WO2022082355A1 - 电化学装置及包含其的电子装置 - Google Patents

电化学装置及包含其的电子装置 Download PDF

Info

Publication number
WO2022082355A1
WO2022082355A1 PCT/CN2020/121860 CN2020121860W WO2022082355A1 WO 2022082355 A1 WO2022082355 A1 WO 2022082355A1 CN 2020121860 W CN2020121860 W CN 2020121860W WO 2022082355 A1 WO2022082355 A1 WO 2022082355A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrochemical device
substituted
electrode active
Prior art date
Application number
PCT/CN2020/121860
Other languages
English (en)
French (fr)
Inventor
程世杨
谷风
郎野
徐磊敏
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to CN202080018610.8A priority Critical patent/CN113614941B/zh
Priority to PCT/CN2020/121860 priority patent/WO2022082355A1/zh
Publication of WO2022082355A1 publication Critical patent/WO2022082355A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of energy storage, and in particular, to an electrochemical device and an electronic device including the same, in particular to a lithium-ion battery.
  • the battery is not only required to be light, but also required to have a high capacity and a long operating life.
  • Lithium-ion batteries have taken a mainstream position in the market due to their outstanding advantages such as high energy density, high safety, no memory effect and long working life.
  • the high-nickel ternary cathode material for lithium-ion batteries has high theoretical specific capacity and high safety performance.
  • the potential relative to the lithium electrode is about 4.3V, and it is expected to become a new generation of lithium-ion battery cathode materials.
  • the surface structure of high-nickel ternary cathode materials for lithium-ion batteries is unstable.
  • the high-nickel ternary cathode material is easy to absorb moisture and carbon dioxide, and the viscosity of the slurry rebounds violently, which makes it impossible to coat normally.
  • the high-nickel material in the electrode easily absorbs water and carbon dioxide in the air, resulting in a layer of non-electrochemically active bicarbonate, carbonate and basic carbonate attached to the surface. At the same time as carbonate is formed, bulk active lithium will also be lost, resulting in a sharp decline in battery performance and abnormal fluctuations in battery quality. It can be seen that improving the air stability of high-nickel ternary cathode materials and cathodes has become crucial.
  • the present application provides an electrochemical device in an attempt to solve, at least to some extent, at least one of the problems existing in the related art.
  • the present application also provides electronic devices using the electrochemical devices.
  • the present application provides an electrochemical device comprising a negative electrode, a separator, an electrolyte and a positive electrode, the positive electrode comprising a positive electrode current collector and a positive electrode active material layer, the positive electrode active material
  • the layer contains a positive electrode active material.
  • the positive electrode was washed with dimethyl carbonate solvent, dried at 85°C for 12h, and stored at 25°C and 45% constant humidity in static air for 20 days. According to the thermogravimetric mass spectrometry test, at 25 The weight loss in the range of °C to 170 °C is less than 0.3%.
  • the positive electrode is washed with dimethyl carbonate solvent, dried at 85° C. for 12 hours, and stored in static air with constant humidity of 25° C. and 45% for 20 days, according to the thermogravimetric mass spectrometry test, at 170° C.
  • the weight loss in the range of °C to 300 °C is less than 10%.
  • the contact angle of the cathode active material layer to water is 100° to 160°.
  • the contact angle of the positive electrode active material layer to the electrolyte is 10° to 60°.
  • the cathode active material layer has at least one absorption peak in the range of 900 cm ⁇ 1 to 1100 cm ⁇ 1 according to Fourier Transform Infrared Spectroscopy.
  • the positive electrode active material layer includes an organic silicon-containing additive comprising at least one compound having the formula (R 1 )m-Si-(R 2 )n, wherein
  • R 1 and R 2 are each independently selected from substituted or unsubstituted C 1-20 alkyl, substituted or unsubstituted C 1-20 alkenyl, substituted or unsubstituted C 1-20 alkoxy, substituted or unsubstituted C 1-20 alkoxy a substituted R a -OR b - group, an amine group, -OH or any combination thereof,
  • R a is selected from substituted or unsubstituted C 1-20 alkyl, substituted or unsubstituted C 1-20 alkenyl or any combination thereof,
  • R b is selected from substituted or unsubstituted C 1-20 alkylene, imino, substituted or unsubstituted C 1-20 alkenylene or any combination thereof,
  • n 1 to 3;
  • the number of carbon atoms in at least one of R 1 and R 2 is greater than or equal to 5;
  • the substituent is at least one of halogen and heteroatom-containing group; the heteroatom includes at least one of B, N, O, Si, P, and S.
  • the organosilicon-containing additive comprises CH 3 (CH 2 ) 15 Si(OCH 3 ) 3 , CH 3 (CH 2 ) 10 Si(OCH 3 ) 3 , CH 3 (CH 2 ) 7 Si( OCH 3 ) 3 , CH 3 (CH 2 ) 11 Si(OCH 3 ) 3 , NH 2 (CH 2 ) 2 NH(CH 2 ) 3 Si(OCH 3 ) 3 , NH 2 (CH 2 ) 2 NH(CH 2 ) 3 Si(OC 2 H 5 ) 3 , CH 3 OCH 2 CH 2 O(CH 2 ) 3 Si(OCH 3 ) 3 , CH 3 OCH 2 CH 2 O(CH 2 ) 3 Si(OC 2 H 5 ) 3 at least one of them.
  • the content of the organic silicon-containing additive is 0.08 wt % to 5 wt % based on the total weight of the positive electrode active material layer.
  • the weight percent of the organic silicon-containing additive adjacent to the surface of the positive electrode active material is 5 wt % to 50 wt % based on the total weight of the organic silicon-containing additive.
  • the positive active material includes at least one compound having the formula Li x Ni y Co z Mn k M q O ba Ta , wherein M is selected from at least one of the group consisting of: B, Mg, Al, Si, P, S, Ti, Cr, Fe, Co, Ni, Cu, Zn, Ga, Y, Zr, Mo, Ag, W, In, Sn, Pb, Sb and Ce, T is Halogen, and x, y, z, k, q, a, and b satisfy: 0.2 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 0 ⁇ k ⁇ 1, 0 ⁇ q ⁇ 1, 1 ⁇ b ⁇ 2 and 0 ⁇ a ⁇ 1.
  • the present application provides an electronic device including an electrochemical device according to an embodiment of the present application.
  • the purpose of the present invention is to provide a positive electrode and a preparation method thereof, aiming at solving the problem of the air sensitivity of the positive electrode slurry and the positive electrode of the lithium ion battery in the prior art.
  • the positive electrode provided by the present application has an increased hydrophobic area, thereby improving the hydrophobic performance of the positive electrode. When transported and operated in a high-humidity environment, the water absorption of this cathode is significantly reduced, thereby significantly reducing the cost of electrode transport and storage.
  • the upper graph in FIG. 1 shows the spectrum of the positive electrode after the formation of the lithium ion battery in Comparative Example 1, and the Fourier Transform Infrared Spectroscopy (FTIR) test; and the lower graph in FIG. 1 shows the lithium ion battery in Example 1.
  • FTIR Fourier Transform Infrared Spectroscopy
  • the left picture in Fig. 2 shows the TG-MS results of the positive electrode in Example 1 after being stored in a static air environment of 45% constant temperature and humidity for 20 days; and the right picture in Fig. 2 shows the positive electrode in Comparative Example 1 at 45 % TG-MS results after 20 days of storage in a constant temperature and humidity static air environment.
  • the left graph in FIG. 3 shows the test results of the contact angle between the positive electrode and the electrolyte in Example 6; and the right graph in FIG. 3 shows the contact angle test results between the positive electrode and water in Example 6.
  • Fig. 4 shows the changes in carbonate content when the cathodes in Comparative Example 6 and Example 15 are stored in a static air environment with a constant temperature and humidity of 45%.
  • FIG. 5 shows the change in water content of the positive electrodes in Example 1 and Comparative Example 1 when they are stored at 45% humidity and the water loss rate after being stored for 20 days and after baking.
  • EDX energy dispersive X-ray detector
  • Amounts, ratios, and other numerical values are sometimes presented herein in a range format. It is to be understood that such range format is used for convenience and brevity, and that it is to be understood flexibly to include not only the numerical values expressly designated as the limits of the range, but also all individual numerical values or subranges subsumed within the stated range, as if expressly Specify each numerical value and subrange generically.
  • a list of items joined by the terms "one of,” “one of,” “one of,” or other similar terms can mean that any of the listed items one.
  • the phrase “one of A and B” means A only or B only.
  • the phrase “one of A, B, and C” means A only; B only; or C only.
  • Item A may contain a single element or multiple elements.
  • Item B may contain a single element or multiple elements.
  • Item C may contain a single element or multiple elements.
  • a list of items joined by the terms "at least one of,” “at least one of,” “at least one of,” or other similar terms may mean the listed items any combination of .
  • the phrase “at least one of A and B” means A only; B only; or A and B.
  • the phrase "at least one of A, B, and C” means A only; or B only; C only; A and B (excluding C); A and C (excluding B); B and C (excluding A); or all of A, B, and C.
  • Item A may contain a single element or multiple elements.
  • Item B may contain a single element or multiple elements.
  • Item C may contain a single element or multiple elements.
  • the present application provides an electrochemical device comprising a negative electrode, a separator, an electrolyte, and a positive electrode.
  • the electrochemical device includes any device in which an electrochemical reaction occurs.
  • the electrochemical devices of the present application include, but are not limited to, all kinds of primary batteries, secondary batteries, fuel cells, solar cells, or capacitors.
  • the electrochemical device is a lithium secondary battery.
  • the lithium secondary battery includes, but is not limited to, a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery, or a lithium ion polymer secondary battery.
  • the positive electrode includes a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer includes a positive electrode active material, the positive electrode is washed with a dimethyl carbonate solvent, dried at 85°C for 12 hours, and dried at 25°C for 12 hours. After 20 days of storage in static air with a constant humidity of 45%, the weight loss is less than 0.3% in the range of about 25°C to about 170°C according to the thermogravimetric mass spectrometry test.
  • thermogravimetric mass spectrometry test at about 170° C.
  • the weight loss is less than 10% in the range from °C to about 300 °C.
  • thermogravimetric mass spectrometry test at about 170° C. Less than 9%, less than 8%, less than 7%, less than 6%, less than 5%, less than 4%, less than 3%, less than 2%, or less than 1% weight loss in the range from °C to about 300 °C.
  • the contact angle of the cathode active material layer to water is about 100° to about 160°. In some embodiments, the contact angle of the positive active material layer to water is 100°, 110°, 120°, 130°, 140°, 150°, 160°, or a range consisting of any two of these values.
  • the contact angle of the cathode active material layer to the electrolyte is about 10° to about 60°. In some embodiments, the contact angle of the positive electrode active material layer to the electrolyte is 10°, 20°, 30°, 40°, 50°, 60° or a range consisting of any two of these values.
  • the cathode active material layer has at least one absorption peak in the range of about 900 cm ⁇ 1 to about 1100 cm ⁇ 1 according to Fourier Transform Infrared Spectroscopy.
  • the positive electrode active material layer includes an organic silicon-containing additive comprising at least one compound having the formula (R 1 )m-Si-(R 2 )n, wherein
  • R 1 and R 2 are each independently selected from substituted or unsubstituted C 1-20 alkyl, substituted or unsubstituted C 1-20 alkenyl, substituted or unsubstituted C 1-20 alkoxy, substituted or unsubstituted C 1-20 alkoxy a substituted R a -OR b - group, -OH or any combination thereof,
  • R a is selected from substituted or unsubstituted C 1-20 alkyl, substituted or unsubstituted C 1-20 alkenyl or a combination thereof,
  • R b is selected from substituted or unsubstituted C 1-20 alkylene, imino, substituted or unsubstituted C 1-20 alkenylene or a combination thereof,
  • n 1 to 3;
  • the number of carbon atoms in at least one of R 1 and R 2 is greater than or equal to 5;
  • the substituent is at least one of halogen and heteroatom-containing group; the heteroatom includes at least one of B, N, O, Si, P, and S.
  • R 1 , R 2 are each independently selected from substituted or unsubstituted C 1-15 alkyl, substituted or unsubstituted C 1-15 alkenyl, substituted or unsubstituted C 1-15 alkane an oxy group, a substituted or unsubstituted R a -OR b - group, an amine group, -OH or any combination thereof,
  • R a is selected from substituted or unsubstituted C 1-15 alkyl, substituted or unsubstituted C 1-15 alkenyl or any combination thereof,
  • R b is selected from substituted or unsubstituted C 1-15 alkylene, imino, substituted or unsubstituted C 1-15 alkenylene or any combination thereof,
  • n 1 to 3;
  • the number of carbon atoms in at least one of R 1 and R 2 is greater than or equal to 5;
  • the substituent is at least one of halogen and heteroatom-containing group; the heteroatom includes at least one of B, N, O, Si, P, and S.
  • heteroatom-containing groups include amine groups, nitro groups, cyano groups, alkoxy groups, or any combination thereof.
  • the organosilicon-containing additive comprises CH 3 (CH 2 ) 15 Si(OCH 3 ) 3 , CH 3 (CH 2 ) 10 Si(OCH 3 ) 3 , CH 3 (CH 2 ) 7 Si( OCH 3 ) 3 , CH 3 (CH 2 ) 11 Si(OCH 3 ) 3 , NH 2 (CH 2 ) 2 NH(CH 2 ) 3 Si(OCH 3 ) 3 , NH 2 (CH 2 ) 2 NH(CH 2 ) 3 Si(OC 2 H 5 ) 3 , CH 3 OCH 2 CH 2 O(CH 2 ) 3 Si(OCH 3 ) 3 , CH 3 OCH 2 CH 2 O(CH 2 ) 3 Si(OC 2 H 5 ) 3 at least one of them.
  • the organosilicon-containing additive comprises CH 3 (CH 2 ) 15 Si(OCH 3 ) 3 , CH 3 (CH 2 ) 10 Si(OCH 3 ) 3 , CH 3 (CH 2 ) 7 Si( At least one of OCH 3 ) 3 and CH 3 (CH 2 ) 11 Si(OCH 3 ) 3 .
  • the organic silicon-containing additive is included in an amount of about 0.08 wt % to about 5 wt % based on the total weight of the positive electrode active material layer. In some embodiments, the content of the organic silicon-containing additive is 0.08 wt %, 0.1 wt %, 0.2 wt %, 0.5 wt %, 0.7 wt %, 1 wt %, 1.5 wt %, based on the total weight of the positive electrode active material layer.
  • the weight percent of the organosilicon-containing additive adjacent to the surface of the positive electrode active material is about 5 wt % to about 50 wt %, based on the total weight of the organosilicon-containing additive. In some embodiments, the weight percentage of the organic silicon-containing additive adjacent to the surface of the positive electrode active material is 5 wt %, 10 wt %, 15 wt %, 20 wt %, 25 wt %, 30 wt %, based on the total weight of the organic silicon-containing additive , 35wt%, 40wt%, 45wt%, 50wt% or a range of any two of these values.
  • the positive active material includes at least one compound having the formula Li x Ni y Co z Mn k M q O ba Ta , wherein M is selected from at least one of the group consisting of: B, Mg, Al, Si, P, S, Ti, Cr, Fe, Co, Ni, Cu, Zn, Ga, Y, Zr, Mo, Ag, W, In, Sn, Pb, Sb and Ce, T is Halogen, and x, y, z, k, q, a, and b satisfy: 0.2 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 0 ⁇ k ⁇ 1, 0 ⁇ q ⁇ 1, 1 ⁇ b ⁇ 2 and 0 ⁇ a ⁇ 1.
  • the positive active material includes LiNi 0.83 Co 0.12 Mn 0.05 O 2 , LiNi 0.96 Co 0.02 Mn 0.02 O 2 , LiNiO 2 , LiCoO 2 , lithium iron phosphate (LiFePO 4 ), lithium manganate (LiMn 2 O 4 ) at least one.
  • the positive electrode active material layer further includes a conductive agent.
  • the conductive agent includes at least one of carbon nanotubes, carbon fibers, acetylene black, graphene, ketjen black, or carbon black.
  • the cathode active material layer further includes a binder.
  • the binder includes polyvinylidene fluoride, carboxymethyl cellulose, styrene-butadiene rubber, polyvinyl alcohol, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, carboxylated Polyvinyl chloride, polyvinyl fluoride, ethylene oxide-containing polymers, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, acrylated At least one of styrene-butadiene rubber, epoxy resin or nylon.
  • the current collector includes at least one of copper foil or aluminum foil.
  • the application provides a method for preparing a positive electrode, the method comprising:
  • step (1) includes the following steps: adding the binder into the solvent and stirring uniformly; adding a conductive agent and stirring uniformly; adding positive active material and stirring uniformly; adding organic silicon-containing additives and stirring uniformly.
  • step (1) includes the following steps: adding a binder into the solvent, and stirring evenly; adding an organic silicon-containing additive, and stirring evenly; adding a conductive agent, and stirring evenly; adding a positive electrode active material, and stirring evenly.
  • the air stability of lithium-ion electrode materials is poor.
  • the electrode materials are prone to side reactions with water and carbon dioxide in the air, resulting in performance deterioration. Therefore, in order to reduce the air sensitivity of lithium battery electrodes, the humidity in the air is required to be relatively high, generally less than 2%, and there are strict requirements on the transit time of the electrodes. Only under strict environmental control and process control can the electrodes of the battery be guaranteed to perform properly.
  • the present invention provides a positive electrode.
  • an organic silicon-containing additive is added to the slurry as a hydrophobic agent, so that the surfaces of the active material, the conductive agent and the binder in the active material layer are all bound with the hydrophobic agent. That is, the hydrophobic agent is bound to the surfaces of various materials on the surface of the positive electrode.
  • the entire positive electrode is made hydrophobic, and the hydrophobic surface area of the positive electrode can be greatly improved compared with the prior art, and the hygroscopicity of the entire positive electrode can be significantly reduced.
  • the embodiments of the present application provide a negative electrode.
  • the negative electrode includes a current collector and a negative electrode active material layer on the current collector.
  • the negative electrode active material layer includes the negative electrode material according to the present application.
  • the negative active material layer includes a binder.
  • binders include, but are not limited to: polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyfluoro Ethylene, ethylene oxide-containing polymers, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber, acrylated styrene-butadiene Rubber, epoxy or nylon.
  • the anode active material layer includes a conductive material.
  • the conductive material includes, but is not limited to: natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber, metal powder, metal fiber, copper, nickel, aluminum, silver, or polyphenylene derivative.
  • the current collector includes, but is not limited to, copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, or a conductive metal clad polymer substrate.
  • the negative electrode may be obtained by mixing an active material, a conductive material, and a binder in a solvent to prepare an active material composition, and coating the active material composition on a current collector.
  • the solvent may include, but is not limited to: deionized water, N-methylpyrrolidone.
  • the electrolyte includes an organic solvent, a lithium salt, and an additive.
  • the organic solvent of the electrolytic solution according to the present application may be any organic solvent that can be used as a solvent of the electrolytic solution.
  • the electrolyte used in the electrolytic solution according to the present application may be any electrolyte that can be used in the electrolytic solution.
  • the additive for the electrolyte according to the present application may be any additive that can be used as an additive for the electrolyte.
  • the organic solvent includes, but is not limited to: ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), propylene carbonate or ethyl propionate.
  • the lithium salt includes at least one of an organic lithium salt or an inorganic lithium salt.
  • the lithium salts include, but are not limited to: lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium difluorophosphate (LiPO 2 F 2 ), bistrifluoromethanesulfonimide Lithium LiN(CF 3 SO 2 ) 2 (LiTFSI), Lithium Bis(fluorosulfonyl)imide Li(N(SO 2 F) 2 )(LiFSI), Lithium Bisoxalate Borate LiB(C 2 O 4 ) 2 (LiBOB) ) or lithium difluorooxalate borate LiBF 2 (C 2 O 4 ) (LiDFOB).
  • LiPF 6 lithium hexafluorophosphate
  • LiBF 4 lithium tetrafluoroborate
  • LiPO 2 F 2 lithium difluorophosphate
  • LiPFSI bistrifluoromethanesulfonimide Lithium LiN(CF 3 SO
  • the concentration of the lithium salt in the electrolyte is: about 0.5 mol/L to about 3 mol/L, about 0.5 mol/L to about 2 mol/L, or about 0.8 mol/L to about 1.5 mol/L .
  • a separator is provided between the positive electrode and the negative electrode to prevent short circuits.
  • the material and shape of the separator that can be used in the present application are not particularly limited.
  • the separator includes a polymer or inorganic or the like formed from a material that is stable to the electrolyte of the present application.
  • the release film may include a substrate layer and a surface treatment layer.
  • the base material layer is a non-woven fabric, film or composite film with a porous structure, and the material of the base material layer is selected from at least one of polyethylene, polypropylene, polyethylene terephthalate and polyimide.
  • a polypropylene porous membrane, a polyethylene porous membrane, a polypropylene non-woven fabric, a polyethylene non-woven fabric or a polypropylene-polyethylene-polypropylene porous composite membrane can be selected.
  • At least one surface of the base material layer is provided with a surface treatment layer, and the surface treatment layer may be a polymer layer or an inorganic material layer, or a layer formed by mixing a polymer and an inorganic material.
  • the inorganic layer includes inorganic particles and a binder, and the inorganic particles are selected from aluminum oxide, silicon oxide, magnesium oxide, titanium oxide, hafnium oxide, tin oxide, ceria, nickel oxide, zinc oxide, calcium oxide, zirconium oxide, One or a combination of yttrium oxide, silicon carbide, boehmite, aluminum hydroxide, magnesium hydroxide, calcium hydroxide and barium sulfate.
  • the binder is selected from polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, polyamide, polyacrylonitrile, polyacrylate, polyacrylic acid, polyacrylate, polyvinylpyrrolidone, polyvinyl ether, One or a combination of polymethyl methacrylate, polytetrafluoroethylene and polyhexafluoropropylene.
  • the polymer layer contains a polymer, and the material of the polymer is selected from polyamide, polyacrylonitrile, acrylate polymer, polyacrylic acid, polyacrylate, polyvinylpyrrolidone, polyvinyl ether, polyvinylidene fluoride or polyvinylidene fluoride. At least one of (vinylidene fluoride-hexafluoropropylene).
  • the electronic device of the present application may be any device using the electrochemical device according to the present application.
  • the electronic devices include, but are not limited to: notebook computers, pen input computers, mobile computers, e-book players, portable telephones, portable fax machines, portable copiers, portable printers, headsets , VCR, LCD TV, Portable Cleaner, Portable CD Player, Mini CD, Transceiver, Electronic Notepad, Calculator, Memory Card, Portable Recorder, Radio, Backup Power, Motor, Automobile, motorcycle, Power-assisted Bicycle, Bicycle , lighting equipment, toys, game consoles, clocks, power tools, flashes, cameras, large household batteries or lithium-ion capacitors, etc.
  • lithium ion batteries The preparation of lithium ion batteries is described below by taking lithium ion batteries as an example and in conjunction with specific embodiments. Those skilled in the art will understand that the preparation methods described in this application are only examples, and any other suitable preparation methods are included in the scope of this application. within the range.
  • the preparation method of the positive electrode slurry is as follows:
  • the binder polyvinylidene fluoride, the conductive agent and the positive electrode active material are added into the solvent N-methylpyrrolidone (NMP) according to a certain weight ratio, and the mixture is stirred evenly to obtain the positive electrode slurry.
  • NMP N-methylpyrrolidone
  • the binder is added to the solvent, and stirred evenly; the organic silicon-containing additive is added, and the stirring is uniform; the conductive agent is added, and the stirring is uniform; the positive electrode active material is added to the obtained mixture, and the positive electrode slurry is obtained by stirring uniformly.
  • the binder is added to the solvent, and stirred evenly; the conductive agent is added, and the stirring is uniform; the positive electrode active material is added, and the stirring is uniform; and the organic silicon-containing additive is added to the obtained mixture, and the mixture is uniformly stirred to obtain a positive electrode slurry.
  • a polyethylene (PE) porous polymeric film is used as the separator.
  • the positive electrode, the separator and the negative electrode are stacked in sequence, so that the separator is in the middle of the positive electrode and the negative electrode for isolation.
  • a bare cell is obtained by winding. Put the bare cell in the outer package, inject the electrolyte, and package it.
  • the lithium-ion battery is obtained through the process of formation, degassing, trimming and other processes.
  • Table 1 shows the types and parts by weight of various substances in the preparation process of the positive electrode slurry in each of the comparative examples and examples.
  • W 1 The values of W 1 at 100 different locations of the positive electrode were tested, and the average value W 2 was calculated.
  • W2 was defined as the weight percent of the organosilicon - containing additive adjacent to the surface of the positive active material in the entire positive electrode.
  • the positive electrode was first dried, then deionized water was added dropwise on the positive electrode at 25°C, and the contact angle between the positive electrode and water was tested with a contact angle measuring instrument.
  • the left graph in FIG. 3 shows the test results of the contact angle between the positive electrode and the electrolyte in Example 6; and the right graph in FIG. 3 shows the contact angle test results between the positive electrode and water in Example 6.
  • the positive electrode was washed with dimethyl carbonate solvent, it was dried at 85 °C for 12 h.
  • the dried cathodes were then stored in static air at 25° C. and 45% humidity for 20 days.
  • the powder material scraped from the surface of the positive electrode was placed in a thermogravimetric crucible, and 20 ml/min of N 2 was introduced.
  • the heating rate was 10°C/min, the temperature was raised to 170°C, and the temperature was kept for 60 minutes, and then the temperature was continued to rise to 300°C, and the temperature was kept for 60 minutes.
  • the weight loss was recorded during the heating process and the gas composition was detected by mass spectrometry, and the water content was calculated based on the total weight of the positive electrode.
  • the left picture in Figure 2 shows the TG-MS test results of the positive electrode in Example 1 after being stored in a static air environment of 45% constant temperature and humidity for 20 days; and the right picture in Figure 2 shows the positive electrode in Comparative Example 1 at TG-MS results after storage in 45% constant temperature and humidity static air environment for 20 days.
  • FIG. 4 shows changes in carbonate content when the cathodes in Comparative Example 6 and Example 15 are stored in a static air environment with a constant temperature and humidity of 45%.
  • test conditions are: 25° C., pressure: 0.3t, test area: 3cm 2 , the test waits for 10s, and the resistance of the positive electrode is recorded.
  • the upper image in FIG. 1 shows the Fourier transform infrared (FTIR) spectrum of the positive electrode after the lithium-ion battery in Comparative Example 1 is formed; and the lower image in FIG. 1 shows the lithium-ion battery in Example 1.
  • FTIR Fourier transform infrared
  • the positive electrode after being stored at 45% humidity for 20 days was placed in a vacuum oven, the vacuum degree was set to -90KPa, the baking temperature was 85°C, and the baking time was 12h.
  • the powder under the test was placed in a Karl Fischer moisture meter to test the water content, and the water loss rate was the difference between the moisture before and after baking/the initial moisture content.
  • Table 2 shows the relevant performance test results of each comparative example and embodiment.
  • the positive electrode was exposed to air at 25°C and 45% humidity for 3 days to prepare a lithium-ion battery, and the thickness expansion rate and capacity retention rate were tested.
  • the test methods are as follows:
  • Table 3 shows the test results of the thickness expansion ratio and the capacity retention ratio of the lithium ion batteries in each of the comparative examples and examples.

Abstract

电化学装置及包含其的电子装置。电化学装置包括负极、隔离膜、电解液和正极,正极包括正极集流体和正极活性材料层,正极活性材料层包含正极活性材料,正极经过碳酸二甲酯溶剂洗涤后,在85℃烘干12h,在25℃和45%恒湿度静态空气中存储20天后,根据热重质谱联用测试,在25℃-170℃范围内失重量小于0.3%。正极具有提高的疏水面积,从而提高了正极的疏水性能。在湿度较高的环境下转运和操作时,正极的吸水性显著降低,从而显著降低了电极转运和储存的成本。

Description

电化学装置及包含其的电子装置 技术领域
本申请涉及储能领域,具体涉及一种电化学装置及包含其的电子装置,特别是锂离子电池。
背景技术
随着消费电子类的产品如笔记本电脑、手机、平板电脑、移动电源和无人机等的普及,对其中的电化学装置的要求越来越严格。例如,不仅要求电池轻便,而且还要求电池拥有高容量和较长的工作寿命。锂离子电池凭借其具有能量密度高、安全性高、无记忆效应和工作寿命长等突出的优点已经在市场上占据主流地位。
锂离子电池高镍三元正极材料的理论比容量高,安全性能高,相对于锂电极的电势约为4.3V,有希望成为新一代的锂离子电池正极材料。然而,锂离子电池高镍三元正极材料表面结构不稳定。一方面在浆料配制过程中,高镍三元正极材料易吸收水分和二氧化碳,浆料粘度反弹剧烈,造成无法正常涂布。另一方面,电极中的高镍材料容易在吸收水分的同时也会吸收空气中的二氧化碳,导致表面附着一层非电化学活性的碳酸氢盐、碳酸盐和碱式碳酸盐。在形成碳酸盐的同时,体相活性锂也会损失,导致电池性能急剧下降,造成电池质量异常波动。由此可见,提高高镍三元正极材料和正极的空气稳定性变得至关重要。
发明内容
本申请提供了一种电化学装置,以试图在至少某种程度上解决至少一种存在于相关领域中的问题。本申请还提供了使用包含该电化学装置的电子装置。
在一个实施例中,本申请提供了一种电化学装置,所述电化学装置包括负极、隔离膜、电解液和正极,所述正极包括正极集流体和正极活性材料层,所述正极活性材料层包含正极活性材料,所述正极经过碳酸二甲酯溶剂洗涤后,在85℃烘干12h,在25℃和45%恒湿度静态空气中存储20天后,根据热重质谱联用测试,在25℃至170℃范围内失重量小于0.3%。
在一些实施例中,所述正极经过碳酸二甲酯溶剂洗涤后,在85℃烘干12h,在25℃和45%恒湿度静态空气中存储20天后,根据热重质谱联用测试,在170℃至300℃范围内失重量小于10%。
在一些实施例中,所述正极活性材料层对水的接触角为100°至160°。
在一些实施例中,所述正极活性材料层对所述电解液的接触角为10°至60°。
在一些实施例中,根据傅里叶转换红外线光谱测试,所述正极活性材料层在900cm -1至1100cm -1范围内具有至少一个吸收峰。
在一些实施例中,所述正极活性材料层包含有机含硅添加剂,所述有机含硅添加剂包括至少一种具有式(R 1)m-Si-(R 2)n的化合物,其中
R 1、R 2各自独立地选自取代或未取代的C 1-20烷基、取代或未取代的C 1-20烯基、取代或未取代的C 1-20烷氧基、取代或未取代的R a-O-R b-基团、胺基、-OH或其任意组合,
R a选自取代或未取代的C 1-20烷基、取代或未取代的C 1-20烯基或其任意组合,
R b选自取代或未取代的C 1-20亚烷基、亚胺基、取代或未取代的C 1-20亚烯基或其任意组合,
m=1至3,以及
n=1至3;并且
其中,R 1和R 2中的至少一个的碳原子数≥5;
取代时,取代基为卤素、含杂原子基团中的至少一种;所述杂原子包括B、N、O、Si、P、S中的至少一种。
在一些实施例中,所述有机含硅添加剂包含CH 3(CH 2) 15Si(OCH 3) 3、CH 3(CH 2) 10Si(OCH 3) 3、CH 3(CH 2) 7Si(OCH 3) 3、CH 3(CH 2) 11Si(OCH 3) 3、NH 2(CH 2) 2NH(CH 2) 3Si(OCH 3) 3、NH 2(CH 2) 2NH(CH 2) 3Si(OC 2H 5) 3、CH 3OCH 2CH 2O(CH 2) 3Si(OCH 3) 3、CH 3OCH 2CH 2O(CH 2) 3Si(OC 2H 5) 3中的至少一种。
在一些实施例中,基于所述正极活性材料层的总重量,所述有机含硅添加剂的含量为0.08wt%至5wt%。
在一些实施例中,基于所述有机含硅添加剂的总重量,邻近所述正极活性材料表面的有机含硅添加剂的重量百分比为5wt%至50wt%。
在一些实施例中,所述正极活性材料包括至少一种具有式Li xNi yCo zMn kM qO b-aT a的 化合物,其中,M选自由以下组成的群组中的至少一种:B、Mg、Al、Si、P、S、Ti、Cr、Fe、Co、Ni、Cu、Zn、Ga、Y、Zr、Mo、Ag、W、In、Sn、Pb、Sb和Ce,T为卤素,并且x、y、z、k、q、a和b分别满足:0.2<x≤1.2、0<y≤1、0≤z≤1、0≤k≤1、0≤q≤1、1≤b≤2以及0≤a≤1。
在一些实施例中,0.9<x≤1.2、0.6<y≤1、0≤z≤0.3。
在另一个实施例中,本申请提供一种电子装置,其包括根据本申请的实施例所述的电化学装置。
在锂离子电池的制备过程中,锂离子正极材料由于其较强的敏感性容易与空气中的水分和二氧化碳发生副反应。导致性能恶化。本发明的目的在于提供一种正极及其制备方法,旨在解决现有技术中锂离子电池的正极浆料和正极的空气敏感性问题。本申请提供的正极具有提高的疏水面积,从而提高了正极的疏水性能。在湿度较高的环境下转运和操作时,该正极的吸水性显著降低,从而显著降低了电极转运和储存的成本。
本申请实施例的额外层面及优点将部分地在后续说明中描述和显示,或是经由本申请实施例的实施而阐释。
附图说明
在下文中将简要地说明为了描述本申请实施例或现有技术所必要的附图以便于描述本申请的实施例。显而易见地,下文描述中的附图仅只是本申请中的部分实施例。对本领域技术人员而言,依然可以根据这些附图中所例示的结构来获得其他实施例的附图。
图1中的上图示出了对比例1中锂离子电池化成后,正极的傅里叶转换红外线光谱(FTIR)测试的谱图;且图1中的下图示出了实施例1中锂离子电池化成后,正极的傅里叶转换红外线光谱(FTIR)测试的谱图;。
图2中的左图示出了实施例1中的正极在45%恒温恒湿静态空气环境存储20天后TG-MS结果;且图2中的右图示出了对比例1中的正极在45%恒温恒湿静态空气环境存储20天后TG-MS结果。
图3中的左图示出了实施例6中的正极与电解液的接触角测试结果;且图3中的右图示出了实施例6中的正极与水的接触角测试结果。
图4示出了对比例6和实施例15中的正极在45%恒温恒湿静态空气环境中存储时 碳酸根含量的变化。
图5示出了实施例1及对比例1中的正极在45%湿度下存储时含水量的变化以及存储20天后,烘烤后的失水率。
图6示出了实施例2中正极中邻近正极活性材料表面的有机含硅添加剂含量的能量弥散X射线探测器(EDX)测试图片。
具体实施方式
本申请的实施例将会被详细的描示在下文中。本申请的实施例不应该被解释为对本申请的限制。
有时在本文中以范围格式呈现量、比率和其它数值。应理解,此类范围格式是用于便利及简洁起见,且应灵活地理解,不仅包含明确地指定为范围限制的数值,而且包含涵盖于所述范围内的所有个别数值或子范围,如同明确地指定每一数值及子范围一般。
在具体实施方式及权利要求书中,由术语“中的一者”、“中的一个”、“中的一种”或其他相似术语所连接的项目的列表可意味着所列项目中的任一者。例如,如果列出项目A及B,那么短语“A及B中的一者”意味着仅A或仅B。在另一实例中,如果列出项目A、B及C,那么短语“A、B及C中的一者”意味着仅A;仅B;或仅C。项目A可包含单个元件或多个元件。项目B可包含单个元件或多个元件。项目C可包含单个元件或多个元件。
在具体实施方式及权利要求书中,由术语“中的至少一者”、“中的至少一个”、“中的至少一种”或其他相似术语所连接的项目的列表可意味着所列项目的任何组合。例如,如果列出项目A及B,那么短语“A及B中的至少一者”意味着仅A;仅B;或A及B。在另一实例中,如果列出项目A、B及C,那么短语“A、B及C中的至少一者”意味着仅A;或仅B;仅C;A及B(排除C);A及C(排除B);B及C(排除A);或A、B及C的全部。项目A可包含单个元件或多个元件。项目B可包含单个元件或多个元件。项目C可包含单个元件或多个元件。
一、电化学装置
在一些实施例中,本申请提供了一种电化学装置,所述电化学装置包括负极、隔离膜、 电解液和正极。
所述电化学装置包括发生电化学反应的任何装置。
在一些实施例中,本申请的电化学装置包括,但不限于:所有种类的一次电池、二次电池、燃料电池、太阳能电池或电容。
在一些实施例中,所述电化学装置是锂二次电池。
在一些实施例中,锂二次电池包括,但不限于:锂金属二次电池、锂离子二次电池、锂聚合物二次电池或锂离子聚合物二次电池。
正极
在一些实施例中,所述正极包括正极集流体和正极活性材料层,所述正极活性材料层包含正极活性材料,所述正极经过碳酸二甲酯溶剂洗涤后,85℃烘干12h,在25℃和45%恒湿度静态空气中存储20天后,根据热重质谱联用测试,在约25℃至约170℃范围内失重量小于0.3%。
在一些实施例中,所述正极经过碳酸二甲酯溶剂洗涤后,85℃烘干12h,在25℃和45%恒湿度静态空气中存储20天后,根据热重质谱联用测试,在约170℃至约300℃范围内失重量小于10%。在一些实施例中,所述正极经过碳酸二甲酯溶剂洗涤后,85℃烘干12h,在25℃和45%恒湿度静态空气中存储20天后,根据热重质谱联用测试,在约170℃至约300℃范围内失重量小于9%、小于8%、小于7%、小于6%、小于5%、小于4%、小于3%、小于2%或小于1%。
在一些实施例中,所述正极活性材料层对水的接触角为约100°至约160°。在一些实施例中,所述正极活性材料层对水的接触角为100°、110°、120°、130°、140°、150°、160°或这些数值中任意两者组成的范围。
在一些实施例中,所述正极活性材料层对所述电解液的接触角为约10°至约60°。在一些实施例中,所述正极活性材料层对所述电解液的接触角为10°、20°、30°、40°、50°、60°或这些数值中任意两者组成的范围。
在一些实施例中,根据傅里叶转换红外线光谱测试,所述正极活性材料层在约900cm -1至约1100cm -1范围内具有至少一个吸收峰。
在一些实施例中,所述正极活性材料层包含有机含硅添加剂,所述有机含硅添加剂包括至少一种具有式(R 1)m-Si-(R 2)n的化合物,其中
R 1、R 2各自独立地选自取代或未取代的C 1-20烷基、取代或未取代的C 1-20烯基、取代或未取代的C 1-20烷氧基、取代或未取代的R a-O-R b-基团、-OH或其任意组合,
R a选自取代或未取代的C 1-20烷基、取代或未取代的C 1-20烯基或其组合,
R b选自取代或未取代的C 1-20亚烷基、亚胺基、取代或未取代的C 1-20亚烯基或其组合,
m=1至3,以及
n=1至3;并且
其中,R 1和R 2中的至少一个的碳原子数≥5;
取代时,取代基为卤素、含杂原子基团中的至少一种;所述杂原子包括B、N、O、Si、P、S中的至少一种。
在一些实施例中,R 1、R 2各自独立地选自取代或未取代的C 1-15烷基、取代或未取代的C 1-15烯基、取代或未取代的C 1-15烷氧基、取代或未取代的R a-O-R b-基团、胺基、-OH或其任意组合,
R a选自取代或未取代的C 1-15烷基、取代或未取代的C 1-15烯基或其任意组合,
R b选自取代或未取代的C 1-15亚烷基、亚胺基、取代或未取代的C 1-15亚烯基或其任意组合,
m=1至3,以及
n=1至3;并且
其中,R 1和R 2中的至少一个的碳原子数≥5;
取代时,取代基为卤素、含杂原子基团中的至少一种;所述杂原子包括B、N、O、Si、P、S中的至少一种。
在一些实施例中,含杂原子基团包括胺基、硝基、氰基、烷氧基或其任意组合。
在一些实施例中,所述有机含硅添加剂包含CH 3(CH 2) 15Si(OCH 3) 3、CH 3(CH 2) 10Si(OCH 3) 3、CH 3(CH 2) 7Si(OCH 3) 3、CH 3(CH 2) 11Si(OCH 3) 3、NH 2(CH 2) 2NH(CH 2) 3Si(OCH 3) 3、NH 2(CH 2) 2NH(CH 2) 3Si(OC 2H 5) 3、CH 3OCH 2CH 2O(CH 2) 3Si(OCH 3) 3、CH 3OCH 2CH 2O(CH 2) 3Si(OC 2H 5) 3中的至少一种。
在一些实施例中,所述有机含硅添加剂包含CH 3(CH 2) 15Si(OCH 3) 3、CH 3(CH 2) 10Si(OCH 3) 3、CH 3(CH 2) 7Si(OCH 3) 3、CH 3(CH 2) 11Si(OCH 3) 3中的至少一种。
在一些实施例中,基于所述正极活性材料层的总重量,所述有机含硅添加剂的含量为约0.08wt%至约5wt%。在一些实施例中,基于所述正极活性材料层的总重量,所述 有机含硅添加剂的含量为0.08wt%、0.1wt%、0.2wt%、0.5wt%、0.7wt%、1wt%、1.5wt%、2wt%、2.5wt%、3wt%、3.5wt%、4wt%、4.5wt%、5wt%或这些数值中任意两者组成的范围。
在一些实施例中,基于所述有机含硅添加剂的总重量,邻近所述正极活性材料表面的有机含硅添加剂的重量百分比为约5wt%至约50wt%。在一些实施例中,基于所述有机含硅添加剂的总重量,邻近所述正极活性材料表面的有机含硅添加剂的重量百分比为5wt%、10wt%、15wt%、20wt%、25wt%、30wt%、35wt%、40wt%、45wt%、50wt%或这些数值中任意两者组成的范围。
在一些实施例中,所述正极活性材料包括至少一种具有式Li xNi yCo zMn kM qO b-aT a的化合物,其中,M选自由以下组成的群组中的至少一种:B、Mg、Al、Si、P、S、Ti、Cr、Fe、Co、Ni、Cu、Zn、Ga、Y、Zr、Mo、Ag、W、In、Sn、Pb、Sb和Ce,T为卤素,并且x、y、z、k、q、a和b分别满足:0.2<x≤1.2、0<y≤1、0≤z≤1、0≤k≤1、0≤q≤1、1≤b≤2以及0≤a≤1。
在一些实施例中,0.9<x≤1.2、0.6<y≤1、0≤z≤0.3。
在一些实施例中,所述正极活性材料包括LiNi 0.83Co 0.12Mn 0.05O 2、LiNi 0.96Co 0.02Mn 0.02O 2、LiNiO 2、LiCoO 2、磷酸亚铁锂(LiFePO 4)、锰酸锂(LiMn 2O 4)中的至少一种。
在一些实施例中,所述正极活性材料层进一步包括导电剂。在一些实施例中,所述导电剂包括碳纳米管、碳纤维、乙炔黑、石墨烯、科琴黑或碳黑中的至少一种。
在一些实施例中,所述正极活性材料层进一步包括粘结剂。在一些实施例中,所述粘结剂包括聚偏氟乙烯、羧甲基纤维素、丁苯橡胶、聚乙烯醇、羟丙基纤维素、二乙酰基纤维素、聚氯乙烯、羧化的聚氯乙烯、聚氟乙烯、含亚乙基氧的聚合物、聚乙烯吡咯烷酮、聚氨酯、聚四氟乙烯、聚偏1,1-二氟乙烯、聚乙烯、聚丙烯、丙烯酸(酯)化的丁苯橡胶、环氧树脂或尼龙中至少一种。
在一些实施例中,所述集流体包括铜箔或铝箔中的至少一种。
在一些实施例中,本申请提供了一种制备正极的方法,所述方法包括:
(1)将粘结剂、导电剂、正极活性材料和有机含硅添加剂加入溶剂中,混合均匀,获得正极浆料;和
(2)将正极浆料涂覆在铝箔上,干燥、滚压即获得正极。
在一些实施例中,步骤(1)包括如下步骤:将粘结剂加入到溶剂中,搅拌均匀;加入导电剂,搅拌均匀;加入正极活性材料,搅拌均匀;加入有机含硅添加剂,搅拌均匀。
在一些实施例中,步骤(1)包括如下步骤:将粘结剂加入到溶剂中,搅拌均匀;加入有机含硅添加剂,搅拌均匀;加入导电剂,搅拌均匀;加入正极活性材料,搅拌均匀。
锂离子电极材料的空气稳定性较差,在制备锂离子电池过程中,电极材料容易与空气中的水和二氧化碳发生副反应,从而导致性能恶化。因此,为了降低锂电池电极的空气敏感程度,对空气中的湿度要求较高,一般要求湿度小于2%,而且对电极的转运时间有严格要求。只有在严格的环境控制和工艺控制下才能保证电池的电极发挥正常的性能。
然而,严格控制环境空气湿度和转运时间存在如下几点问题:1)维持较低空气湿度一般需要配备大功率的除湿机或干燥风循环系统,设备的运营维护成本和折旧费用非常高;和2)除湿系统对于电力系统要求较高,电池厂每年花费在除湿系统的电费运行成本巨大,这增加了电池的制造成本。
本发明提供了一种正极,在其制备过程中通过在浆料中添加有机含硅添加剂作为疏水剂,使活性材料层中的活性材料、导电剂和粘结剂的表面均结合有疏水剂,即该疏水剂结合在正极表面上各种材料的表面。将该浆料均匀涂覆在集流体上后,使整个正极都具有疏水性,相对于现有技术可以大大提高正极的疏水表面积,使整个正极的吸湿性显著降低。在湿度较高的环境条件下,可以防止正极在转运和操作过程中吸水过多导致后续加工性能变差,从而确保了正极的固有性能,降低了储存转运成本,同时避免了对锂离子电池性能的影响。
负极
本申请实施例提供了一种负极。所述负极包括集流体和位于该集流体上的负极活性材料层。所述负极活性材料层包括根据本申请的负极材料。
在一些实施例中,负极活性材料层包括粘合剂。在一些实施例中,粘合剂包括,但不限于:聚乙烯醇、羧甲基纤维素、羟丙基纤维素、二乙酰基纤维素、聚氯乙烯、羧化的聚氯乙 烯、聚氟乙烯、含亚乙基氧的聚合物、聚乙烯吡咯烷酮、聚氨酯、聚四氟乙烯、聚偏1,1-二氟乙烯、聚乙烯、聚丙烯、丁苯橡胶、丙烯酸(酯)化的丁苯橡胶、环氧树脂或尼龙。
在一些实施例中,负极活性材料层包括导电材料。在一些实施例中,导电材料包括,但不限于:天然石墨、人造石墨、碳黑、乙炔黑、科琴黑、碳纤维、金属粉、金属纤维、铜、镍、铝、银或聚亚苯基衍生物。
在一些实施例中,集流体包括,但不限于:铜箔、镍箔、不锈钢箔、钛箔、泡沫镍、泡沫铜或覆有导电金属的聚合物基底。
在一些实施例中,负极可以通过如下方法获得:在溶剂中将活性材料、导电材料和粘合剂混合,以制备活性材料组合物,并将该活性材料组合物涂覆在集流体上。
在一些实施例中,溶剂可以包括,但不限于:去离子水、N-甲基吡咯烷酮。
电解液
在一些实施例中,所述电解液包括有机溶剂、锂盐和添加剂。根据本申请的电解液的有机溶剂可为任何可作为电解液的溶剂的有机溶剂。根据本申请的电解液中使用的电解质可为任何可用于电解液的电解质。根据本申请的电解液的添加剂可为任何可作为电解液添加剂的添加剂。
在一些实施例中,所述有机溶剂包括,但不限于:碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)、碳酸二甲酯(DMC)、碳酸亚丙酯或丙酸乙酯。
在一些实施例中,所述锂盐包括有机锂盐或无机锂盐中的至少一种。
在一些实施例中,所述锂盐包括,但不限于:六氟磷酸锂(LiPF 6)、四氟硼酸锂(LiBF 4)、二氟磷酸锂(LiPO 2F 2)、双三氟甲烷磺酰亚胺锂LiN(CF 3SO 2) 2(LiTFSI)、双(氟磺酰)亚胺锂Li(N(SO 2F) 2)(LiFSI)、双草酸硼酸锂LiB(C 2O 4) 2(LiBOB)或二氟草酸硼酸锂LiBF 2(C 2O 4)(LiDFOB)。
在一些实施例中,所述电解液中锂盐的浓度为:约0.5mol/L至约3mol/L、约0.5mol/L至约2mol/L或约0.8mol/L至约1.5mol/L。
隔离膜
在一些实施例中,正极与负极之间设有隔离膜以防止短路。可用于本申请的隔离膜的材 料和形状没有特别限制。在一些实施例中,隔离膜包括由对本申请的电解液稳定的材料形成的聚合物或无机物等。
例如,隔离膜可包括基材层和表面处理层。基材层为具有多孔结构的无纺布、膜或复合膜,基材层的材料选自聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯和聚酰亚胺中的至少一种。具体的,可选用聚丙烯多孔膜、聚乙烯多孔膜、聚丙烯无纺布、聚乙烯无纺布或聚丙烯-聚乙烯-聚丙烯多孔复合膜。
基材层的至少一个表面上设置有表面处理层,表面处理层可以是聚合物层或无机物层,也可以是混合聚合物与无机物所形成的层。
无机物层包括无机颗粒和粘结剂,无机颗粒选自氧化铝、氧化硅、氧化镁、氧化钛、二氧化铪、氧化锡、二氧化铈、氧化镍、氧化锌、氧化钙、氧化锆、氧化钇、碳化硅、勃姆石、氢氧化铝、氢氧化镁、氢氧化钙和硫酸钡中的一种或几种的组合。粘结剂选自聚偏氟乙烯、偏氟乙烯-六氟丙烯的共聚物、聚酰胺、聚丙烯腈、聚丙烯酸酯、聚丙烯酸、聚丙烯酸盐、聚乙烯呲咯烷酮、聚乙烯醚、聚甲基丙烯酸甲酯、聚四氟乙烯和聚六氟丙烯中的一种或几种的组合。
聚合物层中包含聚合物,聚合物的材料选自聚酰胺、聚丙烯腈、丙烯酸酯聚合物、聚丙烯酸、聚丙烯酸盐、聚乙烯呲咯烷酮、聚乙烯醚、聚偏氟乙烯或聚(偏氟乙烯-六氟丙烯)中的至少一种。
电子装置
本申请的电子装置可为任何使用根据本申请的电化学装置的装置。
在一些实施例中,所述电子装置包括,但不限于:笔记本电脑、笔输入型计算机、移动电脑、电子书播放器、便携式电话、便携式传真机、便携式复印机、便携式打印机、头戴式立体声耳机、录像机、液晶电视、手提式清洁器、便携CD机、迷你光盘、收发机、电子记事本、计算器、存储卡、便携式录音机、收音机、备用电源、电机、汽车、摩托车、助力自行车、自行车、照明器具、玩具、游戏机、钟表、电动工具、闪光灯、照相机、家庭用大型蓄电池或锂离子电容器等。
下面以锂离子电池为例并且结合具体的实施例说明锂离子电池的制备,本领域的技术人员将理解,本申请中描述的制备方法仅是实例,其他任何合适的制备方法均在本申请的范围内。
实施例
以下说明根据本申请的锂离子电池的实施例和对比例进行性能评估。
一、锂离子电池的制备
正极的制备
(1)将一定重量比的粘结剂聚偏氟乙烯(PVDF)、有机含硅添加剂、导电剂导电炭黑(Super P)和正极活性材料制备成正极浆料;
(2)调节正极浆料的粘度至约3000mPas至约6000mPas,将混合好的浆料均匀涂覆在铝箔上,涂覆单层厚度为40μm,双层涂覆;干燥后进行辊压制成所需电极,电极加工和转运环境湿度45%。其中,涂布电极面密度为14mg/cm 2;正极放置恒温恒湿度环境吸湿性对比效果检测,放置后的正极与石墨负极组装成3.5Ah软包电池进行电池性能测试。
其中正极浆料的制备方法如下所述:
对比例1至3和5-8
将粘结剂聚偏氟乙烯、导电剂和正极活性材料按照一定重量比加入溶剂N-甲基吡咯烷酮(NMP)中,搅拌均匀,即得正极浆料。
对比例4
向正极活性材料中加入有机含硅添加剂,用高速分散机分散,得到表面包覆有有机含硅添加剂的正极活性材料;向表面包覆有有机含硅添加剂的正极活性材料中加入导电剂、粘结剂和溶剂,搅拌均匀,即得正极浆料。
实施例1
将粘结剂加入到溶剂中,搅拌均匀;加入有机含硅添加剂,搅拌均匀;加入导电剂,搅拌均匀;再向获得的混合物中加入正极活性材料,搅拌均匀,即得正极浆料。
实施例218
将粘结剂加入到溶剂中,搅拌均匀;加入导电剂,搅拌均匀;加入正极活性材料,搅拌均匀;再向获得的混合物中加入有机含硅添加剂,搅拌均匀,即得正极浆料。
对比例9
步骤同实施例2,区别仅在于加入的有机含硅添加剂种类不同。
负极的制备
将人造石墨、丁苯橡胶和粘结剂(羧甲基纤维素钠,CMC)按照96%:2%:2%的质量比与去离子水混合,搅拌均匀,得到负极浆料。将该负极浆料涂布在12μm厚的铜箔上。干燥,冷压,再经过裁片、焊接极耳,得到负极。
电解液的制备
在干燥氩气环境下,在碳酸丙烯酯(PC),碳酸乙烯酯(EC),碳酸二乙酯(DEC)(重量比1:1:1)混合而成的溶剂中,加入LiPF 6混合均匀得到电解液,其中LiPF 6的浓度为1.15mol/L。
隔离膜的制备
以聚乙烯(PE)多孔聚合薄膜作为隔离膜。
锂离子电池的制备
将正极、隔离膜、负极按顺序叠好,使隔离膜处于正极和负极中间以起到隔离的作用。卷绕得到裸电芯。将裸电芯置于外包装中,注入电解液,封装。经过化成、脱气、切边等工艺流程得到锂离子电池。
表1示出了各对比例和实施例中正极浆料制备过程中各物质种类和重量份数。
表1
Figure PCTCN2020121860-appb-000001
Figure PCTCN2020121860-appb-000002
“—”代表未添加该物质
二、测试方法
1、有机含硅添加剂分布测试:
采用SEM-EDX测试正极中有机含硅添加剂分布情况。首先在SEM-EDX图片中选取200μm×200μm大小的面积,测试整个面积内Si原子的数目N 1;然后在该面积内测试距离活性正极材料表面1μm范围内的Si原子的个数N 2。该面积内有机含硅添加剂邻近正极活性材料表面的重量百分比W 1=N 2/N 1
测试正极的100个不同位置处的W 1值,计算其平均值W 2。将W 2定义为整个正极中有机含硅添加剂邻近正极活性材料表面的重量百分比。
2、接触角测试:
正极与水的接触角测试
首先将正极烘干,然后在25℃下将去离子水滴加在正极上,用接触角测量仪器测试正极与水的接触角。
正极与电解液的接触角测试
将EC、PC和DEC(重量比1:1:1)混合,加入LiPF 6,混合均匀后获得电解液,其中LiPF 6浓度为1.5mol/L;将该电解液滴加在正极,用接触角测量仪器测试正极与电解液的接触角。
图3中的左图示出了实施例6中的正极与电解液的接触角测试结果;且图3中的右图示出了实施例6中的正极与水的接触角测试结果。
3、热重质谱联用(TG-MS)测试:
将正极经过碳酸二甲酯溶剂洗涤后,在85℃烘干12h。然后将烘干后的正极在25℃和45%恒湿度静态空气中存储20天。将从正极表面刮下的粉体材料放置于热重坩埚中,通入20ml/min的N 2。升温速度为10℃/分钟,升温到170℃,保温60分钟,然后继续升温至300℃,保温60分钟。升温过程中记录失重并且通过质谱检测气体成分,含水量是基于正极的总重量计算得到。
图2中的左图示出了实施例1中的正极在45%恒温恒湿静态空气环境存储20天后TG-MS测试结果;且图2中的右图示出了对比例1中的正极在45%恒温恒湿静态空气环境存储20天后TG-MS结果。
4、扣式电池测试:
将烘干后的双面正极的一面用N-甲基吡咯烷酮(NMP)清洗干净,85℃真空烘烤2h,取出正极冲好2025扣式电池所需的小圆片,按照泡沫镍,锂片,隔离膜,正极圆片,组装成扣式电池,注入50微升的电解液,电解液的组成EC:PC:DEC=1:1:1,且LiPF6的浓度为1.15mol/L。组装好的扣式电池在约2.7至约4.3V截至电压下,在25℃条件下,0.1C电流充放电,测试其克容量。
5、碳酸根(CO 3 2-)含量测试:
将正极用0.1mol/L的稀盐酸浸泡,并且加热至120℃,同时通入N 2做为载气将产生的气体通入气相色谱(GC),通过GC测试出生成的二氧化碳的含量,通过生成的二氧化碳的量计算出正极中碳酸根的含量,碳酸根含量是基于正极的总重量计算得到。
图4示出了对比例6和实施例15中的正极在45%恒温恒湿静态空气环境中存储时碳酸根含量的变化。
6、电阻测试:
将正极放置在电极电阻仪器上测试。测试条件为:25℃,压力:0.3t,测试面积:3cm 2,测试等待10s,记录下正极的电阻。
7、傅里叶转换红外线光谱测试:
将约1mg至约2mg从正极表面刮下的粉体材料与200mg纯KBr混合均匀,研细,置于模具中,用5×10 7Pa压力在油压机上压成透明薄片,即可用于FTIR测试。
图1中的上图示出了对比例1中锂离子电池化成后,正极的傅里叶转换红外线光谱 (FTIR)谱图;且图1中的下图示出了实施例1中锂离子电池化成后,正极的傅里叶转换红外线光谱(FTIR)测试的谱图;。
8、正极烘烤后失水率测试:
将在45%湿度存储20天后的正极放置于真空烘箱中,设置真空度为-90KPa,烘烤温度为85℃,烘烤时间为12h,烘烤后将正极活性材料层刮下,取1g刮下的粉体,放置于卡尔费休水分仪器中测试水含量,失水率为烘烤前后水分差值/初始水分含量。
表2示出了各对比例和实施例的相关性能测试结果。
表2
Figure PCTCN2020121860-appb-000003
Figure PCTCN2020121860-appb-000004
由以上测试结果可以看出,本申请通过在正极浆料中加入有机硅添加剂,使正极的吸水性以及与空气中二氧化碳的副反应明显降低,并且电阻增长率和容量衰减率均明显降低。
从实施例1和2的测试结果还可以看出,相比于有机含硅添加剂邻近正极活性材料表面的重量百分比为10wt%的正极相比,当有机含硅添加剂邻近正极活性材料表面的重量百分比为30wt%时,正极的吸水性、与空气中二氧化碳的副反应明显降低、电阻增长率和容量衰减率均进一步降低。
三、将正极在25℃和45%湿度的空气下暴露3天后制备成锂离子电池,并对其进行厚度膨胀率和容量保持率测试,其中测试方法如下所示:
A、厚度膨胀率测试方法:
将电池用两个硬质金属片夹紧,用千分尺测试金属板两侧厚度变化。
B、25℃循环容量保持率测试方法:
采用1.5C充电电流,4C放电电流进行测量。
C、45℃循环容量保持率测试方法:采用1.5C充电电流,4C放电电流进行测量。
表3示出了各对比例和实施例中锂离子电池的厚度膨胀率和容量保持率的测试结果。
表3
Figure PCTCN2020121860-appb-000005
Figure PCTCN2020121860-appb-000006
由以上测试结果可以看出,本申请通过在正极浆料中加入有机硅添加剂,使正极的吸水性以及与空气中二氧化碳的副反应明显降低,从而使由本申请正极制备的锂离子电池的厚度膨胀率明显降低,且容量保持率增加。
从实施例1和2的测试结果还可以看出,相比于有机含硅添加剂邻近正极活性材料表面的重量百分比为10wt%的正极相比,当有机含硅添加剂邻近正极活性材料表面的重量百分比为30wt%时,锂离子电池的厚度膨胀率进一步降低,且容量保持率进一步增加。
整个说明书中对“一些实施例”、“部分实施例”、“一个实施例”、“另一举例”、“举例”、“具体举例”或“部分举例”的引用,其所代表的意思是在本申请中的至少一个实施例或举例包含了该实施例或举例中所描述的特定特征、结构、材料或特性。因此,在整个说明书中的各处所出现的描述,例如:“在一些实施例中”、“在实施例中”、“在一个实施例中”、“在另一个举例中”,“在一个举例中”、“在特定举例中”或“举例“,其不必然是引用本申请中的相同的实施例或示例。此外,本文中的特定特征、结构、材料或特性可以以任何合适的方式在一个或多个实施例或举例中结合。
尽管已经演示和描述了说明性实施例,本领域技术人员应该理解上述实施例不能被解释为对本申请的限制,并且可以在不脱离本申请的精神、原理及范围的情况下对实施例进行改变,替代和修改。

Claims (12)

  1. 一种电化学装置,其包括正极,所述正极包括正极集流体和正极活性材料层,所述正极活性材料层包含正极活性材料,所述正极经过碳酸二甲酯溶剂洗涤后,在85℃烘干12h,在25℃和45%恒湿度静态空气中存储20天后,根据热重质谱联用测试,在25℃至170℃范围内失重量小于0.3%。
  2. 根据权利要求1所述的电化学装置,其中所述正极经过碳酸二甲酯溶剂洗涤后,在85℃烘干12h,在25℃和45%恒湿度静态空气中存储20天后,根据热重质谱联用测试,在170℃至300℃范围内失重量小于10%。
  3. 根据权利要求1所述的电化学装置,其中所述正极活性材料层对水的接触角为100°至160°。
  4. 根据权利要求1所述的电化学装置,其中所述正极活性材料层对所述电解液的接触角为10°至60°。
  5. 根据权利要求1所述的电化学装置,其中根据傅里叶转换红外线光谱测试,所述正极活性材料层在900cm -1至1100cm -1范围内具有至少一个吸收峰。
  6. 根据权利要求1所述的电化学装置,其中所述正极活性材料层包含有机含硅添加剂,所述有机含硅添加剂包括至少一种具有式(R 1)m-Si-(R 2)n的化合物,其中
    R 1、R 2各自独立地选自取代或未取代的C 1-20烷基、取代或未取代的C 1-20烯基、取代或未取代的C 1-20烷氧基、取代或未取代的R a-O-R b-基团、胺基、-OH或其任意组合,
    R a选自取代或未取代的C 1-20烷基、取代或未取代的C 1-20烯基或其任意组合,
    R b选自取代或未取代的C 1-20亚烷基、亚胺基、取代或未取代的C 1-20亚烯基或其任意组合,
    m=1至3,以及
    n=1至3;并且
    其中,R 1和R 2中的至少一个的碳原子数≥5;
    取代时,取代基为卤素、含杂原子基团中的至少一种;所述杂原子包括B、N、O、Si、 P、S中的至少一种。
  7. 根据权利要求6所述的电化学装置,其中所述有机含硅添加剂包含CH 3(CH 2) 15Si(OCH 3) 3、CH 3(CH 2) 10Si(OCH 3) 3、CH 3(CH 2) 7Si(OCH 3) 3、CH 3(CH 2) 11Si(OCH 3) 3、NH 2(CH 2) 2NH(CH 2) 3Si(OCH 3) 3、NH 2(CH 2) 2NH(CH 2) 3Si(OC 2H 5) 3、CH 3OCH 2CH 2O(CH 2) 3Si(OCH 3) 3、CH 3OCH 2CH 2O(CH 2) 3Si(OC 2H 5) 3中的至少一种。
  8. 根据权利要求6所述的电化学装置,其中基于所述正极活性材料层的总重量,所述有机含硅添加剂的含量为0.08wt%至5wt%。
  9. 根据权利要求6所述的电化学装置,其中基于所述有机含硅添加剂的总重量,邻近所述正极活性材料表面的有机含硅添加剂的重量百分比为5wt%至50wt%。
  10. 根据权利要求1所述的电化学装置,其中所述正极活性材料包括至少一种具有式Li xNi yCo zMn kM qO b-aT a的化合物,其中,M选自由以下组成的群组中的至少一种:B、Mg、Al、Si、P、S、Ti、Cr、Fe、Co、Ni、Cu、Zn、Ga、Y、Zr、Mo、Ag、W、In、Sn、Pb、Sb和Ce,T为卤素,并且x、y、z、k、q、a和b分别满足:0.2<x≤1.2、0<y≤1、0≤z≤1、0≤k≤1、0≤q≤1、1≤b≤2以及0≤a≤1。
  11. 根据权利要求10所述的电化学装置,其中0.9<x≤1.2、0.6<y≤1、0≤z≤0.3。
  12. 一种电子装置,其包含根据权利要求1-11中任一项所述的电化学装置。
PCT/CN2020/121860 2020-10-19 2020-10-19 电化学装置及包含其的电子装置 WO2022082355A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080018610.8A CN113614941B (zh) 2020-10-19 2020-10-19 电化学装置及包含其的电子装置
PCT/CN2020/121860 WO2022082355A1 (zh) 2020-10-19 2020-10-19 电化学装置及包含其的电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/121860 WO2022082355A1 (zh) 2020-10-19 2020-10-19 电化学装置及包含其的电子装置

Publications (1)

Publication Number Publication Date
WO2022082355A1 true WO2022082355A1 (zh) 2022-04-28

Family

ID=78336398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121860 WO2022082355A1 (zh) 2020-10-19 2020-10-19 电化学装置及包含其的电子装置

Country Status (2)

Country Link
CN (1) CN113614941B (zh)
WO (1) WO2022082355A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114447271B (zh) * 2021-12-30 2024-04-26 深圳市贝特瑞新能源技术研究院有限公司 电极片的制备方法及电极片和锂离子电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106558698A (zh) * 2015-09-29 2017-04-05 比亚迪股份有限公司 锂离子电池正极浆料和正极片及其制备方法以及锂离子电池
CN107293792A (zh) * 2017-08-21 2017-10-24 宁波诺丁汉大学 一种非水电解液及高镍三元正极材料电池
CN109167021A (zh) * 2018-09-18 2019-01-08 吉安市优特利科技有限公司 锂离子电池电极片及其制备方法和锂离子电池
CN109599548A (zh) * 2018-12-07 2019-04-09 宁德新能源科技有限公司 正极材料及包含所述正极材料的电化学装置
CN110650922A (zh) * 2017-10-26 2020-01-03 株式会社Lg化学 二次电池用正极活性材料、其制备方法以及包含该正极活性材料的锂二次电池
JP6630865B1 (ja) * 2019-04-12 2020-01-15 住友化学株式会社 リチウム複合金属酸化物粉末及びリチウム二次電池用正極活物質
CN110875473A (zh) * 2018-09-03 2020-03-10 宁德时代新能源科技股份有限公司 正极活性材料、其制备方法及钠离子电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106558698A (zh) * 2015-09-29 2017-04-05 比亚迪股份有限公司 锂离子电池正极浆料和正极片及其制备方法以及锂离子电池
CN107293792A (zh) * 2017-08-21 2017-10-24 宁波诺丁汉大学 一种非水电解液及高镍三元正极材料电池
CN110650922A (zh) * 2017-10-26 2020-01-03 株式会社Lg化学 二次电池用正极活性材料、其制备方法以及包含该正极活性材料的锂二次电池
CN110875473A (zh) * 2018-09-03 2020-03-10 宁德时代新能源科技股份有限公司 正极活性材料、其制备方法及钠离子电池
CN109167021A (zh) * 2018-09-18 2019-01-08 吉安市优特利科技有限公司 锂离子电池电极片及其制备方法和锂离子电池
CN109599548A (zh) * 2018-12-07 2019-04-09 宁德新能源科技有限公司 正极材料及包含所述正极材料的电化学装置
JP6630865B1 (ja) * 2019-04-12 2020-01-15 住友化学株式会社 リチウム複合金属酸化物粉末及びリチウム二次電池用正極活物質

Also Published As

Publication number Publication date
CN113614941B (zh) 2024-02-20
CN113614941A (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
EP4123760A1 (en) Negative electrode active material, electrochemical device using same, and electronic apparatus
US20230282836A1 (en) Lithium metal negative electrode plate, electrochemical apparatus, and electronic device
US20230307618A1 (en) Lithium metal negative electrode plate, electrochemical apparatus, and electronic device
US20230231191A1 (en) Electrolyte and electrochemical device thereof and electronic device
CN114068910A (zh) 一种电化学装置及电子装置
CN112400249A (zh) 一种电解液及电化学装置
WO2023039750A1 (zh) 一种负极复合材料及其应用
CN116666751A (zh) 一种电解液、包含该电解液的电化学装置和电子装置
CN114420933A (zh) 负极、电化学装置和电子装置
EP4207385A2 (en) Electrochemical apparatus and electronic apparatus including same
EP4089762A1 (en) Positive electrode plate, and electrochemical device and electronic device containing positive electrode plate
CN112103561B (zh) 一种电解液及电化学装置
WO2022082355A1 (zh) 电化学装置及包含其的电子装置
US20220223915A1 (en) Electrolyte, electrochemical device including same, and electronic device
CN114613963B (zh) 一种负极材料及其制备方法、负极片和二次电池
WO2023164794A1 (zh) 电化学装置及包含该电化学装置的电子装置
WO2022198614A1 (zh) 负极材料及其制备方法、电化学装置及电子装置
JP7221949B2 (ja) 正極板、正極板を含む電気化学装置及び電子装置
WO2023141929A1 (zh) 电化学装置及电子装置
CN112368872A (zh) 一种电解液及电化学装置
CN114583177B (zh) 电化学装置和包含该电化学装置的电子装置
CN113921914B (zh) 电解液以及使用其的电化学装置和电子装置
WO2024086962A1 (zh) 一种负极极片、电化学装置和电子装置
CN111477951B (zh) 复合电解质及使用其的电化学和电子装置
US20220223853A1 (en) Negative electrode material and electrochemical apparatus and electronic apparatus containing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20957944

Country of ref document: EP

Kind code of ref document: A1