WO2022077550A1 - 锂离子电池负极材料炭化处理方法及其炭化炉 - Google Patents

锂离子电池负极材料炭化处理方法及其炭化炉 Download PDF

Info

Publication number
WO2022077550A1
WO2022077550A1 PCT/CN2020/123528 CN2020123528W WO2022077550A1 WO 2022077550 A1 WO2022077550 A1 WO 2022077550A1 CN 2020123528 W CN2020123528 W CN 2020123528W WO 2022077550 A1 WO2022077550 A1 WO 2022077550A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
carbonization
negative electrode
electrode material
conductive graphite
Prior art date
Application number
PCT/CN2020/123528
Other languages
English (en)
French (fr)
Inventor
邓银常
Original Assignee
邓银常
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 邓银常 filed Critical 邓银常
Publication of WO2022077550A1 publication Critical patent/WO2022077550A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/10Crucibles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/14Arrangements of heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/20Arrangement of controlling, monitoring, alarm or like devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/0006Linings or walls formed from bricks or layers with a particular composition or specific characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0043Floors, hearths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/02Crowns; Roofs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/02Ohmic resistance heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/08Heating by electric discharge, e.g. arc discharge
    • F27D11/10Disposition of electrodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0003Monitoring the temperature or a characteristic of the charge and using it as a controlling value
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a carbonization treatment method for a negative electrode material of a lithium ion battery, and also relates to a carbonization furnace.
  • the traditional carbonization treatment device inserts a heating plate into the negative electrode material, energizes both ends of the heating plate, makes the heating plate generate heat, and then heats and carbonizes the negative electrode material on both sides of the heating plate.
  • the degree of carbonization of the negative electrode material at different thickness positions is different, and the simultaneous carbonization of a large range of negative electrode materials results in high energy consumption and long cycle.
  • the heating plate is not in close contact with the negative electrode material due to its rigidity, resulting in low carbonization efficiency.
  • the technical problem to be solved by the present invention is to provide a carbonization treatment method for lithium ion battery negative electrode material with lower energy consumption, shorter cycle and higher efficiency, and also to provide a carbonization furnace for realizing the method.
  • the carbonization treatment method of the negative electrode material of the lithium ion battery of the present invention comprises the following steps:
  • thermocouple Use platinum-rhodium thermocouple to monitor the temperature field of the carbonization furnace at the temperature measurement point of the carbonization furnace;
  • the steps a to d are repeated after the step d to form a multilayer graphite crucible layer in the carbonization furnace.
  • It also includes the steps of reserving a first abutting portion at one end of the first conductive graphite felt for parallel abutting against the inner wall of the furnace head, and reserving a second abutting portion at one end of the second conductive graphite felt for parallel abutting against the inner wall of the furnace tail. Abutting step.
  • the carbonization furnace of the present invention includes a furnace head, a furnace tail, a furnace top, a furnace bottom, a furnace side wall, a thermal insulation pad, a first conductive graphite felt, a graphite crucible and a second conductive graphite felt;
  • the furnace head and the furnace tail are made of graphite bricks supplemented by conductive adhesive; the outer side walls of the furnace head and the furnace tail are respectively provided with graphite electrodes; the furnace bottom and the furnace side walls are both insulating refractory bricks It is built with refractory cement; a cubic furnace cavity is formed between the furnace head, furnace tail, furnace top, furnace bottom and furnace side walls; the thermal insulation pad is horizontally laid on the bottom wall of the furnace cavity
  • the first conductive graphite felt is laid on the thermal insulation pad in the furnace cavity, one end of the first conductive graphite felt is in contact with the inner wall of the furnace head and the other end is in contact with the inner wall of the furnace
  • the thermal insulation pad, the first conductive graphite felt, the graphite crucible and the second conductive graphite felt are sequentially arranged from bottom to top to form a set of carbonization treatment layers, and multiple sets of carbonization treatment layers are arranged in the furnace cavity from bottom to top.
  • a gas collection cover is also arranged above the exhaust port of the furnace roof, the gas collection cover is connected with an induced draft fan, and the induced draft fan is connected with an exhaust gas purification system.
  • the furnace roof is provided with two layers, and the exhaust ports of the two layers of furnace roofs are staggered from each other.
  • first conductive graphite felt is provided with a first abutting portion for parallel abutment with the inner wall of the furnace head
  • second conductive graphite felt is provided with a second abutment for parallel abutment with the inner wall of the furnace tail part, the first abutting part faces upward, and the second abutting part faces downward.
  • two conductive graphite felts are used in the carbonization furnace to energize the graphite crucible from the upper and lower ends respectively, and the resistance of the conductive graphite felt is smaller, so that the graphite crucible is fully heated between the upper and lower conductive graphite felts, and the conductive graphite felt
  • the felt has stable performance, can be reused, and will not be mixed with the negative electrode material to be carbonized; the second negative electrode material to be carbonized is filled in the gap outside the graphite crucible, and the second negative electrode material can fully absorb the waste heat in the carbonization furnace.
  • Carbonization is more energy-saving; the second negative electrode material in the previous carbonization process is used as the first negative electrode material in the current carbonization process, and the graphite crucible is heated and carbonized, and the carbonization cycle is shorter; the top opening of the graphite crucible uses a second conductive graphite felt Covering, not only can avoid the mixing of the first negative electrode material and the second negative electrode material in the graphite crucible, and can make the graphite crucible better air permeability, but also can make the second conductive graphite felt and the first negative electrode material in the graphite crucible contact and electrify, so that the The first negative electrode material itself is energized to actively heat and carbonize, the carbonization efficiency is higher, and the carbonization is more uniform; graphite crucibles are evenly arranged at the same interval between the two layers of conductive graphite felt, and multiple sets of carbonization treatment are laid from bottom to top in the carbonization furnace.
  • the top of the furnace is set with two layers, and the exhaust ports of the two layers of the furnace top are staggered, which can reduce heat loss and keep more heat preservation;
  • one end of the first conductive graphite felt is reserved for parallel abutment
  • the first abutting part of the inner wall of the furnace head is reserved at one end of the second conductive graphite felt for parallel abutting the second abutting part of the inner wall of the furnace tail, so that the first conductive graphite felt and the furnace head are more closely connected, and the second The conductive graphite felt is more tightly connected to the furnace tail.
  • FIG. 1 is a schematic structural diagram of a carbonization furnace of the present invention.
  • the carbonization treatment method for the negative electrode material of the lithium ion battery of the present invention comprises the following steps:
  • thermal insulation pads in the carbonization furnace can be made of ceramic fiber refractory wool or refractory thermal insulation bricks, which not only keep thermal insulation, but also have better insulation, adaptability and cushioning.
  • the conductive graphite felt can be laid in one piece, or it can be laid with overlapping ends; the conductive graphite felt is thin in thickness, takes up little space, can be elastically deformed well, and is easy to be closely connected with the graphite crucible and the negative electrode material.
  • the open top of the graphite crucible not only facilitates ventilation, but also facilitates the direct contact between the first negative electrode material and the second conductive graphite felt to energize, so that the first negative electrode material can not only be heated and carbonized by the graphite crucible, but also can be heated and carbonized by the graphite crucible.
  • Active heating and carbonization by self-energizing makes the carbonization of the first negative electrode material more sufficient and uniform; the second negative electrode material can play the role of filling, supporting and heat preservation, and at the same time fully absorb the graphite crucible, the first conductive graphite felt and the second negative electrode material.
  • the heat radiated from the conductive graphite felt is preliminarily carbonized, which is more energy-saving.
  • the material and conductivity of the second conductive graphite felt are the same as those of the first conductive graphite felt; the second conductive graphite felt covers the top opening of the graphite crucible, which can prevent the second negative electrode material from mixing with the first negative electrode material in the crucible, so that the first
  • the negative electrode material is independently carbonized in the graphite crucible, so that the carbonization degree of the first negative electrode material is more uniform.
  • the second conductive graphite felt is covered with a refractory fiber felt furnace roof with an exhaust port;
  • the refractory fiber felt can be made of graphite felt, carbon felt or ceramic fiber cotton, etc.; the refractory fiber felt has good thermal insulation performance, while the quality Light; the exhaust port is used to discharge the volatile gas generated during the heating and carbonization of the negative electrode material.
  • Send electricity to the carbonization furnace preferably direct current, and apply a variable voltage according to the carbonization requirements, so that the current passes through the furnace head, the first conductive graphite felt, the graphite crucible layer, the second conductive graphite felt, and the furnace tail in sequence, and the carbonization furnace is heated by electric heating ;
  • the current mainly passes through the furnace head, the first conductive graphite felt, the graphite crucible layer, the second conductive graphite felt, and the furnace tail, followed by the first negative electrode material, and the current passing through the second negative electrode material is the least; the graphite crucible is preferentially heated , to preferentially carbonize the first negative electrode material in the graphite crucible.
  • thermocouple Use platinum-rhodium thermocouple to monitor the temperature field of the carbonization furnace at the temperature measurement point of the carbonization furnace; the temperature field monitoring system is connected to the platinum-rhodium thermocouple to collect the temperature field data of the carbonization furnace; the temperature measurement point is used to monitor the temperature of the graphite crucible. Temperature, temperature of conductive graphite felt, temperature of negative electrode material, temperature of furnace inner wall.
  • the second negative electrode material is taken out from the carbonization furnace, and the second negative electrode material is collected as the first negative electrode material for the next carbonization treatment.
  • Steps a to d are repeated after step d to form a multilayer graphite crucible layer in the carbonization furnace. That is, each graphite crucible layer is provided with a first conductive graphite felt and a thermal insulation pad at the bottom and a second conductive graphite felt at the top, and each graphite crucible layer is heated and carbonized relatively independently.
  • a multi-layer graphite crucible layer is arranged in the carbonization furnace for carbonization, so that the single carbonization output of the carbonization furnace is larger. In the structure of the multi-layer graphite crucible layer, due to the filling of the second negative electrode material, it can also play a better supporting and stabilizing role, and can reduce collapse.
  • the harmless treatment mainly includes treatment steps such as cyclone dust removal, washing and cooling, which can reduce air pollution and be more environmentally friendly.
  • It also includes the steps of arranging two layers of furnace roofs and staggering the exhaust ports of the two layers of furnace roofs, so as to retain part of the dust, and at the same time, the door of the carbonization furnace is prevented from being opened wide, and the heat loss is reduced.
  • It also includes the steps of reserving a first abutting portion at one end of the first conductive graphite felt for parallel abutting against the inner wall of the furnace head, and reserving a second abutting portion at one end of the second conductive graphite felt for parallel abutting against the inner wall of the furnace tail. Abutting step.
  • the first abutting part of the end of the first conductive graphite felt is in parallel abutment with the inner wall of the furnace head
  • the second abutting part of the end of the second conductive graphite felt is in parallel abutment with the inner wall of the furnace tail, so that the contact surface is larger and the electrical performance is improved.
  • Better and more stable, as a reserved backup for abutment it can avoid the disconnection of the abutment caused by the sinking of the second negative electrode material.
  • the carbonization furnace for realizing the carbonization treatment of the negative electrode material of the lithium ion battery of the present invention includes a furnace head, a furnace tail, a furnace top, a furnace bottom, a furnace side wall, a thermal insulation pad, a first conductive graphite felt, a graphite Crucible and second conductive graphite felt.
  • the furnace head and the furnace tail are located at both ends of the carbonization furnace, the furnace side walls are located on both sides of the carbonization furnace, the furnace top is located at the top of the carbonization furnace, and the furnace top is located at the bottom of the carbonization furnace.
  • the furnace head, the furnace tail and the furnace side wall are all fixedly connected with the furnace bottom.
  • the graphite crucible is a rectangular or cylindrical jar with a circular jar opening on the top.
  • the furnace head and the furnace tail are made of graphite bricks supplemented with conductive adhesive; the inner walls of the furnace head and the furnace tail are conductive; the outer walls of the furnace head and the furnace tail are respectively provided with graphite electrodes for connecting the power supply;
  • the bottom and furnace side walls are made of insulating refractory bricks supplemented by refractory cement; a cubic furnace cavity is formed between the furnace head, furnace tail, furnace top, furnace bottom and furnace side walls;
  • the bottom thermal insulation pad is laid horizontally on the bottom wall of the furnace cavity; the thermal insulation pad can be made of ceramic fiber refractory cotton or refractory thermal insulation bricks, which not only maintains thermal insulation, but also has better insulation, adaptability and cushioning.
  • the first conductive graphite felt is laid on the thermal insulation pad in the furnace cavity, one end of the first conductive graphite felt is in contact with the inner wall of the furnace head and the other end is separated from the inner wall of the furnace tail; the first conductive graphite felt is used for Turn on the current from the furnace head to the bottom of the graphite crucible.
  • the conductive graphite felt can be laid in one piece, or it can be laid with overlapping ends; the conductive graphite felt is thin in thickness, takes up little space, can be elastically deformed well, and is easy to be closely connected with the graphite crucible and the negative electrode material.
  • the graphite crucible is evenly placed on the first conductive graphite felt in the furnace cavity at the same interval, and the opening of the graphite crucible is upward;
  • the inner cavity of the graphite crucible is used to further carbonize the negative electrode material; when in use, the negative electrode material is filled inside and outside the graphite crucible, but the negative electrode material filled in the graphite crucible is the negative electrode filled in the gap outside the graphite crucible during the last carbonization process Material.
  • the resistance of the graphite crucible is greater than the resistance of the first conductive graphite felt and the resistance of the second conductive graphite felt, and the average carbonization degree of the first negative electrode material in the graphite crucible is higher than the average carbonization degree of the second negative electrode material outside the graphite crucible.
  • a negative electrode material is preferentially heated and carbonized; the top of the graphite crucible is open, which not only facilitates ventilation, but also facilitates the direct contact between the first negative electrode material and the second conductive graphite felt to energize, so that the first negative electrode material can not only be heated and carbonized by the graphite crucible, but also can be energized by itself
  • the active heating carbonization makes the carbonization of the first negative electrode material more sufficient and uniform; the second negative electrode material can play the role of filling, support and heat preservation, and at the same time fully absorb the graphite crucible, the first conductive graphite felt and the second conductive graphite felt The heat radiated to the outside is used for preliminary carbonization, which is more energy-saving.
  • the second conductive graphite felt is laid on the graphite crucible in the furnace cavity and covers the opening of the graphite crucible.
  • One end of the second conductive graphite felt is in contact with the inner wall of the furnace tail and the other end is spaced apart from the inner wall of the furnace head;
  • Conductive graphite felt is used to connect the current from the furnace tail to the top of the graphite crucible.
  • the material and conductivity of the second conductive graphite felt are the same as those of the first conductive graphite felt; the second conductive graphite felt covers the top opening of the graphite crucible, which can prevent the second negative electrode material from mixing with the first negative electrode material in the crucible, so that the first
  • the negative electrode material is independently carbonized in the graphite crucible, so that the carbonization degree of the first negative electrode material is more uniform.
  • the furnace top is covered on the second conductive graphite felt, and the furnace top is a refractory fiber felt provided with an exhaust port; the refractory fiber felt can be graphite felt, carbon felt or ceramic fiber cotton, etc.; the refractory fiber felt has good thermal insulation performance, At the same time, the weight is light; the exhaust port is used to discharge the volatile gas generated during the heating and carbonization of the negative electrode material.
  • the carbonization furnace is provided with a plurality of temperature measuring points, and the temperature measuring points are respectively set on the side and the top.
  • the temperature measuring point is provided with a platinum-rhodium thermocouple for collecting the temperature field data of the carbonization furnace, and the platinum-rhodium thermocouple is connected with a temperature field monitoring system.
  • the carbonization furnace When in use, power is supplied to the carbonization furnace, preferably direct current, and a variable voltage is applied according to carbonization requirements, so that the current passes through the furnace head, the first conductive graphite felt, the graphite crucible layer, the second conductive graphite felt, and the furnace tail in sequence. Electrothermal heating; the current mainly passes through the furnace head, the first conductive graphite felt, the graphite crucible layer, the second conductive graphite felt, and the furnace tail, followed by the first negative electrode material, and the current passing through the second negative electrode material is the least; The crucible generates heat, and the first negative electrode material in the graphite crucible is preferentially carbonized.
  • the thermal insulation pad, the first conductive graphite felt, the graphite crucible and the second conductive graphite felt are sequentially arranged from bottom to top to form a set of carbonization treatment layers, and multiple sets of carbonization treatment layers are arranged in the furnace cavity from bottom to top layer.
  • Each set of carbonization treatment layers is relatively independent for heating and carbonization.
  • Multiple sets of carbonization treatment layers are arranged in the carbonization furnace for carbonization treatment, so that the single carbonization treatment output of the carbonization furnace is larger.
  • the stability due to the filling and support of the second negative electrode material, the stability is better, and collapse can be reduced.
  • a gas collection cover is also provided above the exhaust port on the furnace top, the gas collection cover is connected with an induced draft fan, and the induced draft fan is connected with an exhaust gas purification system.
  • the exhaust gas purification system includes cyclone dust collector, washing and cooling center and other equipment, which can reduce air pollution and be more environmentally friendly.
  • the furnace roof is provided with two layers and the exhaust ports of the two layers of furnace roofs are staggered to each other, which can retain part of the dust, and at the same time prevent the door of the carbonization furnace from widening and reduce heat loss.
  • one end of the first conductive graphite felt is provided with a first abutting portion for parallel abutting with the inner wall of the furnace head
  • one end of the second conductive graphite felt is provided with a second abutting portion for parallel abutting with the inner wall of the furnace tail
  • the first abutting part faces upward
  • the second abutting part faces downward.
  • the parallel abutment makes the contact surface larger, the energization performance is better and more stable
  • the first abutting part and the second abutting part are reserved for abutting, which can avoid the breaking of the abutment due to the sinking of the second negative electrode material. open.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)

Abstract

一种锂离子电池负极材料炭化处理方法,包括如下步骤:a.在炭化炉内铺设隔热保温垫;b.将第一导电石墨毡的一端与炭化炉的炉头内壁相抵接并且另一端与炭化炉的炉尾内壁相间隔断开;c.在第一导电石墨毡上以相同间隔均匀放置装满有第一负极材料的石墨坩埚,在石墨坩埚与炭化炉侧壁之间填充第二负极材料;d.在石墨坩埚层上铺设第二导电石墨毡,将第二导电石墨毡的一端与炭化炉的炉尾内壁相抵接并且另一端与炭化炉的炉头内壁相间隔断开;e.在第二导电石墨毡上铺盖炉顶;f.对炭化炉送电;g.对炭化炉的温度场进行监控;h.停止送电,散热降温;i.完成第一负极材料的炭化处理,收集第二负极材料作为下一次炭化处理的第一负极材料。

Description

锂离子电池负极材料炭化处理方法及其炭化炉 技术领域
本发明涉及一种锂离子电池负极材料炭化处理方法,还涉及一种炭化炉。
背景技术
在锂离子电池用的炭负极材料的工业生产中,经常要对粉状炭质中间体进行900℃-1400℃的热处理,业内通常称之为炭化处理,与之对应的设备称为炭化炉。部分种类炭质中间体经过炭化处理后,可以直接作为负极材料进行使用或销售,还有一部分种类炭质中间体需要进行更高温度的石墨化处理才能使用。而石墨化处理属于高能耗、高成本生产过程。在石墨化前对它们进行预先炭化处理会显著提高材料装填密度,提高石墨化炉单炉产量,降低石墨化处理的生产成本。
传统的碳化处理装置在负极材料中插入发热板,对发热板两端通电,使发热板发热,进而对发热板两面的负极材料进行加热炭化。然而,由于负极材料厚度较厚,不同厚度位置的负极材料被炭化的程度不一,而且同时对大范围的负极材料进行同时炭化,能耗高,周期长。而且发热板由于其刚性与负极材料接触不够紧密,导致炭化效率不高。
发明内容
本发明要解决的技术问题是提供一种能耗更低、周期更短和效率更高的锂离子电池负极材料炭化处理方法,还提供一种实现该方法的炭化炉。
为了解决上述技术问题,本发明的锂离子电池负极材料炭化处理方法,包括如下步骤:
a.在炭化炉内铺设隔热保温垫;
b.在隔热保温垫上铺设第一导电石墨毡,将第一导电石墨毡的一端与炭化炉的炉头内壁相抵接并且另一端与炭化炉的炉尾内壁相间隔断开;
c.在第一导电石墨毡上以相同间隔均匀放置装满有第一负极材料的石墨坩 埚,将石墨坩埚开口朝上,在石墨坩埚与石墨坩埚之间以及石墨坩埚与炭化炉侧壁之间填充第二负极材料,形成石墨坩埚层;
d.在石墨坩埚层上铺设第二导电石墨毡,盖住石墨坩埚层的石墨坩埚开口,将第二导电石墨毡的一端与炭化炉的炉尾内壁相抵接并且另一端与炭化炉的炉头内壁相间隔断开;
e.在第二导电石墨毡上铺盖带有排气口的耐火纤维毡炉顶;
f.对炭化炉送电,使电流依次经过炉头、第一导电石墨毡、石墨坩埚层、第二导电石墨毡、炉尾,对炭化炉电热升温;
g.在炭化炉的测温点用铂铑热电偶对炭化炉的温度场进行监控;
h.当温度场达到工艺要求后,停止送电,揭掉炉顶,散热降温;
i.取出第二导电石墨毡、石墨坩埚、第一导电石墨毡和隔热保温垫,完成第一负极材料的炭化处理,收集第二负极材料作为下一次炭化处理的第一负极材料。
在所述d步骤之后重复所述a至d步骤以在炭化炉内形成多层石墨坩埚层。
还包括从所述炉顶排气口收集废气并进行无害化处理的步骤。
还包括设置两层炉顶并且将两层炉顶的排气口相互错开的步骤。
还包括在第一导电石墨毡的一端预留用于平行抵接炉头内壁的第一抵接部的步骤、在第二导电石墨毡的一端预留用于平行抵接炉尾内壁的第二抵接部的步骤。
为了解决上述技术问题,本发明的炭化炉,包括炉头、炉尾、炉顶、炉底、炉侧墙、隔热保温垫、第一导电石墨毡、石墨坩埚和第二导电石墨毡;所述炉头和炉尾均为石墨砖辅以导电粘结剂砌筑而成;所述炉头和炉尾的外侧壁分别设置有石墨电极;所述炉底和炉侧墙均为绝缘耐火砖辅以耐火水泥砌筑而成;所述炉头、炉尾、炉顶、炉底和炉侧墙之间形成一个立方体炉腔;所述隔热保温垫水平铺设于所述炉腔底壁上;所述第一导电石墨毡铺设在所述炉腔内的隔热保温垫上,所述第一导电石墨毡的一端与所述炉头的内壁相抵接并且另一端与所述炉尾的内壁相间隔断开;所述石墨坩埚以相同间隔均匀放置所述炉腔内的第一导电石墨毡上,所述石墨坩埚开口朝上;所述石墨坩埚与石墨坩埚之间 以及石墨坩埚与炉侧墙之间的间隙用于对负极材料初步炭化,所述石墨坩埚的内腔用于对负极材料进一步炭化;所述第二导电石墨毡铺设在所述炉腔内的石墨坩埚上并且盖住所述石墨坩埚开口,所述第二导电石墨毡的一端与所述炉尾的内壁相抵接并且另一端与所述炉头的内壁相间隔断开;所述炉顶盖于所述第二导电石墨毡上,所述炉顶为设置有排气口的耐火纤维毡;所述炭化炉设置有多个测温点,所述测温点设置有铂铑热电偶,所述铂铑热电偶连接有温度场监控系统。
所述隔热保温垫、第一导电石墨毡、石墨坩埚和第二导电石墨毡从下到上依次设置形成一套炭化处理层,所述炉腔内从下至上设置有多套炭化处理层。
所述炉顶的排气口上方还设置有气体收集罩,所述气体收集罩连接有引风机,所述引风机连接有废气净化系统。
所述炉顶设置有两层并且两层炉顶的排气口相互错开。
所述第一导电石墨毡的一端设置有用于与炉头内壁平行抵接的第一抵接部,所述第二导电石墨毡的一端设置有用于与炉尾内壁平行抵接的第二抵接部,所述第一抵接部朝上,所述第二抵接部朝下。
采用本发明的方法和结构,在炭化炉内采用两块导电石墨毡分别从上下两端对石墨坩埚通电,导电石墨毡电阻更小,使石墨坩埚在上下导电石墨毡之间充分发热,导电石墨毡性能稳定,可以重复利用,而且不会与待炭化的负极材料混合;将待炭化的第二负极材料填充在石墨坩埚外的间隙中,第二负极材料可以充分吸收炭化炉内的余热进行初步炭化,更节能;将上一次炭化过程中的第二负极材料作为本次炭化过程的第一负极材料填满在石墨坩埚中受热炭化,炭化周期更短;石墨坩埚顶部开口用第二导电石墨毡覆盖,不仅可以避免石墨坩埚内的第一负极材料与第二负极材料混合、可以使石墨坩埚透气性更好,而且可以使第二导电石墨毡与石墨坩埚内的第一负极材料接触通电,使第一负极材料自身通电而主动发热炭化,炭化效率更高,炭化更均匀;在两层导电石墨毡之间以相同间隔均匀排布石墨坩埚,在炭化炉内从下往上铺设多套炭化处理层,使得每次的炭化产量更大;炉顶设置双层,两层炉顶的排气口错开,可以减少热量流失,更保温;在第一导电石墨毡的一端预留用于平行抵接炉头内壁 的第一抵接部,在第二导电石墨毡的一端预留用于平行抵接炉尾内壁的第二抵接部,使得第一导电石墨毡与炉头连接更紧密、第二导电石墨毡与炉尾连接更紧密。
附图说明
图1为本发明的炭化炉结构示意图。
图中:1-石墨电极,2-炉头,3-炉侧墙,4-炉底,5-隔热保温垫,6-第一导电石墨毡,7-石墨坩埚,8-第二导电石墨毡,9-炉尾,10-石墨电极,11-排气口,12-炉顶。
具体实施方式
下面结合附图和具体实施方式对本发明做详细描述。
本发明的锂离子电池负极材料炭化处理方法,包括如下步骤:
a.在炭化炉内铺设隔热保温垫;隔热保温垫可采用陶瓷纤维耐火棉或者耐火隔热砖,不仅保温隔热,而且绝缘,适应性和缓冲性更好。
b.在隔热保温垫上铺设第一导电石墨毡,将第一导电石墨毡的一端与炭化炉的炉头内壁相抵接并且另一端与炭化炉的炉尾内壁相间隔断开;第一导电石墨毡用于接通炉头的电流到石墨坩埚底部。导电石墨毡可以整张铺设,也可以是多张首尾搭接铺设;导电石墨毡厚度薄,占用空间小,可以较好地弹性变形,便于与石墨坩埚和负极材料紧密连接。
c.在第一导电石墨毡上以相同间隔均匀放置装满有第一负极材料的石墨坩埚,将石墨坩埚开口朝上,在石墨坩埚与石墨坩埚之间以及石墨坩埚与炭化炉侧壁之间填充第二负极材料,形成石墨坩埚层;石墨坩埚的电阻大于第一导电石墨毡的电阻和第二导电石墨毡的电阻,第一负极材料的平均炭化程度高于第二负极材料的平均炭化程度,便于第一负极材料优先加热炭化;石墨坩埚顶部开口,不仅便于透气,而且便于第一负极材料直接与第二导电石墨毡接触通电,使第一负极材料不仅可以被石墨坩埚加热炭化,同时可以通过自身通电而主动发热炭化,使第一负极材料的炭化更充分和更均匀;第二负极材料可以起到填充、支撑和保温的作用,同时充分吸收石墨坩埚、第一导电石墨毡和第二导电石墨毡向外散发的热量进行初步炭化,更节能。
d.在石墨坩埚层上铺设第二导电石墨毡,盖住石墨坩埚层的石墨坩埚开口,支撑于石墨坩埚上以及石墨坩埚侧部填充的第二负极材料上,将第二导电石墨毡的一端与炭化炉的炉尾内壁相抵接并且另一端与炭化炉的炉头内壁相间隔断开;第二导电石墨毡用于接通炉尾的电流到石墨坩埚顶部。第二导电石墨毡的材质和导电性能与第一导电石墨毡相同;第二导电石墨毡盖住石墨坩埚的顶部开口,可以阻止第二负极材料与坩埚内的第一负极材料混合,使第一负极材料在石墨坩埚内独立炭化,使第一负极材料的炭化程度更均匀。
e.在第二导电石墨毡上铺盖带有排气口的耐火纤维毡炉顶;耐火纤维毡可以使石墨毡或者炭毡或者陶瓷纤维棉等;耐火纤维毡具有较好的保温性能,同时质量轻;排气口用于排出负极材料在加热炭化过程中产生的挥发性气体。
f.对炭化炉送电,优选直流电,按照炭化需求施加可变电压,使电流依次经过炉头、第一导电石墨毡、石墨坩埚层、第二导电石墨毡、炉尾,对炭化炉电热升温;电流主要从炉头、第一导电石墨毡、石墨坩埚层、第二导电石墨毡、炉尾经过,其次从第一负极材料通过,从第二负极材料通过的电流最少;优先使石墨坩埚发热,优先使石墨坩埚内的第一负极材料炭化。
g.在炭化炉的测温点用铂铑热电偶对炭化炉的温度场进行监控;温度场监控系统连接铂铑热电偶,采集炭化炉的温度场数据;测温点用于监测石墨坩埚的温度、导电石墨毡的温度、负极材料的温度、炉内壁的温度。
h.当温度场达到工艺要求后,停止送电,揭掉炉顶,散热降温;
i.从上至下逐层取出第二导电石墨毡、石墨坩埚、第一导电石墨毡、隔热保温垫和第二负极材料,从石墨坩埚内取出第一负极材料,完成第一负极材料的炭化处理,从炭化炉内取出第二负极材料,收集第二负极材料作为下一次炭化处理的第一负极材料。
在d步骤之后重复a至d步骤以在炭化炉内形成多层石墨坩埚层。即每层石墨坩埚层底部均设置有第一导电石墨毡和隔热保温垫并且顶部均设置有第二导电石墨毡,每层石墨坩埚层相对独立加热炭化。在炭化炉内设置多层石墨坩埚层进行炭化,使炭化炉的单次炭化产量更大。在多层石墨坩埚层的结构中,由于第二负极材料的填充,还可以起到较好的支撑和稳固作用,可以减少倒塌。
还包括从炉顶排气口收集废气并进行无害化处理的步骤,无害化处理主要包括旋风除尘、水洗降温等处理步骤,可以减少空气污染,更环保。
还包括设置两层炉顶并且将两层炉顶的排气口相互错开的步骤,可以滞留部分灰尘,同时避免炭化炉门户大开,减少热量流失。
还包括在第一导电石墨毡的一端预留用于平行抵接炉头内壁的第一抵接部的步骤、在第二导电石墨毡的一端预留用于平行抵接炉尾内壁的第二抵接部的步骤。第一导电石墨毡端部的第一抵接部与炉头内壁平行抵接,第二导电石墨毡端部的第二抵接部与炉尾内壁平行抵接,使得接触面更大,通电性能更好更稳,作为抵接的预留备用,可以避免因第二负极材料下沉而导致抵接的断开。
如图1所示,本发明的实现锂离子电池负极材料炭化处理的炭化炉,包括炉头、炉尾、炉顶、炉底、炉侧墙、隔热保温垫、第一导电石墨毡、石墨坩埚和第二导电石墨毡。炉头、炉尾位于炭化炉的两端,炉侧墙位于炭化炉的两侧,炉顶位于炭化炉的顶部,炉顶位于炭化炉的底部。炉头、炉尾和炉侧墙均与炉底固定连接。石墨坩埚为长方体或者圆柱体罐子,顶部设置有圆形罐口。
炉头和炉尾均为石墨砖辅以导电粘结剂砌筑而成;炉头和炉尾的内壁均导电;炉头和炉尾的外侧壁分别设置有石墨电极,用于连接电源;炉底和炉侧墙均为绝缘耐火砖辅以耐火水泥砌筑而成;炉头、炉尾、炉顶、炉底和炉侧墙之间形成一个立方体炉腔;
最底层的隔热保温垫水平铺设于炉腔底壁上;隔热保温垫可采用陶瓷纤维耐火棉或者耐火隔热砖,不仅保温隔热,而且绝缘,适应性和缓冲性更好。
第一导电石墨毡铺设在炉腔内的隔热保温垫上,第一导电石墨毡的一端与炉头的内壁相抵接并且另一端与炉尾的内壁相间隔断开;第一导电石墨毡用于接通炉头的电流到石墨坩埚底部。导电石墨毡可以整张铺设,也可以是多张首尾搭接铺设;导电石墨毡厚度薄,占用空间小,可以较好地弹性变形,便于与石墨坩埚和负极材料紧密连接。
石墨坩埚以相同间隔均匀放置炉腔内的第一导电石墨毡上,石墨坩埚开口朝上;石墨坩埚与石墨坩埚之间以及石墨坩埚与炉侧墙之间的间隙用于对负极材料初步炭化,石墨坩埚的内腔用于对负极材料进一步炭化;在使用时,石墨 坩埚内外均填充负极材料,但是,石墨坩埚内填充的负极材料是上一次炭化处理过程中填充在石墨坩埚外间隙处的负极材料。石墨坩埚的电阻大于第一导电石墨毡的电阻和第二导电石墨毡的电阻,石墨坩埚内的第一负极材料的平均炭化程度高于石墨坩埚外的第二负极材料的平均炭化程度,便于第一负极材料优先加热炭化;石墨坩埚顶部开口,不仅便于透气,而且便于第一负极材料直接与第二导电石墨毡接触通电,使第一负极材料不仅可以被石墨坩埚加热炭化,同时可以通过自身通电而主动发热炭化,使第一负极材料的炭化更充分和更均匀;第二负极材料可以起到填充、支撑和保温的作用,同时充分吸收石墨坩埚、第一导电石墨毡和第二导电石墨毡向外散发的热量进行初步炭化,更节能。
第二导电石墨毡铺设在炉腔内的石墨坩埚上并且盖住石墨坩埚开口,第二导电石墨毡的一端与炉尾的内壁相抵接并且另一端与炉头的内壁相间隔断开;第二导电石墨毡用于接通炉尾的电流到石墨坩埚顶部。第二导电石墨毡的材质和导电性能与第一导电石墨毡相同;第二导电石墨毡盖住石墨坩埚的顶部开口,可以阻止第二负极材料与坩埚内的第一负极材料混合,使第一负极材料在石墨坩埚内独立炭化,使第一负极材料的炭化程度更均匀。
炉顶盖于第二导电石墨毡上,炉顶为设置有排气口的耐火纤维毡;耐火纤维毡可以使石墨毡或者炭毡或者陶瓷纤维棉等;耐火纤维毡具有较好的保温性能,同时质量轻;排气口用于排出负极材料在加热炭化过程中产生的挥发性气体。炭化炉设置有多个测温点,测温点分别设置在侧部和顶部。测温点设置有铂铑热电偶,用于采集炭化炉的温度场数据,铂铑热电偶连接有温度场监控系统。
在使用时,对炭化炉送电,优选直流电,按照炭化需求施加可变电压,使电流依次经过炉头、第一导电石墨毡、石墨坩埚层、第二导电石墨毡、炉尾,对炭化炉电热升温;电流主要从炉头、第一导电石墨毡、石墨坩埚层、第二导电石墨毡、炉尾经过,其次从第一负极材料通过,从第二负极材料通过的电流最少;优先使石墨坩埚发热,优先使石墨坩埚内的第一负极材料炭化。当温度场达到工艺要求后,停止送电,揭掉炉顶,散热降温;从上至下逐层取出第二导电石墨毡、石墨坩埚、第一导电石墨毡、隔热保温垫和第二负极材料,从石 墨坩埚内取出第一负极材料,完成第一负极材料的炭化处理,从炭化炉内取出第二负极材料,收集第二负极材料作为下一次炭化处理的第一负极材料。
如图1所示,隔热保温垫、第一导电石墨毡、石墨坩埚和第二导电石墨毡从下到上依次设置形成一套炭化处理层,炉腔内从下至上设置有多套炭化处理层。每套炭化处理层相对独立加热炭化。在炭化炉内设置多套炭化处理层进行炭化处理,使炭化炉的单次炭化处理产量更大。在多层炭化处理层的结构中,由于第二负极材料的填充和支撑,稳固性更好,可以减少倒塌。
如图1所示,炉顶的排气口上方还设置有气体收集罩,气体收集罩连接有引风机,引风机连接有废气净化系统。废气净化系统包括旋风除尘器、水洗降温中心等设备,可以减少空气污染,更环保。
如图1所示,炉顶设置有两层并且两层炉顶的排气口相互错开,可以滞留部分灰尘,同时避免炭化炉门户大开,减少热量流失。
如图1所示,第一导电石墨毡的一端设置有用于与炉头内壁平行抵接的第一抵接部,第二导电石墨毡的一端设置有用于与炉尾内壁平行抵接的第二抵接部,第一抵接部朝上,第二抵接部朝下。平行抵接使得接触面更大,通电性能更好更稳,第一抵接部和第二抵接部作为抵接的预留备用,可以避免因第二负极材料下沉而导致抵接的断开。

Claims (10)

  1. 一种锂离子电池负极材料炭化处理方法,其特征在于包括如下步骤:
    a.在炭化炉内铺设隔热保温垫;
    b.在隔热保温垫上铺设第一导电石墨毡,将第一导电石墨毡的一端与炭化炉的炉头内壁相抵接并且另一端与炭化炉的炉尾内壁相间隔断开;
    c.在第一导电石墨毡上以相同间隔均匀放置装满有第一负极材料的石墨坩埚,将石墨坩埚开口朝上,在石墨坩埚与石墨坩埚之间以及石墨坩埚与炭化炉侧壁之间填充第二负极材料,形成石墨坩埚层;
    d.在石墨坩埚层上铺设第二导电石墨毡,盖住石墨坩埚层的石墨坩埚开口,将第二导电石墨毡的一端与炭化炉的炉尾内壁相抵接并且另一端与炭化炉的炉头内壁相间隔断开;
    e.在第二导电石墨毡上铺盖带有排气口的耐火纤维毡炉顶;
    f.对炭化炉送电,使电流依次经过炉头、第一导电石墨毡、石墨坩埚层、第二导电石墨毡、炉尾,对炭化炉电热升温;
    g.在炭化炉的测温点用铂铑热电偶对炭化炉的温度场进行监控;
    h.当温度场达到工艺要求后,停止送电,揭掉炉顶,散热降温;
    i.取出第二导电石墨毡、石墨坩埚、第一导电石墨毡和隔热保温垫,完成第一负极材料的炭化处理,收集第二负极材料作为下一次炭化处理的第一负极材料。
  2. 根据权利要求1所述的锂离子电池负极材料炭化处理方法,其特征在于:在所述d步骤之后重复所述a至d步骤以在炭化炉内形成多层石墨坩埚层。
  3. 根据权利要求1所述的锂离子电池负极材料炭化处理方法,其特征在于:还包括从所述炉顶排气口收集废气并进行无害化处理的步骤。
  4. 根据权利要求1所述的锂离子电池负极材料炭化处理方法,其特征在于:还包括设置两层炉顶并且将两层炉顶的排气口相互错开的步骤。
  5. 根据权利要求1所述的锂离子电池负极材料炭化处理方法,其特征在于:还包括在第一导电石墨毡的一端预留用于平行抵接炉头内壁的第一抵接部的步 骤、在第二导电石墨毡的一端预留用于平行抵接炉尾内壁的第二抵接部的步骤。
  6. 一种实现权利要求1所述方法的炭化炉,其特征在于:包括炉头、炉尾、炉顶、炉底、炉侧墙、隔热保温垫、第一导电石墨毡、石墨坩埚和第二导电石墨毡;
    所述炉头和炉尾均为石墨砖辅以导电粘结剂砌筑而成;所述炉头和炉尾的外侧壁分别设置有石墨电极;所述炉底和炉侧墙均为绝缘耐火砖辅以耐火水泥砌筑而成;所述炉头、炉尾、炉顶、炉底和炉侧墙之间形成一个立方体炉腔;
    所述隔热保温垫水平铺设于所述炉腔底壁上;
    所述第一导电石墨毡铺设在所述炉腔内的隔热保温垫上,所述第一导电石墨毡的一端与所述炉头的内壁相抵接并且另一端与所述炉尾的内壁相间隔断开;
    所述石墨坩埚以相同间隔均匀放置所述炉腔内的第一导电石墨毡上,所述石墨坩埚开口朝上;所述石墨坩埚与石墨坩埚之间以及石墨坩埚与炉侧墙之间的间隙用于对负极材料初步炭化,所述石墨坩埚的内腔用于对负极材料进一步炭化;
    所述第二导电石墨毡铺设在所述炉腔内的石墨坩埚上并且盖住所述石墨坩埚开口,所述第二导电石墨毡的一端与所述炉尾的内壁相抵接并且另一端与所述炉头的内壁相间隔断开;
    所述炉顶盖于所述第二导电石墨毡上,所述炉顶为设置有排气口的耐火纤维毡;所述炭化炉设置有多个测温点,所述测温点设置有铂铑热电偶,所述铂铑热电偶连接有温度场监控系统。
  7. 根据权利要求6所述的炭化炉,其特征在于:所述隔热保温垫、第一导电石墨毡、石墨坩埚和第二导电石墨毡从下到上依次设置形成一套炭化处理层,所述炉腔内从下至上设置有多套炭化处理层。
  8. 根据权利要求6所述的炭化炉,其特征在于:所述炉顶的排气口上方还设置有气体收集罩,所述气体收集罩连接有引风机,所述引风机连接有废气净化系统。
  9. 根据权利要求6所述的炭化炉,其特征在于:所述炉顶设置有两层并且 两层炉顶的排气口相互错开。
  10. 根据权利要求6所述的炭化炉,其特征在于:所述第一导电石墨毡的一端设置有用于与炉头内壁平行抵接的第一抵接部,所述第二导电石墨毡的一端设置有用于与炉尾内壁平行抵接的第二抵接部,所述第一抵接部朝上,所述第二抵接部朝下。
PCT/CN2020/123528 2020-10-12 2020-10-26 锂离子电池负极材料炭化处理方法及其炭化炉 WO2022077550A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011081661.3A CN112033157A (zh) 2020-10-12 2020-10-12 锂离子电池负极材料炭化处理方法及其炭化炉
CN202011081661.3 2020-10-12

Publications (1)

Publication Number Publication Date
WO2022077550A1 true WO2022077550A1 (zh) 2022-04-21

Family

ID=73573517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123528 WO2022077550A1 (zh) 2020-10-12 2020-10-26 锂离子电池负极材料炭化处理方法及其炭化炉

Country Status (2)

Country Link
CN (1) CN112033157A (zh)
WO (1) WO2022077550A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116119656A (zh) * 2023-03-01 2023-05-16 深圳市翔丰华科技股份有限公司 锂离子电池石墨负极材料用低能耗石墨化炉及石墨化工艺
CN116281995A (zh) * 2023-03-22 2023-06-23 宁夏碳谷能源科技股份有限公司 负极材料石墨化预处理方法
CN117263177A (zh) * 2023-09-26 2023-12-22 连云港埃纳硅业有限公司 人造石墨负极材料内串石墨化生产方法及石墨化炉

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6077463A (en) * 1998-02-18 2000-06-20 Petoca, Ltd. Process for producing graphite material for negative electrode used in lithium secondary battery
CN103964423A (zh) * 2014-05-04 2014-08-06 郴州市三晶科贸有限公司 人造石墨负极材料内串石墨化生产方法及其石墨化炉
CN107416821A (zh) * 2017-09-12 2017-12-01 韶关市新弘立冶金实业有限公司 一种利用石墨化炉生产增碳剂的生产方法
CN108439391A (zh) * 2018-05-15 2018-08-24 邓华强 利用碳化硅炉用变压器和与其匹配的电阻炉获取煤系石墨的方法
CN109179399A (zh) * 2018-10-09 2019-01-11 重庆卡森科技有限公司 一种负极材料和增碳剂的组合石墨化处理工艺
CN111595151A (zh) * 2020-05-27 2020-08-28 郴州杉杉新材料有限公司 用于锂离子电池负极材料炭化处理的炭化炉

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6077463A (en) * 1998-02-18 2000-06-20 Petoca, Ltd. Process for producing graphite material for negative electrode used in lithium secondary battery
CN103964423A (zh) * 2014-05-04 2014-08-06 郴州市三晶科贸有限公司 人造石墨负极材料内串石墨化生产方法及其石墨化炉
CN107416821A (zh) * 2017-09-12 2017-12-01 韶关市新弘立冶金实业有限公司 一种利用石墨化炉生产增碳剂的生产方法
CN108439391A (zh) * 2018-05-15 2018-08-24 邓华强 利用碳化硅炉用变压器和与其匹配的电阻炉获取煤系石墨的方法
CN109179399A (zh) * 2018-10-09 2019-01-11 重庆卡森科技有限公司 一种负极材料和增碳剂的组合石墨化处理工艺
CN111595151A (zh) * 2020-05-27 2020-08-28 郴州杉杉新材料有限公司 用于锂离子电池负极材料炭化处理的炭化炉

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116119656A (zh) * 2023-03-01 2023-05-16 深圳市翔丰华科技股份有限公司 锂离子电池石墨负极材料用低能耗石墨化炉及石墨化工艺
CN116281995A (zh) * 2023-03-22 2023-06-23 宁夏碳谷能源科技股份有限公司 负极材料石墨化预处理方法
CN116281995B (zh) * 2023-03-22 2024-01-30 宁夏碳谷能源科技股份有限公司 负极材料石墨化预处理方法
CN117263177A (zh) * 2023-09-26 2023-12-22 连云港埃纳硅业有限公司 人造石墨负极材料内串石墨化生产方法及石墨化炉
CN117263177B (zh) * 2023-09-26 2024-05-17 连云港埃纳硅业有限公司 人造石墨负极材料内串石墨化炉

Also Published As

Publication number Publication date
CN112033157A (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
WO2022077550A1 (zh) 锂离子电池负极材料炭化处理方法及其炭化炉
CA1058832A (en) Graphitization furnace
CN101550563B (zh) 电解槽环流焙烧方法
CN105502361A (zh) 一种生产负极材料艾奇逊炉的石墨化工艺
CN105502362A (zh) 一种生产石墨类负极材料的艾奇逊炉及其装炉工艺
CN106784767A (zh) 一种同炉制备锂电池负极用石墨和碳化硅的方法
CN105036125A (zh) 锂电池负极材料石墨化炉以及石墨化工艺
CN109626369A (zh) 一种石墨化炉关于焙烧工艺的应用
CN210683225U (zh) 一种立式连续生产负极材料的石墨化炉
CN212253625U (zh) 锂离子电池负极材料炭化处理的炭化炉
CN106219522A (zh) 石墨化炉及人造石墨负极材料石墨化生产方法
CN210426088U (zh) 一种用于焙烧和碳化的电阻炉
CN111595151A (zh) 用于锂离子电池负极材料炭化处理的炭化炉
CN108662910B (zh) 利用石墨化余热取代煅烧炉生产太西普煅煤和电煅煤的方法
JP4151111B2 (ja) 黒鉛化電気炉
CN212512529U (zh) 用于锂离子电池负极材料炭化处理的炭化炉
CN215946775U (zh) 一种连续石墨化、高温炭化一体炉
CN110143589A (zh) 一种石墨化箱式炉
CN204324887U (zh) 一种石墨化炉
CN203007471U (zh) 一种单晶炉
CN220871437U (zh) 一种生产电池负极材料的石墨化箱式炉
CN115536404B (zh) 一种利用内串炉制备碳素工艺
CN105674743A (zh) 碳-石墨坩埚电加热焙烧炉
CN212151629U (zh) 一种锂电池负极材料串接式气相沉积石墨化提纯炉
CN206375676U (zh) 一种适用于高挥发性粉体的石墨化炉炉芯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20957328

Country of ref document: EP

Kind code of ref document: A1