WO2022080084A1 - Resin sheet, laminate, molded body, and method for producing molded body - Google Patents

Resin sheet, laminate, molded body, and method for producing molded body Download PDF

Info

Publication number
WO2022080084A1
WO2022080084A1 PCT/JP2021/034278 JP2021034278W WO2022080084A1 WO 2022080084 A1 WO2022080084 A1 WO 2022080084A1 JP 2021034278 W JP2021034278 W JP 2021034278W WO 2022080084 A1 WO2022080084 A1 WO 2022080084A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin sheet
resin
mold
molding
molded product
Prior art date
Application number
PCT/JP2021/034278
Other languages
French (fr)
Japanese (ja)
Inventor
要 近藤
辰郎 松浦
Original Assignee
出光ユニテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光ユニテック株式会社 filed Critical 出光ユニテック株式会社
Publication of WO2022080084A1 publication Critical patent/WO2022080084A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • the present invention relates to a resin sheet, a laminated body, a molded body, and a method for manufacturing the molded body.
  • decorative sheets are used as a technology that can reduce the environmental load instead of the conventional painting as a technology to improve the design of the appearance.
  • the method is attracting attention.
  • the decorative sheet is a resin sheet that has been printed or vapor-deposited in advance, or the resin sheet itself is colored to give it a design. By providing it on the surface of the molded product, the design of the molded product is improved. can do.
  • the rapid heating / rapid cooling mold is complicated and very expensive, and has problems such as time and effort for controlling the temperature of the mold. Further, in the method of softening the decorative sheet with the heat of the injection resin to transfer the three-dimensional shape, it is required that the decorative sheet has heat resistance that can maintain the shape even if it is exposed to a certain high temperature during molding.
  • An object of the present invention is to provide a resin sheet having excellent transferability of a mold shape and excellent heat resistance.
  • the resin sheet according to 3, wherein the polypropylene contained in the resin sheet has an isotactic pentad fraction of 80 mol% or more and 98% mol or less. 5. 3.
  • the resin sheet according to any one of 11.1 to 7 or the laminate according to 8 is mounted on a mold, and a molding resin is supplied to integrally mold the resin sheet or the laminate and the molding resin.
  • a method for manufacturing a molded product. 12 By arranging the resin sheet or the laminate on the mold and supplying the molding resin toward the resin sheet or the laminate, the resin sheet or the laminate is matched with the mold. 11.
  • the method for producing a molded product according to 11, comprising integrating the resin with the shaped resin sheet or the shaped laminate. 14.
  • the resin sheet or the laminate is heated and placed on the cavity surface of the mold, the resin sheet or the laminate is shaped so as to match the shape of the mold, and the molding resin is used.
  • To integrate the molding resin with the shaped resin sheet or the shaped laminate by supplying the shaped resin sheet or the shaped laminate.
  • 11. The method for producing a molded product according to 11.
  • x to y represents a numerical range of "x or more and y or less”.
  • the upper limit value and the lower limit value can be arbitrarily selected and combined. It shall be possible.
  • the resin sheet according to one aspect of the present invention has a storage elastic modulus of 1500 MPa or less at 80 ° C. and a frequency of 1 Hz, and a storage elastic modulus of 100 MPa or more at 120 ° C. and a frequency of 1 Hz.
  • the resin sheet is appropriately softened by the heat and pressure of the molding resin supplied into the mold, so that it is a special type such as a rapid heating / rapid cooling mold. Good transferability can be achieved without using a simple mold.
  • the storage elastic modulus of the resin sheet at 80 ° C. and a frequency of 1 Hz is preferably 150 MPa or more.
  • the rigidity can be further increased while maintaining high transferability, so that the possibility of wrinkling or tearing of the decorative sheet can be reduced.
  • the storage elastic modulus at 80 ° C. and a frequency of 1 Hz is preferably 1000 MPa or less, more preferably 500 MPa or less. Further, it is preferably 200 MPa or more, and more preferably 250 MPa or more.
  • the storage elastic modulus of the resin sheet at 120 ° C. and a frequency of 1 Hz if the storage elastic modulus is 100 MPa or more, the resin sheet can be obtained to exhibit excellent heat resistance during molding or printing. .. If the storage elastic modulus is less than 100 MPa, the rigidity of the resin sheet may decrease, making processing difficult.
  • the storage elastic modulus of the resin sheet at 120 ° C. and a frequency of 1 Hz is preferably 500 MPa or less.
  • the storage elastic modulus is 500 MPa or less, the sheet is sufficiently softened during molding, so that the shape of the mold can be transferred.
  • the storage elastic modulus at 120 ° C. and a frequency of 1 Hz is preferably 120 MPa or more, more preferably 150 MPa or more. Further, it is preferably 500 MPa or less, and more preferably 350 MPa or less.
  • the resin sheet according to one aspect of the present invention has a storage elastic modulus at 80 ° C. and a frequency of 1 Hz, and a storage elastic modulus at 120 ° C. and a frequency of 1 Hz, respectively, within the above-mentioned ranges. Even if a special mold such as a mold is not used, good transferability can be realized by a general mold, and further, excellent heat resistance at the time of molding or printing can be exhibited. ..
  • the storage elastic modulus (G') will be described below.
  • a viscoelastic body such as a resin has both viscosity and elasticity.
  • stress and strain are observed in phase.
  • the strain phase is delayed by 90 degrees with respect to the stress phase.
  • the viscoelastic body exhibits an intermediate behavior, and the phase difference is a value between 0 degrees and 90 degrees.
  • the elastic modulus can be expressed as the following mathematical formula (F1) as a complex elastic modulus G * by a complex number as a ratio of stress ( ⁇ *) and strain ( ⁇ *).
  • the complex elastic modulus G * can be expressed by the following mathematical formula (F2) by dividing it into a real number part and an imaginary number part.
  • G * G'+ iG'' ⁇ ⁇ ⁇ (F2)
  • the real part G' represents the elastic part of the viscoelasticity, and the imaginary part G'' represents the viscous part because it is in a phase 90 degrees behind it.
  • G' is referred to as a storage elastic modulus and G'' is referred to as a loss elastic modulus, and in the present invention, the former storage elastic modulus G'is focused on.
  • the storage elastic modulus of the resin sheet can be controlled to a desired value by changing the physical properties such as the crystallinity of the resin constituting the resin sheet and the degree of orientation of the crystalline region and the amorphous region.
  • the resin used for the resin sheet according to one aspect of the present invention is not particularly limited, and is not particularly limited, and is an acrylic resin such as polyolefin, polycarbonate, polystyrene, polymethyl methacrylate (PMMA), acrylonitrile-butadiene-styrene copolymer, and acrylonitrile-styrene.
  • an acrylic resin such as polyolefin, polycarbonate, polystyrene, polymethyl methacrylate (PMMA), acrylonitrile-butadiene-styrene copolymer, and acrylonitrile-styrene.
  • Copolymers polyamides such as polyvinyl chloride, nylon 6, nylon 66, polyacetal, polyphenylene ethers such as polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and other polyesters, liquid crystal polymers, polyphenylene sulfide, polyimide, polyamideimide , Polysulfone, polyether sulfone, polyether ketone, polyether ether ketone, polyarylate, polyetherimide, fluororesin, polybutylene succinate, polylactic acid and the like. These may be used alone or may be a blend resin or an alloy resin using two or more of them. Among these resins, polyolefin, polycarbonate, and acrylic resins are preferable from the viewpoint of transparency and durability, and polyolefin is more preferable from the viewpoint of chemical resistance, durability, and moldability.
  • polyethylene, polypropylene, cyclic polyolefin and the like can be used as the polyolefin.
  • the cyclic polyolefin is a polymer containing a structural unit derived from the cyclic olefin, and may be, for example, a copolymer with ethylene (cyclic polyolefin copolymer). Modifications obtained by modifying polyolefins with modifying compounds such as maleic anhydride, dimethyl maleate, diethyl maleate, acrylic acid, methacrylic acid, tetrahydrophthalic acid, glycidyl methacrylate, hydroxyethyl methacrylate, and methyl methacrylate.
  • Polyolefin resin may be contained in the resin sheet. Among these resins, polypropylene is preferable from the viewpoint of chemical resistance, durability and moldability.
  • Polypropylene is a polymer containing at least propylene. Specific examples thereof include homopolypropylene, a copolymer of propylene and an olefin, and the like. Homopolypropylene is preferred because of its heat resistance and hardness.
  • the copolymer of propylene and olefin may be a block copolymer, a random copolymer, or a mixture thereof. Examples of the olefin include ethylene, butylene, cycloolefin and the like.
  • the polypropylene When polypropylene is contained in the resin sheet, the polypropylene preferably has an isotactic pentad fraction of 80 mol% or more, more preferably 86 mol% or more, and 91 mol% or more. Is more preferable, and it is more preferable that the content is 98 mol% or less.
  • the isotactic pentad fraction is preferably 80 mol% or more and 98 mol% or less, more preferably 86 mol% or more and 98 mol% or less, and 91 mol% or more and 98 mol% or less. Is more preferable.
  • the isotactic pentad fraction is within the above range, high transparency of the resin sheet can be obtained, and good decorativeness can be obtained when the molded product is formed.
  • the isotactic pentad fraction is an isotactic fraction in a pentad unit (five consecutive isotactic bonds of five propylene monomers) in the molecular chain of the resin composition.
  • a method for measuring this fraction for example, the method described in Macromoleculars, Vol. 8, p. 687 can be adopted, and the fraction can be measured by 13 C-NMR.
  • a specific method for measuring the isotactic pentad fraction is as described in Examples described later.
  • the polypropylene used for the resin sheet preferably has a crystallization rate of 2.5 min -1 or less at 130 ° C. from the viewpoint of moldability.
  • the crystallization rate of polypropylene is preferably 2.5 min -1 or less, more preferably 2.0 min -1 or less.
  • the lower limit is not particularly limited, but is usually 0.1 min -1 or more.
  • the specific method for measuring the crystallization rate is as described in Examples described later.
  • the polypropylene used for the resin sheet preferably contains smetica crystals as a crystal structure.
  • Smetica crystals are a metastable intermediate phase, and are preferable because each domain size is small and the transparency is excellent. Further, since the smetika crystal is in a metastable state, the sheet is softened with a lower amount of heat as compared with the ⁇ crystal in which crystallization has progressed, and thus the sheet is excellent in moldability, which is preferable.
  • the crystal structure of polypropylene may include other crystal forms such as ⁇ crystal, ⁇ crystal, ⁇ crystal, and amorphous portion in addition to Smetika crystal. For example, 30% by mass or more, 50% by mass or more, 70% by mass or more, or 90% by mass or more of polypropylene in the resin sheet may be Smetika crystals. The specific method for confirming the crystal structure is as described in Examples described later.
  • the resin sheet preferably does not contain a nucleating agent. Even when the resin sheet contains a nucleating agent, the content of the nucleating agent in the resin sheet is preferably small, for example, 1.0% by mass or less of the resin sheet, and preferably 0. It is 5% by mass or less.
  • the nucleating agent include sorbitol-based crystal nucleating agents, and examples of commercially available products include Gelol MD (Nihon Rikagaku Co., Ltd.) and Rikemaster FC-1 (RIKEN Vitamin Co., Ltd.).
  • the resin sheet is used by setting the crystallization rate of polypropylene to 2.5 min -1 or less without adding a nucleating agent and cooling at 80 ° C./sec or more to form the above-mentioned Smetika crystals. It is possible to obtain excellent designability in the molded body. Further, as described in the production of the molded product described later, by heating and shaping the resin sheet, the resin sheet is transferred to ⁇ crystals while maintaining the fine structure derived from Smetika crystals. This transition can further improve the surface hardness and transparency of the resin sheet.
  • smetica crystals are usually used. It needs to be formed.
  • polypropylene of the resin sheet is transferred to ⁇ crystals while maintaining the microstructure derived from Smetica crystals, but in the molded body If polypropylene has an isotactic pentad fraction of 80 mol% or more and 98 mol% or less and a crystallization rate of 2.5 min -1 or less, it can be said to be derived from Smetica crystals.
  • the small-angle X-ray scattering analysis method By calculating the scattering intensity distribution and the long period by the small-angle X-ray scattering analysis method, it is possible to determine whether the resin sheet is obtained by cooling at 80 ° C./sec or higher or not. That is, it is possible to determine whether or not the resin sheet has a fine structure derived from Smetika crystals by the above analysis.
  • the measurement is performed under the following conditions. -The X-ray generator uses ultraX 18HF (manufactured by Rigaku Co., Ltd.), and an imaging plate is used to detect scattering.
  • Polypropylene contained in the resin sheet is preferably 1.0 J / g or more, more preferably 1.5 J / g or more on the low temperature side of the maximum endothermic peak in the curve (DSC curve) obtained by differential scanning calorimetry (DSC) measurement.
  • DSC curve maximum endothermic peak in the curve obtained by differential scanning calorimetry (DSC) measurement.
  • has an endothermic peak also referred to as "low temperature side exothermic peak”
  • the upper limit is not particularly limited, but is usually 10 J / g or less. The specific measurement method described above is as described in Examples described later.
  • the resin sheet may contain additives such as a colorant, an antioxidant, a stabilizer, and an ultraviolet absorber, if necessary, in addition to the above-mentioned resin component.
  • 50% by mass or more, 60% by mass or more, 70% by mass or more, 80% by mass or more, 90% by mass or more, 95% by mass or more, 98% by mass or more, 99% by mass or more, 99. 5% by mass or more, 99.8% by mass or more, 99.9% by mass or more or 100% by mass is a resin (for example, polypropylene) or is selected from the resin (for example, polypropylene) and each of the above optional components. It is one or more components.
  • the resin sheet may be composed of a single layer, or may be a laminated structure in which other layers are laminated for the purpose of imparting design.
  • the resin sheet which is a laminated structure is usually a laminated structure consisting of two or three layers, and the layer structure is, for example, a resin layer (first layer) composed of a resin component. ), And a two-layer structure consisting of a design-imparting layer (second layer) composed of a composition in which an additive such as a colorant is added to a resin component, a first layer, a second layer, and a resin component. Examples thereof include a three-layer structure composed of a resin layer (third layer).
  • the first layer a layer having the same structure as the resin sheet according to the above-described aspect of the present invention can be used.
  • the resin component used for the second layer and the third layer various resins described in the first layer can be used, but the same resin as the first layer (for example, polypropylene) is preferable.
  • the storage elastic modulus of the laminated resin sheet is a value for the entire laminated resin sheet. Further, various measurements of the isotactic pentad fraction, the crystallization rate, the crystal structure, and the heat generation peak in the differential scanning calorimetry are also the values measured for the entire laminated resin sheet.
  • the thickness of the resin sheet according to one aspect of the present invention (all thicknesses in the case of a laminated resin sheet) is usually 100 to 1000 ⁇ m, preferably 150 to 800 ⁇ m.
  • the method for producing the resin sheet of the present invention is not particularly limited, and examples thereof include an extrusion method.
  • the above-mentioned extrusion method includes cooling of the molten resin, and the cooling is preferably performed at a cooling rate of 80 ° C./sec or higher until the internal temperature of the resin sheet becomes equal to or lower than the crystallization temperature.
  • the cooling rate is more preferably 90 ° C./sec or higher, and even more preferably 150 ° C./sec or higher.
  • a desired laminated resin sheet can be produced by co-extruding each of the materials for two or three layers and then performing the above-mentioned cooling treatment.
  • the specific manufacturing method will be described in detail in Examples.
  • the resin sheet (or laminated resin sheet) according to one aspect of the present invention may be made into a laminated body by laminating layers for imparting various functions and designs.
  • a layer include an easy-adhesion layer, an undercoat layer, a metal layer, a printing layer and the like.
  • these layers will be described.
  • the easy-adhesion layer preferably contains one or more resins selected from the group consisting of urethane-based resins, acrylic-based resins, polyolefin-based resins, and polyester-based resins.
  • urethane-based resin a urethane-based resin obtained by reacting a diisocyanate, a high molecular weight polyol, and a chain extender is preferable.
  • the high molecular weight polyol may be a polyether polyol or a polycarbonate polyol.
  • commercially available urethane-based resins include Hydran WLS-202 (manufactured by DIC Corporation).
  • examples of the acrylic resin include Acryt 8UA-366 (manufactured by Taisei Fine Chemical Co., Ltd.) and the like.
  • the polyolefin resin include Arrow Base DA-1010 (manufactured by Unitika Ltd.) and the like.
  • the polyester resin include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and the like.
  • the above-mentioned materials may be used alone or in combination of two or more.
  • urethane-based resin acrylic-based resin, polyolefin-based resin, and polyester-based resin contained in the easy-adhesion layer
  • urethane-based resin is preferable in consideration of adhesion to the metal layer and print layer described later and moldability.
  • the polypropylene-based resin contained in the easy-adhesive layer is usually different from the polypropylene that can be contained in the resin sheet or the main body of the molded product.
  • the easy-adhesion layer may be a single layer or a laminated structure of two or more layers.
  • the thickness of the easy-adhesion layer may be 35 nm or more and 3000 nm or less, 50 nm or more and 2000 nm or less, or 50 nm or more and 1000 nm or less.
  • the thickness of the easy-adhesive layer may be 35 nm or more, 50 nm or more, or 3000 nm or less, 2000 nm or less, or 1000 nm or less.
  • the easy-adhesive layer can be formed, for example, by applying the above-mentioned resin with a gravure coater, a kiss coater, a bar coater, or the like and drying at 40 to 100 ° C. for 10 seconds to 10 minutes.
  • first easy-adhesive layer second easy-adhesive layer
  • the undercoat layer is a layer capable of bringing the easy-adhesive layer and the metal layer into close contact with each other. By providing the undercoat layer, innumerable extremely fine cracks can be generated in the metal layer even when stress is applied during thermoforming, and the occurrence of the rainbow phenomenon can be eliminated or reduced.
  • the material forming the undercoat layer include urethane resin, acrylic resin, polyolefin, polyester and the like.
  • Acrylic resin is preferable as the material for forming the undercoat layer from the viewpoint of whitening resistance during molding (difficulty of whitening phenomenon) and adhesion to the metal layer.
  • DA- manufactured by Arakawa Chemical Industries, Ltd. 105 ”can be used.
  • the above materials may be used alone or in combination of two or more.
  • the above-mentioned resin component (main agent) may be used in combination with a curing agent.
  • the curing agent include an aziridine compound, a blocked isocyanate compound, an epoxy compound, an oxazoline compound, a carbodiimide compound and the like, and for example, "CL102H” manufactured by Arakawa Chemical Industry Co., Ltd. can be used.
  • the content ratio of the main agent and the curing agent in the undercoat layer is, for example, 35: 4 to 35:40, preferably 35: 4 to 35:32, and more, in terms of the mass ratio of the solid content. It is preferably 35:12 to 35:32. Further, it may be 35:12 to 35:20.
  • the blending amount of the curing agent is 4 or more with respect to the main agent 35, the curing reaction proceeds without any problem, and the whitening resistance can be maintained.
  • it is 40 or less the extensibility of the undercoat layer is good, and cracking during molding can be suppressed.
  • the above-mentioned material is applied with a gravure coater, a kiss coater, a bar coater or the like, dried at 50 to 100 ° C. for 10 seconds to 10 minutes, and dried at 40 to 100 ° C. for 10 to 200. It can be formed by time aging.
  • the thickness of the undercoat layer may be 0.05 ⁇ m to 50 ⁇ m, 0.1 ⁇ m to 10 ⁇ m, or 0.5 ⁇ m to 5 ⁇ m.
  • the thickness of the undercoat layer may be 0.05 ⁇ m or more, 0.1 ⁇ m or more, or 0.5 ⁇ m or more, and may be 50 ⁇ m or less, 10 ⁇ m or less, or 5 ⁇ m or less.
  • the metal layer is a layer containing a metal or a metal oxide.
  • the metal forming the metal layer is not particularly limited as long as it is a metal that can give a metallic design to the laminate, and for example, tin, indium, chromium, aluminum, nickel, copper, silver, gold, platinum and zinc are used. An alloy containing at least one of these may be used. Of the above, indium and aluminum are preferable because they are particularly excellent in extensibility and color tone. If the metal layer has excellent extensibility, cracks are less likely to occur when the laminated body is three-dimensionally formed.
  • the method for forming the metal layer is not particularly limited, but from the viewpoint of imparting a high-quality metallic design to the laminate, for example, a vacuum vapor deposition method, a sputtering method, or ion plating using the above-mentioned metal.
  • a vapor deposition method such as a method can be used.
  • the vacuum thin-film deposition method is low-cost and can reduce damage to the vapor-film-deposited body.
  • the conditions of the vacuum vapor deposition method may be appropriately set according to the melting temperature or evaporation temperature of the metal to be used.
  • a method of applying a paste containing the above metal or a metal oxide, a plating method using the above metal, or the like can also be used.
  • the thickness of the metal layer may be 5 nm or more and 80 nm or less. When it is 5 nm or more, a desired metallic luster can be obtained without any problem, and when it is 80 nm or less, cracks are less likely to occur.
  • the shape of the print layer is not particularly limited, and examples thereof include various shapes such as solid, carbon, and wood grain.
  • a printing method a general printing method such as a screen printing method, an offset printing method, a gravure printing method, a roll coating method, and a spray coating method can be used.
  • the screen printing method can increase the thickness of the ink, ink cracking is unlikely to occur when the ink is formed into a complicated shape.
  • an ink having excellent elongation during molding is preferable, and examples thereof include "FM3107 high density white” and "SIM3207 high density white” manufactured by Jujo Chemical Co., Ltd., but this is not the case.
  • the resin sheet (or laminated resin sheet) of the present invention described above can be used for manufacturing a molded body.
  • the molded body according to one aspect of the present invention includes a molded body body containing a thermoplastic resin and the above-mentioned resin sheet of the present invention, and the resin sheet covers at least a part of the surface of the molded body body.
  • the laminate according to one aspect of the present invention may be used, and when the term "resin sheet” is used in "4. Molded article", it means a resin sheet or a laminate. The same applies to "5. Method for manufacturing a molded product".
  • the uneven shape of the molding die can be transferred to the surface of the resin sheet with high reproducibility at the time of manufacturing the molded body. That is, the molded body according to one aspect of the present invention has an uneven shape corresponding to the uneven shape provided on the mold on the resin sheet on the surface.
  • the resin sheet may cover a part of the surface of the molded body, or may cover the entire surface (entire surface) of the molded body.
  • the molded body may include the molded body and the resin sheet.
  • the shape of the molded body is not particularly limited, and may be, for example, a layered shape or a specific three-dimensional shape.
  • FIG. 1 shows a schematic cross-sectional view of a molded product according to one aspect of the present invention.
  • the molded body 1 includes a molded body main body 2 and a resin sheet 3 that covers the molded body main body 2.
  • the resin sheet 3 has an uneven shape corresponding to the uneven shape of the mold on the surface thereof.
  • the aspect ratio and the film thickness ratio are not always accurate.
  • the thermoplastic resin used for the molded body 2 is not particularly limited as long as it can be injection molded.
  • the thermoplastic resin contained in the molded body 2 include polypropylene, polyethylene, polycarbonate, acetylene-styrene-butadiene copolymer, acrylic polymer and the like.
  • the thermoplastic resin these may be used alone, or two or more kinds may be mixed and used.
  • In-mold molding is a method in which a resin sheet is placed in a mold and molded into a desired shape by the pressure of the molding resin supplied in the mold to obtain a molded product. Specifically, by arranging the resin sheet on the mold and supplying the molding resin toward the resin sheet, the resin sheet is shaped so as to match the mold for molding. It includes integrating the resin and the resin sheet. Here, the molding resin is cooled on the resin sheet and solidified to form the molded body body.
  • Insert molding is a method of obtaining a molded body by preliminarily shaping a shaped body to be installed in a mold and filling the shape with a molding resin. Specifically, by shaping the resin sheet so as to match the mold and supplying the molding resin toward the shaped resin sheet, the molding resin and the shaped resin sheet are formed. And, including unifying. In insert molding, a molded body having a more complicated shape can be formed as compared with the above-mentioned in-mold molding.
  • the shaping (preliminary shaping) performed so as to match the mold can be performed by vacuum forming, compressed air forming, vacuum forming, press forming, plug assist forming or the like.
  • the resin sheet can be heated in advance at the time of shaping.
  • insert molding that performs preliminary molding in the injection molding die
  • a method of performing preliminary shaping of a resin sheet in a mold for injection molding Specifically, the resin sheet is heated and placed on the cavity surface of the mold, and the resin sheet is shaped so as to match the shape of the mold, and the resin sheet to which the molding resin is shaped is shaped. It includes integrating the molding resin and the shaped resin sheet by supplying the resin toward the above.
  • the resin sheet is preheated with a heater or the like, the heated resin sheet is placed on the cavity surface of the injection molding die, and the inside of the cavity is sucked.
  • the resin sheet can be shaped to match the internal shape of the mold. After that, a molded product can be obtained by filling the molded resin with the shaped resin sheet installed in the cavity. According to this method, a molded product having a more complicated shape can be formed by a simpler method.
  • the surface shape of the mold used in the above molding method is usually given by subjecting the cavity surface, which is the product surface of the mold, to laser processing, etching processing, cutting processing, or the like.
  • the surface shape include those having a shallow shape such as grain and blast, and those having a specific shape such as hairline, carbon pattern, and wood grain.
  • the mold temperature when the molding resin is supplied is preferably 20 ° C. or higher and 90 ° C. or lower.
  • the mold temperature when the molding resin is supplied is preferably 30 ° C. or higher and 70 ° C. or lower.
  • the concern about design changes and melting due to the heat of the molten resin can be reduced, and an excellent appearance can be obtained.
  • the concern that the resin in the mold causes molding defects (insufficient filling) at the flow end due to supercooling can be reduced, and the moldability is excellent.
  • the temperature of the molding resin supplied to the mold is preferably 190 ° C. or higher and 240 ° C. or lower. Within this range, the resin is easily filled up to the flow end portion in the mold, so that the moldability is excellent. Further, when the temperature is 240 ° C. or lower, the risk of the sheet melting due to the heat of the molding resin and damaging the design is reduced, which is also preferable in this respect.
  • the molding resin composition is preferably supplied to the mold by injection, and the injection pressure is preferably 5 MPa or more, more preferably 10 MPa or more. Further, it is preferably 120 MPa or less, and more preferably 110 MPa or less. Within this range, the resin sheet is strongly pressed against the mold by the molding resin, so that a molded product having an excellent transfer rate can be obtained.
  • the molded body can be used as an exterior part of a saddle-mounted vehicle or an exterior part of a four-wheeled vehicle. Further, the molded body can be used for interior materials and exterior materials of vehicles, housings of home appliances, decorative steel plates, decorative plates, housing equipment, housings of information and communication equipment, and the like.
  • Example 1 Manufacture of resin sheet Resin sheet 1 was manufactured using the apparatus shown in FIG. Polypropylene (“Prime Polypro F-133A” manufactured by Prime Polymer Co., Ltd., MFR: 3 g / 10 minutes, homopolypropylene, hereinafter may be referred to as “PP-1”) was used as a raw material for the resin sheet 1. ..
  • Polypropylene (“Prime Polypro F-133A” manufactured by Prime Polymer Co., Ltd., MFR: 3 g / 10 minutes, homopolypropylene, hereinafter may be referred to as “PP-1”) was used as a raw material for the resin sheet 1. ..
  • the operation of the device will be described.
  • the polypropylene molten resin extruded from the T-die 52 of the extruder is sandwiched between the metal endless belt 57 and the fourth cooling roll 56 on the first cooling roll 53.
  • the molten resin is pressure-welded with the first and fourth cooling rolls 53 and 56 and rapidly cooled to obtain a resin sheet.
  • the resin sheet is sandwiched between the metal endless belt 57 and the fourth cooling roll 56 at the arc portion corresponding to the substantially lower half circumference of the fourth cooling roll 56, and is surface-pressed.
  • the resin sheet in close contact with the metal endless belt 57 is moved onto the second cooling roll 54 with the rotation of the metal endless belt 57.
  • the resin sheet is surface-pressed by the metal endless belt 57 at the arc portion corresponding to substantially the upper half circumference of the second cooling roll 54, and is cooled again.
  • the resin sheet 51 cooled on the second cooling roll 54 is then peeled off from the metal endless belt 57.
  • the surfaces of the first and second cooling rolls 53 and 54 are coated with an elastic material 62 made of nitrile-butadiene rubber (NBR).
  • NBR nitrile-butadiene rubber
  • Crystallization rate of polypropylene used for the resin sheet 1 was measured using a differential scanning calorimetry device (DSC) (“Diamond DSC” manufactured by PerkinElmer Co., Ltd.). Specifically, polypropylene is used at 10 ° C / min from 50 ° C to 230. The temperature was raised to ° C., held at 230 ° C. for 5 minutes, cooled from 230 ° C. to 130 ° C. at 80 ° C./min, and then held at 130 ° C. for crystallization. The measurement of the change in calorific value was started from the time when the temperature reached 130 ° C., and the DSC curve was obtained.
  • DSC differential scanning calorimetry device
  • the crystallization rate was determined by the following procedures (i) to (iv).
  • the baseline was the linear approximation of the change in calorific value from the time point 10 times the time from the start of measurement to the top of the maximum peak to the time point 20 times.
  • the intersection of the tangent line having the slope at the inflection point of the peak and the baseline was obtained, and the crystallization start and end times were obtained.
  • the time from the obtained crystallization start time to the peak top was measured as the crystallization time.
  • the crystallization rate was determined from the reciprocal of the obtained crystallization time.
  • the crystallization rate of polypropylene used for the resin sheet 1 was 0.3 min -1 .
  • the isotactic pentad fraction was measured by evaluating the 13 C-NMR spectrum of the polypropylene used in the resin sheet 1. Specifically, according to the peak attribution proposed in "Macropolymers, 8, 687 (1975)" by A. Zambali et al., The following apparatus, conditions and calculation formulas were used.
  • the polypropylene crystal structure of the resin sheet 1 was identified by measuring the scattering pattern of wide-angle X-rays using an X-ray generator (“model ultra X 18HB” manufactured by Rigaku Co., Ltd.) under the following measurement conditions. As a result, a smechka crystal type peak was observed even after peak separation, and it was confirmed that smechka crystals were present in the resin sheet 1.
  • the polypropylene used for the resin sheet 1 was measured using the same differential scanning calorimetry device as in the measurement of the crystallization rate. Specifically, polypropylene was heated at 10 ° C./min from 50 ° C. to 230 ° C., and an endothermic peak and an exothermic peak were observed. By observing the obtained endothermic exothermic peak, it was confirmed that the exothermic peak was 1.7 J / g on the low temperature side of the maximum endothermic peak.
  • the resin sheet 1 obtained in (1) has a trapezoidal shape (162 mm ⁇ 73 mm, height 13 mm) using a vacuum compressed air molding machine (“FH-3M / H” manufactured by Minos Co., Ltd.). ) was preliminarily shaped.
  • the preformed resin sheet is attached to the surface of the fixed side cavity of the mold, and the molding resin is supplied into the mold using a hydraulic injection molding machine (“IS-80EPN” manufactured by Toshiba Machine Co., Ltd.). And integrated to obtain a molded body 1 (insert molding).
  • a mold for injection molding a mold having a trapezoidal shape and having a wood grain tone and a hairline tone on the top surface was used.
  • the molding conditions were such that the resin temperature of the molding resin supplied to the mold was 210 ° C. and the mold temperature was 40 ° C.
  • the injection pressure of the molding resin was 33 MPa.
  • Block polypropylene (“Prime Polypropylene J705UG” manufactured by Prime Polymer Co., Ltd., MFR: 9.0 g / 10 minutes) was used as the molding resin (hereinafter, also referred to as "molding resin 1").
  • the MFR measurement condition of the molding resin 1 was measured at 230 ° C. and a load of 2.16 kg in accordance with JIS K7210.
  • the portion where the height of the step is 152 ⁇ m is defined as the “reference step”, and the height of the step corresponding to the portion on the surface of the molded body 1 is measured.
  • the transferability (transcription rate) was evaluated by calculating these ratios.
  • the height of the step was measured with a laser microscope (“OLS4100” manufactured by Olympus Corporation).
  • Transfer rate (%) (height of step on the surface of molded body 1 / height of reference step) x 100
  • No change in the shape of the resin sheet in the molded body 1
  • The resin sheet in the molded body 1 has a change in shape such as warpage or deformation
  • The resin sheet in the molded body 1 is warped or deformed There is a significant change in shape such as
  • Example 2 (1) Manufacture of Resin Sheet Using the apparatus shown in FIG. 2, a three-layer stacking of a first layer (thickness 48 ⁇ m) / a second layer (thickness 217 ⁇ m) / a third layer (thickness 35 ⁇ m) A resin sheet 2 having a structure was manufactured.
  • the materials for each layer are as follows.
  • Second layer Mixture of polypropylene (PP-2) and white masterbatch (MB) (“PPM 1KB662 WHT-FD” manufactured by Toyo Color Co., Ltd.) (PP-2: 90% by mass, white masterbatch: 10% by mass) %) Third layer: PP-2
  • the manufacturing conditions of the resin sheet 2 are as follows. First layer extruder diameter: 65 mm -Diameter of second layer extruder: 75 mm -Diameter of third layer extruder: 50 mm ⁇ T-die width: 900 mm ⁇ Pick-up speed of laminated sheet: 3m / min ⁇ Surface temperature of cooling roll and metal endless belt 57: 20 °C -Cooling rate: 10,800 ° C / min
  • Comparative Example 1 (1) Resin Sheet As the resin sheet, a biaxially stretched polyester (PET) sheet ("Cosmo Shine A4300” manufactured by Toyobo Co., Ltd., also referred to as "resin sheet 3", having a thickness of 188 ⁇ m) was used. The storage elastic modulus of the resin sheet 3 was measured by the same method as in Example 1 (the thickness of the measurement sample was 188 ⁇ m). The results are shown in Table 1.
  • PET biaxially stretched polyester
  • Comparative Example 2 (1) Resin sheet As the resin sheet, a polycarbonate sheet (PC) (also referred to as “Panlite” or “resin sheet 4" manufactured by Teijin Limited, 192 ⁇ m in thickness) was used. The storage elastic modulus of the resin sheet 4 was measured by the same method as in Example 1 (the thickness of the measurement sample was 192 ⁇ m). The results are shown in Table 1.
  • PC polycarbonate sheet
  • Comparative Example 3 (1) Resin sheet As the resin sheet, an acrylic resin (PMMA) sheet (also called “Acryplene” or “resin sheet 5" manufactured by Mitsubishi Chemical Corporation, having a thickness of 75 ⁇ m) was used. The storage elastic modulus of the resin sheet 5 was measured by the same method as in Example 1 (the thickness of the measurement sample was 75 ⁇ m). The results are shown in Table 1.
  • PMMA acrylic resin
  • Comparative Example 4 (1) Resin Sheet As the resin sheet, an amorphous polyester (A-PET) sheet ((Mitsubishi Chemical Corporation "Novaclear AA025-M", also referred to as “resin sheet 6", thickness 300 ⁇ m)) was used. The storage elastic modulus of the resin sheet 6 was measured by the same method as in Example 1 (the thickness of the measurement sample was 300 ⁇ m). The results are shown in Table 1.
  • A-PET amorphous polyester
  • Resin sheet 6 thickness 300 ⁇ m
  • the molded body obtained from the resin sheet and the laminated body of the present invention can be used for a wide variety of applications, for example, in a wide range of transportation equipment (automobiles, motorcycles, etc.), housing equipment, building materials, home appliances, and the like. It can be used as a decorative sheet to replace painting in the case of the field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

A resin sheet having a storage modulus of 1500 MPa or less at 80°C and a frequency of 1 Hz and a storage modulus of 100 MPa or more at 120°C and a frequency of 1 Hz.

Description

樹脂シート、積層体、成形体、及び成形体の製造方法Resin sheet, laminated body, molded body, and method for manufacturing the molded body
 本発明は、樹脂シート、積層体、成形体、及び成形体の製造方法に関する。 The present invention relates to a resin sheet, a laminated body, a molded body, and a method for manufacturing the molded body.
 自動車や家電、建材、日用品、情報通信機器等の様々な分野において、外観の意匠性を向上させる技術として、従来から行われている塗装に代わり、環境負荷を低減できる技術として加飾シートを用いる方法が注目されている。
 加飾シートは、樹脂シートに予め印刷や蒸着を施したり、樹脂シート自体に着色したりして意匠性を付与したものであり、成形品の表面に設けることで、成形品の意匠性を向上することができる。
In various fields such as automobiles, home appliances, building materials, daily necessities, information and communication equipment, decorative sheets are used as a technology that can reduce the environmental load instead of the conventional painting as a technology to improve the design of the appearance. The method is attracting attention.
The decorative sheet is a resin sheet that has been printed or vapor-deposited in advance, or the resin sheet itself is colored to give it a design. By providing it on the surface of the molded product, the design of the molded product is improved. can do.
 近年、成形体の表面にシボや特定のテクスチャーを付与して立体感を生じることによる意匠性向上も検討されている。加飾シート表面に立体形状を付与する方法としては、加飾シートを射出樹脂(成形用樹脂)の熱で軟化させて、樹脂の圧力で金型キャビティ表面に付与された形状を転写する方法が一般的である。 In recent years, improvement of design by giving a texture or a specific texture to the surface of the molded product to create a three-dimensional effect has also been studied. As a method of imparting a three-dimensional shape to the surface of the decorative sheet, a method of softening the decorative sheet with the heat of an injection resin (molding resin) and transferring the shape imparted to the surface of the mold cavity by the pressure of the resin is used. It is common.
特開2009-262511号公報Japanese Unexamined Patent Publication No. 2009-262511 国際公開第2010/053142号International Publication No. 2010/053142
 しかしながら、加飾シートによっては射出樹脂の熱と圧力で十分に軟化せず、形状の転写が甘くなり、意図した意匠性が得られない問題がある。そこで、樹脂充填時に金型を加熱し、充填完了後は冷却する急加熱・急冷却金型を用いて、加飾シートを十分軟化させて転写性を向上させることが検討されている。例えば、特許文献1、2では、射出成形用の金型として、加熱及び冷却が可能な金型を使用することで、金型自体を加熱して積層シートや多層フィルムを軟化させ、成形用樹脂を射出した後に金型を冷却することで、積層シートや多層フィルムへの金型形状の転写を試みている。しかしながら、急加熱・急冷却金型は、複雑で非常に高価であり、また金型の温度制御に手間を要する等の不具合がある。
 また、加飾シートを射出樹脂の熱で軟化させて立体形状を転写する方法においては、加飾シートが成形時にある程度高温に晒されても形状を維持できる耐熱性を有することが求められる。
However, depending on the decorative sheet, there is a problem that the heat and pressure of the injection resin do not sufficiently soften the sheet, the transfer of the shape becomes loose, and the intended design cannot be obtained. Therefore, it has been studied to sufficiently soften the decorative sheet and improve the transferability by using a rapid heating / rapid cooling mold that heats the mold at the time of resin filling and cools after the filling is completed. For example, in Patent Documents 1 and 2, by using a mold capable of heating and cooling as a mold for injection molding, the mold itself is heated to soften a laminated sheet or a multilayer film, and a molding resin is used. By cooling the mold after injecting the mold, we are trying to transfer the mold shape to a laminated sheet or a multilayer film. However, the rapid heating / rapid cooling mold is complicated and very expensive, and has problems such as time and effort for controlling the temperature of the mold.
Further, in the method of softening the decorative sheet with the heat of the injection resin to transfer the three-dimensional shape, it is required that the decorative sheet has heat resistance that can maintain the shape even if it is exposed to a certain high temperature during molding.
 本発明の目的は、金型形状の転写性に優れ、かつ耐熱性に優れる樹脂シートを提供することである。 An object of the present invention is to provide a resin sheet having excellent transferability of a mold shape and excellent heat resistance.
 本発明によれば、以下の樹脂シート等が提供される。
1.80℃、振動数1Hzにおける貯蔵弾性率が1500MPa以下であり、かつ、120℃、振動数1Hzにおける貯蔵弾性率が100MPa以上である、樹脂シート。
2.前記樹脂シートがポリオレフィンを含む、1に記載の樹脂シート。
3.前記樹脂シートがポリプロピレンを含む、1又は2に記載の樹脂シート。
4.前記樹脂シートに含まれる前記ポリプロピレンのアイソタクチックペンタッド分率が80モル%以上98%モル以下である、3に記載の樹脂シート。
5.前記樹脂シートに含まれる前記ポリプロピレンの130℃での結晶化速度が2.5min-1以下である、3又は4に記載の樹脂シート。
6.2層又は3層の積層構造である、1~5のいずれかに記載の樹脂シート。
7.前記2層又は3層の積層構造における全ての層がポリプロピレンを含む、6に記載の樹脂シート。
8.1~7のいずれかに記載の樹脂シートを表面に有する、積層体。
9.熱可塑性樹脂を含む成形体本体と、
 前記成形体本体の表面の少なくとも一部を被覆する、1~7のいずれかに記載の樹脂シート又は8に記載の積層体と、を含む、成形体。
10.前記樹脂シートの表面に凹凸を有する、9に記載の成形体。
11.1~7のいずれかに記載の樹脂シート又は8に記載の積層体を金型に装着し、成形用樹脂を供給して前記樹脂シート又は前記積層体と前記成形用樹脂とを一体成形する、成形体の製造方法。
12.前記樹脂シート又は前記積層体を金型の上に配置すること、及び
 成形用樹脂を前記樹脂シート又は前記積層体に向けて供給することで、前記樹脂シート又は前記積層体を金型に合致するように賦形しつつ、前記成形用樹脂と、前記樹脂シート又は前記積層体と、を一体化させること
 を含む、11に記載の成形体の製造方法。
13.前記樹脂シート又は前記積層体を金型に合致するよう賦形すること、及び
 成形用樹脂を前記賦形された樹脂シート又は前記賦形された積層体に向けて供給することで、前記成形用樹脂と、前記賦形された樹脂シート又は前記賦形された積層体と、を一体化させること
 を含む、11に記載の成形体の製造方法。
14.前記樹脂シート又は前記積層体を加熱して金型のキャビティ面上に配置し、前記樹脂シート又は前記積層体を前記金型の形状に合致するように賦形すること、及び
 成形用樹脂を前記賦形された樹脂シート又は前記賦形された積層体に向けて供給することで、前記成形用樹脂と、前記賦形された樹脂シート又は前記賦形された積層体と、を一体化させること
 を含む、11に記載の成形体の製造方法。
15.前記成形用樹脂が供給される際の金型温度が、20℃以上90℃以下である11~14のいずれかに記載の成形体の製造方法。
16.前記金型に供給される前記成形用樹脂の温度が、190℃以上240℃以下である11~15のいずれかに記載の成形体の製造方法。
17.前記成形用樹脂の射出圧力が、5MPa以上120MPa以下である11~16のいずれかに記載の成形体の製造方法。
According to the present invention, the following resin sheets and the like are provided.
A resin sheet having a storage elastic modulus of 1500 MPa or less at 1.80 ° C. and a frequency of 1 Hz, and a storage elastic modulus of 100 MPa or more at 120 ° C. and a frequency of 1 Hz.
2. 2. The resin sheet according to 1, wherein the resin sheet contains polyolefin.
3. 3. The resin sheet according to 1 or 2, wherein the resin sheet contains polypropylene.
4. 3. The resin sheet according to 3, wherein the polypropylene contained in the resin sheet has an isotactic pentad fraction of 80 mol% or more and 98% mol or less.
5. 3. The resin sheet according to 3 or 4, wherein the polypropylene contained in the resin sheet has a crystallization rate of 2.5 min -1 or less at 130 ° C.
6. The resin sheet according to any one of 1 to 5, which has a two-layer or three-layer laminated structure.
7. 6. The resin sheet according to 6, wherein all the layers in the two-layer or three-layer laminated structure contain polypropylene.
A laminated body having the resin sheet according to any one of 8.1 to 7 on the surface.
9. The molded body containing the thermoplastic resin and
A molded product comprising the resin sheet according to any one of 1 to 7 or the laminated body according to 8, which covers at least a part of the surface of the molded product body.
10. 9. The molded product according to 9, which has irregularities on the surface of the resin sheet.
The resin sheet according to any one of 11.1 to 7 or the laminate according to 8 is mounted on a mold, and a molding resin is supplied to integrally mold the resin sheet or the laminate and the molding resin. A method for manufacturing a molded product.
12. By arranging the resin sheet or the laminate on the mold and supplying the molding resin toward the resin sheet or the laminate, the resin sheet or the laminate is matched with the mold. 11. The method for producing a molded product according to 11, which comprises integrating the molding resin with the resin sheet or the laminated body while shaping the molded product.
13. For molding by shaping the resin sheet or the laminated body so as to match the mold, and supplying the molding resin toward the shaped resin sheet or the shaped laminated body. 11. The method for producing a molded product according to 11, comprising integrating the resin with the shaped resin sheet or the shaped laminate.
14. The resin sheet or the laminate is heated and placed on the cavity surface of the mold, the resin sheet or the laminate is shaped so as to match the shape of the mold, and the molding resin is used. To integrate the molding resin with the shaped resin sheet or the shaped laminate by supplying the shaped resin sheet or the shaped laminate. 11. The method for producing a molded product according to 11.
15. The method for producing a molded product according to any one of 11 to 14, wherein the mold temperature when the molding resin is supplied is 20 ° C. or higher and 90 ° C. or lower.
16. The method for producing a molded product according to any one of 11 to 15, wherein the temperature of the molding resin supplied to the mold is 190 ° C. or higher and 240 ° C. or lower.
17. The method for producing a molded product according to any one of 11 to 16, wherein the injection pressure of the molding resin is 5 MPa or more and 120 MPa or less.
 本発明によれば、金型形状の転写性に優れ、かつ耐熱性に優れる樹脂シートが提供できる。 According to the present invention, it is possible to provide a resin sheet having excellent transferability of a mold shape and excellent heat resistance.
本発明の第1の実施形態に係る成形体の概略断面図である。It is schematic sectional drawing of the molded article which concerns on 1st Embodiment of this invention. 本発明の樹脂シートを製造するための製造装置の一例の概略構成図である。It is a schematic block diagram of an example of the manufacturing apparatus for manufacturing the resin sheet of this invention.
 以下、本発明に係るシート、積層体、成形体、及び成形体の製造方法について説明する。本明細書において、「x~y」は「x以上、y以下」の数値範囲を表すものとする。一の技術的事項に関して、「x以上」等の下限値が複数存在する場合、又は「y以下」等の上限値が複数存在する場合、当該上限値及び下限値から任意に選択して組み合わせることができるものとする。 Hereinafter, a sheet, a laminated body, a molded body, and a method for manufacturing the molded body according to the present invention will be described. In the present specification, "x to y" represents a numerical range of "x or more and y or less". Regarding one technical matter, when there are multiple lower limit values such as "x or more" or when there are multiple upper limit values such as "y or less", the upper limit value and the lower limit value can be arbitrarily selected and combined. It shall be possible.
1.樹脂シート
 本発明の一態様に係る樹脂シートは、80℃、振動数1Hzにおける貯蔵弾性率が1500MPa以下であり、かつ、120℃、振動数1Hzにおける貯蔵弾性率が100MPa以上である。
1. 1. Resin sheet The resin sheet according to one aspect of the present invention has a storage elastic modulus of 1500 MPa or less at 80 ° C. and a frequency of 1 Hz, and a storage elastic modulus of 100 MPa or more at 120 ° C. and a frequency of 1 Hz.
 樹脂シートを用いて射出成形により成形体を製造する際、金型のキャビティ内に樹脂シートを配置し、金型内に成形用樹脂を射出すると、樹脂シートの金型キャビティ表面側の温度は、通常、80℃以上に上昇する。ここで、樹脂シートの、80℃、振動数1Hzにおける貯蔵弾性率が1500MPa以下であると、金型内に供給された成形用樹脂の熱及び圧力により、金型の表面形状(凹凸形状、立体形状)を、樹脂シート表面に、再現性高く、十分に転写させることができる。これにより、成形体表面に意図した意匠を自在に付与することが可能となり、優れた意匠性を有する成形体の製造が可能となる。
 また、本発明の一態様に係る樹脂シートによれば、金型内に供給された成形用樹脂の熱及び圧力により樹脂シートが適度に軟化するため、急加熱・急冷却金型のような特殊な金型を用いなくても、良好な転写性を実現できる。
When a molded product is manufactured by injection molding using a resin sheet, when the resin sheet is placed in the cavity of the mold and the molding resin is injected into the mold, the temperature of the surface side of the mold cavity of the resin sheet is changed. Usually, the temperature rises to 80 ° C. or higher. Here, when the storage elastic modulus of the resin sheet at 80 ° C. and a frequency of 1 Hz is 1500 MPa or less, the surface shape (concave and convex shape, three-dimensional shape) of the mold is caused by the heat and pressure of the molding resin supplied into the mold. The shape) can be sufficiently transferred to the surface of the resin sheet with high reproducibility. This makes it possible to freely apply the intended design to the surface of the molded product, and it is possible to manufacture a molded product having excellent designability.
Further, according to the resin sheet according to one aspect of the present invention, the resin sheet is appropriately softened by the heat and pressure of the molding resin supplied into the mold, so that it is a special type such as a rapid heating / rapid cooling mold. Good transferability can be achieved without using a simple mold.
 樹脂シートの、80℃、振動数1Hzにおける貯蔵弾性率は、好ましくは150MPa以上である。当該貯蔵弾性率が150MPa以上であれば、高い転写性を保持しつつ、さらに剛性を高められるため、加飾シートにしわや破れが生じる恐れを低減できる。 The storage elastic modulus of the resin sheet at 80 ° C. and a frequency of 1 Hz is preferably 150 MPa or more. When the storage elastic modulus is 150 MPa or more, the rigidity can be further increased while maintaining high transferability, so that the possibility of wrinkling or tearing of the decorative sheet can be reduced.
 80℃、振動数1Hzにおける貯蔵弾性率は、好ましくは1000MPa以下であり、より好ましくは500MPa以下である。また、好ましくは200MPa以上であり、より好ましくは250MPa以上である。 The storage elastic modulus at 80 ° C. and a frequency of 1 Hz is preferably 1000 MPa or less, more preferably 500 MPa or less. Further, it is preferably 200 MPa or more, and more preferably 250 MPa or more.
 次に、樹脂シートの120℃、振動数1Hzにおける貯蔵弾性率について、当該貯蔵弾性率が100MPa以上であると、成形時や印刷加工時において優れた耐熱性を発揮する樹脂シートとすることができる。当該貯蔵弾性率が100MPa未満であると、樹脂シートの剛性が低下し、加工が困難になる恐れがある。 Next, regarding the storage elastic modulus of the resin sheet at 120 ° C. and a frequency of 1 Hz, if the storage elastic modulus is 100 MPa or more, the resin sheet can be obtained to exhibit excellent heat resistance during molding or printing. .. If the storage elastic modulus is less than 100 MPa, the rigidity of the resin sheet may decrease, making processing difficult.
 樹脂シートの120℃、振動数1Hzにおける貯蔵弾性率は、好ましくは500MPa以下である。当該貯蔵弾性率が500MPa以下であれば、成形時にシートが十分軟化するため、金型の形状を転写することができる。 The storage elastic modulus of the resin sheet at 120 ° C. and a frequency of 1 Hz is preferably 500 MPa or less. When the storage elastic modulus is 500 MPa or less, the sheet is sufficiently softened during molding, so that the shape of the mold can be transferred.
 120℃、振動数1Hzにおける貯蔵弾性率は、好ましくは120MPa以上であり、より好ましくは150MPa以上である。また、好ましくは500MPa以下であり、より好ましくは350MPa以下である。 The storage elastic modulus at 120 ° C. and a frequency of 1 Hz is preferably 120 MPa or more, more preferably 150 MPa or more. Further, it is preferably 500 MPa or less, and more preferably 350 MPa or less.
 本発明の一態様に係る樹脂シートは、80℃、振動数1Hzにおける貯蔵弾性率、及び120℃、振動数1Hzにおける貯蔵弾性率が、それぞれ上述した範囲にあることで、急加熱・急冷却金型のような特殊な金型を用いなくても、一般的な金型により良好な転写性を実現でき、さらに、成形時や印刷加工時等における優れた耐熱性を発揮することが可能となる。 The resin sheet according to one aspect of the present invention has a storage elastic modulus at 80 ° C. and a frequency of 1 Hz, and a storage elastic modulus at 120 ° C. and a frequency of 1 Hz, respectively, within the above-mentioned ranges. Even if a special mold such as a mold is not used, good transferability can be realized by a general mold, and further, excellent heat resistance at the time of molding or printing can be exhibited. ..
 貯蔵弾性率(G’)について、以下に説明する。
 樹脂等の粘弾性体は、粘性と弾性とを兼ね備えている。理想弾性体の場合、応力とひずみは同一位相で観察される。一方、理想液体の場合、応力の位相に対してひずみの位相は90度遅れる。粘弾性体はその中間の挙動を示し、位相差は0度から90度の間の値となる。
 弾性率は、応力(σ*)とひずみ(γ*)の比として複素数による複素弾性率G*として、下記数式(F1)のように表現できる。
G*=σ*/γ*=(σ0/γ0)eiδ=(σ0/γ0)(cosδ+isinδ) ・・・(F1)
 複素弾性率G*は、実数部分と虚数部分に分けて、下記数式(F2)のように表現できる。
G*=G’+iG’’ ・・・(F2)
 実数部分のG’は粘弾性のうち弾性部分を表し、虚数部分G’’はそれより90度遅れた位相にあるので粘性部分を表す。ここで、G’を貯蔵弾性率、G’’を損失弾性率と称し、本発明においては前者の貯蔵弾性率G’に注目する。
 測定試料に振動変形を加え、ひずみの振幅と力計で検出される応力の振幅及びそれらの間の位相差を測定することにより、粘弾性体における弾性の寄与と粘性の寄与のそれぞれを評価することができる。
 具体的な貯蔵弾性率(G’)の測定方法は、後述する実施例に記載の通りである。
The storage elastic modulus (G') will be described below.
A viscoelastic body such as a resin has both viscosity and elasticity. In the case of an ideal elastic body, stress and strain are observed in phase. On the other hand, in the case of an ideal liquid, the strain phase is delayed by 90 degrees with respect to the stress phase. The viscoelastic body exhibits an intermediate behavior, and the phase difference is a value between 0 degrees and 90 degrees.
The elastic modulus can be expressed as the following mathematical formula (F1) as a complex elastic modulus G * by a complex number as a ratio of stress (σ *) and strain (γ *).
G * = σ * / γ * = (σ0 / γ0) eiδ = (σ0 / γ0) (cosδ + isinδ) ・ ・ ・ (F1)
The complex elastic modulus G * can be expressed by the following mathematical formula (F2) by dividing it into a real number part and an imaginary number part.
G * = G'+ iG'' ・ ・ ・ (F2)
The real part G'represents the elastic part of the viscoelasticity, and the imaginary part G'' represents the viscous part because it is in a phase 90 degrees behind it. Here, G'is referred to as a storage elastic modulus and G'' is referred to as a loss elastic modulus, and in the present invention, the former storage elastic modulus G'is focused on.
By applying vibration deformation to the measurement sample and measuring the strain amplitude, the stress amplitude detected by the force gauge, and the phase difference between them, the contribution of elasticity and the contribution of viscosity in the viscoelastic body are evaluated. be able to.
A specific method for measuring the storage elastic modulus (G') is as described in Examples described later.
 樹脂シートの貯蔵弾性率は、樹脂シートを構成する樹脂の結晶化度や、結晶領域・非晶領域の配向度等の物性を変更することで所望の値になるよう制御することができる。 The storage elastic modulus of the resin sheet can be controlled to a desired value by changing the physical properties such as the crystallinity of the resin constituting the resin sheet and the degree of orientation of the crystalline region and the amorphous region.
(樹脂シートに用いる樹脂)
 本発明の一態様に係る樹脂シートに用いる樹脂としては、特に限定されず、ポリオレフィン、ポリカーボネート、ポリスチレン、ポリメタクリル酸メチル(PMMA)等のアクリル樹脂、アクリロニトリル‐ブタジエン‐スチレン共重合体、アクリロニトリル‐スチレン共重合体、ポリ塩化ビニル、ナイロン6、ナイロン66等のポリアミド、ポリアセタール、ポリフェニレンエーテル、例えばポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、液晶ポリマー、ポリフェニレンサルファイド、ポリイミド、ポリアミドイミド、ポリスルホン、ポリエーテルサルフォン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリアリレート、ポリエーテルイミド、フッ素樹脂、ポリブチレンサクシネート、ポリ乳酸等が挙げられる。
 これらは、1種単独で用いてもよく、これらを2種以上用いたブレンド系樹脂又はアロイ系樹脂でもよい。
 これらの樹脂の中でも、透明性や耐久性の観点から、ポリオレフィン、ポリカーボネート、アクリル樹脂が好ましく、耐薬品性、耐久性及び成形性の観点から、ポリオレフィンがより好ましい。
(Resin used for resin sheet)
The resin used for the resin sheet according to one aspect of the present invention is not particularly limited, and is not particularly limited, and is an acrylic resin such as polyolefin, polycarbonate, polystyrene, polymethyl methacrylate (PMMA), acrylonitrile-butadiene-styrene copolymer, and acrylonitrile-styrene. Copolymers, polyamides such as polyvinyl chloride, nylon 6, nylon 66, polyacetal, polyphenylene ethers such as polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and other polyesters, liquid crystal polymers, polyphenylene sulfide, polyimide, polyamideimide , Polysulfone, polyether sulfone, polyether ketone, polyether ether ketone, polyarylate, polyetherimide, fluororesin, polybutylene succinate, polylactic acid and the like.
These may be used alone or may be a blend resin or an alloy resin using two or more of them.
Among these resins, polyolefin, polycarbonate, and acrylic resins are preferable from the viewpoint of transparency and durability, and polyolefin is more preferable from the viewpoint of chemical resistance, durability, and moldability.
 ポリオレフィンとしては、ポリエチレン、ポリプロピレン、環状ポリオレフィン等を用いることができる。
 環状ポリオレフィンは、環状オレフィンに由来する構造単位を含む重合体であり、例えばエチレンとの共重合体(環状ポリオレフィン共重合体)であってもよい。
 また、ポリオレフィンを、例えば、無水マレイン酸、マレイン酸ジメチル、マレイン酸ジエチル、アクリル酸、メタクリル酸、テトラヒドロフタル酸、グリシジルメタクリレート、ヒドロキシエチルメタクリレート、メチルメタクリレート等の変性用化合物で変性して得られる変性ポリオレフィン樹脂を樹脂シート中に含有してもよい。
 これらの樹脂の中でも、耐薬品性、耐久性及び成形性の観点からポリプロピレンが好ましい。
As the polyolefin, polyethylene, polypropylene, cyclic polyolefin and the like can be used.
The cyclic polyolefin is a polymer containing a structural unit derived from the cyclic olefin, and may be, for example, a copolymer with ethylene (cyclic polyolefin copolymer).
Modifications obtained by modifying polyolefins with modifying compounds such as maleic anhydride, dimethyl maleate, diethyl maleate, acrylic acid, methacrylic acid, tetrahydrophthalic acid, glycidyl methacrylate, hydroxyethyl methacrylate, and methyl methacrylate. Polyolefin resin may be contained in the resin sheet.
Among these resins, polypropylene is preferable from the viewpoint of chemical resistance, durability and moldability.
 ポリプロピレンは、少なくともプロピレンを含む重合体である。具体的には、ホモポリプロピレン、プロピレンとオレフィンとの共重合体等が挙げられる。
耐熱性及び硬度の理由からホモポリプロピレンが好ましい。
 プロピレンとオレフィンとの共重合体は、ブロック共重合体であってもランダム共重合体であってもよく、これらの混合物でもよい。
 オレフィンとしては、エチレン、ブチレン、シクロオレフィン等が挙げられる。
Polypropylene is a polymer containing at least propylene. Specific examples thereof include homopolypropylene, a copolymer of propylene and an olefin, and the like.
Homopolypropylene is preferred because of its heat resistance and hardness.
The copolymer of propylene and olefin may be a block copolymer, a random copolymer, or a mixture thereof.
Examples of the olefin include ethylene, butylene, cycloolefin and the like.
 樹脂シート中にポリプロピレンを含む場合、当該ポリプロピレンは、アイソタクチックペンタッド分率が、80モル%以上であることが好ましく、86モル%以上であることがより好ましく、91モル%以上であることがより好ましく、また、98モル%以下であることがより好ましい。
 また、アイソタクチックペンタッド分率は、80モル%以上98モル%以下であることが好ましく、86モル%以上98モル%以下であることがより好ましく、91モル%以上98モル%以下であることがより好ましい。
 アイソタクチックペンタッド分率が上記範囲内にあれば、樹脂シートの高い透明性が得られ、成形体としたときに良好な加飾性を得られる。
When polypropylene is contained in the resin sheet, the polypropylene preferably has an isotactic pentad fraction of 80 mol% or more, more preferably 86 mol% or more, and 91 mol% or more. Is more preferable, and it is more preferable that the content is 98 mol% or less.
The isotactic pentad fraction is preferably 80 mol% or more and 98 mol% or less, more preferably 86 mol% or more and 98 mol% or less, and 91 mol% or more and 98 mol% or less. Is more preferable.
When the isotactic pentad fraction is within the above range, high transparency of the resin sheet can be obtained, and good decorativeness can be obtained when the molded product is formed.
 アイソタクチックペンタッド分率とは、樹脂組成の分子鎖中のペンタッド単位(プロピレンモノマーが5個連続してアイソタクチック結合したもの)でのアイソタクチック分率である。この分率の測定法は、例えばマクロモレキュールズ(Macromolecules)第8巻(1975年)687頁に記載された方法を採用でき、13C-NMRにより測定できる。
 アイソタクチックペンタッド分率の具体的な測定方法は、後述する実施例に記載の通りである。
The isotactic pentad fraction is an isotactic fraction in a pentad unit (five consecutive isotactic bonds of five propylene monomers) in the molecular chain of the resin composition. As a method for measuring this fraction, for example, the method described in Macromoleculars, Vol. 8, p. 687 can be adopted, and the fraction can be measured by 13 C-NMR.
A specific method for measuring the isotactic pentad fraction is as described in Examples described later.
 樹脂シートに用いるポリプロピレンは、130℃での結晶化速度が2.5min-1以下であると、成形性の観点から好ましい。
 ポリプロピレンの結晶化速度は、2.5min-1以下が好ましく、2.0min-1以下がより好ましい。結晶化速度が2.5min-1以下であると、金型へ接触した部分が急速に硬化すること等を抑制でき、意匠性の低下を防止することができる。下限値は特に限定されないが、通常0.1min-1以上である。
 結晶化速度の具体的な測定方法は、後述する実施例に記載の通りである。
The polypropylene used for the resin sheet preferably has a crystallization rate of 2.5 min -1 or less at 130 ° C. from the viewpoint of moldability.
The crystallization rate of polypropylene is preferably 2.5 min -1 or less, more preferably 2.0 min -1 or less. When the crystallization rate is 2.5 min -1 or less, it is possible to suppress rapid hardening of the portion in contact with the mold, and it is possible to prevent deterioration of the design. The lower limit is not particularly limited, but is usually 0.1 min -1 or more.
The specific method for measuring the crystallization rate is as described in Examples described later.
 樹脂シートに用いるポリプロピレンは、結晶構造としてスメチカ晶を含むことが好ましい。スメチカ晶は準安定状態の中間相であり、1つ1つのドメインサイズが小さいことから透明性に優れるため好ましい。また、スメチカ晶は、準安定状態であるため、結晶化が進んだα晶と比較して低い熱量でシートが軟化することから、成形性に優れるため、好ましい。
 ポリプロピレンの結晶構造には、スメチカ晶の他に、α晶、β晶、γ晶、非晶部等他の結晶形を含んでもよい。
 例えば、樹脂シート中のポリプロピレンの30質量%以上、50質量%以上、70質量%以上又は90質量%以上がスメチカ晶であってもよい。
 結晶構造の具体的な確認方法は、後述する実施例に記載の通りである。
The polypropylene used for the resin sheet preferably contains smetica crystals as a crystal structure. Smetica crystals are a metastable intermediate phase, and are preferable because each domain size is small and the transparency is excellent. Further, since the smetika crystal is in a metastable state, the sheet is softened with a lower amount of heat as compared with the α crystal in which crystallization has progressed, and thus the sheet is excellent in moldability, which is preferable.
The crystal structure of polypropylene may include other crystal forms such as α crystal, β crystal, γ crystal, and amorphous portion in addition to Smetika crystal.
For example, 30% by mass or more, 50% by mass or more, 70% by mass or more, or 90% by mass or more of polypropylene in the resin sheet may be Smetika crystals.
The specific method for confirming the crystal structure is as described in Examples described later.
 樹脂シートは造核剤を含まないことが好ましい。
 樹脂シートが造核剤を含む場合であっても、樹脂シート中の造核剤の含有量は少量であることが好ましく、例えば、樹脂シートの1.0質量%以下であり、好ましくは0.5質量%以下である。
 造核剤としては、例えば、ソルビトール系結晶核剤等が挙げられ、市販品としてはゲルオールMD(新日本理化学株式会社)やリケマスターFC-1(理研ビタミン株式会社)等が挙げられる。
The resin sheet preferably does not contain a nucleating agent.
Even when the resin sheet contains a nucleating agent, the content of the nucleating agent in the resin sheet is preferably small, for example, 1.0% by mass or less of the resin sheet, and preferably 0. It is 5% by mass or less.
Examples of the nucleating agent include sorbitol-based crystal nucleating agents, and examples of commercially available products include Gelol MD (Nihon Rikagaku Co., Ltd.) and Rikemaster FC-1 (RIKEN Vitamin Co., Ltd.).
 一実施形態において、造核剤を添加しないでポリプロピレンの結晶化速度を2.5min-1以下とし、80℃/秒以上で冷却して上述したスメチカ晶を形成することにより、当該樹脂シートを用いた成形体において、優れた意匠性を得ることができる。また、後述する成形体の製造において説明するように、樹脂シートの加熱及び賦形を行うことによって、樹脂シートがスメチカ晶由来の微細構造を維持したままα晶に転移する。この転移により、樹脂シートの表面硬度や透明性をさらに向上できる。 In one embodiment, the resin sheet is used by setting the crystallization rate of polypropylene to 2.5 min -1 or less without adding a nucleating agent and cooling at 80 ° C./sec or more to form the above-mentioned Smetika crystals. It is possible to obtain excellent designability in the molded body. Further, as described in the production of the molded product described later, by heating and shaping the resin sheet, the resin sheet is transferred to α crystals while maintaining the fine structure derived from Smetika crystals. This transition can further improve the surface hardness and transparency of the resin sheet.
 アイソタクチックペンタッド分率が80モル%以上98モル%以下かつポリプロピレンの結晶化速度が2.5min-1以下で、透明性や光沢に優れたポリプロピレンとするためには、通常、スメチカ晶を形成することが必要となる。
 後述する成形体の製造において説明するように、樹脂シートの加熱及び賦形を行うことによって、樹脂シートのポリプロピレンはスメチカ晶由来の微細構造を維持したままα晶に転移するが、成形体中のポリプロピレンが、アイソタクチックペンタッド分率80モル%以上98モル%以下であり、かつ結晶化速度2.5min-1以下であれば、スメチカ晶由来といえる。
In order to obtain polypropylene with an isotactic pentad fraction of 80 mol% or more and 98 mol% or less and a polypropylene crystallization rate of 2.5 min -1 or less and excellent transparency and gloss, smetica crystals are usually used. It needs to be formed.
As will be described in the production of the molded body described later, by heating and shaping the resin sheet, polypropylene of the resin sheet is transferred to α crystals while maintaining the microstructure derived from Smetica crystals, but in the molded body If polypropylene has an isotactic pentad fraction of 80 mol% or more and 98 mol% or less and a crystallization rate of 2.5 min -1 or less, it can be said to be derived from Smetica crystals.
 小角X線散乱解析法により散乱強度分布と長周期を算出することにより、樹脂シートが80℃/秒以上で冷却して得られたものか、そうでないかを判断することができる。即ち、上記解析により樹脂シートがスメチカ晶由来の微細構造を有しているか否かを判断することが可能である。測定は以下の条件で行う。
・X線発生装置はultraX 18HF(株式会社リガク製)を用い、散乱の検出にはイメージングプレートを使用する。
・光源波長:0.154nm
・電圧/電流:50kV/250mA
・照射時間:60分
・カメラ長:1.085m
・試料厚み:1.5~2.0mmになるようにシートを重ねる。製膜(MD)方向が揃うようにシートを重ねる。
 尚、測定時間を短縮するため、1.5~2.0mmになるようにシートを重ねているが、測定時間を長くすれば、シートを重ねずに1枚でも測定可能である。
By calculating the scattering intensity distribution and the long period by the small-angle X-ray scattering analysis method, it is possible to determine whether the resin sheet is obtained by cooling at 80 ° C./sec or higher or not. That is, it is possible to determine whether or not the resin sheet has a fine structure derived from Smetika crystals by the above analysis. The measurement is performed under the following conditions.
-The X-ray generator uses ultraX 18HF (manufactured by Rigaku Co., Ltd.), and an imaging plate is used to detect scattering.
-Light source wavelength: 0.154 nm
-Voltage / current: 50kV / 250mA
・ Irradiation time: 60 minutes ・ Camera length: 1.085m
-Stack the sheets so that the sample thickness is 1.5 to 2.0 mm. Stack the sheets so that the film formation (MD) directions are aligned.
In order to shorten the measurement time, the sheets are stacked so as to be 1.5 to 2.0 mm, but if the measurement time is lengthened, even one sheet can be measured without stacking the sheets.
 樹脂シートに含まれるポリプロピレンは、好ましくは示差走査熱量(DSC)測定で得られる曲線(DSC曲線)において、最大吸熱ピークの低温側に1.0J/g以上、より好ましくは1.5J/g以上の発熱ピーク(「低温側発熱ピーク」ともいう。)を有する。上限値は特に限定されないが、通常10J/g以下である。
 上記の具体的な測定方法は、後述する実施例に記載の通りである。
Polypropylene contained in the resin sheet is preferably 1.0 J / g or more, more preferably 1.5 J / g or more on the low temperature side of the maximum endothermic peak in the curve (DSC curve) obtained by differential scanning calorimetry (DSC) measurement. Has an endothermic peak (also referred to as "low temperature side exothermic peak"). The upper limit is not particularly limited, but is usually 10 J / g or less.
The specific measurement method described above is as described in Examples described later.
 樹脂シートは、前述した樹脂成分の他に、必要に応じて、着色剤、酸化防止剤、安定剤、紫外線吸収剤等の添加剤を含有してもよい。 The resin sheet may contain additives such as a colorant, an antioxidant, a stabilizer, and an ultraviolet absorber, if necessary, in addition to the above-mentioned resin component.
 一実施形態において、樹脂シートの50質量%以上、60質量%以上、70質量%以上、80質量%以上、90質量%以上、95質量%以上、98質量%以上、99質量%以上、99.5質量%以上、99.8質量%以上、99.9質量%以上又は100質量%が、樹脂(例えばポリプロピレン)であるか、又は樹脂(例えばポリプロピレン)、及び上記の各任意成分から選択される1以上の成分である。 In one embodiment, 50% by mass or more, 60% by mass or more, 70% by mass or more, 80% by mass or more, 90% by mass or more, 95% by mass or more, 98% by mass or more, 99% by mass or more, 99. 5% by mass or more, 99.8% by mass or more, 99.9% by mass or more or 100% by mass is a resin (for example, polypropylene) or is selected from the resin (for example, polypropylene) and each of the above optional components. It is one or more components.
 一実施形態において、樹脂シートは単層からなるものであってもよいし、意匠性を付与する目的等のために、他の層を積層した積層構造体であってもよい。 In one embodiment, the resin sheet may be composed of a single layer, or may be a laminated structure in which other layers are laminated for the purpose of imparting design.
 積層構造体である樹脂シート(「積層樹脂シート」とも言う)は、通常、2層又は3層からなる積層構造であり、層構成としては、例えば、樹脂成分からなる樹脂層(第1の層)、及び、樹脂成分に着色剤等の添加剤を加えた組成物からなる意匠性付与層(第2の層)による2層構造や、第1の層、第2の層、及び、樹脂成分からなる樹脂層(第3の層)による3層構造等が挙げられる。 The resin sheet (also referred to as “laminated resin sheet”) which is a laminated structure is usually a laminated structure consisting of two or three layers, and the layer structure is, for example, a resin layer (first layer) composed of a resin component. ), And a two-layer structure consisting of a design-imparting layer (second layer) composed of a composition in which an additive such as a colorant is added to a resin component, a first layer, a second layer, and a resin component. Examples thereof include a three-layer structure composed of a resin layer (third layer).
 第1の層としては、上述した本発明の一態様における樹脂シートと同じ構成の層を用いることができる。
 第2の層及び第3の層に用いる樹脂成分としては、第1の層で説明した各種樹脂を用いることができるが、好ましくは、第1の層と同じ樹脂(例えばポリプロピレン)である。
As the first layer, a layer having the same structure as the resin sheet according to the above-described aspect of the present invention can be used.
As the resin component used for the second layer and the third layer, various resins described in the first layer can be used, but the same resin as the first layer (for example, polypropylene) is preferable.
 積層樹脂シートの貯蔵弾性率は、積層樹脂シート全体についての値である。また、アイソタクチックペンタッド分率、結晶化速度、結晶構造、及び示差走査熱量測定における発熱ピークの各種測定についても、積層樹脂シート全体について測定した値である。 The storage elastic modulus of the laminated resin sheet is a value for the entire laminated resin sheet. Further, various measurements of the isotactic pentad fraction, the crystallization rate, the crystal structure, and the heat generation peak in the differential scanning calorimetry are also the values measured for the entire laminated resin sheet.
 本発明の一態様に係る樹脂シートの厚さ(積層樹脂シートである場合は全ての厚さ)は、通常、100~1000μmであり、150~800μmが好ましい。 The thickness of the resin sheet according to one aspect of the present invention (all thicknesses in the case of a laminated resin sheet) is usually 100 to 1000 μm, preferably 150 to 800 μm.
2.樹脂シートの製造方法
 本発明の樹脂シートの製造方法は特に制限されないが、例えば押出法等が挙げられる。
 上記押出法では溶融樹脂の冷却を含み、当該冷却は、好ましくは80℃/秒以上の冷却速度で行い、樹脂シートの内部温度が結晶化温度以下となるまで行う。これにより、樹脂シートに含まれるポリオレフィン(特にポリプロピレン)等の結晶構造を、上述のスメチカ晶とすることができる。冷却速度は、90℃/秒以上がより好ましく、150℃/秒以上がさらに好ましい。
 樹脂シートが上述した積層樹脂シートである場合、2層又は3層分の各材料を共押出した上で、上記の冷却処理を行うことにより、所望の積層樹脂シートを製造することができる。
 具体的な製造方法は、実施例において詳述する。
2. 2. Method for Producing Resin Sheet The method for producing the resin sheet of the present invention is not particularly limited, and examples thereof include an extrusion method.
The above-mentioned extrusion method includes cooling of the molten resin, and the cooling is preferably performed at a cooling rate of 80 ° C./sec or higher until the internal temperature of the resin sheet becomes equal to or lower than the crystallization temperature. As a result, the crystal structure of the polyolefin (particularly polypropylene) contained in the resin sheet can be made into the above-mentioned Smetika crystal. The cooling rate is more preferably 90 ° C./sec or higher, and even more preferably 150 ° C./sec or higher.
When the resin sheet is the above-mentioned laminated resin sheet, a desired laminated resin sheet can be produced by co-extruding each of the materials for two or three layers and then performing the above-mentioned cooling treatment.
The specific manufacturing method will be described in detail in Examples.
3.積層体
 本発明の一態様に係る樹脂シート(又は積層樹脂シート)は、各種機能や意匠性を付与するための層を積層して積層体としてもよい。このような層としては、易接着層、アンダーコート層、金属層、印刷層等が挙げられる。以下、これらの層について説明する。
3. 3. Laminated body The resin sheet (or laminated resin sheet) according to one aspect of the present invention may be made into a laminated body by laminating layers for imparting various functions and designs. Examples of such a layer include an easy-adhesion layer, an undercoat layer, a metal layer, a printing layer and the like. Hereinafter, these layers will be described.
(易接着層)
 易接着層は、好ましくはウレタン系樹脂、アクリル系樹脂、ポリオレフィン系樹脂及びポリエステル系樹脂からなる群から選択される1以上の樹脂を含む。
 そのような易接着層を設けることで、後述する成形体が複雑な非平面状に成形された場合であっても、易接着層が樹脂シートに追従して良好に層構成を形成でき、ひび割れや剥離が生じることを防止できる。
(Easy adhesive layer)
The easy-adhesion layer preferably contains one or more resins selected from the group consisting of urethane-based resins, acrylic-based resins, polyolefin-based resins, and polyester-based resins.
By providing such an easy-adhesive layer, even when the molded body described later is molded into a complicated non-planar shape, the easy-adhesive layer can follow the resin sheet to form a good layer structure and crack. And peeling can be prevented.
 ウレタン系樹脂としては、ジイソシアネート、高分子量ポリオール及び鎖延長剤を反応させて得られるウレタン系樹脂が好ましい。高分子量ポリオールは、ポリエーテルポリオール又はポリカーボネートポリオールとしてもよい。ウレタン系樹脂の市販品としては、ハイドランWLS-202(DIC株式会社製)等が挙げられる。
 アクリル系樹脂としては、アクリット8UA-366(大成ファインケミカル株式会社製)等が挙げられる。
 ポリオレフィン系樹脂としては、アローベースDA-1010(ユニチカ株式会社製)等が挙げられる。
 ポリエステル系樹脂としては、ポリエチレンテレフタラート、ポリブチレンテレフタラート、ポリエチレンナフタレート等が挙げられる。
As the urethane-based resin, a urethane-based resin obtained by reacting a diisocyanate, a high molecular weight polyol, and a chain extender is preferable. The high molecular weight polyol may be a polyether polyol or a polycarbonate polyol. Examples of commercially available urethane-based resins include Hydran WLS-202 (manufactured by DIC Corporation).
Examples of the acrylic resin include Acryt 8UA-366 (manufactured by Taisei Fine Chemical Co., Ltd.) and the like.
Examples of the polyolefin resin include Arrow Base DA-1010 (manufactured by Unitika Ltd.) and the like.
Examples of the polyester resin include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and the like.
 易接着層は、上述した材料を1種単独で又は2種以上を組み合わせて用いてもよい。 As the easy-adhesive layer, the above-mentioned materials may be used alone or in combination of two or more.
 易接着層が含むウレタン系樹脂、アクリル系樹脂、ポリオレフィン系樹脂及びポリエステル系樹脂のうち、後述する金属層及び印刷層への密着性や成形性を考慮すると、ウレタン系樹脂が好ましい。 Of the urethane-based resin, acrylic-based resin, polyolefin-based resin, and polyester-based resin contained in the easy-adhesion layer, urethane-based resin is preferable in consideration of adhesion to the metal layer and print layer described later and moldability.
 なお、易接着層がポリプロピレン系樹脂を含む場合、易接着層が含むポリプロピレン系樹脂は、樹脂シートや成形体本体が含み得るポリプロピレンとは、通常、異なる。 When the easy-adhesive layer contains a polypropylene-based resin, the polypropylene-based resin contained in the easy-adhesive layer is usually different from the polypropylene that can be contained in the resin sheet or the main body of the molded product.
 易接着層は、1層単独でもよく、又は、2層以上の積層構造でもよい。 The easy-adhesion layer may be a single layer or a laminated structure of two or more layers.
 易接着層の厚さは、35nm以上3000nm以下としてもよく、50nm以上2000nm以下としてもよく、50nm以上1000nm以下としてもよい。
 また、易接着層の厚さは、35nm以上、又は50nm以上としてもよく、3000nm以下、2000nm以下、又は1000nm以下としてもよい。
The thickness of the easy-adhesion layer may be 35 nm or more and 3000 nm or less, 50 nm or more and 2000 nm or less, or 50 nm or more and 1000 nm or less.
The thickness of the easy-adhesive layer may be 35 nm or more, 50 nm or more, or 3000 nm or less, 2000 nm or less, or 1000 nm or less.
 易接着層は、例えば、上述した樹脂をグラビアコーター、キスコーター又はバーコーター等で塗布し、40~100℃にて10秒~10分間乾燥することで形成することができる。 The easy-adhesive layer can be formed, for example, by applying the above-mentioned resin with a gravure coater, a kiss coater, a bar coater, or the like and drying at 40 to 100 ° C. for 10 seconds to 10 minutes.
 易接着層の上には、インキやハードコート、反射防止コート、遮熱コート等の各種コーティングを積層できる。
 また、樹脂シートにおいて、上記の易接着層(第1の易接着層)と反対側の面に易接着層をもう1層設けてもよい(第2の易接着層)。このようにすることで、成形体の表面となるポリオレフィン樹脂層に、表面処理やハードコーティング等の機能性を付与することができる。
Various coatings such as ink, hard coat, antireflection coat, and heat shield coat can be laminated on the easy-adhesion layer.
Further, in the resin sheet, another easy-adhesive layer may be provided on the surface opposite to the above-mentioned easy-adhesive layer (first easy-adhesive layer) (second easy-adhesive layer). By doing so, it is possible to impart functionality such as surface treatment and hard coating to the polyolefin resin layer that is the surface of the molded product.
(アンダーコート層)
 アンダーコート層は、易接着層と金属層とを密着させることができる層である。アンダーコート層を設けることにより、熱成形時に応力が加わった場合でも、金属層に極めて微細なクラックを無数に生じさせることができ、レインボー現象の発生を無くし、又は低減することができる。
 アンダーコート層を形成する材料としては、ウレタン樹脂、アクリル樹脂、ポリオレフィン、ポリエステル等が挙げられる。
(Undercoat layer)
The undercoat layer is a layer capable of bringing the easy-adhesive layer and the metal layer into close contact with each other. By providing the undercoat layer, innumerable extremely fine cracks can be generated in the metal layer even when stress is applied during thermoforming, and the occurrence of the rainbow phenomenon can be eliminated or reduced.
Examples of the material forming the undercoat layer include urethane resin, acrylic resin, polyolefin, polyester and the like.
 成形時の耐白化性(白化現象の起こりにくさ)や金属層との密着性の観点から、アンダーコート層を形成する材料としては、アクリル樹脂が好ましく、例えば荒川化学工業株式会社製「DA-105」を用いることができる。 Acrylic resin is preferable as the material for forming the undercoat layer from the viewpoint of whitening resistance during molding (difficulty of whitening phenomenon) and adhesion to the metal layer. For example, "DA-" manufactured by Arakawa Chemical Industries, Ltd. 105 ”can be used.
 上記材料は1種単独で又は2種以上を組み合わせて用いてもよい。 The above materials may be used alone or in combination of two or more.
 アンダーコート層において、上述した樹脂成分(主剤)に硬化剤を組み合わせて用いてもよい。硬化剤としては、アジリジン系化合物、ブロックドイソシアネート化合物、エポキシ系化合物、オキサゾリン化合物、カルボジイミド化合物等が挙げられ、例えば荒川化学工業株式会社製「CL102H」を用いることができる。 In the undercoat layer, the above-mentioned resin component (main agent) may be used in combination with a curing agent. Examples of the curing agent include an aziridine compound, a blocked isocyanate compound, an epoxy compound, an oxazoline compound, a carbodiimide compound and the like, and for example, "CL102H" manufactured by Arakawa Chemical Industry Co., Ltd. can be used.
 硬化剤を用いる場合、アンダーコート層における主剤と硬化剤の含有割合は、固形分の質量比で、例えば35:4~35:40であり、好ましくは35:4~35:32であり、より好ましくは35:12~35:32である。また、35:12~35:20としてもよい。
 硬化剤の配合量が主剤35に対して4以上であると、硬化反応が問題なく進行し、耐白化性を維持することができる。40以下であると、アンダーコート層の伸び性が良好であり、成形時のひび割れを抑制することができる。
When a curing agent is used, the content ratio of the main agent and the curing agent in the undercoat layer is, for example, 35: 4 to 35:40, preferably 35: 4 to 35:32, and more, in terms of the mass ratio of the solid content. It is preferably 35:12 to 35:32. Further, it may be 35:12 to 35:20.
When the blending amount of the curing agent is 4 or more with respect to the main agent 35, the curing reaction proceeds without any problem, and the whitening resistance can be maintained. When it is 40 or less, the extensibility of the undercoat layer is good, and cracking during molding can be suppressed.
 アンダーコート層の形成方法としては、例えば、上述した材料をグラビアコーター、キスコーター又はバーコーター等で塗布し、50~100℃にて10秒~10分間乾燥し、40~100℃にて10~200時間エージングすることで形成することができる。 As a method for forming the undercoat layer, for example, the above-mentioned material is applied with a gravure coater, a kiss coater, a bar coater or the like, dried at 50 to 100 ° C. for 10 seconds to 10 minutes, and dried at 40 to 100 ° C. for 10 to 200. It can be formed by time aging.
 アンダーコート層の厚さは、0.05μm~50μmとしてもよく、0.1μm~10μmとしてもよく、0.5μm~5μmとしてもよい。
 また、アンダーコート層の厚さは、0.05μm以上、0.1μm以上、又は0.5μm以上としてもよく、50μm以下、10μm以下、又は5μm以下としてもよい。
The thickness of the undercoat layer may be 0.05 μm to 50 μm, 0.1 μm to 10 μm, or 0.5 μm to 5 μm.
The thickness of the undercoat layer may be 0.05 μm or more, 0.1 μm or more, or 0.5 μm or more, and may be 50 μm or less, 10 μm or less, or 5 μm or less.
(金属層)
 金属層は、金属又は金属酸化物を含む層である。
 金属層を形成する金属としては、積層体に金属調の意匠を付与できる金属であれば特に限定されないが、例えば、スズ、インジウム、クロム、アルミニウム、ニッケル、銅、銀、金、白金及び亜鉛が挙げられ、これらのうち少なくとも1種を含む合金を用いてもよい。
 上記のうち、インジウム及びアルミニウムは伸展性と色調に特に優れるため好ましい。金属層が伸展性に優れると、積層体を三次元成形した際にひび割れが発生しにくい。
(Metal layer)
The metal layer is a layer containing a metal or a metal oxide.
The metal forming the metal layer is not particularly limited as long as it is a metal that can give a metallic design to the laminate, and for example, tin, indium, chromium, aluminum, nickel, copper, silver, gold, platinum and zinc are used. An alloy containing at least one of these may be used.
Of the above, indium and aluminum are preferable because they are particularly excellent in extensibility and color tone. If the metal layer has excellent extensibility, cracks are less likely to occur when the laminated body is three-dimensionally formed.
 金属層の形成方法は特に制限されないが、質感が高く高級感のある金属調の意匠を積層体に付与する観点から、例えば、上記の金属を用いた、真空蒸着法、スパッタリング法、イオンプレーティング法等の蒸着法等を用いることができる。特に、真空蒸着法は低コストであり、かつ、被蒸着体へのダメージを少なくすることができる。真空蒸着法の条件は、用いる金属の溶融温度又は蒸発温度に応じて適宜設定すればよい。 The method for forming the metal layer is not particularly limited, but from the viewpoint of imparting a high-quality metallic design to the laminate, for example, a vacuum vapor deposition method, a sputtering method, or ion plating using the above-mentioned metal. A vapor deposition method such as a method can be used. In particular, the vacuum thin-film deposition method is low-cost and can reduce damage to the vapor-film-deposited body. The conditions of the vacuum vapor deposition method may be appropriately set according to the melting temperature or evaporation temperature of the metal to be used.
 上記方法の他、上記の金属又は金属酸化物を含むペーストを塗工する方法、上記の金属を用いためっき法等を用いることもできる。 In addition to the above method, a method of applying a paste containing the above metal or a metal oxide, a plating method using the above metal, or the like can also be used.
 金属層の厚さは、5nm以上80nm以下としてもよい。5nm以上であると所望の金属光沢が問題なく得られ、80nm以下であるとひび割れが発生しにくい。 The thickness of the metal layer may be 5 nm or more and 80 nm or less. When it is 5 nm or more, a desired metallic luster can be obtained without any problem, and when it is 80 nm or less, cracks are less likely to occur.
(印刷層)
 印刷層の形状としては、特に制限されないが、例えばベタ状、カーボン調、木目調等の様々な形状が挙げられる。
 印刷の方法としては、スクリーン印刷法、オフセット印刷法、グラビア印刷法、ロールコート法、スプレーコート法等の一般的な印刷方法が利用できる。特に、スクリーン印刷法はインキの膜厚が厚くできるため、複雑な形状に成形した際にインキ割れが発生しにくい。
 例えば、スクリーン印刷の場合、成形時の伸びに優れたインキが好ましく、十条ケミカル株式会社製の「FM3107高濃度白」や「SIM3207高濃度白」等が例示できるが、この限りではない。
(Print layer)
The shape of the print layer is not particularly limited, and examples thereof include various shapes such as solid, carbon, and wood grain.
As a printing method, a general printing method such as a screen printing method, an offset printing method, a gravure printing method, a roll coating method, and a spray coating method can be used. In particular, since the screen printing method can increase the thickness of the ink, ink cracking is unlikely to occur when the ink is formed into a complicated shape.
For example, in the case of screen printing, an ink having excellent elongation during molding is preferable, and examples thereof include "FM3107 high density white" and "SIM3207 high density white" manufactured by Jujo Chemical Co., Ltd., but this is not the case.
4.成形体
 上述した本発明の樹脂シート(又は積層樹脂シート)は、成形体の製造に用いることができる。
 本発明の一態様に係る成形体は、熱可塑性樹脂を含む成形体本体と、上述した本発明の樹脂シートと、を含み、樹脂シートは成形体本体の表面の少なくとも一部を被覆する。
 なお、樹脂シートの代わりに上述した本発明の一態様に係る積層体を用いることもでき、「4.成形体」において「樹脂シート」と言う場合には樹脂シート又は積層体を示す。「5.成形体の製造方法」においても同様である。
4. Molded body The resin sheet (or laminated resin sheet) of the present invention described above can be used for manufacturing a molded body.
The molded body according to one aspect of the present invention includes a molded body body containing a thermoplastic resin and the above-mentioned resin sheet of the present invention, and the resin sheet covers at least a part of the surface of the molded body body.
In addition, instead of the resin sheet, the laminate according to one aspect of the present invention may be used, and when the term "resin sheet" is used in "4. Molded article", it means a resin sheet or a laminate. The same applies to "5. Method for manufacturing a molded product".
 本発明の一態様に係る成形体は、上記の樹脂シートを表面に用いることにより、成形体の製造時に成形金型の凹凸形状を再現性高く樹脂シート表面に転写することができる。すなわち、本発明の一態様に係る成形体は、表面の樹脂シート上に、金型に設けられた凹凸形状に対応する凹凸形状を有する。
 樹脂シートは、成形体本体表面の一部を被覆していてもよいし、成形体本体表面の全部(全面)を被覆していてもよい。
By using the above resin sheet on the surface of the molded body according to one aspect of the present invention, the uneven shape of the molding die can be transferred to the surface of the resin sheet with high reproducibility at the time of manufacturing the molded body. That is, the molded body according to one aspect of the present invention has an uneven shape corresponding to the uneven shape provided on the mold on the resin sheet on the surface.
The resin sheet may cover a part of the surface of the molded body, or may cover the entire surface (entire surface) of the molded body.
 成形体は、成形体本体と樹脂シートとを含むものであればよい。成形体の形状は特に制限されず、例えば、層状形状であってもよいし、特定の立体的形状であってもよい。 The molded body may include the molded body and the resin sheet. The shape of the molded body is not particularly limited, and may be, for example, a layered shape or a specific three-dimensional shape.
 本発明の一態様に係る成形体の概略断面図を図1に示す。図1において、成形体1は成形体本体2と、成形体本体2を被覆する樹脂シート3とを含む。図示していないが、樹脂シート3は、その表面に、金型の凹凸形状に対応する凹凸形状を有する。
 なお、図1において縦横比や膜厚比は必ずしも正確ではない。
FIG. 1 shows a schematic cross-sectional view of a molded product according to one aspect of the present invention. In FIG. 1, the molded body 1 includes a molded body main body 2 and a resin sheet 3 that covers the molded body main body 2. Although not shown, the resin sheet 3 has an uneven shape corresponding to the uneven shape of the mold on the surface thereof.
In FIG. 1, the aspect ratio and the film thickness ratio are not always accurate.
 成形体本体2に用いる熱可塑性樹脂は、射出成形可能なものであれば特に限定されない。
 成形体本体2に含まれる熱可塑性樹脂としては、例えば、ポリプロピレン、ポリエチレン、ポリカーボネート、アセチレン-スチレン-ブタジエン共重合体、アクリル重合体等が挙げられる。熱可塑性樹脂は、これらを単独で用いてもよく、2種以上を混合して用いてもよい。
The thermoplastic resin used for the molded body 2 is not particularly limited as long as it can be injection molded.
Examples of the thermoplastic resin contained in the molded body 2 include polypropylene, polyethylene, polycarbonate, acetylene-styrene-butadiene copolymer, acrylic polymer and the like. As the thermoplastic resin, these may be used alone, or two or more kinds may be mixed and used.
5.成形体の製造方法
 本発明の一態様による成形体の製造方法としては、インモールド成形やインサート成形等が挙げられる。以下、各製造方法について説明する。
5. Method for Manufacturing a Molded Body As a method for manufacturing a molded product according to one aspect of the present invention, in-mold molding, insert molding and the like can be mentioned. Hereinafter, each manufacturing method will be described.
(インモールド成形)
 インモールド成形は、金型内に樹脂シートを設置して、金型内に供給される成形用樹脂の圧力で所望の形状に成形して成形体を得る方法である。具体的には、樹脂シートを金型の上に配置すること、及び、成形用樹脂を樹脂シートに向けて供給することで、樹脂シートを金型に合致するように賦形しつつ、成形用樹脂と、樹脂シートと、を一体化させることを含む。
 ここで、成形用樹脂は、樹脂シート上で冷却され、固化されることによって、成形体本体を形成する。
(In-mold molding)
In-mold molding is a method in which a resin sheet is placed in a mold and molded into a desired shape by the pressure of the molding resin supplied in the mold to obtain a molded product. Specifically, by arranging the resin sheet on the mold and supplying the molding resin toward the resin sheet, the resin sheet is shaped so as to match the mold for molding. It includes integrating the resin and the resin sheet.
Here, the molding resin is cooled on the resin sheet and solidified to form the molded body body.
(インサート成形)
 インサート成形では、金型内に設置する賦形体を予備賦形しておき、その形状に成形用樹脂を充填することで、成形体を得る方法である。具体的には、樹脂シートを金型に合致するよう賦形すること、及び、成形用樹脂を賦形された樹脂シートに向けて供給することで、成形用樹脂と、賦形された樹脂シートと、を一体化させることを含む。インサート成形では、上述したインモールド成形と比べ、より複雑な形状の成形体を形成することができる。
 金型に合致するように行う賦形(予備賦形)は、真空成形、圧空成形、真空圧空成形、プレス成形、プラグアシスト成形等で行うことができる。賦形に際して、予め樹脂シートを加熱することができる。
(Insert molding)
Insert molding is a method of obtaining a molded body by preliminarily shaping a shaped body to be installed in a mold and filling the shape with a molding resin. Specifically, by shaping the resin sheet so as to match the mold and supplying the molding resin toward the shaped resin sheet, the molding resin and the shaped resin sheet are formed. And, including unifying. In insert molding, a molded body having a more complicated shape can be formed as compared with the above-mentioned in-mold molding.
The shaping (preliminary shaping) performed so as to match the mold can be performed by vacuum forming, compressed air forming, vacuum forming, press forming, plug assist forming or the like. The resin sheet can be heated in advance at the time of shaping.
(射出成形金型内で予備附形を行うインサート成形)
 また、インサート成形の一類型として、樹脂シートの予備賦形を、射出成形を行う金型内で行う方法も挙げられる。具体的には、樹脂シートを加熱して金型のキャビティ面上に配置し、樹脂シートを金型の形状に合致するように賦形すること、及び、成形用樹脂を賦形された樹脂シートに向けて供給することで、成形用樹脂と、賦形された樹脂シートと、を一体化させることを含む。
 樹脂シートの予備賦形の方法としては、例えば、樹脂シートをヒーター等で予め加熱し、加熱された樹脂シートを射出成形用の金型のキャビティ面上に配置し、キャビティ内部を吸引することで、樹脂シートを金型の内部形状に合致するように賦形することができる。その後、キャビティ内に賦形された樹脂シートを設置したまま、成形用樹脂を充填することで、成形体を得ることができる。
 本方法によれば、より複雑な形状の成形体を、より簡易な方法により形成することができる。
(Insert molding that performs preliminary molding in the injection molding die)
Further, as a type of insert molding, there is also a method of performing preliminary shaping of a resin sheet in a mold for injection molding. Specifically, the resin sheet is heated and placed on the cavity surface of the mold, and the resin sheet is shaped so as to match the shape of the mold, and the resin sheet to which the molding resin is shaped is shaped. It includes integrating the molding resin and the shaped resin sheet by supplying the resin toward the above.
As a method of preforming the resin sheet, for example, the resin sheet is preheated with a heater or the like, the heated resin sheet is placed on the cavity surface of the injection molding die, and the inside of the cavity is sucked. , The resin sheet can be shaped to match the internal shape of the mold. After that, a molded product can be obtained by filling the molded resin with the shaped resin sheet installed in the cavity.
According to this method, a molded product having a more complicated shape can be formed by a simpler method.
 上記の成形方法に用いられる金型の表面形状は、通常、金型の製品面となるキャビティ表面に、レーザー加工やエッチング加工、切削加工等を施すことにより付与される。表面形状は、シボやブラスト等の形状が浅いものから、ヘアラインやカーボン模様、木目などの特定の形状を有するものが挙げられる。 The surface shape of the mold used in the above molding method is usually given by subjecting the cavity surface, which is the product surface of the mold, to laser processing, etching processing, cutting processing, or the like. Examples of the surface shape include those having a shallow shape such as grain and blast, and those having a specific shape such as hairline, carbon pattern, and wood grain.
 上記の成形方法において、成形用樹脂が供給される際の金型温度は、20℃以上90℃以下であることが好ましい。金型温度が上記範囲にあれば、金型の凹凸形状を樹脂シートに対して良好に転写することができる。
 成形用樹脂が供給される際の金型温度は、好ましくは30℃以上70℃以下である。この範囲であると、樹脂シートが冷却されるため、溶融樹脂の熱により意匠変化や溶融する懸念が低減でき、優れた外観が得られる。また、金型内の樹脂が過冷却により流動末端にて成形不良(充填不足)を起こす懸念が低減でき、成形性に優れる。
In the above molding method, the mold temperature when the molding resin is supplied is preferably 20 ° C. or higher and 90 ° C. or lower. When the mold temperature is within the above range, the uneven shape of the mold can be satisfactorily transferred to the resin sheet.
The mold temperature when the molding resin is supplied is preferably 30 ° C. or higher and 70 ° C. or lower. Within this range, since the resin sheet is cooled, the concern about design changes and melting due to the heat of the molten resin can be reduced, and an excellent appearance can be obtained. In addition, the concern that the resin in the mold causes molding defects (insufficient filling) at the flow end due to supercooling can be reduced, and the moldability is excellent.
 上記の成形方法において、金型に供給される成形用樹脂の温度は、好ましくは190℃以上240℃以下である。この範囲であると、金型内の流動端部まで樹脂が充填されやすいため、成形性に優れる。また、240℃以下であれば、成形用樹脂の熱によりシートが溶融して意匠を損なう恐れが低減されるため、この点でも好ましい。 In the above molding method, the temperature of the molding resin supplied to the mold is preferably 190 ° C. or higher and 240 ° C. or lower. Within this range, the resin is easily filled up to the flow end portion in the mold, so that the moldability is excellent. Further, when the temperature is 240 ° C. or lower, the risk of the sheet melting due to the heat of the molding resin and damaging the design is reduced, which is also preferable in this respect.
 成形用樹脂組成物の金型への供給は、射出により行うことが好ましく、射出圧力は好ましくは5MPa以上であり、より好ましくは10MPa以上である。また、好ましくは120MPa以下であり、より好ましくは110MPa以下である。この範囲であると、成形用樹脂により、樹脂シートが強く金型に押し付けられるため転写率に優れた成形品が得られる。 The molding resin composition is preferably supplied to the mold by injection, and the injection pressure is preferably 5 MPa or more, more preferably 10 MPa or more. Further, it is preferably 120 MPa or less, and more preferably 110 MPa or less. Within this range, the resin sheet is strongly pressed against the mold by the molding resin, so that a molded product having an excellent transfer rate can be obtained.
(成形体の用途)
 以上に説明した成形体の用途は特に限定されず、種々の用途に用いることができる。一実施形態において、成形体は、鞍乗型車両の外装部品又は四輪車両の外装部品に用いることができる。また、成形体は、車両の内装材、外装材、家電の筐体、化粧鋼鈑、化粧板、住宅設備、情報通信機器の筐体等に用いることができる。
(Use of molded product)
The use of the molded product described above is not particularly limited, and it can be used for various purposes. In one embodiment, the molded body can be used as an exterior part of a saddle-mounted vehicle or an exterior part of a four-wheeled vehicle. Further, the molded body can be used for interior materials and exterior materials of vehicles, housings of home appliances, decorative steel plates, decorative plates, housing equipment, housings of information and communication equipment, and the like.
 以下に本発明の実施例について説明するが、本発明はこれら実施例により限定されない。 Examples of the present invention will be described below, but the present invention is not limited to these examples.
実施例1
(1)樹脂シートの製造
 図2に示す装置を用いて樹脂シート1を製造した。樹脂シート1の原料には、ポリプロピレン(株式会社プライムポリマー製「プライムポリプロF-133A」、MFR:3g/10分、ホモポリプロピレン。以下、「PP-1」と言う場合がある。)を使用した。
Example 1
(1) Manufacture of resin sheet Resin sheet 1 was manufactured using the apparatus shown in FIG. Polypropylene (“Prime Polypro F-133A” manufactured by Prime Polymer Co., Ltd., MFR: 3 g / 10 minutes, homopolypropylene, hereinafter may be referred to as “PP-1”) was used as a raw material for the resin sheet 1. ..
 当該装置の動作を説明する。
 押出機のTダイ52より押し出されたポリプロピレンの溶融樹脂を第1冷却ロール53上で金属製エンドレスベルト57と第4冷却ロール56との間に挟み込む。
 この状態で、溶融樹脂を第1、第4冷却ロール53、56で圧接するとともに急冷し、樹脂シートとする。樹脂シートは、続いて、第4冷却ロール56の略下半周に対応する円弧部分で金属製エンドレスベルト57と第4冷却ロール56とに挟まれて面状圧接される。第4冷却ロール56で面状圧接及び冷却された後、金属製エンドレスベルト57に密着した樹脂シートは、金属製エンドレスベルト57の回動とともに第2冷却ロール54上に移動される。樹脂シートは、前述同様、第2冷却ロール54の略上半周に対応する円弧部分で金属製エンドレスベルト57により面状圧接され、再び冷却される。第2冷却ロール54上で冷却された樹脂シート51は、その後金属製エンドレスベルト57から剥離される。なお、第1、第2冷却ロール53、54の表面には、ニトリル-ブタジエンゴム(NBR)製の弾性材62が被覆されている。
 樹脂シート1の製造条件は以下の通りである。
・押出機の直径:150mm
・Tダイ52の幅:1400mm
・成形後の樹脂シートの厚さ:200μm
・ポリプロピレンシート51の引き取り速度:25m/分
・第4冷却ロール56及び金属製エンドレスベルト57の表面温度:17℃
・冷却速度:10,800℃/分
The operation of the device will be described.
The polypropylene molten resin extruded from the T-die 52 of the extruder is sandwiched between the metal endless belt 57 and the fourth cooling roll 56 on the first cooling roll 53.
In this state, the molten resin is pressure-welded with the first and fourth cooling rolls 53 and 56 and rapidly cooled to obtain a resin sheet. Subsequently, the resin sheet is sandwiched between the metal endless belt 57 and the fourth cooling roll 56 at the arc portion corresponding to the substantially lower half circumference of the fourth cooling roll 56, and is surface-pressed. After surface pressure welding and cooling with the fourth cooling roll 56, the resin sheet in close contact with the metal endless belt 57 is moved onto the second cooling roll 54 with the rotation of the metal endless belt 57. As described above, the resin sheet is surface-pressed by the metal endless belt 57 at the arc portion corresponding to substantially the upper half circumference of the second cooling roll 54, and is cooled again. The resin sheet 51 cooled on the second cooling roll 54 is then peeled off from the metal endless belt 57. The surfaces of the first and second cooling rolls 53 and 54 are coated with an elastic material 62 made of nitrile-butadiene rubber (NBR).
The manufacturing conditions of the resin sheet 1 are as follows.
・ Diameter of extruder: 150mm
・ Width of T-die 52: 1400 mm
-Thickness of resin sheet after molding: 200 μm
-Pick-up speed of polypropylene sheet 51: 25 m / min-Surface temperature of the fourth cooling roll 56 and the metal endless belt 57: 17 ° C.
-Cooling rate: 10,800 ° C / min
(2)樹脂シートの評価
 得られた樹脂シート1について以下の評価を行った。
・貯蔵弾性率
 (1)で得られた樹脂シート1について、粘弾性スペクトロメーター(セイコーインスツル株式会社製、製品名「EXSTAR DMS6100」)を用いて、貯蔵弾性率を測定した。具体的には、まず、樹脂シート1から、長さ40mm、幅4.0mm、厚さ0.2mmの測定用試料を作製した。スパン間距離20mmとなるよう設定し、サンプルのTD方向(幅方向)に対して、昇温速度2℃/分、振動数1Hzの条件で0℃から融点まで動的粘弾性測定を行い、得られた測定結果から、80℃及び120℃における貯蔵弾性率を得た。
(2) Evaluation of Resin Sheet The following evaluation was performed on the obtained resin sheet 1.
-The storage elastic modulus of the resin sheet 1 obtained in (1) was measured using a viscoelastic spectrometer (manufactured by Seiko Instruments Inc., product name "EXSTAR DMS6100"). Specifically, first, a measurement sample having a length of 40 mm, a width of 4.0 mm, and a thickness of 0.2 mm was prepared from the resin sheet 1. The distance between spans was set to 20 mm, and dynamic viscoelasticity was measured from 0 ° C to the melting point under the conditions of a temperature rise rate of 2 ° C / min and a frequency of 1 Hz in the TD direction (width direction) of the sample. From the measurement results obtained, storage elastic moduli at 80 ° C. and 120 ° C. were obtained.
・結晶化速度
 示差走査熱量測定器(DSC)(パーキンエルマー社製「Diamond DSC」)を用いて、樹脂シート1に用いたポリプロピレンの結晶化速度を測定した。具体的には、ポリプロピレンを10℃/分にて50℃から230
℃に昇温し、230℃にて5分間保持し、80℃/分で230℃から130℃に冷却し、その後130℃に保持して結晶化を行った。130℃になった時点から熱量変化について測定を開始し、DSC曲線を得た。得られたDSC曲線から、以下の手順(i)~(iv)により結晶化速度を求めた。
(i)測定開始から最大ピークトップまでの時間の10倍の時点から、20倍の時点までの熱量変化を直線で近似したものをベースラインとした。
(ii)ピークの変曲点における傾きを有する接線とベースラインとの交点を求め、結晶化開始及び終了時間を求めた。
(iii)得られた結晶化開始時間から、ピークトップまでの時間を結晶化時間として測定した。
(iv)得られた結晶化時間の逆数から、結晶化速度を求めた。
 樹脂シート1に用いたポリプロピレンの結晶化速度は0.3min-1であった。
Crystallization rate The crystallization rate of polypropylene used for the resin sheet 1 was measured using a differential scanning calorimetry device (DSC) (“Diamond DSC” manufactured by PerkinElmer Co., Ltd.). Specifically, polypropylene is used at 10 ° C / min from 50 ° C to 230.
The temperature was raised to ° C., held at 230 ° C. for 5 minutes, cooled from 230 ° C. to 130 ° C. at 80 ° C./min, and then held at 130 ° C. for crystallization. The measurement of the change in calorific value was started from the time when the temperature reached 130 ° C., and the DSC curve was obtained. From the obtained DSC curve, the crystallization rate was determined by the following procedures (i) to (iv).
(I) The baseline was the linear approximation of the change in calorific value from the time point 10 times the time from the start of measurement to the top of the maximum peak to the time point 20 times.
(Ii) The intersection of the tangent line having the slope at the inflection point of the peak and the baseline was obtained, and the crystallization start and end times were obtained.
(Iii) The time from the obtained crystallization start time to the peak top was measured as the crystallization time.
(Iv) The crystallization rate was determined from the reciprocal of the obtained crystallization time.
The crystallization rate of polypropylene used for the resin sheet 1 was 0.3 min -1 .
・アイソタクチックペンタッド分率
 樹脂シート1に用いたポリプロピレンについて13C-NMRスペクトルを評価することでアイソタクチックペンタッド分率を測定した。具体的には、エイ・ザンベリ(A.Zambelli)等により「Macromolecules,8,687(1975)」で提案されたピークの帰属に従い、下記の装置、条件及び計算式を用いて行った。
(装置・条件)
装置:13C-NMR装置(日本電子株式会社製「JNM-EX400」型)
方法:プロトン完全デカップリング法(濃度:220mg/ml)
溶媒:1,2,4-トリクロロベンゼンと重ベンゼンの90:10(容量比)混合溶媒
温度:130℃
パルス幅:45°
パルス繰り返し時間:4秒
積算:10000回
(計算式)
アイソタクチックペンタッド分率[mmmm]=m/S×100
ラセミペンタッド分率[rrrr]=γ/S×100
ラセミメソラセミメソペンタッド分率[rmrm]=Pββ+Pαβ+Pαγ
S:全プロピレン単位の側鎖メチル炭素原子のシグナル強度
Pββ:19.8~22.5ppm
Pαβ:18.0~17.5ppm
Pαγ:17.5~17.1ppm
γ:ラセミペンタッド連鎖:20.7~20.3ppm
m:メソペンタッド連鎖:21.7~22.5ppm
 アイソタクチックペンタッド分率は98モル%であった。
-Isotactic pentad fraction The isotactic pentad fraction was measured by evaluating the 13 C-NMR spectrum of the polypropylene used in the resin sheet 1. Specifically, according to the peak attribution proposed in "Macropolymers, 8, 687 (1975)" by A. Zambali et al., The following apparatus, conditions and calculation formulas were used.
(Device / conditions)
Equipment: 13 C-NMR equipment ("JNM-EX400" type manufactured by JEOL Ltd.)
Method: Proton complete decoupling method (concentration: 220 mg / ml)
Solvent: 90:10 (volume ratio) of 1,2,4-trichlorobenzene and heavy benzene Mixing solvent temperature: 130 ° C
Pulse width: 45 °
Pulse repetition time: 4 seconds integration: 10,000 times (calculation formula)
Isotactic pentad fraction [mmmm] = m / S × 100
Racemic pentad fraction [rrrr] = γ / S × 100
Racemic Meso Lasemi Mesopentad Fraction [rmrm] = Pββ + Pαβ + Pαγ
S: Signal intensity of side chain methyl carbon atom in total propylene unit Pββ: 19.8 to 22.5 ppm
Pαβ: 18.0 to 17.5 ppm
Pαγ: 17.5 to 17.1 ppm
γ: Racemic pentad chain: 20.7 to 20.3 ppm
m: Mesopentad chain: 21.7 to 22.5 ppm
The isotactic pentad fraction was 98 mol%.
・結晶構造
 樹脂シート1のポリプロピレンの結晶構造を、X線発生装置(株式会社リガク製「model ultra X 18HB」)を用いて、広角X線の散乱パターンを下記測定条件で測定し、同定した。その結果、ピーク分離してもスメチカ晶型のピークが見られたため、樹脂シート1中にスメチカ晶が存在することが確認できた。
(測定条件)
・光源波長:300mAのCuKα線(波長=1.54Å)の単色光
・線源出力 電圧/電流:50kV/250mA
・照射時間:60分
・カメラ長:1.085m
・試料厚み:1.5~2.0mmになるようにシートを重ねる。製膜(MD)方向が揃うようにシートを重ねる。
 なお、測定時間を短縮するため、1.5~2.0mmになるようにシートを重ねているが、測定時間を長くすれば、シートを重ねずに1枚でも測定可能である。
-Crystal structure The polypropylene crystal structure of the resin sheet 1 was identified by measuring the scattering pattern of wide-angle X-rays using an X-ray generator (“model ultra X 18HB” manufactured by Rigaku Co., Ltd.) under the following measurement conditions. As a result, a smechka crystal type peak was observed even after peak separation, and it was confirmed that smechka crystals were present in the resin sheet 1.
(Measurement condition)
-Light source wavelength: 300 mA CuKα line (wavelength = 1.54 Å) monochromatic light-Radioactive source output Voltage / current: 50 kV / 250 mA
・ Irradiation time: 60 minutes ・ Camera length: 1.085m
-Stack the sheets so that the sample thickness is 1.5 to 2.0 mm. Stack the sheets so that the film formation (MD) directions are aligned.
In order to shorten the measurement time, the sheets are stacked so as to be 1.5 to 2.0 mm, but if the measurement time is lengthened, even one sheet can be measured without stacking the sheets.
・示差走査熱量測定
 樹脂シート1に用いたポリプロピレンについて、上記結晶化速度の測定と同じ示差走査熱量測定装置を用いて測定した。具体的には、ポリプロピレンを10℃/分にて50℃から230℃に昇温して吸熱ピーク及び発熱ピークを観察した。得られた吸熱発熱ピークを観察すると、最大吸熱ピークよりも低温側に1.7J/gの発熱ピークを有することが確認された。
-Measurement of differential scanning calorimetry The polypropylene used for the resin sheet 1 was measured using the same differential scanning calorimetry device as in the measurement of the crystallization rate. Specifically, polypropylene was heated at 10 ° C./min from 50 ° C. to 230 ° C., and an endothermic peak and an exothermic peak were observed. By observing the obtained endothermic exothermic peak, it was confirmed that the exothermic peak was 1.7 J / g on the low temperature side of the maximum endothermic peak.
(3)成形体の製造
 (1)で得られた樹脂シート1について、真空圧空成形機(株式会社ミノス製「FH-3M/H」)を用いて、台形状(162mm×73mm、高さ13mm)に予備賦形した。予備賦形後の樹脂シートを、金型の固定側キャビティ表面へ装着し、油圧式射出成形機(芝浦機械株式会社製「IS-80EPN」)を用いて、成形用樹脂を金型内に供給して一体化し、成形体1を得た(インサート成形)。
 射出成形用の金型として、台形形状であり、天面部分に木目調とヘアライン調を付与した金型を用いた。成形条件は、金型に供給される成形用樹脂の樹脂温度を210℃とし、金型温度を40℃とした。成形用樹脂の射出圧は33MPaとした。
(3) Manufacture of molded body The resin sheet 1 obtained in (1) has a trapezoidal shape (162 mm × 73 mm, height 13 mm) using a vacuum compressed air molding machine (“FH-3M / H” manufactured by Minos Co., Ltd.). ) Was preliminarily shaped. The preformed resin sheet is attached to the surface of the fixed side cavity of the mold, and the molding resin is supplied into the mold using a hydraulic injection molding machine (“IS-80EPN” manufactured by Toshiba Machine Co., Ltd.). And integrated to obtain a molded body 1 (insert molding).
As a mold for injection molding, a mold having a trapezoidal shape and having a wood grain tone and a hairline tone on the top surface was used. The molding conditions were such that the resin temperature of the molding resin supplied to the mold was 210 ° C. and the mold temperature was 40 ° C. The injection pressure of the molding resin was 33 MPa.
 成形用樹脂として、ブロックポリプロピレン(株式会社プライムポリマー製「プライムポリプロJ705UG」、MFR:9.0g/10分)を使用した(以下、「成形用樹脂1」とも言う)。なお、成形用樹脂1のMFRの測定条件は、JIS K7210に準拠して、230℃、2.16kg荷重で測定したものである。 Block polypropylene ("Prime Polypropylene J705UG" manufactured by Prime Polymer Co., Ltd., MFR: 9.0 g / 10 minutes) was used as the molding resin (hereinafter, also referred to as "molding resin 1"). The MFR measurement condition of the molding resin 1 was measured at 230 ° C. and a load of 2.16 kg in accordance with JIS K7210.
(4)成形体の評価
 成形体1について、以下の評価を実施した。結果を表1に示す。
・意匠性
 成形体1の意匠性を目視にて以下の基準により評価した。
○:金型形状が成形体1に十分に転写しており、金型形状の再現性が高い。
△:金型形状が成形体1に反映されてはいるが、形状の再現性は低い。
×:金型形状が成形体1にほとんど転写されておらず、形状が不明瞭である。
(4) Evaluation of molded product The following evaluation was performed on the molded product 1. The results are shown in Table 1.
-Designability The designability of the molded product 1 was visually evaluated according to the following criteria.
◯: The mold shape is sufficiently transferred to the molded body 1, and the mold shape is highly reproducible.
Δ: The shape of the mold is reflected in the molded body 1, but the reproducibility of the shape is low.
X: The mold shape is hardly transferred to the molded body 1, and the shape is unclear.
・転写性
 金型表面の凹凸形状のうち、段差の高さが152μmである部分を「基準段差」とし、成形体1の表面のうち当該部分に対応する部分における段差の高さを測定して、これらの比を算出することで転写性(転写率)を評価した。段差の高さはレーザー顕微鏡(株式会社オリンパス製「OLS4100」)により測定した。
転写率(%)=(成形体1表面の段差の高さ/基準段差の高さ)×100
-Of the uneven shape of the transferable mold surface, the portion where the height of the step is 152 μm is defined as the “reference step”, and the height of the step corresponding to the portion on the surface of the molded body 1 is measured. , The transferability (transcription rate) was evaluated by calculating these ratios. The height of the step was measured with a laser microscope (“OLS4100” manufactured by Olympus Corporation).
Transfer rate (%) = (height of step on the surface of molded body 1 / height of reference step) x 100
・耐熱性
 成形体1から5cm×5cmの試験片を切り出し、120℃の恒温槽に60分間静置して、形状の変化を目視にて以下の基準により観察した。
○:成形体1中の樹脂シートの形状に変化がない
△:成形体1中の樹脂シートに、反りや変形等の形状の変化がある
×:成形体1中の樹脂シートに、反りや変形等の著しい形状の変化がある
-A test piece of 5 cm x 5 cm was cut out from the heat-resistant molded product 1 and allowed to stand in a constant temperature bath at 120 ° C. for 60 minutes, and the change in shape was visually observed according to the following criteria.
◯: No change in the shape of the resin sheet in the molded body 1 Δ: The resin sheet in the molded body 1 has a change in shape such as warpage or deformation ×: The resin sheet in the molded body 1 is warped or deformed There is a significant change in shape such as
実施例2
(1)樹脂シートの製造
 図2に示す装置を用いて、第1の層(厚さ48μm)/第2の層(厚さ217μm)/第3の層(厚さ35μm)の3層の積層構造からなる樹脂シート2を製造した。
 各層の材料は以下の通りである。
第1の層:ポリプロピレン(株式会社プライムポリマー製「プライムポリプロF-300SP」、MFR:3g/10分、ホモポリプロピレン、以下、「PP-2」と言う場合がある。)
第2の層:ポリプロピレン(PP-2)と白色マスターバッチ(MB)(トーヨーカラー株式会社製「PPM 1KB662 WHT-FD」)との混合物(PP-2:90質量%、白色マスターバッチ:10質量%)
第3の層:PP-2
Example 2
(1) Manufacture of Resin Sheet Using the apparatus shown in FIG. 2, a three-layer stacking of a first layer (thickness 48 μm) / a second layer (thickness 217 μm) / a third layer (thickness 35 μm) A resin sheet 2 having a structure was manufactured.
The materials for each layer are as follows.
First layer: Polypropylene ("Prime Polypro F-300SP" manufactured by Prime Polymer Co., Ltd., MFR: 3 g / 10 minutes, homopolypropylene, hereinafter may be referred to as "PP-2").
Second layer: Mixture of polypropylene (PP-2) and white masterbatch (MB) (“PPM 1KB662 WHT-FD” manufactured by Toyo Color Co., Ltd.) (PP-2: 90% by mass, white masterbatch: 10% by mass) %)
Third layer: PP-2
 樹脂シート2の製造条件は以下の通りである。
・第1の層の押出機の直径:65mm
・第2の層の押出機の直径:75mm
・第3の層の押出機の直径:50mm
・Tダイの幅:900mm
・積層シートの引き取り速度:3m/分
・冷却ロール及び金属製エンドレスベルト57の表面温度:20℃
・冷却速度:10,800℃/分
The manufacturing conditions of the resin sheet 2 are as follows.
First layer extruder diameter: 65 mm
-Diameter of second layer extruder: 75 mm
-Diameter of third layer extruder: 50 mm
・ T-die width: 900 mm
・ Pick-up speed of laminated sheet: 3m / min ・ Surface temperature of cooling roll and metal endless belt 57: 20 ℃
-Cooling rate: 10,800 ° C / min
(2)樹脂シートの評価
 得られた樹脂シート2について、実施例1の「(2)樹脂シートの評価」と同じ評価を行った。貯蔵弾性率の結果を表1に示す。
 樹脂シート2に用いたポリプロピレン(PP-2)の結晶化速度は0.5min-1であった。
 樹脂シート2に用いたポリプロピレン(PP-2)のアイソタクチックペンタッド分率は93モル%であった。
 樹脂シート2に用いたポリプロピレン(PP-2)はスメチカ晶を有することが確認された。
 樹脂シート2に用いたポリプロピレン(PP-2)について示差走査熱量を測定した結果、吸熱発熱ピークを観察すると、最大吸熱ピークよりも低温側に1.5J/gの発熱ピークを有することが確認された。
(2) Evaluation of Resin Sheet The obtained resin sheet 2 was evaluated in the same manner as in "(2) Evaluation of Resin Sheet" of Example 1. The results of the storage elastic modulus are shown in Table 1.
The crystallization rate of polypropylene (PP-2) used for the resin sheet 2 was 0.5 min -1 .
The isotactic pentad fraction of polypropylene (PP-2) used in the resin sheet 2 was 93 mol%.
It was confirmed that the polypropylene (PP-2) used for the resin sheet 2 had Smetica crystals.
As a result of measuring the differential scanning calorimetry of polypropylene (PP-2) used for the resin sheet 2, it was confirmed that the endothermic exothermic peak had an exothermic peak of 1.5 J / g on the lower temperature side than the maximum endothermic exothermic peak. rice field.
(3)成形体の製造・評価
 成形用樹脂として、成形用樹脂1に代えて、ホモポリプロピレン(株式会社プライムポリマー製「プライムポリプロJ105G」、MFR:9.0g/10分、以下、「成形用樹脂2」とも言う))を使用したこと以外は、実施例1の「(3)成形体の製造」と同じ方法で成形体2を製造し、「(4)成形体の評価」と同じ方法で評価した。結果を表1に示す。
(3) Manufacture and evaluation of molded product As a molding resin, instead of molding resin 1, homopolypropylene ("Prime Polypro J105G" manufactured by Prime Polymer Co., Ltd., MFR: 9.0 g / 10 minutes, hereinafter "for molding" The molded body 2 is manufactured by the same method as in "(3) Manufacture of molded body" of Example 1 except that "resin 2")) is used, and the same method as in "(4) Evaluation of molded body". Evaluated in. The results are shown in Table 1.
比較例1
(1)樹脂シート
 樹脂シートとして、二軸延伸ポリエステル(PET)シート(東洋紡株式会社製「コスモシャインA4300」、「樹脂シート3」とも言う、厚さ188μm)を用いた。実施例1と同じ方法で、樹脂シート3の貯蔵弾性率を測定した(測定用試料の厚さは188μmとした)。結果を表1に示す。
Comparative Example 1
(1) Resin Sheet As the resin sheet, a biaxially stretched polyester (PET) sheet ("Cosmo Shine A4300" manufactured by Toyobo Co., Ltd., also referred to as "resin sheet 3", having a thickness of 188 μm) was used. The storage elastic modulus of the resin sheet 3 was measured by the same method as in Example 1 (the thickness of the measurement sample was 188 μm). The results are shown in Table 1.
(2)成形体の製造・評価
 樹脂シート1に代えて樹脂シート3を用いた以外は、実施例1と同じ方法で成形体(成形体3)を製造し、評価した。結果を表1に示す。
(2) Manufacture / Evaluation of Molded Body (molded body 3) was manufactured and evaluated by the same method as in Example 1 except that the resin sheet 3 was used instead of the resin sheet 1. The results are shown in Table 1.
比較例2
(1)樹脂シート
 樹脂シートとして、ポリカーボネートシート(PC)(帝人株式会社製「パンライト」、「樹脂シート4」とも言う、厚さ192μm)を用いた。実施例1と同じ方法で、樹脂シート4の貯蔵弾性率を測定した(測定用試料の厚さは192μmとした)。結果を表1に示す。
Comparative Example 2
(1) Resin sheet As the resin sheet, a polycarbonate sheet (PC) (also referred to as "Panlite" or "resin sheet 4" manufactured by Teijin Limited, 192 μm in thickness) was used. The storage elastic modulus of the resin sheet 4 was measured by the same method as in Example 1 (the thickness of the measurement sample was 192 μm). The results are shown in Table 1.
(2)成形体の製造・評価
 樹脂シート1に代えて樹脂シート4を用いた以外は、実施例1と同じ方法で成形体(成形体3)を製造し、評価した。結果を表1に示す。
(2) Manufacture / Evaluation of Molded Body (molded body 3) was manufactured and evaluated by the same method as in Example 1 except that the resin sheet 4 was used instead of the resin sheet 1. The results are shown in Table 1.
比較例3
(1)樹脂シート
 樹脂シートとして、アクリル樹脂(PMMA)シート(三菱ケミカル株式会社製「アクリプレン」「樹脂シート5」とも言う、厚さ75μm)を用いた。実施例1と同じ方法で、樹脂シート5の貯蔵弾性率を測定した(測定用試料の厚さは75μmとした)。結果を表1に示す。
Comparative Example 3
(1) Resin sheet As the resin sheet, an acrylic resin (PMMA) sheet (also called "Acryplene" or "resin sheet 5" manufactured by Mitsubishi Chemical Corporation, having a thickness of 75 μm) was used. The storage elastic modulus of the resin sheet 5 was measured by the same method as in Example 1 (the thickness of the measurement sample was 75 μm). The results are shown in Table 1.
(2)成形体の製造・評価
 樹脂シート1に代えて樹脂シート5を用いた以外は、実施例1と同じ方法で成形体(成形体3)を製造し、評価した。結果を表1に示す。
(2) Manufacture / Evaluation of Molded Body (molded body 3) was manufactured and evaluated by the same method as in Example 1 except that the resin sheet 5 was used instead of the resin sheet 1. The results are shown in Table 1.
比較例4
(1)樹脂シート
 樹脂シートとして、非晶性ポリエステル(A-PET)シート((三菱ケミカル株式会社製「ノバクリアAA025-M」、「樹脂シート6」とも言う、厚さ300μm)を用いた。実施例1と同じ方法で、樹脂シート6の貯蔵弾性率を測定した(測定用試料の厚さは300μmとした)。結果を表1に示す。
Comparative Example 4
(1) Resin Sheet As the resin sheet, an amorphous polyester (A-PET) sheet ((Mitsubishi Chemical Corporation "Novaclear AA025-M", also referred to as "resin sheet 6", thickness 300 μm)) was used. The storage elastic modulus of the resin sheet 6 was measured by the same method as in Example 1 (the thickness of the measurement sample was 300 μm). The results are shown in Table 1.
(2)成形体の製造・評価
 樹脂シート1に代えて樹脂シート6を用いた以外は、実施例1と同じ方法で成形体(成形体3)を製造し、評価した。結果を表1に示す。
(2) Manufacture / Evaluation of Molded Body (molded body 3) was manufactured and evaluated by the same method as in Example 1 except that the resin sheet 6 was used instead of the resin sheet 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の樹脂シート及び積層体から得られる成形体は、多岐にわたる種々の用途に使用することができ、例えば、輸送機器(自動車や二輪車等)、住宅設備、建築材料、家電等の多岐に渡る分野の筐体にて、塗装を代替する加飾シートとして使用することができる。 The molded body obtained from the resin sheet and the laminated body of the present invention can be used for a wide variety of applications, for example, in a wide range of transportation equipment (automobiles, motorcycles, etc.), housing equipment, building materials, home appliances, and the like. It can be used as a decorative sheet to replace painting in the case of the field.
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献、及び本願のパリ条約による優先権の基礎となる出願の内容を全て援用する。
Although some embodiments and / or embodiments of the present invention have been described above in detail, those skilled in the art will appreciate these exemplary embodiments and / or embodiments without substantial departure from the novel teachings and effects of the present invention. It is easy to make many changes to the examples. Therefore, many of these modifications are within the scope of the invention.
All the documents described in this specification and the contents of the application underlying the priority under the Paris Convention of the present application are incorporated.

Claims (17)

  1.  80℃、振動数1Hzにおける貯蔵弾性率が1500MPa以下であり、かつ、120℃、振動数1Hzにおける貯蔵弾性率が100MPa以上である、樹脂シート。 A resin sheet having a storage elastic modulus of 1500 MPa or less at 80 ° C. and a frequency of 1 Hz, and a storage elastic modulus of 100 MPa or more at 120 ° C. and a frequency of 1 Hz.
  2.  前記樹脂シートがポリオレフィンを含む、請求項1に記載の樹脂シート。 The resin sheet according to claim 1, wherein the resin sheet contains polyolefin.
  3.  前記樹脂シートがポリプロピレンを含む、請求項1又は2に記載の樹脂シート。 The resin sheet according to claim 1 or 2, wherein the resin sheet contains polypropylene.
  4.  前記樹脂シートに含まれる前記ポリプロピレンのアイソタクチックペンタッド分率が80モル%以上98%モル以下である、請求項3に記載の樹脂シート。 The resin sheet according to claim 3, wherein the polypropylene isotactic pentad fraction contained in the resin sheet is 80 mol% or more and 98% mol or less.
  5.  前記樹脂シートに含まれる前記ポリプロピレンの130℃での結晶化速度が2.5min-1以下である、請求項3又は4に記載の樹脂シート。 The resin sheet according to claim 3 or 4, wherein the crystallization rate of the polypropylene contained in the resin sheet at 130 ° C. is 2.5 min -1 or less.
  6.  2層又は3層の積層構造である、請求項1~5のいずれかに記載の樹脂シート。 The resin sheet according to any one of claims 1 to 5, which has a two-layer or three-layer laminated structure.
  7.  前記2層又は3層の積層構造における全ての層がポリプロピレンを含む、請求項6に記載の樹脂シート。 The resin sheet according to claim 6, wherein all the layers in the two-layer or three-layer laminated structure contain polypropylene.
  8.  請求項1~7のいずれかに記載の樹脂シートを表面に有する、積層体。 A laminated body having the resin sheet according to any one of claims 1 to 7 on the surface.
  9.  熱可塑性樹脂を含む成形体本体と、
     前記成形体本体の表面の少なくとも一部を被覆する、請求項1~7のいずれかに記載の樹脂シート又は請求項8に記載の積層体と、を含む、成形体。
    The molded body containing the thermoplastic resin and
    A molded product comprising the resin sheet according to any one of claims 1 to 7 or the laminated body according to claim 8, which covers at least a part of the surface of the molded product body.
  10.  前記樹脂シートの表面に凹凸を有する、請求項9に記載の成形体。 The molded product according to claim 9, which has irregularities on the surface of the resin sheet.
  11.  請求項1~7のいずれかに記載の樹脂シート又は請求項8に記載の積層体を金型に装着し、成形用樹脂を供給して前記樹脂シート又は前記積層体と前記成形用樹脂とを一体成形する、成形体の製造方法。 The resin sheet according to any one of claims 1 to 7 or the laminate according to claim 8 is mounted on a mold, and a molding resin is supplied to combine the resin sheet or the laminate with the molding resin. A method for manufacturing a molded body that is integrally molded.
  12.  前記樹脂シート又は前記積層体を金型の上に配置すること、及び
     成形用樹脂を前記樹脂シート又は前記積層体に向けて供給することで、前記樹脂シート又は前記積層体を金型に合致するように賦形しつつ、前記成形用樹脂と、前記樹脂シート又は前記積層体と、を一体化させること
     を含む、請求項11に記載の成形体の製造方法。
    By arranging the resin sheet or the laminate on the mold and supplying the molding resin toward the resin sheet or the laminate, the resin sheet or the laminate is matched with the mold. The method for producing a molded product according to claim 11, which comprises integrating the molding resin with the resin sheet or the laminated body while shaping the molded product.
  13.  前記樹脂シート又は前記積層体を金型に合致するよう賦形すること、及び
     成形用樹脂を前記賦形された樹脂シート又は前記賦形された積層体に向けて供給することで、前記成形用樹脂と、前記賦形された樹脂シート又は前記賦形された積層体と、を一体化させること
     を含む、請求項11に記載の成形体の製造方法。
    For molding by shaping the resin sheet or the laminated body so as to match the mold, and supplying the molding resin toward the shaped resin sheet or the shaped laminated body. The method for producing a molded product according to claim 11, which comprises integrating the resin with the shaped resin sheet or the shaped laminate.
  14.  前記樹脂シート又は前記積層体を加熱して金型のキャビティ面上に配置し、前記樹脂シート又は前記積層体を前記金型の形状に合致するように賦形すること、及び
     成形用樹脂を前記賦形された樹脂シート又は前記賦形された積層体に向けて供給することで、前記成形用樹脂と、前記賦形された樹脂シート又は前記賦形された積層体と、を一体化させること
     を含む、請求項11に記載の成形体の製造方法。
    The resin sheet or the laminate is heated and placed on the cavity surface of the mold, the resin sheet or the laminate is shaped so as to match the shape of the mold, and the molding resin is used. To integrate the molding resin with the shaped resin sheet or the shaped laminate by supplying the shaped resin sheet or the shaped laminate. 11. The method for producing a molded product according to claim 11.
  15.  前記成形用樹脂が供給される際の金型温度が、20℃以上90℃以下である請求項11~14のいずれかに記載の成形体の製造方法。 The method for manufacturing a molded product according to any one of claims 11 to 14, wherein the mold temperature when the molding resin is supplied is 20 ° C. or higher and 90 ° C. or lower.
  16.  前記金型に供給される前記成形用樹脂の温度が、190℃以上240℃以下である請求項11~15のいずれかに記載の成形体の製造方法。 The method for manufacturing a molded product according to any one of claims 11 to 15, wherein the temperature of the molding resin supplied to the mold is 190 ° C. or higher and 240 ° C. or lower.
  17.  前記成形用樹脂の射出圧力が、5MPa以上120MPa以下である請求項11~16のいずれかに記載の成形体の製造方法。 The method for manufacturing a molded product according to any one of claims 11 to 16, wherein the injection pressure of the molding resin is 5 MPa or more and 120 MPa or less.
PCT/JP2021/034278 2020-10-16 2021-09-17 Resin sheet, laminate, molded body, and method for producing molded body WO2022080084A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020174629A JP2022065869A (en) 2020-10-16 2020-10-16 Resin sheet, laminate, molded body, and method for producing molded body
JP2020-174629 2020-10-16

Publications (1)

Publication Number Publication Date
WO2022080084A1 true WO2022080084A1 (en) 2022-04-21

Family

ID=81207979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034278 WO2022080084A1 (en) 2020-10-16 2021-09-17 Resin sheet, laminate, molded body, and method for producing molded body

Country Status (2)

Country Link
JP (1) JP2022065869A (en)
WO (1) WO2022080084A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008340A1 (en) * 2007-07-06 2009-01-15 Idemitsu Unitech Co., Ltd. Polypropylene molded article, sheet-like polypropylene molded article, and method for production of polypropylene thermally molded article
WO2012035956A1 (en) * 2010-09-15 2012-03-22 東レ株式会社 Molding film and molding transfer foil
WO2013027547A1 (en) * 2011-08-25 2013-02-28 東レ株式会社 Film for forming and forming transfer foil using same
JP2017149144A (en) * 2016-02-19 2017-08-31 出光ユニテック株式会社 Laminate, molding, and method for producing molding
JP2017206587A (en) * 2016-05-16 2017-11-24 出光ユニテック株式会社 Resin sheet, laminate, molding, method for producing molding, vehicular exterior part and interior material fabricated with molding, and cabinet of household electrical appliance and the like
WO2017209295A1 (en) * 2016-06-02 2017-12-07 出光ユニテック株式会社 Laminate, molded body and method for producing molded body
WO2018151089A1 (en) * 2017-02-14 2018-08-23 出光ユニテック株式会社 Laminate, molded article, and method for producing molded article
WO2019054397A1 (en) * 2017-09-12 2019-03-21 出光ユニテック株式会社 Laminate, molded article, and method for producing molded article
WO2019155857A1 (en) * 2018-02-08 2019-08-15 出光ユニテック株式会社 Resin sheet, laminate body, moulded body, and moulded body production method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008340A1 (en) * 2007-07-06 2009-01-15 Idemitsu Unitech Co., Ltd. Polypropylene molded article, sheet-like polypropylene molded article, and method for production of polypropylene thermally molded article
WO2012035956A1 (en) * 2010-09-15 2012-03-22 東レ株式会社 Molding film and molding transfer foil
WO2013027547A1 (en) * 2011-08-25 2013-02-28 東レ株式会社 Film for forming and forming transfer foil using same
JP2017149144A (en) * 2016-02-19 2017-08-31 出光ユニテック株式会社 Laminate, molding, and method for producing molding
JP2017206587A (en) * 2016-05-16 2017-11-24 出光ユニテック株式会社 Resin sheet, laminate, molding, method for producing molding, vehicular exterior part and interior material fabricated with molding, and cabinet of household electrical appliance and the like
WO2017209295A1 (en) * 2016-06-02 2017-12-07 出光ユニテック株式会社 Laminate, molded body and method for producing molded body
WO2018151089A1 (en) * 2017-02-14 2018-08-23 出光ユニテック株式会社 Laminate, molded article, and method for producing molded article
WO2019054397A1 (en) * 2017-09-12 2019-03-21 出光ユニテック株式会社 Laminate, molded article, and method for producing molded article
WO2019155857A1 (en) * 2018-02-08 2019-08-15 出光ユニテック株式会社 Resin sheet, laminate body, moulded body, and moulded body production method

Also Published As

Publication number Publication date
JP2022065869A (en) 2022-04-28

Similar Documents

Publication Publication Date Title
JP7073282B2 (en) Laminated body, molded body and manufacturing method of molded body
CN108495750B (en) Laminate, molded body using laminate, and method for producing same
JPH06501215A (en) Surface film with thermoformable support layer
WO2022080084A1 (en) Resin sheet, laminate, molded body, and method for producing molded body
JP6779095B2 (en) Manufacturing method of shaping decorative sheet
JP6963392B2 (en) Laminated body, molded body and manufacturing method of molded body
US20200047382A1 (en) Laminate, decorative sheet, method for producing laminate, method for producing molded body, and molded body
WO2021145331A1 (en) Laminate, molded body, and molded body manufacturing method
JP7297686B2 (en) RESIN SHEET, LAMINATED BODY, MOLDED BODY, AND METHOD FOR MANUFACTURING MOLDED BODY
JPWO2019054397A1 (en) Laminated body, molded body and manufacturing method of molded body
WO2022190957A1 (en) Layered body, molded body, and method for producing molded body
JP2004284019A (en) Brilliant sheet
JP5015996B2 (en) Sheet for simultaneous injection molding
WO2021066132A1 (en) Molded body, and method for producing molded body
JP2023067235A (en) Resin sheet, laminate, molded article, and method for manufacturing molded article
WO2020218300A1 (en) Decorative sheet
JP4906989B2 (en) Manufacturing method of sheet for simultaneous injection molding
JP2004050786A (en) Lustrous sheet, lustrous resin molding, and method of manufacturing lustrous resin molding
JP2021130306A (en) Laminate, molding and method for producing molding
WO2023286703A1 (en) Resin sheet, layered body, formed body, and formed body manufacturing method
JP2022086252A (en) Resin composition, resin sheet, laminate, molding, and method for producing molding
JP2001138450A (en) Injection molding in-mold decorating sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21879825

Country of ref document: EP

Kind code of ref document: A1