WO2019054397A1 - Laminate, molded article, and method for producing molded article - Google Patents

Laminate, molded article, and method for producing molded article Download PDF

Info

Publication number
WO2019054397A1
WO2019054397A1 PCT/JP2018/033751 JP2018033751W WO2019054397A1 WO 2019054397 A1 WO2019054397 A1 WO 2019054397A1 JP 2018033751 W JP2018033751 W JP 2018033751W WO 2019054397 A1 WO2019054397 A1 WO 2019054397A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin
polypropylene
laminate
laminate according
Prior art date
Application number
PCT/JP2018/033751
Other languages
French (fr)
Japanese (ja)
Inventor
要 近藤
Original Assignee
出光ユニテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光ユニテック株式会社 filed Critical 出光ユニテック株式会社
Priority to EP18855801.9A priority Critical patent/EP3683052A4/en
Priority to US16/646,348 priority patent/US20200276796A1/en
Priority to JP2019542256A priority patent/JPWO2019054397A1/en
Publication of WO2019054397A1 publication Critical patent/WO2019054397A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/08Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/16Layered products comprising a layer of natural or synthetic rubber comprising polydienes homopolymers or poly-halodienes homopolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14008Inserting articles into the mould
    • B29C2045/1404Inserting articles into the mould feeding inserts cut out from an endless sheet outside the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14008Inserting articles into the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/55Liquid crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/75Printability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2451/00Decorative or ornamental articles

Definitions

  • the present invention relates to a laminate, a molded body, and a method of manufacturing a molded body.
  • ABS resin acrylonitrile-butadiene-styrene copolymer
  • Patent Document 1 discloses a decorative sheet for insert molding in which a base material sheet, a printing layer, and a surface resin layer are laminated, and the base material sheet has a butadiene component ratio of 10 as a whole. Up to 33% by weight ABS resin is used.
  • Patent Document 2 discloses decorative molding in which a first layer made of a transparent thermoplastic resin, a second layer made of a polyolefin resin, and a third layer made of a mixed resin of an ABS resin and a polyolefin resin are laminated. A seat is disclosed.
  • JP 2008-94074 A Japanese Patent Application Publication No. 2003-266615 JP 2012-240421 A
  • the decorative sheet As a method for obtaining the molded object covered with the decorative sheet, there is a method of integrating the decorative sheet and the resin for molding by insert molding, in-mold molding, etc. At this time, the decorative sheet and the molding are molded. It is important that the adhesive resin be in close contact with the resin.
  • a method for bringing the decorative sheet and the molding resin into close contact with each other there is a method of providing a binder closely adhering to the molding resin by screen printing, a method of bonding a resin sheet to be welded with the molding resin, and the like.
  • the corresponding binder is present when the molding resin is polypropylene, polycarbonate or ABS resin, but there is no binder in intimate contact with the other molding resins.
  • resin sheets of the same type as the molding resin are laminated and welding is performed at the time of insert molding or in-mold molding. Therefore, it is necessary to change the resin sheet in accordance with the resin for molding (for example, Patent Document 3), and there is a problem that the number of processes increases and the operation becomes complicated.
  • polypropylene which is lightweight and excellent in chemical resistance is positively examined as a resin used for the decorative sheet.
  • a decorative sheet made of polypropylene and a molding resin such as ABS resin or polycarbonate having a high molding temperature are insert-molded or in-mold molded, design damage or insufficient adhesion occurs in the vicinity of the molding resin gate was there.
  • a countermeasure against this there is a method of bonding a protective sheet of ABS resin to the decorative sheet, but when the protective sheet is used, warpage or distortion may occur in the preliminary shaped body or the injection molded body.
  • a layer (welding layer) containing a thermoplastic elastomer is employed as a protective layer of a decorative sheet (or as a part of a protective layer)
  • an ABS resin used in insert molding or in-mold molding In order to obtain sufficient adhesion with molding resins such as polycarbonate, polystyrene, polyester, polyamide, acrylonitrile-styrene copolymer, acrylic resin, and polymer alloys containing two or more of these, according to the molding resin It has been found that it is possible to produce a molded article having excellent durability without changing the protective sheet.
  • thermoplastic elastomer a layer (welding layer) containing a thermoplastic elastomer
  • a protective layer or as a part of a protective layer of the decorative sheet containing polyolefin among the decorative sheets
  • the difference in shrinkage between layers is small.
  • warpage and distortion during molding can be reduced, and the present invention has been completed.
  • the following laminates and the like are provided. 1. Including a thermoplastic resin layer and a protective layer, The protective layer comprises a weld layer, The laminated body in which the said welding layer contains a thermoplastic elastomer.
  • the thermoplastic elastomer of the welding layer is a polyester thermoplastic elastomer. 3.
  • the protective layer includes a base material layer on the thermoplastic resin layer side of the welding layer,
  • the base material layer contains one or more resins selected from the group consisting of polyolefin, polycarbonate, acrylic resin, acrylonitrile-butadiene-styrene copolymer, acrylonitrile-styrene copolymer, polystyrene, polyester and polyamide 1 or 2
  • the laminated body as described in. 4 includes a bonding layer between the welding layer and the base layer, The laminate according to 3, wherein the bonding layer comprises one or more resins selected from the group consisting of modified polyolefins, styrenic thermoplastic elastomers, and polyolefins. 5.
  • the protective layer includes an anchor coat layer between the welding layer and the base layer,
  • the laminate according to 3 wherein the anchor coat layer comprises one or more resins selected from the group consisting of urethane resins, acrylic resins, polyolefins and polyesters. 6.
  • the thermoplastic resin layer comprises polypropylene.
  • the isotactic pendart fraction of the polypropylene is 85 mol% to 99 mol%. 10.
  • thermoplastic resin layer according to any one of 1 to 6, wherein the thermoplastic resin layer comprises one or more selected from the group consisting of polycarbonate, polyamide resin, acrylonitrile-butadiene-styrene copolymer, acrylonitrile-styrene copolymer, and acrylic resin Stack.
  • the surface of the easy bonding layer opposite to the thermoplastic resin layer includes an undercoat layer containing one or more resins selected from the group consisting of urethane resin, acrylic resin, polyolefin and polyester, and the undercoat layer And a metal layer containing one or more metal elements selected from the group consisting of tin, indium, chromium, aluminum, nickel, copper, silver, gold, platinum and zinc on the opposite side of the easy bonding layer.
  • the laminated body of 16. A molded article produced using the laminate according to any one of 18.1 to 17. 20.
  • thermoplastic resin layer in the laminate contains polypropylene, and the crystallization rate of the polypropylene at 130 ° C. is 2.5 min ⁇ 1 or less.
  • a method for producing a molded body comprising: attaching the laminate according to any one of 22.1 to 17 to a mold and supplying a molding resin to integrate them.
  • 23. A molded body, wherein the laminate according to any one of 23.1 to 17 is shaped to conform to a mold, the shaped laminate is attached to the mold, and a molding resin is supplied and integrated. Manufacturing method. 24.
  • the molding resin is one or more resins selected from the group consisting of acrylonitrile-butadiene-styrene copolymer, polycarbonate, polystyrene, polyester, polyamide, acrylonitrile-styrene copolymer, and acrylic resin, as described in 22 or 23, Manufacturing method of molded articles.
  • a highly versatile decorative sheet laminated body
  • a decorative sheet using polyolefin among the above-described decorative sheets can be provided with no or reduced deformation at the time of molding.
  • 1 is a schematic cross-sectional view of a laminate according to one aspect of the present invention.
  • 1 is a schematic cross-sectional view of a laminate according to one aspect of the present invention. It is the schematic of the apparatus used by the Example and the comparative example. It is the schematic of the apparatus used by the Example and the comparative example.
  • the laminate in one aspect of the present invention includes a thermoplastic resin layer and a protective layer.
  • the protective layer comprises a weld layer, which comprises a thermoplastic elastomer.
  • the layered product in one mode of the present invention can be used as a decoration sheet for giving decoration to a forming object.
  • the protective layer is a thermoplastic resin layer or a printed layer formed by the heat of the molten resin (molding resin) injected when the molded body is manufactured by injection molding (in-mold molding, insert molding, etc.) using a laminate. It is a layer that prevents melting.
  • the protective layer contains a thermoplastic elastomer
  • the protective layer and the molding resin are easily heat-welded, so that it is possible to obtain a molded article with high adhesion between the laminate and the casing and excellent in durability. It becomes.
  • the molding resin is not limited as long as it is a thermoplastic resin, and is, for example, ABS resin, polycarbonate, polystyrene, polyester, polyamide, acrylonitrile-styrene copolymer, acrylic resin, polymer alloy containing two or more of them, etc. Even if it is these, it heat-seals easily.
  • the shrinkage ratio of the protective layer and the polyolefin resin layer should be approximately the same because the welding layer contained in the protective layer contains a thermoplastic elastomer. Can. Thereby, deformation such as warpage distortion at the time of molding can be minimized, and the processability of the laminate can be improved.
  • the protective layer may have a single-layer structure consisting of a single layer, or may have a laminated structure consisting of two or more layers.
  • the protective layer is a welding layer.
  • the protective layer has a laminated structure, at least one of the two or more layers is a welding layer, and preferably the outermost layer of the laminated structure (the layer opposite to the thermoplastic resin layer) is a welding layer.
  • the layer in contact with the molding resin during molding is a welding layer.
  • FIG. 1 A schematic cross-sectional view of a laminate according to one aspect of the present invention is shown in FIG.
  • the laminate 1 includes a thermoplastic resin layer 10 and a protective layer (welding layer) 20.
  • FIG. 1 is merely for explaining the layer structure, and the aspect ratio and the film thickness ratio are not necessarily accurate.
  • x to y represents a numerical range of “x or more and y or less”.
  • the thermoplastic resin layer is a resin layer containing a thermoplastic resin.
  • a thermoplastic resin polyolefin, polycarbonate, polyamide resin, ABS resin, acrylonitrile-styrene copolymer (hereinafter sometimes referred to as "AS resin"), acrylic resin, etc. can be used, and two or more of these can be used. It may be a polymer alloy (eg, polycarbonate-ABS resin alloy, polyamide-ABS resin alloy, etc.).
  • polyethylene polypropylene
  • cyclic polyolefin polypropylene
  • polypropylene is preferable from the viewpoint of chemical resistance, durability and moldability.
  • Polypropylene is a polymer containing at least propylene. Specifically, homopolypropylene, a copolymer of propylene and olefin, and the like can be mentioned. Homopolypropylene is preferred for reasons of heat resistance and hardness.
  • the copolymer of propylene and olefin may be a block copolymer or a random copolymer, or a mixture thereof.
  • examples of the olefin include ethylene, butylene and cycloolefin.
  • the polypropylene preferably has an isotactic pentad fraction of 80% by mole or more and 98% by mole or less. More preferably, it is 86 mol% or more and 98 mol% or less, more preferably 91 mol% or more and 98 mol% or less. If the isotactic pentad fraction is less than 80 mol%, the rigidity of the molded sheet may be insufficient. On the other hand, when the isotactic pentad fraction exceeds 98 mol%, the transparency of the sheet may be reduced. By being in the said range, high transparency is obtained and it becomes easy to decorate favorably.
  • the isotactic pentad fraction is an isotactic fraction at a pentad unit (one in which five propylene monomers are continuously isotactically bonded) in a molecular chain of a resin composition.
  • the method of measuring this fraction is described, for example, in Macromolecules, Vol. 8 (1975) 687, and can be measured by 13 C-NMR.
  • the crystallization rate at 130 ° C. is 2.5 min ⁇ 1 or less.
  • Crystallization rate of the polypropylene is preferably 2.5 min -1 or less, 2.0Min -1 or less is more preferable. If the crystallization rate is 2.5 min ⁇ 1 or less, rapid hardening of the portion in contact with the mold can be suppressed, and a decrease in design can be prevented.
  • the crystallization rate is measured by the method described in the examples.
  • the polypropylene preferably contains smetica crystals as a crystal structure.
  • Smethica crystals are mesophases in a metastable state and are preferred because they are excellent in transparency because the size of each domain is small. Moreover, since it is in a metastable state and the sheet is softened with a low amount of heat as compared with the ⁇ crystal which has been crystallized, it is preferable because it is excellent in formability.
  • the polypropylene may contain other crystal forms such as ⁇ crystals, ⁇ crystals, and amorphous parts in addition to smetica crystals. For example, 30% by mass, 50% by mass, 70% by mass or 90% by mass or more of polypropylene may be smetica crystals.
  • Polypropylene preferably has an exothermic peak of 1.0 J / g or more (more preferably 1.5 J / g or more) on the low temperature side of the maximum endothermic peak in a differential scanning calorimetry curve.
  • the upper limit is not particularly limited, but is usually 10 J / g or less.
  • the exothermic peak is measured using a differential scanning calorimeter.
  • the polyolefin resin layer does not contain a nucleating agent. Even when it is contained, the content of the nucleating agent in the polyolefin resin layer is 1.0% by mass or less, preferably 0.5% by mass or less.
  • the nucleating agent include sorbitol-based crystal nucleating agents, and examples of commercially available products include Gelol MD (Shin Nippon Chemical Co., Ltd.) and Liquemaster FC-1 (Riken Vitamin Co., Ltd.).
  • the crystallization rate of polypropylene By setting the crystallization rate of polypropylene to 2.5 min -1 or less without adding a nucleating agent, and cooling at 80 ° C./sec or more to form a smetica crystal, a laminate having excellent designability can be obtained.
  • the polyolefin resin layer is transformed to ⁇ crystals while maintaining the fine structure derived from smetica crystals. This transfer can further improve surface hardness and transparency.
  • a smectica is usually used in order to obtain a polypropylene excellent in transparency and gloss with an isotactic pentad fraction of 80 mol% or more and 98 mol% or less and a crystallization rate of polypropylene of 2.5 min ⁇ 1 or less. It is necessary to form crystals.
  • polypropylene is converted to ⁇ crystals while maintaining the fine structure derived from smetic crystals by shaping after heating, but the polypropylene in the molded product has an isotactic pentad fraction of 80% by mole If it is 98 mol% or less and the crystallization rate is 2.5 min ⁇ 1 or less, it can be said that it is derived from smetica crystals.
  • the scattering intensity distribution and the long period by the small angle X-ray scattering analysis method it can be judged whether the polyolefin resin layer is obtained by cooling at 80 ° C./sec or more or not. That is, it is possible to judge by the above analysis whether or not the polyolefin resin layer has a fine structure derived from smetica crystals.
  • the measurement is performed under the following conditions. -The X-ray generator uses ultraX 18HF (manufactured by Rigaku Corporation), and uses an imaging plate for detection of scattering.
  • the cyclic polyolefin is a polymer containing a structural unit derived from a cyclic olefin, and may be a copolymer with ethylene (cyclic polyolefin copolymer).
  • the melt flow rate of polypropylene (hereinafter sometimes referred to as "MFR") is preferably 0.5 to 10 g / 10 min. Within this range, the formability to a film shape or a sheet shape is excellent.
  • MFR of polypropylene is measured at a measurement temperature of 230 ° C. and a load of 2.16 kg in accordance with JIS-K7210.
  • the MFR of polyethylene can be 0.1 to 10 g / 10 min. Within this range, the formability to a film shape or a sheet shape is excellent.
  • the MFR of polyethylene is measured at 190 ° C. and a load of 2.16 kg in accordance with JIS-K7210.
  • the MFR of the cyclic polyolefin can be 0.5 to 15 g / 10 min.
  • the MFR of cyclic polyolefins is measured at 230 ° C. and a load of 2.16 kg according to the ISO 1133 standard.
  • An extrusion method etc. are mentioned as a formation method of a polyolefin resin layer.
  • the cooling is preferably performed at 80 ° C./sec or more until the internal temperature of the polyolefin resin layer becomes less than the crystallization temperature. Thereby, the crystal structure of a polyolefin resin layer (especially polypropylene) can be made into the above-mentioned Smethica crystal.
  • the cooling is more preferably 90 ° C./second or more, and still more preferably 150 ° C./second or more.
  • the polyolefin may be blended with additives such as a pigment, an antioxidant, a stabilizer, and an ultraviolet light absorber, as necessary.
  • a modified product obtained by modifying a polyolefin with a modifying compound such as, for example, maleic anhydride, dimethyl maleate, diethyl maleate, acrylic acid, methacrylic acid, tetrahydrophthalic acid, glycidyl methacrylate, hydroxyethyl methacrylate, methyl methacrylate and the like You may mix
  • the polycarbonate is not particularly limited in its production method, and those produced by various known methods can be used.
  • solution method interfacial polycondensation method
  • melting method ester exchange method
  • dihydric phenol and carbonate precursor ie, reaction of dihydric phenol with phosgene in the presence of a terminator.
  • What is manufactured by making it react by the transesterification method of dihydric phenol, a diphenyl carbonate, etc. in presence of the interfacial polycondensation method to make or the end terminator, etc. can be used.
  • dihydric phenols examples include 2,2-bis (4-hydroxyphenyl) propane [bisphenol A], bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2 -Bis (4-hydroxy-3,5-dimethylphenyl) propane, 4,4'-dihydroxydiphenyl, bis (4-hydroxyphenyl) cycloalkane, bis (4-hydroxyphenyl) oxide, bis (4-hydroxyphenyl) Sulfide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) sulfoxide, bis (4-hydroxyphenyl) ketone and the like can be mentioned.
  • hydroquinone, resorcin and catechol can also be mentioned.
  • Each of these may be used alone or in combination of two or more.
  • bis (hydroxyphenyl) alkanes are preferred, and bisphenol A is particularly preferred.
  • the carbonate precursor is, for example, a carbonyl halide, a carbonyl ester, or a haloformate, and specifically, phosgene, a dihaloformate of dihydric phenol, diphenyl carbonate, dimethyl carbonate, diethyl carbonate or the like.
  • the polycarbonate may have a branched structure, and as a branching agent, 1,1,1-tris (4-hydroxyphenyl) ethane, ⁇ , ⁇ ′, ⁇ ′ ′-tris (4-hydroxy) Phenyl) -1,3,5-triisopropylbenzene, fluoroglycine, trimellitic acid and isatin bis (o-cresol).
  • the viscosity average molecular weight (Mv) of the polycarbonate is usually 10,000 to 50,000, preferably 13,000 to 35,000, and more preferably 15,000 to 20,000.
  • the molecular terminal group in polycarbonate is not particularly limited, and may be a group derived from a monovalent phenol which is a conventionally known terminator, but is derived from a monovalent phenol having an alkyl group having 10 to 35 carbon atoms. Is preferably a group of If the molecular terminal is a group derived from phenol having an alkyl group having 10 or more carbon atoms, the obtained polycarbonate composition has good fluidity, and a group derived from phenol having an alkyl group having 35 or less carbon atoms If so, the resulting polycarbonate composition has good heat resistance and impact resistance.
  • Examples of the monovalent phenol having an alkyl group having 10 to 35 carbon atoms include decylphenol, undecylphenol, dodecylphenol, tridecylphenol, tetradecylphenol, pentadecylphenol, hexadecylphenol, heptadecylphenol and octadecylphenol And nonadecylphenol, icosylphenol, docosylphenol, tetracosylphenol, hexacosylphenol, octacosylphenol, triacontylphenol, dotriacontylphenol, pentatriacontylphenol and the like.
  • the alkyl group of these alkylphenols may be any position of o-, m- and p- with respect to the hydroxyl group, but the position of p- is preferred.
  • the alkyl group may be linear, branched or a mixture thereof. As this substituent, at least one of them may be an alkyl group having a carbon number of 10 to 35, and the other four are not particularly limited, and an alkyl group having a carbon number of 1 to 9 and a carbon number of 6 to 20 It may be an aryl group, a halogen atom or unsubstituted.
  • the end capping with a monovalent phenol having an alkyl group having a carbon number of 10 to 35 may be either one end or both ends, and the end modification ratio is an aspect of high fluidization of the obtained PC resin composition Therefore, the content is preferably 20% or more, more preferably 50% or more, with respect to all the ends. That is, the other end may be a hydroxyl end, or an end that is sealed using the following other end terminator.
  • terminal stoppers include phenol, p-cresol, p-tert-butylphenol, p-tert-octylphenol, p-cumylphenol, p-nonylphenol, p-tert commonly used in the production of polycarbonate resins.
  • -Amylphenol, bromophenol and tribromophenol, pentabromophenol etc. may be mentioned.
  • compounds which do not contain halogen are preferable in view of environmental problems.
  • Polycarbonate is a polyester-polycarbonate obtained by polymerizing polycarbonate in the presence of an ester precursor such as a PC-POS copolymer, a difunctional carboxylic acid such as terephthalic acid, or an ester-forming derivative thereof besides polycarbonate.
  • an ester precursor such as a PC-POS copolymer, a difunctional carboxylic acid such as terephthalic acid, or an ester-forming derivative thereof besides polycarbonate.
  • Copolymers such as resins or other polycarbonate resins may be suitably contained.
  • Polycarbonate is preferably melt volume flow rate (MVR) is 1 ⁇ 50cm 3/10 minutes as measured by JIS K7210.
  • polyamide resin examples include polyamide 66, polyamide 6, polyamide 1010, polyamide 12, polyamide 11 and the like.
  • the polyamide resin preferably has an MFR of 0.5 to 50 g / 10 min as measured according to JIS K7210.
  • the ABS resin is not particularly limited, but may contain structural units derived from monomers other than acrylonitrile, butadiene and styrene.
  • the ABS resin preferably has a MFR of 0.5 to 50 g / 10 min as measured according to JIS K7210.
  • the AS resin is not particularly limited, but may contain structural units derived from monomers other than acrylonitrile and styrene.
  • the AS resin preferably has a MFR of 0.5 to 50 g / 10 min as measured according to JIS K 7210.
  • the acrylic resin preferably has a MFR of 1 to 50 g / 10 min as measured according to JIS K7210.
  • the polycarbonate-ABS resin alloy is a resin obtained by mixing the polycarbonate and the ABS resin in a molten state.
  • the polycarbonate-ABS resin alloy resin preferably has an MFR of 1 to 50 g / 10 min as measured according to JIS K7210.
  • the polyamide-ABS resin alloy is a resin in which the polycarbonate and the polyamide are mixed in a molten state.
  • the polyamide-ABS resin alloy resin preferably has an MFR of 1 to 50 g / 10 min as measured according to JIS K7210.
  • the thickness of the thermoplastic resin layer is usually 10 to 1000 ⁇ m, and may be 15 to 500 ⁇ m, 20 to 500 ⁇ m, or 30 to 300 ⁇ m.
  • the thermoplastic resin layer may use the above-described materials singly or in combination of two or more. Moreover, resin other than the resin mentioned above may be included.
  • the protective layer includes at least a welding layer, and may be a laminated structure including other layers such as a base layer, an anchor coat layer, and a bonding layer.
  • the outermost layer of the laminated structure that is, the layer opposite to the thermoplastic resin layer is a welding layer.
  • Thermoplastic resin layer / welding layer [Thermoplastic resin layer / substrate layer / welding layer] [Thermoplastic resin layer / substrate layer / bonding layer / welding layer] [Thermoplastic resin layer / substrate layer / anchor coat layer / welding layer] "/" Indicates that the layers are stacked.
  • FIG. 2 A schematic cross-sectional view of a laminate in the case where the protective layer has a laminated structure including a base material layer, a bonding layer, and a welding layer is shown in FIG.
  • the laminate 2 includes the thermoplastic resin layer 10 and the protective layer 20, and the protective layer 20 includes the base layer 22, the bonding layer 24 and the welding layer 26 in order from the thermoplastic resin layer 10 side.
  • FIG. 2 is merely for explaining the layer structure, and the aspect ratio and the film thickness ratio are not necessarily accurate.
  • each layer which comprises a protective layer is demonstrated.
  • the welding layer comprises a thermoplastic elastomer.
  • Thermoplastic elastomers are usually composed of hard segments and soft segments.
  • Thermoplastic elastomers exhibit thermoplasticity because the hard segment exhibits rubber elasticity because the hard segment fixes the flow of molecular chains at normal temperature, and the hard segment plasticizes at the temperature where the hard segment melts to release the molecular chain fixation. .
  • the presence of the soft segment makes it possible to make the shrinkage of the protective layer approximately the same as the shrinkage of the thermoplastic resin layer.
  • Thermoplastic elastomers are generally of copolymerization type in which hard segments and soft segments are connected by copolymerization, and dispersion type of sea-island structure in which hard segments constitute matrix and soft segments constitute domains.
  • the polyester-based thermoplastic elastomer is an elastomer in which polyester is used as a hard segment and a rubber component is used as a soft segment.
  • the hard segment polyester include polyethylene terephthalate and polybutylene terephthalate, and polybutylene terephthalate is preferable.
  • the rubber component of the soft segment include polyether, polycarbonate and the like, and polyether is preferable.
  • the polyester-based thermoplastic elastomer may be of copolymerization type or of dispersion type.
  • the MFR of the polyester thermoplastic elastomer is preferably 1 to 100 g / 10 minutes, more preferably 1 to 50 g / 10 minutes. MFR is measured at 230 ° C. under a load of 21N.
  • the acrylic thermoplastic elastomer is an elastomer in which an acrylic resin is used as a hard segment and a rubber component is used as a soft segment.
  • a hard segment acrylic resin, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, pentyl methacrylate, hexyl methacrylate, octyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate, dodecyl methacrylate, Myristyl methacrylate, palmityl methacrylate, stearyl methacrylate, behenyl methacrylate, octadecyl methacrylate, phenyl methacrylate, benzyl methacrylate and the like can be mentioned, with preference given to
  • Examples of the rubber component of the soft segment include n-butyl polyacrylate, polybutadiene, polyisoprene and the like, and n-butyl polyacrylate is preferable.
  • the acrylic thermoplastic elastomer may be of copolymerization type or of dispersion type.
  • the MFR of the acrylic thermoplastic elastomer is preferably 2 to 100 g / 10 min. MFR is measured at 230 ° C. and a load of 2.16 kg in accordance with ISO 1133.
  • the welding layer may contain an ABS resin in addition to the thermoplastic elastomer.
  • the rigidity of the welding layer can be improved.
  • the content of the ABS resin is preferably 30% by mass or less, more preferably 5 to 30% by mass. Within this range, the shrinkage rate of the protective layer can be kept good, and the rigidity can be enhanced.
  • ABS resin is as described for the thermoplastic resin layer. Also, instead of the ABS resin, an acrylonitrile-styrene copolymer (AS resin) not containing a structural unit derived from butadiene may be used.
  • AS resin acrylonitrile-styrene copolymer
  • the welding layer % May be a thermoplastic elastomer, or a thermoplastic elastomer and an ABS resin.
  • the welding layer may consist essentially of a thermoplastic elastomer, or a thermoplastic elastomer and an ABS resin.
  • the thickness of the welding layer is preferably 5 to 300 ⁇ m, more preferably 10 to 250 ⁇ m, and may be 10 to 200 ⁇ m, 10 to 150 ⁇ m, or 50 to 150 ⁇ m.
  • the substrate layer is preferably a layer containing one or more resins selected from the group consisting of polyolefins, polycarbonates, acrylic resins, ABS resins, AS resins, polystyrenes, polyesters, and polyamides.
  • the substrate layer preferably comprises one or more resins selected from the group consisting of polyolefins, polycarbonates, ABS resins, AS resins and polyamides.
  • the rigidity of the entire protective layer can be improved as compared with the case of only the welding layer, so that the laminated body has stiffness and handling at the time of processing becomes easy.
  • the polyolefin, polycarbonate, acrylic resin, ABS resin, AS resin and polyamide are as described for the thermoplastic resin layer.
  • polystyrene polystyrene alone or polystyrene may contain a rubber component.
  • the polystyrene preferably has an MFR measured according to JIS K 7210, and is 1 to 50 g / 10 min.
  • the polyester resin preferably has a MFR of 1 to 50 g / 10 min as measured according to JIS K7210.
  • the thickness of the substrate layer is preferably 20 to 500 ⁇ m, more preferably 20 to 300 ⁇ m.
  • mass% For example, 30 mass% or more, 50 mass% or more, 70 mass% or more, 80 mass% or more, 90 mass% or more, 98 mass% or more, 99 mass% or more, 99.9 mass% or more of the base material layer
  • the mass% may be the above-described resin.
  • the bonding layer is preferably a layer containing one or more resins selected from the group consisting of modified polyolefins, styrenic thermoplastic elastomers, and polyolefins.
  • the raw material polyolefin of said polyolefin and modified polyolefin is as having demonstrated by the thermoplastic resin layer, and a polypropylene is preferable.
  • modifying compound for polyolefin examples include maleic anhydride, dimethyl maleate, diethyl maleate, acrylic acid, methacrylic acid, tetrahydrophthalic acid, glycidyl methacrylate, hydroxyethyl methacrylate and methyl methacrylate.
  • Styrene-based thermoplastic elastomers include styrene-butadiene block copolymer (SB), styrene-butadiene-styrene block copolymer (SBS), styrene-isoprene-styrene block copolymer (SIS), styrene-isoprene-butadiene Rubber block copolymers containing styrene block such as block copolymer (SIB), styrene-isoprene block copolymer (SI), styrene-ethylene-propylene block copolymer (SEP) and their hydrogenated products Can be mentioned.
  • SB styrene-butadiene block copolymer
  • SBS styrene-butadiene-styrene block copolymer
  • SIS styrene-isoprene-styrene block copolymer
  • the MFR of the styrene-based thermoplastic elastomer is preferably 1 to 20 g / 10 min. MFR is measured at 230 ° C. and a load of 2.16 kg in accordance with ISO 1133.
  • the bonding layer may contain two or more of the components described above, and may be, for example, a mixed layer of a styrene-based thermoplastic elastomer (eg, 30 to 90% by mass) and a polyolefin (eg, 10 to 70% by mass).
  • a mixed layer of a styrene-based thermoplastic elastomer eg, 30 to 90% by mass
  • a polyolefin eg, 10 to 70% by mass
  • 30 mass% or more, 50 mass% or more, 70 mass% or more, 80 mass% or more, 90 mass% or more, 98 mass% or more, 99 mass% or more, 99.9 mass% or more, or 100 mass% of the bonding layer % May be the above-mentioned resin.
  • the thickness of the bonding layer is preferably 1 to 50 ⁇ m.
  • the anchor coat layer is preferably a layer containing one or more resins selected from the group consisting of urethane resins, acrylic resins, polyolefins and polyesters. In consideration of the adhesion to the base material layer and the welding layer, urethane resins and polyolefins are preferred.
  • the urethane resin is usually obtained by reacting at least a diisocyanate, a high molecular weight polyol and a chain extender.
  • the high molecular weight polyol may be a polyether polyol, a polycarbonate polyol or a polyester polyol.
  • the anchor coat layer may be used singly or in combination of two or more of the materials described above.
  • mass% For example, 30 mass% or more, 50 mass% or more, 70 mass% or more, 80 mass% or more, 90 mass% or more, 98 mass% or more, 99 mass% or more, 99.9 mass% or more of the anchor coat layer
  • the mass% may be the above-described resin.
  • the anchor coat layer can be formed, for example, by applying the above-mentioned resin with a gravure coater, a kiss coater, a bar coater or the like and drying at 40 to 100 ° C. for 10 seconds to 10 minutes.
  • the thickness of the anchor coat layer may be 35 nm or more and 3000 nm or less, may be 50 nm or more and 2000 nm or less, and may be 50 nm or more and 1000 nm or less. If the thickness of the anchor coat layer is 35 nm or more, adhesion to other layers is sufficiently high. When the thickness of the anchor coat layer is 3000 nm or less, the occurrence of blocking due to stickiness can be suppressed.
  • the adhesion to the welding layer can be improved at the time of extrusion lamination.
  • the protective layer may include, for example, a colored layer, a release layer, and the like in addition to the above layers.
  • the total thickness of the protective layer is usually 10 to 1000 ⁇ m, preferably 50 to 500 ⁇ m, and more preferably 100 to 400 ⁇ m. If the thickness of the protective layer is 10 ⁇ m or more, the surface layer can be protected from the heat of the injection resin without any problem, and design damage and adhesion failure can be suppressed. If the thickness of the protective layer is 1000 ⁇ m or less, the moldability of the laminate is excellent.
  • Method of manufacturing laminate Although the manufacturing method in particular of the layered product concerning one mode of the present invention is not restrict
  • the laminate according to one aspect of the present invention may include a print layer on the surface on the protective layer side of the thermoplastic resin layer.
  • the print layer may be provided on part or all of the surface on the protective layer side of the thermoplastic resin layer.
  • limit especially as a shape of a printing layer For example, various shapes, such as a solid form, carbon tone, and a woodgrain, are mentioned.
  • a printing method a general printing method such as a screen printing method, an offset printing method, a gravure printing method, a roll coating method, a spray coating method can be used.
  • the film thickness of the ink can be thickened by the screen printing method, ink breakage is less likely to occur when it is formed into a complicated shape.
  • FM3107 high concentration white or “SIM3207 high concentration white” manufactured by Tojo Chemical Co., Ltd. can be exemplified, but not limited thereto.
  • the laminate according to one aspect of the present invention may be provided with an easy bonding layer on part or the whole of the surface on the protective layer side of the thermoplastic resin layer.
  • the easy bonding layer is a layer capable of enhancing the adhesion between the thermoplastic resin layer and the protective layer or an undercoat layer described later.
  • urethane resin As a material which forms an easily bonding layer, urethane resin, acrylic resin, polyolefin resin, polyester resin etc. are mentioned. In view of adhesion to other layers and moldability, urethane resins are preferred.
  • the urethane resin is usually obtained by reacting at least a diisocyanate, a high molecular weight polyol and a chain extender.
  • the high molecular weight polyol may be a polyether polyol or a polycarbonate polyol.
  • the easy bonding layer may use the above-described materials singly or in combination of two or more.
  • the easily bonding layer can form a layer configuration favorably following the thermoplastic resin layer.
  • the easy bonding layer can be formed, for example, by applying the above-described resin with a gravure coater, a kiss coater, a bar coater or the like and drying it at 40 to 100 ° C. for 10 seconds to 10 minutes.
  • the thickness of the easy bonding layer may be 35 nm or more and 3000 nm or less, may be 50 nm or more and 2000 nm or less, and may be 50 nm or more and 1000 nm or less. If the thickness of the easy bonding layer is 35 nm or more, the adhesion to other layers is sufficiently high. When the thickness of the easy bonding layer is 3000 nm or less, the occurrence of blocking due to stickiness can be suppressed.
  • various coatings such as an ink, a hard coat, an antireflective coat, and a thermal barrier coat can be laminated.
  • thermoplastic resin layer may be provided with functionality such as surface treatment and hard coating.
  • the laminate according to one aspect of the present invention may be provided with an undercoat layer.
  • the undercoat layer is a layer capable of bringing the easily bonding layer into close contact with the metal layer described later.
  • a material which forms an undercoat layer a urethane resin, an acrylic resin, polyolefin, polyester etc. are mentioned.
  • An acrylic resin is preferable from the viewpoint of the whitening resistance (the difficulty in causing the whitening phenomenon) during molding and the adhesion to the metal layer.
  • “DA-105” manufactured by Arakawa Chemical Industries, Ltd. can be used.
  • the above materials may be used alone or in combination of two or more.
  • the above-described material is applied by a gravure coater, a kiss coater, a bar coater or the like, dried at 50 to 100 ° C. for 10 seconds to 10 minutes, and at 40 to 100 ° C. It can be formed by time aging.
  • the thickness of the undercoat layer may be 0.05 ⁇ m to 50 ⁇ m, 0.1 ⁇ m to 10 ⁇ m, or 0.5 ⁇ m to 5 ⁇ m.
  • the laminate according to one aspect of the present invention may be provided with a metal layer.
  • the metal layer is a layer containing metal or metal oxide.
  • the metal for forming the metal layer is not particularly limited as long as it is a metal capable of giving a metallic design to the laminate, and examples thereof include tin, indium, chromium, aluminum, nickel, copper, silver, gold, platinum and zinc. It is possible to use an alloy that includes at least one of these.
  • indium and aluminum and chromium are preferable because they are particularly excellent in extensibility and color tone.
  • metal layer is excellent in extensibility, cracking is unlikely to occur when the laminate is three-dimensionally formed.
  • the method for forming the metal layer is not particularly limited, but from the viewpoint of imparting to the laminate a metallic texture having high texture and high quality, for example, vacuum evaporation, sputtering, ion plating using the above-mentioned metals
  • a vapor deposition method such as a method can be used.
  • the vacuum deposition method is low in cost and can reduce damage to the deposition target.
  • the conditions of the vacuum deposition method may be appropriately set according to the melting temperature or evaporation temperature of the metal to be used.
  • a method of applying a paste containing the above metal or metal oxide, a plating method using the above metal, or the like can also be used.
  • the thickness of the metal layer may be 5 nm or more and 80 nm or less. If it is 5 nm or more, the desired metallic gloss can be obtained without any problem, and if it is 80 nm or less, cracking hardly occurs.
  • a molded object can be manufactured using the laminated body mentioned above.
  • the isotactic pendat fraction of polypropylene is preferably 80 mol% or more and 98 mol% or less. Further, the crystallization rate at 130 ° C. of the polypropylene preferable to be 2.5 min -1 or less, 2.0Min -1 or less is more preferable. Even after forming into a molded body, it is possible to specify a portion corresponding to the thermoplastic resin layer of the laminate by using a phase microscope or the like. The method of measuring the isotactic pendart fraction and the crystallization rate is as described above.
  • Method for producing molded body examples include in-mold molding, insert molding, coating molding and the like.
  • In-mold molding is a method in which a laminate is placed in a mold and molded into a desired shape by the pressure of a molding resin supplied into the mold to obtain a molded body. As in-mold molding, it is preferable to mount the laminate on a mold and supply molding resin for integration.
  • a shaped body to be placed in a mold is pre-shaped, and a molding resin is filled in the shape to obtain a molded body. More complex shapes can be formed.
  • the laminate may be shaped so as to conform to the mold, and the shaped laminate may be mounted on the mold, and a molding resin may be supplied and integrated.
  • the shaping (preliminary shaping) performed to conform to the mold can be performed by vacuum forming, pressure forming, vacuum pressure forming, press forming, plug assist forming, or the like.
  • a moldable thermoplastic resin can be used as the molding resin. Specifically, polypropylene, polyethylene, polycarbonate, ABS resin, acrylic polymer, polystyrene, polyester, polyamide and the like can be exemplified, and any of them can be easily welded to the above-mentioned laminate (decorative sheet).
  • the molding resin is not limited to the one described above.
  • the molding resin is preferably polycarbonate, an ABS resin, or an acrylic polymer, and more preferably polycarbonate and an ABS resin, from the viewpoint of molding temperature, appearance of the molded product, dimensional stability, and difficulty in generating sink marks in the molded product.
  • the ABS resin is the same as that used in the welding layer described above. It may be a mixture of two or more of the above resins. Moreover, you may add inorganic fillers, such as a fiber and a talc, to resin for shaping
  • the supply of the molding resin is preferably performed by injection, and the pressure is preferably 5 MPa or more and 300 MPa or less.
  • the mold temperature is preferably 20 ° C. or more and 90 ° C. or less.
  • the laminate and the molded article according to one aspect of the present invention can be used as an interior material, an exterior material, a housing of a home appliance, a decorative steel plate, a decorative board, a housing equipment, a housing of an information communication device, etc.
  • Polypropylene 1 Homopolypropylene, Prime Polymer Co., Ltd. “Prime Polypro F133A”, MFR: 3 g / 10 min.
  • Polypropylene 2 Homopolypropylene, Co., Ltd. Prime Polymer “Prime Polypro F-300 SP”, MFR: 3 g / 10 min ⁇
  • Polypropylene 3 random polypropylene (propylene-ethylene copolymer), Prime Polymer Co., Ltd. “Prime Polypro F 794 NV”, MFR: 5.8 g / 10 min.
  • Polypropylene 4 Homopolypropylene, Inc. Prime Polymer Co.
  • Polyester thermoplastic elastomer 1 Tifa block A1700 N "manufactured by Mitsubishi Chemical Corporation, hard segment: polybutylene terephthalate, SO To segment: Polyether, MFR: 43 g / 10 min.
  • Polyester thermoplastic elastomer 2 Tifa block C1701N manufactured by Mitsubishi Chemical Co., Ltd. Hard segment: Polybutylene terephthalate, soft segment: Polyether, MFR: 3 g / 10 min Maleic acid-modified polypropylene 1: "Modic F 534A" manufactured by Mitsubishi Chemical Co., Ltd.
  • MFR 3.5 g / 10 minutes
  • Maleic-modified polypropylene 2 macroc F 502 manufactured by Mitsubishi Chemical Co.
  • MFR 1.0 g / 10 min
  • Maleic acid-modified polypropylene 3 Modic F508, manufactured by Mitsubishi Chemical Co., Ltd.
  • MFR 0.8 g / 10 min
  • Styrene thermoplastic elastomer 1 Kuraray Co., Ltd.
  • Polycarbonate-ABS resin alloy 1 Polymer alloy of acrylonitrile-styrene copolymer and polycarbonate, Toray Industries, Inc. “Toyolac PX10-X06”, MFR: 15 g / 10 min.
  • Polyamide-ABS resin alloy 1 Acrylonitrile-styrene co-weight Polymer alloy of united and polyamide, Toray Co., Ltd. "Toyolac SX01”, MFR: 22 g / 10 min.
  • Anchor coat 1 polyester-based urethane resin, Toyo Moreton Co., Ltd.
  • Anchor coat AD-335 AE Polyether-based urethane resin, DIC Corporation "Hydran WLS-202"
  • Anchor coat 3 Polypropylene resin, "Arrow base DB-4010” made by Unitika Co., Ltd.
  • Example 1 [Production of laminate] (1) Production of Thermoplastic Resin Layer A polycarbonate sheet (thermoplastic resin layer) having a thickness of 200 ⁇ m was produced using the production apparatus shown in FIG. 4 under the production conditions shown below. In the manufacturing apparatus, the molten resin extruded from the T-die 72 of the extruder is closely adhered to the cooling roll 76 by the air knife 74 and cooled by the cooling rolls 76 and 78 to form the resin sheet 71.
  • thermoplastic resin layer obtained in (1) was screened using "POS-911 black ink” manufactured by Teikoku Ink Mfg. Co., Ltd. using T-250 mesh (polyester mesh).
  • a solid printing layer is provided by printing and drying in a drying oven at 60 ° C. for 90 minutes, and after drying, a pressure-sensitive adhesive sheet (“mold fit 50” manufactured by Niei Kako Co., Ltd.) is laminated, and (2) The protective layers obtained in the above were laminated to obtain a laminate 1.
  • the laminate 1 was thermoformed by vacuum pressure forming using a vacuum pressure forming machine ("FM-3M / H" manufactured by Minos Corporation) to produce a formed body 1.
  • the thickness of the molded body 1 is 3 mm throughout.
  • the molded body 1 is mounted on a mold in which the molded body 1 fits without gaps, and the ABS resin 1 is supplied into the mold and integrated by a hydraulic injection molding machine (“IS-80 EPN” manufactured by Toshiba Machine Co., Ltd.)
  • the molded body 2 was manufactured.
  • the laminated body 1 which comprises the molded object 2 was peeled 180 degrees by 15 mm width from supply resin (ABS resin 1), and the peeling strength of the laminated body 1 and supply resin was measured by the push pull gauge. The results are shown in Table 1.
  • Example 2 The protective layer was manufactured on the following conditions using the manufacturing apparatus shown in FIG. 4, and it was set as the 2 layer structure (200 micrometers in thickness) of (base material layer / welding layer).
  • Manufacturing conditions ⁇ Composition of base material layer: Polycarbonate 1 (100% by mass) ⁇ Composition of welding layer: Polyester thermoplastic elastomer 1 (100% by mass) ⁇ Diameter of extruder for base layer: 30 mm ⁇ Diameter of extruder of welding layer: 30 mm ⁇ T-die 72 width: 350 mm Take-up speed of laminated sheet (resin sheet 71): 2.1 m / min Surface temperature of cooling rolls 76 and 78: 80 ° C. ⁇ Thickness of base layer: 99 ⁇ m ⁇ Thickness of welding layer: 101 ⁇ m
  • the base material layer is a layer by the side of a thermoplastic resin layer among the said laminated structure. The results are shown in Table 1.
  • Example 3 A laminate and a molding were carried out in the same manner as in Example 2 except that the material of the thermoplastic resin layer was AS resin 1 (100% by mass) and the material of the base layer of the protective layer was AS resin 1 (100% by mass). The body was manufactured and evaluated. The results are shown in Table 1.
  • Example 4 The same as Example 2 except that the material of the thermoplastic resin layer is polycarbonate-ABS resin alloy 1 (100% by mass) and the material of the base layer of the protective layer is polycarbonate-ABS resin alloy 1 (100% by mass). Laminates and compacts were produced and evaluated by the method. The results are shown in Table 1.
  • Example 5 Same as Example 2 except that the material of the thermoplastic resin layer is polyamide-ABS resin alloy 1 (100 mass%) and the material of the base layer of the protective layer is polyamide-ABS resin alloy 1 (100 mass%) Laminates and compacts were produced and evaluated by the method. The results are shown in Table 1.
  • Example 6 A laminate was produced in the same manner as in Example 2. The evaluation was performed in the same manner as in Example 2 except that polycarbonate 1 was supplied instead of the ABS resin 1 in the production of the molded body 2. The results are shown in Table 1.
  • Example 7 A laminate was produced in the same manner as in Example 2. Evaluation was carried out in the same manner as in Example 2 except that polyamide-ABS resin alloy 1 was supplied instead of ABS resin 1 in the production of molded body 2. The results are shown in Table 1.
  • Comparative Example 1 A laminate and a molded body were produced and evaluated in the same manner as in Example 1 except that the material of the protective layer (welding layer) was changed to polycarbonate 1 (100% by mass). The results are shown in Table 1.
  • Example 8 [Production of laminate] (1) Production of Thermoplastic Resin Layer A polypropylene sheet (thermoplastic resin layer) 51 was produced using the production apparatus shown in FIG. The operation of the device will be described.
  • the molten resin (polypropylene 1) extruded from the T die 52 of the extruder is sandwiched between the metal endless belt 57 and the fourth cooling roll 56 on the first cooling roll 53.
  • the molten resin is pressure-welded by the first and fourth cooling rolls 53 and 56 and rapidly cooled.
  • the polypropylene sheet is sandwiched between the metal endless belt 57 and the fourth cooling roll 56 at a circular arc portion corresponding to the lower half of the fourth cooling roll 56 and is planarly pressure-welded.
  • the polypropylene sheet in close contact with the metal endless belt 57 is moved onto the second cooling roll 54 as the metal endless belt 57 pivots.
  • the polypropylene sheet is pressure-welded by the metal endless belt 57 at the arc portion corresponding to the substantially upper half circumference of the second cooling roll 54, and is cooled again.
  • the polypropylene sheet cooled on the second cooling roll 54 is then peeled off the metal endless belt 57.
  • the surface of the first and second cooling rolls 53 and 54 is coated with an elastic material 62 made of nitrile butadiene rubber (NBR).
  • NBR nitrile butadiene rubber
  • the manufacturing conditions of the polypropylene sheet 51 are as follows. ⁇ Diameter of extruder: 150 mm ⁇ T-die 52 width: 1400 mm ⁇ The thickness of polypropylene sheet 51: 200 ⁇ m Take-up speed of polypropylene sheet 51: 25 m / min Surface temperature of fourth cooling roll 56 and metal endless belt 57: 17 ° C. ⁇ Cooling speed: 10,800 ° C / minute (180 ° C / second) ⁇ Nucleator: None
  • the crystallization rate of the polypropylene used for the thermoplastic resin layer was measured using a differential scanning calorimeter (DSC) ("Diamond DSC” manufactured by Perkin Elmer). Specifically, the temperature of the polypropylene is raised from 50 ° C. to 230 ° C. at 10 ° C./min, held for 5 minutes at 230 ° C., cooled from 230 ° C. to 130 ° C. at 80 ° C./min, and then to 130 ° C. It hold
  • DSC differential scanning calorimeter
  • a baseline was obtained by approximating a change in heat quantity from a point 10 times to a point 20 times from the start of the measurement to the peak top by a straight line.
  • the intersection point of a tangent having a slope at the inflection point of the peak and the baseline was determined to determine the crystallization start and end times.
  • the crystallization rate was determined from the reciprocal of the obtained crystallization time.
  • the crystallization rate of polypropylene used for the thermoplastic resin layer was 0.9 min -1 .
  • thermoplastic resin layer obtained in (1) was screened using "POS-911 black ink” manufactured by Teikoku Ink Mfg. Co., Ltd. using T-250 mesh (polyester mesh).
  • a solid printing layer is provided by printing and drying in a drying oven at 60 ° C. for 90 minutes, and the adhesive after drying has a thickness of 1.2 ⁇ m ("Unistol H200" manufactured by Mitsui Chemicals, Inc.)
  • Example 2 Using the obtained laminate, a molded body was produced and evaluated in the same manner as in Example 1. Further, the appearance of the molded body was evaluated as follows. The results are shown in Table 2. (appearance) The appearance of the molded body 1 was visually confirmed and evaluated in accordance with the following criteria. The results are shown in Table 1. No warpage and distortion: ⁇ At least one of warp and strain is seen: x
  • Example 9 The protective layer was manufactured on the following conditions using the manufacturing apparatus shown in FIG. 4, and it was set as 3 layer structure (200 micrometers in thickness) of (base material layer / joining layer / welding layer).
  • Manufacturing conditions ⁇ Composition of base material layer: Polypropylene 2 (100 mass%) ⁇ Composition of bonding layer: Maleic acid modified polypropylene 1 (100% by mass) ⁇ Composition of welding layer: Polyester thermoplastic elastomer 1 (100% by mass) ⁇ Diameter of extruder for base layer: 30 mm ⁇ Diameter of bonding layer extruder: 20 mm ⁇ Diameter of extruder of welding layer: 30 mm ⁇ T-die 72 width: 350 mm Take-up speed of laminated sheet (resin sheet 71): 2.1 m / min Surface temperature of cooling rolls 76 and 78: 30 ° C. ⁇ Thickness of base layer: 104 ⁇ m Bonding layer thickness: 13 ⁇ m ⁇ Thickness of welding layer: 100 ⁇ m
  • the base material layer is a layer by the side of a thermoplastic resin layer among the said laminated structure. The results are shown in Table 2.
  • Example 10 A laminate and a molded article were produced in the same manner as in Example 9 except that the composition of the welding layer of the protective layer was changed to polyester-based thermoplastic elastomer 1 (80 mass%) and ABS resin 1 (20 mass%). ,evaluated. The results are shown in Table 2.
  • Example 11 Laminates and molded articles were produced and evaluated in the same manner as in Example 9 except that the composition of the bonding layer of the protective layer was changed to maleic acid-modified polypropylene 2 (100% by mass). The results are shown in Table 2.
  • Example 12 A laminate and a molded article are produced in the same manner as in Example 9 except that the composition of the bonding layer of the protective layer is changed to styrene thermoplastic elastomer 1 (70 mass%) and polypropylene 3 (30 mass%), evaluated. The results are shown in Table 2.
  • Example 13 Laminates and molded articles were produced and evaluated in the same manner as in Example 9 except that the composition of the welding layer of the protective layer was changed to polyester-based thermoplastic elastomer 2 (100% by mass). The results are shown in Table 2.
  • Example 14 Maleic acid modified polypropylene 3 (100% by mass) for the composition of the bonding layer of the protective layer, polypropylene 4 (100% for mass) for the composition of the base layer, 300 ⁇ m for the thickness of the protective layer A laminate and a molded article were produced and evaluated in the same manner as in Example 9 except that polycarbonate 1 was used. The results are shown in Table 2.
  • Example 15 A laminate and a molded body were manufactured and evaluated in the same manner as in Example 14 except that the resin supplied at the time of manufacturing the molded body 2 was AS resin 1. The results are shown in Table 2.
  • Example 16 Laminates and molded articles were produced and evaluated in the same manner as in Example 14 except that the supplied resin at the time of producing the molded article 2 was polycarbonate-ABS resin alloy 1. The results are shown in Table 2.
  • Example 17 Laminates and molded articles were produced and evaluated in the same manner as in Example 14 except that the resin supplied during production of the molded article 2 was changed to the polyamide-ABS resin alloy 1. The results are shown in Table 2.
  • Example 18 The anchor coat 1 was applied by gravure coating on one side of a 200 ⁇ m thick base layer (polypropylene 1) so that the film thickness after drying would be 100 nm. Thereafter, a welding layer (polyester-based thermoplastic elastomer 1) was extrusion laminated on the surface coated with the anchor coat of the base material layer to form a 300 ⁇ m thick three-layer protective layer (welding layer / anchor coat layer / base Material layer). Except for this, laminates and molded articles were produced and evaluated in the same manner as in Example 8. The results are shown in Table 2.
  • Example 19 Laminates and molded articles were produced and evaluated in the same manner as in Example 18 except that the anchor coat layer was changed to anchor coat 2. The results are shown in Table 2.
  • Example 20 Laminates and molded articles were produced and evaluated in the same manner as in Example 18 except that the anchor coat layer was changed to anchor coat 3. The results are shown in Table 2.
  • Comparative example 2 A laminate and a molded body were manufactured and evaluated in the same manner as in Example 8 except that the composition of the protective layer (welding layer) was changed to ABS resin 1 (100% by mass). The results are shown in Table 2.
  • Comparative example 3 The polypropylene sheet obtained in “(1) Production of a thermoplastic resin layer” in Example 8 is subjected to a corona treatment, and a urethane resin (“DIC Corporation” manufactured by DIC Corporation) is applied thereon so that the film thickness after drying becomes 230 nm. Hydran WLS-202 ”) was applied by a bar coater and dried at 80 ° C. for 1 minute to form an easily bonding layer.
  • the corona treatment was applied to the surface of the polypropylene sheet using a high frequency power source (Wedge Corporation high frequency power source "CT-0212").
  • a binder (“IMB-HF006” manufactured by Teikoku Ink Mfg. Co., Ltd.) was printed by screen printing to obtain a laminate.
  • the resulting laminate is attached to the mold used for the production of the molded body 2 in Example 8, and the ABS resin 1 is molded by a hydraulic injection molding machine (“IS-80 EPN” manufactured by Toshiba Machine Co., Ltd.)
  • the mixture was supplied to the inside and integrated to produce a molded body.
  • the design damage and the adhesive strength were evaluated by the same method as Example 1. The results are shown in Table 2.
  • the laminates of Examples 1 to 20 do not cause design damage when coming into contact with various molding resins, and further have sufficient adhesion strength with the molding resins, and are highly versatile. It turns out that it is a decoration sheet. Further, it can be seen from Table 2 that the laminates of Examples 8 to 20 do not undergo deformation such as warpage or distortion during molding, and have an excellent appearance even after molding.

Landscapes

  • Laminated Bodies (AREA)

Abstract

This laminate includes a thermoplastic resin layer and a protective layer, the protective layer including a welding layer, and the welding layer including a thermoplastic elastomer.

Description

積層体、成形体及び成形体の製造方法LAMINATE, MOLDED BODY, AND METHOD FOR PRODUCING MOLDED BODY
 本発明は、積層体、成形体及び成形体の製造方法に関する。 The present invention relates to a laminate, a molded body, and a method of manufacturing a molded body.
 自動車、家電、建材、日用品、情報通信機器等の様々な分野において、外観の意匠性を向上させる方法として塗装が用いられている。しかしながら、塗装は大量の揮発性有機化合物(VOC)を排出するため、環境負荷が大きい。また、塗装ブースの温度及び湿度の制御や焼き付け工程では大量のエネルギーが消費され、大量の二酸化炭素が排出される。特に、自動車の生産工程では、塗装で排出される二酸化炭素は生産工程全体の2割を占める。塗装に伴う環境負荷を低減させるため、塗装の代替手段が積極的に開発されている。 In various fields such as automobiles, home appliances, building materials, daily necessities, information communication devices, etc., painting is used as a method of improving the design of the appearance. However, since the coating emits a large amount of volatile organic compounds (VOC), the environmental load is large. In addition, a large amount of energy is consumed in the control and baking process of the temperature and humidity of the paint booth, and a large amount of carbon dioxide is discharged. In particular, in the production process of automobiles, carbon dioxide emitted by painting accounts for 20% of the entire production process. In order to reduce the environmental impact associated with painting, alternatives to painting have been actively developed.
 塗装の代替手段として、筐体表面に加飾シートを被覆する方法が挙げられ、塗装と比較して環境負荷が低い。加飾シートには、通常、ポリプロピレン、ポリカーボネート、アクリル樹脂、アクリロニトリル-ブタジエン-スチレン共重合体(以下、「ABS樹脂」という場合がある)等の樹脂が使用される。 As an alternative means of painting, there is a method of coating a decorative sheet on a housing surface, and the environmental load is low compared to painting. For the decorative sheet, resins such as polypropylene, polycarbonate, acrylic resin, acrylonitrile-butadiene-styrene copolymer (hereinafter sometimes referred to as "ABS resin") are usually used.
 加飾シートとして、特許文献1には、基材シートと、印刷層と、表面樹脂層とが積層されてなるインサート成型用化粧シートが開示され、基材シートとして、ブタジエン成分割合が全体の10~33重量%のABS樹脂が使用される。
 特許文献2には、透明な熱可塑性樹脂からなる第一層と、ポリオレフィン系樹脂からなる第二層と、ABS樹脂とポリオレフィン系樹脂との混合樹脂からなる第三層が積層された加飾成形用シートが開示されている。
As a decorative sheet, Patent Document 1 discloses a decorative sheet for insert molding in which a base material sheet, a printing layer, and a surface resin layer are laminated, and the base material sheet has a butadiene component ratio of 10 as a whole. Up to 33% by weight ABS resin is used.
Patent Document 2 discloses decorative molding in which a first layer made of a transparent thermoplastic resin, a second layer made of a polyolefin resin, and a third layer made of a mixed resin of an ABS resin and a polyolefin resin are laminated. A seat is disclosed.
特開2008-94074号公報JP 2008-94074 A 特開2003-266615号公報Japanese Patent Application Publication No. 2003-266615 特開2012-240421号公報JP 2012-240421 A
 加飾シートで被覆された成形体を得るための方法として、加飾シートと成形用樹脂とをインサート成形やインモールド成形等により一体化させる方法があるが、この際に、加飾シートと成形用樹脂とを十分に密着させることが重要となる。 As a method for obtaining the molded object covered with the decorative sheet, there is a method of integrating the decorative sheet and the resin for molding by insert molding, in-mold molding, etc. At this time, the decorative sheet and the molding are molded. It is important that the adhesive resin be in close contact with the resin.
 加飾シートと成形用樹脂とを密着させるための方法として、スクリーン印刷で成形用樹脂に密着するバインダーを付与する方法や、成形用樹脂と溶着する樹脂シートを貼り合わせる方法等がある。
 前者に関し、成形用樹脂がポリプロピレン、ポリカーボネート又はABS樹脂である場合に対応するバインダーは存在するが、その他の成形用樹脂と密着するバインダーは存在しない。
 後者では、通常、成形用樹脂と同種の樹脂シートを貼り合わせてインサート成形又はインモールド成形時に溶着を行う。そのため、成形用樹脂に合わせて樹脂シートを変更する必要があり(例えば特許文献3)、工程数が増えて煩雑となる問題がある。
As a method for bringing the decorative sheet and the molding resin into close contact with each other, there is a method of providing a binder closely adhering to the molding resin by screen printing, a method of bonding a resin sheet to be welded with the molding resin, and the like.
With regard to the former, the corresponding binder is present when the molding resin is polypropylene, polycarbonate or ABS resin, but there is no binder in intimate contact with the other molding resins.
In the latter case, usually, resin sheets of the same type as the molding resin are laminated and welding is performed at the time of insert molding or in-mold molding. Therefore, it is necessary to change the resin sheet in accordance with the resin for molding (for example, Patent Document 3), and there is a problem that the number of processes increases and the operation becomes complicated.
 また、加飾シートに用いる樹脂として、上述した樹脂の中でも、軽量で耐薬品性に優れるポリプロピレンが積極的に検討されている。しかしながら、ポリプロピレンを用いた加飾シートと、ABS樹脂やポリカーボネート等の成形温度が高い成形用樹脂とをインサート成形又はインモールド成形すると、成形用樹脂のゲート近傍において意匠損傷や密着不足が発生する場合があった。この対策として、加飾シートにABS樹脂の保護シートを貼り合せる方法があるが、当該保護シートを用いると予備賦形体又は射出成形体に反りや歪みが生じる場合があった。 Further, among the above-described resins, polypropylene which is lightweight and excellent in chemical resistance is positively examined as a resin used for the decorative sheet. However, when a decorative sheet made of polypropylene and a molding resin such as ABS resin or polycarbonate having a high molding temperature are insert-molded or in-mold molded, design damage or insufficient adhesion occurs in the vicinity of the molding resin gate was there. As a countermeasure against this, there is a method of bonding a protective sheet of ABS resin to the decorative sheet, but when the protective sheet is used, warpage or distortion may occur in the preliminary shaped body or the injection molded body.
 例えば特許文献1における化粧シートの樹脂層にポリプロピレンを用い、基材シートにABS樹脂を用いた場合、予備賦形又は射出成形時に反りが生じてしまい、加工が困難となる。
 特許文献2に関し、一般に、ABS樹脂とポリオレフィン系樹脂は非相溶であり、相溶化剤を使用しても平滑なシートを得るのが難しい。シート(第三層)が平滑でない場合、予備賦形又は射出成形を行うと加飾成形用シートにシート(第三層)の凹凸が浮き出てしまい、外観を損なってしまう。
For example, when polypropylene is used for the resin layer of the decorative sheet in Patent Document 1 and ABS resin is used for the base sheet, warpage occurs during preliminary shaping or injection molding, and processing becomes difficult.
In regard to Patent Document 2, in general, the ABS resin and the polyolefin resin are incompatible, and it is difficult to obtain a smooth sheet even using a compatibilizer. If the sheet (third layer) is not smooth, the irregularities of the sheet (third layer) will rise on the sheet for decorative molding if preliminary shaping or injection molding is performed, and the appearance will be impaired.
 このように、加飾シートを用いたインサート成形やインモールド成形は未だ改善の余地があり、様々な成形用樹脂に溶着する加飾シート(積層体)が求められている。また、ポリオレフィン(例えばポリプロピレン)を含む加飾シートにおいては、インサート成形やインモールド成形時に反りや歪み等の変形が生じにくい加飾シート(積層体)が求められている。 Thus, there is still room for improvement in insert molding and in-mold molding using a decorative sheet, and decorative sheets (laminated bodies) to be welded to various molding resins are required. In addition, in the case of a decorative sheet containing a polyolefin (for example, polypropylene), a decorative sheet (laminated body) that is resistant to deformation such as warpage or distortion during insert molding or in-mold molding is required.
 本発明の目的は、多様な成形用樹脂に溶着する汎用性の高い加飾シート(積層体)を提供することである。
 本発明の他の目的は、上記の加飾シートのうちポリオレフィンを用いた加飾シートにおいて、成形時の変形が無いか又は低減された加飾シートを提供することである。
An object of the present invention is to provide a highly versatile decorative sheet (laminated body) to be welded to various molding resins.
Another object of the present invention is to provide a decorated sheet using polyolefin among the above-mentioned decorated sheets, with no or reduced deformation at the time of molding.
 本発明者が鋭意検討した結果、加飾シートの保護層として(又は保護層の一部として)熱可塑性エラストマーを含む層(溶着層)を採用すると、インサート成形やインモールド成形で用いられるABS樹脂、ポリカーボネート、ポリスチレン、ポリエステル、ポリアミド、アクリロニトリル-スチレン共重合、アクリル樹脂、これらのうち2種以上を含むポリマーアロイ等の成形用樹脂との十分な密着性を得られるため、成形用樹脂に合わせて保護シートを変更しなくても、耐久性に優れる成形体の製造が可能になることを見出した。 As a result of intensive studies conducted by the present inventor, when a layer (welding layer) containing a thermoplastic elastomer is employed as a protective layer of a decorative sheet (or as a part of a protective layer), an ABS resin used in insert molding or in-mold molding In order to obtain sufficient adhesion with molding resins such as polycarbonate, polystyrene, polyester, polyamide, acrylonitrile-styrene copolymer, acrylic resin, and polymer alloys containing two or more of these, according to the molding resin It has been found that it is possible to produce a molded article having excellent durability without changing the protective sheet.
 さらに、当該加飾シートのうち、ポリオレフィンを含む加飾シートの保護層(又は保護層の一部として)として熱可塑性エラストマーを含む層(溶着層)を採用すると、層間の収縮率の差が小さくなり、成形時の反りや歪みを低減できることを見出し、本発明を完成した。
 本発明によれば、以下の積層体等が提供される。
1.熱可塑性樹脂層と、保護層とを含み、
 前記保護層が溶着層を含み、
 前記溶着層が熱可塑性エラストマーを含む
 積層体。
2.前記溶着層の熱可塑性エラストマーがポリエステル系熱可塑性エラストマーである1に記載の積層体。
3.前記保護層が、前記溶着層の前記熱可塑性樹脂層側に基材層を含み、
 前記基材層が、ポリオレフィン、ポリカーボネート、アクリル樹脂、アクリロニトリル-ブタジエン-スチレン共重合体、アクリロニトリル-スチレン共重合体、ポリスチレン、ポリエステル及びポリアミドからなる群から選択される1以上の樹脂を含む
 1又は2に記載の積層体。
4.前記保護層が、前記溶着層と前記基材層の間に接合層を含み、
 前記接合層が、変性ポリオレフィン、スチレン系熱可塑性エラストマー及びポリオレフィンからなる群から選択される1以上の樹脂を含む
 3に記載の積層体。
5.前記保護層が、前記溶着層と前記基材層の間にアンカーコート層を含み、
 前記アンカーコート層が、ウレタン樹脂、アクリル樹脂、ポリオレフィン及びポリエステルからなる群から選択される1以上の樹脂を含む
 3に記載の積層体。
6.前記溶着層が、さらにアクリロニトリル-ブタジエン-スチレン共重合体を含む1~5のいずれかに記載の積層体。
7.前記熱可塑性樹脂層がポリオレフィンを含む1~6のいずれかに記載の積層体。
8.前記熱可塑性樹脂層がポリプロピレンを含む7に記載の積層体。
9.前記ポリプロピレンのアイソタクチックペンダット分率が85モル%~99モル%である8に記載の積層体。
10.前記ポリプロピレンの130℃での結晶化速度が2.5min-1以下である8又は9に記載の積層体。
11.前記ポリプロピレンがスメチカ晶を含む8~10のいずれかに記載の積層体。
12.前記ポリプロピレンが、示差走査熱量測定曲線において、最大吸熱ピークの低温側に1.0J/g以上の発熱ピークを有する8~11のいずれかに記載の積層体。
13.前記熱可塑性樹脂層が造核剤を含まない7~12のいずれかに記載の積層体。
14.前記熱可塑性樹脂層がポリカーボネート、ポリアミド樹脂、アクリロニトリル-ブタジエン-スチレン共重合体、アクリロニトリル-スチレン共重合体、及びアクリル樹脂からなる群から選択される1以上を含む1~6のいずれかに記載の積層体。
15.前記熱可塑性樹脂層の前記保護層側の面の一部又は全面に印刷層を含む1~14のいずれかに記載の積層体。
16.前記熱可塑性樹脂層の前記保護層側の面の一部又は全面に易接合層を含み、前記易接合層が、ウレタン樹脂、アクリル樹脂、ポリオレフィン及びポリエステルからなる群から選択される1以上の樹脂を含む1~15のいずれかに記載の積層体。
17.前記易接合層の、前記熱可塑性樹脂層の反対側の面に、ウレタン樹脂、アクリル樹脂、ポリオレフィン及びポリエステルからなる群から選択される1以上の樹脂を含むアンダーコート層を含み、前記アンダーコート層の前記易接合層の反対側の面に、スズ、インジウム、クロム、アルミニウム、ニッケル、銅、銀、金、白金及び亜鉛からなる群から選択される1以上の金属元素を含む金属層を含む、16に記載の積層体。
18.1~17のいずれかに記載の積層体を用いて製造した成形体。
19.1~17のいずれかに記載の積層体と、アクリロニトリル-ブタジエン-スチレン共重合体、ポリカーボネート、ポリエステル、ポリアミド、ポリスチレン、アクリロニトリル-スチレン共重合体、及びアクリル樹脂からなる群から選択される1以上の成形用樹脂と、を用いて製造した成形体。
20.前記積層体中の熱可塑性樹脂層がポリプロピレンを含み、前記ポリプロピレンのアイソタクチックペンダット分率が85モル%~99モル%である18又は19に記載の成形体。
21.前記積層体中の熱可塑性樹脂層がポリプロピレンを含み、前記ポリプロピレンの130℃での結晶化速度が2.5min-1以下である18~20のいずれかに記載の成形体。
22.1~17のいずれかに記載の積層体を金型に装着し、成形用樹脂を供給して一体化する、成形体の製造方法。
23.1~17のいずれかに記載の積層体を金型に合致するよう賦形し、前記賦形した積層体を金型に装着し、成形用樹脂を供給して一体化する、成形体の製造方法。
24.前記成形用樹脂がアクリロニトリル-ブタジエン-スチレン共重合体、ポリカーボネート、ポリスチレン、ポリエステル、ポリアミド、アクリロニトリル-スチレン共重合体、及びアクリル樹脂からなる群から選択される1以上の樹脂である22又は23に記載の成形体の製造方法。
Furthermore, when a layer (welding layer) containing a thermoplastic elastomer is adopted as a protective layer (or as a part of a protective layer) of the decorative sheet containing polyolefin among the decorative sheets, the difference in shrinkage between layers is small. As a result, it has been found that warpage and distortion during molding can be reduced, and the present invention has been completed.
According to the present invention, the following laminates and the like are provided.
1. Including a thermoplastic resin layer and a protective layer,
The protective layer comprises a weld layer,
The laminated body in which the said welding layer contains a thermoplastic elastomer.
2. The laminate according to 1, wherein the thermoplastic elastomer of the welding layer is a polyester thermoplastic elastomer.
3. The protective layer includes a base material layer on the thermoplastic resin layer side of the welding layer,
The base material layer contains one or more resins selected from the group consisting of polyolefin, polycarbonate, acrylic resin, acrylonitrile-butadiene-styrene copolymer, acrylonitrile-styrene copolymer, polystyrene, polyester and polyamide 1 or 2 The laminated body as described in.
4. The protective layer includes a bonding layer between the welding layer and the base layer,
The laminate according to 3, wherein the bonding layer comprises one or more resins selected from the group consisting of modified polyolefins, styrenic thermoplastic elastomers, and polyolefins.
5. The protective layer includes an anchor coat layer between the welding layer and the base layer,
The laminate according to 3, wherein the anchor coat layer comprises one or more resins selected from the group consisting of urethane resins, acrylic resins, polyolefins and polyesters.
6. The laminate according to any one of 1 to 5, wherein the welding layer further contains an acrylonitrile-butadiene-styrene copolymer.
7. The laminate according to any one of 1 to 6, wherein the thermoplastic resin layer comprises a polyolefin.
8. 7. The laminate according to 7, wherein the thermoplastic resin layer comprises polypropylene.
9. The laminate according to 8, wherein the isotactic pendart fraction of the polypropylene is 85 mol% to 99 mol%.
10. The laminate according to 8 or 9, wherein the crystallization rate of the polypropylene at 130 ° C. is 2.5 min −1 or less.
11. The laminate according to any one of 8 to 10, wherein the polypropylene contains smetic acid crystals.
12. The laminate according to any one of 8 to 11, wherein the polypropylene has an exothermic peak of 1.0 J / g or more on the low temperature side of the maximum endothermic peak in a differential scanning calorimetry curve.
13. The laminate according to any one of 7 to 12, wherein the thermoplastic resin layer does not contain a nucleating agent.
14. The thermoplastic resin layer according to any one of 1 to 6, wherein the thermoplastic resin layer comprises one or more selected from the group consisting of polycarbonate, polyamide resin, acrylonitrile-butadiene-styrene copolymer, acrylonitrile-styrene copolymer, and acrylic resin Stack.
15. The laminate according to any one of 1 to 14, which includes a printing layer on a part or the whole of the surface on the protective layer side of the thermoplastic resin layer.
16. One or more resins selected from the group consisting of a urethane resin, an acrylic resin, a polyolefin, and a polyester, including an easy bonding layer on a part or the whole of the surface on the protective layer side of the thermoplastic resin layer The laminate according to any one of 1 to 15, which comprises
17. The surface of the easy bonding layer opposite to the thermoplastic resin layer includes an undercoat layer containing one or more resins selected from the group consisting of urethane resin, acrylic resin, polyolefin and polyester, and the undercoat layer And a metal layer containing one or more metal elements selected from the group consisting of tin, indium, chromium, aluminum, nickel, copper, silver, gold, platinum and zinc on the opposite side of the easy bonding layer. The laminated body of 16.
A molded article produced using the laminate according to any one of 18.1 to 17.
20. The laminate according to any one of 19.1 to 17, and an acrylonitrile-butadiene-styrene copolymer, a polycarbonate, a polyester, a polyamide, a polystyrene, a polystyrene, an acrylonitrile-styrene copolymer, and an acrylic resin selected from the group 1 The molded object manufactured using the above resin for shaping | molding.
20. The molded article according to 18 or 19, wherein the thermoplastic resin layer in the laminate contains polypropylene, and the isotactic pendart fraction of the polypropylene is 85 mol% to 99 mol%.
21. The molded article according to any one of 18 to 20, wherein the thermoplastic resin layer in the laminate contains polypropylene, and the crystallization rate of the polypropylene at 130 ° C. is 2.5 min −1 or less.
22. A method for producing a molded body, comprising: attaching the laminate according to any one of 22.1 to 17 to a mold and supplying a molding resin to integrate them.
23. A molded body, wherein the laminate according to any one of 23.1 to 17 is shaped to conform to a mold, the shaped laminate is attached to the mold, and a molding resin is supplied and integrated. Manufacturing method.
24. The molding resin is one or more resins selected from the group consisting of acrylonitrile-butadiene-styrene copolymer, polycarbonate, polystyrene, polyester, polyamide, acrylonitrile-styrene copolymer, and acrylic resin, as described in 22 or 23, Manufacturing method of molded articles.
 本発明によれば、多様な成形用樹脂に溶着する汎用性の高い加飾シート(積層体)が提供できる。また、本発明によれば、上記の加飾シートのうちポリオレフィンを用いた加飾シートにおいて、成形時の変形が無いか又は低減された加飾シート提供できる。 According to the present invention, it is possible to provide a highly versatile decorative sheet (laminated body) welded to various molding resins. Further, according to the present invention, a decorative sheet using polyolefin among the above-described decorative sheets can be provided with no or reduced deformation at the time of molding.
本発明の一態様による積層体の概略断面図である。1 is a schematic cross-sectional view of a laminate according to one aspect of the present invention. 本発明の一態様による積層体の概略断面図である。1 is a schematic cross-sectional view of a laminate according to one aspect of the present invention. 実施例及び比較例で用いた装置の概略図である。It is the schematic of the apparatus used by the Example and the comparative example. 実施例及び比較例で用いた装置の概略図である。It is the schematic of the apparatus used by the Example and the comparative example.
[積層体]
 本発明の一態様における積層体は、熱可塑性樹脂層と、保護層とを含む。保護層は溶着層を含み、溶着層は熱可塑性エラストマーを含む。本発明の一態様における積層体は、成形体に装飾を施すための加飾シートとして用いることができる。
[Laminate]
The laminate in one aspect of the present invention includes a thermoplastic resin layer and a protective layer. The protective layer comprises a weld layer, which comprises a thermoplastic elastomer. The layered product in one mode of the present invention can be used as a decoration sheet for giving decoration to a forming object.
 保護層は、積層体を用いて射出成形(インモールド成形やインサート成形等)により成形体を製造する際に、射出された溶融樹脂(成形用樹脂)の熱によって熱可塑性樹脂層や印刷層が溶融することを防止する層である。 The protective layer is a thermoplastic resin layer or a printed layer formed by the heat of the molten resin (molding resin) injected when the molded body is manufactured by injection molding (in-mold molding, insert molding, etc.) using a laminate. It is a layer that prevents melting.
 保護層が熱可塑性エラストマーを含むことで、保護層と成形用樹脂とが容易に熱溶着するため、積層体と筐体との密着性が高い、耐久性に優れた成形体を得ることが可能となる。成形用樹脂は熱可塑性樹脂であれば限定されないが、例えば、ABS樹脂、ポリカーボネート、ポリスチレン、ポリエステル、ポリアミド、アクリロニトリル-スチレン共重合、アクリル樹脂、これらのうち2種以上を含むポリマーアロイ等であり、これらであっても容易に熱融着する。
 また、本発明の一態様において、熱可塑性樹脂層にポリオレフィンを用いた場合、保護層に含まれる溶着層が熱可塑性エラストマーを含むため、保護層とポリオレフィン樹脂層の収縮率を同程度とすることができる。これにより、成形時の反り歪み等の変形を最小限に留めることができ、積層体の加工性を向上できる。
When the protective layer contains a thermoplastic elastomer, the protective layer and the molding resin are easily heat-welded, so that it is possible to obtain a molded article with high adhesion between the laminate and the casing and excellent in durability. It becomes. The molding resin is not limited as long as it is a thermoplastic resin, and is, for example, ABS resin, polycarbonate, polystyrene, polyester, polyamide, acrylonitrile-styrene copolymer, acrylic resin, polymer alloy containing two or more of them, etc. Even if it is these, it heat-seals easily.
Further, in one aspect of the present invention, when a polyolefin is used for the thermoplastic resin layer, the shrinkage ratio of the protective layer and the polyolefin resin layer should be approximately the same because the welding layer contained in the protective layer contains a thermoplastic elastomer. Can. Thereby, deformation such as warpage distortion at the time of molding can be minimized, and the processability of the laminate can be improved.
 保護層は1層からなる単層構造であってもよいし、2以上の層からなる積層構造であってもよい。保護層が単層構造である場合、保護層が溶着層である。保護層が積層構造である場合、2以上の層の少なくとも1層が溶着層であり、好ましくは、積層構造の最外層(熱可塑性樹脂層と反対側の層)が溶着層である。また、本発明の一態様による積層体において、好ましくは、成形時に成形用樹脂と接触する層が溶着層である。 The protective layer may have a single-layer structure consisting of a single layer, or may have a laminated structure consisting of two or more layers. When the protective layer has a single-layer structure, the protective layer is a welding layer. When the protective layer has a laminated structure, at least one of the two or more layers is a welding layer, and preferably the outermost layer of the laminated structure (the layer opposite to the thermoplastic resin layer) is a welding layer. In the laminate according to one aspect of the present invention, preferably, the layer in contact with the molding resin during molding is a welding layer.
 本発明の一態様による積層体の概略断面図を図1に示す。
 図1において、積層体1は、熱可塑性樹脂層10と、保護層(溶着層)20とを含む。なお、図1は単に層構成を説明するためのものであり、縦横比や膜厚比は必ずしも正確ではない。
A schematic cross-sectional view of a laminate according to one aspect of the present invention is shown in FIG.
In FIG. 1, the laminate 1 includes a thermoplastic resin layer 10 and a protective layer (welding layer) 20. FIG. 1 is merely for explaining the layer structure, and the aspect ratio and the film thickness ratio are not necessarily accurate.
 以下、本発明の一態様による積層体を構成する各層について説明する。本明細書において「x~y」は「x以上、y以下」の数値範囲を表すものとする。 Hereinafter, each layer which comprises the laminated body by one aspect of this invention is demonstrated. In the present specification, “x to y” represents a numerical range of “x or more and y or less”.
(熱可塑性樹脂層)
 熱可塑性樹脂層は、熱可塑性樹脂を含む樹脂層である。
 熱可塑性樹脂としては、ポリオレフィン、ポリカーボネート、ポリアミド樹脂、ABS樹脂、アクリロニトリル-スチレン共重合体(以下、「AS樹脂」という場合がある。)、アクリル樹脂等を用いることができ、これらの2種以上からなるポリマーアロイ(例えば、ポリカーボネート-ABS樹脂アロイ、ポリアミド-ABS樹脂アロイ等)であってもよい。
(Thermoplastic resin layer)
The thermoplastic resin layer is a resin layer containing a thermoplastic resin.
As the thermoplastic resin, polyolefin, polycarbonate, polyamide resin, ABS resin, acrylonitrile-styrene copolymer (hereinafter sometimes referred to as "AS resin"), acrylic resin, etc. can be used, and two or more of these can be used. It may be a polymer alloy (eg, polycarbonate-ABS resin alloy, polyamide-ABS resin alloy, etc.).
 ポリオレフィンとしては、ポリエチレン、ポリプロピレン、環状ポリオレフィン等を用いることができる。この中でも、耐薬品性、耐久性及び成形性の観点からポリプロピレンが好ましい。
 ポリプロピレンは、少なくともプロピレンを含む重合体である。具体的には、ホモポリプロピレン、プロピレンとオレフィンとの共重合体等が挙げられる。耐熱性及び硬度の理由からホモポリプロピレンが好ましい。
As polyolefin, polyethylene, polypropylene, cyclic polyolefin etc. can be used. Among these, polypropylene is preferable from the viewpoint of chemical resistance, durability and moldability.
Polypropylene is a polymer containing at least propylene. Specifically, homopolypropylene, a copolymer of propylene and olefin, and the like can be mentioned. Homopolypropylene is preferred for reasons of heat resistance and hardness.
 プロピレンとオレフィンとの共重合体は、ブロック共重合体であってもランダム共重合体であってもよく、これらの混合物でもよい。
 オレフィンとしては、エチレン、ブチレン、シクロオレフィン等が挙げられる。
The copolymer of propylene and olefin may be a block copolymer or a random copolymer, or a mixture thereof.
Examples of the olefin include ethylene, butylene and cycloolefin.
 ポリプロピレンは、アイソタクチックペンタッド分率が80モル%以上98モル%以下であることが好ましい。より好ましくは86モル%以上98モル%以下、さらに好ましくは91モル%以上98モル%以下である。アイソタクチックペンタッド分率が80モル%未満の場合、成形シートの剛性が不足するおそれがある。一方、アイソタクチックペンタッド分率が98モル%を超える場合、シートの透明性が低下するおそれがある。上記範囲内であることで、高い透明性が得られ、良好に加飾しやすくなる。 The polypropylene preferably has an isotactic pentad fraction of 80% by mole or more and 98% by mole or less. More preferably, it is 86 mol% or more and 98 mol% or less, more preferably 91 mol% or more and 98 mol% or less. If the isotactic pentad fraction is less than 80 mol%, the rigidity of the molded sheet may be insufficient. On the other hand, when the isotactic pentad fraction exceeds 98 mol%, the transparency of the sheet may be reduced. By being in the said range, high transparency is obtained and it becomes easy to decorate favorably.
 アイソタクチックペンタッド分率とは、樹脂組成の分子鎖中のペンタッド単位(プロピレンモノマーが5個連続してアイソタクチック結合したもの)でのアイソタクチック分率である。この分率の測定法は、例えばマクロモレキュールズ(Macromolecules)第8巻(1975年)687頁に記載されており、13C-NMRにより測定できる。 The isotactic pentad fraction is an isotactic fraction at a pentad unit (one in which five propylene monomers are continuously isotactically bonded) in a molecular chain of a resin composition. The method of measuring this fraction is described, for example, in Macromolecules, Vol. 8 (1975) 687, and can be measured by 13 C-NMR.
 ポリプロピレンは、130℃での結晶化速度が2.5min-1以下であると、成形性の観点から好ましい。
 ポリプロピレンの結晶化速度は、2.5min-1以下が好ましく、2.0min-1以下がより好ましい。結晶化速度が2.5min-1以下であると、金型へ接触した部分が急速に硬化すること等を抑制でき、意匠性の低下を防止することができる。結晶化速度は実施例に記載の方法により測定する。
It is preferable from the viewpoint of formability that the crystallization rate at 130 ° C. is 2.5 min −1 or less.
Crystallization rate of the polypropylene is preferably 2.5 min -1 or less, 2.0Min -1 or less is more preferable. If the crystallization rate is 2.5 min −1 or less, rapid hardening of the portion in contact with the mold can be suppressed, and a decrease in design can be prevented. The crystallization rate is measured by the method described in the examples.
 ポリプロピレンは、結晶構造としてスメチカ晶を含むことが好ましい。スメチカ晶は準安定状態の中間相であり、1つ1つのドメインサイズが小さいことから透明性に優れるため好ましい。また、準安定状態であるため、結晶化が進んだα晶と比較して低い熱量でシートが軟化することから成形性に優れるため、好ましい。
 ポリプロピレンは、スメチカ晶の他に、β晶、γ晶、非晶部等他の結晶形を含んでもよい。例えば、ポリプロピレンの30質量%以上、50質量%以上、70質量%以上又は90質量%以上がスメチカ晶であってもよい。
The polypropylene preferably contains smetica crystals as a crystal structure. Smethica crystals are mesophases in a metastable state and are preferred because they are excellent in transparency because the size of each domain is small. Moreover, since it is in a metastable state and the sheet is softened with a low amount of heat as compared with the α crystal which has been crystallized, it is preferable because it is excellent in formability.
The polypropylene may contain other crystal forms such as β crystals, γ crystals, and amorphous parts in addition to smetica crystals. For example, 30% by mass, 50% by mass, 70% by mass or 90% by mass or more of polypropylene may be smetica crystals.
 ポリプロピレンは、好ましくは示差走査熱量測定曲線において最大吸熱ピークの低温側に1.0J/g以上(より好ましくは1.5J/g以上)の発熱ピークを有する。上限値は特に限定されないが、通常10J/g以下である。
 発熱ピークは、示差走査熱量測定器を用いて測定する。
Polypropylene preferably has an exothermic peak of 1.0 J / g or more (more preferably 1.5 J / g or more) on the low temperature side of the maximum endothermic peak in a differential scanning calorimetry curve. The upper limit is not particularly limited, but is usually 10 J / g or less.
The exothermic peak is measured using a differential scanning calorimeter.
 また、ポリオレフィン樹脂層は造核剤を含まないと好ましい。含む場合であっても、ポリオレフィン樹脂層中の造核剤の含有量は1.0質量%以下であり、好ましくは0.5質量%以下である。
 造核剤としては、例えば、ソルビトール系結晶核剤等が挙げられ、市販品としてはゲルオールMD(新日本理化学株式会社)やリケマスターFC-1(理研ビタミン株式会社)等が挙げられる。
Moreover, it is preferable that the polyolefin resin layer does not contain a nucleating agent. Even when it is contained, the content of the nucleating agent in the polyolefin resin layer is 1.0% by mass or less, preferably 0.5% by mass or less.
Examples of the nucleating agent include sorbitol-based crystal nucleating agents, and examples of commercially available products include Gelol MD (Shin Nippon Chemical Co., Ltd.) and Liquemaster FC-1 (Riken Vitamin Co., Ltd.).
 造核剤を添加しないでポリプロピレンの結晶化速度を2.5min-1以下とし、80℃/秒以上で冷却してスメチカ晶を形成することにより、意匠性に優れた積層体を得ることができる。また、後述する成形体の製造において加熱後、賦形すると、ポリオレフィン樹脂層がスメチカ晶由来の微細構造を維持したままα晶に転移する。この転移により、表面硬度や透明性をさらに向上できる。 By setting the crystallization rate of polypropylene to 2.5 min -1 or less without adding a nucleating agent, and cooling at 80 ° C./sec or more to form a smetica crystal, a laminate having excellent designability can be obtained. . In addition, after shaping and heating in the production of a molded product to be described later, the polyolefin resin layer is transformed to α crystals while maintaining the fine structure derived from smetica crystals. This transfer can further improve surface hardness and transparency.
 即ち、アイソタクチックペンタッド分率が80モル%以上98モル%以下かつポリプロピレンの結晶化速度を2.5min-1以下で、透明性や光沢に優れたポリプロピレンとするためには、通常、スメチカ晶を形成することが必要となる。後述する成形体の製造において、加熱後の賦形によってポリプロピレンがスメチカ晶由来の微細構造を維持したままα晶に転移するが、成形体中のポリプロピレンが、アイソタクチックペンタッド分率80モル%以上98モル%以下であり、かつ結晶化速度2.5min-1以下であれば、スメチカ晶由来といえる。 That is, in order to obtain a polypropylene excellent in transparency and gloss with an isotactic pentad fraction of 80 mol% or more and 98 mol% or less and a crystallization rate of polypropylene of 2.5 min −1 or less, a smectica is usually used. It is necessary to form crystals. In the production of a molded product to be described later, polypropylene is converted to α crystals while maintaining the fine structure derived from smetic crystals by shaping after heating, but the polypropylene in the molded product has an isotactic pentad fraction of 80% by mole If it is 98 mol% or less and the crystallization rate is 2.5 min −1 or less, it can be said that it is derived from smetica crystals.
 小角X線散乱解析法により散乱強度分布と長周期を算出することにより、ポリオレフィン樹脂層が80℃/秒以上で冷却して得られたものか、そうでないかを判断することができる。即ち、上記解析によりポリオレフィン樹脂層がスメチカ晶由来の微細構造を有しているか否かを判断することが可能である。測定は以下の条件で行う。
・X線発生装置はultraX 18HF(株式会社リガク製)を用い、散乱の検出にはイメージングプレートを使用する。
・光源波長:0.154nm
・電圧/電流:50kV/250mA
・照射時間:60分
・カメラ長:1.085m
・試料厚み:1.5~2.0mmになるようにシートを重ねる。製膜(MD)方向が揃うようにシートを重ねる。
 尚、測定時間を短縮するため、1.5~2.0mmになるようにシートを重ねているが、測定時間を長くすれば、シートを重ねずに1枚でも測定可能である。
By calculating the scattering intensity distribution and the long period by the small angle X-ray scattering analysis method, it can be judged whether the polyolefin resin layer is obtained by cooling at 80 ° C./sec or more or not. That is, it is possible to judge by the above analysis whether or not the polyolefin resin layer has a fine structure derived from smetica crystals. The measurement is performed under the following conditions.
-The X-ray generator uses ultraX 18HF (manufactured by Rigaku Corporation), and uses an imaging plate for detection of scattering.
· Light source wavelength: 0.154 nm
・ Voltage / current: 50kV / 250mA
-Irradiation time: 60 minutes-Camera length: 1.085 m
Sample thickness: Stack the sheets so as to be 1.5 to 2.0 mm. Sheets are stacked so that the film formation (MD) direction is aligned.
In order to shorten the measurement time, the sheets are stacked so as to be 1.5 to 2.0 mm. However, if the measurement time is extended, even one sheet can be measured without stacking the sheets.
 環状ポリオレフィンは、環状オレフィンに由来する構造単位を含む重合体であり、エチレンとの共重合体(環状ポリオレフィン共重合体)であってもよい。 The cyclic polyolefin is a polymer containing a structural unit derived from a cyclic olefin, and may be a copolymer with ethylene (cyclic polyolefin copolymer).
 ポリプロピレンのメルトフローレート(以下、「MFR」と言う場合がある。)は、0.5~10g/10分が好ましい。この範囲内であれば、フィルム形状又はシート形状への成形性に優れる。ポリプロピレンのMFRは、JIS-K7210に準拠して、測定温度230℃、荷重2.16kgで測定する。 The melt flow rate of polypropylene (hereinafter sometimes referred to as "MFR") is preferably 0.5 to 10 g / 10 min. Within this range, the formability to a film shape or a sheet shape is excellent. The MFR of polypropylene is measured at a measurement temperature of 230 ° C. and a load of 2.16 kg in accordance with JIS-K7210.
 ポリエチレンのMFRは、0.1~10g/10分とすることができる。この範囲内であれば、フィルム形状又はシート形状への成形性に優れる。ポリエチレンのMFRは、JIS-K7210に準拠して、190℃、荷重2.16kgで測定する。 The MFR of polyethylene can be 0.1 to 10 g / 10 min. Within this range, the formability to a film shape or a sheet shape is excellent. The MFR of polyethylene is measured at 190 ° C. and a load of 2.16 kg in accordance with JIS-K7210.
 環状ポリオレフィンのMFRは、0.5~15g/10分とすることができる。環状ポリオレフィンのMFRは、ISO1133規格に従って、230℃、荷重2.16kgで測定する。 The MFR of the cyclic polyolefin can be 0.5 to 15 g / 10 min. The MFR of cyclic polyolefins is measured at 230 ° C. and a load of 2.16 kg according to the ISO 1133 standard.
 ポリオレフィン樹脂層の形成方法としては、押出法等が挙げられる。
 冷却は、好ましくは80℃/秒以上で行い、ポリオレフィン樹脂層の内部温度が結晶化温度以下となるまで行う。これにより、ポリオレフィン樹脂層(特にポリプロピレン)の結晶構造を、上述のスメチカ晶とすることができる。冷却は、90℃/秒以上がより好ましく、150℃/秒以上がさらに好ましい。
An extrusion method etc. are mentioned as a formation method of a polyolefin resin layer.
The cooling is preferably performed at 80 ° C./sec or more until the internal temperature of the polyolefin resin layer becomes less than the crystallization temperature. Thereby, the crystal structure of a polyolefin resin layer (especially polypropylene) can be made into the above-mentioned Smethica crystal. The cooling is more preferably 90 ° C./second or more, and still more preferably 150 ° C./second or more.
 ポリオレフィンには、必要に応じて、顔料、酸化防止剤、安定剤、紫外線吸収剤等の添加剤を配合してもよい。
 また、ポリオレフィンを、例えば、無水マレイン酸、マレイン酸ジメチル、マレイン酸ジエチル、アクリル酸、メタクリル酸、テトラヒドロフタル酸、グリシジルメタクリレート、ヒドロキシエチルメタクリレート、メチルメタクリレート等の変性用化合物で変性して得られる変性ポリオレフィン樹脂を配合してもよい。
The polyolefin may be blended with additives such as a pigment, an antioxidant, a stabilizer, and an ultraviolet light absorber, as necessary.
Further, a modified product obtained by modifying a polyolefin with a modifying compound such as, for example, maleic anhydride, dimethyl maleate, diethyl maleate, acrylic acid, methacrylic acid, tetrahydrophthalic acid, glycidyl methacrylate, hydroxyethyl methacrylate, methyl methacrylate and the like You may mix | blend polyolefin resin.
 ポリカーボネートは、その製造方法に特に制限はなく、従来公知の各種方法により製造されたものを用いることができる。例えば、二価フェノールとカーボネート前駆体とを溶液法(界面重縮合法)又は溶融法(エステル交換法)により製造されたもの、即ち、末端停止剤の存在下に、二価フェノールとホスゲンを反応させる界面重縮合法、又は末端停止剤の存在下に、二価フェノールとジフェニルカーボネート等とのエステル交換法等により反応させて製造されたものを用いることができる。 The polycarbonate is not particularly limited in its production method, and those produced by various known methods can be used. For example, one prepared by solution method (interfacial polycondensation method) or melting method (ester exchange method) of dihydric phenol and carbonate precursor, ie, reaction of dihydric phenol with phosgene in the presence of a terminator. What is manufactured by making it react by the transesterification method of dihydric phenol, a diphenyl carbonate, etc. in presence of the interfacial polycondensation method to make or the end terminator, etc. can be used.
 二価フェノールとしては、例えば、2,2-ビス(4-ヒドロキシフェニル)プロパン[ビスフェノールA]、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、4,4’-ジヒドロキシジフェニル、ビス(4-ヒドロキシフェニル)シクロアルカン、ビス(4-ヒドロキシフェニル)オキシド、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)スルホキシド及びビス(4-ヒドロキシフェニル)ケトン等を挙げることができる。この他、ハイドロキノン、レゾルシン及びカテコール等を挙げることもできる。これらは、それぞれ単独で用いてもよいし、二種以上を組み合わせて用いてもよいが、これらの中で、ビス(ヒドロキシフェニル)アルカン系のものが好ましく、特にビスフェノールAが好適である。 Examples of dihydric phenols include 2,2-bis (4-hydroxyphenyl) propane [bisphenol A], bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2 -Bis (4-hydroxy-3,5-dimethylphenyl) propane, 4,4'-dihydroxydiphenyl, bis (4-hydroxyphenyl) cycloalkane, bis (4-hydroxyphenyl) oxide, bis (4-hydroxyphenyl) Sulfide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) sulfoxide, bis (4-hydroxyphenyl) ketone and the like can be mentioned. Besides this, hydroquinone, resorcin and catechol can also be mentioned. Each of these may be used alone or in combination of two or more. Among them, bis (hydroxyphenyl) alkanes are preferred, and bisphenol A is particularly preferred.
 カーボネート前駆体としては、カルボニルハライド、カルボニルエステル、又はハロホルメート等であり、具体的にはホスゲン、二価フェノールのジハロホーメート、ジフェニルカーボネート、ジメチルカーボネート及びジエチルカーボネート等である。なお、このポリカーボネートは、分岐構造を有していてもよく、分岐剤としては、1,1,1-トリス(4-ヒドロキシフェニル)エタン、α,α’,α’’-トリス(4-ヒドロキシフェニル)-1,3,5-トリイソプロピルベンゼン、フロログリシン、トリメリット酸及びイサチンビス(o-クレゾール)等がある。 The carbonate precursor is, for example, a carbonyl halide, a carbonyl ester, or a haloformate, and specifically, phosgene, a dihaloformate of dihydric phenol, diphenyl carbonate, dimethyl carbonate, diethyl carbonate or the like. The polycarbonate may have a branched structure, and as a branching agent, 1,1,1-tris (4-hydroxyphenyl) ethane, α, α ′, α ′ ′-tris (4-hydroxy) Phenyl) -1,3,5-triisopropylbenzene, fluoroglycine, trimellitic acid and isatin bis (o-cresol).
 ポリカーボネートの粘度平均分子量は(Mv)は、通常10,000~50,000、好ましくは13,000~35,000、さらに好ましくは15,000~20,000である。粘度平均分子量(Mv)は、ウベローデ型粘度計を用いて、20℃における塩化メチレン溶液の粘度を測定し、これより極限粘度[η]を求め、次式にて算出するものである。
 [η]=1.23×10-5Mv0.83  
The viscosity average molecular weight (Mv) of the polycarbonate is usually 10,000 to 50,000, preferably 13,000 to 35,000, and more preferably 15,000 to 20,000. The viscosity average molecular weight (Mv) is obtained by measuring the viscosity of a methylene chloride solution at 20 ° C. using an Ubbelohde viscometer, determining the intrinsic viscosity [η], and calculating the viscosity according to the following equation.
[Η] = 1.23 × 10 -5 Mv 0.83
 ポリカーボネートにおける分子末端基については特に制限はなく、従来公知の末端停止剤である一価のフェノール由来の基であってもよいが、炭素数が10~35のアルキル基を有する一価のフェノール由来の基であることが好ましい。分子末端が、炭素数10以上のアルキル基を有するフェノール由来の基であれば、得られるポリカーボネート組成物は良好な流動性を有し、また、炭素数35以下のアルキル基を有するフェノール由来の基であれば、得られるポリカーボネート組成物は耐熱性及び耐衝撃性が良好なものとなる。
 炭素数10~35のアルキル基を有する一価のフェノールとしては、例えばデシルフェノール、ウンデシルフェノール、ドデシルフェノール、トリデシルフェノール、テトラデシルフェノール、ペンタデシルフェノール、ヘキサデシルフェノール、ヘプタデシルフェノール、オクタデシルフェノール、ノナデシルフェノール、イコシルフェノール、ドコシルフェノール、テトラコシルフェノール、ヘキサコシルフェノール、オクタコシルフェノール、トリアコンチルフェノール、ドトリアコンチルフェノール及びペンタトリアコンチルフェノール等が挙げられる。
The molecular terminal group in polycarbonate is not particularly limited, and may be a group derived from a monovalent phenol which is a conventionally known terminator, but is derived from a monovalent phenol having an alkyl group having 10 to 35 carbon atoms. Is preferably a group of If the molecular terminal is a group derived from phenol having an alkyl group having 10 or more carbon atoms, the obtained polycarbonate composition has good fluidity, and a group derived from phenol having an alkyl group having 35 or less carbon atoms If so, the resulting polycarbonate composition has good heat resistance and impact resistance.
Examples of the monovalent phenol having an alkyl group having 10 to 35 carbon atoms include decylphenol, undecylphenol, dodecylphenol, tridecylphenol, tetradecylphenol, pentadecylphenol, hexadecylphenol, heptadecylphenol and octadecylphenol And nonadecylphenol, icosylphenol, docosylphenol, tetracosylphenol, hexacosylphenol, octacosylphenol, triacontylphenol, dotriacontylphenol, pentatriacontylphenol and the like.
 これらのアルキルフェノールのアルキル基は、水酸基に対して、o-、m-、p-のいずれの位置であってもよいが、p-の位置が好ましい。また、アルキル基は、直鎖状、分岐状又はこれらの混合物であってもよい。この置換基としては、少なくとも1個が前記の炭素数10~35のアルキル基であればよく、他の4個は特に制限はなく、炭素数1~9のアルキル基、炭素数6~20のアリール基、ハロゲン原子又は無置換であってもよい。
 炭素数が10~35のアルキル基を有する一価のフェノールによる末端封止は、片末端及び両末端のいずれでもよく、また、末端変性率は、得られるPC樹脂組成物の高流動化の観点から、全末端に対して20%以上であることが好ましく,50%以上であることがより好ましい。すなわち、他の末端は、水酸基末端、又は下記の他の末端停止剤を用いて封止された末端であってもよい。
The alkyl group of these alkylphenols may be any position of o-, m- and p- with respect to the hydroxyl group, but the position of p- is preferred. The alkyl group may be linear, branched or a mixture thereof. As this substituent, at least one of them may be an alkyl group having a carbon number of 10 to 35, and the other four are not particularly limited, and an alkyl group having a carbon number of 1 to 9 and a carbon number of 6 to 20 It may be an aryl group, a halogen atom or unsubstituted.
The end capping with a monovalent phenol having an alkyl group having a carbon number of 10 to 35 may be either one end or both ends, and the end modification ratio is an aspect of high fluidization of the obtained PC resin composition Therefore, the content is preferably 20% or more, more preferably 50% or more, with respect to all the ends. That is, the other end may be a hydroxyl end, or an end that is sealed using the following other end terminator.
 他の末端停止剤としては、ポリカーボネート樹脂の製造で常用されているフェノール、p-クレゾ-ル、p-tert-ブチルフェノール、p-tert-オクチルフェノール、p-クミルフェノール、p-ノニルフェノール、p-tert-アミルフェノール、ブロモフェノール及びトリブロモフェノール、ペンタブロモフェノール等を挙げることができる。中でも、環境問題からハロゲンを含まない化合物が好ましい。
 ポリカーボネートは、ポリカーボネート以外に、PC-POS共重合体やテレフタル酸等の2官能性カルボン酸、又はそのエステル形成誘導体等のエステル前駆体の存在下でポリカーボネートの重合を行うことによって得られるポリエステル-ポリカーボネート樹脂等の共重合体、あるいはその他のポリカーボネート樹脂を適宣含有してもよい。
Other terminal stoppers include phenol, p-cresol, p-tert-butylphenol, p-tert-octylphenol, p-cumylphenol, p-nonylphenol, p-tert commonly used in the production of polycarbonate resins. -Amylphenol, bromophenol and tribromophenol, pentabromophenol etc. may be mentioned. Among them, compounds which do not contain halogen are preferable in view of environmental problems.
Polycarbonate is a polyester-polycarbonate obtained by polymerizing polycarbonate in the presence of an ester precursor such as a PC-POS copolymer, a difunctional carboxylic acid such as terephthalic acid, or an ester-forming derivative thereof besides polycarbonate. Copolymers such as resins or other polycarbonate resins may be suitably contained.
 ポリカーボネートは、好ましくはJIS K7210により測定したメルトボリュームフローレイト(MVR)が1~50cm/10分である。 Polycarbonate is preferably melt volume flow rate (MVR) is 1 ~ 50cm 3/10 minutes as measured by JIS K7210.
 ポリアミド樹脂としては、ポリアミド66、ポリアミド6、ポリアミド1010、ポリアミド12、ポリアミド11等が挙げられる。
 ポリアミド樹脂は、好ましくはJIS K7210により測定したMFRが0.5~50g/10分である。
Examples of the polyamide resin include polyamide 66, polyamide 6, polyamide 1010, polyamide 12, polyamide 11 and the like.
The polyamide resin preferably has an MFR of 0.5 to 50 g / 10 min as measured according to JIS K7210.
 ABS樹脂は特に制限はないが、アクリロニトリル、ブタジエン及びスチレン以外のモノマーに由来する構造単位が含まれていてもよい。
 ABS樹脂は、好ましくはJIS K7210により測定したMFRが0.5~50g/10分である。
The ABS resin is not particularly limited, but may contain structural units derived from monomers other than acrylonitrile, butadiene and styrene.
The ABS resin preferably has a MFR of 0.5 to 50 g / 10 min as measured according to JIS K7210.
 AS樹脂は特に制限はないが、アクリロニトリル、スチレン以外のモノマーに由来する構造単位が含まれていてもよい。
 AS樹脂は、好ましくはJIS K7210により測定したMFRが0.5~50g/10分である。
The AS resin is not particularly limited, but may contain structural units derived from monomers other than acrylonitrile and styrene.
The AS resin preferably has a MFR of 0.5 to 50 g / 10 min as measured according to JIS K 7210.
 アクリル樹脂は、JIS K7210により測定したMFRが好ましくは1~50g/10分である。 The acrylic resin preferably has a MFR of 1 to 50 g / 10 min as measured according to JIS K7210.
 ポリカーボネート-ABS樹脂アロイは、前記ポリカーボネートとABS樹脂を溶融状態で混合した樹脂である。
 ポリカーボネート-ABS樹脂アロイ樹脂は、好ましくはJIS K7210により測定したMFRが1~50g/10分である。
The polycarbonate-ABS resin alloy is a resin obtained by mixing the polycarbonate and the ABS resin in a molten state.
The polycarbonate-ABS resin alloy resin preferably has an MFR of 1 to 50 g / 10 min as measured according to JIS K7210.
 ポリアミド-ABS樹脂アロイは、前記ポリカーボネートとポリアミドを溶融状態で混合した樹脂である。
 ポリアミド-ABS樹脂アロイ樹脂は、好ましくはJIS K7210により測定したMFRが1~50g/10分である。
The polyamide-ABS resin alloy is a resin in which the polycarbonate and the polyamide are mixed in a molten state.
The polyamide-ABS resin alloy resin preferably has an MFR of 1 to 50 g / 10 min as measured according to JIS K7210.
 熱可塑性樹脂層の厚さは、通常、10~1000μmであり、15~500μm、20~500μm又は30~300μmとしてもよい。
 熱可塑性樹脂層は、上述した材料を1種単独で又は2種以上を組み合わせて用いてもよい。また、上述した樹脂以外の樹脂を含んでもよい。
The thickness of the thermoplastic resin layer is usually 10 to 1000 μm, and may be 15 to 500 μm, 20 to 500 μm, or 30 to 300 μm.
The thermoplastic resin layer may use the above-described materials singly or in combination of two or more. Moreover, resin other than the resin mentioned above may be included.
(保護層)
 保護層は少なくとも溶着層を含み、基材層、アンカーコート層及び接合層等の他の層を含む積層構造であってもよい。積層構造の場合、好ましくは、積層構造の最外層、即ち、熱可塑性樹脂層と反対側の層が溶着層である。
(Protective layer)
The protective layer includes at least a welding layer, and may be a laminated structure including other layers such as a base layer, an anchor coat layer, and a bonding layer. In the case of the laminated structure, preferably, the outermost layer of the laminated structure, that is, the layer opposite to the thermoplastic resin layer is a welding layer.
 本発明の一態様における積層体の層構成の一例として、下記の構成を挙げることができる。
[熱可塑性樹脂層/溶着層]
[熱可塑性樹脂層/基材層/溶着層]
[熱可塑性樹脂層/基材層/接合層/溶着層]
[熱可塑性樹脂層/基材層/アンカーコート層/溶着層]
 「/」は積層していることを示す。
The following configurations can be given as an example of the layered configuration of the laminate in one embodiment of the present invention.
[Thermoplastic resin layer / welding layer]
[Thermoplastic resin layer / substrate layer / welding layer]
[Thermoplastic resin layer / substrate layer / bonding layer / welding layer]
[Thermoplastic resin layer / substrate layer / anchor coat layer / welding layer]
"/" Indicates that the layers are stacked.
 保護層を、基材層、接合層及び溶着層からなる積層構造とした場合の積層体の概略断面図を図2に示す。
 図2において、積層体2は、熱可塑性樹脂層10と、保護層20とを含み、保護層20は、熱可塑性樹脂層10側から順に基材層22、接合層24及び溶着層26を含む積層構造である。なお、図2は単に層構成を説明するためのものであり、縦横比や膜厚比は必ずしも正確ではない。
 以下、保護層を構成する各層について説明する。
A schematic cross-sectional view of a laminate in the case where the protective layer has a laminated structure including a base material layer, a bonding layer, and a welding layer is shown in FIG.
In FIG. 2, the laminate 2 includes the thermoplastic resin layer 10 and the protective layer 20, and the protective layer 20 includes the base layer 22, the bonding layer 24 and the welding layer 26 in order from the thermoplastic resin layer 10 side. It is a laminated structure. FIG. 2 is merely for explaining the layer structure, and the aspect ratio and the film thickness ratio are not necessarily accurate.
Hereinafter, each layer which comprises a protective layer is demonstrated.
(保護層の溶着層)
 溶着層は熱可塑性エラストマーを含む。
 熱可塑性エラストマーは、通常、ハードセグメントとソフトセグメントから構成される。熱可塑性エラストマーは、常温ではハードセグメントが分子鎖の流れを固定するためゴム弾性を示し、ハードセグメントが溶融する温度ではハードセグメントが可塑化して分子鎖の固定が解除されるため、熱可塑性を示す。
 ソフトセグメントの存在により、保護層の収縮率を熱可塑性樹脂層の収縮率と同程度とすることが可能となる。
(Welding layer of protective layer)
The welding layer comprises a thermoplastic elastomer.
Thermoplastic elastomers are usually composed of hard segments and soft segments. Thermoplastic elastomers exhibit thermoplasticity because the hard segment exhibits rubber elasticity because the hard segment fixes the flow of molecular chains at normal temperature, and the hard segment plasticizes at the temperature where the hard segment melts to release the molecular chain fixation. .
The presence of the soft segment makes it possible to make the shrinkage of the protective layer approximately the same as the shrinkage of the thermoplastic resin layer.
 熱可塑性エラストマーは、通常、ハードセグメントとソフトセグメントとが共重合によって接続された共重合タイプと、ハードセグメントがマトリックス、ソフトセグメントがドメインを構成する海島構造の分散タイプとがある。 Thermoplastic elastomers are generally of copolymerization type in which hard segments and soft segments are connected by copolymerization, and dispersion type of sea-island structure in which hard segments constitute matrix and soft segments constitute domains.
 本発明の一態様で用いる熱可塑性エラストマーとしては、ポリエステル系熱可塑性エラストマー及びアクリル系熱可塑性エラストマー等が挙げられ、ポリエステル系熱可塑性エラストマーが好ましい。 Examples of the thermoplastic elastomer used in one aspect of the present invention include polyester thermoplastic elastomers and acrylic thermoplastic elastomers, and polyester thermoplastic elastomers are preferable.
 ポリエステル系熱可塑性エラストマーは、ハードセグメントとしてポリエステル、ソフトセグメントとしてゴム成分が用いられたエラストマーである。
 ハードセグメントのポリエステルとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート等が挙げられ、ポリブチレンテレフタレートが好ましい。ソフトセグメントのゴム成分としては、ポリエーテル、ポリカーボネート等が挙げられ、ポリエーテルが好ましい。
The polyester-based thermoplastic elastomer is an elastomer in which polyester is used as a hard segment and a rubber component is used as a soft segment.
Examples of the hard segment polyester include polyethylene terephthalate and polybutylene terephthalate, and polybutylene terephthalate is preferable. Examples of the rubber component of the soft segment include polyether, polycarbonate and the like, and polyether is preferable.
 ポリエステル系熱可塑性エラストマーは、共重合タイプであってもよいし、分散タイプであってもよい。 The polyester-based thermoplastic elastomer may be of copolymerization type or of dispersion type.
 ポリエステル系熱可塑性エラストマーのMFRは、好ましくは1~100g/10分であり、より好ましくは1~50g/10分である。MFRは230℃、荷重21Nにて測定する。 The MFR of the polyester thermoplastic elastomer is preferably 1 to 100 g / 10 minutes, more preferably 1 to 50 g / 10 minutes. MFR is measured at 230 ° C. under a load of 21N.
 アクリル系熱可塑性エラストマーは、ハードセグメントとしてアクリル樹脂、ソフトセグメントとしてゴム成分が用いられたエラストマーである。
 ハードセグメントのアクリル樹脂としては、メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、イソブチルメタクリレート、ペンチルメタクリレート、ヘキシルメタクリレート、オクチルメタクリレート、2-エチルヘキシルメタクリレート、シクロヘキシルメタクリレート、ドデシルメタクリレート、ミリスチルメタクリレート、パルミチルメタクリレート、ステアリルメタクリレート、ベヘニルメタクリレート、オクタデシルメタクリレート、フェニルメタクリレート、ベンジルメタクリレート等が挙げられ、メチルメタクリレートが好ましい。ソフトセグメントのゴム成分としては、ポリアクリル酸n-ブチル、ポリブタジエン、ポリイソプレン等が挙げられ、ポリアクリル酸n-ブチルが好ましい。
 アクリル系熱可塑性エラストマーは、共重合タイプであってもよいし、分散タイプであってもよい。
The acrylic thermoplastic elastomer is an elastomer in which an acrylic resin is used as a hard segment and a rubber component is used as a soft segment.
As a hard segment acrylic resin, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, pentyl methacrylate, hexyl methacrylate, octyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate, dodecyl methacrylate, Myristyl methacrylate, palmityl methacrylate, stearyl methacrylate, behenyl methacrylate, octadecyl methacrylate, phenyl methacrylate, benzyl methacrylate and the like can be mentioned, with preference given to methyl methacrylate. Examples of the rubber component of the soft segment include n-butyl polyacrylate, polybutadiene, polyisoprene and the like, and n-butyl polyacrylate is preferable.
The acrylic thermoplastic elastomer may be of copolymerization type or of dispersion type.
 アクリル系熱可塑性エラストマーのMFRは、好ましくは2~100g/10分である。MFRはISO1133に準拠して、230℃、荷重2.16kgで測定する。 The MFR of the acrylic thermoplastic elastomer is preferably 2 to 100 g / 10 min. MFR is measured at 230 ° C. and a load of 2.16 kg in accordance with ISO 1133.
 溶着層は、熱可塑性エラストマーに加えてABS樹脂を含んでもよい。ABS樹脂を含むことで溶着層の剛性を向上することができる。ABS樹脂の含有量は、好ましくは30質量%以下であり、より好ましくは5~30質量%である。この範囲であれば、保護層の収縮率を良好に保つことができ、かつ剛性を高めることができる。 The welding layer may contain an ABS resin in addition to the thermoplastic elastomer. By containing the ABS resin, the rigidity of the welding layer can be improved. The content of the ABS resin is preferably 30% by mass or less, more preferably 5 to 30% by mass. Within this range, the shrinkage rate of the protective layer can be kept good, and the rigidity can be enhanced.
 ABS樹脂は熱可塑性樹脂層で説明した通りである。また、ABS樹脂の代わりに、ブタジエンに由来する構造単位を含まないアクリロニトリル-スチレン共重合体(AS樹脂)を用いてもよい。 The ABS resin is as described for the thermoplastic resin layer. Also, instead of the ABS resin, an acrylonitrile-styrene copolymer (AS resin) not containing a structural unit derived from butadiene may be used.
 溶着層の、例えば、30質量%以上、50質量%以上、70質量%以上、80質量%以上、90質量%以上、98質量%以上、99質量%以上、99.9質量%以上又は100質量%が、熱可塑性エラストマー、又は熱可塑性エラストマー及びABS樹脂であってもよい。溶着層は、本質的に熱可塑性エラストマー、又は熱可塑性エラストマー及びABS樹脂からなってもよい。 For example, 30 mass% or more, 50 mass% or more, 70 mass% or more, 80 mass% or more, 90 mass% or more, 98 mass% or more, 99 mass% or more, 99.9 mass% or more, or 100 mass% of the welding layer % May be a thermoplastic elastomer, or a thermoplastic elastomer and an ABS resin. The welding layer may consist essentially of a thermoplastic elastomer, or a thermoplastic elastomer and an ABS resin.
 溶着層の厚さは、好ましくは5~300μmであり、より好ましくは10~250μmであり、10~200μm、10~150μm又は50~150μmとしてもよい。 The thickness of the welding layer is preferably 5 to 300 μm, more preferably 10 to 250 μm, and may be 10 to 200 μm, 10 to 150 μm, or 50 to 150 μm.
(保護層の基材層)
 基材層は、好ましくは、ポリオレフィン、ポリカーボネート、アクリル樹脂、ABS樹脂、AS樹脂、ポリスチレン、ポリエステル、及びポリアミドからなる群から選択される1以上の樹脂を含む層である。基材層は、好ましくは、ポリオレフィン、ポリカーボネート、ABS樹脂、AS樹脂及びポリアミドからなる群から選択される1以上の樹脂を含む。
(Base layer of protective layer)
The substrate layer is preferably a layer containing one or more resins selected from the group consisting of polyolefins, polycarbonates, acrylic resins, ABS resins, AS resins, polystyrenes, polyesters, and polyamides. The substrate layer preferably comprises one or more resins selected from the group consisting of polyolefins, polycarbonates, ABS resins, AS resins and polyamides.
 基材層を設けることにより、溶着層のみの場合と比較して保護層全体の剛性を向上できるため、積層体にコシが生まれ、加工時の取り扱いが容易になる。 By providing the base material layer, the rigidity of the entire protective layer can be improved as compared with the case of only the welding layer, so that the laminated body has stiffness and handling at the time of processing becomes easy.
 ポリオレフィン、ポリカーボネート、アクリル樹脂、ABS樹脂、AS樹脂及びポリアミドは熱可塑性樹脂層で説明した通りである。 The polyolefin, polycarbonate, acrylic resin, ABS resin, AS resin and polyamide are as described for the thermoplastic resin layer.
 ポリスチレンとしては、ポリスチレン単体もしくはポリスチレンにゴム成分を含んでもよい。ポリスチレンは、JIS K7210により測定したMFRが好ましく1~50g/10分である。 As polystyrene, polystyrene alone or polystyrene may contain a rubber component. The polystyrene preferably has an MFR measured according to JIS K 7210, and is 1 to 50 g / 10 min.
 ポリエステル樹脂は、JIS K7210により測定したMFRが好ましくは1~50g/10分である。 The polyester resin preferably has a MFR of 1 to 50 g / 10 min as measured according to JIS K7210.
 基材層の厚さは、好ましくは20~500μmであり、より好ましくは20~300μmである。 The thickness of the substrate layer is preferably 20 to 500 μm, more preferably 20 to 300 μm.
 基材層の、例えば、30質量%以上、50質量%以上、70質量%以上、80質量%以上、90質量%以上、98質量%以上、99質量%以上、99.9質量%以上又は100質量%が、上述した樹脂であってもよい。 For example, 30 mass% or more, 50 mass% or more, 70 mass% or more, 80 mass% or more, 90 mass% or more, 98 mass% or more, 99 mass% or more, 99.9 mass% or more of the base material layer The mass% may be the above-described resin.
(保護層の接合層)
 接合層は、好ましくは、変性ポリオレフィン、スチレン系熱可塑性エラストマー、及びポリオレフィンからなる群から選択される1以上の樹脂を含む層である。
(Bonding layer of protective layer)
The bonding layer is preferably a layer containing one or more resins selected from the group consisting of modified polyolefins, styrenic thermoplastic elastomers, and polyolefins.
 上記のポリオレフィン、及び変性ポリオレフィンの原料ポリオレフィンは熱可塑性樹脂層で説明した通りであり、ポリプロピレンが好ましい。 The raw material polyolefin of said polyolefin and modified polyolefin is as having demonstrated by the thermoplastic resin layer, and a polypropylene is preferable.
 ポリオレフィンの変性用化合物としては、無水マレイン酸、マレイン酸ジメチル、マレイン酸ジエチル、アクリル酸、メタクリル酸、テトラヒドロフタル酸、グリシジルメタクリレート、ヒドロキシエチルメタクリレート及びメチルメタクリレート等が挙げられる。 Examples of the modifying compound for polyolefin include maleic anhydride, dimethyl maleate, diethyl maleate, acrylic acid, methacrylic acid, tetrahydrophthalic acid, glycidyl methacrylate, hydroxyethyl methacrylate and methyl methacrylate.
 スチレン系熱可塑性エラストマーとしては、スチレン-ブタジエンブロック共重合体(SB)、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-イソプレン-スチレンブロック共重合体(SIS)、スチレン-イソプレン-ブタジエンブロック共重合体(SIB)、スチレン-イソプレンブロック共重合体(SI)、スチレン-エチレン-プロピレンブロック共重合体(SEP)等のスチレンブロックを含有するゴム質ブロック共重合体とその水素添加物等が挙げられる。 Styrene-based thermoplastic elastomers include styrene-butadiene block copolymer (SB), styrene-butadiene-styrene block copolymer (SBS), styrene-isoprene-styrene block copolymer (SIS), styrene-isoprene-butadiene Rubber block copolymers containing styrene block such as block copolymer (SIB), styrene-isoprene block copolymer (SI), styrene-ethylene-propylene block copolymer (SEP) and their hydrogenated products Can be mentioned.
 スチレン系熱可塑性エラストマーのMFRは、好ましくは1~20g/10分である。MFRはISO1133に準拠して、230℃、荷重2.16kgで測定する。 The MFR of the styrene-based thermoplastic elastomer is preferably 1 to 20 g / 10 min. MFR is measured at 230 ° C. and a load of 2.16 kg in accordance with ISO 1133.
 接合層は、上述した成分のうち2以上を含んでもよく、例えば、スチレン系熱可塑性エラストマー(例えば30~90質量%)とポリオレフィンの混合層としてもよい(例えば10~70質量%)。 The bonding layer may contain two or more of the components described above, and may be, for example, a mixed layer of a styrene-based thermoplastic elastomer (eg, 30 to 90% by mass) and a polyolefin (eg, 10 to 70% by mass).
 接合層の、例えば、30質量%以上、50質量%以上、70質量%以上、80質量%以上、90質量%以上、98質量%以上、99質量%以上、99.9質量%以上又は100質量%が、上述した樹脂であってもよい。 For example, 30 mass% or more, 50 mass% or more, 70 mass% or more, 80 mass% or more, 90 mass% or more, 98 mass% or more, 99 mass% or more, 99.9 mass% or more, or 100 mass% of the bonding layer % May be the above-mentioned resin.
 接合層の厚さは、好ましくは1~50μmである。 The thickness of the bonding layer is preferably 1 to 50 μm.
(保護層のアンカーコート層)
 アンカーコート層は、好ましくは、ウレタン樹脂、アクリル樹脂、ポリオレフィン及びポリエステルからなる群から選択される1以上の樹脂を含む層である。基材層や溶着層との密着性を考慮すると、ウレタン樹脂とポリオレフィンが好ましい。
(Anchor coat layer of protective layer)
The anchor coat layer is preferably a layer containing one or more resins selected from the group consisting of urethane resins, acrylic resins, polyolefins and polyesters. In consideration of the adhesion to the base material layer and the welding layer, urethane resins and polyolefins are preferred.
 ウレタン系樹脂は、通常、少なくともジイソシアネート、高分子量ポリオール及び鎖延長剤を反応させて得られる。高分子量ポリオールは、ポリエーテルポリオール、ポリカーボネートポリオール又はポリエステルポリオールとしてもよい。
 アンカーコート層は、上述した材料を1種単独で又は2種以上を組み合わせて用いてもよい。
The urethane resin is usually obtained by reacting at least a diisocyanate, a high molecular weight polyol and a chain extender. The high molecular weight polyol may be a polyether polyol, a polycarbonate polyol or a polyester polyol.
The anchor coat layer may be used singly or in combination of two or more of the materials described above.
 アンカーコート層の、例えば、30質量%以上、50質量%以上、70質量%以上、80質量%以上、90質量%以上、98質量%以上、99質量%以上、99.9質量%以上又は100質量%が、上述した樹脂であってもよい。 For example, 30 mass% or more, 50 mass% or more, 70 mass% or more, 80 mass% or more, 90 mass% or more, 98 mass% or more, 99 mass% or more, 99.9 mass% or more of the anchor coat layer The mass% may be the above-described resin.
 アンカーコート層は、例えば、上述した樹脂をグラビアコーター、キスコーター又はバーコーター等で塗布し、40~100℃にて10秒~10分間乾燥することで形成することができる。 The anchor coat layer can be formed, for example, by applying the above-mentioned resin with a gravure coater, a kiss coater, a bar coater or the like and drying at 40 to 100 ° C. for 10 seconds to 10 minutes.
 アンカーコート層の厚さは、35nm以上3000nm以下としてもよく、50nm以上2000nm以下としてもよく、50nm以上1000nm以下としてもよい。アンカーコート層の厚さが35nm以上であると、他の層との密着性が十分高い。アンカーコート層の厚さが3000nm以下であると、べた付きによるブロッキングの発生を抑制することができる。 The thickness of the anchor coat layer may be 35 nm or more and 3000 nm or less, may be 50 nm or more and 2000 nm or less, and may be 50 nm or more and 1000 nm or less. If the thickness of the anchor coat layer is 35 nm or more, adhesion to other layers is sufficiently high. When the thickness of the anchor coat layer is 3000 nm or less, the occurrence of blocking due to stickiness can be suppressed.
 例えば、基材層の片面にアンカーコート層を付与すると、押出ラミネート時に溶着層との密着性を向上できる。 For example, when the anchor coat layer is provided on one side of the base material layer, the adhesion to the welding layer can be improved at the time of extrusion lamination.
 保護層は、上記層の他に、例えば着色層や離型層等を含んでもよい。 The protective layer may include, for example, a colored layer, a release layer, and the like in addition to the above layers.
 保護層全体の厚さは、通常、10~1000μmであり、50~500μmが好ましく、100~400μmがより好ましい。保護層の厚さが10μm以上であれば、表面層を射出樹脂の熱から問題なく保護でき、意匠損傷や密着不良を抑制できる。保護層の厚さが1000μm以下であれば、積層体の成形性に優れる。 The total thickness of the protective layer is usually 10 to 1000 μm, preferably 50 to 500 μm, and more preferably 100 to 400 μm. If the thickness of the protective layer is 10 μm or more, the surface layer can be protected from the heat of the injection resin without any problem, and design damage and adhesion failure can be suppressed. If the thickness of the protective layer is 1000 μm or less, the moldability of the laminate is excellent.
(積層体の製造方法)
 本発明の一態様に係る積層体の製造方法は特に制限されないが、例えば、熱可塑性樹脂層と保護層とを、ドライラミネート、押出ラミネート、熱ラミネート等の方法によって積層することにより製造できる。ラミネート時に熱可塑性樹脂層にかかる熱量が少ないことからドライラミネートが好ましい。
(Method of manufacturing laminate)
Although the manufacturing method in particular of the layered product concerning one mode of the present invention is not restrict | limited, For example, it can manufacture by laminating | stacking a thermoplastic resin layer and a protective layer by methods, such as dry lamination, extrusion lamination, thermal lamination. Dry lamination is preferred because the amount of heat applied to the thermoplastic resin layer during lamination is small.
(印刷層)
 本発明の一態様による積層体は、熱可塑性樹脂層の保護層側の面に印刷層を含んでもよい。印刷層は熱可塑性樹脂層の保護層側の面のうち一部に設けてもよいし全部に設けてもよい。
 印刷層の形状としては、特に制限されないが、例えばベタ状、カーボン調、木目調等の様々な形状が挙げられる。
 印刷の方法としては、スクリーン印刷法、オフセット印刷法、グラビア印刷法、ロールコート法、スプレーコート法等の一般的な印刷方法が利用できる。特に、スクリーン印刷法はインキの膜厚が厚くできるため、複雑な形状に成形した際にインキ割れが発生しにくい。
 例えば、スクリーン印刷の場合、成形時の伸びに優れたインキが好ましく、十条ケミカル株式会社製の「FM3107高濃度白」や「SIM3207高濃度白」等が例示できるが、この限りではない。
(Printed layer)
The laminate according to one aspect of the present invention may include a print layer on the surface on the protective layer side of the thermoplastic resin layer. The print layer may be provided on part or all of the surface on the protective layer side of the thermoplastic resin layer.
Although it does not restrict | limit especially as a shape of a printing layer, For example, various shapes, such as a solid form, carbon tone, and a woodgrain, are mentioned.
As a printing method, a general printing method such as a screen printing method, an offset printing method, a gravure printing method, a roll coating method, a spray coating method can be used. In particular, since the film thickness of the ink can be thickened by the screen printing method, ink breakage is less likely to occur when it is formed into a complicated shape.
For example, in the case of screen printing, an ink excellent in elongation at the time of molding is preferable, and “FM3107 high concentration white” or “SIM3207 high concentration white” manufactured by Tojo Chemical Co., Ltd. can be exemplified, but not limited thereto.
(易接合層)
 本発明の一態様による積層体は、熱可塑性樹脂層の保護層側の面の一部又は全面に易接合層を設けてもよい。易接合層は、熱可塑性樹脂層と保護層又は後述するアンダーコート層との密着性を高めることができる層である。
(Easy bonding layer)
The laminate according to one aspect of the present invention may be provided with an easy bonding layer on part or the whole of the surface on the protective layer side of the thermoplastic resin layer. The easy bonding layer is a layer capable of enhancing the adhesion between the thermoplastic resin layer and the protective layer or an undercoat layer described later.
 易接合層を形成する材料としては、ウレタン系樹脂、アクリル系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂等が挙げられる。他の層への密着性や成形性を考慮すると、ウレタン系樹脂が好ましい。
 ウレタン系樹脂は、通常、少なくともジイソシアネート、高分子量ポリオール及び鎖延長剤を反応させて得られる。高分子量ポリオールは、ポリエーテルポリオール又はポリカーボネートポリオールとしてもよい。
 易接合層は、上述した材料を1種単独で又は2種以上を組み合わせて用いてもよい。
As a material which forms an easily bonding layer, urethane resin, acrylic resin, polyolefin resin, polyester resin etc. are mentioned. In view of adhesion to other layers and moldability, urethane resins are preferred.
The urethane resin is usually obtained by reacting at least a diisocyanate, a high molecular weight polyol and a chain extender. The high molecular weight polyol may be a polyether polyol or a polycarbonate polyol.
The easy bonding layer may use the above-described materials singly or in combination of two or more.
 易接合層を設けることで、積層体が複雑な非平面状に成形された場合であっても、易接合層が熱可塑性樹脂層に追従して良好に層構成を形成できる。 By providing the easily bonding layer, even when the laminate is formed into a complicated nonplanar shape, the easily bonding layer can form a layer configuration favorably following the thermoplastic resin layer.
 易接合層は、例えば、上述した樹脂をグラビアコーター、キスコーター又はバーコーター等で塗布し、40~100℃にて10秒~10分間乾燥することで形成することができる。 The easy bonding layer can be formed, for example, by applying the above-described resin with a gravure coater, a kiss coater, a bar coater or the like and drying it at 40 to 100 ° C. for 10 seconds to 10 minutes.
 易接合層の厚さは、35nm以上3000nm以下としてもよく、50nm以上2000nm以下としてもよく、50nm以上1000nm以下としてもよい。易接合層の厚さが35nm以上であると、他の層との密着性が十分高い。易接合層の厚さが3000nm以下であると、べた付きによるブロッキングの発生を抑制することができる。 The thickness of the easy bonding layer may be 35 nm or more and 3000 nm or less, may be 50 nm or more and 2000 nm or less, and may be 50 nm or more and 1000 nm or less. If the thickness of the easy bonding layer is 35 nm or more, the adhesion to other layers is sufficiently high. When the thickness of the easy bonding layer is 3000 nm or less, the occurrence of blocking due to stickiness can be suppressed.
 易接合層の上(熱可塑性樹脂層と反対側)には、インキやハードコート、反射防止コート、遮熱コート等の各種コーティングを積層できる。 On the easily bonding layer (opposite to the thermoplastic resin layer), various coatings such as an ink, a hard coat, an antireflective coat, and a thermal barrier coat can be laminated.
 また、熱可塑性樹脂層の、上記の易接合層(第1の易接合層)と反対側の面に易接合層をもう1層設けてもよい(第2の易接合層)。このようにすることで、熱可塑性樹脂層に表面処理やハードコーティング等の機能性を付与することができる。 Further, another easy bonding layer may be provided on the surface of the thermoplastic resin layer opposite to the above-mentioned easy bonding layer (first easy bonding layer) (second easy bonding layer). By doing this, the thermoplastic resin layer can be provided with functionality such as surface treatment and hard coating.
(アンダーコート層)
 本発明の一態様による積層体はアンダーコート層を設けてもよい。
 アンダーコート層は、易接合層と後述する金属層とを密着させることができる層である。
 アンダーコート層を形成する材料としては、ウレタン樹脂、アクリル樹脂、ポリオレフィン、ポリエステル等が挙げられる。
 成形時の耐白化性(白化現象の起こりにくさ)や金属層との密着性の観点から、アクリル樹脂が好ましく、例えば荒川化学工業株式会社製「DA-105」を用いることができる。
 上記材料は1種単独で又は2種以上を組み合わせて用いてもよい。
(Undercoat layer)
The laminate according to one aspect of the present invention may be provided with an undercoat layer.
The undercoat layer is a layer capable of bringing the easily bonding layer into close contact with the metal layer described later.
As a material which forms an undercoat layer, a urethane resin, an acrylic resin, polyolefin, polyester etc. are mentioned.
An acrylic resin is preferable from the viewpoint of the whitening resistance (the difficulty in causing the whitening phenomenon) during molding and the adhesion to the metal layer. For example, “DA-105” manufactured by Arakawa Chemical Industries, Ltd. can be used.
The above materials may be used alone or in combination of two or more.
 アンダーコート層の形成方法としては、例えば、上述した材料をグラビアコーター、キスコーター又はバーコーター等で塗布し、50~100℃にて10秒~10分間乾燥し、40~100℃にて10~200時間エージングすることで形成することができる。
 アンダーコート層の厚さは、0.05μm~50μmとしてもよく、0.1μm~10μmとしてもよく、0.5μm~5μmとしてもよい。
As a method of forming the undercoat layer, for example, the above-described material is applied by a gravure coater, a kiss coater, a bar coater or the like, dried at 50 to 100 ° C. for 10 seconds to 10 minutes, and at 40 to 100 ° C. It can be formed by time aging.
The thickness of the undercoat layer may be 0.05 μm to 50 μm, 0.1 μm to 10 μm, or 0.5 μm to 5 μm.
(金属層)
 本発明の一態様による積層体は金属層を設けてもよい。金属層は、金属又は金属酸化物を含む層である。
 金属層を形成する金属としては、積層体に金属調の意匠を付与できる金属であれば特に限定されないが、例えば、スズ、インジウム、クロム、アルミニウム、ニッケル、銅、銀、金、白金及び亜鉛が挙げられ、これらのうち少なくとも1種を含む合金を用いてもよい。
(Metal layer)
The laminate according to one aspect of the present invention may be provided with a metal layer. The metal layer is a layer containing metal or metal oxide.
The metal for forming the metal layer is not particularly limited as long as it is a metal capable of giving a metallic design to the laminate, and examples thereof include tin, indium, chromium, aluminum, nickel, copper, silver, gold, platinum and zinc. It is possible to use an alloy that includes at least one of these.
 上記のうち、インジウムとアルミニウム及びクロムは伸展性と色調に特に優れるため好ましい。金属層が伸展性に優れると、積層体を三次元成形した際にひび割れが発生しにくい。 Among the above, indium and aluminum and chromium are preferable because they are particularly excellent in extensibility and color tone. When the metal layer is excellent in extensibility, cracking is unlikely to occur when the laminate is three-dimensionally formed.
 金属層の形成方法は特に制限されないが、質感が高く高級感のある金属調の意匠を積層体に付与する観点から、例えば、上記の金属を用いた、真空蒸着法、スパッタリング法、イオンプレーティング法等の蒸着法等を用いることができる。特に、真空蒸着法は低コストであり、かつ、被蒸着体へのダメージを少なくすることができる。真空蒸着法の条件は、用いる金属の溶融温度又は蒸発温度に応じて適宜設定すればよい。
 上記方法の他、上記の金属又は金属酸化物を含むペーストを塗工する方法、上記の金属を用いためっき法等を用いることもできる。
The method for forming the metal layer is not particularly limited, but from the viewpoint of imparting to the laminate a metallic texture having high texture and high quality, for example, vacuum evaporation, sputtering, ion plating using the above-mentioned metals A vapor deposition method such as a method can be used. In particular, the vacuum deposition method is low in cost and can reduce damage to the deposition target. The conditions of the vacuum deposition method may be appropriately set according to the melting temperature or evaporation temperature of the metal to be used.
Other than the above method, a method of applying a paste containing the above metal or metal oxide, a plating method using the above metal, or the like can also be used.
 金属層の厚さは、5nm以上80nm以下としてもよい。5nm以上であると所望の金属光沢が問題なく得られ、80nm以下であるとひび割れが発生しにくい。 The thickness of the metal layer may be 5 nm or more and 80 nm or less. If it is 5 nm or more, the desired metallic gloss can be obtained without any problem, and if it is 80 nm or less, cracking hardly occurs.
[成形体]
 上述した積層体を用いて成形体を製造することができる。
[Molded body]
A molded object can be manufactured using the laminated body mentioned above.
 本発明の成形体において、熱可塑性樹脂層がポリプロピレンを含む場合、ポリプロピレンのアイソタクチックペンダット分率が80モル%以上98モル%以下であると好ましい。
 また、当該ポリプロピレンの130℃での結晶化速度が2.5min-1以下であると好ましく、2.0min-1以下がより好ましい。
 成形体とした後でも位相顕微鏡等を用いることで、積層体の熱可塑性樹脂層に対応する部分を特定することが可能である。アイソタクチックペンダット分率及び結晶化速度の測定方法は上述した通りである。
In the molded article of the present invention, when the thermoplastic resin layer contains polypropylene, the isotactic pendat fraction of polypropylene is preferably 80 mol% or more and 98 mol% or less.
Further, the crystallization rate at 130 ° C. of the polypropylene preferable to be 2.5 min -1 or less, 2.0Min -1 or less is more preferable.
Even after forming into a molded body, it is possible to specify a portion corresponding to the thermoplastic resin layer of the laminate by using a phase microscope or the like. The method of measuring the isotactic pendart fraction and the crystallization rate is as described above.
[成形体の製造方法]
 本発明の一態様による成形体の製造方法としては、インモールド成形、インサート成形、被覆成形等が挙げられる。
[Method for producing molded body]
Examples of the method for producing a molded article according to one aspect of the present invention include in-mold molding, insert molding, coating molding and the like.
 インモールド成形は、金型内に積層体を設置して、金型内に供給される成形用樹脂の圧力で所望の形状に成形して成形体を得る方法である。
 インモールド成形として、積層体を金型に装着し、成形用樹脂を供給して一体化して行うことが好ましい。
In-mold molding is a method in which a laminate is placed in a mold and molded into a desired shape by the pressure of a molding resin supplied into the mold to obtain a molded body.
As in-mold molding, it is preferable to mount the laminate on a mold and supply molding resin for integration.
 インサート成形では、金型内に設置する賦形体を予備賦形しておき、その形状に成形用樹脂を充填することで、成形体を得る方法である。より複雑な形状を形成することができる。
 インサート成形として、積層体を金型に合致するよう賦形し、賦形した積層体を金型に装着し、成形用樹脂を供給して一体化して行うことができる。
 金型に合致するように行う賦形(予備賦形)は、真空成形、圧空成形、真空圧空成形、プレス成形、プラグアシスト成形等で行うことができる。
In insert molding, a shaped body to be placed in a mold is pre-shaped, and a molding resin is filled in the shape to obtain a molded body. More complex shapes can be formed.
As the insert molding, the laminate may be shaped so as to conform to the mold, and the shaped laminate may be mounted on the mold, and a molding resin may be supplied and integrated.
The shaping (preliminary shaping) performed to conform to the mold can be performed by vacuum forming, pressure forming, vacuum pressure forming, press forming, plug assist forming, or the like.
 成形用樹脂としては、成形可能な熱可塑性樹脂を用いることができる。具体的には、ポリプロピレン、ポリエチレン、ポリカーボネート、ABS樹脂、アクリル重合体、ポリスチレン、ポリエステル、ポリアミド等が例示でき、いずれであっても上述した積層体(加飾シート)と容易に溶着する。成形用樹脂は上述したものに限られない。 As the molding resin, a moldable thermoplastic resin can be used. Specifically, polypropylene, polyethylene, polycarbonate, ABS resin, acrylic polymer, polystyrene, polyester, polyamide and the like can be exemplified, and any of them can be easily welded to the above-mentioned laminate (decorative sheet). The molding resin is not limited to the one described above.
 成形用樹脂は、成形温度、成形品の外観、寸法安定性、成形品のヒケの発生しにくさの観点から、ポリカーボネート、ABS樹脂、アクリル重合体が好ましく、ポリカーボネート及びABS樹脂がより好ましい。ABS樹脂は、上述した溶着層で用いるものと同じである。上記の樹脂のうち2種以上の混合体であってもよい。また、成形用樹脂にファイバーやタルク等の無機フィラーを添加してもよい。 The molding resin is preferably polycarbonate, an ABS resin, or an acrylic polymer, and more preferably polycarbonate and an ABS resin, from the viewpoint of molding temperature, appearance of the molded product, dimensional stability, and difficulty in generating sink marks in the molded product. The ABS resin is the same as that used in the welding layer described above. It may be a mixture of two or more of the above resins. Moreover, you may add inorganic fillers, such as a fiber and a talc, to resin for shaping | molding.
 成形用樹脂の供給は、射出で行うことが好ましく、圧力5MPa以上300MPa以下が好ましい。金型温度は20℃以上90℃以下であることが好ましい。 The supply of the molding resin is preferably performed by injection, and the pressure is preferably 5 MPa or more and 300 MPa or less. The mold temperature is preferably 20 ° C. or more and 90 ° C. or less.
[成形体等の用途]
 本発明の一態様による積層体及び成形体は、車両の内装材、外装材、家電の筐体、化粧鋼鈑、化粧板、住宅設備、情報通信機器の筐体等に用いることができる。
[Uses such as moldings]
The laminate and the molded article according to one aspect of the present invention can be used as an interior material, an exterior material, a housing of a home appliance, a decorative steel plate, a decorative board, a housing equipment, a housing of an information communication device, etc.
 実施例及び比較例で用いた成分を以下に示す。
・ポリプロピレン1:ホモポリプロピレン、株式会社プライムポリマー製「プライムポリプロF133A」、MFR:3g/10分
・ポリプロピレン2:ホモポリプロピレン、株式会社プライムポリマー製「プライムポリプロF-300SP」、MFR:3g/10分
・ポリプロピレン3:ランダムポリプロピレン(プロピレン-エチレン共重合体)、株式会社プライムポリマー製「プライムポリプロF794NV」、MFR:5.8g/10分
・ポリプロピレン4:ホモポリプロピレン、株式会社プライムポリマー製「プライムポリプロF-704NP」、MFR:7g/10分
・ポリエステル系熱可塑性エラストマー1:三菱ケミカル株式会社製「ティファブロックA1700N」、ハードセグメント:ポリブチレンテレフタレート、ソフトセグメント:ポリエーテル、MFR:43g/10分
・ポリエステル系熱可塑性エラストマー2:三菱ケミカル株式会社製「ティファブロックC1701N」、ハードセグメント:ポリブチレンテレフタレート、ソフトセグメント:ポリエーテル、MFR:3g/10分
・マレイン酸変性ポリプロピレン1:三菱ケミカル株式会社製「モディックF534A」、MFR:3.5g/10分
・マレイン酸変性ポリプロピレン2:三菱ケミカル株式会社製「モディックF502」、MFR:1.0g/10分
・マレイン酸変性ポリプロピレン3:三菱ケミカル株式会社製「モディックF508」、MFR:0.8g/10分
・スチレン系熱可塑性エラストマー1:株式会社クラレ製「ハイブラー7311」、ハードセグメント:ポリスチレン、ソフトセグメント:水添ポリ(イソプレン/ブタジエン)、MFR:2g/10分
・ABS樹脂1:アクリロニトリル-ブタジエン-スチレン共重合体、旭化成ケミカルズ株式会社製「スタイラック220P」
・ポリカーボネート1:出光興産株式会社製「タフロンA1900」、MVR:19cm/10分
・AS樹脂1:アクリロニトリル-スチレン共重合体、東レ株式会社製「トヨラックA20C-300」、MFR:26g/10分
・ポリカーボネート-ABS樹脂アロイ1:アクリロニトリル-スチレン共重合体とポリカーボネートのポリマーアロイ、東レ株式会社製「トヨラックPX10-X06」、MFR:15g/10分
・ポリアミド-ABS樹脂アロイ1:アクリロニトリル-スチレン共重合体とポリアミドのポリマーアロイ、東レ株式会社製「トヨラックSX01」、MFR:22g/10分
・アンカーコート1:ポリエステル系ウレタン樹脂、東洋モートン株式会社製「アドコートAD-335AE」
・アンカーコート2:ポリエーテル系ウレタン樹脂、DIC株式会社製「ハイドランWLS-202」
・アンカーコート3:ポリプロピレン樹脂、ユニチカ株式会社製「アローベースDB-4010」
The components used in Examples and Comparative Examples are shown below.
・ Polypropylene 1: Homopolypropylene, Prime Polymer Co., Ltd. “Prime Polypro F133A”, MFR: 3 g / 10 min. Polypropylene 2: Homopolypropylene, Co., Ltd. Prime Polymer “Prime Polypro F-300 SP”, MFR: 3 g / 10 min・ Polypropylene 3: random polypropylene (propylene-ethylene copolymer), Prime Polymer Co., Ltd. “Prime Polypro F 794 NV”, MFR: 5.8 g / 10 min. Polypropylene 4: Homopolypropylene, Inc. Prime Polymer Co. “Prime Polypro F -704 NP ", MFR: 7 g / 10 min. Polyester thermoplastic elastomer 1:" Tifa block A1700 N "manufactured by Mitsubishi Chemical Corporation, hard segment: polybutylene terephthalate, SO To segment: Polyether, MFR: 43 g / 10 min. Polyester thermoplastic elastomer 2: Tifa block C1701N manufactured by Mitsubishi Chemical Co., Ltd. Hard segment: Polybutylene terephthalate, soft segment: Polyether, MFR: 3 g / 10 min Maleic acid-modified polypropylene 1: "Modic F 534A" manufactured by Mitsubishi Chemical Co., Ltd. MFR: 3.5 g / 10 minutes Maleic-modified polypropylene 2: macroc F 502 manufactured by Mitsubishi Chemical Co., MFR: 1.0 g / 10 min Maleic acid-modified polypropylene 3: Modic F508, manufactured by Mitsubishi Chemical Co., Ltd. MFR: 0.8 g / 10 min Styrene thermoplastic elastomer 1: Kuraray Co., Ltd. Hybler 7311, hard segment: polystyrene Soft Segment: hydrogenated poly (isoprene / butadiene), MFR: 2 g / 10 min · ABS Resin 1: acrylonitrile - butadiene - styrene copolymer, manufactured by Asahi Kasei Chemicals Corporation, "Stylac 220P"
Polycarbonate 1: manufactured by Idemitsu Kosan Co., Ltd. "TARFLON A1900", MVR: 19cm 3/10 minutes · AS Resin 1: acrylonitrile - styrene copolymer, manufactured by Toray Industries, Inc. "Toyolac A20C-300", MFR: 26 g / 10 min・ Polycarbonate-ABS resin alloy 1: Polymer alloy of acrylonitrile-styrene copolymer and polycarbonate, Toray Industries, Inc. “Toyolac PX10-X06”, MFR: 15 g / 10 min. Polyamide-ABS resin alloy 1: Acrylonitrile-styrene co-weight Polymer alloy of united and polyamide, Toray Co., Ltd. "Toyolac SX01", MFR: 22 g / 10 min. Anchor coat 1: polyester-based urethane resin, Toyo Moreton Co., Ltd. "Ad coat AD-335 AE"
・ Anchor coat 2: Polyether-based urethane resin, DIC Corporation "Hydran WLS-202"
・ Anchor coat 3: Polypropylene resin, "Arrow base DB-4010" made by Unitika Co., Ltd.
実施例1
[積層体の製造]
(1)熱可塑性樹脂層の製造
 図4に示す製造装置を用いて、以下に示す製造条件で厚さ200μmのポリカーボネートシート(熱可塑性樹脂層)を製造した。当該製造装置において、押出機のTダイ72より押し出された溶融樹脂をエアナイフ74により冷却ロール76に密着し、冷却ロール76及び78により冷却して樹脂シート71とする。
[製造条件]
・配合:ポリカーボネート1(100質量%)
・押出機の直径:30mm
・Tダイ72の幅:350mm
・樹脂シート71の引取速度:2.1m/分
・冷却ロール76及び78の表面温度:30℃
Example 1
[Production of laminate]
(1) Production of Thermoplastic Resin Layer A polycarbonate sheet (thermoplastic resin layer) having a thickness of 200 μm was produced using the production apparatus shown in FIG. 4 under the production conditions shown below. In the manufacturing apparatus, the molten resin extruded from the T-die 72 of the extruder is closely adhered to the cooling roll 76 by the air knife 74 and cooled by the cooling rolls 76 and 78 to form the resin sheet 71.
[Manufacturing conditions]
・ Composition: Polycarbonate 1 (100% by mass)
· Diameter of extruder: 30 mm
・ T-die 72 width: 350 mm
Take-up speed of resin sheet 71: 2.1 m / min Surface temperature of cooling rolls 76 and 78: 30 ° C.
(2)保護層の製造
 図4に示す製造装置を用いて、以下に示す製造条件で厚さ200μmの樹脂シート(保護層:溶着層)を製造した。
[製造条件]
・保護層の配合:ポリエステル系熱可塑性エラストマー1(100質量%)
・押出機の直径:30mm
・Tダイ72の幅:350mm
・樹脂シート71の引取速度:2.1m/分
・冷却ロール76及び78の表面温度:30℃
(2) Production of Protective Layer A resin sheet (protective layer: welding layer) having a thickness of 200 μm was produced using the production apparatus shown in FIG. 4 under the production conditions shown below.
[Manufacturing conditions]
・ Formulation of protective layer: Polyester-based thermoplastic elastomer 1 (100% by mass)
· Diameter of extruder: 30 mm
・ T-die 72 width: 350 mm
Take-up speed of resin sheet 71: 2.1 m / min Surface temperature of cooling rolls 76 and 78: 30 ° C.
(3)積層体の製造
 (1)で得られた熱可塑性樹脂層上の全部に、帝国インキ製造株式会社製「POS-911墨インキ」を、T-250メッシュ(ポリエステルメッシュ)を用いてスクリーン印刷し、乾燥炉中で60℃、90分間乾燥することによってベタ状の印刷層を設け、乾燥後粘着シート(日栄化工株式会社製「モールドフィット50」)を貼り合わせ、その上に(2)で得られた保護層を貼り合せて積層体1とした。
(3) Production of Laminate The whole of the thermoplastic resin layer obtained in (1) was screened using "POS-911 black ink" manufactured by Teikoku Ink Mfg. Co., Ltd. using T-250 mesh (polyester mesh). A solid printing layer is provided by printing and drying in a drying oven at 60 ° C. for 90 minutes, and after drying, a pressure-sensitive adhesive sheet (“mold fit 50” manufactured by Niei Kako Co., Ltd.) is laminated, and (2) The protective layers obtained in the above were laminated to obtain a laminate 1.
[成形体の製造及び評価]
 積層体1について、真空圧空成形機(株式会社ミノス製「FM-3M/H」)を用いて真空圧空成形により熱成形し、成形体1を製造した。成形体1は、天面が平面状の逆皿状(凸状)形状であり、上方から見て略長方形(短辺72mm、長辺160mm)であり、その四隅は曲線形状(R=10mm)であり、高さは13mmである。成形体1の厚さは全体に亘って3mmである。また、逆皿状(凸状)形状の斜面から天面に移行する部分は曲線形状(R=10mm)である。
[Production and evaluation of molded articles]
The laminate 1 was thermoformed by vacuum pressure forming using a vacuum pressure forming machine ("FM-3M / H" manufactured by Minos Corporation) to produce a formed body 1. The top surface of the molded body 1 is a flat inverted dish shape (convex shape), and is substantially rectangular (short side 72 mm, long side 160 mm) as viewed from above, and its four corners are curved (R = 10 mm) And the height is 13 mm. The thickness of the molded body 1 is 3 mm throughout. Moreover, the part which transfers to the top | upper surface from the slope of a reverse dish shape (convex shape) shape is curvilinear shape (R = 10 mm).
 成形体1が隙間なく収まる金型に成形体1を装着し、油圧式射出成形機(東芝機械株式会社製「IS-80EPN」)により、ABS樹脂1を金型内に供給して一体化させて成形体2を製造した。 The molded body 1 is mounted on a mold in which the molded body 1 fits without gaps, and the ABS resin 1 is supplied into the mold and integrated by a hydraulic injection molding machine (“IS-80 EPN” manufactured by Toshiba Machine Co., Ltd.) The molded body 2 was manufactured.
(意匠損傷)
 成形体2における、油圧式射出成形機のゲートとの近接部分を目視で観察し、当該部分における意匠損傷の有無を下記基準に沿って評価した。結果を表1に示す。
意匠の損傷がない:○
意匠の損傷がある:×
(Design damage)
The proximity | contact part in the molded object 2 with the gate of a hydraulic-type injection molding machine was observed visually, and the presence or absence of the design damage in the said part was evaluated along the following reference | standard. The results are shown in Table 1.
No damage to the design: ○
Damage to design: x
(密着強度)
 成形体2を構成する積層体1を、供給樹脂(ABS樹脂1)から15mm幅で180°剥離し、積層体1と供給樹脂との剥離強度をプッシュプルゲージで測定した。結果を表1に示す。
(Adhesive strength)
The laminated body 1 which comprises the molded object 2 was peeled 180 degrees by 15 mm width from supply resin (ABS resin 1), and the peeling strength of the laminated body 1 and supply resin was measured by the push pull gauge. The results are shown in Table 1.
実施例2
 図4に示す製造装置を用い、保護層を下記条件で製造して(基材層/溶着層)の2層構成(厚さ200μm)とした。
[製造条件]
・基材層の配合:ポリカーボネート1(100質量%)
・溶着層の配合:ポリエステル系熱可塑性エラストマー1(100質量%)
・基材層の押出機の直径:30mm
・溶着層の押出機の直径:30mm
・Tダイ72の幅:350mm
・積層シート(樹脂シート71)の引取速度:2.1m/分
・冷却ロール76及び78の表面温度:80℃
・基材層の厚さ:99μm
・溶着層の厚さ:101μm
Example 2
The protective layer was manufactured on the following conditions using the manufacturing apparatus shown in FIG. 4, and it was set as the 2 layer structure (200 micrometers in thickness) of (base material layer / welding layer).
[Manufacturing conditions]
・ Composition of base material layer: Polycarbonate 1 (100% by mass)
・ Composition of welding layer: Polyester thermoplastic elastomer 1 (100% by mass)
· Diameter of extruder for base layer: 30 mm
· Diameter of extruder of welding layer: 30 mm
・ T-die 72 width: 350 mm
Take-up speed of laminated sheet (resin sheet 71): 2.1 m / min Surface temperature of cooling rolls 76 and 78: 80 ° C.
・ Thickness of base layer: 99 μm
· Thickness of welding layer: 101 μm
 上記の他は、実施例1と同じ方法で積層体及び成形体を製造し、評価した。上記積層構造のうち基材層が熱可塑性樹脂層側の層である。結果を表1に示す。 Except for the above, laminates and molded articles were manufactured and evaluated in the same manner as in Example 1. The base material layer is a layer by the side of a thermoplastic resin layer among the said laminated structure. The results are shown in Table 1.
実施例3
 熱可塑性樹脂層の材料をAS樹脂1(100質量%)とし、保護層の基材層の材料をAS樹脂1(100質量%)とした以外は、実施例2と同じ方法で積層体及び成形体を製造し、評価した。結果を表1に示す。
Example 3
A laminate and a molding were carried out in the same manner as in Example 2 except that the material of the thermoplastic resin layer was AS resin 1 (100% by mass) and the material of the base layer of the protective layer was AS resin 1 (100% by mass). The body was manufactured and evaluated. The results are shown in Table 1.
実施例4
 熱可塑性樹脂層の材料をポリカーボネート-ABS樹脂アロイ1(100質量%)とし、保護層の基材層の材料をポリカーボネート-ABS樹脂アロイ1(100質量%)とした以外は、実施例2と同じ方法で積層体及び成形体を製造し、評価した。結果を表1に示す。
Example 4
The same as Example 2 except that the material of the thermoplastic resin layer is polycarbonate-ABS resin alloy 1 (100% by mass) and the material of the base layer of the protective layer is polycarbonate-ABS resin alloy 1 (100% by mass). Laminates and compacts were produced and evaluated by the method. The results are shown in Table 1.
実施例5
 熱可塑性樹脂層の材料をポリアミド-ABS樹脂アロイ1(100質量%)とし、保護層の基材層の材料をポリアミド-ABS樹脂アロイ1(100質量%)とした以外は、実施例2と同じ方法で積層体及び成形体を製造し、評価した。結果を表1に示す。
Example 5
Same as Example 2 except that the material of the thermoplastic resin layer is polyamide-ABS resin alloy 1 (100 mass%) and the material of the base layer of the protective layer is polyamide-ABS resin alloy 1 (100 mass%) Laminates and compacts were produced and evaluated by the method. The results are shown in Table 1.
実施例6
 実施例2と同じ方法で積層体を製造した。成形体2の製造において、ABS樹脂1の代わりにポリカーボネート1を供給した以外は実施例2と同じ方法で評価を行った。結果を表1に示す。
Example 6
A laminate was produced in the same manner as in Example 2. The evaluation was performed in the same manner as in Example 2 except that polycarbonate 1 was supplied instead of the ABS resin 1 in the production of the molded body 2. The results are shown in Table 1.
実施例7
 実施例2と同じ方法で積層体を製造した。成形体2の製造において、ABS樹脂1の代わりにポリアミド-ABS樹脂アロイ1を供給した以外は実施例2と同じ方法で評価を行った。結果を表1に示す。
Example 7
A laminate was produced in the same manner as in Example 2. Evaluation was carried out in the same manner as in Example 2 except that polyamide-ABS resin alloy 1 was supplied instead of ABS resin 1 in the production of molded body 2. The results are shown in Table 1.
比較例1
 保護層(溶着層)の材料をポリカーボネート1(100質量%)とした以外は、実施例1と同じ方法で積層体及び成形体を製造し、評価した。結果を表1に示す。
Comparative Example 1
A laminate and a molded body were produced and evaluated in the same manner as in Example 1 except that the material of the protective layer (welding layer) was changed to polycarbonate 1 (100% by mass). The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
実施例8
[積層体の製造]
(1)熱可塑性樹脂層の製造
 図3に示す製造装置を用いて、ポリプロピレンシート(熱可塑性樹脂層)51を製造した。
 当該装置の動作を説明する。押出機のTダイ52より押し出された溶融樹脂(ポリプロピレン1)を第1冷却ロール53上で金属製エンドレスベルト57と第4冷却ロール56との間に挟み込む。この状態で、溶融樹脂を第1、第4冷却ロール53、56で圧接するとともに急冷する。ポリプロピレンシートは、続いて、第4冷却ロール56の略下半周に対応する円弧部分で金属製エンドレスベルト57と第4冷却ロール56とに挟まれて面状圧接される。第4冷却ロール56で面状圧接及び冷却された後、金属製エンドレスベルト57に密着したポリプロピレンシートは、金属製エンドレスベルト57の回動とともに第2冷却ロール54上に移動される。ポリプロピレンシートは、前述同様、第2冷却ロール54の略上半周に対応する円弧部分で金属製エンドレスベルト57により面状圧接され、再び冷却される。第2冷却ロール54上で冷却されたポリプロピレンシートは、その後金属製エンドレスベルト57から剥離される。尚、第1、第2冷却ロール53、54の表面には、ニトリル-ブタジエンゴム(NBR)製の弾性材62が被覆されている。
Example 8
[Production of laminate]
(1) Production of Thermoplastic Resin Layer A polypropylene sheet (thermoplastic resin layer) 51 was produced using the production apparatus shown in FIG.
The operation of the device will be described. The molten resin (polypropylene 1) extruded from the T die 52 of the extruder is sandwiched between the metal endless belt 57 and the fourth cooling roll 56 on the first cooling roll 53. In this state, the molten resin is pressure-welded by the first and fourth cooling rolls 53 and 56 and rapidly cooled. Subsequently, the polypropylene sheet is sandwiched between the metal endless belt 57 and the fourth cooling roll 56 at a circular arc portion corresponding to the lower half of the fourth cooling roll 56 and is planarly pressure-welded. After surface pressure welding and cooling by the fourth cooling roll 56, the polypropylene sheet in close contact with the metal endless belt 57 is moved onto the second cooling roll 54 as the metal endless belt 57 pivots. As described above, the polypropylene sheet is pressure-welded by the metal endless belt 57 at the arc portion corresponding to the substantially upper half circumference of the second cooling roll 54, and is cooled again. The polypropylene sheet cooled on the second cooling roll 54 is then peeled off the metal endless belt 57. The surface of the first and second cooling rolls 53 and 54 is coated with an elastic material 62 made of nitrile butadiene rubber (NBR).
 ポリプロピレンシート51の製造条件は以下の通りである。
・押出機の直径:150mm
・Tダイ52の幅:1400mm
・ポリプロピレンシート51の厚さ:200μm
・ポリプロピレンシート51の引き取り速度:25m/分
・第4冷却ロール56及び金属製エンドレスベルト57の表面温度:17℃
・冷却速度:10,800℃/分(180℃/秒)
・造核剤:なし
The manufacturing conditions of the polypropylene sheet 51 are as follows.
· Diameter of extruder: 150 mm
・ T-die 52 width: 1400 mm
・ The thickness of polypropylene sheet 51: 200 μm
Take-up speed of polypropylene sheet 51: 25 m / min Surface temperature of fourth cooling roll 56 and metal endless belt 57: 17 ° C.
・ Cooling speed: 10,800 ° C / minute (180 ° C / second)
・ Nucleator: None
 示差走査熱量測定器(DSC)(パーキンエルマー社製「Diamond DSC」)を用いて、熱可塑性樹脂層に用いたポリプロピレンの結晶化速度を測定した。具体的には、ポリプロピレンを10℃/分にて50℃から230℃に昇温し、230℃にて5分間保持し、80℃/分で230℃から130℃に冷却し、その後130℃に保持して結晶化を行った。130℃になった時点から熱量変化について測定を開始し、DSC曲線を得た。得られたDSC曲線から、以下の手順(i)~(iv)により結晶化速度を求めた。
(i)測定開始からピークトップまでの時間の10倍の時点から、20倍の時点までの熱量変化を直線で近似したものをベースラインとした。
(ii)ピークの変曲点における傾きを有する接線とベースラインとの交点を求め、結晶化開始及び終了時間を求めた。
(iii)得られた結晶化開始時間から、ピークトップまでの時間を結晶化時間として測定した。
(iv)得られた結晶化時間の逆数から、結晶化速度を求めた。
 熱可塑性樹脂層に用いたポリプロピレンの結晶化速度は0.9min-1であった。
The crystallization rate of the polypropylene used for the thermoplastic resin layer was measured using a differential scanning calorimeter (DSC) ("Diamond DSC" manufactured by Perkin Elmer). Specifically, the temperature of the polypropylene is raised from 50 ° C. to 230 ° C. at 10 ° C./min, held for 5 minutes at 230 ° C., cooled from 230 ° C. to 130 ° C. at 80 ° C./min, and then to 130 ° C. It hold | maintained and performed crystallization. The measurement of the heat quantity change was started when the temperature reached 130 ° C., and a DSC curve was obtained. From the obtained DSC curve, the crystallization rate was determined by the following procedures (i) to (iv).
(I) A baseline was obtained by approximating a change in heat quantity from a point 10 times to a point 20 times from the start of the measurement to the peak top by a straight line.
(Ii) The intersection point of a tangent having a slope at the inflection point of the peak and the baseline was determined to determine the crystallization start and end times.
(Iii) From the crystallization start time obtained, the time to the peak top was measured as the crystallization time.
(Iv) The crystallization rate was determined from the reciprocal of the obtained crystallization time.
The crystallization rate of polypropylene used for the thermoplastic resin layer was 0.9 min -1 .
(2)保護層の製造
 図4に示す製造装置を用いて、以下に示す製造条件で厚さ200μmの樹脂シート(保護層:溶着層)を製造した。
[製造条件]
・保護層の配合:ポリエステル系熱可塑性エラストマー1(100質量%)
・押出機の直径:30mm
・Tダイ72の幅:350mm
・樹脂シート71の引取速度:2.1m/分
・冷却ロール76及び78の表面温度:30℃
(2) Production of Protective Layer A resin sheet (protective layer: welding layer) having a thickness of 200 μm was produced using the production apparatus shown in FIG. 4 under the production conditions shown below.
[Manufacturing conditions]
・ Formulation of protective layer: Polyester-based thermoplastic elastomer 1 (100% by mass)
· Diameter of extruder: 30 mm
・ T-die 72 width: 350 mm
Take-up speed of resin sheet 71: 2.1 m / min Surface temperature of cooling rolls 76 and 78: 30 ° C.
(3)積層体の製造
 (1)で得られた熱可塑性樹脂層上の全部に、帝国インキ製造株式会社製「POS-911墨インキ」を、T-250メッシュ(ポリエステルメッシュ)を用いてスクリーン印刷し、乾燥炉中で60℃、90分間乾燥することによってベタ状の印刷層を設け、乾燥後膜厚が1.2μmとなるように接着剤(三井化学株式会社製「ユニストールH200」)をバーコーターで塗布し、80℃で3分間乾燥し、その上に(2)で得られた保護層を貼り合せて積層体とした。
(3) Production of Laminate The whole of the thermoplastic resin layer obtained in (1) was screened using "POS-911 black ink" manufactured by Teikoku Ink Mfg. Co., Ltd. using T-250 mesh (polyester mesh). A solid printing layer is provided by printing and drying in a drying oven at 60 ° C. for 90 minutes, and the adhesive after drying has a thickness of 1.2 μm ("Unistol H200" manufactured by Mitsui Chemicals, Inc.) Were coated with a bar coater, dried at 80.degree. C. for 3 minutes, and the protective layer obtained in (2) was laminated thereon to obtain a laminate.
 得られた積層体を用いて、実施例1と同じ方法で成形体を製造し、評価した。また、下記の通り成形体の外観を評価した。結果を表2に示す。
(外観)
 成形体1の外観を目視で確認し、下記基準に沿って評価した。結果を表1に示す。
反り及び歪みが見られない:○
反り及び歪みの少なくとも一方が見られる:×
Using the obtained laminate, a molded body was produced and evaluated in the same manner as in Example 1. Further, the appearance of the molded body was evaluated as follows. The results are shown in Table 2.
(appearance)
The appearance of the molded body 1 was visually confirmed and evaluated in accordance with the following criteria. The results are shown in Table 1.
No warpage and distortion: ○
At least one of warp and strain is seen: x
実施例9
 図4に示す製造装置を用い、保護層を下記条件で製造して(基材層/接合層/溶着層)の3層構成(厚さ200μm)とした。
[製造条件]
・基材層の配合:ポリプロピレン2(100質量%)
・接合層の配合:マレイン酸変性ポリプロピレン1(100質量%)
・溶着層の配合:ポリエステル系熱可塑性エラストマー1(100質量%)
・基材層の押出機の直径:30mm
・接合層の押出機の直径:20mm
・溶着層の押出機の直径:30mm
・Tダイ72の幅:350mm
・積層シート(樹脂シート71)の引取速度:2.1m/分
・冷却ロール76及び78の表面温度:30℃
・基材層の厚さ:104μm
・接合層の厚さ:13μm
・溶着層の厚さ:100μm
Example 9
The protective layer was manufactured on the following conditions using the manufacturing apparatus shown in FIG. 4, and it was set as 3 layer structure (200 micrometers in thickness) of (base material layer / joining layer / welding layer).
[Manufacturing conditions]
・ Composition of base material layer: Polypropylene 2 (100 mass%)
・ Composition of bonding layer: Maleic acid modified polypropylene 1 (100% by mass)
・ Composition of welding layer: Polyester thermoplastic elastomer 1 (100% by mass)
· Diameter of extruder for base layer: 30 mm
· Diameter of bonding layer extruder: 20 mm
· Diameter of extruder of welding layer: 30 mm
・ T-die 72 width: 350 mm
Take-up speed of laminated sheet (resin sheet 71): 2.1 m / min Surface temperature of cooling rolls 76 and 78: 30 ° C.
・ Thickness of base layer: 104 μm
Bonding layer thickness: 13 μm
· Thickness of welding layer: 100 μm
 上記の他は、実施例8と同じ方法で積層体及び成形体を製造し、評価した。上記積層構造のうち基材層が熱可塑性樹脂層側の層である。結果を表2に示す。 Except for the above, laminates and molded articles were produced and evaluated in the same manner as in Example 8. The base material layer is a layer by the side of a thermoplastic resin layer among the said laminated structure. The results are shown in Table 2.
実施例10
 保護層の溶着層の配合を、ポリエステル系熱可塑性エラストマー1(80質量%)、及びABS樹脂1(20質量%)とした以外は、実施例9と同じ方法で積層体及び成形体を製造し、評価した。結果を表2に示す。
Example 10
A laminate and a molded article were produced in the same manner as in Example 9 except that the composition of the welding layer of the protective layer was changed to polyester-based thermoplastic elastomer 1 (80 mass%) and ABS resin 1 (20 mass%). ,evaluated. The results are shown in Table 2.
実施例11
 保護層の接合層の配合をマレイン酸変性ポリプロピレン2(100質量%)とした以外は、実施例9と同じ方法で積層体及び成形体を製造し、評価した。結果を表2に示す。
Example 11
Laminates and molded articles were produced and evaluated in the same manner as in Example 9 except that the composition of the bonding layer of the protective layer was changed to maleic acid-modified polypropylene 2 (100% by mass). The results are shown in Table 2.
実施例12
 保護層の接合層の配合を、スチレン系熱可塑性エラストマー1(70質量%)、及びポリプロピレン3(30質量%)とした以外は、実施例9と同じ方法で積層体及び成形体を製造し、評価した。結果を表2に示す。
Example 12
A laminate and a molded article are produced in the same manner as in Example 9 except that the composition of the bonding layer of the protective layer is changed to styrene thermoplastic elastomer 1 (70 mass%) and polypropylene 3 (30 mass%), evaluated. The results are shown in Table 2.
実施例13
 保護層の溶着層の配合をポリエステル系熱可塑性エラストマー2(100質量%)とした以外は、実施例9と同じ方法で積層体及び成形体を製造し、評価した。結果を表2に示す。
Example 13
Laminates and molded articles were produced and evaluated in the same manner as in Example 9 except that the composition of the welding layer of the protective layer was changed to polyester-based thermoplastic elastomer 2 (100% by mass). The results are shown in Table 2.
実施例14
 保護層の接合層の配合をマレイン酸変性ポリプロピレン3(100質量%)、基材層の配合をポリプロピレン4(100質量%)、保護層の厚さを300μmとし、成形体2製造時の供給樹脂をポリカーボネート1とした以外は、実施例9と同じ方法で積層体及び成形体を製造し、評価した。結果を表2に示す。
Example 14
Maleic acid modified polypropylene 3 (100% by mass) for the composition of the bonding layer of the protective layer, polypropylene 4 (100% for mass) for the composition of the base layer, 300 μm for the thickness of the protective layer A laminate and a molded article were produced and evaluated in the same manner as in Example 9 except that polycarbonate 1 was used. The results are shown in Table 2.
実施例15
 成形体2製造時の供給樹脂をAS樹脂1とした以外は、実施例14と同じ方法で積層体及び成形体を製造し、評価した。結果を表2に示す。
Example 15
A laminate and a molded body were manufactured and evaluated in the same manner as in Example 14 except that the resin supplied at the time of manufacturing the molded body 2 was AS resin 1. The results are shown in Table 2.
実施例16
 成形体2製造時の供給樹脂をポリカーボネート-ABS樹脂アロイ1とした以外は、実施例14と同じ方法で積層体及び成形体を製造し、評価した。結果を表2に示す。
Example 16
Laminates and molded articles were produced and evaluated in the same manner as in Example 14 except that the supplied resin at the time of producing the molded article 2 was polycarbonate-ABS resin alloy 1. The results are shown in Table 2.
実施例17
 成形体2製造時の供給樹脂をポリアミド-ABS樹脂アロイ1とした以外は、実施例14と同じ方法で積層体及び成形体を製造し、評価した。結果を表2に示す。
Example 17
Laminates and molded articles were produced and evaluated in the same manner as in Example 14 except that the resin supplied during production of the molded article 2 was changed to the polyamide-ABS resin alloy 1. The results are shown in Table 2.
実施例18
 厚さ200μmの基材層(ポリプロピレン1)の片面に、アンカーコート1をグラビアコート法で、乾燥後の膜厚が100nmとなるように塗工した。その後、溶着層(ポリエステル系熱可塑性エラストマー1)を基材層のアンカーコートを塗工した面に押出ラミネートして、厚さ300μmの3層の保護層とした(溶着層/アンカーコート層/基材層)。これ以外は、実施例8と同じ方法で積層体及び成形体を製造し、評価した。結果を表2に示す。
Example 18
The anchor coat 1 was applied by gravure coating on one side of a 200 μm thick base layer (polypropylene 1) so that the film thickness after drying would be 100 nm. Thereafter, a welding layer (polyester-based thermoplastic elastomer 1) was extrusion laminated on the surface coated with the anchor coat of the base material layer to form a 300 μm thick three-layer protective layer (welding layer / anchor coat layer / base Material layer). Except for this, laminates and molded articles were produced and evaluated in the same manner as in Example 8. The results are shown in Table 2.
実施例19
 アンカーコート層をアンカーコート2とした以外は、実施例18と同じ方法で積層体及び成形体を製造し、評価した。結果を表2に示す。
Example 19
Laminates and molded articles were produced and evaluated in the same manner as in Example 18 except that the anchor coat layer was changed to anchor coat 2. The results are shown in Table 2.
実施例20
 アンカーコート層をアンカーコート3とした以外は、実施例18と同じ方法で積層体及び成形体を製造し、評価した。結果を表2に示す。
Example 20
Laminates and molded articles were produced and evaluated in the same manner as in Example 18 except that the anchor coat layer was changed to anchor coat 3. The results are shown in Table 2.
比較例2
 保護層(溶着層)の配合を、ABS樹脂1(100質量%)とした以外は実施例8と同じ方法で積層体及び成形体を製造し、評価した。結果を表2に示す。
Comparative example 2
A laminate and a molded body were manufactured and evaluated in the same manner as in Example 8 except that the composition of the protective layer (welding layer) was changed to ABS resin 1 (100% by mass). The results are shown in Table 2.
比較例3
 実施例8の「(1)熱可塑性樹脂層の製造」で得られたポリプロピレンシートにコロナ処理を施し、その上に、乾燥後の膜厚が230nmとなるようにウレタン樹脂(DIC株式会社製「ハイドランWLS-202」)をバーコーターで塗布し、80℃にて1分間乾燥して易接合層を形成した。コロナ処理は高周波電源(ウエッジ株式会社製高周波電源「CT-0212」)を使用してポリプロピレンシート表面に処理した。当該易接合層の上に、スクリーン印刷法でバインダー(帝国インキ製造株式会社製「IMB-HF006」)を印刷して積層体とした。
Comparative example 3
The polypropylene sheet obtained in “(1) Production of a thermoplastic resin layer” in Example 8 is subjected to a corona treatment, and a urethane resin (“DIC Corporation” manufactured by DIC Corporation) is applied thereon so that the film thickness after drying becomes 230 nm. Hydran WLS-202 ") was applied by a bar coater and dried at 80 ° C. for 1 minute to form an easily bonding layer. The corona treatment was applied to the surface of the polypropylene sheet using a high frequency power source (Wedge Corporation high frequency power source "CT-0212"). On the easily bonding layer, a binder ("IMB-HF006" manufactured by Teikoku Ink Mfg. Co., Ltd.) was printed by screen printing to obtain a laminate.
 得られた積層体を、実施例8において成形体2の製造に用いた金型に装着し、油圧式射出成形機(東芝機械株式会社製「IS-80EPN」)により、ABS樹脂1を金型内に供給して一体化させて成形体を製造した。得られた成形体について、実施例1と同じ方法で意匠損傷及び密着強度を評価した。結果を表2に示す。 The resulting laminate is attached to the mold used for the production of the molded body 2 in Example 8, and the ABS resin 1 is molded by a hydraulic injection molding machine (“IS-80 EPN” manufactured by Toshiba Machine Co., Ltd.) The mixture was supplied to the inside and integrated to produce a molded body. About the obtained molded object, the design damage and the adhesive strength were evaluated by the same method as Example 1. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1、2より、実施例1~20の積層体は、種々の成形用樹脂との接触時に意匠損傷が生じず、さらに、成形用樹脂との十分な密着強度を有し、汎用性の高い加飾シートであることが分かる。また、表2より、実施例8~20の積層体は、さらに成形時に反りや歪み等の変形が生じず、成形後も優れた外観を有することが分かる。 From Tables 1 and 2, the laminates of Examples 1 to 20 do not cause design damage when coming into contact with various molding resins, and further have sufficient adhesion strength with the molding resins, and are highly versatile. It turns out that it is a decoration sheet. Further, it can be seen from Table 2 that the laminates of Examples 8 to 20 do not undergo deformation such as warpage or distortion during molding, and have an excellent appearance even after molding.
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献、及び本願のパリ条約による優先権の基礎となる出願の内容を全て援用する。
While several embodiments and / or examples of the present invention have been described above in detail, those skilled in the art will appreciate that the exemplary embodiments and / or examples are substantially without departing from the novel teachings and advantages of the present invention. It is easy to make many modifications to the embodiment. Accordingly, many of these variations are included within the scope of the present invention.
The documents described in this specification and the contents of the application on which the Paris Convention priority of the present application is based are all incorporated.

Claims (24)

  1.  熱可塑性樹脂層と、保護層とを含み、
     前記保護層が溶着層を含み、
     前記溶着層が熱可塑性エラストマーを含む
     積層体。
    Including a thermoplastic resin layer and a protective layer,
    The protective layer comprises a weld layer,
    The laminated body in which the said welding layer contains a thermoplastic elastomer.
  2.  前記溶着層の熱可塑性エラストマーがポリエステル系熱可塑性エラストマーである請求項1に記載の積層体。 The laminate according to claim 1, wherein the thermoplastic elastomer of the welding layer is a polyester thermoplastic elastomer.
  3.  前記保護層が、前記溶着層の前記熱可塑性樹脂層側に基材層を含み、
     前記基材層が、ポリオレフィン、ポリカーボネート、アクリル樹脂、アクリロニトリル-ブタジエン-スチレン共重合体、アクリロニトリル-スチレン共重合体、ポリスチレン、ポリエステル及びポリアミドからなる群から選択される1以上の樹脂を含む
     請求項1又は2に記載の積層体。
    The protective layer includes a base material layer on the thermoplastic resin layer side of the welding layer,
    The base material layer contains one or more resins selected from the group consisting of polyolefin, polycarbonate, acrylic resin, acrylonitrile-butadiene-styrene copolymer, acrylonitrile-styrene copolymer, polystyrene, polyester and polyamide. Or the laminated body as described in 2.
  4.  前記保護層が、前記溶着層と前記基材層の間に接合層を含み、
     前記接合層が、変性ポリオレフィン、スチレン系熱可塑性エラストマー及びポリオレフィンからなる群から選択される1以上の樹脂を含む
     請求項3に記載の積層体。
    The protective layer includes a bonding layer between the welding layer and the base layer,
    The laminate according to claim 3, wherein the bonding layer contains one or more resins selected from the group consisting of modified polyolefins, styrenic thermoplastic elastomers, and polyolefins.
  5.  前記保護層が、前記溶着層と前記基材層の間にアンカーコート層を含み、
     前記アンカーコート層が、ウレタン樹脂、アクリル樹脂、ポリオレフィン及びポリエステルからなる群から選択される1以上の樹脂を含む
     請求項3に記載の積層体。
    The protective layer includes an anchor coat layer between the welding layer and the base layer,
    The laminate according to claim 3, wherein the anchor coat layer contains one or more resins selected from the group consisting of urethane resins, acrylic resins, polyolefins, and polyesters.
  6.  前記溶着層が、さらにアクリロニトリル-ブタジエン-スチレン共重合体を含む請求項1~5のいずれかに記載の積層体。 The laminate according to any one of claims 1 to 5, wherein the welding layer further contains an acrylonitrile-butadiene-styrene copolymer.
  7.  前記熱可塑性樹脂層がポリオレフィンを含む請求項1~6のいずれかに記載の積層体。 The laminate according to any one of claims 1 to 6, wherein the thermoplastic resin layer contains a polyolefin.
  8.  前記熱可塑性樹脂層がポリプロピレンを含む請求項7に記載の積層体。 The laminate according to claim 7, wherein the thermoplastic resin layer comprises polypropylene.
  9.  前記ポリプロピレンのアイソタクチックペンダット分率が85モル%~99モル%である請求項8に記載の積層体。 The laminate according to claim 8, wherein an isotactic pendart fraction of the polypropylene is 85 mol% to 99 mol%.
  10.  前記ポリプロピレンの130℃での結晶化速度が2.5min-1以下である請求項8又は9に記載の積層体。 10. The laminate according to claim 8, wherein the crystallization rate of said polypropylene at 130 ° C. is 2.5 min −1 or less.
  11.  前記ポリプロピレンがスメチカ晶を含む請求項8~10のいずれかに記載の積層体。 The laminate according to any one of claims 8 to 10, wherein the polypropylene contains smectica crystals.
  12.  前記ポリプロピレンが、示差走査熱量測定曲線において、最大吸熱ピークの低温側に1.0J/g以上の発熱ピークを有する請求項8~11のいずれかに記載の積層体。 The laminate according to any one of claims 8 to 11, wherein the polypropylene has an exothermic peak of 1.0 J / g or more on the low temperature side of the maximum endothermic peak in a differential scanning calorimetry curve.
  13.  前記熱可塑性樹脂層が造核剤を含まない請求項7~12のいずれかに記載の積層体。 The laminate according to any one of claims 7 to 12, wherein the thermoplastic resin layer does not contain a nucleating agent.
  14.  前記熱可塑性樹脂層がポリカーボネート、ポリアミド樹脂、アクリロニトリル-ブタジエン-スチレン共重合体、アクリロニトリル-スチレン共重合体、及びアクリル樹脂からなる群から選択される1以上を含む請求項1~6のいずれかに記載の積層体。 The thermoplastic resin layer according to any one of claims 1 to 6, which contains one or more selected from the group consisting of polycarbonate, polyamide resin, acrylonitrile-butadiene-styrene copolymer, acrylonitrile-styrene copolymer, and acrylic resin. Description laminate.
  15.  前記熱可塑性樹脂層の前記保護層側の面の一部又は全面に印刷層を含む請求項1~14のいずれかに記載の積層体。 The laminate according to any one of claims 1 to 14, wherein a print layer is provided on a part or the whole of the surface on the protective layer side of the thermoplastic resin layer.
  16.  前記熱可塑性樹脂層の前記保護層側の面の一部又は全面に易接合層を含み、前記易接合層が、ウレタン樹脂、アクリル樹脂、ポリオレフィン及びポリエステルからなる群から選択される1以上の樹脂を含む請求項1~15のいずれかに記載の積層体。 One or more resins selected from the group consisting of a urethane resin, an acrylic resin, a polyolefin, and a polyester, including an easy bonding layer on a part or the whole of the surface on the protective layer side of the thermoplastic resin layer The laminate according to any one of claims 1 to 15, which comprises
  17.  前記易接合層の、前記熱可塑性樹脂層の反対側の面に、ウレタン樹脂、アクリル樹脂、ポリオレフィン及びポリエステルからなる群から選択される1以上の樹脂を含むアンダーコート層を含み、前記アンダーコート層の前記易接合層の反対側の面に、スズ、インジウム、クロム、アルミニウム、ニッケル、銅、銀、金、白金及び亜鉛からなる群から選択される1以上の金属元素を含む金属層を含む、請求項16に記載の積層体。 The surface of the easy bonding layer opposite to the thermoplastic resin layer includes an undercoat layer containing one or more resins selected from the group consisting of urethane resin, acrylic resin, polyolefin and polyester, and the undercoat layer And a metal layer containing one or more metal elements selected from the group consisting of tin, indium, chromium, aluminum, nickel, copper, silver, gold, platinum and zinc on the opposite side of the easy bonding layer. The layered product according to claim 16.
  18.  請求項1~17のいずれかに記載の積層体を用いて製造した成形体。 A molded body produced using the laminate according to any one of claims 1 to 17.
  19.  請求項1~17のいずれかに記載の積層体と、アクリロニトリル-ブタジエン-スチレン共重合体、ポリカーボネート、ポリエステル、ポリアミド、ポリスチレン、アクリロニトリル-スチレン共重合体、及びアクリル樹脂からなる群から選択される1以上の成形用樹脂と、を用いて製造した成形体。 The laminate according to any one of claims 1 to 17, and a member selected from the group consisting of acrylonitrile-butadiene-styrene copolymer, polycarbonate, polyester, polyamide, polystyrene, acrylonitrile-styrene copolymer, and acrylic resin 1 The molded object manufactured using the above resin for shaping | molding.
  20.  前記積層体中の熱可塑性樹脂層がポリプロピレンを含み、前記ポリプロピレンのアイソタクチックペンダット分率が85モル%~99モル%である請求項18又は19に記載の成形体。 The molded article according to claim 18 or 19, wherein the thermoplastic resin layer in the laminate contains polypropylene, and the isotactic pendart fraction of the polypropylene is 85 mol% to 99 mol%.
  21.  前記積層体中の熱可塑性樹脂層がポリプロピレンを含み、前記ポリプロピレンの130℃での結晶化速度が2.5min-1以下である請求項18~20のいずれかに記載の成形体。 The molded article according to any one of claims 18 to 20, wherein the thermoplastic resin layer in the laminate contains polypropylene, and the crystallization rate of the polypropylene at 130 ° C is 2.5 min -1 or less.
  22.  請求項1~17のいずれかに記載の積層体を金型に装着し、成形用樹脂を供給して一体化する、成形体の製造方法。 A method for producing a molded body, comprising: attaching the laminate according to any one of claims 1 to 17 to a mold and supplying a molding resin to integrate the molded resin.
  23.  請求項1~17のいずれかに記載の積層体を金型に合致するよう賦形し、前記賦形した積層体を金型に装着し、成形用樹脂を供給して一体化する、成形体の製造方法。 A molded body, wherein the laminate according to any one of claims 1 to 17 is shaped to conform to a mold, the shaped laminate is attached to the mold, and a molding resin is supplied and integrated. Manufacturing method.
  24.  前記成形用樹脂がアクリロニトリル-ブタジエン-スチレン共重合体、ポリカーボネート、ポリスチレン、ポリエステル、ポリアミド、アクリロニトリル-スチレン共重合体、及びアクリル樹脂からなる群から選択される1以上の樹脂である請求項22又は23に記載の成形体の製造方法。 The resin for molding is at least one resin selected from the group consisting of acrylonitrile-butadiene-styrene copolymer, polycarbonate, polystyrene, polyester, polyamide, acrylonitrile-styrene copolymer, and acrylic resin. The manufacturing method of the molded object as described in-.
PCT/JP2018/033751 2017-09-12 2018-09-12 Laminate, molded article, and method for producing molded article WO2019054397A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18855801.9A EP3683052A4 (en) 2017-09-12 2018-09-12 Laminate, molded article, and method for producing molded article
US16/646,348 US20200276796A1 (en) 2017-09-12 2018-09-12 Laminate, molded article, and method for producing molded article
JP2019542256A JPWO2019054397A1 (en) 2017-09-12 2018-09-12 Laminated body, molded body and manufacturing method of molded body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017175226 2017-09-12
JP2017-175226 2017-09-12

Publications (1)

Publication Number Publication Date
WO2019054397A1 true WO2019054397A1 (en) 2019-03-21

Family

ID=65724031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033751 WO2019054397A1 (en) 2017-09-12 2018-09-12 Laminate, molded article, and method for producing molded article

Country Status (4)

Country Link
US (1) US20200276796A1 (en)
EP (1) EP3683052A4 (en)
JP (1) JPWO2019054397A1 (en)
WO (1) WO2019054397A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065999A1 (en) * 2019-10-03 2021-04-08 出光ユニテック株式会社 Sheet, laminate, shaped object, and method for producing shaped object
WO2022080084A1 (en) * 2020-10-16 2022-04-21 出光ユニテック株式会社 Resin sheet, laminate, molded body, and method for producing molded body

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5569454A (en) * 1978-11-17 1980-05-26 Denki Kagaku Kogyo Kk Compound sheet and its molding vessel
JPH03120044A (en) * 1989-10-03 1991-05-22 Daicel Chem Ind Ltd Laminated film
JP2002331578A (en) * 2001-05-08 2002-11-19 Okura Ind Co Ltd Sealant film of aluminum foil laminated film for high retort
JP2003266615A (en) 2002-03-20 2003-09-24 Dainippon Printing Co Ltd Sheet for decorative molding and decorative molded article
JP2005168810A (en) * 2003-12-11 2005-06-30 Fujimori Kogyo Co Ltd Double cell container
JP2006007508A (en) * 2004-06-24 2006-01-12 Toppan Printing Co Ltd Laminated packaging material having oxygen barrier properties and reduced in occurrence of pinhole and laminated packaging bag
JP2007136783A (en) * 2005-11-16 2007-06-07 Tohcello Co Ltd Laminated film and packaging material made of laminated film
JP2008094074A (en) 2005-12-28 2008-04-24 Dainippon Printing Co Ltd Decorated sheet for insert molding
JP2010005935A (en) * 2008-06-27 2010-01-14 Toray Advanced Film Co Ltd Composite film
JP2012240421A (en) 2011-05-20 2012-12-10 Leonhard Kurz Stiftung & Co Kg In-mold decoration method and device
JP2013180792A (en) * 2012-03-01 2013-09-12 Line Plast:Kk Cover tape for packaging chip type electronic part
WO2013161291A1 (en) * 2012-04-26 2013-10-31 出光ユニテック株式会社 Laminated body and method for constructing same
JP2014198415A (en) * 2013-03-29 2014-10-23 出光ユニテック株式会社 Composite molded article
WO2017126663A1 (en) * 2016-01-22 2017-07-27 出光ユニテック株式会社 Laminate, molded article in which laminate is used, and method for manufacturing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2936969B2 (en) * 1993-08-20 1999-08-23 凸版印刷株式会社 Lid material for polyester resin containers
JPH081852A (en) * 1994-06-17 1996-01-09 Toppan Printing Co Ltd Wrapping material
JPH10337811A (en) * 1997-06-06 1998-12-22 Aica Kogyo Co Ltd Decorative sheet and top plate using it
JP6654385B2 (en) * 2015-09-24 2020-02-26 株式会社クラレ Flexible decorative laminate and method of manufacturing flexible decorative laminate

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5569454A (en) * 1978-11-17 1980-05-26 Denki Kagaku Kogyo Kk Compound sheet and its molding vessel
JPH03120044A (en) * 1989-10-03 1991-05-22 Daicel Chem Ind Ltd Laminated film
JP2002331578A (en) * 2001-05-08 2002-11-19 Okura Ind Co Ltd Sealant film of aluminum foil laminated film for high retort
JP2003266615A (en) 2002-03-20 2003-09-24 Dainippon Printing Co Ltd Sheet for decorative molding and decorative molded article
JP2005168810A (en) * 2003-12-11 2005-06-30 Fujimori Kogyo Co Ltd Double cell container
JP2006007508A (en) * 2004-06-24 2006-01-12 Toppan Printing Co Ltd Laminated packaging material having oxygen barrier properties and reduced in occurrence of pinhole and laminated packaging bag
JP2007136783A (en) * 2005-11-16 2007-06-07 Tohcello Co Ltd Laminated film and packaging material made of laminated film
JP2008094074A (en) 2005-12-28 2008-04-24 Dainippon Printing Co Ltd Decorated sheet for insert molding
JP2010005935A (en) * 2008-06-27 2010-01-14 Toray Advanced Film Co Ltd Composite film
JP2012240421A (en) 2011-05-20 2012-12-10 Leonhard Kurz Stiftung & Co Kg In-mold decoration method and device
JP2013180792A (en) * 2012-03-01 2013-09-12 Line Plast:Kk Cover tape for packaging chip type electronic part
WO2013161291A1 (en) * 2012-04-26 2013-10-31 出光ユニテック株式会社 Laminated body and method for constructing same
JP2014198415A (en) * 2013-03-29 2014-10-23 出光ユニテック株式会社 Composite molded article
WO2017126663A1 (en) * 2016-01-22 2017-07-27 出光ユニテック株式会社 Laminate, molded article in which laminate is used, and method for manufacturing same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MACROMOLECULES, vol. 8, 1975, pages 687
See also references of EP3683052A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065999A1 (en) * 2019-10-03 2021-04-08 出光ユニテック株式会社 Sheet, laminate, shaped object, and method for producing shaped object
WO2022080084A1 (en) * 2020-10-16 2022-04-21 出光ユニテック株式会社 Resin sheet, laminate, molded body, and method for producing molded body

Also Published As

Publication number Publication date
EP3683052A1 (en) 2020-07-22
JPWO2019054397A1 (en) 2020-10-15
US20200276796A1 (en) 2020-09-03
EP3683052A4 (en) 2021-07-07

Similar Documents

Publication Publication Date Title
JP5331938B2 (en) Multilayer film, decorative molding film and molded article
JP5544686B2 (en) Multi-layer film for simultaneous injection molding
TWI617443B (en) Multilayer film, film for decorative molding, and molded body
JP5544685B2 (en) Multi-layer film for simultaneous injection molding
JP2007507374A (en) Multilayer articles comprising polycarbonate and polypropylene and methods for their production
KR20070106727A (en) Multilayer sheet for thermal forming, formed body, injection molded body and method for producing same
WO2019054397A1 (en) Laminate, molded article, and method for producing molded article
TWI725959B (en) Decorative sheet
US20010053454A1 (en) Laminated film and structure comprising same
US9944053B2 (en) Laminate sheet, method of manufacturing the laminate sheet, and article using the laminate sheet
JP4794487B2 (en) Resin structure capable of white marking and white mark forming structure
JP6263557B2 (en) Resin composition and molded article using the same
JP4612133B2 (en) Resin composition for coating metal plate, resin film using the same, resin-coated metal plate, and resin-coated metal container
JP6963392B2 (en) Laminated body, molded body and manufacturing method of molded body
US6818302B2 (en) Laminate
JP5586177B2 (en) Laminated sheet and metal plate coated with laminated sheet
JP2004284019A (en) Brilliant sheet
JP2003253111A (en) Resin composition, laminate-molded article and recycling method
WO2022080084A1 (en) Resin sheet, laminate, molded body, and method for producing molded body
WO2024111437A1 (en) Thermoforming sheet and decorative sheet
JP2013043390A (en) Laminate and method of manufacturing the same
JP4880320B2 (en) Metal-deposited laminate
JP4844062B2 (en) Decorative sheet for injection molding
JPH1016154A (en) Laminated decorative sheet and manufacture thereof
JP2010006020A (en) Laminated sheet, embossed design sheet, metal sheet coated with embossed design sheet, prefabricated bath member, building interior material, steel furniture member, and household electric product case member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855801

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019542256

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018855801

Country of ref document: EP

Effective date: 20200414