WO2022077848A1 - 一种风力发电输电系统线路单相接地故障定位方法 - Google Patents

一种风力发电输电系统线路单相接地故障定位方法 Download PDF

Info

Publication number
WO2022077848A1
WO2022077848A1 PCT/CN2021/078753 CN2021078753W WO2022077848A1 WO 2022077848 A1 WO2022077848 A1 WO 2022077848A1 CN 2021078753 W CN2021078753 W CN 2021078753W WO 2022077848 A1 WO2022077848 A1 WO 2022077848A1
Authority
WO
WIPO (PCT)
Prior art keywords
fault
line
impedance
wind power
measurement
Prior art date
Application number
PCT/CN2021/078753
Other languages
English (en)
French (fr)
Inventor
冯仰敏
谭光道
杨沛豪
王羚宇
吉成珍
常洋涛
杨洋
李阳
Original Assignee
西安热工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安热工研究院有限公司 filed Critical 西安热工研究院有限公司
Publication of WO2022077848A1 publication Critical patent/WO2022077848A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/085Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution lines, e.g. overhead
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Definitions

  • the invention relates to a method for locating a single-phase grounding fault of a wind power transmission system line.
  • the impedance ranging method is used to locate the single-phase grounding fault point of the wind power power transmission system line, and the impedance ranging fault location is more accurate by eliminating the transition resistance phase.
  • the traveling wave ranging method uses the current and voltage traveling wave signals sent from the fault point of the line, and measures the time when the signal reaches the detection point to determine the location of the fault point.
  • the line lengths and parameters are often different, which will affect the traveling wave transmission.
  • the detection point will have a certain delay in the traveling wave data processing, which will cause differences in the ranging results. , the fault cannot be accurately located.
  • the impedance ranging method uses the principle of impedance relay to locate single-ended faults.
  • the method is to calculate the fault loop impedance by using the voltage and current sent by the fault point, and determine the fault location by comparing the loop impedance.
  • the voltage and current used by the impedance ranging method can be obtained by recording the fault recorder or relay, without the need for new equipment, the cost can be well controlled, and it is not limited by communication conditions. However, in the practical application of the impedance ranging method, the actual measurement data is affected by the transition resistance.
  • the invention analyzes the single-phase ground fault vector of wind power 35kV transmission line; studies the impedance ranging method including transition resistance; Yoke operation, eliminate the transition resistance phase, make fault location more accurate method.
  • the present invention adopts following technical scheme to realize:
  • a method for locating a single-phase grounding fault of a wind power transmission system line comprising the following steps:
  • step 2 2) establish a mathematical model with the measured terminal voltage and zero-sequence current, positive-sequence impedance and transition resistance in step 1);
  • step 3 According to the small angle between the current flowing through the measurement terminal and the zero-sequence current flowing through the transition resistance, the mathematical model of the voltage at the measurement terminal in step 2) is simplified;
  • step 3 In order to eliminate the influence of the transition resistance on the fault location, measure the terminal voltage in step 3) Simultaneously ⁇ I 0 * on both sides of the mathematical model, that is, the zero-sequence current conjugate complex number, and only take the imaginary part, through the measurement impedance and The ratio of line impedance can locate the location of the fault point, and determine the location of the fault point of the wind power transmission line by calculating the percentage m of the line fault distance to the total line distance.
  • step 1) according to the single-phase grounding short-circuit loop impedance or reactance of the wind power transmission system line is proportional to the distance from the measurement point to the fault point, the measurement impedance expression is obtained:
  • M terminal is the measurement terminal
  • Z M represents the measurement impedance
  • mZ L is fault line impedance
  • R f is the transition resistance at the fault point.
  • step 2) is: establishing a mathematical model of the measured terminal voltage and zero-sequence current, positive-sequence impedance, and transition resistance in step 1):
  • k is the impedance compensation coefficient
  • mZ 1 is the positive sequence impedance of the fault line
  • the zero-sequence current flows through the transition resistance; is the zero-sequence current flowing through the line.
  • a further improvement of the present invention is that the zero-sequence current flowing through the line Expressed as: in: For A, B, C three-phase circuit line current.
  • step 3 is: according to the angle between the current flowing through the measurement terminal and the zero-sequence current flowing through the transition resistance, ⁇ 10°, it can be approximately considered that there is no influence on the fault location accuracy, and same phase, then step 3) use Instead, simplify step 2) to measure the terminal voltage mathematical model as:
  • a further improvement of the present invention lies in that the specific implementation method of step 4) is: in order to eliminate the influence of transition resistance on fault location, the measurement terminal voltage of step 3) is simultaneously simplified on both sides of the mathematical model ⁇ I 0 * , that is, the zero-sequence current Conjugate complex numbers, and only take the imaginary part. By measuring the ratio of impedance to line impedance, the location of the fault point can be located.
  • the expression is:
  • the location of the line fault point of the wind power transmission system is determined.
  • the present invention at least has the following beneficial technical effects:
  • the present invention applies the impedance ranging method to the single-phase grounding fault location of the 35kV wind power transmission line.
  • the voltage and current used by the fault location method can be recorded by the fault recorder or relay, without the need for new equipment and cost. It is well controlled and not limited by communication conditions.
  • the present invention proposes an impedance ranging method in which the measured current and voltage data are conjugated and the transition resistance phase is eliminated. This method makes the single-phase grounding fault location of the 35kV wind power transmission line more accurate.
  • Figure 1 is a single-phase grounding equivalent network diagram of a 35kV wind power transmission line
  • Figure 2 is an internal circuit diagram of a single line ground fault
  • Figure 3 shows the three-phase voltage waveform of A-phase grounding short-circuit grounding
  • Figure 4 shows the three-phase current waveform of A phase-to-ground short-circuit to ground.
  • a layer/element when referred to as being "on" another layer/element, it can be directly on the other layer/element or intervening layers/elements may be present therebetween. element.
  • a layer/element if a layer/element is oriented "on" another layer/element in one orientation, then when the orientation is reversed, the layer/element can be oriented "under" the other layer/element.
  • the 35kV wind power transmission line has n outgoing lines, of which the kth line has a single-phase grounding fault.
  • R f is the transition resistance at the fault point; is the equivalent zero-sequence voltage source at the fault point; is the current at the fault point.
  • the magnitude of the zero-sequence current on the non-faulty line is equal to the current flowing through the ground capacitance of the line, and the magnitude of the zero-sequence current on the faulty line is equal to the sum of the zero-sequence currents of all non-faulty lines.
  • each line of wind power 35kV transmission is a uniform conductor.
  • the fault loop impedance or reactance is proportional to the distance from the measurement point to the fault point.
  • Wind power 35kV single transmission line is abc three-phase circuit, It can be expressed as:
  • k is the impedance compensation coefficient
  • mZ 1 is the positive sequence impedance of the fault line
  • equation (2) can be simplified as:
  • equation (4) can be converted into:
  • the location of the fault point of the 35kV wind power transmission line can be determined.
  • a simulation model matching the actual wind power 35kV transmission line is built under Matlab/Simulink.
  • the simulation diagram is similar to Figure 1.
  • the fault location data collection point is on the wind turbine side.
  • an LC filter circuit is used.
  • the 35kV transmission line simulation participation is as follows: the line length is 10km; the effective value of the phase voltage is 220V; the positive sequence resistance is 0.22 ⁇ ; the zero sequence resistance is 0.14 ⁇ ; the positive sequence reactance is 3.08 ⁇ ; and the zero sequence reactance is 3.38 ⁇ .
  • L filter inductor is 1.5mH; filter capacitor is 10 ⁇ F.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Locating Faults (AREA)

Abstract

一种风力发电输电系统线路单相接地故障定位方法,包括:根据风力发电输电系统线路单相接地短路回路阻抗或电抗与测量点到故障点的距离成正比,得到测量阻抗表达式;将测量端电压与零序电流、正序阻抗、过渡电阻建立数学模型;根据测量端流过电流与过渡电阻流过零序电流之间夹角很小,将测量端电压数学模型进行化简;为了消除过渡电阻对故障测距的影响,对测量端电压化简数学模型两侧同时×I 0 *,即零序电流共轭复数,并只取虚部,通过测量阻抗与线路阻抗的比值,定位出故障点的位置,通过计算线路故障距离占线路总距离的百分比m,确定风电输电线路故障点所在位置。该方法通过阻抗测距法定位风力发电输电系统线路单相接地故障点。

Description

一种风力发电输电系统线路单相接地故障定位方法 【技术领域】
本发明涉及一种风力发电输电系统线路单相接地故障定位方法,通过阻抗测距法定位风力发电输电系统线路单相接地故障点,通过消除过渡电阻相使阻抗测距故障定位更加准确。
【背景技术】
随着风力发电等新能源系统容量不断增加,风电35kV输电线路日趋复杂,且多分布于不好检修的山川地形,这无疑为线路故障定位与排查带来了新的挑战。单相接地故障作为一种输电线路常见故障,可以占到全部线路故障的90%,如何在风电35kV输电线路中快速定位单相接地故障,排查并解决故障,防止其蔓延,确保系统稳定性,已经成为当今风力发电输电线路研究领域的重点。
目前广泛应用的接地故障测距方法分为:行波测距法和阻抗测距法。行波测距法是利用线路故障点发出的电流、电压行波信号,计量该信号到达检测点的时间来确定故障点位置。但在风电输电线路实际系统中,线路长度、参数往往不尽相同,这就会对行波传输造成影响,同时检测点对于行波数据处理会有一定延时,这就造成测距结果存在差异,无法准确定位故障。阻抗测距法是利用阻抗继电器原理进行单端故障测距,方法是利用故障点发出的电压、电流量计算故障回路阻抗,通过比较回路阻抗来确定故障位置。阻抗测距法用到的电压、电流量可以通过故障录波器或继电器记录得到,无需新增设备,成本可以得到很好控制,而且不受通信条件限制。但是在阻抗测距法实际应用中,实际测量数据受到过渡电阻的影响。
【发明内容】
本发明针对风电输电线路最常见接地故障——单相短路,分析风电35kV输电线路单相接地故障向量;研究含有过渡电阻的阻抗测距方法;提出一种对测量得到的电流、电压数据进行共轭运算,消除过渡电阻相,使故障定位更加准确的方法。
本发明采取如下技术方案来实现的:
一种风力发电输电系统线路单相接地故障定位方法,包括以下步骤:
1)根据风力发电输电系统线路单相接地短路回路阻抗或电抗与测量点到故障点的距离成正比,得到测量阻抗表达式;
2)将步骤1)中测量端电压与零序电流、正序阻抗、过渡电阻建立数学模型;
3)根据测量端流过电流与过渡电阻流过零序电流之间夹角很小,将步骤2)测量端电压数学模型进行化简;
4)为了消除过渡电阻对故障测距的影响,对步骤3)测量端电压化简数学模型两侧同时×I 0 *,即零序电流共轭复数,并只取虚部,通过测量阻抗与线路阻抗的比值,定位出故障点的位置,通过计算线路故障距离占线路总距离的百分比m,确定风电输电线路故障点所在位置。
本发明进一步的改进在于,步骤1)根据风力发电输电系统线路单相接地短路回路阻抗或电抗与测量点到故障点的距离成正比,得到测量阻抗表达式:
Figure PCTCN2021078753-appb-000001
其中:M端为测量端,Z M表示测量阻抗;
Figure PCTCN2021078753-appb-000002
为M端测量电压、电流;mZ L为故障线路阻抗;
Figure PCTCN2021078753-appb-000003
为过渡电阻流过电流;R f为故障点过渡电阻。
本发明进一步的改进在于,,步骤2)的具体实现方法为:将步骤1)中测量 端电压与零序电流、正序阻抗、过渡电阻建立数学模型:
Figure PCTCN2021078753-appb-000004
其中:k为阻抗补偿系数;mZ 1为故障线路正序阻抗;
Figure PCTCN2021078753-appb-000005
为过渡电阻流过零序电流;
Figure PCTCN2021078753-appb-000006
为流过线路零序电流。
本发明进一步的改进在于,流过线路零序电流
Figure PCTCN2021078753-appb-000007
表示为:
Figure PCTCN2021078753-appb-000008
其中:
Figure PCTCN2021078753-appb-000009
为A、B、C三相电路线电流。
本发明进一步的改进在于,步骤3)的具体实现方法为:根据测量端流过电流与过渡电阻流过零序电流之间夹角γ<10°,可近似认为对故障定位精度无影响,
Figure PCTCN2021078753-appb-000010
Figure PCTCN2021078753-appb-000011
同相位,则步骤3)中
Figure PCTCN2021078753-appb-000012
Figure PCTCN2021078753-appb-000013
代替,将步骤2)测量端电压数学模型化简为:
Figure PCTCN2021078753-appb-000014
本发明进一步的改进在于,步骤4)的具体实现方法为:为了消除过渡电阻对故障测距的影响,对步骤3)测量端电压化简数学模型两侧同时×I 0 *,即零序电流共轭复数,并只取虚部,通过测量阻抗与线路阻抗的比值,定位出故障点的位置,表达式为:
Figure PCTCN2021078753-appb-000015
通过计算线路故障距离占线路总距离的百分比m,确定风力发电输电系统线路故障点所在位置。
与现有技术相比,本发明至少具有如下有益的技术效果:
1.本发明将阻抗测距法应用于风电35kV输电线路单相接地故障定位中,该故障定位法所用到的电压、电流量可以通过故障录波器或继电器记录得到,无需新增设备,成本得到很好控制,而且不受通信条件限制。
2.本发明提出一种将测量得到的电流、电压数据进行共轭运算,消除过渡电阻相的阻抗测距法,该方法使风电35kV输电线路单相接地故障定位更加准确。
【附图说明】
图1为风电35kV输电线路单相接地等效网络图;
图2为单条线路接地故障内部电路图;
图3为A相接地短路接地,三相电压波形;
图4为A相接地短路接地,三相电流波形。
【具体实施方式】
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,不是全部的实施例,而并非要限制本发明公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要的混淆本发明公开的概念。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
在附图中示出了根据本发明公开实施例的各种结构示意图。这些图并非是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。
本发明公开的上下文中,当将一层/元件称作位于另一层/元件“上”时,该层/元件可以直接位于该另一层/元件上,或者它们之间可以存在居中层/元件。另 外,如果在一种朝向中一层/元件位于另一层/元件“上”,那么当调转朝向时,该层/元件可以位于该另一层/元件“下”。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面结合附图对本发明做进一步详细描述:
如图1所示,风电35kV输电线路有n条出线,其中第k条线路发生单相接地故障。C i(i=1,2,3,...,n)为线路进线对地电容;R i(i=1,2,3,...,n)为各条线路等效电阻;L i(i=1,2,3,...,n)为各条线路等效电感;
Figure PCTCN2021078753-appb-000016
为发生故障后,各条线路流过的零序电流。在故障线路上,R f为故障点过渡电阻;
Figure PCTCN2021078753-appb-000017
为故障点等效零序电压源;
Figure PCTCN2021078753-appb-000018
为故障点处电流。
非故障线路上零序电流大小与本线路对地电容流过电流相等,故障线路上零序电流大小等于所有非故障线路零序电流总和。当发生单相接地故障后,为了防止故障扩大为两点、多点接地短路,应该及时定位故障,并予以消除。
如图2所示,为了得到阻抗测距数学模型,需要假设风电35kV输电各条线路为均匀导体,在单相接地短路故障中,故障回路阻抗或电抗与测量点到故障点的距离成正比。设M端为测量端,Z M表示测量阻抗,计算公式为:
Figure PCTCN2021078753-appb-000019
式中:
Figure PCTCN2021078753-appb-000020
为M端测量电压、电流;mZ L为故障线路阻抗;
Figure PCTCN2021078753-appb-000021
为过渡电阻流过电流。
风电35kV单条输电线路为abc三相电路,
Figure PCTCN2021078753-appb-000022
可以表示为:
Figure PCTCN2021078753-appb-000023
式中:k为阻抗补偿系数;mZ 1为故障线路正序阻抗;
Figure PCTCN2021078753-appb-000024
为过渡电阻流过零序电流;
Figure PCTCN2021078753-appb-000025
为流过线路零序电流,表达式为:
Figure PCTCN2021078753-appb-000026
式中:
Figure PCTCN2021078753-appb-000027
为A、B、C三相电路线电流。
在风电35kV输电线路实际运行中,M端流过电流与过渡电阻流过零序电流之间夹角γ<10°,可近似认为对故障定位精度无影响,
Figure PCTCN2021078753-appb-000028
Figure PCTCN2021078753-appb-000029
同相位,则式(2)中
Figure PCTCN2021078753-appb-000030
可以用
Figure PCTCN2021078753-appb-000031
代替,式(2)可简化为:
Figure PCTCN2021078753-appb-000032
当风电35kV输电线路三相线路中A相发生单相接地故障时,式(4)可转换为:
Figure PCTCN2021078753-appb-000033
为了消除过渡电阻对故障测距的影响,对上式两侧同时×I 0 *,即零序电流共轭复数,并只取虚部,通过测量阻抗与线路阻抗的比值,定位出故障点的位置,表达式为:
Figure PCTCN2021078753-appb-000034
通过计算线路故障距离占线路总距离的百分比m,可以确定风电35kV输电线路故障点所在位置。
为了验证本发明所提方案的有效性。在Matlab/Simulink下搭建与实际风电35kV输电线路匹配的仿真模型,仿真示意图与图1类似,故障测距数据采集点在风机侧,为了抑制单相接地产生的高次谐波,利用LC滤波电路。35kV输电线路仿真参与为:线路长度为10km;相电压有效值为220V;正序电阻为0.22Ω;零序电阻为0.14Ω;正序电抗为3.08Ω;零序电抗为3.38Ω。L滤波电感为1.5mH;滤波电容为10μF。
如图3所示,如图4所示,风电35kV某条输电线路发生A相短路接地故障后,A相电压幅值减小,B、C相电压基本保持不变,当故障消除后三相电压又达到平衡。故障期间A、B、C相电流基本对称,幅值增长满足额定电流限制,故障消除后,很快恢复至系统额定运行。
为了验证本发明所提改进阻抗测距法可以满足故障精确定位要求,每隔1km设置一个短路接地点,分9次仿真,不同过渡电阻对应的仿真结果如表1、表2、表3、表4所示。
表1 过渡电阻为0.001Ω,传统测距方法仿真表
Figure PCTCN2021078753-appb-000035
Figure PCTCN2021078753-appb-000036
表2 过渡电阻为0.01Ω,传统测距方法仿真表
Figure PCTCN2021078753-appb-000037
表3 过渡电阻为0.001Ω,本发明所提测距方法仿真表
Figure PCTCN2021078753-appb-000038
表4 过渡电阻为0.01Ω,本发明所提测距仿真表
Figure PCTCN2021078753-appb-000039
通过表1、表2、表3、表4可以得到计算误差随着故障点远离采集点增大,这是由于信号传输距离增长造成的;通过对比表1和表2,可以得到计算误差与过渡电阻有着密切关系,随着过渡电阻的增大10倍,测距误差也增大至 100m~110m,测量精度得到影响;通过对比表1和表3,可以看到采用本发明所提阻抗测距方法相较于传统阻抗测距方法,测距误差相对减少3m~10m,但由于本来过渡电阻就接近于0,精度提高不明显;通过对比表2和表4,可以得到用本发明所提阻抗测距方法相较于传统阻抗测距方法,测量误差减少很多,测距误差相对减少100m~122m,故障定位效果对于过渡电阻大的接地工况,故障定位更为准确。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (6)

  1. 一种风力发电输电系统线路单相接地故障定位方法,其特征在于,包括以下步骤:
    1)根据风力发电输电系统线路单相接地短路回路阻抗或电抗与测量点到故障点的距离成正比,得到测量阻抗表达式;
    2)将步骤1)中测量端电压与零序电流、正序阻抗、过渡电阻建立数学模型;
    3)根据测量端流过电流与过渡电阻流过零序电流之间夹角很小,将步骤2)测量端电压数学模型进行化简;
    4)为了消除过渡电阻对故障测距的影响,对步骤3)测量端电压化简数学模型两侧同时×I 0 *,即零序电流共轭复数,并只取虚部,通过测量阻抗与线路阻抗的比值,定位出故障点的位置,通过计算线路故障距离占线路总距离的百分比m,确定风电输电线路故障点所在位置。
  2. 根据权利要求1所述的风力发电输电系统线路单相接地故障定位方法,其特征在于,步骤1)根据风力发电输电系统线路单相接地短路回路阻抗或电抗与测量点到故障点的距离成正比,得到测量阻抗表达式:
    Figure PCTCN2021078753-appb-100001
    其中:M端为测量端,Z M表示测量阻抗;
    Figure PCTCN2021078753-appb-100002
    为M端测量电压、电流;mZ L为故障线路阻抗;
    Figure PCTCN2021078753-appb-100003
    为过渡电阻流过电流;R f为故障点过渡电阻。
  3. 根据权利要求2所述的风力发电输电系统线路单相接地故障定位方法,其特征在于,步骤2)的具体实现方法为:将步骤1)中测量端电压与零序电流、正序阻抗、过渡电阻建立数学模型:
    Figure PCTCN2021078753-appb-100004
    其中:k为阻抗补偿系数;mZ 1为故障线路正序阻抗;
    Figure PCTCN2021078753-appb-100005
    为过渡电阻流过零序电流;
    Figure PCTCN2021078753-appb-100006
    为流过线路零序电流。
  4. 根据权利要求3所述的风力发电输电系统线路单相接地故障定位方法,其特征在于,流过线路零序电流
    Figure PCTCN2021078753-appb-100007
    表示为:
    Figure PCTCN2021078753-appb-100008
    其中:
    Figure PCTCN2021078753-appb-100009
    为A、B、C三相电路线电流。
  5. 根据权利要求4所述的风力发电输电系统线路单相接地故障定位方法,其特征在于,步骤3)的具体实现方法为:根据测量端流过电流与过渡电阻流过零序电流之间夹角γ<10°,可近似认为对故障定位精度无影响,
    Figure PCTCN2021078753-appb-100010
    Figure PCTCN2021078753-appb-100011
    同相位,则步骤3)中
    Figure PCTCN2021078753-appb-100012
    Figure PCTCN2021078753-appb-100013
    代替,将步骤2)测量端电压数学模型化简为:
    Figure PCTCN2021078753-appb-100014
  6. 根据权利要求5所述的风力发电输电系统线路单相接地故障定位方法,其特征在于,步骤4)的具体实现方法为:为了消除过渡电阻对故障测距的影响,对步骤3)测量端电压化简数学模型两侧同时×I 0 *,即零序电流共轭复数,并只取虚部,通过测量阻抗与线路阻抗的比值,定位出故障点的位置,表达式为:
    Figure PCTCN2021078753-appb-100015
    通过计算线路故障距离占线路总距离的百分比m,确定风力发电输电系统线路故障点所在位置。
PCT/CN2021/078753 2020-10-14 2021-03-02 一种风力发电输电系统线路单相接地故障定位方法 WO2022077848A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011097783.1 2020-10-14
CN202011097783.1A CN112269144A (zh) 2020-10-14 2020-10-14 风力发电输电系统线路单相接地故障定位方法

Publications (1)

Publication Number Publication Date
WO2022077848A1 true WO2022077848A1 (zh) 2022-04-21

Family

ID=74337977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078753 WO2022077848A1 (zh) 2020-10-14 2021-03-02 一种风力发电输电系统线路单相接地故障定位方法

Country Status (2)

Country Link
CN (1) CN112269144A (zh)
WO (1) WO2022077848A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114859170A (zh) * 2022-04-24 2022-08-05 国网安徽省电力有限公司电力科学研究院 用于含分布式光伏电源的配电网的故障精准定位方法及系统
CN114994465A (zh) * 2022-08-01 2022-09-02 西安兴汇电力科技有限公司 一种基于阻抗三角型高压架空线单相高阻接地判据方法
CN115469194A (zh) * 2022-11-14 2022-12-13 天津滨电电力工程有限公司 基于π型等效线路模型单端量的单相接地故障测距方法
CN116381418A (zh) * 2023-06-05 2023-07-04 国网天津市电力公司电力科学研究院 一种电网线路故障定位方法及系统
CN116482488A (zh) * 2023-06-16 2023-07-25 国网山东省电力公司东营供电公司 一种基于容性暂态的配电网接地故障测距方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112269144A (zh) * 2020-10-14 2021-01-26 西安热工研究院有限公司 风力发电输电系统线路单相接地故障定位方法
CN113866561B (zh) * 2021-09-29 2023-10-27 天津大学 适用于输电线路经过渡电阻单相接地故障的单端量测距方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5825189A (en) * 1994-01-26 1998-10-20 Gec Alsthom Limited Method of locating the position of a fault on a power transmission
CN103226175A (zh) * 2013-03-21 2013-07-31 江苏省电力公司泰州供电公司 一种利用接地电阻阻性特征实现双端测距的方法
CN103245878A (zh) * 2013-04-15 2013-08-14 国家电网公司 一种输电线路单相接地故障单端测距方法
CN105223471A (zh) * 2015-10-15 2016-01-06 东南大学 基于线路参数的输电线路故障定位方法、继电保护装置
CN110609207A (zh) * 2019-09-10 2019-12-24 国电南瑞科技股份有限公司 一种t接线路故障测距方法
CN111208449A (zh) * 2020-01-17 2020-05-29 南京工程学院 一种混联线路单相接地故障测距方法及系统
CN112269144A (zh) * 2020-10-14 2021-01-26 西安热工研究院有限公司 风力发电输电系统线路单相接地故障定位方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105891669B (zh) * 2016-03-30 2019-01-25 国网福建省电力有限公司 基于过渡电阻实测的线路单相接地故障测距方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5825189A (en) * 1994-01-26 1998-10-20 Gec Alsthom Limited Method of locating the position of a fault on a power transmission
CN103226175A (zh) * 2013-03-21 2013-07-31 江苏省电力公司泰州供电公司 一种利用接地电阻阻性特征实现双端测距的方法
CN103245878A (zh) * 2013-04-15 2013-08-14 国家电网公司 一种输电线路单相接地故障单端测距方法
CN105223471A (zh) * 2015-10-15 2016-01-06 东南大学 基于线路参数的输电线路故障定位方法、继电保护装置
CN110609207A (zh) * 2019-09-10 2019-12-24 国电南瑞科技股份有限公司 一种t接线路故障测距方法
CN111208449A (zh) * 2020-01-17 2020-05-29 南京工程学院 一种混联线路单相接地故障测距方法及系统
CN112269144A (zh) * 2020-10-14 2021-01-26 西安热工研究院有限公司 风力发电输电系统线路单相接地故障定位方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114859170A (zh) * 2022-04-24 2022-08-05 国网安徽省电力有限公司电力科学研究院 用于含分布式光伏电源的配电网的故障精准定位方法及系统
CN114994465A (zh) * 2022-08-01 2022-09-02 西安兴汇电力科技有限公司 一种基于阻抗三角型高压架空线单相高阻接地判据方法
CN114994465B (zh) * 2022-08-01 2022-11-22 西安兴汇电力科技有限公司 一种基于阻抗三角形高压架空线单相高阻接地判据方法
CN115469194A (zh) * 2022-11-14 2022-12-13 天津滨电电力工程有限公司 基于π型等效线路模型单端量的单相接地故障测距方法
CN115469194B (zh) * 2022-11-14 2023-03-24 天津滨电电力工程有限公司 基于π型等效线路模型单端量的单相接地故障测距方法
CN116381418A (zh) * 2023-06-05 2023-07-04 国网天津市电力公司电力科学研究院 一种电网线路故障定位方法及系统
CN116381418B (zh) * 2023-06-05 2023-10-03 国网天津市电力公司电力科学研究院 一种电网线路故障定位方法及系统
CN116482488A (zh) * 2023-06-16 2023-07-25 国网山东省电力公司东营供电公司 一种基于容性暂态的配电网接地故障测距方法及系统
CN116482488B (zh) * 2023-06-16 2023-09-22 国网山东省电力公司东营供电公司 一种基于容性暂态的配电网接地故障测距方法及系统

Also Published As

Publication number Publication date
CN112269144A (zh) 2021-01-26

Similar Documents

Publication Publication Date Title
WO2022077848A1 (zh) 一种风力发电输电系统线路单相接地故障定位方法
Ghorbani et al. Negative-sequence network based fault location scheme for double-circuit multi-terminal transmission lines
CN103149502B (zh) 基于同步采样装置的输电线路故障测距方法
CN109283430B (zh) 一种基于电压分布原理的配电网故障测距方法
CN105067948B (zh) 一种小电流接地选线装置及单相接地检测方法
CN103604991B (zh) 电容式电压互感器的母线电压相位测量装置及方法
CN106501675B (zh) 风电场并网输电线路瞬时单相接地故障单端测距方法
CN109541392A (zh) 一种适用于柔性直流输电系统的单端故障测距方法
CN105207186B (zh) 一种用于含统一潮流控制器的输电线路的距离保护方法
CN105811383A (zh) 一种新型微电网正序阻抗差动保护方法
CN102023275A (zh) 基于定位函数相位突变特性的线路单端测距方法
CN111562516B (zh) 基于序突变量阻抗判别电源故障方法、系统及设备
CN111812455B (zh) 一种输电线路双端故障测距方法及系统
CN105929302A (zh) 基于序分量关系的输电线路单端故障测距方法
CN112636323B (zh) 一种交直流系统面对协同攻击的防御策略优化方法
CN104865498A (zh) 基于参数辨识的消弧线圈接地系统单相接地故障测距技术
CN104730416A (zh) 一种以电流突变量为极化量的输电线路单端测距方法
CN110146780B (zh) 中性点不接地柔性配电网系统铁磁谐振判别方法
CN109188205A (zh) 一种基于花瓣式电网的距离保护的测距方法
CN104682361B (zh) 基于电压相位比较的单相接地距离保护系统及其方法
CN108845233A (zh) 配电网架空线路单相接地双端检测定位方法
CN108414838A (zh) 一种逆变器并联系统线路阻抗测量方法
CN110082596B (zh) 基于高频暂态量的距离保护故障阻抗计算方法及系统
CN107086549A (zh) Upfc接入线路单相接地短路故障的距离ⅰ段保护方法
CN110879332B (zh) 一种适用于小电流接地系统的单相接地故障选相方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21878905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21878905

Country of ref document: EP

Kind code of ref document: A1