实施例中,向被测对象的目标区域发射超声波可以包括向目标区域发射至少一次超声波。由于后续对超声回波信号进行至少两次不同的信号处理,从而获得了至少两组不同的超声回波数据,因而在步骤S310中,向被测对象的目标区域发射至少超声波可以是在同一角度向被测对象的目标区域发射超声波,而无需在多个角度下偏转发射。具体地,超声探头可以在同一固定角度下向被测对象的目标区域发射一次或多次超声波,即可以是垂直发射,也可以是在固定角度下偏转发射。当然,在其他实施例中,向被测对象的目标区域发射超声波也可以是在不同角度向被测对象的目标区域发射超声波。
接着,在步骤S320,接收超声波的超声回波信号。继续参见图2,每完成一次发射,则接收电路214控制超声探头210中的换能器阵元接收目标区域中各接收点对步骤S210中发射的超声波所形成的反射回波,并转换为电信号,以获得超声回波信号。示例性地,电信号还可以先经过时间增益补偿放大器放大,以补偿不同深度的超声波衰减,之后传递给波束合成模块以执行后续步骤。
在步骤S330,对超声回波信号进行至少两次不同的信号处理,以获得至少两组不同的超声回波数据。由于至少两组不同的超声回波数据采用了不同的信号处理,因而包含不同的组织信息,获得类似于多次发射的效果;后续可以综合至少两组不同的超声回波数据中的信息进行成像,以提高成像质量。
在一个实施例中,至少两次不同的信号处理可以采用不同的接收角度。 具体地,步骤S320得到的超声回波信号被发送至信号处理模块中的波束合成模块,波束合成模块采用不同的接收角度对超声回波信号进行波束合成处理。波束合成即将超声探头中的各个换能器阵元接收的超声回波信号进行相应的延时后叠加,得到的叠加后的超声回波信号即合成后的波束。采用不同的接收角度进行信号处理即在每次波束合成的过程中,分别基于不同的接收角度计算延时,以得到不同的超声回波数据。在本申请实施例中,采用不同的接收角度分别对超声回波信号进行波束合成处理,从而通过算法实现了类似多次偏转发射的效果,同时又避免了多次发射而降低帧率的弊端。
示例性地,参见图4,其中以线阵平面波为例对单次发射、多角度偏转接收的超声成像过程进行了说明。该示例中,在发射阶段只垂直发射一次平面波,在接收阶段对超声回波数据进行了3个角度(即接收角度#1:偏转-10°、接收角度#2:偏转0°和接收角度#3:偏转10°)的信号处理,并将接收角度#1、接收角度#2和接收角度#3得到的超声回波数据进行复合处理以得到复合数据,最终基于复合数据生成一帧超声图像。
图5示出了根据本申请实施例的单次发射、多角度接收的超声成像方法与以往的单次发射、单次接收的超声成像方法的归一化横向包络对比图。其中,实线和虚线分别是单次发射、单次接收的包络曲线和单次发射、多角度接收的包络曲线,由图5可知,后者的横向分辨率较前者得到了较为明显的改善。
在另一个实施例中,至少两次不同的信号处理采用不同的频率,即采用不同的频率对波束合成后的超声回波信号进行滤波以提高信噪比。示例性地,滤波处理可以包括动态滤波处理,例如可以由信号处理模块中的动态滤波处理模块采用不同的频率对超声回波信号进行动态滤波处理。动态滤波处理所用的滤波器中频率和频带随回波深度的不同而变化,由于回波频率高的成分在图像中的纵向分辨率高,但随深度的衰减较大,回波频率低的成分在图像中的纵向分辨率较低,但随深度的衰减较慢,能探测到较深的深度,因而动态滤波实现的是在探测深度较浅的位置选择信号的高频成分,在探测深度较深的位置选择信号的低频成分,从而过滤掉感兴趣频率带以外的噪声信号。示例性地,采用不同的频率进行动态滤波处理可以包括采用不同的滤波器中心频率。
参见图6,该示例中进行了单次垂直发射,并采用N种不同的频率分别 对超声回波信号进行动态滤波处理,以分别获得每种频率下的超声回波数据,由于较高的频率可以获得较好的分辨率,较低的频率可以获得较强的穿透能力,因而后续可以对N种不同的频率对应的超声回波数据进行复合,以综合不同频率所获得的组织信息,并基于复合数据生成超声图像。
在又一个实施例中,不同的信号处理可以既采用不同的接收角度、又采用不同的频率。也就是说,首先在波束合成阶段采用不同的接收角度进行波束合成,之后在动态滤波处理阶段采用不同的频率进行滤波。参见图7,该示例中进行了单次垂直发射,并对超声回波信号进行了N次不同的信号处理,每次信号处理过程中既采用不同的角度进行波束合成,又采用不同的频率进行动态滤波,例如第一次信号处理采用频率1和角度1、第(N-1)/2次信号处理采用频率(N-1)/2和角度(N-1)/2,第N次信号处理采用频率N和角度N等等,由此使超声回波数据中包含了更多的信息,进一步提高了后续的成像质量。
示例性地,在步骤S310中,向被测对象的目标区域发射超声波时,向被测对象的目标区域发射至少一次超声波;在步骤S330中,在对超声回波信号进行至少两次不同的信号处理时,基于发射至少一次超声波所得到超声回波信号进行至少两次信号处理,以获得至少两组不同的超声回波数据。具体地,在步骤S330中,可以基于发射一次超声波所得到的超声回波信号进行至少两次不同的信号处理,以得到至少两组不同的超声回波数据,后续可以基于所得到的至少两组不同的超声回波数据生成一帧超声图像;即每发射一次超声波即可得到一帧超声图像。或者,若在步骤S310中发射至少两次超声波,则在步骤S330中可以对发射至少两次超声波所得到的超声回波信号进行至少两次不同的信号处理,以得到两组以上不同的超声回波数据,后续可以基于所得到的两组以上不同的超声回波数据生成一帧超声图像,即每发射至少两次超声波可得到一帧超声图像。
在步骤S330中,由于进行了至少两次不同的信号处理,基于同一角度发射的超声波的超声回波信号即可获得不同的超声回波数据,因而对超声回波信号进行至少两次不同的信号处理可以是对同一角度发射的超声波的超声回波信号进行至少两次不同的信号处理。当然,在其他实施例中,当在不同角度向被测对象的目标区域发射超声波时,对超声回波信号进行至少两次不同的信号处理也可以是对每个角度发射的超声波的超声回波信号分别进行至少 两次不同的信号处理。
在步骤S340,对步骤S330得到的至少两组不同的超声回波数据进行复合,以得到复合数据,并基于该复合数据生成超声图像。
在一个实施例中,复合处理为相干复合,即对包络检测前的超声回波数据进行相干复合。相干复合即将各个接收角度下获得的超声回波数据带着相位进行加权叠加处理,叠加的过程不需要取包络或是其他非线性处理。加权叠加处理可以采用自适应权重,自适应权重包括但不限于相干因子和/或最小方差。其中,相干因子为经过延时之后的阵元信号之间的相干和与非相干和的比值。通过相干复合可以增强轴向信号,抑制离轴信号,从而提高成像对比度。非聚焦超声波不进行发射聚焦,但相干叠加的过程相当于发射接收混合聚焦的效果。
示例性地,相干复合是针对同时包含相位和幅度信息的复解析信号进行的复合处理,相干复合后的数据仍为复解析信号,还需对其进行包络检测以获得回波信号的包络。示例性地,可以采用希尔伯特变换法获取待处理的复解析信号,原始信号经过希尔伯特变换得到原始信号的正交信号,以原始信号为实部,以希尔伯特变换得到的正交信号为虚部构造复解析信号,该信号的模即为原始信号的包络。或者,也可以进行IQ解调获取待处理的复解析信号,二者的区别主要在于IQ解调具有频率选择性,可选择特定的频率成分用于最终的成像,抗干扰能力较强。
在另一个实施例中,复合处理也可以包括非相干复合,即在包括检测前不进行相干复合,而是对包络检测后的超声回波数据进行非相干复合。非相干复合与相干复合的主要区别在于,相干复合是对幅度信息和相位信息一起叠加,而非相干复合是仅仅叠加幅度信息。在数据处理流程中,表现为是在包络检测前复合,还是在包络检测后复合。非相干复合能够抑制图像中的斑点噪声并以此来提高图像的对比度。
获得复合数据后,可以对其进行对数压缩、空间平滑及其它信号处理环节,以得到超声图像。其中,空间平滑可以在波束合成后的任何阶段进行。由此,只发射一次超声波,即可根据所得到的一组复合数据生成一帧超声图像,从而相比于多次发射、多次接收的超声成像方式而言极大地提高了帧率。
在其他实施例中,也可以基于发射至少两次超声波所得到的至少两组复合数据生成一帧超声图像。其中,可以在不同的发射角度下发射至少两次超 声波,每发射一次超声波,即对接收到的超声回波信号进行至少两次不同的信号处理以得到至少两组不同的超声回波数据,并对其进行相干或非相干复合以得到复合数据,最后将每次发射所得到的复合数据进一步复合以得到最终的复合数据,并基于最终的复合数据生成一帧超声图像。采用多次发射、每次发射进行多次接收的成像方式可以大幅度提高成像质量。
本申请实施例还提供了一种超声成像系统,该超声成像系统可以用于实现上述超声成像方法300。现在重新参照图2,该超声成像系统200可以包括超声探头210、发射电路212、接收电路214、信号处理模块216、处理器218、显示器220、发射/接收选择开关222、以及存储器224中的部分或全部部件,各个部件的相关描述可以参照上文。以下仅对超声成像系统200的主要功能进行描述,而省略以上已经描述过的细节内容。
具体地,发射电路212用于激励超声探头210向被测对象的目标区域发射超声波,超声波为覆盖目标区域的非聚焦超声波;接收电路214用于控制超声探头210接收超声波的超声回波信号;信号处理模块216用于对超声回波信号进行至少两次不同的信号处理,以获得至少两组不同的超声回波数据;处理器218,用于对至少两组不同的超声回波数据进行复合,以得到复合数据,以及基于复合数据生成超声图像。
示例性地,超声探头210发射的超声波为平面波或发散波。
在一个实施例中,信号处理模块216采用不同的接收角度和/或不同的频率对超声回波信号进行至少两次不同的信号处理。信号处理模块216可以包括波束合成模块和动态滤波处理模块,其中波束合成模块用于采用不同的接收角度对超声回波信号进行至少两次不同的信号处理,具体实现为在对超声回波信号进行波束合成的过程中采用不同的接收角度。动态滤波处理模块用于采用不同的频率对超声回波信号进行至少两次不同的信号处理,具体实现为在对超声回波信号进行动态滤波的过程中采用不同的频率。
在一个实施例中,对至少两组不同的超声回波数据进行复合包括:对包络检测前的超声回波数据进行相干复合,或者,对包络检测后的超声回波数据进行非相干复合。
在一个实施例中,处理器218基于发射一次超声波所得到的一组复合数据生成一帧超声图像,或者,处理器218基于发射至少两次超声波所得到的至少两组复合数据生成一帧超声图像。
在一个实施例中,发射电路212激励超声探头210向被测对象的目标区域发射超声波时,激励超声探头210向被测对象的目标区域发射至少一次超声波;信号处理模块216对超声回波信号进行至少两次不同的信号处理时,基于发射至少一次超声波所得到超声回波信号进行至少两次信号处理,以获得至少两组不同的超声回波数据。
在一个实施例中,发射电路212激励超声探头210向被测对象的目标区域发射超声波包括:发射电路212激励超声探头210在同一角度向被测对象的目标区域发射超声波。
在一个实施例中,信号处理模块216对超声回波信号进行至少两次不同的信号处理包括:信号处理模块216对同一角度发射的超声波的超声回波信号进行至少两次不同的信号处理。
基于以上描述,本申请实施例的超声成像方法300和超声成像系统对每次超声波发射后接收到的超声回波信号进行不同的信号处理以得到不同的超声回波数据,并对不同的超声回波数据进行相干复合或非相干复合以得到复合数据,最终根据复合数据进行成像,能够大幅降低发射成本,在保证高帧率的同时提升成像质量。
本申请实施例另一方面提供一种光声成像方法和光声成像系统。下面,参考图8描述根据本申请一个实施例的光声成像系统,图8示出了根据本申请实施例的光声成像系统800的示意性结构框图。
如图8所示,光声成像系统800包括超声探头810、激光发射装置812、发射电路814、信号处理模块816、处理器818和显示器820。在一个实施例中,光声成像系统800可以是单纯的光声成像系统,即只工作在光声成像模式下。在另一个实施例中,光声成像系统800也可以是光声-超声双模态成像系统,即该成像系统可以工作在光声成像模式和超声成像模式两种成像模式下,通过处理器来控制在两种成像模式下进行成像。其中,光声成像得到的光声图像可以体现目标区域组织的功能信息,超声成像得到的超声图像可以体现目标区域组织的结构信息。
具体地,激光发射装置812可以包括至少一个激光器,在接收到处理器818发出的控制信号后,激光器发射激光,位于激光照射的光路上的目标区域的组织被激光照射,组织中具有强光学吸收特性的物质(如血液)吸收光 能量之后引起局部升温和热膨胀,从而产生光声信号并向外传播,光声信号被超声探头810接收。
超声探头810包括多个换能器阵元,多个换能器阵元可以排列成一排构成线阵,排成凸阵列、构成相控阵、或排布成二维矩阵构成面阵。换能器用于将接收的超声波转换为电信号。在光声成像过程中,超声探头810只起到接收的作用,并不发射超声波激励目标。光声信号传播呈现各向同性的特点,因此,光声成像产生的信号须采用超宽波束进行接收。接收电路816控制超声探头810接收光声信号,并将光声信号送入信号处理模块816,信号处理模块816可以包括波束合成模块和动态滤波处理模块。信号处理模块816对光声信号进行至少两次不同的信号处理,然后送入处理器818。处理器818对至少两组光声数据进行复合处理、包络检测、对数压缩、空间平滑等处理,形成包括整个感兴趣区域的一帧完整的光声图像。处理器818得到的光声图像可以在显示器820上显示,也可以存储于存储器822中。
可选地,处理器818可以实现为软件、硬件、固件或其任意组合,并且可以使用单个或多个专用集成电路(Application Specific Integrated Circuit,ASIC)、单个或多个通用集成电路、单个或多个微处理器、单个或多个可编程逻辑器件、或者前述电路和/或器件的任意组合、或者其他适合的电路或器件。并且,处理器818可以控制光声成像系统800中的其它组件以执行本说明书中的各个实施例中的方法的相应步骤。
显示器820与处理器818连接,显示器820可以为触摸显示屏、液晶显示屏等;或者,显示器820可以为独立于光声成像系统800之外的液晶显示器、电视机等独立显示设备;或者,显示器820可以是智能手机、平板电脑等电子设备的显示屏,等等。其中,显示器820的数量可以为一个或多个。例如,显示器820可以包括主屏和触摸屏,主屏主要用于显示光声图像,触摸屏主要用于人机交互。
显示器820可以显示处理器818得到的光声图像。此外,显示器820在显示光声图像的同时还可以提供给用户进行人机交互的图形界面,在图形界面上设置一个或多个被控对象,提供给用户利用人机交互装置输入操作指令来控制这些被控对象,从而执行相应的控制操作。例如,在图形界面上显示图标,利用人机交互装置可以对该图标进行操作,用来执行特定的功能,例如在光声图像上绘制出感兴趣区域框等。
可选地,光声成像系统800还可以包括显示器820之外的其他人机交互装置,其与处理器818连接,例如,处理器818可以通过外部输入/输出端口与人机交互装置连接,外部输入/输出端口可以是无线通信模块,也可以是有线通信模块,或者两者的组合。外部输入/输出端口也可基于USB、如CAN等总线协议、和/或有线网络协议等来实现。
其中,人机交互装置可以包括输入设备,用于检测用户的输入信息,该输入信息例如可以是对超声波发射/接收时序的控制指令,可以是在光声图像上绘制出点、线或框等的操作输入指令,或者还可以包括其他指令类型。输入设备可以包括键盘、鼠标、滚轮、轨迹球、移动式输入设备(比如带触摸显示屏的移动设备、手机等等)、多功能旋钮等等其中之一或者多个的结合。人机交互装置还可以包括诸如打印机之类的输出设备。
光声成像系统800还可以包括存储器822,用于存储处理器执行的指令、存储接收到的超声回波、存储光声图像,等等。存储器可以为闪存卡、固态存储器、硬盘等。其可以为易失性存储器和/或非易失性存储器,为可移除存储器和/或不可移除存储器等。
应理解,图8所示的光声成像系统800所包括的部件只是示意性的,其可以包括更多或更少的部件。本申请对此不限定。
下面,参考图9描述根据本申请一个实施例的光声成像方法,图9是本申请一个实施例的光声成像方法300的示意性流程图。
如图9所示,本申请一个实施例的光声成像方法900包括如下步骤:
在步骤S910,控制激光发射装置向被测对象的目标区域发射激光;
在步骤S920,接收目标区域的组织受激光照射而产生的光声信号;
在步骤S930,对光声信号进行至少两次不同的信号处理,以获得至少两组不同的光声数据;
在步骤S940,对至少两组不同的光声数据进行复合,以得到复合数据,并基于复合数据生成光声图像。
本申请实施例的超声成像方法900对每次激光发射后接收到的光声信号进行不同的信号处理以得到复合数据,并根据复合数据进行成像,能够大幅降低发射成本,在保证高帧率的同时提升成像质量。
具体地,在步骤S910中,参照图8,可以由处理器818控制激光发射装置812向被测对象的目标区域发射激光。当目标区域的组织受到纳秒量级的 短脉冲激光照射时,组织中具有强光学吸收特性的物质(如血液)吸收光能量之后引起局部升温和热膨胀,从而产生超声波并向外传播,并被超声探头810检测到。通过探测超声信号,再利用相应的重建算法进行光声成像即可以高分辨地重建吸收物质在组织内的位置和形态。
接着,在步骤S920,接收目标区域的组织受激光照射而产生的光声信号。继续参见图8,接收电路814控制超声探头810中的换能器阵元同时接收目标区域中各接收点受激光照射产生的超声波,并转换为电信号,以获得光声信号,并传递给信号处理模块816以执行后续步骤。
在步骤S930,对光声信号进行至少两次不同的信号处理,以获得至少两组不同的光声数据。由于至少两组不同的光声数据采用了不同的信号处理,因而包含不同的组织信息,获得类似于多次发射的效果;后续可以综合至少两组不同的光声数据中的信息进行成像,以提高成像质量。
在一个实施例中,至少两次不同的信号处理采用不同的接收角度。具体地,步骤S920得到的光声信号被发送至信号处理模块816中的波束合成模块,波束合成模块采用不同的接收角度对光声信号进行波束合成处理。波束合成即将超声探头中的各个换能器阵元接收的光声信号进行相应的延时后叠加,得到的叠加后的光声信号即合成后的波束。采用不同的接收角度进行信号处理即在每次波束合成的过程中,分别基于不同的接收角度计算延时,以得到不同的光声数据。
在另一个实施例中,至少两次不同的信号处理采用不同的频率,即采用不同的频率对波束合成后的光声信号进行滤波以提高信噪比。示例性地,滤波处理可以包括动态滤波处理,例如可以由信号处理模块中的动态滤波处理模块采用不同的频率对超声回波信号进行动态滤波处理。动态滤波处理所用的滤波器中频率和频带随回波深度的不同而变化,由于光声信号中频率高的成分在图像中的纵向分辨率高,但随深度的衰减较大,光声信号中频率低的成分在图像中的纵向分辨率较低,但随深度的衰减较慢,能探测到较深的深度,因而动态滤波实现的是在探测深度较浅的位置选择信号的高频成分,在探测深度较深的位置选择信号的低频成分,从而过滤掉感兴趣频率带以外的噪声信号。示例性地,采用不同的频率进行动态滤波处理可以包括采用不同的滤波器中心频率。
在又一个实施例中,不同的信号处理可以既采用不同的接收角度、又采 用不同的频率。也就是说,首先在波束合成阶段采用不同的接收角度进行波束合成,之后在动态滤波处理阶段采用不同的频率进行滤波,由此使光声数据中包含了更多的信息,进一步提高了后续的成像质量。
示例性地,在步骤S910中,控制激光发射装置向被测对象的目标区域发射激光时,控制激光发射装置向被测对象的目标区域发射至少一次激光;在步骤S930中,在对光声信号进行至少两次不同的信号处理时,基于发射至少一次激光所得到光声信号进行至少两次信号处理,以获得至少两组不同的光声数据。具体地,在步骤S930中,可以基于发射一次激光所得到的光声信号进行至少两次不同的信号处理,以得到至少两组不同的光声数据,后续可以基于所得到的至少两组不同的光声数据生成一帧图像;即每发射一次激光即可得到一帧光声图像。或者,若在步骤S910中发射至少两次激光,则在步骤S930中可以对发射至少两次激光所得到的光声信号进行至少两次不同的信号处理,以得到两组以上不同的光声数据,后续可以基于所得到的两组以上不同的光声数据生成一帧光声图像,即每发射至少两次激光可得到一帧光声图像。
在步骤S940,对步骤S930得到的至少两组不同的光声数据进行复合,以得到复合数据,并基于该复合数据生成光声图像。
在一个实施例中,复合处理为相干复合,即对包络检测前的光声数据进行相干复合。相干复合即将各个接收角度下获得的光声数据带着相位进行加权叠加处理,叠加的过程不需要取包络或是其他非线性处理。加权叠加处理可以采用自适应权重,自适应权重包括但不限于相干因子和/或最小方差。其中,相干因子为经过延时之后的阵元信号之间的相干和与非相干和的比值。通过相干复合可以增强轴向信号,抑制离轴信号,从而提高成像对比度。
示例性地,相干复合是针对同时包含相位和幅度信息的复解析信号进行的复合处理,相干复合后的数据仍为复解析信号,还需对其进行包络检测以获得回波信号的包络。示例性地,可以采用希尔伯特变换法获取待处理的复解析信号,原始信号经过希尔伯特变换得到原始信号的正交信号,以原始信号为实部,以希尔伯特变换得到的正交信号为虚部构造复解析信号,该信号的模即为原始信号的包络。或者,也可以进行IQ解调获取待处理的复解析信号,二者的区别主要在于IQ解调具有频率选择性,可选择特定的频率成分用于最终的成像,抗干扰能力较强。
在另一个实施例中,复合处理也可以包括非相干复合,即在包括检测前不进行相干复合,而是对包络检测后的光声数据进行非相干复合。非相干复合与相干复合的主要区别在于,相干复合是对幅度信息和相位信息一起叠加,而非相干复合是仅仅叠加幅度信息。在数据处理流程中,表现为是在包络检测前复合,还是在包络检测后复合。非相干复合能够抑制图像中的斑点噪声并以此来提高图像的对比度。
获得复合数据后,可以对其进行对数压缩、空间平滑及其它信号处理环节,以得到光声图像。由此,只发射一次激光,即可根据所得到的一组复合数据生成一帧光声图像,从而相比于多次发射、多次接收的光声成像方式而言极大地提高了帧率。
在其他实施例中,也可以基于发射至少两次激光所得到的至少两组复合数据生成一帧光声图像,每发射一次激光,即对接收到的光声信号进行至少两次不同的信号处理以得到至少两组不同的光声数据,并对其进行相干或非相干复合以得到复合数据,最后将每次发射所得到的复合数据进一步复合以得到最终的复合数据,并基于最终的复合数据生成一帧光声图像。采用多次发射激光、每次发射进行多次接收的成像方式可以大幅度提高成像质量。
本申请实施例还提供了一种光声成像系统,该光声成像系统可以用于实现上述光声成像方法900。现在重新参照图8,该光声成像系统800可以包括超声探头810、激光发射装置812、接收电路814、信号处理模块816、处理器818、显示器820以及存储器822中的部分或全部部件,各个部件的相关描述可以参照上文。以下仅对光声成像系统800的主要功能进行描述,而省略以上已经描述过的细节内容。
具体地,激光发射装置812用于向被测对象的目标区域发射激光;接收电路814用于控制超声探头810接收目标区域的组织受激光照射而产生的光声信号;信号处理模块816用于对所述光声信号进行至少两次不同的信号处理,以获得至少两组不同的光声数据;处理器818用于对所述至少两组不同的光声数据进行复合,以得到复合数据,以及基于所述复合数据生成光声图像。
在一个实施例中,信号处理模块816采用不同的接收角度和/或不同的频率对光声信号进行至少两次不同的信号处理。信号处理模块816可以包括波束合成模块和动态滤波处理模块,其中波束合成模块用于采用不同的接收角 度对光声信号进行至少两次不同的信号处理,具体实现为在对光声信号进行波束合成的过程中采用不同的接收角度。动态滤波处理模块用于采用不同的频率对光声信号进行至少两次不同的信号处理,具体实现为在对光声信号进行动态滤波的过程中采用不同的频率。
在一个实施例中,对至少两组不同的光声数据进行复合包括:对包络检测前的光声数据进行相干复合,或者,对包络检测后的光声数据进行非相干复合。
在一个实施例中,处理器818基于发射一次激光所得到的一组复合数据生成一帧光声图像,或者,处理器基于发射至少两次激光所得到的至少两组复合数据生成一帧光声图像。
在一个实施例中,激光发射装置812向被测对象的目标区域发射激光时,向被测对象的目标区域发射至少一次激光;信号处理模块816对光声信号进行至少两次不同的信号处理时,基于发射至少一次激光所得到光声信号进行至少两次信号处理,以获得至少两组不同的光声数据。
基于以上描述,本申请实施例的光声成像方法800和光声成像系统对每次发射激光后接收到的光声信号进行不同的信号处理以得到不同的光声数据,并对不同的光声数据进行相干复合或非相干复合以得到复合数据,最终根据复合数据进行成像,能够大幅降低发射成本,在保证高帧率的同时提升成像质量。
尽管这里已经参考附图描述了示例实施例,应理解上述示例实施例仅仅是示例性的,并且不意图将本申请的范围限制于此。本领域普通技术人员可以在其中进行各种改变和修改,而不偏离本申请的范围和精神。所有这些改变和修改意在被包括在所附权利要求所要求的本申请的范围之内。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外 的划分方式,例如多个单元或组件可以结合或者可以集成到另一个设备,或一些特征可以忽略,或不执行。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本申请并帮助理解各个发明方面中的一个或多个,在对本申请的示例性实施例的描述中,本申请的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将本申请的方法解释成反映如下意图:即所要求保护的本申请要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如相应的权利要求书所反映的那样,其发明点在于可以用少于某个公开的单个实施例的所有特征的特征来解决相应的技术问题。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本申请的单独实施例。
本领域的技术人员可以理解,除了特征之间相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本申请的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本申请的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本申请实施例的一些模块的一些或者全部功能。本申请还可以实现为用于执行这里所描述的方法的一部分或者全部的装置程序(例如,计算机程序和计算机程序产品)。这样的实现本申请的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
应该注意的是上述实施例对本申请进行说明而不是对本申请进行限制, 并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。本申请可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
以上所述,仅为本申请的具体实施方式或对具体实施方式的说明,本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。本申请的保护范围应以权利要求的保护范围为准。

Claims (26)

  1. 一种超声成像方法,其特征在于,所述方法包括:
    向被测对象的目标区域发射超声波,所述超声波为覆盖所述目标区域的非聚焦超声波;
    接收所述超声波的超声回波信号;
    对所述超声回波信号进行至少两次不同的信号处理,以获得至少两组不同的超声回波数据;
    对所述至少两组不同的超声回波数据进行复合,以得到复合数据,并基于所述复合数据生成超声图像。
  2. 根据权利要求1所述的超声成像方法,其特征在于,所述超声波为平面波或发散波。
  3. 根据权利要求1所述的超声成像方法,其特征在于,所述至少两次不同的信号处理采用不同的接收角度和/或不同的频率。
  4. 根据权利要求1所述的超声成像方法,其特征在于,所述对所述至少两组不同的超声回波数据进行复合包括:
    对包络检测前的所述超声回波数据进行相干复合,或者,对包络检测后的所述超声回波数据进行非相干复合。
  5. 根据权利要求1-4中任一项所述的超声成像方法,其特征在于,所述基于所述复合数据生成超声图像包括:
    基于发射一次所述超声波所得到的一组所述复合数据生成一帧超声图像,或者,基于发射至少两次所述超声波所得到的至少两组所述复合数据生成一帧超声图像。
  6. 根据权利要求1-4中任一项所述的超声成像方法,其特征在于,
    所述向被测对象的目标区域发射超声波时,向所述被测对象的目标区域发射至少一次超声波;
    所述对所述超声回波信号进行至少两次不同的信号处理时,基于发射至少一次所述超声波所得到超声回波信号进行至少两次信号处理,以获得至少两组不同的超声回波数据。
  7. 根据权利要求1所述的超声成像方法,其特征在于,所述向被测对象的目标区域发射超声波包括在同一角度向被测对象的目标区域发射超声波。
  8. 根据权利要求1所述的超声成像方法,其特征在于,所述对所述超声回波信号进行至少两次不同的信号处理包括对同一角度发射的超声波的超声回波信号进行至少两次不同的信号处理。
  9. 一种光声成像方法,其特征在于,所述方法包括:
    控制激光发射装置向被测对象的目标区域发射激光;
    接收所述目标区域的组织受所述激光照射而产生的光声信号;
    对所述光声信号进行至少两次不同的信号处理,以获得至少两组不同的光声数据;
    对所述至少两组不同的光声数据进行复合,以得到复合数据,并基于所述复合数据生成光声图像。
  10. 根据权利要求9所述的光声成像方法,其特征在于,所述至少两次不同的信号处理采用不同的接收角度和/或不同的频率。
  11. 根据权利要求9所述的光声成像方法,其特征在于,所述对所述至少两组不同的光声数据进行复合包括:
    对包络检测前的所述光声数据进行相干复合,或者,对包络检测后的所述光声数据进行非相干复合。
  12. 根据权利要求9-11中任一项所述的光声成像方法,其特征在于,所述基于所述复合数据生成光声图像包括:
    基于发射一次所述激光所得到的一组所述复合数据生成一帧光声图像,或者,基于发射至少两次所述激光所得到的至少两组所述复合数据生成一帧光声图像。
  13. 根据权利要求9-11中任一项所述的光声成像方法,其特征在于,
    所述控制激光发射装置向被测对象的目标区域发射激光时,控制所述激光发射装置向所述被测对象的目标区域发射至少一次激光;
    所述对所述光声信号进行至少两次不同的信号处理时,基于发射至少一次所述激光所得到光声信号进行至少两次信号处理,以获得至少两组不同的光声数据。
  14. 一种超声成像系统,其特征在于,包括:
    超声探头;
    发射电路,用于激励所述超声探头向被测对象的目标区域发射超声波,所述超声波为覆盖所述目标区域的非聚焦超声波;
    接收电路,用于控制所述超声探头接收所述超声波的超声回波信号;
    信号处理模块,用于对所述超声回波信号进行至少两次不同的信号处理,以获得至少两组不同的超声回波数据;
    处理器,用于对所述至少两组不同的超声回波数据进行复合,以得到复合数据,以及基于所述复合数据生成超声图像。
  15. 根据权利要求14所述的超声成像系统,其特征在于,所述超声探头发射的所述超声波为平面波或发散波。
  16. 根据权利要求14所述的超声成像系统,其特征在于,所述信号处理模块采用不同的接收角度和/或不同的频率对所述超声回波信号进行所述至少两次不同的信号处理。
  17. 根据权利要求14所述的超声成像系统,其特征在于,所述对所述至少两组不同的超声回波数据进行复合包括:
    对包络检测前的所述超声回波数据进行相干复合,或者,对包络检测后的所述超声回波数据进行非相干复合。
  18. 根据权利要求14-17中任一项所述的超声成像系统,其特征在于,所述处理器基于发射一次所述超声波所得到的一组所述复合数据生成一帧超声图像,或者,所述处理器基于发射至少两次所述超声波所得到的至少两组所述复合数据生成一帧超声图像。
  19. 根据权利要求14-17中任一项所述的超声成像系统,其特征在于,
    所述发射电路激励所述超声探头向被测对象的目标区域发射超声波时,激励所述超声探头向所述被测对象的目标区域发射至少一次超声波;
    所述信号处理模块对所述超声回波信号进行至少两次不同的信号处理时,基于发射至少一次所述超声波所得到超声回波信号进行至少两次信号处理,以获得至少两组不同的超声回波数据。
  20. 根据权利要求14所述的超声成像系统,其特征在于,所述发射电路激励所述超声探头向被测对象的目标区域发射超声波包括:所述发射电路激励所述超声探头在同一角度向被测对象的目标区域发射超声波。
  21. 根据权利要求14所述的超声成像系统,其特征在于,所述信号处理模块对所述超声回波信号进行至少两次不同的信号处理包括:所述信号处理模块对同一角度发射的超声波的超声回波信号进行至少两次不同的信号处理。
  22. 一种光声成像系统,其特征在于,包括:
    超声探头;
    激光发射装置,用于向被测对象的目标区域发射激光;
    接收电路,用于控制所述超声探头接收所述目标区域的组织受所述激光照射而产生的光声信号;
    信号处理模块,用于对所述光声信号进行至少两次不同的信号处理,以获得至少两组不同的光声数据;
    处理器,用于:对所述至少两组不同的光声数据进行复合,以得到复合 数据,以及基于所述复合数据生成光声图像。
  23. 根据权利要求22所述的光声成像系统,其特征在于,所述信号处理模块采用不同的接收角度和/或不同的频率对所述光声信号进行所述至少两次不同的信号处理。
  24. 根据权利要求22所述的光声成像系统,其特征在于,所述对所述至少两组不同的光声数据进行复合包括:
    对包络检测前的所述光声数据进行相干复合,或者,对包络检测后的所述光声数据进行非相干复合。
  25. 根据权利要求22-24中任一项所述的光声成像系统,其特征在于,所述处理器基于发射一次所述激光所得到的一组所述复合数据生成一帧光声图像,或者,所述处理器基于发射至少两次所述激光所得到的至少两组所述复合数据生成一帧光声图像。
  26. 根据权利要求22-24中任一项所述的光声成像系统,其特征在于,
    所述激光发射装置向被测对象的目标区域发射激光时,向所述被测对象的目标区域发射至少一次激光;
    所述信号处理模块对所述光声信号进行至少两次不同的信号处理时,基于发射至少一次所述激光所得到光声信号进行至少两次信号处理,以获得至少两组不同的光声数据。
PCT/CN2020/122888 2020-10-22 2020-10-22 超声成像方法和系统以及光声成像方法和系统 WO2022082627A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/122888 WO2022082627A1 (zh) 2020-10-22 2020-10-22 超声成像方法和系统以及光声成像方法和系统
CN202080104302.7A CN116234499A (zh) 2020-10-22 2020-10-22 超声成像方法和系统以及光声成像方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/122888 WO2022082627A1 (zh) 2020-10-22 2020-10-22 超声成像方法和系统以及光声成像方法和系统

Publications (1)

Publication Number Publication Date
WO2022082627A1 true WO2022082627A1 (zh) 2022-04-28

Family

ID=81289661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122888 WO2022082627A1 (zh) 2020-10-22 2020-10-22 超声成像方法和系统以及光声成像方法和系统

Country Status (2)

Country Link
CN (1) CN116234499A (zh)
WO (1) WO2022082627A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114947959A (zh) * 2022-05-17 2022-08-30 合肥工业大学 一种平行聚焦的超声复合成像方法
CN115607185A (zh) * 2022-10-31 2023-01-17 深圳迈瑞生物医疗电子股份有限公司 超声成像方法和超声成像系统
CN115644924A (zh) * 2022-10-31 2023-01-31 深圳迈瑞生物医疗电子股份有限公司 超声成像方法和超声成像系统
WO2025010886A1 (zh) * 2023-11-03 2025-01-16 苏州热工研究院有限公司 一种受限结构的超声检测方法和系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116807511B (zh) * 2023-07-14 2024-09-27 广东省智能科学与技术研究院 功能超声成像方法、装置和可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101828928A (zh) * 2010-04-01 2010-09-15 江西科技师范学院 三维光声乳腺或颅脑无损成像系统
US20150327840A1 (en) * 2014-05-19 2015-11-19 Kabushiki Kaisha Toshiba Ultrasonic diagnostic device and correction method
CN106580369A (zh) * 2016-11-30 2017-04-26 珠海威泓医疗科技有限公司 一种多角度平面波相干彩色多普勒成像方法
CN108882914A (zh) * 2017-11-20 2018-11-23 深圳迈瑞生物医疗电子股份有限公司 超声造影成像方法及超声成像系统
CN110279430A (zh) * 2019-06-26 2019-09-27 北京交通大学 基于虚拟多角度复合的平面超声波成像处理方法及装置
CN110477951A (zh) * 2019-08-30 2019-11-22 浙江大学 基于宽频带声学超材料的超快复合平面波成像方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62133945A (ja) * 1985-12-06 1987-06-17 株式会社東芝 超音波診断装置
CN101496728B (zh) * 2008-02-03 2013-03-13 深圳迈瑞生物医疗电子股份有限公司 超声频率复合成像方法与装置
CN101874743B (zh) * 2009-04-30 2013-10-02 深圳迈瑞生物医疗电子股份有限公司 一种多波束处理的方法和装置
CN104546003B (zh) * 2015-01-27 2017-02-01 哈尔滨工业大学 一种基于平面波发射的可变帧率彩色超高速超声成像方法
WO2017035838A1 (zh) * 2015-09-06 2017-03-09 深圳迈瑞生物医疗电子股份有限公司 超声灰阶成像系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101828928A (zh) * 2010-04-01 2010-09-15 江西科技师范学院 三维光声乳腺或颅脑无损成像系统
US20150327840A1 (en) * 2014-05-19 2015-11-19 Kabushiki Kaisha Toshiba Ultrasonic diagnostic device and correction method
CN106580369A (zh) * 2016-11-30 2017-04-26 珠海威泓医疗科技有限公司 一种多角度平面波相干彩色多普勒成像方法
CN108882914A (zh) * 2017-11-20 2018-11-23 深圳迈瑞生物医疗电子股份有限公司 超声造影成像方法及超声成像系统
CN110279430A (zh) * 2019-06-26 2019-09-27 北京交通大学 基于虚拟多角度复合的平面超声波成像处理方法及装置
CN110477951A (zh) * 2019-08-30 2019-11-22 浙江大学 基于宽频带声学超材料的超快复合平面波成像方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114947959A (zh) * 2022-05-17 2022-08-30 合肥工业大学 一种平行聚焦的超声复合成像方法
CN115607185A (zh) * 2022-10-31 2023-01-17 深圳迈瑞生物医疗电子股份有限公司 超声成像方法和超声成像系统
CN115644924A (zh) * 2022-10-31 2023-01-31 深圳迈瑞生物医疗电子股份有限公司 超声成像方法和超声成像系统
WO2025010886A1 (zh) * 2023-11-03 2025-01-16 苏州热工研究院有限公司 一种受限结构的超声检测方法和系统

Also Published As

Publication number Publication date
CN116234499A (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
WO2022082627A1 (zh) 超声成像方法和系统以及光声成像方法和系统
JP5490198B2 (ja) 幅広ビーム映像化
JP6978316B2 (ja) ブロードバンドの混合された基本波及び高調波周波数超音波診断イメージング
JP5355924B2 (ja) 超音波診断装置
US7874988B2 (en) Ultrasonic diagnostic apparatus and ultrasonic transmission method
CN112294354B (zh) 超声成像方法和系统
CN101442939A (zh) 用于空间复合的回顾性动态发射聚焦
JP6733530B2 (ja) 超音波信号処理装置、超音波信号処理方法、及び、超音波診断装置
JP2003038490A (ja) 位相反転超音波画像処理システムおよび方法
US20140050048A1 (en) Harmonic Ultrasound Imaging Using Synthetic Aperture Sequential Beamforming
TW201913138A (zh) 雙頻平面波超音成像系統
JP2004181209A (ja) 超音波診断装置
JP4874497B2 (ja) 幅広ビーム映像化
JP2007222610A (ja) 超音波診断装置および超音波診断装置の制御プログラム
JP4445255B2 (ja) 組織で発生される高調波との広帯域周波数合成を用いた超音波スペックル低減の方法及び装置
JP2002017720A (ja) 信号処理方法および装置並びに画像撮影装置
CN117100317B (zh) 一种大孔径超快超声成像系统及方法
JP6838174B2 (ja) 超音波プローブと処理方法
JP5489758B2 (ja) 幅広ビーム映像化
JP2018187014A (ja) 超音波撮像装置
CN115607185B (zh) 超声成像方法和超声成像系统
US20240142620A1 (en) Ultrasound imaging method and ultrasound imaging system
JP2010005138A (ja) 超音波診断装置
JP4464432B2 (ja) 超音波撮像装置
CN115607185A (zh) 超声成像方法和超声成像系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20958209

Country of ref document: EP

Kind code of ref document: A1