WO2018143325A1 - ユーザ端末及び無線通信方法 - Google Patents

ユーザ端末及び無線通信方法 Download PDF

Info

Publication number
WO2018143325A1
WO2018143325A1 PCT/JP2018/003360 JP2018003360W WO2018143325A1 WO 2018143325 A1 WO2018143325 A1 WO 2018143325A1 JP 2018003360 W JP2018003360 W JP 2018003360W WO 2018143325 A1 WO2018143325 A1 WO 2018143325A1
Authority
WO
WIPO (PCT)
Prior art keywords
rbg
signal
unit
terminal
base station
Prior art date
Application number
PCT/JP2018/003360
Other languages
English (en)
French (fr)
Inventor
英之 諸我
和晃 武田
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to US16/482,340 priority Critical patent/US11108611B2/en
Priority to JP2018565636A priority patent/JP7117249B2/ja
Publication of WO2018143325A1 publication Critical patent/WO2018143325A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/26524Fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators in combination with other circuits for demodulation
    • H04L27/26526Fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators in combination with other circuits for demodulation with inverse FFT [IFFT] or inverse DFT [IDFT] demodulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] receiver or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • H04L5/0046Determination of how many bits are transmitted on different sub-channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to a user terminal and a wireless communication method in a next generation mobile communication system.
  • LTE Long Term Evolution
  • Non-patent Document 1 a successor system of LTE is also being studied for the purpose of further widening the bandwidth and speeding up from LTE.
  • LTE successors include LTE-A (LTE-Advanced), FRA (Future Radio Access), 5G (5th generation mobile mobile communication system), 5G + (5G plus), New-RAT (Radio Access Technology), etc. There is what is called.
  • a high frequency band of 40 GHz or more as a radio frequency.
  • OFDM Orthogonal (Frequency Division Multiplexing), DFT (Discrete Fourier Transform), DFT-s-OFDM (which realizes signal waveform generation by spreading)
  • PAPR Peak-to-Average Power Ratio
  • TTI Transmission Time Interval
  • One aspect of the present invention provides a new configuration capable of multiplexing downlink signals for a plurality of terminals in downlink transmission of a future wireless communication system.
  • a user terminal defines a reception unit that receives a downlink signal arranged at a plurality of signal transmission points of a single carrier and a resource block group that defines a predetermined number of signal transmission points as a unit. And an extraction unit that extracts a downlink signal assigned to a signal transmission point belonging to a resource block group associated with the terminal.
  • a radio communication method receives a downlink signal arranged at a plurality of signal transmission points of a single carrier and is based on the definition of a resource block group with a predetermined number of signal transmission points as a unit. Then, the downlink signal assigned to the signal transmission point belonging to the resource block group associated with the own terminal is extracted.
  • One aspect of the present invention provides a new configuration capable of multiplexing downlink signals for a plurality of terminals in downlink transmission of a future wireless communication system.
  • reference numerals such as “symbol point 400A” and “symbol point 400B”, and the same type of elements are not distinguished. In some cases, only the common number among the reference symbols, such as “symbol point 400”, may be used.
  • a radio communication system includes at least a radio base station (hereinafter referred to as “base station”) 10 illustrated in FIG. 1 and a user terminal (hereinafter referred to as “terminal”) 20 illustrated in FIG.
  • the terminal 20 is connected to the radio base station 10.
  • the radio base station 10 transmits a DL (Down Link) signal to the terminal 20.
  • the DL signal includes, for example, a DL data signal (for example, PDSCH (Physical Downlink Shared Channel)) and a DL control signal (for example, PDCCH (Physical Downlink Control Channel) for demodulating and decoding the DL data signal). It is.
  • FIG. 1 is a diagram illustrating a functional block configuration example of a radio base station according to an embodiment.
  • a base station 10 shown in FIG. 1 includes a control unit 100, a generation unit 102, a DFT unit 104, a mapping unit 106, an IFFT unit 108, a CP (Cyclic Prefix) insertion unit 110, a transmission unit 112, an antenna, 114.
  • a DFT-s-OFDM symbol is generated by DFT section 104, mapping section 106, IFFT section 108, and CP insertion section 110.
  • the control unit 100 controls the generation unit 102 and the mapping unit 106 based on the constraint condition shared with the terminal 20. For example, the control unit 100 performs scheduling (resource allocation or the like) of the DL signal of each terminal 10 based on the constraint condition and controls the generation unit 102 and the mapping unit 106 based on the scheduling.
  • the generation unit 102 Based on the control from the control unit 100, the generation unit 102 allocates a DL signal to be transmitted to each terminal 20 to the time domain of the single carrier radio resource, generates a time domain signal (first data), and generates The time domain signal (first data) is output to the DFT unit 104. That is, the generation unit 102 time-division multiplexes DL signals to be transmitted to the plurality of terminals 20 in the time domain signal before being spread by the DFT unit 104.
  • the DFT unit 104 performs a discrete Fourier transform on the time domain signal (first data) subjected to the serial / parallel conversion, and outputs the obtained frequency domain signal to the mapping unit 106.
  • mapping section 106 maps the frequency domain signal output from DFT section 104 to a plurality of subcarriers, and 0 for subcarriers other than the subcarrier to which the frequency domain signal is mapped. And the mapped frequency domain signal is output to IFFT section 108.
  • the IFFT unit 108 performs inverse fast Fourier transform on the frequency domain signal output from the mapping unit 102 and outputs the obtained time domain signal (DFT-s-OFDM signal) to the CP insertion unit 110.
  • the CP insertion unit 110 inserts a CP into the time domain signal output from the IFFT unit 108 and outputs the CP to the transmission unit 112.
  • the transmission unit 112 performs RF (Radio-Frequency) processing such as D / A (Digital-to-Analog) conversion, up-conversion, and amplification on the time domain signal (DL signal) output from the CP insertion unit 110. Then, a radio signal is transmitted to the terminal 20 via the antenna 114.
  • RF Radio-Frequency
  • FIG. 2 is a diagram illustrating a functional block configuration example of a user terminal according to an embodiment.
  • 2 includes a control unit 200, an antenna 202, a reception unit 204, a CP removal unit 206, an FFT unit 208, a demapping unit 210, an IDFT unit 212, an extraction unit 214, Have Note that the CP removal unit 206, the FFT unit 208, the demapping unit 210, and the IDFT unit 212 extract the DFT-s-OFDM symbol.
  • the control unit 200 controls the demapping unit 210 and the extraction unit 214 based on the constraint condition shared with the base station 10.
  • the radio signal received by the antenna 202 is input to the receiving unit 204.
  • the receiving unit 204 performs RF processing such as amplification, down-conversion, A / D (Analog-to-Digital) conversion, and the like on the radio signal received by the antenna 202, and a baseband time domain signal (DL signal). Is output to the CP removing unit 206.
  • CP removing section 206 removes the CP added to the time domain signal (DFT-s-OFDM signal) output from receiving section 204 and outputs the result to FFT section 208.
  • the FFT unit 208 performs fast Fourier transform on the time domain signal (DFT-s-OFDM signal) output from the CP removal unit 206 and outputs the obtained frequency domain signal to the demapping unit 210.
  • the demapping unit 210 Based on the control from the control unit 200, the demapping unit 210 performs equalization processing corresponding to the signal waveform transmitted from the radio base station 10 on the signal output from the FFT unit 208, and after the equalization processing Is output to the IDFT unit 212.
  • the IDFT unit 212 performs a discrete inverse Fourier transform on the frequency domain signal output from the demapping unit 210 to obtain a time domain signal (first signal).
  • the IDFT unit 212 outputs this time domain signal (first signal) to the extraction unit 214.
  • the extraction unit 214 extracts a DL signal addressed to the terminal 20 from the time domain signal (first signal) based on the control from the control unit 200. Details of the processing of the extraction unit 214 will be described later.
  • FIG. 3A is a diagram illustrating an example of a configuration of an RBG (Resource Block Group) according to the present embodiment.
  • the horizontal axis indicates the time axis.
  • An arrow 400 indicates a signal transmission point where a DL signal is transmitted by a single carrier.
  • the signal transmission point may be called a sample point 400.
  • a signal transmission point may be called a subcarrier, tone, resource element, component, symbol, mini symbol, or sample. Note that these names of signal transmission points are merely examples, and other names may be used.
  • the interval 412 between the sample points 400 is, for example, “1 / system bandwidth”.
  • 3B shows the length of one symbol (or slot or minislot) 500 in which a plurality of sample points are bundled.
  • One subframe (or TTI) (not shown) is formed by collecting a plurality of symbols 500.
  • the base station 10 assigns the DL signal to the sample point 400 and transmits it to the terminal 20.
  • a DL signal addressed to each terminal 20 is assigned to each sample point 400 so that a DL signal can be transmitted to each of a plurality of terminals 20 in 1 TTI.
  • an RBG Resource Block Group
  • the RBG is a minimum unit of the number of sample points 400 associated with one terminal 20. That is, at least 1 RBG is associated with one terminal 20.
  • RBG is configured based on predetermined constraints. This constraint condition is referred to as a RBG configuration constraint condition.
  • the terminal 20 can identify the RBG associated with the terminal 20 by sharing the constraint condition of the RBG configuration with the base station 10.
  • the generation unit 102 of the base station 10 bundles the 0 to 3 consecutive sample points 400A, 400B, 400C, and 400D from the top of the symbol 500, Configure RBG # 0.
  • the generation unit 102 configures RBG # 1 by bundling the fourth to seventh consecutive sample points 400E, 400F, 400G, and 400H of the symbol 500.
  • RBG # 0 means an RBG with an RBG number “0”
  • RBG # 1 means an RBG with an RBG number “1”. The same applies to the following.
  • generation part 102 allocates DL signal transmitted to the terminal 20 matched with RBG # 0 to the sample points 400A, 400B, 400C, 400D which belong to RBG # 0. Similarly, the generation unit 102 assigns a DL signal to be transmitted to the terminal 20 associated with RBG # 1 to the sample points 400E, 400F, 400G, and 400H that belong to RBG # 1.
  • the extraction unit 214 of the terminal 20 extracts a DL signal addressed to the terminal 20 from each sample point 400 included in the symbol 500 based on the RBG number assigned to the terminal 20.
  • the terminal 20 associated with RBG # 0 extracts DL signals assigned to the sample points 400A, 400B, 400C, and 400D belonging to RBG # 0 from the symbol 500 shown in FIG. 3A.
  • Terminal 20 associated with RBG # 1 extracts DL signals assigned to sample points 400E, 400F, 400G, and 400H belonging to RBG # 1 from symbol 500 shown in FIG. 3A.
  • the base station 10 can allocate (multiplex) the DL signals to be transmitted to each of the plurality of terminals 20 in the time domain.
  • each terminal 20 can extract a DL signal addressed to itself 20 from DL signals multiplexed in the time domain.
  • the constraint condition of the RBG configuration may be shared between the base station 10 and the terminal 20 by any method. For example, it may be shared in advance between the base station 10 and the terminal 20, or may be shared using a DL control signal or the like.
  • the number k of the sample points 400 constituting the RBG may be shared between the base station 10 and the terminal 20 by any method. For example, it may be shared in advance between the base station 10 and the terminal 20, or may be shared using a DL control signal or the like.
  • FIG. 3B is a diagram showing a modification of the configuration of the RBG according to the present embodiment.
  • the generation unit 102 of the base station 10 performs the 0th, 5th, 10th, and 15th sample points 400I, 400K, 400M, and 400O in the symbol 500. To form RBG # 0. Similarly, the generation unit 102 bundles the first, sixth, eleventh, and sixteenth sample points 400J, 400L, 400N, and 400P in the symbol 500 to configure RBG # 1.
  • generation part 102 allocates DL signal transmitted to the terminal 20 matched with RBG # 0 to the sample points 400I, 400K, 400M, and 400O which belong to RBG # 0. Similarly, the generation unit 102 assigns a DL signal to be transmitted to the terminal 20 associated with RBG # 1 to the sample points 400J, 400L, 400N, and 400P that belong to RBG # 1.
  • the extraction unit 214 of the terminal 20 extracts a DL signal addressed to the terminal 20 from each sample point 400 included in one symbol based on the RBG number assigned to the terminal 20.
  • the terminal 20 to which RBG # 0 is assigned extracts DL signals assigned to the sample points 400I, 400K, 400M, and 400O belonging to RBG # 0 from the symbol 500 shown in FIG. 3B.
  • Terminal 20 to which RBG # 1 is assigned extracts DL signals assigned to sample points 400J, 400L, 400N, and 400P belonging to RBG # 1 from symbol 500 shown in FIG. 3B.
  • the constraints on the RBG configuration, the discrete interval m, and the number k of the sample points 400 constituting the RBG may be shared between the base station 10 and the terminal 20 by any method. .
  • it may be shared in advance between the base station 10 and the terminal 20, or may be shared using a DL control signal or the like.
  • the constraint conditions of the RBG configuration may be different for each subframe or each symbol.
  • the base station 10 may notify each terminal 10 of the constraint condition of the RBG configuration using a DL control signal or the like. An example of the notification method will be described later.
  • FIG. 4 is a diagram illustrating an example of a method of associating RBGs with terminals according to the present embodiment.
  • Predetermined constraint conditions may be set in association of RBGs with one terminal 20.
  • This restriction condition is referred to as an RBG association restriction condition.
  • the number of RBGs that can be associated with one terminal 20 is set to a power of 2 such as 1 RBG, 2 RBG, 4 RBG, 8 RBG,.
  • a “tree-based structure” is set as a constraint condition for RBG association.
  • RBG that can be assigned is decided for each aggregation level. For example, when the aggregation level is “n” (n: 1, 2, 4, 8), n consecutive RBGs starting from the RBG number corresponding to a multiple of “n” are allocated to the DL signal.
  • one continuous RBG (for example, RBG #) starting from RBG # 0, # 1, # 2,. 0) is assigned to the DL signal.
  • RBG # 0 to RBG # 7 Eight consecutive RBGs (for example, RBG # 0 to RBG # 7) starting from RBG # 0, # 8, # 16,. Are assigned to the DL signal.
  • the setting of the power of 2 above is an example, and for example, it may be set that 3 RBGs are formed by bundling three 1 RBGs.
  • RBG scheduling in the generation unit 102 of the base station 10 is simplified. Moreover, the amount of information to be transmitted from the base station 10 to the terminal 20 can be reduced by sharing the RBG association restriction condition between the base station 10 and the terminal 20.
  • the RBG is composed of continuous sample points 400, but the RBG may be composed of discrete sample points 400 as shown in FIG. 3B.
  • FIG. 5A is a diagram showing an example in which RBGs are arranged across a plurality of symbols according to the present embodiment.
  • RBGs with the same number may be arranged over a plurality of symbols 500. Further, the arrangement pattern of RBGs over a plurality of symbols 500 may be limited to a predetermined arrangement pattern.
  • the generation unit 102 of the base station 10 arranges RBGs in the order of RBG # 0, # 1, # 2, and # 3 in each of the symbols 500A, 500B, 500C, and 500D.
  • the extraction unit 214 of the terminal 20 Based on the RBG number assigned to the terminal 20, the extraction unit 214 of the terminal 20 performs DL from the symbols 500 ⁇ / b> A, 500 ⁇ / b> B, 500 ⁇ / b> C, and 500 ⁇ / b> D to the sample point 400 belonging to the RBG addressed to the terminal 20. Extract the signal.
  • the terminal 20 associated with RBG # 0 extracts the DL signal assigned to the sample point 400 belonging to RBG # 0 from the symbols 500A, 500B, 500C, and 500D shown in FIG. 5A.
  • Terminal 20 associated with RBG # 1 extracts DL signals assigned to sample points 400 belonging to RBG # 1 from symbols 500A, 500B, 500C, and 500D shown in FIG. 5A.
  • scheduling of RBGs over a plurality of symbols 500 is simplified in the generation unit 102 of the base station 10.
  • the amount of information to be transmitted from the base station 10 to the terminal 20 can be reduced.
  • the RBG is composed of continuous sample points 400, but the RBG may be composed of discrete sample points 400 as shown in FIG. 3B.
  • FIG. 5B is a diagram showing a modification in which RBGs are arranged over a plurality of symbols according to the present embodiment.
  • FIG. 5A the case where RBGs with the same number are arranged in the same order in each symbol 500 has been described, but the arrangement pattern of RBGs in each symbol 500 is not limited to this.
  • RBGs having different numbers for each symbol may be arranged in an arbitrary order.
  • the generation unit 102 of the base station 10 arranges RBG # 0 in the symbols 500E, 500F, and 500G and arranges RBG # 1 in the symbols 500E and 500F.
  • the generation unit 102 of the base station 10 improves the degree of freedom of scheduling of RBGs over a plurality of symbols 500. Also, the number of RBGs associated with each terminal 20 can be made variable.
  • RBG 5B is configured by sample points 400 in which RBGs are continuous, but the RBG may be configured by discrete sample points 400 as illustrated in FIG. 3B.
  • FIG. 6 is a diagram illustrating an example of a relationship between a CCE (Control Channel Element) and an RBG according to the present embodiment.
  • CCE can also be referred to as RBG in the DL control signal.
  • time-division multiplexing of DL signals to be transmitted to the plurality of terminals 20 in the time domain signal before being spread by the DFT unit 104 is not limited to the DL data signal (PDSCH), and is performed by DL control.
  • the signal (PDCCH) may also be performed.
  • multiplexing the DL signals of the plurality of terminals 20 on the symbol 500 is applicable to both the DL control signal (PDCCH) and the DL data signal (PDSCH).
  • the CCE index may be a minimum unit of the number of sample points 400 associated with one terminal 20.
  • DCI Downlink Control Information
  • a CCE index is associated with each other, and a CCE index and an RBG number may be associated with each other.
  • the terminal 20 identifies the CCE # 0 associated with the DCI addressed to the terminal 20 and the DL assigned to the RBG # 0 associated with the identified CCE # 0.
  • a data signal can be extracted.
  • a CCE index and a modulation method may be associated.
  • the own terminal 20 identifies the CCE # 0 associated with the DCI addressed to the own terminal 20 and identifies
  • the DL data signal can be demodulated by the modulation scheme “QPSK” associated with CCE # 0.
  • constraint condition there may be a restriction on MCS (Modulation and Coding Scheme) for each CCE index.
  • MCS Modulation and Coding Scheme
  • a limit may be provided on the number of RBGs for each CCE index.
  • the base station 10 may notify the terminal 20 of the constraint condition pattern explicitly or implicitly.
  • the base station 10 transmits the constraint pattern to the terminal 20 by RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, PHY (physical layer) signaling, or the like. May be notified.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • PHY physical layer
  • the base station 10 may use MIB (Master Information Block), SIB (System Information Block), RACH message 2 (sometimes called Random Access Response: RAR) Paging information, RRC connection information, or S1 connection setting. May be used to notify the terminal 20 of the constraint condition pattern.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • PHY physical layer
  • the base station 10 may use MIB (Master Information Block), SIB (System Information Block), RACH message 2 (sometimes called Random Access Response: RAR) Paging information, RRC connection information, or S1 connection setting. May be used to notify the terminal 20 of the constraint condition pattern.
  • RAR Random Access Response
  • the base station 10 may notify the terminal 20 of a constraint condition pattern (a constraint pattern ID) using DCI (Downlink Control Information).
  • DCI Downlink Control Information
  • the base station 10 and the terminal 20 for example, make a pair of synchronization signal (Synchronization Signal: SS), PBCH, SIB, or RACH configuration and the constraint pattern. 1 may be associated.
  • SS Synchronization Signal
  • PBCH Packet Control Channel
  • SIB Session Control
  • RACH Radio Access Control Channel
  • the plurality of patterns may be grouped so as to be associated with different pattern IDs.
  • predetermined information suitable for the communication environment in which the pattern is used may be associated with each pattern (for example, each pattern having a different SS subcarrier interval).
  • the base station 10 transmits a group signal associated with the constraint pattern set in the terminal 20 to the terminal 20. Then, the terminal 20 specifies the constraint condition pattern (pattern ID) associated with the group to which the signal transmitted from the base station 10 belongs as the constraint condition pattern set in the own device.
  • pattern ID the constraint condition pattern associated with the group to which the signal transmitted from the base station 10 belongs as the constraint condition pattern set in the own device.
  • the notification of the predetermined pattern from the base station 10 to the terminal 20 may be performed periodically or dynamically.
  • each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wirelessly) and may be realized by a plurality of these devices.
  • a wireless base station, a user terminal, etc. in an embodiment of the present invention may function as a computer that performs processing of the wireless communication method of the present invention.
  • FIG. 7 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • the wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
  • processor 1001 may be implemented by one or more chips.
  • Each function in the radio base station 10 and the user terminal 20 is obtained by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, so that the processor 1001 performs computation and communication by the communication device 1004, or This is realized by controlling data reading and / or writing in the memory 1002 and the storage 1003.
  • predetermined software program
  • the processor 1001 performs computation and communication by the communication device 1004, or This is realized by controlling data reading and / or writing in the memory 1002 and the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the control units 100 and 200, the generation unit 102, the DFT unit 104, the mapping unit 106, the IFFT unit 108, the CP insertion unit 110, the extraction unit 214, the IDFT unit 212, the demapping unit 210, the CP removal unit 206, etc. May be realized by the processor 1001.
  • the processor 1001 reads a program (program code), software module, or data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 100 of the radio base station 10 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, and may be realized similarly for other functional blocks.
  • the above-described various processes have been described as being executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001.
  • the processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium and includes at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. May be.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to the embodiment of the present invention.
  • the storage 1003 is a computer-readable recording medium such as an optical disc such as a CD-ROM (Compact Disc ROM), a hard disc drive, a flexible disc, a magneto-optical disc (eg, a compact disc, a digital versatile disc, a Blu-ray). (Registered trademark) disk, smart card, flash memory (for example, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the storage medium described above may be, for example, a database, server, or other suitable medium including the memory 1002 and / or the storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • a network device a network controller, a network card, a communication module, or the like.
  • the transmission unit 112, the antennas 114 and 202, the reception unit 204, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized by the hardware. For example, the processor 1001 may be implemented by at least one of these hardware.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • information notification includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling), It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block))), other signals, or a combination thereof.
  • RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
  • Each aspect / embodiment described herein includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 5G
  • FRA Full Radio Access
  • W-CDMA Wideband
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB User Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 UWB (Ultra-WideBand
  • the present invention may be applied to a Bluetooth (registered trademark), a system using another appropriate system, and / or a next generation system extended based on the system.
  • the specific operation assumed to be performed by the base station (radio base station) in this specification may be performed by the upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the base station and / or other network nodes other than the base station (e.g., It is obvious that this can be performed by MME (Mobility Management Entity) or S-GW (Serving Gateway).
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • Information, signals, and the like can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
  • Input / output information and the like may be stored in a specific location (for example, a memory) or may be managed by a management table. Input / output information and the like can be overwritten, updated, or additionally written. The output information or the like may be deleted. The input information or the like may be transmitted to another device.
  • the determination may be performed by a value represented by 1 bit (0 or 1), may be performed by a true / false value (Boolean: true or false), or may be performed by comparing numerical values (for example, a predetermined value) Comparison with the value).
  • software, instructions, etc. may be transmitted / received via a transmission medium.
  • software may use websites, servers, or other devices using wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • DSL digital subscriber line
  • wireless technology such as infrared, wireless and microwave.
  • Information, signal Information, signals, etc. described herein may be represented using any of a variety of different technologies.
  • data, commands, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these May be represented by a combination of
  • the channel and / or symbol may be a signal.
  • the signal may be a message.
  • the component carrier (CC) may be called a carrier frequency, a cell, or the like.
  • radio resource may be indicated by an index.
  • a base station can accommodate one or more (eg, three) cells (also referred to as sectors). When the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, indoor small base station RRH: Remote Radio Head) can also provide communication services.
  • the term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication services in this coverage. Further, the terms “base station”, “eNB”, “cell”, and “sector” may be used interchangeably herein.
  • a base station may also be referred to in terms such as a fixed station, NodeB, eNodeB (eNB), access point, femtocell, small cell, and the like.
  • a user terminal is a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile by a person skilled in the art It may also be referred to as a terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, UE (User Equipment), or some other appropriate terminology.
  • determining may encompass a wide variety of actions. “Judgment” and “determination” are, for example, judgment, calculation, calculation, processing, derivation, investigating, looking up (eg, table , Searching in a database or another data structure), considering ascertaining as “determining”, “deciding”, and the like.
  • determination and “determination” include receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (accessing) (e.g., accessing data in a memory) may be considered as “determined” or "determined”.
  • determination and “decision” means that “resolving”, “selecting”, “choosing”, “establishing”, and “comparing” are regarded as “determining” and “deciding”. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
  • connection means any direct or indirect connection or coupling between two or more elements and It can include the presence of one or more intermediate elements between two “connected” or “coupled” elements.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof.
  • the two elements are radio frequency by using one or more wires, cables and / or printed electrical connections, and as some non-limiting and non-inclusive examples
  • electromagnetic energy such as electromagnetic energy having a wavelength in the region, microwave region, and light (both visible and invisible) region, it can be considered to be “connected” or “coupled” to each other.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot depending on an applied standard.
  • the correction RS may be referred to as TRS (Tracking ⁇ RS), PC-RS (Phase Compensation RS), PTRS (Phase Tracking RS), or Additional RS.
  • the demodulation RS and the correction RS may be called differently corresponding to each. Further, the demodulation RS and the correction RS may be defined by the same name (for example, the demodulation RS).
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • the radio frame may be composed of one or a plurality of frames in the time domain.
  • One or more frames in the time domain may be referred to as subframes, time units, etc.
  • a subframe may further be composed of one or more slots in the time domain.
  • the slot may be further configured with one or a plurality of symbols (OFDM (Orthogonal-Frequency-Division-Multiplexing) symbol, SC-FDMA (Single-Carrier-Frequency-Division-Multiple-Access) symbol, etc.) in the time domain.
  • OFDM Orthogonal-Frequency-Division-Multiplexing
  • SC-FDMA Single-Carrier-Frequency-Division-Multiple-Access
  • the radio frame, subframe, slot, and symbol all represent a time unit when transmitting a signal. Radio frames, subframes, slots, and symbols may be called differently corresponding to each.
  • the base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used in each mobile station) to each mobile station.
  • the minimum time unit of scheduling may be called TTI (Transmission Time Interval).
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot may be called a TTI
  • the resource unit is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • one or a plurality of symbols may be included, and one slot, one subframe, or a length of 1 TTI may be included.
  • One TTI and one subframe may each be composed of one or a plurality of resource units.
  • the resource unit may also be called a resource block (RB: Resource Block), a physical resource block (PRB: Physical RB), a PRB pair, an RB pair, a scheduling unit, a frequency unit, or a subband.
  • the resource unit may be composed of one or a plurality of REs.
  • 1 RE may be any resource (for example, the smallest resource unit) smaller than a resource unit serving as a resource allocation unit, and is not limited to the name RE.
  • the structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, the number of symbols and resource blocks included in the slots, and the subframes included in the resource block
  • the number of carriers can be variously changed.
  • notification of predetermined information is not limited to explicitly performed, but is performed implicitly (for example, notification of the predetermined information is not performed). Also good.
  • One embodiment of the present invention is useful for a mobile communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

ユーザ端末20において、受信部204は、シングルキャリアの複数の信号送信点に配置されている下りリンク信号を受信し、抽出部214は、所定数の信号送信点を単位とするリソースブロックグループの定義に基づいて、自端末に対応付けられているリソースブロックグループに属する信号送信点に割り当てられている下りリンク信号を抽出する。この処理により、シングルキャリア伝送に複数の端末の下りリンク信号を多重できる。

Description

ユーザ端末及び無線通信方法
 本発明は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunication System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTEからの更なる広帯域化および高速化を目的として、LTEの後継システムも検討されている。LTEの後継システムには、例えば、LTE-A(LTE-Advanced)、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(5G plus)、New-RAT(Radio Access Technology)などと呼ばれるものがある。
 将来の無線通信システムでは、無線周波数として40GHz以上の高周波数帯を利用することが検討されている。また、将来の無線通信システムでは、高周波数帯の下りリンクにおいて、送信波形として、OFDM(Orthogonal Frequency Division Multiplexing)、DFT(Discrete Fourier Transform)による拡散によって信号波形生成を実現するDFT-s-OFDM(DFT spread OFDM)等を利用することも検討されている。この場合、シングルキャリアまたはDFT拡散OFDMを利用することにより、低PAPR(Peak-to-Average Power Ratio)が可能である。
 しかしながら、DFT-s-OFDM等のシングルキャリアでは全帯域を使用して送信するため、スケジューリングの最小単位であるTTI(Transmission Time Interval)に多重可能な端末数が、OFDMの場合よりも少なくなってしまう。
 本発明の一態様は、将来の無線通信システムの下りリンク送信において、複数の端末に対する下りリンク信号を多重することができる新たな構成を提供する。
 本発明の一態様に係るユーザ端末は、シングルキャリアの複数の信号送信点に配置されている下りリンク信号を受信する受信部と、所定数の信号送信点を単位とするリソースブロックグループの定義に基づいて、自端末に対応付けられているリソースブロックグループに属する信号送信点に割り当てられている下りリンク信号を抽出する抽出部と、を備える。
 本発明の一態様に係る無線通信方法は、シングルキャリアの複数の信号送信点に配置されている下りリンク信号を受信し、所定数の信号送信点を単位とするリソースブロックグループの定義に基づいて、自端末に対応付けられているリソースブロックグループに属する信号送信点に割り当てられている下りリンク信号を抽出する。
 本発明の一態様は、将来の無線通信システムの下りリンク送信において、複数の端末に対する下りリンク信号を多重することができる新たな構成を提供する。
一実施の形態に係る無線基地局の機能ブロック構成例を示す図である。 一実施の形態に係るユーザ端末の機能ブロック構成例を示す図である。 本実施の形態に係るRBG(Resource Block Group)の構成の一例を示す図である。 本実施の形態に係るRBGの構成の変形例を示す図である。 本実施の形態に係る端末にRBGを対応付ける方法の一例を示す図である。 本実施の形態に係る複数のシンボルに亘ってRBGが配置される一例を示す図である。 本実施の形態に係る複数のシンボルに亘ってRBGが配置される変形例を示す図である。 本実施の形態に係るCCE(Control Channel Element)とRBGとの関係の一例を示す図である。 本発明に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。
 以下、本発明の一実施の形態を、図面を参照して説明する。
 なお、以下の実施の形態において、同種の要素を区別して説明する場合には、「シンボル点400A」、「シンボル点400B」のように参照符号を使用し、同種の要素を区別しないで説明する場合には、「シンボル点400」のように参照符号のうちの共通番号のみを使用することがある。
 一実施の形態に係る無線通信システムは、少なくとも、図1に示す無線基地局(以下「基地局」という)10および図2に示すユーザ端末(以下「端末」という)20を備える。端末20は、無線基地局10に接続している。無線基地局10は、端末20に対して、DL(Down Link)信号を送信する。DL信号には、例えば、DLデータ信号(例えば、PDSCH(Physical Downlink Shared Channel))と、DLデータ信号を復調および復号するためのDL制御信号(例えば、PDCCH(Physical Downlink Control Channel))とが含まれている。
 <無線基地局10>
 図1は、一実施の形態に係る無線基地局の機能ブロック構成例を示す図である。図1に示す基地局10は、制御部100と、生成部102と、DFT部104と、マッピング部106と、IFFT部108と、CP(Cyclic Prefix)挿入部110と、送信部112と、アンテナ114と、を有する。なお、DFT部104、マッピング部106、IFFT部108およびCP挿入部110によってDFT-s-OFDMシンボルが生成される。
 制御部100は、端末20と共有する制約条件等に基づいて、生成部102及びマッピング部106を制御する。例えば、制御部100は、制約条件等に基づいて、各端末10のDL信号のスケジューリング(リソース割当等)を行い、そのスケジューリングに基づいて、生成部102及びマッピング部106を制御する。
 生成部102は、制御部100からの制御に基づいて、各端末20に送信するDL信号をシングルキャリアの無線リソースの時間領域に割り当て、時間領域信号(第1データ)を生成し、その生成した時間領域信号(第1データ)を、DFT部104に出力する。すなわち、生成部102は、DFT部104によって拡散される前の時間領域信号において、複数の端末20に送信するDL信号を、時分割して多重する。
 DFT部104は、直並列変換された時間領域信号(第1データ)に対して離散フーリエ変換を行い、得られた周波数領域信号をマッピング部106に出力する。
 マッピング部106は、制御部100からの制御に基づいて、DFT部104から出力された周波数領域信号を複数のサブキャリアにマッピングし、周波数領域信号がマッピングされたサブキャリア以外のサブキャリアには0をマッピングし、マッピング後の周波数領域信号をIFFT部108に出力する。
 IFFT部108は、マッピング部102から出力された周波数領域信号に対し、逆高速フーリエ変換を行い、得られた時間領域信号(DFT-s-OFDM信号)をCP挿入部110に出力する。
 CP挿入部110は、IFFT部108から出力された時間領域信号に対してCPを挿入し、送信部112に出力する。
 送信部112は、CP挿入部110から出力される時間領域信号(DL信号)に対して、D/A(Digital-to-Analog)変換、アップコンバート、増幅等のRF(Radio Frequency)処理を行い、アンテナ114を介して端末20に無線信号を送信する。
 <ユーザ端末20>
 図2は、一実施の形態に係るユーザ端末の機能ブロック構成例を示す図である。図2に示すユーザ端末20は、制御部200と、アンテナ202と、受信部204と、CP除去部206と、FFT部208と、デマッピング部210と、IDFT部212と、抽出部214と、を有する。なお、CP除去部206と、FFT部208と、デマッピング部210と、IDFT部212とによってDFT-s-OFDMシンボルが抽出される。
 制御部200は、基地局10と共有する制約条件等に基づいて、デマッピング部210及び抽出部214を制御する。
 アンテナ202において受信された無線信号は、受信部204に入力される。受信部204は、アンテナ202において受信された無線信号に対して、増幅、ダウンコンバート、A/D(Analog-to-Digital)変換等のRF処理を行い、ベースバンドの時間領域信号(DL信号)をCP除去部206に出力する。
 CP除去部206は、受信部204から出力された時間領域信号(DFT-s-OFDM信号)に付加されたCPを除去し、FFT部208に出力する。
 FFT部208は、CP除去部206から出力された時間領域信号(DFT-s-OFDM信号)に対し、高速フーリエ変換を行い、得られた周波数領域信号をデマッピング部210に出力する。
 デマッピング部210は、制御部200からの制御に基づいて、FFT部208から出力された信号に対して、無線基地局10が送信した信号波形に対応した等化処理を行い、等化処理後の信号をIDFT部212に出力する。
 IDFT部212は、デマッピング部210から出力された周波数領域信号に対して離散逆フーリエ変換を行い、時間領域信号(第1信号)を得る。IDFT部212は、この時間領域信号(第1信号)を、抽出部214へ出力する。
 抽出部214は、制御部200からの制御に基づいて、時間領域信号(第1信号)から、自端末20宛のDL信号を抽出する。抽出部214の処理の詳細については後に詳述する。
 <RBGの構成>
 図3Aは、本実施の形態に係るRBG(Resource Block Group)の構成の一例を示す図である。
 図3Aにおいて、横軸は時間軸を示す。矢印400は、DL信号がシングルキャリアによって送信される信号送信点を示す。信号送信点は、サンプル点400と呼んでも良い。又は、信号送信点は、サブキャリア、トーン、リソースエレメント、コンポーネント、シンボル、ミニシンボル、またはサンプルと呼んでもよい。なお、信号送信点のこれらの名称は、あくまでも一例であり、他の名称であってもよい。サンプル点400の間隔412は、例えば、「1/システム帯域幅」である。
 図3Aに示す点線間は、複数のサンプル点を束ねた1シンボル(またはスロット、ミニスロット)500の長さを示す。1サブフレーム(またはTTI)(図示せず)は、複数のシンボル500が集まって形成される。
 基地局10は、DL信号をサンプル点400に割り当て、端末20へ送信する。本実施の形態では、1TTIにおいて、複数の端末20のそれぞれにDL信号を送信可能とするために、各サンプル点400に、各端末20宛のDL信号を割り当てられるようにする。
 そこで、所定数のサンプル点400によって構成されるRBG(Resource Block Group)を定義する。RBGは、1端末20に対応付けるサンプル点400の数の最小単位となる。すなわち、1端末20に対して少なくとも1RBGが対応付けられる。
 RBGは、所定の制約条件に基づいて構成される。この制約条件を、RBG構成の制約条件と呼ぶ。端末20は、RBG構成の制約条件を基地局10と共有することにより、自端末20に対応付けられているRBGを特定することができる。
 以下、RBGは連続するk個(kは1以上の整数)のサンプル点400によって構成される、という第1のRBG構成の制約条件について、図3Aを参照しながら説明する。
 例えば、k=4の場合、図3Aに示すように、基地局10の生成部102は、シンボル500の先頭から、0から3番目の連続するサンプル点400A、400B、400C、400Dを束ねて、RBG#0を構成する。同様に、生成部102は、シンボル500の、その後に連続する4から7番目のサンプル点400E、400F、400G、400Hを束ねて、RBG#1を構成する。なお、「RBG#0」は、RBG番号が「0」のRBGを、「RBG#1」は、RBG番号が「1」のRBGを意味する。以下についても同様である。
 そして、生成部102は、RBG#0に対応付けられている端末20に送信するDL信号を、RBG#0に属するサンプル点400A、400B、400C、400Dに割り当てる。同様に、生成部102は、RBG#1に対応付けられている端末20に送信するDL信号を、RBG#1に属するサンプル点400E、400F、400G、400Hに割り当てる。
 端末20の抽出部214は、自端末20に割り当てられているRBG番号に基づいて、シンボル500に含まれる各サンプル点400から、自端末20宛のDL信号を抽出する。
 例えば、RBG#0が対応付けられている端末20は、図3Aに示すシンボル500から、RBG#0に属するサンプル点400A、400B、400C、400Dに割り当てられているDL信号を抽出する。RBG#1が対応付けられている端末20は、図3Aに示すシンボル500から、RBG#1に属するサンプル点400E、400F、400G、400Hに割り当てられているDL信号を抽出する。
 <効果>
 上述の構成によれば、基地局10は、複数の端末20のそれぞれに送信するDL信号を、時間領域に割り当てる(多重する)ことができる。また、各端末20は、その時間領域に多重されたDL信号の中から、自端末20宛のDL信号を抽出することができる。
 なお、RBG構成の制約条件は、基地局10と端末20との間においてどのような方法で共有されてもよい。例えば、基地局10と端末20との間で予め共有されていてもよいし、DL制御信号等を用いて共有されてもよい。
 また、RBGを構成するサンプル点400の数kについても、基地局10と端末20との間においてどのような方法で共有されてもよい。例えば、基地局10と端末20との間において予め共有されていてもよいし、DL制御信号等を用いて共有されてもよい。
 <RBGの構成の変形例>
 図3Bは、本実施の形態に係るRBGの構成の変形例を示す図である。
 以下、RBGは、m個(mは1以上の整数)の間隔で離散するk個のサンプル点によって構成される、という第2のRBG構成の制約条件について、図3Bを参照しながら説明する。
 例えば、m=5、k=4の場合、図3Bに示すように、基地局10の生成部102は、シンボル500中の0、5、10、15番目のサンプル点400I、400K、400M、400Oを束ねて、RBG#0を構成する。同様に、生成部102は、シンボル500中の1、6、11、16番目のサンプル点400J、400L、400N、400Pを束ねて、RBG#1を構成する。
 そして、生成部102は、RBG#0に対応付けられている端末20に送信するDL信号を、RBG#0に属するサンプル点400I、400K、400M、400Oに割り当てる。同様に、生成部102は、RBG#1に対応付けられている端末20に送信するDL信号を、RBG#1に属するサンプル点400J、400L、400N、400Pに割り当てる。
 端末20の抽出部214は、自端末20に割り当てられているRBG番号に基づいて、1シンボルに含まれる各サンプル点400から、自端末20宛のDL信号を抽出する。
 例えば、RBG#0が割り当てられている端末20は、図3Bに示すシンボル500から、RBG#0に属するサンプル点400I、400K、400M、400Oに割り当てられているDL信号を抽出する。RBG#1が割り当てられている端末20は、図3Bに示すシンボル500から、RBG#1に属するサンプル点400J、400L、400N、400Pに割り当てられているDL信号を抽出する。
 図3Aと同様、RBG構成の制約条件、及び、離散間隔m並びにRBGを構成するサンプル点400の数kについては、基地局10と端末20との間においてどのような方法で共有されてもよい。例えば、基地局10と端末20との間において予め共有されていてもよいし、DL制御信号等を用いて共有されてもよい。
 なお、上述の第1及び第2のRBG構成の制約条件は、あくまでも一例であり、RBG構成の制約条件は、これらに限定されない。
 また、RBG構成の制約条件は、サブフレーム毎又はシンボル毎に異なってもよい。その場合、基地局10は、DL制御信号等を用いて、各端末10にRBG構成の制約条件を通知してもよい。当該通知の方法の一例については後述する。
 <端末に対するRBGの対応付け>
 図4は、本実施の形態に係る端末にRBGを対応付ける方法の一例を示す図である。
 1端末20に対するRBGの対応付けには、所定の制約条件が設定されていてよい。この制約条件をRBG対応付けの制約条件と呼ぶ。
 RBG対応付けの制約条件として、例えば、図4に示すように、1端末20に対応付け可能なRBGの数(アグリゲーションレベル)を、1RBG、2RBG、4RBG、8RBG、…のように、2のべき乗数とする旨を設定する。すなわち、RBG対応付けの制約条件として、「tree-based構造」を設定する。
 そして、アグリゲーションレベルごとに、割り当て可能なRBGを決める。例えば、アグリゲーションレベルが「n」(n:1,2,4,8)の場合、「n」の倍数に対応するRBG番号を開始点としたn個の連続するRBGを、DL信号に割り当てる。
 より具体的には、「アグリゲーションレベル」が「1」の場合、1の倍数に対応するRBG#0,#1,#2,…を先頭とする、1個の連続するRBG(例えば、RBG#0)を、DL信号に割り当てる。
 「アグリゲーションレベル」が「2」の場合、2の倍数に対応するRBG#0,#2,#4,…を先頭とする、2個の連続するRBG(例えば、RBG#0およびRBG#1)を、DL信号に割り当てる。
 「アグリゲーションレベル」が「4」の場合、4の倍数に対応するRBG#0,#4,#8,…を先頭とする、4個の連続するRBG(例えば、RBG#0からRBG#3)を、DL信号に割り当てる。
 「アグリゲーションレベル」が「8」の場合、8の倍数に対応するRBG#0,#8,#16,…を先頭とする、8個の連続するRBG(例えば、RBG#0からRBG#7)を、DL信号に割り当てる。
 ただし、上記の2のべき乗数の設定は一例であり、例えば、1RBGを3つ束ねて3RBGとする旨が設定されてもよい。
 上述の構成によれば、基地局10の生成部102におけるRBGのスケジューリングが簡単になる。また、当該RBG対応付けの制約条件を、基地局10と端末20との間において共有しておくことにより、基地局10から端末20へ送信すべき情報の量を削減することができる。
 なお、図4では、RBGが連続するサンプル点400によって構成されているが、図3BのようにRBGが離散的なサンプル点400によって構成されていてもよい。
 <複数のシンボルに亘るRBGの配置>
 図5Aは、本実施の形態に係る複数のシンボルに亘ってRBGが配置される一例を示す図である。
 図5Aに示すように、同一番号のRBGが、複数のシンボル500に亘って配置されてもよい。また、複数のシンボル500に亘るRBGの配置パターンは、所定の配置パターンに制約されてよい。
 以下、各シンボル500において、同一番号のRBGを同一の順序に配置する、というRBG配置の制約条件について、図5Aを参照しながら説明する。
 例えば、基地局10の生成部102は、図5Aに示すように、シンボル500A、500B、500C、500Dのそれぞれに、RBG#0、#1、#2、#3の順序にRBGを配置する。
 端末20の抽出部214は、自端末20に割り当てられているRBG番号に基づいて、各シンボル500A、500B、500C、500Dから、自端末20宛のRBGに属するサンプル点400に割り当てられているDL信号を抽出する。
 例えば、RBG#0が対応付けられている端末20は、図5Aに示すシンボル500A、500B、500C、500Dから、RBG#0に属するサンプル点400に割り当てられているDL信号を抽出する。RBG#1が対応付けられている端末20は、図5Aに示すシンボル500A、500B、500C、500Dから、RBG#1に属するサンプル点400に割り当てられているDL信号を抽出する。
 上述の構成によれば、基地局10の生成部102において、複数のシンボル500に亘るRBGのスケジューリングが簡単になる。また、当該RBG配置の制約条件を、基地局10と端末20との間において共有しておくことにより、基地局10から端末20へ送信すべき情報の量を削減することができる。
 なお、図5Aでは、RBGが連続するサンプル点400によって構成されているが、図3BのようにRBGが離散的なサンプル点400によって構成されていてもよい。
 <複数のシンボルに亘るRBGの配置の変形例>
 図5Bは、本実施の形態に係る複数のシンボルに亘ってRBGが配置される変形例を示す図である。
 図5Aでは、各シンボル500において同一番号のRBGを同一の順序に配置する場合ついて説明したが、各シンボル500におけるRBGの配置パターンは、これに限定されない。例えば、図5Bに示すように、シンボル毎に異なる番号のRBGが任意の順序に配置されてもよい。
 例えば、基地局10の生成部102は、図5Bに示すように、シンボル500E、500F、500GにRBG#0を配置し、シンボル500E、500FにRBG#1を配置する。
 上述の構成によれば、基地局10の生成部102において、複数のシンボル500に亘るRBGのスケジューリングの自由度が向上する。また、端末20毎に対応付けるRBGの数を可変にすることができる。
 なお、図5Bは、RBGが連続するサンプル点400によって構成されているが、図3BのようにRBGが離散的なサンプル点400によって構成されていてもよい。
 <CCEとRBGとの対応付け>
 図6は、本実施の形態に係るCCE(Control Channel Element)とRBGとの関係の一例を示す図である。なお、CCEを、DL制御信号におけるRBGということもできる。
 上述のように、DFT部104によって拡散される前の時間領域信号において、複数の端末20に送信するDL信号を時分割して多重することは、DLデータ信号(PDSCH)に限らず、DL制御信号(PDCCH)ついても行われてよい。
 すなわち、シンボル500に複数の端末20のDL信号を多重することは、DL制御信号(PDCCH)及びDLデータ信号(PDSCH)の何れに対しても適用可能である。DL制御信号に適用する場合、CCEインデックスを、1端末20に対応付けるサンプル点400の数の最小単位としてよい。
 制約条件として、DCI(Downlink Control Information)とCCEインデックスとが紐付けられており、また、CCEインデックスとRBG番号とが紐付けられていてもよい。この構成により、例えば、端末20は、自端末20宛のDCIに紐付けられているCCE#0を特定し、その特定したCCE#0に紐付けられているRBG#0に割り当てられているDLデータ信号を抽出することができる。
 また、制約条件として、CCEインデックスと変調方式とが紐付けられていてもよい。この構成により、例えば、CCE#0と変調方式「QPSK」が紐付けられている場合、自端末20は、自端末20宛のDCIに紐付けられているCCE#0を特定し、その特定したCCE#0に紐付けられている変調方式「QPSK」によって、DLデータ信号を復調することができる。
 また、制約条件として、CCEインデックス毎に、MCS(Modulation and Coding Scheme)に制限が設けられてもよい。また、制約条件として、CCEインデックス毎に、RBGの数に制限が設けられてもよい。
 上述の構成によれば、端末20に対してDCIにおいて通知すべき情報量を削減することができる。すなわち、DCIビット数を削減することができる。
 <所定パターンの通知方法>
 次に、上述における、基地局10から端末20への制約条件のパターンの通知方法について説明する。
 基地局10は、端末20に対して、制約条件のパターンを、明示的(explicit)に通知してもよく、暗黙的(implicit)に通知してもよい。
 例えば、制約条件のパターンをexplicitに通知する場合、基地局10は、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、PHY(物理レイヤ)シグナリング等によって、制約条件のパターンを端末20へ通知してもよい。一例として、基地局10は、MIB(Master Information Block)、SIB(System Information Block)、RACHメッセージ2(Random Access Response:RARと呼ばれることもある)Paging情報、RRC接続情報、又は、S1接続設定等を用いて制約条件のパターンを端末20へ通知してもよい。
 また、基地局10は、端末20に対して、DCI(Downlink Control Information)を用いて、制約条件のパターン(制約条件のパターンID)を通知しても良い。
 また、制約条件のパターンをimplicitに通知する場合、基地局10及び端末20は、例えば、同期信号(Synchronization Signal:SS)、PBCH、SIB又はRACHの構成等と、制約条件のパターンとを1対1に関連付けてもよい。例えば、SS、PBCH、SIB、RACHの各々の構成として複数のパターンがそれぞれ規定されている場合に、複数のパターンが、互いに異なるパターンIDに関連付けられるようにグループ分けされてもよい。グループ分けの際、各パターン(例えば、SSのサブキャリア間隔が異なる各パターン)に対して、当該パターンが使用される通信環境に適した所定情報が関連付けられてもよい。
 基地局10は、端末20に設定した制約条件のパターンに関連付けられたグループの信号を端末20へ送信する。そして、端末20は、基地局10から送信された信号が属するグループに関連付けられた制約条件のパターン(パターンID)を、自機に設定された制約条件のパターンとして特定する。この構成により、所定パターンが既存の信号によってimplicitに通知されるので、所定パターンを通知するための新たなシグナリングが不要となる。
 なお、基地局10から端末20への所定パターンの通知は、周期的に行われてもよく、動的に行われてもよい。
 以上、実施の形態について説明した。
 (ハードウェア構成)
 なお、上記実施の形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線で)接続し、これら複数の装置により実現されてもよい。
 例えば、本発明の一実施の形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図7は、本発明の一実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサで実行されてもよいし、処理が同時に、逐次に、又はその他の手法で、一以上のプロセッサで実行されてもよい。なお、プロセッサ1001は、一以上のチップで実装されてもよい。
 無線基地局10及びユーザ端末20における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信、又は、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部100,200、生成部102、DFT部104、マッピング部106、IFFT部108、CP挿入部110、抽出部214、IDFT部212、デマッピング部210、CP除去部206などは、プロセッサ1001で実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、無線基地局10の制御部100は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001で実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及び/又はストレージ1003を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。例えば、上述の送信部112、アンテナ114,202、受信部204などは、通信装置1004で実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
 (情報の通知、シグナリング)
 また、情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 (適応システム)
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 (処理手順等)
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 (基地局の操作)
 本明細書において基地局(無線基地局)によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局および/または基地局以外の他のネットワークノード(例えば、MME(Mobility Management Entity)またはS-GW(Serving Gateway)などが考えられるが、これらに限られない)によって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MMEおよびS-GW)であってもよい。
 (入出力の方向)
 情報及び信号等は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)に出力され得る。複数のネットワークノードを介して入出力されてもよい。
 (入出力された情報等の扱い)
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、または追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置に送信されてもよい。
 (判定方法)
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 (ソフトウェア)
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)などの有線技術及び/又は赤外線、無線及びマイクロ波などの無線技術を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 (情報、信号)
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナル)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC)は、キャリア周波数、セルなどと呼ばれてもよい。
 (「システム」、「ネットワーク」)
 本明細書で使用する「システム」および「ネットワーク」という用語は、互換的に使用される。
 (パラメータ、チャネルの名称)
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースはインデックスで指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的なものではない。さらに、これらのパラメータを使用する数式等は、本明細書で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素(例えば、TPCなど)は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的なものではない。
 (基地局)
 基地局(無線基地局)は、1つまたは複数(例えば、3つ)の(セクタとも呼ばれる)セルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、および/または基地局サブシステムのカバレッジエリアの一部または全体を指す。さらに、「基地局」、「eNB」、「セル」、および「セクタ」という用語は、本明細書では互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 (端末)
 ユーザ端末は、当業者によって、移動局、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、UE(User Equipment)、またはいくつかの他の適切な用語で呼ばれる場合もある。
 (用語の意味、解釈)
 本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。本明細書で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を使用することにより、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどの電磁エネルギーを使用することにより、互いに「接続」又は「結合」されると考えることができる。
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。また、補正用RSは、TRS(Tracking RS)、PC-RS(Phase Compensation RS)、PTRS(Phase Tracking RS)、Additional RSと呼ばれてもよい。また、復調用RS及び補正用RSは、それぞれに対応する別の呼び方であってもよい。また、復調用RS及び補正用RSは同じ名称(例えば復調RS)で規定されてもよい。
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 上記の各装置の構成における「部」を、「手段」、「回路」、「デバイス」等に置き換えてもよい。
 「含む(including)」、「含んでいる(comprising)」、およびそれらの変形が、本明細書あるいは特許請求の範囲で使用されている限り、これら用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
 無線フレームは時間領域において1つまたは複数のフレームで構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレーム、タイムユニット等と呼ばれてもよい。サブフレームは更に時間領域において1つまたは複数のスロットで構成されてもよい。スロットはさらに時間領域において1つまたは複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier-Frequency Division Multiple Access)シンボル等)で構成されてもよい。
 無線フレーム、サブフレーム、スロット、およびシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、およびシンボルは、それぞれに対応する別の呼び方であってもよい。
 例えば、LTEシステムでは、基地局が各移動局に無線リソース(各移動局において使用することが可能な周波数帯域幅、送信電力等)を割り当てるスケジューリングを行う。スケジューリングの最小時間単位をTTI(Transmission Time Interval)と呼んでもよい。
 例えば、1サブフレームをTTIと呼んでもよいし、複数の連続したサブフレームをTTIと呼んでもよいし、1スロットをTTIと呼んでもよい。
 リソースユニットは、時間領域および周波数領域のリソース割当単位であり、周波数領域では1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。また、リソースユニットの時間領域では、1つまたは複数個のシンボルを含んでもよく、1スロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つまたは複数のリソースユニットで構成されてもよい。また、リソースユニットは、リソースブロック(RB:Resource Block)、物理リソースブロック(PRB:Physical RB)、PRBペア、RBペア、スケジューリングユニット、周波数ユニット、サブバンドと呼ばれてもよい。また、リソースユニットは、1つ又は複数のREで構成されてもよい。例えば、1REは、リソース割当単位となるリソースユニットより小さい単位のリソース(例えば、最小のリソース単位)であればよく、REという呼称に限定されない。
 上述した無線フレームの構造は例示に過ぎず、無線フレームに含まれるサブフレームの数、サブフレームに含まれるスロットの数、スロットに含まれるシンボルおよびリソースブロックの数、および、リソースブロックに含まれるサブキャリアの数は様々に変更することができる。
 本開示の全体において、例えば、英語でのa, an, 及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。
 (態様のバリエーション等)
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本特許出願は2017年2月3日に出願した日本国特許出願第2017-019122号に基づきその優先権を主張するものであり、日本国特許出願第2017-019122号の全内容を本願に援用する。
 本発明の一態様は、移動通信システムに有用である。
 10 無線基地局
 20 ユーザ端末
 100 制御部
 102 生成部
 104 DFT部
 106 マッピング部
 108 IFFT部
 110 CP挿入部
 112 送信部
 114 アンテナ
 200 制御部
 202 アンテナ
 204 受信部
 206 CP除去部
 208 FFT部
 210 デマッピング部
 212 IDFT部
 214 抽出部

Claims (7)

  1.  シングルキャリアの複数の信号送信点に配置されている下りリンク信号を受信する受信部と、
     所定数の信号送信点を単位とするリソースブロックグループの定義に基づいて、自端末に対応付けられているリソースブロックグループに属する信号送信点に割り当てられている下りリンク信号を抽出する抽出部と、
     を備えるユーザ端末。
  2.  前記リソースブロックグループに属する所定数の信号送信点は、時間領域において連続している、
     請求項1に記載のユーザ端末。
  3.  前記リソースブロックグループに属する所定数の信号送信点は、時間領域において離散している、
     請求項1に記載のユーザ端末。
  4.  自端末には、所定数のリソースブロックグループが対応付けられている、
     請求項1に記載のユーザ端末。
  5.  複数の信号送信点によってシンボルが構成されており、
     自端末に対応付けられているリソースブロックグループが、複数のシンボルに亘って配置されている、
     請求項1に記載のユーザ端末。
  6.  前記下りリンク信号は、下りリンク制御信号と下りリンクデータ信号とを含み、
     前記下りリンク制御信号に係るリソースブロックグループの識別情報と、前記下りリンクデータ信号に係るリソースブロックグループの識別情報とが紐付けられている、
     請求項1に記載のユーザ端末。
  7.  シングルキャリアの複数の信号送信点に配置されている下りリンク信号を受信し、
     所定数の信号送信点を単位とするリソースブロックグループの定義に基づいて、自端末に対応付けられているリソースブロックグループに属する信号送信点に割り当てられている下りリンク信号を抽出する、
     無線通信方法。
PCT/JP2018/003360 2017-02-03 2018-02-01 ユーザ端末及び無線通信方法 WO2018143325A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/482,340 US11108611B2 (en) 2017-02-03 2018-02-01 User terminal and radio communication method
JP2018565636A JP7117249B2 (ja) 2017-02-03 2018-02-01 ユーザ端末及び無線通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017019122 2017-02-03
JP2017-019122 2017-02-03

Publications (1)

Publication Number Publication Date
WO2018143325A1 true WO2018143325A1 (ja) 2018-08-09

Family

ID=63040700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003360 WO2018143325A1 (ja) 2017-02-03 2018-02-01 ユーザ端末及び無線通信方法

Country Status (3)

Country Link
US (1) US11108611B2 (ja)
JP (1) JP7117249B2 (ja)
WO (1) WO2018143325A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021029002A1 (ja) * 2019-08-09 2021-02-18 株式会社Nttドコモ 端末
WO2021261199A1 (ja) * 2020-06-25 2021-12-30 株式会社Nttドコモ 通信装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220078767A1 (en) * 2019-02-01 2022-03-10 Apple Inc. Scheduling of pdsch transmission with dft-s-ofdm waveform

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009526500A (ja) * 2006-02-08 2009-07-16 クゥアルコム・インコーポレイテッド 無線通信におけるピーク対平均比を低減するためのスペクトル波形整形

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120071153A1 (en) * 2010-09-17 2012-03-22 Alcatel-Lucent Usa Inc. Receive Signal Processing In Wireless Networks
CN107979456B (zh) * 2012-05-11 2021-01-22 中兴通讯股份有限公司 下行控制信息发送方法、检测方法、基站及用户设备
WO2016031683A1 (ja) * 2014-08-29 2016-03-03 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009526500A (ja) * 2006-02-08 2009-07-16 クゥアルコム・インコーポレイテッド 無線通信におけるピーク対平均比を低減するためのスペクトル波形整形

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MITSUBISHI ELECTRIC: "Views on NR waveforms", 3GPP TSG-RAN WG1#84B R1-162537, 1 April 2016 (2016-04-01), XP051079601 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021029002A1 (ja) * 2019-08-09 2021-02-18 株式会社Nttドコモ 端末
CN114175586A (zh) * 2019-08-09 2022-03-11 株式会社Ntt都科摩 终端
WO2021261199A1 (ja) * 2020-06-25 2021-12-30 株式会社Nttドコモ 通信装置

Also Published As

Publication number Publication date
US11108611B2 (en) 2021-08-31
JP7117249B2 (ja) 2022-08-12
US20200052940A1 (en) 2020-02-13
JPWO2018143325A1 (ja) 2020-01-09

Similar Documents

Publication Publication Date Title
CN110999236B (zh) 终端以及终端的通信方法
JP7470513B2 (ja) 端末及び基地局
CN111095812A (zh) 用户终端以及无线通信方法
US11012280B2 (en) User terminal and radio communication method
CN110583065B (zh) 用户终端、无线基站以及无线通信方法
KR102563088B1 (ko) 유저 단말 및 무선 통신 방법
WO2018143325A1 (ja) ユーザ端末及び無線通信方法
CN110771057A (zh) 用户终端以及信道估计方法
JP2021048639A (ja) 端末、基地局、通信方法及びシステム
WO2018124031A1 (ja) ユーザ端末及び無線通信方法
CN111052693B (zh) 用户终端以及无线通信方法
JP7195153B2 (ja) ユーザ端末及び無線通信方法
WO2019107432A1 (ja) ユーザ端末及び無線通信方法
WO2018229957A1 (ja) ユーザ端末及びチャネル推定方法
US11122600B2 (en) Terminals receiving downlink control signals and downlink data signals
CN110870269B (zh) 用户终端以及无线通信方法
US20200162227A1 (en) User terminal and wireless communication method
EP3654707A1 (en) User terminal and wireless communication method
CN110870268A (zh) 用户终端以及无线通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748347

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018565636

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18748347

Country of ref document: EP

Kind code of ref document: A1