WO2022077969A1 - 一种单一或多耦合转子系统故障测试系统及故障诊断方法 - Google Patents

一种单一或多耦合转子系统故障测试系统及故障诊断方法 Download PDF

Info

Publication number
WO2022077969A1
WO2022077969A1 PCT/CN2021/105473 CN2021105473W WO2022077969A1 WO 2022077969 A1 WO2022077969 A1 WO 2022077969A1 CN 2021105473 W CN2021105473 W CN 2021105473W WO 2022077969 A1 WO2022077969 A1 WO 2022077969A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating shaft
shaft
fault
data
coupling
Prior art date
Application number
PCT/CN2021/105473
Other languages
English (en)
French (fr)
Inventor
钱冰
冯治国
蔡银辉
冉垠康
丁强
佘斌
Original Assignee
国能大渡河检修安装有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国能大渡河检修安装有限公司 filed Critical 国能大渡河检修安装有限公司
Priority to US17/714,642 priority Critical patent/US20230332981A1/en
Priority to CA3155904A priority patent/CA3155904A1/en
Priority to GB2201955.8A priority patent/GB2608212A/en
Publication of WO2022077969A1 publication Critical patent/WO2022077969A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • G01M13/022Power-transmitting couplings or clutches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • G01M13/028Acoustic or vibration analysis

Definitions

  • the invention relates to the technical field of fault testing of rotating machinery, and more particularly, to a fault testing system and a fault diagnosis method for a single or multiple coupled rotor system.
  • Rotating mechanical equipment can be seen everywhere in our daily life, and its application is very common.
  • the fault problem of rotating mechanical equipment has always attracted people's attention.
  • the failure of rotating machinery can affect the quality of products in light, and lead to production stoppage in serious cases, affecting the entire production process.
  • Predictive maintenance based on condition monitoring finds faults before they occur and takes corresponding measures, which is an effective means to ensure the normal operation of equipment and avoid economic losses.
  • the purpose of the present invention is to provide a single or multiple coupled rotor system fault testing system and fault diagnosis method.
  • a single or multiple coupled rotor system fault testing system comprising: a test platform, the test platform is used to test the performance of the rotating shaft; the test platform includes an installation platform , motor, coupling, bearing seat, sliding bearing, balance disc, heating sleeve, brake and impeller; the coupling is a membrane coupling, used for the connection between the rotating shaft and the motor and the brake; the sliding The bearing is arranged on the bearing seat, the sliding bearing includes a circular or elliptical bearing pad, the bearing pad includes an upper bearing pad and a lower bearing pad arranged oppositely, a groove is arranged at the bottom of the lower bearing pad, and the groove runs along the lower
  • the bearing bush is arranged horizontally in the axial direction, and is symmetrically arranged relative to the center of the lower bearing bush, the length of the groove is 1/2-2/3 of the length of the lower bearing bush, and the two sides of the groove in the width direction are relative to the center of the sliding bearing The included angle is 90
  • a data acquisition system the data acquisition system is used to collect the operating state data of the rotating shaft;
  • the data acquisition system includes a multi-channel data acquisition unit, a rotational speed sensor for detecting the rotational speed of the motor, a vibration sensor for collecting the vibration data of the rotating shaft, and a Displacement sensor components used to test the displacement of the shaft in the X and Y directions;
  • the control system is used for receiving the data collected by the data acquisition system, analyzing and processing the data, and controlling the test platform according to the analysis result.
  • connection and positioning structure is provided between the initial section of the bearing pad, the filling section at the end of the bearing pad, and the filling section in the middle of the bearing pad. They are connected by the connection and positioning structure.
  • the connection and positioning structure includes limit grooves and connecting clips arranged on the initial section of the bearing bush, one end of the filling section at the end of the bearing bush, and two ends of the filling section in the middle of the bearing bush.
  • the limiting grooves are arranged oppositely on the inner and outer sides of the bearing bush
  • the connecting clips include two oppositely arranged clips, and the clips can be correspondingly arranged in the limiting grooves.
  • the present invention also relates to a single or multiple coupled rotor system fault diagnosis method, comprising the following steps:
  • R1 Install the rotating shaft on the test platform, and set a heating jacket in the middle of the rotating shaft.
  • the heating length of the heating jacket is 100-200 mm, and a gap of 0.5-1 mm is set between the heating jacket and the rotating shaft.
  • R4 Collect the vibration and displacement data of the rotating shaft, and measure the deformation of the heating section of the rotating shaft;
  • Data sampling points are respectively set at both ends of the rotating shaft and at the setting position of the coupling, and vibration sensors and displacement sensors are respectively set at the sampling points.
  • the vibration sensor is fixedly installed by magnetic attraction, and each sampling point is set Two displacement sensors, two sensors are arranged in the horizontal direction and the vertical direction, respectively, to detect the displacement data of the rotating shaft in the X direction and the Y direction, and a speed sensor is set between the motor output shaft and the coupling for collecting Speed signal, feedback control of motor shaft;
  • the present invention has the following beneficial effects:
  • the system adopts a modular design. By setting different rotating conditions and structural forms of the flexible rotor system to simulate the operation state and fault type of the rotor system, the simulation test of the rotor system under different fault states can be realized, and the simulation test can be well guaranteed. Accuracy of test performance.
  • a groove structure is set on the bearing bush of the sliding bearing of the system to increase the specific pressure between the main shaft journal and the bearing bush to increase the relative eccentricity of the journal in the bearing bush, and the bearing bush adopts a combined structure, which can effectively improve the rotor system.
  • the stability of operation ensures the accuracy of the test data of the fault test system, and provides a stable and reliable data basis for the establishment of the fault judgment model.
  • the present invention can realize accurate prediction and early warning of rotor system failures by establishing a fault judgment model of the rotor system under different fault conditions, and can accurately analyze the fault types to ensure the reliability of the rotor system operation.
  • Fig. 1 is the structural representation of test platform in the present invention
  • Figure 2 is a schematic cross-sectional view of the groove on the bearing bush of the present invention.
  • Figure 3a is a schematic diagram of the combined structure of the bearing bush of the present invention.
  • Figure 3b is the right side view of the structure of the initial section of the bearing bush of the present invention.
  • Figure 3c is a left view of the structure of the filling section in the middle of the bearing bush of the present invention.
  • the purpose of the present invention is to provide a single or multiple coupled rotor system fault testing system and fault diagnosis method to solve the problems existing in the prior art.
  • the fault testing system in this embodiment includes:
  • test platform which is used to test the performance of the rotating shaft; the test platform includes a mounting platform, a motor 1, a coupling 2, a bearing seat 3, a sliding bearing 4, a balance disc 5, a heating jacket 6, a brake 7 and an impeller 8.
  • Coupling 2 is a membrane type coupling, which is used for the connection between the rotating shaft, the motor and the brake.
  • the membrane coupling is used for the connection between the motor and the transmission shaft in the case of high precision. It can be used in the occasion of misalignment and eccentricity caused by the radial loading process. It has an elastic effect and can compensate for radial, angular and axial deviations. , and can withstand a certain high temperature.
  • the balance disc 5 can be quickly disassembled and adjusted by moving.
  • the diameter is 140mm and the thickness is 25mm. There are 20 holes evenly distributed on the circumference of the balance disc. Unbalanced loading can be performed on both sides.
  • the material is 45 steel.
  • HZ-6J/Q type brake is used, the rated torque is 6N ⁇ M, and the maximum speed is 15000rpm. Its characteristics are that it can be divided into short-time working mode and continuous working mode. 2000W, the torque tolerance is 0.2%; it includes a torque loading kit and a programmable loader, when the motor 1 control fails, it can realize the braking control of the rotor system, and can also simulate the failure of the rotor system during the acceleration and deceleration process Simulation experiment.
  • the impeller 8 adopts a four-bladed impeller, which is stable in structure and easy to install, and can simulate the coupling experiment of the impeller-rotating shaft system.
  • the sliding bearing 4 is arranged on the bearing seat 3, and frame sealing rings are installed on both sides of the sliding bearing on the bearing seat 3 to avoid oil leakage.
  • the sliding bearing 4 in this embodiment includes a circular or elliptical bearing pad, the bearing pad includes an upper bearing pad and a lower bearing pad 401 arranged oppositely, and a groove 402 is provided at the bottom of the lower bearing pad 401, and the groove 402 runs along the
  • the axial direction of the lower bearing bush is horizontally arranged and symmetrically arranged relative to the center of the lower bearing bush.
  • the length of the groove 402 is 1/2-2/3 of the length of the lower bearing bush 401, preferably 2/3 of the length of the lower bearing bush;
  • the included angle between the two sides of the groove 402 relative to the center of the sliding bearing in the width direction is 90°, and the depth of the groove is 0.2-0.5 mm.
  • the upper bearing bush and the lower bearing bush include a bearing bush initial section 403, a bearing bush end filling section 404 and at least one bearing bush middle filling section 405.
  • the bearing bush middle filling section 405 is arranged in cooperation with Between the initial section 403 of the bearing pad and the filling section 404 at the end of the bearing pad.
  • the bearing bush adopts a combined structure to adjust the length of the bearing bush, thereby changing the specific pressure, so as to effectively avoid the oil film resonance area, and ensure the stability of the system during operation and the reliability of the simulation test results.
  • grooves can be provided at the bottom of each lower bearing pad respectively, or on the initial section of the bearing pad and the filling section at the end of the bearing pad, or only in the initial section of the bearing pad.
  • a matching connection and positioning structure is provided between the initial bearing pad section 403 , the bearing pad end filling section 404 and the bearing pad middle filling section 405 , the bearing pad initial section 403 , the bearing pad end filling section 404 and the bearing pad middle filling section 405 are connected through the connection positioning structure.
  • the connecting and positioning structure includes a limiting groove 407 arranged at one end of the initial section of the bearing bush, a connecting clip 406 arranged at one end of the filling section 404 at the end of the bearing bush, and a connecting clip 406 arranged at both ends of the filling section 405 in the middle of the bearing bush.
  • Limiting slot 407 and connecting clip 406 the limiting slot 407 is oppositely arranged on the inner and outer sides of the bearing bush, the connecting clip 406 includes two oppositely arranged clips, and the clips can be correspondingly set to the limit. in bit slot 407 .
  • connecting holes are arranged on the connecting clips and the limit grooves, and connecting pins are correspondingly arranged in the connecting holes for fixed connection between the initial section of the bearing bush, the filling section at the end of the bearing bush, and the filling section in the middle of the bearing bush; between the connecting clip and the limiter Rubber pads are arranged between the grooves to fill the gap between the connecting clip and the limit groove, and can effectively ensure the stability of the connection between the bearing bushes of each section.
  • a data acquisition system the data acquisition system is used to collect the operating state data of the rotating shaft;
  • the data acquisition system includes a multi-channel data acquisition unit, a rotational speed sensor for detecting the rotational speed of the motor, a vibration sensor for collecting the vibration data of the rotating shaft, and a Displacement sensor assembly for testing the displacement of the shaft in the X and Y directions.
  • the input channels of the multi-channel data acquisition unit include 16 AI (built-in anti-aliasing filter), two-channel DI, input channel types include acceleration, velocity, displacement, voltage, current, pressure, temperature, key and other data inputs, Guaranteed to receive signals from multiple sensors at the same time.
  • AI built-in anti-aliasing filter
  • two-channel DI input channel types include acceleration, velocity, displacement, voltage, current, pressure, temperature, key and other data inputs, Guaranteed to receive signals from multiple sensors at the same time.
  • a speed sensor is used to monitor the output speed of the motor to prevent the motor from malfunctioning; the speed sensor adopts the SZCB-05 type speed sensor, which uses the principle of photoelectric reflection to obtain the rotation signal, which is characterized by high resolution, long distance, wide frequency response, and reliability. Sex is high.
  • the sensor has a built-in amplifier and shaping circuit, and the output is a square wave signal with stable amplitude.
  • the control system is used for receiving the data collected by the data acquisition system, analyzing and processing the data, and controlling the test platform according to the analysis result.
  • the present invention also relates to a single or multiple coupled rotor system fault diagnosis method, comprising the following steps:
  • R1 Install the rotating shaft on the test platform, and set a heating jacket in the middle of the rotating shaft.
  • the heating length of the heating jacket is 100-200 mm, and a gap of 0.5-1 mm is set between the heating jacket and the rotating shaft.
  • R4 Collect the vibration and displacement data of the rotating shaft, and measure the deformation of the heating section of the rotating shaft;
  • Data sampling points are respectively set at both ends of the rotating shaft and at the setting position of the coupling, and vibration sensors and displacement sensors are respectively set at the sampling points.
  • the vibration sensor is fixedly installed by magnetic attraction, and each sampling point is set Two displacement sensors, two sensors are arranged in the horizontal direction and the vertical direction, respectively, to detect the displacement data of the rotating shaft in the X direction and the Y direction, and a speed sensor is set between the motor output shaft and the coupling for collecting Speed signal, feedback control of motor shaft;

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

一种单一或多耦合转子系统故障测试系统及故障诊断方法,系统采用模块化设计,通过设定柔性转子系统不同转动条件和结构形式,模拟转子系统的运行状态和故障类型,可实现对转子系统不同故障状态下的模拟测试,能够很好地保证模拟试验测试性能的准确性。通过建立转子系统在不同故障工况下的故障判断模型,可实现对转子系统故障进行准确的预测和预警,并能够对故障类型进行准确的分析,保证转子系统运行的可靠性。

Description

一种单一或多耦合转子系统故障测试系统及故障诊断方法 技术领域
本发明涉及旋转机械故障测试技术领域,更具体地说,它涉及一种单一或多耦合转子系统故障测试系统及故障诊断方法。
背景技术
旋转机械设备在我们日常生活中随处可见,应用及其普遍,对于旋转机械设备的故障问题,一直以来备受人们的关注。旋转机械故障轻则影响产品质量,重则导致停产,影响整个生产过程。基于状态监测的预知维护在故障发生前发现故障并采取相应措施,是保障设备正常运行、避免经济损失的有效手段。
发明内容
针对现有技术存在的不足,本发明的目的在于提供一种单一或多耦合转子系统故障测试系统及故障诊断方法。
本发明的上述技术目的是通过以下技术方案得以实现的:一种单一或多耦合转子系统故障测试系统,包括:测试平台,所述测试平台用于测试转轴的性能;所述测试平台包括安装平台、电机、联轴器、轴承座、滑动轴承、平衡盘、加热套、制动器和叶轮;所述联轴器为膜式联轴器,用于转轴与电机、制动器之间的连接;所述滑动轴承设置在轴承座上,所述滑动轴承包括圆形或椭圆形的轴瓦,所述轴瓦包括相对设置的上轴瓦和下轴瓦,所述下轴瓦的底部设置有沟槽,所述沟槽沿下轴瓦轴向方向水平设置,且相对下轴瓦中心对称设置,所述沟槽的长度为下轴瓦长度的1/2-2/3,所述沟槽在宽度方向上其两侧相对于滑动轴承中心的夹角为90°,所述沟槽深度为0.2-0.5mm;所述上轴瓦和下轴瓦均为组合式结构,所述上轴瓦、下轴瓦包括有轴瓦初始段、轴瓦端部填充段和/或至少一个轴瓦中部填充段,所述轴瓦中部填充段配合设置在轴瓦初始段和轴瓦端部填充段之间;
数据采集系统,所述数据采集系统用于采集转轴的运行状态数据;所述数据采集系统包括多通道数据采集单元、用于检测电机转速的转速传感 器、用于采集转轴振动数据的振动传感器和用于测试转轴在X方向和Y方向上位移的位移传感器组件;
控制系统,所述控制系统用于接收数据采集系统采集的数据并对数据进行分析和处理,并根据分析的结果对测试平台进行控制。
上述技术方案中,进一步地,所述轴瓦初始段、轴瓦端部填充段、轴瓦中部填充段之间设置有配合的连接定位结构,所述轴瓦初始段、轴瓦端部填充段、轴瓦中部填充段之间通过所述连接定位结构进行连接,所述连接定位结构包括设置在轴瓦初始段、轴瓦端部填充段一端端部及设置在轴瓦中部填充段两端端部的限位槽和连接夹片,所述限位槽相对设置在轴瓦的内外两侧,所述连接夹片包括两个相对设置的夹片,所述夹片可对应配合设置到限位槽内。
本发明中还涉及一种单一或多耦合转子系统故障诊断方法,包括以下步骤:
1)测试在正常工况下和不同故障工况下转子系统的运行状态数据,并绘制运行曲线图,建立不同故障状态判断模型,包括转轴裂纹故障判断模型、轴系热变形故障判断模型、联轴器裂纹故障判断模型;
所述建立所述转轴裂纹故障判断模型的步骤为:
Z1、将正常无裂纹的转轴安装到测试平台上,设置振动传感器、位移传感器,所述振动传感器采用磁吸方式固定设置于轴承座上,所述每个采样点分别设置两个位移传感器,两个传感器分别沿水平方向和竖直方向设置,分别用于检测转轴在X方向和Y方向的位移数据;
Z2、控制电机启动,使转轴匀速上升到测试系统的临界转速,待转速稳定后,获取传感器采集的振动数据;
Z3、调节制动器扭矩大小,均匀调节转轴的转速,使测试系统处于1/2临界转速附近并以ΔV为变量调节转轴转速,采集不同转速下的振动数据;
Z4、将预制有裂纹的裂纹轴安装到测试平台上,重复步骤Z2和Z3;
Z5、对采集的数据进行分析,得到正常轴与裂纹轴的振动曲线、轴心轨迹曲线图,对比正常轴与裂纹轴之间的振动曲线、轴心轨迹曲线,建立转轴裂纹故障判断模型;
所述建立轴系热变形故障判断模型的步骤为:
R1、将转轴安装到测试平台上,在转轴中部位置设置加热套,所述加热套的加热长度为100-200mm,加热套与转轴之间设置有0.5-1mm的间隙,所述间隙内填充耐高温绝缘油;
R2、在转轴的两端及加热段位置分别设置数据采样点,在所述采样点分别设置振动传感器、位移传感器,所述振动传感器采用磁吸方式固定设置,所述每个采样点分别设置两个位移传感器,两个传感器分别沿水平方向和竖直方向设置,分别用于检测转轴在X方向和Y方向的位移数据;
R3、启动电机和加热套,待加热套温度升至预定温度后,维持转轴继续转动15-20min,使转轴加热端加热到预定温度;
R4、采集转轴的振动、位移数据,并测量转轴加热段的形变量;
R5、调节加热套的温度设定,设定一个初始温度T1,以ΔT的温度梯度为变量调节加热温度,重复步骤R3和R4;
R6、对采集的数据进行分析,得到不同温度下转轴形变量、转轴振动、轴心轨迹曲线,建立轴系热变形故障判断模型;
所述建立联轴器裂纹故障判断模型的步骤为:
L1、将转轴安装到测试平台上,转轴与电机输出轴之间采用正常的联轴器连接;
L2、在转轴两端及联轴器设置位置分别设置数据采样点,在所述采样点分别设置振动传感器、位移传感器,所述振动传感器采用磁吸方式固定设置,所述每个采样点分别设置两个位移传感器,两个传感器分别沿水平方向和竖直方向设置,分别用于检测转轴在X方向和Y方向的位移数据,在电机输出轴与联轴器之间设置转速传感器,用于采集转速信号,对电机转轴进行反馈控制;
L3、控制电机启动,使转轴匀速上升到测试系统的临界转速,待转速稳定后,获取采集的检测数据;
L4、调节制动器扭矩大小,均匀调节转轴的转速,以ΔV为变量调节转轴转速,直至测试系统处于1/2临界转速附近时停止转速调节,采集不同转速下的数据;
L5、采用预制有裂纹的联轴器连接转轴与电机输出轴,重复步骤L2、L3和L4;
L6、对采集的数据进行分析,得到正常联轴器与预制裂纹联轴器的振动曲线、轴心轨迹曲线图,对比正常联轴器与预制裂纹联轴器之间的振动曲线、轴心轨迹曲线,建立联轴器裂纹故障判断模型;
2)在转子系统运行时,实时采集转子系统运行参数,将其与建立的故障状态判断模型进行比对分析,对转子系统的故障进行预警,判断并预测转子系统的故障类型。
综上所述,本发明具有以下有益效果:
1)系统采用模块化设计,通过设定柔性转子系统不同转动条件和结构形式模拟转子系统的运行状态和故障类型,可实现对转子系统不同故障状态下的模拟测试,能够很好地保证模拟试验测试性能的准确性。
2)系统滑动轴承的轴瓦上设置沟槽结构,增加主轴轴颈与轴瓦之间的比压,以增大轴颈在轴瓦内的相对偏心率,并且轴瓦采用组合式结构,可有效提高转子系统运行的稳定性,保证故障测试系统测试数据的准确性,为故障判断模型的建立提供稳定可靠的数据基础。
3)本发明通过建立转子系统在不同故障工况下的故障判断模型,可实现对转子系统故障进行准确的预测和预警,并能够对故障类型进行准确的分析,保证转子系统运行的可靠性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明中测试平台结构示意图;
图2为本发明轴瓦上沟槽截面示意图;
图3a)为本发明轴瓦组合式结构示意图;
图3b)为本发明轴瓦初始段结构右视图;
图3c)为本发明轴瓦中部填充段结构左视图;
图中:1、电机,2、联轴器,3、轴承座,4、滑动轴承,401、下轴 瓦,402、沟槽,403、轴瓦初始段,404、轴瓦端部填充段,405、轴瓦中部填充段,406、连接夹片,407、限位槽,5、平衡盘,6、加热套,7、制动器,8、叶轮,9、转轴,10、传感器支架,11、加热套支架,12、叶轮轴。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种单一或多耦合转子系统故障测试系统及故障诊断方法,以解决现有技术存在的问题。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图1所述,本实施例中的故障测试系统,包括:
测试平台,所述测试平台用于测试转轴的性能;所述测试平台包括安装平台、电机1、联轴器2、轴承座3、滑动轴承4、平衡盘5、加热套6、制动器7和叶轮8。
联轴器2为膜式联轴器,用于转轴与电机、制动器之间的连接。膜式联轴器用于精度较高场合的电机与传动轴之间的连接,可用于径向加载过程产生的不对中、偏心的场合,具有弹性作用可补偿径向、角向和轴向的偏差,并能够承受一定的高温。
平衡盘5可快速拆卸并移动调整,直径为140mm,厚度为25mm,平衡盘圆周上均布20个孔位,两面可进行不平衡量的加载,材质为45钢。
本实施例中采用HZ-6J/Q型制动器,额定扭矩为6N·M,最高转速15000rpm,其特点为可分短时间工作模式及连续工作模式,短时间模式每5min功率2300W,连续工作模式为2000W,扭矩公差为0.2%;其包括一台转矩加载套件和一台可编程加载器,当电机1控制失效时,可实现 转子系统的制动控制,也可模拟转子系统升降速过程的故障模拟实验。
叶轮8采用四幅叶片式叶轮,结构稳定且安装简易,能够模拟叶轮-转轴系统耦合实验。
滑动轴承4设置在轴承座3上,轴承座3上位于滑动轴承两侧安装有骨架密封圈,避免漏油。
本实施例中的滑动轴承4包括圆形或椭圆形的轴瓦,所述轴瓦包括相对设置的上轴瓦和下轴瓦401,所述下轴瓦401的底部设置有沟槽402,所述沟槽402沿下轴瓦轴向方向水平设置,且相对下轴瓦中心对称设置,所述沟槽402的长度为下轴瓦401长度的1/2-2/3,优选为下轴瓦长度的2/3;所述沟槽402在宽度方向上其两侧相对于滑动轴承中心的夹角为90°,所述沟槽深度为0.2-0.5mm。在轴瓦底部设置沟槽结构,并对沟槽的尺寸参数进行优化设置,能够大幅增加转轴轴颈与轴瓦之间的比压,比压可提高15%-20%,比压的增加可显著增大轴颈在轴瓦内的相对偏心率,从而保证测试平台上转子轴承系统运行的稳定性,保证转轴运行时的稳定性,使采集的数据更加准确。
上轴瓦和下轴瓦均为组合式结构,所述上轴瓦、下轴瓦包括有轴瓦初始段403、轴瓦端部填充段404和至少一个轴瓦中部填充段405,所述轴瓦中部填充段405配合设置在轴瓦初始段403和轴瓦端部填充段404之间。轴瓦采用组合式结构可对轴瓦长度进行调节,从而改变比压,以有效避开油膜共振区域,确保系统运行过程中的稳定性及模拟试验结果的可靠性。采用组合式结构的下轴瓦中,可在各段下轴瓦底部分别设置沟槽或在轴瓦初始段和轴瓦端部填充段上设置沟槽,或仅在轴瓦初始段设置沟槽。
优选地,所述轴瓦初始段403、轴瓦端部填充段404、轴瓦中部填充段405之间设置有配合的连接定位结构,所述轴瓦初始段403、轴瓦端部填充段404、轴瓦中部填充段405之间通过所述连接定位结构进行连接。所述连接定位结构包括设置在轴瓦初始段一端端部的限位槽407、设置在轴瓦端部填充段404一端端部的连接夹片406及分别设置在轴瓦中部填充段405两端端部的限位槽407和连接夹片406,所述限位槽407相对设置在轴瓦的内外两侧,所述连接夹片406包括两个相对设置的夹片,所述夹片可对应配合设置到限位槽407内。在连接夹片和限位槽上相应设置由连 接孔,连接孔内对应设置连接销对轴瓦初始段、轴瓦端部填充段、轴瓦中部填充段之间进行固定连接;在连接夹片和限位槽之间设置胶垫,对连接夹片和限位槽之间的间隙进行填充,并可有效保证各段轴瓦之间连接的稳定性。
数据采集系统,所述数据采集系统用于采集转轴的运行状态数据;所述数据采集系统包括多通道数据采集单元、用于检测电机转速的转速传感器、用于采集转轴振动数据的振动传感器和用于测试转轴在X方向和Y方向上位移的位移传感器组件。
多通道数据采集单元的输入通道包括16个AI(内置抗混叠滤波器)、两通道DI,输入通道类型包括加速度、速度、位移、电压、电流、压力、温度、键相等多种数据输入,保证可同时接收多种传感器的信号。
本实施例中采用转速传感器用于监测电机输出转速,防止电机失灵;转速传感器采用SZCB-05型转速传感器,利用光电反射原理获得转动信号,其特点是分辨高、距离远、频响宽、可靠性高。该传感器内置放大整形电路,输出为幅度稳定的方波信号,主要应用于测试环境较差、振动剧烈,用于测量转速、周期、速度。
控制系统,所述控制系统用于接收数据采集系统采集的数据并对数据进行分析和处理,并根据分析的结果对测试平台进行控制。
本发明中还涉及一种单一或多耦合转子系统故障诊断方法,包括以下步骤:
1)测试在正常工况下和不同故障工况下转子系统的运行状态数据,并绘制运行曲线图,建立不同故障状态判断模型,包括转轴裂纹故障判断模型、轴系热变形故障判断模型、联轴器裂纹故障判断模型;
所述建立所述转轴裂纹故障判断模型的步骤为:
Z1、将正常无裂纹的转轴安装到测试平台上,设置振动传感器、位移传感器,所述振动传感器采用磁吸方式固定设置于轴承座上,所述每个采样点分别设置两个位移传感器,两个传感器分别沿水平方向和竖直方向设置,分别用于检测转轴在X方向和Y方向的位移数据;
Z2、控制电机启动,使转轴匀速上升到测试系统的临界转速,待转速稳定后,获取传感器采集的振动数据;
Z3、调节制动器扭矩大小,均匀调节转轴的转速,使测试系统处于1/2临界转速附近并以ΔV为变量调节转轴转速,采集不同转速下的振动数据;
Z4、将预制有裂纹的裂纹轴安装到测试平台上,重复步骤Z2和Z3;
Z5、对采集的数据进行分析,得到正常轴与裂纹轴的振动曲线、轴心轨迹曲线图,对比正常轴与裂纹轴之间的振动曲线、轴心轨迹曲线,建立转轴裂纹故障判断模型;
所述建立轴系热变形故障判断模型的步骤为:
R1、将转轴安装到测试平台上,在转轴中部位置设置加热套,所述加热套的加热长度为100-200mm,加热套与转轴之间设置有0.5-1mm的间隙,所述间隙内填充耐高温绝缘油;
R2、在转轴的两端及加热段位置分别设置数据采样点,在所述采样点分别设置振动传感器、位移传感器,所述振动传感器采用磁吸方式固定设置,所述每个采样点分别设置两个位移传感器,两个传感器分别沿水平方向和竖直方向设置,分别用于检测转轴在X方向和Y方向的位移数据;
R3、启动电机和加热套,待加热套温度升至预定温度后,维持转轴继续转动15-20min,使转轴加热端加热到预定温度;
R4、采集转轴的振动、位移数据,并测量转轴加热段的形变量;
R5、调节加热套的温度设定,设定一个初始温度T1,以ΔT的温度梯度为变量调节加热温度,重复步骤R3和R4;
R6、对采集的数据进行分析,得到不同温度下转轴形变量、转轴振动、轴心轨迹曲线,建立轴系热变形故障判断模型;
所述建立联轴器裂纹故障判断模型的步骤为:
L1、将转轴安装到测试平台上,转轴与电机输出轴之间采用正常的联轴器连接;
L2、在转轴两端及联轴器设置位置分别设置数据采样点,在所述采样点分别设置振动传感器、位移传感器,所述振动传感器采用磁吸方式固定设置,所述每个采样点分别设置两个位移传感器,两个传感器分别沿水平方向和竖直方向设置,分别用于检测转轴在X方向和Y方向的位移数据,在电机输出轴与联轴器之间设置转速传感器,用于采集转速信号,对 电机转轴进行反馈控制;
L3、控制电机启动,使转轴匀速上升到测试系统的临界转速,待转速稳定后,获取采集的检测数据;
L4、调节制动器扭矩大小,均匀调节转轴的转速,以ΔV为变量调节转轴转速,直至测试系统处于1/2临界转速附近时停止转速调节,采集不同转速下的数据;
L5、采用预制有裂纹的联轴器连接转轴与电机输出轴,重复步骤L2、L3和L4;
L6、对采集的数据进行分析,得到正常联轴器与预制裂纹联轴器的振动曲线、轴心轨迹曲线图,对比正常联轴器与预制裂纹联轴器之间的振动曲线、轴心轨迹曲线,建立联轴器裂纹故障判断模型
2)在转子系统运行时,实时采集转子系统运行参数,将其与建立的故障状态判断模型进行比对分析,对转子系统的故障进行预警,判断并预测转子系统的故障类型。
通过建立转子系统在不同故障工况下的故障判断模型,可实现对转子系统故障进行准确的预测和预警,并能够对故障类型进行准确的分析,保证转子系统运行的可靠性。本发明应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上,本说明书内容不应理解为对本发明的限制。

Claims (3)

  1. 一种单一或多耦合转子系统故障测试系统,其特征在于,包括:
    测试平台,所述测试平台用于测试转轴的性能;所述测试平台包括安装平台、电机、联轴器、轴承座、滑动轴承、平衡盘、加热套、制动器和叶轮;所述联轴器为膜式联轴器,用于转轴与电机、制动器之间的连接;所述滑动轴承设置在轴承座上,所述滑动轴承包括圆形或椭圆形的轴瓦,所述轴瓦包括相对设置的上轴瓦和下轴瓦,所述下轴瓦的底部设置有沟槽,所述沟槽沿下轴瓦轴向方向水平设置,且相对下轴瓦中心对称设置,所述沟槽的长度为下轴瓦长度的1/2-2/3,所述沟槽在宽度方向上其两侧相对于滑动轴承中心的夹角为90°,所述沟槽深度为0.2-0.5mm;所述上轴瓦和下轴瓦均为组合式结构,所述上轴瓦、下轴瓦包括有轴瓦初始段、轴瓦端部填充段和/或至少一个轴瓦中部填充段,所述轴瓦中部填充段配合设置在轴瓦初始段和轴瓦端部填充段之间;
    数据采集系统,所述数据采集系统用于采集转轴的运行状态数据;所述数据采集系统包括多通道数据采集单元、用于检测电机转速的转速传感器、用于采集转轴振动数据的振动传感器和用于测试转轴在X方向和Y方向上位移的位移传感器组件;
    控制系统,所述控制系统用于接收数据采集系统采集的数据并对数据进行分析和处理,并根据分析的结果对测试平台进行控制。
  2. 根据权利要求1所述的单一或多耦合转子系统故障测试系统,其特征在于:所述轴瓦初始段、轴瓦端部填充段、轴瓦中部填充段之间设置有配合的连接定位结构,所述轴瓦初始段、轴瓦端部填充段、轴瓦中部填充 段之间通过所述连接定位结构进行连接,所述连接定位结构包括设置在轴瓦初始段、轴瓦端部填充段一端端部及设置在轴瓦中部填充段两端端部的限位槽和连接夹片,所述限位槽相对设置在轴瓦的内外两侧,所述连接夹片包括两个相对设置的夹片,所述夹片可对应配合设置到限位槽内。
  3. 一种单一或多耦合转子系统故障诊断方法,其特征在于,包括以下步骤:
    1)测试在正常工况下和不同故障工况下转子系统的运行状态数据,并绘制运行曲线图,建立不同故障状态判断模型,包括转轴裂纹故障判断模型、轴系热变形故障判断模型、联轴器裂纹故障判断模型;
    所述建立所述转轴裂纹故障判断模型的步骤为:
    Z1、将正常无裂纹的转轴安装到测试平台上,设置振动传感器、位移传感器,所述振动传感器采用磁吸方式固定设置于轴承座上,所述每个采样点分别设置两个位移传感器,两个传感器分别沿水平方向和竖直方向设置,分别用于检测转轴在X方向和Y方向的位移数据;
    Z2、控制电机启动,使转轴匀速上升到测试系统的临界转速,待转速稳定后,获取传感器采集的振动数据;
    Z3、调节制动器扭矩大小,均匀调节转轴的转速,使测试系统处于1/2临界转速附近并以ΔV为变量调节转轴转速,采集不同转速下的振动数据;
    Z4、将预制有裂纹的裂纹轴安装到测试平台上,重复步骤Z2和Z3;
    Z5、对采集的数据进行分析,得到正常轴与裂纹轴的振动曲线、轴心轨迹曲线图,对比正常轴与裂纹轴之间的振动曲线、轴心轨迹曲线,建 立转轴裂纹故障判断模型;
    所述建立轴系热变形故障判断模型的步骤为:
    R1、将转轴安装到测试平台上,在转轴中部位置设置加热套,所述加热套的加热长度为100-200mm,加热套与转轴之间设置有0.5-1mm的间隙,所述间隙内填充耐高温绝缘油;
    R2、在转轴的两端及加热段位置分别设置数据采样点,在所述采样点分别设置振动传感器、位移传感器,所述振动传感器采用磁吸方式固定设置,所述每个采样点分别设置两个位移传感器,两个传感器分别沿水平方向和竖直方向设置,分别用于检测转轴在X方向和Y方向的位移数据;
    R3、启动电机和加热套,待加热套温度升至预定温度后,维持转轴继续转动15-20min,使转轴加热端加热到预定温度;
    R4、采集转轴的振动、位移数据,并测量转轴加热段的形变量;
    R5、调节加热套的温度设定,设定一个初始温度T1,以ΔT的温度梯度为变量调节加热温度,重复步骤R3和R4;
    R6、对采集的数据进行分析,得到不同温度下转轴形变量、转轴振动、轴心轨迹曲线,建立轴系热变形故障判断模型;
    所述建立联轴器裂纹故障判断模型的步骤为:
    L1、将转轴安装到测试平台上,转轴与电机输出轴之间采用正常的联轴器连接;
    L2、在转轴两端及联轴器设置位置分别设置数据采样点,在所述采样点分别设置振动传感器、位移传感器,所述振动传感器采用磁吸方式固定设置,所述每个采样点分别设置两个位移传感器,两个传感器分别沿水 平方向和竖直方向设置,分别用于检测转轴在X方向和Y方向的位移数据,在电机输出轴与联轴器之间设置转速传感器,用于采集转速信号,对电机转轴进行反馈控制;
    L3、控制电机启动,使转轴匀速上升到测试系统的临界转速,待转速稳定后,获取采集的检测数据;
    L4、调节制动器扭矩大小,均匀调节转轴的转速,以ΔV为变量调节转轴转速,直至测试系统处于1/2临界转速附近时停止转速调节,采集不同转速下的数据;
    L5、采用预制有裂纹的联轴器连接转轴与电机输出轴,重复步骤L2、L3和L4;
    L6、对采集的数据进行分析,得到正常联轴器与预制裂纹联轴器的振动曲线、轴心轨迹曲线图,对比正常联轴器与预制裂纹联轴器之间的振动曲线、轴心轨迹曲线,建立联轴器裂纹故障判断模型;
    2)在转子系统运行时,实时采集转子系统运行参数,将其与建立的故障状态判断模型进行比对分析,对转子系统的故障进行预警,判断并预测转子系统的故障类型。
PCT/CN2021/105473 2020-10-15 2021-07-09 一种单一或多耦合转子系统故障测试系统及故障诊断方法 WO2022077969A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/714,642 US20230332981A1 (en) 2020-10-15 2021-07-09 Single Or Multi-Coupled Fault Test System And Fault Diagnosis Method For Rotor System
CA3155904A CA3155904A1 (en) 2020-10-15 2021-07-09 Single or multi-coupled fault test system and fault diagnosis method for rotor system
GB2201955.8A GB2608212A (en) 2020-10-15 2021-07-09 Fault test system and fault diagnosis method for single or multi-coupling rotor system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011101076.5 2020-10-15
CN202011101076.5A CN112304600B (zh) 2020-10-15 2020-10-15 一种单一或多耦合转子系统故障测试系统及故障诊断方法

Publications (1)

Publication Number Publication Date
WO2022077969A1 true WO2022077969A1 (zh) 2022-04-21

Family

ID=74327377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105473 WO2022077969A1 (zh) 2020-10-15 2021-07-09 一种单一或多耦合转子系统故障测试系统及故障诊断方法

Country Status (2)

Country Link
CN (1) CN112304600B (zh)
WO (1) WO2022077969A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114739654A (zh) * 2022-05-18 2022-07-12 山东科技大学 一种压缩机振动测试用数据采集设备及其采集方法
CN116046385A (zh) * 2023-03-07 2023-05-02 天津汉云工业互联网有限公司 基于齿形图的齿轮故障识别方法、装置、介质和设备
CN116625478A (zh) * 2023-07-21 2023-08-22 同日智能科技(徐州)有限公司 一种减速电机振动测试设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112304600B (zh) * 2020-10-15 2024-03-01 国能大渡河检修安装有限公司 一种单一或多耦合转子系统故障测试系统及故障诊断方法
US20230184612A1 (en) * 2020-10-15 2023-06-15 Chn Energy Dadu River Repair & Installation Co., Ltd. Radial fault simulation test system for rotary mechanical equipment
CN112304583A (zh) * 2020-10-15 2021-02-02 国电大渡河检修安装有限公司 一种旋转机械设备径向故障模拟测试系统
GB2608212A (en) * 2020-10-15 2022-12-28 Chn Energy Dadu River Repair & Installation Co Ltd Fault test system and fault diagnosis method for single or multi-coupling rotor system
CN113588272B (zh) * 2021-07-23 2022-09-09 上海交通大学 双转子叶片复合故障模拟试验台
CN114327970A (zh) * 2021-11-30 2022-04-12 浪潮(山东)计算机科技有限公司 一种光驱的故障确定方法、系统及相关装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103323274A (zh) * 2013-05-24 2013-09-25 上海交通大学 旋转机械状态监测与故障诊断系统及方法
CN103439091A (zh) * 2013-06-25 2013-12-11 国电大渡河检修安装有限公司 水轮机转轮叶片裂纹故障早期预警和诊断方法及系统
CN105738056A (zh) * 2014-12-12 2016-07-06 福建宁德核电有限公司 一种旋转机械振动故障模拟系统
CN107314893A (zh) * 2017-05-08 2017-11-03 上海交通大学 一种模块化多功能转子实验台
US20190033171A1 (en) * 2017-07-26 2019-01-31 Caterpillar Inc. System and method for detecting wear or failure of genset power system coupling
CN208459330U (zh) * 2018-06-29 2019-02-01 国电大渡河检修安装有限公司 一种水轮机导叶裂纹的检测装置
CN112304600A (zh) * 2020-10-15 2021-02-02 国电大渡河检修安装有限公司 一种单一或多耦合转子系统故障测试系统及故障诊断方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201697781U (zh) * 2010-06-13 2011-01-05 北京信息科技大学 一种模拟旋转机械故障的转子实验装置
CN103076163B (zh) * 2011-12-06 2016-02-24 西安交通大学 一种轴承-转子系统特性参数的在线测试方法
KR101475395B1 (ko) * 2013-05-16 2014-12-23 한국수력원자력 주식회사 저널베어링 결함 신호 검출용 시험 장치
JP2017044572A (ja) * 2015-08-26 2017-03-02 株式会社東芝 軸受監視装置、軸受監視システムおよび軸受監視方法
CN105865792B (zh) * 2016-05-26 2018-10-19 西北工业大学 一种轴瓦旋转轴颈固定的织构滑动轴承实验台
CN108801635B (zh) * 2018-05-31 2019-04-16 西安交通大学 一种用于系列可变轴径滑动轴承动态特性测试的实验装置及方法
CN109238714B (zh) * 2018-10-18 2019-12-27 浙江大学 高速重载曲轴-滑动轴承系统动态试验台
CN109374273A (zh) * 2018-11-02 2019-02-22 国网浙江省电力有限公司电力科学研究院 汽轮发电机转子扭振与故障模拟多功能试验台及试验方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103323274A (zh) * 2013-05-24 2013-09-25 上海交通大学 旋转机械状态监测与故障诊断系统及方法
CN103439091A (zh) * 2013-06-25 2013-12-11 国电大渡河检修安装有限公司 水轮机转轮叶片裂纹故障早期预警和诊断方法及系统
CN105738056A (zh) * 2014-12-12 2016-07-06 福建宁德核电有限公司 一种旋转机械振动故障模拟系统
CN107314893A (zh) * 2017-05-08 2017-11-03 上海交通大学 一种模块化多功能转子实验台
US20190033171A1 (en) * 2017-07-26 2019-01-31 Caterpillar Inc. System and method for detecting wear or failure of genset power system coupling
CN208459330U (zh) * 2018-06-29 2019-02-01 国电大渡河检修安装有限公司 一种水轮机导叶裂纹的检测装置
CN112304600A (zh) * 2020-10-15 2021-02-02 国电大渡河检修安装有限公司 一种单一或多耦合转子系统故障测试系统及故障诊断方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114739654A (zh) * 2022-05-18 2022-07-12 山东科技大学 一种压缩机振动测试用数据采集设备及其采集方法
CN116046385A (zh) * 2023-03-07 2023-05-02 天津汉云工业互联网有限公司 基于齿形图的齿轮故障识别方法、装置、介质和设备
CN116625478A (zh) * 2023-07-21 2023-08-22 同日智能科技(徐州)有限公司 一种减速电机振动测试设备
CN116625478B (zh) * 2023-07-21 2023-11-07 同日智能科技(徐州)有限公司 一种减速电机振动测试设备

Also Published As

Publication number Publication date
CN112304600B (zh) 2024-03-01
CN112304600A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
WO2022077969A1 (zh) 一种单一或多耦合转子系统故障测试系统及故障诊断方法
CN103630301A (zh) 一种液体润滑机械密封密封性能的测试方法及其装置
CN110389024B (zh) 一种涡轮发动机转子榫接结构高低周复合疲劳试验装置及方法
CN109488630B (zh) 基于谐波相对指标的离心风机转子不对中故障诊断方法
WO2022078228A1 (zh) 一种旋转机械设备径向故障模拟测试系统
CN106769042B (zh) 一种圆柱滚子轴承双转子试验机
CN108896314B (zh) 一种针对角接触球轴承运行状态的检测装置
CN109945775B (zh) 挤压油膜阻尼器油膜厚度试验装置及其测试方法
US20230332981A1 (en) Single Or Multi-Coupled Fault Test System And Fault Diagnosis Method For Rotor System
CN203798563U (zh) 一种径向滑动轴承测试系统装配结构
CN107843432B (zh) 一种轴承动刚度测量装置
KR101859625B1 (ko) 회전 시스템의 비정상 거동 모사 장치
CN109580149A (zh) 一种航空发动机导管局部振动监控方法
CN110441054B (zh) 联轴器连接状态下旋转机械轴系不对中故障状态检测方法
JP6716080B2 (ja) 回転機械およびそのような機械を含むエネルギー変換のための設備
CN209945718U (zh) 一种润滑脂性能及轴承寿命测试装置
CN115144751B (zh) 一种牵引电机故障诊断装置及方法
US20230184612A1 (en) Radial fault simulation test system for rotary mechanical equipment
CN215811633U (zh) 一种轴承单元振动测试装置
CN205506430U (zh) 一种滤棒发射机可靠性测试装置
CN113465897B (zh) 一种研究悬臂转子Morton效应的试验装置
GB2610281A (en) Method for identifying early frictional instability faults of a spline joint structure
CN203643093U (zh) 一种液体润滑机械密封密封性能的测试装置
KR20150071068A (ko) 터빈 블레이드의 원심 응력 시험장치
CN109596247A (zh) 一种半伞式水泵水轮机斜切式转子支架不平衡力测试分析方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21879017

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/11/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21879017

Country of ref document: EP

Kind code of ref document: A1