WO2022077251A1 - 非正交波形的频谱整形方法及电子设备 - Google Patents

非正交波形的频谱整形方法及电子设备 Download PDF

Info

Publication number
WO2022077251A1
WO2022077251A1 PCT/CN2020/120809 CN2020120809W WO2022077251A1 WO 2022077251 A1 WO2022077251 A1 WO 2022077251A1 CN 2020120809 W CN2020120809 W CN 2020120809W WO 2022077251 A1 WO2022077251 A1 WO 2022077251A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
factor
shaping
sub
nyquist
Prior art date
Application number
PCT/CN2020/120809
Other languages
English (en)
French (fr)
Inventor
刘娟
刘文佳
侯晓林
Original Assignee
株式会社Ntt都科摩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ntt都科摩 filed Critical 株式会社Ntt都科摩
Priority to CN202080105121.6A priority Critical patent/CN116114348A/zh
Priority to PCT/CN2020/120809 priority patent/WO2022077251A1/zh
Priority to US18/245,786 priority patent/US20230336394A1/en
Publication of WO2022077251A1 publication Critical patent/WO2022077251A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
    • H04L25/03834Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties using pulse shaping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/264Pulse-shaped multi-carrier, i.e. not using rectangular window
    • H04L27/26412Filtering over the entire frequency band, e.g. filtered orthogonal frequency-division multiplexing [OFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2644Modulators with oversampling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of wireless communication, and more particularly, to a spectrum shaping method for non-orthogonal waveforms (NOW) and a corresponding electronic device.
  • NOW non-orthogonal waveforms
  • mmWave millimeter wave
  • THz terahertz
  • the Discrete Fourier Transform-Spread Orthogonal Frequency Division Multiplexing (DFT-s-OFDM) waveform applied to 4G and 5G uplink has the advantage of low peak-to-average power ratio and can be considered as evolving 5G and 6G candidate waveforms.
  • DFT-s-OFDM Discrete Fourier Transform-Spread Orthogonal Frequency Division Multiplexing
  • Non-orthogonal super-Nyquist can improve SE by increasing the signaling rate over Nyquist.
  • High spectral efficiency and high power efficiency can be achieved by using DFT-s-OFDM and time-domain non-orthogonal FTN (hereinafter, the communication scheme using DFT-s-OFDM and non-orthogonal time-domain FTN will be referred to as "NOW" scheme for short) .
  • the time-domain compression factor can be adjusted to convert between quadrature waveforms and non-positive waveforms, or the time-domain compression factor can be adjusted according to different scenarios to achieve high throughput, low PAPR, and high reliability.
  • an electronic device includes a processing unit configured to perform discrete Fourier transform spreading on the data to be transmitted to obtain a spread signal, perform sub-carrier mapping on the spread signal, and spectrally shape the sub-carriers using a spectral shaping factor to obtain a shaped signal signal, and obtain a non-orthogonal super-Nyquist signal according to the shaped signal; and a transmitting unit configured to transmit the non-orthogonal super-Nyquist signal.
  • a spectrum shaping method for non-orthogonal waveforms comprising: performing discrete Fourier transform expansion on data to be transmitted to obtain an extended signal; performing subcarrier mapping on the extended signal; spectrally shaping the subcarriers using a spectral shaping factor to obtain a shaped signal; obtaining a non-orthogonal super-Nyquist signal from the shaped signal; and transmitting the non-orthogonal super-Nyquist signal.
  • Figure 1 is a schematic block diagram illustrating the transmission of a signal using the NOW scheme.
  • FIG. 2 is a schematic block diagram illustrating an electronic device according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram illustrating the square of the absolute value of the amplitude shaping factor determined from the frequency domain value of the root raised cosine function according to an example of the present disclosure.
  • 4A-4C are schematic diagrams illustrating amplitude shaping factors according to the power levels of spectrally truncated sub-carriers and non-truncated sub-carriers in FTN modulation, according to one example of the present disclosure.
  • FIG. 5 is a flowchart of a method for spectral shaping of non-orthogonal waveforms according to one embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a hardware structure of a device involved according to an embodiment of the present disclosure.
  • the same reference numbers refer to the same elements throughout.
  • the terminals described herein are illustrative only and should not be construed as limiting the scope of the present disclosure.
  • the terminals described here may include various types of terminals, such as user terminals (User Equipment, UE), mobile terminals (or referred to as mobile stations) or fixed terminals.
  • UE User Equipment
  • mobile terminals or referred to as mobile stations
  • fixed terminals for the sake of convenience, in the following, sometimes mutual The terminal and the UE are used interchangeably.
  • FIG. 1 is a schematic block diagram illustrating the transmission of a signal using the NOW scheme.
  • the transmitting device performs discrete Fourier transform (DFT) expansion on the data to be transmitted to obtain an expanded signal.
  • Subcarrier mapping is then performed on the spread signal to map the spread signal onto each subcarrier.
  • the transmitting device performs Inverse Fast Fourier Transform (IFFT) on each sub-carrier, and inserts an extended cyclic prefix into the IFFT signal, which can avoid the interference between DFT-s-OFDM symbols and support the receiving device
  • IFFT Inverse Fast Fourier Transform
  • MMSE-DFE Minimum Mean Square Error-Decision Feedback Equalizer
  • non-orthogonal super-Nyquist (FTN) modulation is performed on the signal inserted with the cyclic prefix to compress the entire DFT-s-OFDM time-domain symbol, and the non-orthogonal super-Nyquist-modulated signal is transmitted through the channel.
  • the non-orthogonal super-Nyquist modulation may include up-sampling the cyclic prefix-inserted signal, and pulse-shaping the up-sampled signal.
  • the receiving device performs non-orthogonal super-Nyquist demodulation on the received signal.
  • the non-orthogonal super-Nyquist demodulation may include matched filtering of the received signal and down-sampling of the filtered signal.
  • the cyclic prefix of the non-orthogonal super-Nyquist demodulated signal is removed, and a fast Fourier transform (FFT) is performed on the cyclic prefix-removed signal.
  • FFT fast Fourier transform
  • the receiving device performs minimum mean square error decision feedback equalization and inter-symbol interference cancellation on the FFT signal, and performs subcarrier mapping.
  • DFT spreading is performed on the mapped signal. In order to achieve high throughput, low PAPR, high reliability and other requirements.
  • the optimal time-domain compression factor can be obtained without the useful signal spectrum being truncated, and if the time-domain compression factor is smaller than the optimal value, the useful signal spectrum will be truncated. This results in that when the NOW scheme is used for transmission, although high spectral efficiency and high power efficiency can be obtained, the SNR loss is severe. Therefore, there is a need for a method and corresponding electronic device for reducing spectrum truncation to reduce SNR loss when using the NOW scheme for transmission.
  • FIG. 2 is a schematic block diagram illustrating an electronic device according to an embodiment of the present disclosure.
  • a sending device 200 may include a processing unit 210 and a sending unit 220 .
  • the electronic device 200 may also include other components, however, since these components are irrelevant to the contents of the embodiments of the present disclosure, their illustration and description are omitted here.
  • the processing unit 210 performs discrete Fourier transform extension on the data to be sent to obtain an extended signal, performs subcarrier mapping on the extended signal, and performs spectral shaping on the subcarriers using a spectral shaping factor to obtain a shaped signal , and a non-orthogonal super-Nyquist signal is obtained according to the shaped signal.
  • the spectral shaping factor may comprise an amplitude shaping factor.
  • the processing unit 210 may spectrally shape the sub-carriers using the amplitude factor to reduce the power of the sub-carriers that are truncated due to non-orthogonal super-Nyquist modulation.
  • the amplitude shaping factor for each subcarrier may be determined from the frequency domain value of a particular impulse function.
  • the subcarriers can be spectrally shaped by a root raised cosine function.
  • the amplitude shaping factor for each subcarrier may be determined from the frequency domain value of the root raised cosine function.
  • the amplitude shaping factor can also be determined according to the number of sub-carriers truncated in FTN modulation, the total number of sub-carriers.
  • FIG. 3 is a schematic diagram illustrating the square of the absolute value of the amplitude shaping factor determined from the frequency domain value of the root raised cosine function according to an example of the present disclosure.
  • the root raised cosine function h(t) is Fourier transformed to obtain its frequency domain value as shown in Equation 1 below:
  • T is the sampling interval
  • is the roll-off factor
  • N p is the number of unilaterally truncated sub-carriers in FTN modulation
  • M is the total number of sub-carriers.
  • of the amplitude shaping factor for each subcarrier can be obtained from the frequency domain value of the root raised cosine function h(t):
  • the index of the truncated sub-carriers is ⁇ 0 ⁇ i ⁇ N p ⁇ MN p ⁇ i ⁇ M-1 ⁇ , and the non-truncated sub-carriers The index of is ⁇ N p ⁇ i ⁇ MN p ⁇ .
  • can represent the power allocation weight of that sub-carrier, and the sum of the squares of the absolute value of the amplitude shaping factors of all sub-carriers is 1, that is, Therefore, the power of each subcarrier can be adjusted by the amplitude shaping factor.
  • of the amplitude shaping factors for the truncated subcarriers 0 to Np and MNp to M-1 in the FTN modulation are small, thereby suppressing the power of the truncated subcarriers .
  • of the amplitude shaping factors for subcarriers Np +1 to MNp that are not truncated in FTN modulation is larger, that is, the power of the subcarriers that are not truncated is not suppressed . Therefore, the power of the sub-carriers whose spectrum is truncated is reduced, and the power of the sub-carriers which are not truncated will occupy a larger proportion in the total transmit power, which improves the signal-to-noise ratio.
  • the amplitude shaping factor p i for each subcarrier can be further obtained according to the above formula (2):
  • a i is the phase shaping factor in the spectral shaping factor.
  • the amplitude shaping factor for each sub-carrier may also be determined based on the frequency domain value of the specific impulse function DFT parameter.
  • the amplitude shaping factor for each sub-carrier may be determined according to the sub-carriers whose spectrum is truncated and the power levels of the sub-carriers that are not truncated in the non-orthogonal super-Nyquist modulation .
  • the amplitude shaping factors may include a first amplitude shaping factor for sub-carriers that are spectrally truncated in FTN modulation and a second amplitude shaping factor for sub-carriers that are not truncated in FTN modulation.
  • the first amplitude shaping factor can be smaller than the second amplitude shaping factor, thereby reducing the power of the sub-carriers whose spectrum is truncated, and the power of the sub-carriers that are not truncated will occupy a larger proportion of the total transmit power, improving the signal noise Compare.
  • FIGS. 4A-4C are schematic diagrams illustrating amplitude shaping factors according to power levels of spectrally truncated sub-carriers and non-truncated sub-carriers in FTN modulation, according to one example of the present disclosure.
  • the amplitude shaping factor for the sub-carrier whose spectrum is truncated in FTN modulation is the first amplitude shaping factor
  • the amplitude shaping factor for the sub-carrier whose spectrum is not truncated in FTN modulation is the first amplitude shaping factor.
  • the sum of the squares of the absolute values is 1, that is, As shown in FIGS. 4A-4C , the square of the absolute value of the first amplitude shaping factor is smaller than the square of the absolute value of the second amplitude shaping factor, thereby suppressing the power of the sub-carriers whose spectrum is truncated.
  • an amplitude shaping factor P 1 is set for all sub-carriers whose spectrum is truncated in FTN modulation, and an amplitude shaping factor P 1 is also set for all sub-carriers whose spectrum is not truncated in FTN modulation factor P 2 .
  • the power level of all subcarriers whose spectrum is truncated in FTN modulation is the same, and the power level of all subcarriers whose spectrum is not truncated in FTN modulation is the same.
  • amplitude shaping factors corresponding to a plurality of power levels, respectively may be set for subcarriers whose spectrum is truncated in FTN modulation.
  • the first amplitude shaping factor for subcarriers whose spectrum is truncated in FTN modulation includes 3 elements, ie, P 1-1 to P 1-3 .
  • the power of a part of the sub-carriers whose spectrum is truncated can be adjusted to the power level corresponding to P 1-1
  • the power of a part of the sub-carriers can be adjusted to the power level corresponding to P 1-2
  • the remaining The power of the sub-carriers whose spectrum is truncated in FTN modulation can be adjusted to the power level corresponding to P 1-3 .
  • the three elements P 1-1 to P 1-3 included in the first amplitude shaping factor are all smaller than the amplitude shaping factor P 2 for subcarriers whose spectrum is not truncated in FTN modulation.
  • amplitude shaping factors corresponding to multiple power levels can also be set for subcarriers whose spectrum is not truncated in the FTN modulation.
  • the second amplitude shaping factor for subcarriers whose spectrum is not truncated in FTN modulation includes 3 elements, ie, P 2-1 to P 2-3 .
  • the power of a part of the sub-carriers whose spectrum is not truncated in the FTN modulation can be adjusted to the power level corresponding to P 2-1
  • the power of a part of the sub-carriers can be adjusted to the power level corresponding to P 2-2
  • the power of the remaining sub-carriers whose spectrum is not truncated in the FTN modulation can be adjusted to a power level corresponding to P 2-3 .
  • the 3 elements P 2-1 to P 2-3 included in the second amplitude shaping factor are all larger than the amplitude shaping factor P 1 for the subcarrier whose spectrum is truncated in the FTN modulation.
  • amplitude shaping factors corresponding to multiple power levels can also be set for both the sub-carriers whose spectrum is not truncated and the truncated sub-carriers in the FTN modulation.
  • the amplitude shaping factors set for sub-carriers whose spectrum is truncated in FTN modulation may all be smaller than the amplitude shaping factors set for sub-carriers whose spectrum is not truncated in FTN modulation.
  • the spectral shaping factor may further include a phase shaping factor
  • the processing unit 210 may further use the phase factor to perform spectral shaping on the subcarriers to reduce non-orthogonal super-Nyquist The effect of modulation on high peak-to-average power ratios.
  • the spectral shaper can be a set of phases an element of .
  • the non-orthogonal super-Nyquist signal may be determined according to the shaped signal.
  • the sending unit 220 may send according to the determined non-orthogonal super-Nyquist signal.
  • the processing unit 210 may perform spectral shaping after subcarrier mapping, and perform an inverse fast Fourier transform (IFFT) on the spectrally shaped signal, insert an extended cyclic prefix, and perform non-orthogonal Super Nyquist (FTN) modulation.
  • IFFT inverse fast Fourier transform
  • FTN non-orthogonal Super Nyquist
  • the receiving device may perform the inverse of the spectral shaping described above in connection with FIGS. 2-4 on the received signal.
  • the receiving device may perform the opposite processing to the spectral shaping described above after performing minimum mean square error decision feedback equalization on the FFT signal.
  • the electronic device by performing spectrum shaping on the signal to be transmitted, the power of the spectrum cut-off part can be suppressed, the SNR is improved, and the out-of-band leakage is reduced.
  • the electronic device 200 may by default need to perform spectrum shaping for the signal to be transmitted, unless information indicating not to perform spectrum shaping is received, and vice versa.
  • the electronic device 200 may further include a receiving unit.
  • the receiving unit may receive shaping indication information indicating whether to perform spectrum shaping.
  • the processing unit 210 may determine, according to the received shaping indication information, whether to perform spectrum shaping on the subcarriers using the spectrum shaping factor to obtain a shaped signal.
  • the electronic device 200 may be instructed whether to perform spectrum shaping through higher layer signaling such as radio resource control (RRC) signaling or downlink control information (DCI).
  • RRC radio resource control
  • DCI downlink control information
  • the spectral shaping factor may be preset.
  • information on the spectral shaper may also be received, wherein the information on the spectral shaper may indicate the spectral shaper implicitly or explicitly.
  • the electronic device 200 may further include a receiving unit.
  • the receiving unit may receive a reference signal, eg, a channel reference signal, and the processing unit 210 may determine a spectral shaping factor from the reference signal.
  • the receiving unit may receive the transfer function type information and the information about the time domain compression factor of the non-orthogonal super-Nyquist modulation.
  • the processing unit 210 may determine the spectral shaping factor according to the transfer function type information and the information about the time-domain compression factor of the non-orthogonal super-Nyquist modulation. Specifically, the processing unit 210 may determine the subcarrier whose spectrum is truncated according to the time-domain compression factor, and obtain the spectral shaping factor according to the subcarrier whose spectrum is truncated.
  • power allocation vectors with respect to sub-carriers whose spectrum is truncated and sub-carriers whose spectrum is not truncated may be preset according to the time-domain compression factor of the non-orthogonal super-Nyquist modulation, and codes corresponding to the power allocation vectors may be stored. Book. Therefore, the processing unit 210 can determine the amplitude spectrum shaping factor based on the codebook of the power allocation vector according to the time domain compression factor received by the receiving unit.
  • the processing unit 210 determines the amplitude shaping factor of each sub-carrier according to the sub-carrier whose spectrum is truncated in the non-orthogonal super-Nyquist modulation and the power level of the sub-carrier which is not truncated, it can be According to the time-domain compression factor of the non-orthogonal super-Nyquist modulation, a power level table about the sub-carriers whose spectrum is truncated and the sub-carrier whose spectrum is not truncated is preset. For example, the number of sub-carriers in each power class can be determined from the proportion of different power classes in the regions where the spectrum is truncated or not.
  • the number of subcarriers in each power level may be preset.
  • the receiving unit may receive information about the proportions of different power levels, so that the processing unit 210 may determine the amplitude spectrum shaping factor based on the preset power level table according to the proportions of different power levels.
  • the receiving unit can also receive high-layer signaling such as RRC to indicate the phase spectrum shaping factor.
  • RRC high-layer signaling
  • FIG. 5 is a flowchart of a method 500 for spectral shaping of non-orthogonal waveforms according to one embodiment of the present disclosure. Since the steps of the signal envelope acquisition method 500 correspond to the operations of the electronic device 200 described above with reference to the figures, the detailed description of the same content is omitted here for the sake of simplicity.
  • step S501 discrete Fourier transform expansion is performed on the data to be transmitted to obtain an expanded signal.
  • step S502 subcarrier mapping is performed on the extension signal.
  • step S503 the subcarriers are spectrally shaped using the spectral shaping factor to obtain a shaped signal.
  • the spectral shaping factor may comprise an amplitude shaping factor.
  • step S503 the sub-carriers may be spectrally shaped using the amplitude factor to reduce the power of the truncated sub-carriers due to the non-orthogonal super-Nyquist modulation.
  • the amplitude shaping factor for each subcarrier may be determined according to the frequency domain value of the specific impulse function.
  • the subcarriers can be spectrally shaped by a root raised cosine function.
  • the amplitude shaping factor for each subcarrier may be determined from the frequency domain value of the root raised cosine function. This has been described in detail above with reference to FIG. 3 and equations (1)-(3), so it will not be repeated here.
  • the amplitude shaping factor for each subcarrier can be determined directly based on the frequency domain value of the specific impulse function.
  • the amplitude shaping factor for each subcarrier may also be determined based on the frequency domain value of the specific impulse function DFT parameter.
  • the amplitude shaping factor may also be determined according to the number of sub-carriers truncated in the FTN modulation and the total number of sub-carriers.
  • all sub-carriers of each sub-carrier may be determined according to the power levels of the sub-carriers whose spectrum is truncated and the sub-carriers that are not truncated in the non-orthogonal super-Nyquist modulation.
  • the amplitude shaping factors may include a first amplitude shaping factor for sub-carriers that are spectrally truncated in FTN modulation and a second amplitude shaping factor for sub-carriers that are not truncated in FTN modulation.
  • the first amplitude shaping factor can be smaller than the second amplitude shaping factor, thereby reducing the power of the sub-carriers whose spectrum is truncated, and the power of the sub-carriers that are not truncated will occupy a larger proportion of the total transmit power, improving the signal noise Compare. This has been described in detail above with reference to FIG. 4 , so it will not be repeated here.
  • the spectral shaping factor may further include a phase shaping factor.
  • the phase factor may also be used to perform spectral shaping on the sub-carriers, so as to reduce the influence of the non-orthogonal super-Nyquist modulation on the high peak-to-average power ratio.
  • the spectral shaper can be a set of phases an element of .
  • a non-orthogonal super-Nyquist signal may be determined according to the shaped signal in step S504. And in step S505, the transmission may be performed according to the determined non-orthogonal super-Nyquist signal.
  • spectral shaping may be performed after subcarrier mapping, and an inverse fast Fourier transform (IFFT), an extended cyclic prefix insertion, and a non-orthogonal super-Nyquid may be performed on the spectrally shaped signal.
  • IFFT inverse fast Fourier transform
  • FPN inverse fast Fourier transform
  • the electronic device by performing spectrum shaping on the signal to be transmitted, the power of the spectrum cut-off part can be suppressed, the SNR is improved, and the out-of-band leakage is reduced.
  • spectral shaping may be required by default for a signal to be transmitted, unless information indicating no spectral shaping is received, and vice versa.
  • method 500 may also include receiving shaping indication information indicating whether spectral shaping is to be performed.
  • it may be determined whether to use the spectral shaping factor to perform spectral shaping on the subcarriers to obtain a shaped signal according to the received shaping indication information.
  • whether to perform spectrum shaping may be indicated through higher layer signaling such as Radio Resource Control (RRC) signaling or Downlink Control Information (DCI).
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • the spectral shaping factor may be preset.
  • information on the spectral shaper may also be received, wherein the information on the spectral shaper may indicate the spectral shaper implicitly or explicitly.
  • the method 500 may further comprise receiving a reference signal, eg a channel reference signal, and in step S503 a spectral shaping factor may be determined from the reference signal.
  • the receiving unit may receive the transfer function type information and the information about the time-domain compression factor of the non-orthogonal super-Nyquist modulation.
  • the spectral shaping factor may be determined according to the transfer function type information and the information about the time-domain compression factor of the non-orthogonal super-Nyquist modulation.
  • the sub-carriers whose spectrum is truncated may be determined according to the time-domain compression factor, and the spectrum shaping factor may be obtained according to the sub-carriers whose spectrum is truncated.
  • power allocation vectors with respect to sub-carriers whose spectrum is truncated and sub-carriers whose spectrum is not truncated may be preset according to the time-domain compression factor of the non-orthogonal super-Nyquist modulation, and codes corresponding to the power allocation vectors may be stored. Book. Therefore, in step S503, the amplitude spectrum shaping factor can be determined based on the codebook of the power allocation vector according to the time domain compression factor received by the receiving unit.
  • the amplitude shaping factor of each sub-carrier may be determined according to the non-orthogonal super-Nyquist modulation. Override the time domain compression factor of Nyquist modulation, and preset a power level table about subcarriers whose spectrum is truncated and subcarriers whose spectrum is not truncated.
  • the number of sub-carriers in each power class can be determined from the proportion of different power classes in the regions where the spectrum is truncated or not.
  • the time-domain compression factor is a non-ideal time-domain compression factor
  • the number of subcarriers in each power level may be preset.
  • the receiving unit may receive information about the proportions occupied by different power levels, so that in step S503, the amplitude spectrum shaping factor may be determined based on the preset power level table according to the proportions occupied by different power levels.
  • method 500 may further include receiving higher layer signaling, such as RRC, to indicate the phase spectrum shaping factor.
  • RRC higher layer signaling
  • each functional block may be implemented by one device that is physically and/or logically combined, or two or more devices that are physically and/or logically separated may be directly and/or indirectly (for example, By wired and/or wireless) connection, it is realized by the above-mentioned multiple devices.
  • FIG. 6 is a schematic diagram of a hardware structure of an involved device 600 (base station or terminal) according to an embodiment of the present disclosure.
  • the above-mentioned device 600 can be configured as a computer device that physically includes a processor 610, a memory 620, a memory 630, a communication device 640, an input device 650, an output device 660, a bus 670, and the like.
  • the word “device” may be replaced with a circuit, a device, a unit, or the like.
  • the hardware structures of the user terminal and the base station may include one or more devices shown in the figures, or may not include some devices.
  • processor 610 only one processor 610 is shown, but there may be multiple processors. Furthermore, processing may be performed by one processor, or by more than one processor simultaneously, sequentially, or in other ways. Additionally, the processor 610 may be mounted on more than one chip.
  • Each function of the device 600 is realized, for example, by reading predetermined software (programs) into hardware such as the processor 610 and the memory 620 to cause the processor 610 to perform calculations and to control communication by the communication device 640 , and control the reading and/or writing of data in the memory 620 and the memory 630 .
  • predetermined software programs
  • the processor 610 controls the entire computer by operating the operating system, for example.
  • the processor 610 may be constituted by a central processing unit (CPU, Central Processing Unit) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like.
  • CPU Central Processing Unit
  • the above-mentioned processing units and the like can be implemented by the processor 610 .
  • the processor 610 reads out programs (program codes), software modules, data, etc. from the memory 630 and/or the communication device 640 to the memory 620, and executes various processes according to them.
  • programs program codes
  • the program a program for causing a computer to execute at least a part of the operations described in the above-described embodiments may be employed.
  • the processing unit of the electronic device can be implemented by a control program stored in the memory 620 and operated by the processor 610, and other functional blocks can also be implemented similarly.
  • the memory 620 is a computer-readable recording medium, for example, can be composed of a read-only memory (ROM, Read Only Memory), a programmable read-only memory (EPROM, Erasable Programmable ROM), an electrically programmable read-only memory (EEPROM, Electrically EPROM), Random access memory (RAM, Random Access Memory) and at least one of other suitable storage media.
  • ROM read-only memory
  • EPROM programmable read-only memory
  • EEPROM Electrically programmable read-only memory
  • RAM Random Access Memory
  • Memory 620 may also be referred to as registers, cache, main memory (main storage), and the like.
  • the memory 620 may store executable programs (program codes), software modules, and the like for implementing the method according to an embodiment of the present disclosure.
  • the memory 630 is a computer-readable recording medium, and can be composed of, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a CD-ROM (Compact Disc ROM), etc.), Digital versatile discs, Blu-ray (registered trademark) discs), removable disks, hard drives, smart cards, flash memory devices (eg, cards, sticks, key drivers), magnetic stripes, databases , a server, and at least one of other suitable storage media.
  • Memory 630 may also be referred to as secondary storage.
  • the communication device 640 is hardware (transmitting and receiving device) used for communication between computers through wired and/or wireless networks, and is also called, for example, a network device, a network controller, a network card, a communication module, and the like.
  • the communication device 640 may include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like.
  • the above-mentioned sending unit, receiving unit, etc. can be implemented by the communication device 640 .
  • the input device 650 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 660 is an output device (eg, a display, a speaker, a Light Emitting Diode (LED, Light Emitting Diode) lamp, etc.) that implements output to the outside.
  • the input device 650 and the output device 660 may also have an integrated structure (eg, a touch panel).
  • each device such as the processor 610 and the memory 620 is connected via a bus 670 for communicating information.
  • the bus 670 may be constituted by a single bus, or may be constituted by different buses between devices.
  • the electronic device may include a microprocessor, a digital signal processor (DSP, Digital Signal Processor), an application specific integrated circuit (ASIC, Application Specific Integrated Circuit), a programmable logic device (PLD, Programmable Logic Device), a field programmable gate Array (FPGA, Field Programmable Gate Array) and other hardware, can realize part or all of each functional block through the hardware.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD programmable logic device
  • FPGA Field Programmable Gate Array
  • the processor 610 may be installed by at least one of these pieces of hardware.
  • channels and/or symbols may also be signals (signaling).
  • signals can also be messages.
  • the reference signal may also be referred to as RS (Reference Signal) for short, and may also be referred to as a pilot (Pilot), a pilot signal, etc. according to the applicable standard.
  • a component carrier CC, Component Carrier
  • CC Component Carrier
  • the information, parameters, etc. described in this specification may be expressed by absolute values, may be expressed by relative values with respect to predetermined values, or may be expressed by corresponding other information.
  • the radio resource may be indicated by a prescribed index.
  • the formulas and the like using these parameters may also be different from those explicitly disclosed in this specification.
  • the information, signals, etc. described in this specification may be represented using any of a variety of different technologies.
  • data, commands, instructions, information, signals, bits, symbols, chips, etc. may be mentioned throughout the above description may be generated by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of them. combination to represent.
  • information, signals, etc. may be output from the upper layer to the lower layer, and/or from the lower layer to the upper layer.
  • Information, signals, etc. can be input or output via multiple network nodes.
  • Input or output information, signals, etc. can be stored in a specific place (eg, memory), and can also be managed through a management table. Input or output information, signals, etc. can be overwritten, updated or supplemented. Output messages, signals, etc. can be deleted. Input information, signals, etc. can be sent to other devices.
  • a specific place eg, memory
  • Input or output information, signals, etc. can be overwritten, updated or supplemented.
  • Output messages, signals, etc. can be deleted.
  • Input information, signals, etc. can be sent to other devices.
  • Notification of information is not limited to the mode/embodiment described in this specification, and may be performed by other methods.
  • the notification of information may be through physical layer signaling (eg, Downlink Control Information (DCI, Downlink Control Information), Uplink Control Information (UCI, Uplink Control Information)), upper layer signaling (eg, Radio Resource Control Information) (RRC, Radio Resource Control) signaling, broadcast information (Master Information Block (MIB, Master Information Block), System Information Block (SIB, System Information Block), etc.), Media Access Control (MAC, Medium Access Control) signaling ), other signals, or a combination thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC Radio Resource Control Information
  • RRC Radio Resource Control
  • MAC Media Access Control
  • the physical layer signaling may also be referred to as L1/L2 (Layer 1/Layer 2) control information (L1/L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may also be called an RRC message, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, and the like.
  • the MAC signaling can be notified by, for example, a MAC control element (MAC CE (Control Element)).
  • notification of predetermined information is not limited to being performed explicitly, and may be performed implicitly (eg, by not performing notification of the predetermined information, or by notification of other information).
  • the determination can be performed by a value (0 or 1) represented by 1 bit, by a true or false value (Boolean value) represented by true (true) or false (false), or by a numerical comparison ( For example, a comparison with a predetermined value) is performed.
  • software, commands, information, etc. may be sent or received via a transmission medium.
  • a transmission medium For example, when sending from a website, server, or other remote source using wireline technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL, Digital Subscriber Line, etc.) and/or wireless technology (infrared, microwave, etc.)
  • wireline technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL, Digital Subscriber Line, etc.
  • wireless technology infrared, microwave, etc.
  • system and “network” are used interchangeably in this specification.
  • Base station BS, Base Station
  • radio base station eNB
  • gNB gNodeB
  • cell gNodeB
  • cell group femtocell
  • carrier femtocell
  • a base station may house one or more (eg, three) cells (also referred to as sectors). When the base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also pass through the base station subsystem (for example, indoor small base stations (Remote Radio Heads (RRH, RRH) Remote Radio Head)) to provide communication services.
  • the terms "cell” or “sector” refer to a portion or the entirety of the coverage area of the base station and/or base station subsystem in which the communication service is performed.
  • mobile station MS, Mobile Station
  • user terminal user terminal
  • UE User Equipment
  • terminal mobile station
  • a mobile station is also sometimes referred to by those skilled in the art as subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless Terminal, remote terminal, handset, user agent, mobile client, client, or some other appropriate term.
  • the radio base station in this specification may also be replaced with a user terminal.
  • each aspect/embodiment of the present disclosure can also be applied to a structure in which the communication between the radio base station and the user terminal is replaced by the communication between a plurality of user terminals (D2D, Device-to-Device).
  • the functions possessed by the above-mentioned electronic device may be regarded as functions possessed by the user terminal.
  • words like "up” and "down” can also be replaced with "side”.
  • the upstream channel can also be replaced by a side channel.
  • the user terminal in this specification can also be replaced with a wireless base station.
  • the functions possessed by the user terminal described above may be regarded as functions possessed by the first communication device or the second communication device.
  • a specific operation performed by a base station may also be performed by an upper node thereof depending on circumstances.
  • various actions performed for communication with a terminal can be performed through the base station, one or more networks other than the base station Nodes (for example, Mobility Management Entity (MME, Mobility Management Entity), Serving-Gateway (S-GW, Serving-Gateway), etc. can be considered, but not limited thereto), or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • Serving-Gateway Serving-Gateway
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Advanced
  • LTE-B Long Term Evolution Beyond
  • LTE-Beyond Long Term Evolution Beyond
  • IMT-Advanced 4th Generation Mobile Communication System
  • 4G 4th generation mobile communication system
  • 5G 5th Generation Mobile Communication System
  • Future Radio Access Future Radio Access
  • New-RAT New Radio Access Technology
  • New Radio New Radio
  • NR New Radio
  • New Radio Access New Radio Access
  • NX New radio access
  • Future Generation Radio Access Future Generation Radio Access
  • GSM Global System for Mobile Communications
  • CDMA3000 Code Division Multiple Access 3000
  • UMB Ultra Mobile Broadband
  • IEEE 920.11 Wi-Fi (registered trademark)
  • IEEE 920.11 Wi-Fi (registered trademark)
  • any reference in this specification to an element using the designation "first”, “second” etc. is not intended to comprehensively limit the number or order of such elements. These names may be used in this specification as a convenient method of distinguishing two or more units. Thus, a reference to a first element and a second element does not imply that only two elements may be employed or that the first element must precede the second element in some form.
  • determining (determining) used in this specification may include various operations. For example, with regard to “judging (determining)”, calculating, computing, processing, deriving, investigating, looking up (eg, tables, databases, or other Searching in the data structure), confirming (ascertaining), etc. are regarded as “judgment (determination)”. In addition, regarding “judgment (determination)”, receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), accessing (accessing) (for example, access to data in the memory), etc., are regarded as “judgment (determination)".
  • connection refers to any connection or combination, direct or indirect, between two or more units, which may be It includes the following situations: between two units “connected” or “combined” with each other, there are one or more intermediate units.
  • the combination or connection between the units may be physical or logical, or may also be a combination of the two.
  • connecting can also be replaced by "accessing”.
  • two units may be considered to be electrically connected through the use of one or more wires, cables, and/or printed, and as a number of non-limiting and non-exhaustive examples, by using a radio frequency region , the microwave region, and/or the wavelengths of electromagnetic energy in the light (both visible and invisible) region, etc., are “connected” or “combined” with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Transmitters (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Complex Calculations (AREA)

Abstract

本公开提供一种非正交波形的频谱整形方法及电子设备。所述电子设备包括处理单元,配置来对要发送的数据进行离散傅里叶变换扩展以获得扩展信号,对所述扩展信号进行子载波映射,使用频谱整形因子对子载波进行频谱整形以获得整形信号,并且根据所述整形信号获得非正交超奈奎斯特信号;以及发送单元,配置来发送所述非正交超奈奎斯特信号。

Description

非正交波形的频谱整形方法及电子设备 技术领域
本公开涉及无线通信领域,并且更具体地涉及一种用于非正交波形(NOW)的频谱整形方法以及相应的电子设备。
背景技术
为了实现演进5G和6G的极高数据速率要求,例如毫米波(mmWave)和太赫兹(THz)频率等高频段相关技术已被视为在演进5G和6G通信中的推荐技术。大带宽高频段的系统设计受到功率放大器(PA)非线性的限制。在波形设计中应考虑高频谱效率,高功率效率和高灵活性以支持更多方案。由于高峰值平均功率比(PAPR),在功率放大器非线性的影响下,带有循环前缀的正交频分复用波形(CP-OFDM)将显示信号失真和性能下降。在此情况下,被应用于4G和5G上行链路的离散傅里叶变换扩展正交频分复用波形(DFT-s-OFDM)具有低峰值平均功率比的优势,可以被视为演进5G和6G的候选波形。
另一方面,正交波形已接近香农极限,并且进一步改善频谱效率的空间非常有限。非正交超奈奎斯特(FTN)可以通过提高奈奎斯特上的信号传输速率来改善SE。通过使用DFT-s-OFDM和时域非正交FTN(以下将使用DFT-s-OFDM和非正交时域FTN进行通信的方案简称为“NOW”方案)可以实现高频谱效率和高功率效率。在NOW方案时,可通过调整时域压缩因子来进行正交波形和非正波形的转换,或者根据不同场景来调整时域压缩因子,以实现高吞吐、低PAPR、高可靠性等需求。
然而当以NOW方案进行传输时存在频谱被截断。与正交波形CP-OFDM和DFT-s-OFDM相比,当获得高频谱效率和高功率效率时,信号噪声比(SNR)损失将非常严重。
发明内容
根据本公开的一个方面,提供了一种电子设备。所述电子设备包括处理单元,配置来对要发送的数据进行离散傅里叶变换扩展以获得扩展信号,对 所述扩展信号进行子载波映射,使用频谱整形因子对子载波进行频谱整形以获得整形信号,并且根据所述整形信号获得非正交超奈奎斯特信号;以及发送单元,配置来发送所述非正交超奈奎斯特信号。
根据本公开的另一方面,提供了一种非正交波形的频谱整形方法,包括:对要发送的数据进行离散傅里叶变换扩展以获得扩展信号;对所述扩展信号进行子载波映射;使用频谱整形因子对子载波进行频谱整形以获得整形信号;根据所述整形信号获得非正交超奈奎斯特信号;以及发送所述非正交超奈奎斯特信号。
附图说明
通过结合附图对本公开实施例进行更详细的描述,本公开的上述以及其它目的、特征和优势将变得更加明显。附图用来提供对本公开实施例的进一步理解,并且构成说明书的一部分,与本公开实施例一起用于解释本公开,并不构成对本公开的限制。在附图中,相同的参考标号通常代表相同部件或步骤。
图1是示出使用NOW方案对信号进行传输的示意性框图。
图2是示出根据本公开一个实施例的电子设备的示意性框图。
图3是示出了根据本公开一个示例的根据根升余弦函数的频域值确定的幅度整形因子绝对值平方的示意图。
图4A-图4C是示出了根据本公开一个示例,根据在FTN调制中频谱被截断的子载波以及未被截断的子载波的功率等级确的幅度整形因子的示意图。
图5是根据本公开的一个实施例的非正交波形的频谱整形方法的流程图。
图6是根据本公开实施例的所涉及的设备的硬件结构的示意图。
具体实施方式
为了使得本公开的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本公开的示例实施例。在附图中,相同的参考标号自始至终表示相同的元件。应当理解:这里描述的实施例仅仅是说明性的,而不应被解释为限制本公开的范围。此外,这里所述的终端可以包括各种类型的终端,例如用户终端(User Equipment,UE)、移动终端(或称为移动台)或者固定终 端,然而,为方便起见,在下文中有时候可互换地使用终端和UE。
图1是示出使用NOW方案对信号进行传输的示意性框图。如图1所示,发送设备对要发送的数据进行离散傅里叶变换(DFT)扩展以获得扩展信号。然后对扩展信号进行子载波映射,以将扩展信号映射到各个子载波上。接下来,发送设备对各个子载波进行快速傅里叶逆变换(IFFT),并对经过IFFT的信号插入扩展的循环前缀,从而可避免DFT-s-OFDM符号之间的干扰且支持在接收设备的最小均方误差判决反馈均衡器(MMSE-DFE,Minimum Mean Square Error-Decision Feedback Equalizer)。最后对插入了循环前缀的信号进行非正交超奈奎斯特(FTN)调制以压缩整个DFT-s-OFDM时域符号,并且通过信道发送经过非正交超奈奎斯特调制的信号。具体地,非正交超奈奎斯特调制可包括对于插入了循环前缀的信号进行上采样,并且对于上采样的信号进行脉冲整形。
另一方面,如图1所示,接收设备对接收的信号进行非正交超奈奎斯特解调。具体地,非正交超奈奎斯特解调可包括对于接收到的信号进行匹配滤波,并对滤波后的信号进行下采样。然后,去除非正交超奈奎斯特解调后的信号的循环前缀,并对去除了循环前缀的信号进行快速傅里叶变换(FFT)。接下来,接收设备对于经过FFT的信号进行最小均方误差判决反馈均衡以及符号间干扰消除,并且进行子载波映射。最后,对映射后的信号进行DFT扩展。从而实现高吞吐、低PAPR、高可靠性等需求。
如上所述,当以NOW方案进行传输时存在频谱被截断的问题。具体地,通过分析NOW方案的信号频谱,可以在没有有用信号频谱被截断的情况下得出最佳时域压缩因子,并且如果时域压缩因子小于最佳值,则有用信号频谱将被截断。这导致在使用NOW方案进行传输时,虽然能够获得较高的频谱效率和高功率效率,但是SNR损失严重。因此需要一种在使用NOW方案进行传输时减少频谱截断以减低SNR损失的方法以及相应的电子设备。
在根据本公开的实施例中,提出了在对要发送的信号进行子载波映射之后,对于子载波进行频域频谱整形以减少频谱截断所带来的问题。下面,将参照图2来描述根据本公开实施例的电子设备200。图2是示出根据本公开一个实施例的电子设备的示意性框图。如图2所示,根据本公开一个实施例的发送设备200可包括处理单元210和发送单元220。除了处理单元和发送 单元,电子设备200还可以包括其他部件,然而,由于这些部件与本公开实施例的内容无关,因此在这里省略其图示和描述。
如图2所示,处理单元210对要发送的数据进行离散傅里叶变换扩展以获得扩展信号,对所述扩展信号进行子载波映射,使用频谱整形因子对子载波进行频谱整形以获得整形信号,并且根据所述整形信号获得非正交超奈奎斯特信号。根据公开的一个示例,所述频谱整形因子可包括幅度整形因子。处理单元210可使用幅度因子对子载波进行频谱整形,以减少由于非正交超奈奎斯特调制被截断的子载波的功率。
例如,可根据特定脉冲函数的频域值来确定对于各个子载波的幅度整形因子。例如,可通过根升余弦函数来对子载波进行频谱整形。在此情况下,可根据根升余弦函数的频域值来确定对于各个子载波的幅度整形因子。此外,还可根据在FTN调制中被截断的子载波的数量、子载波总数来确定幅度整形因子。
图3是示出了根据本公开一个示例的根据根升余弦函数的频域值确定的幅度整形因子绝对值平方的示意图。在图3所示的示例中,对根升余弦函数h(t)进行傅里叶变换,以获得其如下公式1所示的频域值:
Figure PCTCN2020120809-appb-000001
其中,T是采样间隔,β是滚降因子,N p是在FTN调制中单边截断子载波的数量,M是总子载波数。
因此,如以下公式(2)所示,可根据根升余弦函数h(t)的频域值获得对于每个子载波的幅度整形因子的绝对值|p i|:
Figure PCTCN2020120809-appb-000002
其中2N p是在FTN调制中截断的子载波的数量,被截断的子载波的索引 为{0≤i≤N p}∪{M-N p≤i≤M-1},并且未被截断的子载波的索引为{N p<i<M-N p}。
每个子载波的幅度整形因子的绝对值|p i|可表示该子载波的功率分配权重,并且所有子载波的幅度整形因子的绝对值平方之和为1,即,
Figure PCTCN2020120809-appb-000003
Figure PCTCN2020120809-appb-000004
从而可通过幅度整形因子来调整各个子载波的功率。如图3所示,对于在FTN调制中被截断的子载波0至N p以及M-N p至M-1的幅度整形因子的绝对值|p i|较小,从而抑制被截断的子载波的功率。另一方面,对于在FTN调制中未被截断的子载波N p+1至M-N p的幅度整形因子的绝对值|p i|较大,也就是说,不抑制未被截断的子载波的功率。从而,降低了频谱被截断的子载波的功率,并且未被截断的子载波的功率在总发射功率中将占有更大的比例,改善了信号噪声比。
如以下公式(3)所示,根据以上公式(2)可进一步获得对于每个子载波的幅度整形因子p i
Figure PCTCN2020120809-appb-000005
其中a i是频谱整形因子中的相位整形因子。
在图3所示的示例中,以直接基于特定脉冲函数的频域值来确定对于各个子载波的幅度整形因子为例进行了描述。可替换地,还可基于特定脉冲函数DFT参数的频域值来确定对于各个子载波的幅度整形因子。
此外,根据本公开的另一示例,可根据在非正交超奈奎斯特调制中频谱被截断的子载波以及未被截断的子载波的功率等级来确定各个子载波的所述幅度整形因子。例如,幅度整形因子可包括用于在FTN调制中频谱被截断的子载波的第一幅度整形因子以及用于在FTN调制中未被截断的子载波的第二幅度整形因子。第一幅度整形因子可小于第二幅度整形因子,从而降低了频谱被截断的子载波的功率,并且未被截断的子载波的功率在总发射功率中将占有更大的比例,改善了信号噪声比。
图4A-图4C是示出了根据本公开一个示例,根据在FTN调制中频谱被截断的子载波以及未被截断的子载波的功率等级确的幅度整形因子的示意图。 在图4A-图4C所示的示例中,对于在FTN调制中频谱被截断的子载波的幅度整形因子为第一幅度整形因子,对于在FTN调制中频谱未被截断的子载波的幅度整形因子为第二幅度整形因子。与图3所示的示例类似,在图4A-图4C中,每个子载波的幅度整形因子的绝对值|p i|可表示该子载波的功率分配权重,并且所有子载波的幅度整形因子的绝对值平方之和为1,即,
Figure PCTCN2020120809-appb-000006
如图4A-图4C所示,第一幅度整形因子的绝对值的平方小于第二幅度整形因子的绝对值的平方,从而抑制了频谱被截断的子载波的功率。
在图4A所示的示例中,对于在FTN调制中频谱被截断的全部子载波设置了一个幅度整形因子P 1,并且对于在FTN调制中频谱被未截断的全部子载波也设置了一个幅度整形因子P 2。换言之,在FTN调制中频谱被截断的全部子载波的功率等级相同,并且在FTN调制中频谱被未截断的全部子载波的功率等级相同。
可替换地,可对于在FTN调制中频谱被截断的子载波设置分别与多个功率等级对应的幅度整形因子。例如,如图4B所示,关于在FTN调制中频谱被截断的子载波的第一幅度整形因子包括3个元素,即,P 1-1至P 1-3。因此,在FTN调制中频谱被截断的一部分子载波的功率可被调整为与P 1-1对应的功率等级,一部分子载波的功率可被调整为与P 1-2对应的功率等级,并且剩余的在FTN调制中频谱被截断的子载波的功率可被调整为与P 1-3对应的功率等级。第一幅度整形因子包括的3个元素P 1-1至P 1-3均小于对于在FTN调制中频谱未被截断的子载波的幅度整形因子P 2
类似地,也可对于在FTN调制中频谱未被截断的子载波设置分别与多个功率等级对应的幅度整形因子。例如,如图4C所示,关于在FTN调制中频谱未被截断的子载波的第二幅度整形因子包括3个元素,即,P 2-1至P 2-3。因此,在FTN调制中频谱未被截断的一部分子载波的功率可被调整为与P 2-1对应的功率等级,一部分子载波的功率可被调整为与P 2-2对应的功率等级,并且剩余的在FTN调制中频谱未被截断的子载波的功率可被调整为与P 2-3对应的功率等级。第二幅度整形因子包括的3个元素P 2-1至P 2-3均大于对于在FTN调制中频谱被截断的子载波的幅度整形因子P 1
此外,还可对于在FTN调制中频谱未被截断的子载波、以及被截断的子载波均设置分别与多个功率等级对应的幅度整形因子。对于在FTN调制中频 谱被截断的子载波设置的幅度整形因子可均小于对于在FTN调制中频谱未被截断的子载波设置的幅度整形因子。
返回图2,根据本公开了另一示例,所述频谱整形因子还可包括相位整形因子,并且处理单元210还可使用相位因子对子载波进行频谱整形,以减少非正交超奈奎斯特调制对高峰值平均功率比的影响。例如,频谱整形因子可是相位集合
Figure PCTCN2020120809-appb-000007
中的一个元素。
处理单元210获得频谱整形信号后,可根据所述整形信号确定非正交超奈奎斯特信号。并且发送单元220可根据所确定非正交超奈奎斯特信号进行发送。例如,参照图1所示的示意图,处理单元210可在子载波映射后进行频谱整形,并且对频谱整形的信号进行快速傅里叶逆变换(IFFT)、插入扩展的循环前缀、以及非正交超奈奎斯特(FTN)调制。相应地,接收设备可对所接收的信号执行与以上结合图2-图4描述的频谱整形相反的处理。例如,在图1所示的使用NOW方案对信号进行传输的示意性框图中,接收设备可在对于经过FFT的信号进行最小均方误差判决反馈均衡之后进行与以上描述的频谱整形相反的处理。
在根据本公开的电子设备中,通过对于要发送的信号进行频谱整形,可抑制频谱截断部分的功率,改善了SNR,同时降低了带外泄露。
根据本公开一个实施例,电子设备200可默认需要对于要发送的信号进行频谱整形,除非接收到指示不进行频谱整形的信息,反之亦然。例如,电子设备200还可包括接收单元。接收单元可接收指示是否进行频谱整形的整形指示信息。处理单元210可根据所接收的整形指示信息来确定是否使用频谱整形因子对子载波进行频谱整形以获得整形信号。例如,可通过无线资源控制(RRC)信令或下行控制信息(DCI)等高层信令来指示电子设备200是否进行频谱整形。
根据本公开一个实施例,可预先设置频谱整形因子。可替换地,也可接收关于频谱整形因子的信息,其中关于频谱整形因子的信息可隐式或显示地指示频谱整形因子。
例如,电子设备200还可包括接收单元。接收单元可接收例如信道参考信号的参考信号,并且处理单元210可根据所述参考信号来确定频谱整形因子。又例如,接收单元可接收传输函数类型信息和关于非正交超奈奎斯特调 制的时域压缩因子的信息。处理单元210可根据所述传输函数类型信息和关于非正交超奈奎斯特调制的时域压缩因子的信息来确定所述频谱整形因子。具体地,处理单元210可根据时域压缩因子来确定频谱被截断的子载波,并根据频谱被截断的子载波来获得频谱整形因子。
此外,可根据非正交超奈奎斯特调制的时域压缩因子,预先设置关于频谱被截断的子载波和频谱未被截断的子载波的功率分配矢量,并且存储对应于功率分配矢量的码本。从而处理单元210可根据接收单元接收到的时域压缩因子来基于功率分配矢量的码本确定幅度频谱整形因子。
此外,在处理单元210根据在非正交超奈奎斯特调制中频谱被截断的子载波以及未被截断的子载波的功率等级来确定各个子载波的所述幅度整形因子的情况下,可根据非正交超奈奎斯特调制的时域压缩因子,预先设置关于频谱被截断的子载波和频谱未被截断的子载波的功率等级表格。例如,可根据在频谱被截断或未被截断的区域中不同功率等级的比例来确定各个功率等级中子载波的数量。又例如,在时域压缩因子为非理想时域压缩因子的情况下,可预先设置各个功率等级中子载波的数量。接收单元可以接收关于不同功率等级所占的比例的信息,从而处理单元210可根据不同功率等级所占的比例,基于预先设置的功率等级表格确定幅度频谱整形因子。
此外,接收单元还可接收例如RRC的高层信令,以指示相位频谱整形因子。
下面,参照图5来描述根据本公开实施例的非正交波形的频谱整形方法。图5是根据本公开的一个实施例的非正交波形的频谱整形方法500的流程图。由于信号包络获取方法500的步骤与上文参照图描述的电子设备200的操作对应,因此在这里为了简单起见,省略对相同内容的详细描述。
如图5所示,在步骤S501中,对要发送的数据进行离散傅里叶变换扩展以获得扩展信号。在步骤S502中,对所述扩展信号进行子载波映射。然后,在步骤S503中,使用频谱整形因子对子载波进行频谱整形以获得整形信号。根据公开的一个示例,所述频谱整形因子可包括幅度整形因子。在步骤S503中可使用幅度因子对子载波进行频谱整形,以减少由于非正交超奈奎斯特调制被截断的子载波的功率。
例如,在步骤S503中可根据特定脉冲函数的频域值来确定对于各个子载波的幅度整形因子。例如,可通过根升余弦函数来对子载波进行频谱整形。在此情况下,可根据根升余弦函数的频域值来确定对于各个子载波的幅度整形因子。以上已经结合图3和公式(1)-(3)对此进行了详细描述,故在此不再赘述。
可以直接基于特定脉冲函数的频域值来确定对于各个子载波的幅度整形因子为例进行了描述。可替换地,还可基于特定脉冲函数DFT参数的频域值来确定对于各个子载波的幅度整形因子。此外,在步骤S503中还可根据在FTN调制中被截断的子载波的数量、子载波总数来确定幅度整形因子。
此外,根据本公开的另一示例,在步骤S503中可根据在非正交超奈奎斯特调制中频谱被截断的子载波以及未被截断的子载波的功率等级来确定各个子载波的所述幅度整形因子。例如,幅度整形因子可包括用于在FTN调制中频谱被截断的子载波的第一幅度整形因子以及用于在FTN调制中未被截断的子载波的第二幅度整形因子。第一幅度整形因子可小于第二幅度整形因子,从而降低了频谱被截断的子载波的功率,并且未被截断的子载波的功率在总发射功率中将占有更大的比例,改善了信号噪声比。以上已经结合图4对此进行了详细描述,故在此不再赘述。
根据本公开了另一示例,所述频谱整形因子还可包括相位整形因子。在步骤S503中还可使用相位因子对子载波进行频谱整形,以减少非正交超奈奎斯特调制对高峰值平均功率比的影响。例如,频谱整形因子可是相位集合
Figure PCTCN2020120809-appb-000008
中的一个元素。
获得频谱整形信号后,在步骤S504中可根据所述整形信号确定非正交超奈奎斯特信号。并且在步骤S505中可根据所确定的非正交超奈奎斯特信号进行发送。例如,参照图1所示的示意图,可在子载波映射后进行频谱整形,并且对频谱整形的信号进行快速傅里叶逆变换(IFFT)、插入扩展的循环前缀、以及非正交超奈奎斯特(FTN)调制。
在根据本公开的电子设备中,通过对于要发送的信号进行频谱整形,可抑制频谱截断部分的功率,改善了SNR,同时降低了带外泄露。
根据本公开一个实施例,可默认需要对于要发送的信号进行频谱整形,除非接收到指示不进行频谱整形的信息,反之亦然。例如,方法500还可包 括接收指示是否进行频谱整形的整形指示信息。在步骤S503中可根据所接收的整形指示信息来确定是否使用频谱整形因子对子载波进行频谱整形以获得整形信号。例如,可通过无线资源控制(RRC)信令或下行控制信息(DCI)等高层信令来指示是否进行频谱整形。
根据本公开一个实施例,可预先设置频谱整形因子。可替换地,也可接收关于频谱整形因子的信息,其中关于频谱整形因子的信息可隐式或显示地指示频谱整形因子。
例如,方法500还可包括接收例如信道参考信号的参考信号,并且在步骤S503中可根据所述参考信号来确定频谱整形因子。又例如,接收单元可接收传输函数类型信息和关于非正交超奈奎斯特调制的时域压缩因子的信息。在步骤S503中可根据所述传输函数类型信息和关于非正交超奈奎斯特调制的时域压缩因子的信息来确定所述频谱整形因子。具体地,在步骤S503中可根据时域压缩因子来确定频谱被截断的子载波,并根据频谱被截断的子载波来获得频谱整形因子。
此外,可根据非正交超奈奎斯特调制的时域压缩因子,预先设置关于频谱被截断的子载波和频谱未被截断的子载波的功率分配矢量,并且存储对应于功率分配矢量的码本。从而在步骤S503中可根据接收单元接收到的时域压缩因子来基于功率分配矢量的码本确定幅度频谱整形因子。
此外,在根据在非正交超奈奎斯特调制中频谱被截断的子载波以及未被截断的子载波的功率等级来确定各个子载波的所述幅度整形因子的情况下,可根据非正交超奈奎斯特调制的时域压缩因子,预先设置关于频谱被截断的子载波和频谱未被截断的子载波的功率等级表格。例如,可根据在频谱被截断或未被截断的区域中不同功率等级的比例来确定各个功率等级中子载波的数量。又例如,在时域压缩因子为非理想时域压缩因子的情况下,可预先设置各个功率等级中子载波的数量。接收单元可以接收关于不同功率等级所占的比例的信息,从而在步骤S503中可根据不同功率等级所占的比例,基于预先设置的功率等级表格确定幅度频谱整形因子。
此外,方法500还可包括接收例如RRC的高层信令,以指示相位频谱整形因子。
<硬件结构>
另外,上述实施方式的说明中使用的框图示出了以功能为单位的块。这些功能块(结构单元)通过硬件和/或软件的任意组合来实现。此外,各功能块的实现手段并不特别限定。即,各功能块可以通过在物理上和/或逻辑上相结合的一个装置来实现,也可以将在物理上和/或逻辑上相分离的两个以上装置直接地和/或间接地(例如通过有线和/或无线)连接从而通过上述多个装置来实现。
例如,本公开的一个实施例的电子设备可以作为执行本公开的无线通信方法的处理的计算机来发挥功能。图6是根据本公开的实施例的所涉及的设备600(基站或终端)的硬件结构的示意图。上述的设备600(基站或终端)可以作为在物理上包括处理器610、内存620、存储器630、通信装置640、输入装置650、输出装置660、总线670等的计算机装置来构成。
另外,在以下的说明中,“装置”这样的文字也可替换为电路、设备、单元等。用户终端和基站的硬件结构可以包括一个或多个图中所示的各装置,也可以不包括部分装置。
例如,处理器610仅图示出一个,但也可以为多个处理器。此外,可以通过一个处理器来执行处理,也可以通过一个以上的处理器同时、依次、或采用其它方法来执行处理。另外,处理器610可以通过一个以上的芯片来安装。
设备600的各功能例如通过如下方式实现:通过将规定的软件(程序)读入到处理器610、内存620等硬件上,从而使处理器610进行运算,对由通信装置640进行的通信进行控制,并对内存620和存储器630中的数据的读出和/或写入进行控制。
处理器610例如使操作系统进行工作从而对计算机整体进行控制。处理器610可以由包括与周边装置的接口、控制装置、运算装置、寄存器等的中央处理器(CPU,Central Processing Unit)构成。例如,上述的处理单元等可以通过处理器610实现。
此外,处理器610将程序(程序代码)、软件模块、数据等从存储器630和/或通信装置640读出到内存620,并根据它们执行各种处理。作为程序,可以采用使计算机执行在上述实施方式中说明的动作中的至少一部分的程序。 例如,电子设备的处理单元可以通过保存在内存620中并通过处理器610来工作的控制程序来实现,对于其它功能块,也可以同样地来实现。
内存620是计算机可读取记录介质,例如可以由只读存储器(ROM,Read Only Memory)、可编程只读存储器(EPROM,Erasable Programmable ROM)、电可编程只读存储器(EEPROM,Electrically EPROM)、随机存取存储器(RAM,Random Access Memory)、其它适当的存储介质中的至少一个来构成。内存620也可以称为寄存器、高速缓存、主存储器(主存储装置)等。内存620可以保存用于实施本公开的一实施方式所涉及的方法的可执行程序(程序代码)、软件模块等。
存储器630是计算机可读取记录介质,例如可以由软磁盘(flexible disk)、软(注册商标)盘(floppy disk)、磁光盘(例如,只读光盘(CD-ROM(Compact Disc ROM)等)、数字通用光盘、蓝光(Blu-ray,注册商标)光盘)、可移动磁盘、硬盘驱动器、智能卡、闪存设备(例如,卡、棒(stick)、密钥驱动器(key driver))、磁条、数据库、服务器、其它适当的存储介质中的至少一个来构成。存储器630也可以称为辅助存储装置。
通信装置640是用于通过有线和/或无线网络进行计算机间的通信的硬件(发送接收装置),例如也称为网络设备、网络控制器、网卡、通信模块等。通信装置640为了实现例如频分双工(FDD,Frequency Division Duplex)和/或时分双工(TDD,Time Division Duplex),可以包括高频开关、双工器、滤波器、频率合成器等。例如,上述的发送单元、接收单元等可以通过通信装置640来实现。
输入装置650是接受来自外部的输入的输入设备(例如,键盘、鼠标、麦克风、开关、按钮、传感器等)。输出装置660是实施向外部的输出的输出设备(例如,显示器、扬声器、发光二极管(LED,Light Emitting Diode)灯等)。另外,输入装置650和输出装置660也可以为一体的结构(例如触控面板)。
此外,处理器610、内存620等各装置通过用于对信息进行通信的总线670连接。总线670可以由单一的总线构成,也可以由装置间不同的总线构成。
此外,电子设备可以包括微处理器、数字信号处理器(DSP,Digital Signal Processor)、专用集成电路(ASIC,Application Specific Integrated Circuit)、可编程逻辑器件(PLD,Programmable Logic Device)、现场可编程门阵列(FPGA,Field Programmable Gate Array)等硬件,可以通过该硬件来实现各功能块的部分或全部。例如,处理器610可以通过这些硬件中的至少一个来安装。
(变形例)
另外,关于本说明书中说明的用语和/或对本说明书进行理解所需的用语,可以与具有相同或类似含义的用语进行互换。例如,信道和/或符号也可以为信号(信令)。此外,信号也可以为消息。参考信号也可以简称为RS(Reference Signal),根据所适用的标准,也可以称为导频(Pilot)、导频信号等。此外,分量载波(CC,Component Carrier)也可以称为小区、频率载波、载波频率等。
此外,本说明书中说明的信息、参数等可以用绝对值来表示,也可以用与规定值的相对值来表示,还可以用对应的其它信息来表示。例如,无线资源可以通过规定的索引来指示。进一步地,使用这些参数的公式等也可以与本说明书中明确公开的不同。
在本说明书中用于参数等的名称在任何方面都并非限定性的。例如,各种各样的信道(物理上行链路控制信道(PUCCH,Physical Uplink Control Channel)、物理下行链路控制信道(PDCCH,Physical Downlink Control Channel)等)和信息单元可以通过任何适当的名称来识别,因此为这些各种各样的信道和信息单元所分配的各种各样的名称在任何方面都并非限定性的。
本说明书中说明的信息、信号等可以使用各种各样不同技术中的任意一种来表示。例如,在上述的全部说明中可能提及的数据、命令、指令、信息、信号、比特、符号、芯片等可以通过电压、电流、电磁波、磁场或磁性粒子、光场或光子、或者它们的任意组合来表示。
此外,信息、信号等可以从上层向下层、和/或从下层向上层输出。信息、信号等可以经由多个网络节点进行输入或输出。
输入或输出的信息、信号等可以保存在特定的场所(例如内存),也可以通过管理表进行管理。输入或输出的信息、信号等可以被覆盖、更新或补充。输出的信息、信号等可以被删除。输入的信息、信号等可以被发往其它装置。
信息的通知并不限于本说明书中说明的方式/实施方式,也可以通过其它方法进行。例如,信息的通知可以通过物理层信令(例如,下行链路控制信息(DCI,Downlink Control Information)、上行链路控制信息(UCI,Uplink Control Information))、上层信令(例如,无线资源控制(RRC,Radio Resource Control)信令、广播信息(主信息块(MIB,Master Information Block)、系统信息块(SIB,System Information Block)等)、媒体存取控制(MAC,Medium Access Control)信令)、其它信号或者它们的组合来实施。
另外,物理层信令也可以称为L1/L2(第1层/第2层)控制信息(L1/L2控制信号)、L1控制信息(L1控制信号)等。此外,RRC信令也可以称为RRC消息,例如可以为RRC连接建立(RRC Connection Setup)消息、RRC连接重设定(RRC Connection Reconfiguration)消息等。此外,MAC信令例如可以通过MAC控制单元(MAC CE(Control Element))来通知。
此外,规定信息的通知(例如,“为X”的通知)并不限于显式地进行,也可以隐式地(例如,通过不进行该规定信息的通知,或者通过其它信息的通知)进行。
关于判定,可以通过由1比特表示的值(0或1)来进行,也可以通过由真(true)或假(false)表示的真假值(布尔值)来进行,还可以通过数值的比较(例如与规定值的比较)来进行。
软件无论被称为软件、固件、中间件、微代码、硬件描述语言,还是以其它名称来称呼,都应宽泛地解释为是指命令、命令集、代码、代码段、程序代码、程序、子程序、软件模块、应用程序、软件应用程序、软件包、例程、子例程、对象、可执行文件、执行线程、步骤、功能等。
此外,软件、命令、信息等可以经由传输介质被发送或接收。例如,当使用有线技术(同轴电缆、光缆、双绞线、数字用户线路(DSL,Digital Subscriber Line)等)和/或无线技术(红外线、微波等)从网站、服务器、或其它远程资源发送软件时,这些有线技术和/或无线技术包括在传输介质的定义内。
本说明书中使用的“系统”和“网络”这样的用语可以互换使用。
在本说明书中,“基站(BS,Base Station)”、“无线基站”、“eNB”、“gNB”、“小区”、“扇区”、“小区组”、“载波”以及“分量载波”这样的用语可以互换使用。基站有时也以固定台(fixed station)、NodeB、eNodeB(eNB)、接入点(access point)、发送点、接收点、毫微微小区、小小区等用语来称呼。
基站可以容纳一个或多个(例如三个)小区(也称为扇区)。当基站容纳多个小区时,基站的整个覆盖区域可以划分为多个更小的区域,每个更小的区域也可以通过基站子系统(例如,室内用小型基站(射频拉远头(RRH,Remote Radio Head)))来提供通信服务。“小区”或“扇区”这样的用语是指在该覆盖中进行通信服务的基站和/或基站子系统的覆盖区域的一部分或整体。
在本说明书中,“移动台(MS,Mobile Station)”、“用户终端(user terminal)”、“用户装置(UE,User Equipment)”以及“终端”这样的用语可以互换使用。移动台有时也被本领域技术人员以用户台、移动单元、用户单元、无线单元、远程单元、移动设备、无线设备、无线通信设备、远程设备、移动用户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或者若干其它适当的用语来称呼。
此外,本说明书中的无线基站也可以用用户终端来替换。例如,对于将无线基站和用户终端间的通信替换为多个用户终端间(D2D,Device-to-Device)的通信的结构,也可以应用本公开的各方式/实施方式。此时,可以将上述的电子设备所具有的功能当作用户终端所具有的功能。此外,“上行”和“下行”等文字也可以替换为“侧”。例如,上行信道也可以替换为侧信道。
同样,本说明书中的用户终端也可以用无线基站来替换。此时,可以将上述的用户终端所具有的功能当作第一通信设备或第二通信设备所具有的功能。
在本说明书中,设为通过基站进行的特定动作根据情况有时也通过其上级节点(upper node)来进行。显然,在具有基站的由一个或多个网络节点(network nodes)构成的网络中,为了与终端间的通信而进行的各种各样的动作可以通过基站、除基站之外的一个以上的网络节点(可以考虑例如移动管理实体(MME,Mobility Management Entity)、服务网关(S-GW,Serving-Gateway)等,但不限于此)、或者它们的组合来进行。
本说明书中说明的各方式/实施方式可以单独使用,也可以组合使用,还可以在执行过程中进行切换来使用。此外,本说明书中说明的各方式/实施方式的处理步骤、序列、流程图等只要没有矛盾,就可以更换顺序。例如,关于本说明书中说明的方法,以示例性的顺序给出了各种各样的步骤单元,而并不限定于给出的特定顺序。
本说明书中说明的各方式/实施方式可以应用于利用长期演进(LTE,Long Term Evolution)、高级长期演进(LTE-A,LTE-Advanced)、超越长期演进(LTE-B,LTE-Beyond)、超级第3代移动通信系统(SUPER 3G)、高级国际移动通信(IMT-Advanced)、第4代移动通信系统(4G,4th generation mobile communication system)、第5代移动通信系统(5G,5th generation mobile communication system)、未来无线接入(FRA,Future Radio Access)、新无线接入技术(New-RAT,Radio Access Technology)、新无线(NR,New Radio)、新无线接入(NX,New radio access)、新一代无线接入(FX,Future generation radio access)、全球移动通信系统(GSM(注册商标),Global System for Mobile communications)、码分多址接入3000(CDMA3000)、超级移动宽带(UMB,Ultra Mobile Broadband)、IEEE 920.11(Wi-Fi(注册商标))、IEEE 920.16(WiMAX(注册商标))、IEEE 920.20、超宽带(UWB,Ultra-WideBand)、蓝牙(Bluetooth(注册商标))、其它适当的无线通信方法的系统和/或基于它们而扩展的下一代系统。
本说明书中使用的“根据”这样的记载,只要未在其它段落中明确记载,则并不意味着“仅根据”。换言之,“根据”这样的记载是指“仅根据”和“至少根据”这两者。
本说明书中使用的对使用“第一”、“第二”等名称的单元的任何参照,均非全面限定这些单元的数量或顺序。这些名称可以作为区别两个以上单元的便利方法而在本说明书中使用。因此,第一单元和第二单元的参照并不意味着仅可采用两个单元或者第一单元必须以若干形式占先于第二单元。
本说明书中使用的“判断(确定)(determining)”这样的用语有时包含多种多样的动作。例如,关于“判断(确定)”,可以将计算(calculating)、推算(computing)、处理(processing)、推导(deriving)、调查(investigating)、搜索(looking up)(例如表、数据库、或其它数据结构中的搜索)、确认 (ascertaining)等视为是进行“判断(确定)”。此外,关于“判断(确定)”,也可以将接收(receiving)(例如接收信息)、发送(transmitting)(例如发送信息)、输入(input)、输出(output)、存取(accessing)(例如存取内存中的数据)等视为是进行“判断(确定)”。此外,关于“判断(确定)”,还可以将解决(resolving)、选择(selecting)、选定(choosing)、建立(establishing)、比较(comparing)等视为是进行“判断(确定)”。也就是说,关于“判断(确定)”,可以将若干动作视为是进行“判断(确定)”。
本说明书中使用的“连接的(connected)”、“结合的(coupled)”这样的用语或者它们的任何变形是指两个或两个以上单元间的直接的或间接的任何连接或结合,可以包括以下情况:在相互“连接”或“结合”的两个单元间,存在一个或一个以上的中间单元。单元间的结合或连接可以是物理上的,也可以是逻辑上的,或者还可以是两者的组合。例如,“连接”也可以替换为“接入”。在本说明书中使用时,可以认为两个单元是通过使用一个或一个以上的电线、线缆、和/或印刷电气连接,以及作为若干非限定性且非穷尽性的示例,通过使用具有射频区域、微波区域、和/或光(可见光及不可见光这两者)区域的波长的电磁能等,被相互“连接”或“结合”。
在本说明书或权利要求书中使用“包括(including)”、“包含(comprising)”、以及它们的变形时,这些用语与用语“具备”同样是开放式的。进一步地,在本说明书或权利要求书中使用的用语“或(or)”并非是异或。
以上对本公开进行了详细说明,但对于本领域技术人员而言,显然,本公开并非限定于本说明书中说明的实施方式。本公开在不脱离由权利要求书的记载所确定的本公开的宗旨和范围的前提下,可以作为修改和变更方式来实施。因此,本说明书的记载是以示例说明为目的,对本公开而言并非具有任何限制性的意义。

Claims (10)

  1. 一种电子设备,包括:
    处理单元,配置来对要发送的数据进行离散傅里叶变换扩展以获得扩展信号,对所述扩展信号进行子载波映射,使用频谱整形因子对子载波进行频谱整形以获得整形信号,并且根据所述整形信号获得非正交超奈奎斯特信号;以及
    发送单元,配置来发送所述非正交超奈奎斯特信号。
  2. 如权利要求1所述的电子设备,其中
    所述频谱整形因子包括幅度整形因子,
    处理单元使用幅度因子对子载波进行频谱整形,以减少由于非正交超奈奎斯特调制被截断的子载波的功率。
  3. 如权利要求2所述的电子设备,其中
    根据特定脉冲函数的频域值来确定对于各个子载波的所述幅度整形因子。
  4. 如权利要求2所述的电子设备,其中
    根据在非正交超奈奎斯特调制中频谱被截断的子载波以及未被截断的子载波的功率等级来确定各个子载波的所述幅度整形因子。
  5. 如权利要求2所述的电子设备,其中
    所述频谱整形因子还包括相位整形因子,
    处理单元还使用相位因子对子载波进行频谱整形,以减少非正交超奈奎斯特调制对高峰值平均功率比的影响。
  6. 如权利要求1-5中任意一项所述的电子设备,还包括:
    接收单元,配置来接收指示是否进行频谱整形的整形指示信息,
    所述处理单元根据所接收的整形指示信息来确定是否使用频谱整形因子对子载波进行频谱整形以获得整形信号。
  7. 如权利要求1-5中任意一项所述的电子设备,还包括:
    接收单元,配置来接收参考信号,
    所述处理单元还根据所述参考信号来确定所述频谱整形因子。
  8. 如权利要求1-5中任意一项所述的电子设备,还包括:
    接收单元,配置来接收传输函数类型信息和关于非正交超奈奎斯特调制 的时域压缩因子的信息,
    所述处理单元还根据所述传输函数类型信息和关于非正交超奈奎斯特调制的时域压缩因子的信息来确定所述频谱整形因子。
  9. 一种非正交波形的频谱整形方法,包括:
    对要发送的数据进行离散傅里叶变换扩展以获得扩展信号;
    对所述扩展信号进行子载波映射;
    使用频谱整形因子对子载波进行频谱整形以获得整形信号;
    根据所述整形信号获得非正交超奈奎斯特信号;以及
    发送所述非正交超奈奎斯特信号。
  10. 如权利要求9所述的方法,其中
    所述频谱整形因子包括幅度整形因子,
    所述使用频谱整形因子对子载波进行频谱整形以获得整形信号包括:
    使用幅度因子对子载波进行频谱整形,以减少由于非正交超奈奎斯特调制被截断的子载波的功率。
PCT/CN2020/120809 2020-10-14 2020-10-14 非正交波形的频谱整形方法及电子设备 WO2022077251A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080105121.6A CN116114348A (zh) 2020-10-14 2020-10-14 非正交波形的频谱整形方法及电子设备
PCT/CN2020/120809 WO2022077251A1 (zh) 2020-10-14 2020-10-14 非正交波形的频谱整形方法及电子设备
US18/245,786 US20230336394A1 (en) 2020-10-14 2020-10-14 Spectrum shaping method for non-orthogonal waveform and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/120809 WO2022077251A1 (zh) 2020-10-14 2020-10-14 非正交波形的频谱整形方法及电子设备

Publications (1)

Publication Number Publication Date
WO2022077251A1 true WO2022077251A1 (zh) 2022-04-21

Family

ID=81207564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120809 WO2022077251A1 (zh) 2020-10-14 2020-10-14 非正交波形的频谱整形方法及电子设备

Country Status (3)

Country Link
US (1) US20230336394A1 (zh)
CN (1) CN116114348A (zh)
WO (1) WO2022077251A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3116151A1 (en) * 2014-03-04 2017-01-11 NTT DoCoMo, Inc. User terminal, radio base station, radio communication method, and radio communication system
CN110430152A (zh) * 2019-09-04 2019-11-08 中国科学院上海高等研究院 时频压缩多载波发射方法、接收方法、发射器及接收器
CN111327551A (zh) * 2020-03-10 2020-06-23 中国科学院上海高等研究院 数据与导频频域复用的超奈奎斯特传输方法及传输装置
CN111492713A (zh) * 2018-01-11 2020-08-04 华为技术有限公司 用于在带宽部分之间切换的方法及设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2636722A1 (en) * 2006-02-08 2007-08-16 Qualcomm Incorporated Spectral shaping to reduce peak-to-average ratio in wireless communication
KR102081345B1 (ko) * 2013-09-25 2020-02-25 삼성전자주식회사 송신 장치, 수신 장치 및 그 제어 방법
JP2015164259A (ja) * 2014-02-28 2015-09-10 株式会社Nttドコモ 無線基地局、ユーザ端末、無線通信方法及び無線通信システム
CN104394110B (zh) * 2014-12-19 2018-03-23 华南师范大学 一种时域超奈奎斯特非正交传输导频设计方法
JP6536752B2 (ja) * 2016-01-18 2019-07-03 日本電気株式会社 光送信器および光キャリア周波数の制御方法
KR102455847B1 (ko) * 2016-07-29 2022-10-19 한국전자통신연구원 Ftn 기반 신호 수신 장치 및 방법
CN110710174A (zh) * 2017-04-06 2020-01-17 中兴通讯股份有限公司 用于无线通信波形生成的方法和装置
US10362593B2 (en) * 2017-09-01 2019-07-23 Huawei Technologies Co., Ltd. Grant-free uplink transmission in unlicensed spectrum
US10419257B2 (en) * 2018-02-15 2019-09-17 Huawei Technologies Co., Ltd. OFDM communication system with method for determination of subcarrier offset for OFDM symbol generation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3116151A1 (en) * 2014-03-04 2017-01-11 NTT DoCoMo, Inc. User terminal, radio base station, radio communication method, and radio communication system
CN111492713A (zh) * 2018-01-11 2020-08-04 华为技术有限公司 用于在带宽部分之间切换的方法及设备
CN110430152A (zh) * 2019-09-04 2019-11-08 中国科学院上海高等研究院 时频压缩多载波发射方法、接收方法、发射器及接收器
CN111327551A (zh) * 2020-03-10 2020-06-23 中国科学院上海高等研究院 数据与导频频域复用的超奈奎斯特传输方法及传输装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU JUAN; LIU WENJIA; HOU XIAOLIN; KISHIYAMA YOSHIHISA; CHEN LAN; ASAI TAKAHIRO: "Non-Orthogonal Waveform (NOW) for 5G Evolution and 6G", 2020 IEEE 31ST ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, IEEE, 31 August 2020 (2020-08-31), pages 1 - 6, XP033837696, DOI: 10.1109/PIMRC48278.2020.9217361 *

Also Published As

Publication number Publication date
CN116114348A (zh) 2023-05-12
US20230336394A1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
KR102495043B1 (ko) 유저단말 및 무선 통신 방법
KR102436429B1 (ko) 유저단말, 무선기지국 및 무선 통신 방법
WO2018229958A1 (ja) ユーザ端末及び無線通信方法
CN111788806B (zh) 用户终端以及无线通信方法
US20230291621A1 (en) Terminal
WO2020227866A1 (zh) 终端以及发送方法
WO2018143325A1 (ja) ユーザ端末及び無線通信方法
WO2022077251A1 (zh) 非正交波形的频谱整形方法及电子设备
US10917210B2 (en) User terminal and wireless communication method
EP3557923A1 (en) User terminal
CN111566958A (zh) 用户终端以及无线通信方法
WO2021009918A1 (ja) 端末
WO2019107432A1 (ja) ユーザ端末及び無線通信方法
WO2023015452A1 (zh) 终端设备和处理方法
WO2019163113A1 (ja) ユーザ端末及び無線通信方法
WO2023015451A1 (zh) 基于统一非正交波形的电子设备
US20230198820A1 (en) Terminal
WO2023168656A1 (zh) 电子设备
WO2023168655A1 (zh) 电子设备
WO2021229776A1 (ja) 端末
JPWO2019043800A1 (ja) 端末、無線通信方法及び基地局
US11122600B2 (en) Terminals receiving downlink control signals and downlink data signals
US20230106451A1 (en) Communication device and communication method
US20220286222A1 (en) Terminal
EP3985933A1 (en) Communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20957032

Country of ref document: EP

Kind code of ref document: A1