WO2023015451A1 - 基于统一非正交波形的电子设备 - Google Patents

基于统一非正交波形的电子设备 Download PDF

Info

Publication number
WO2023015451A1
WO2023015451A1 PCT/CN2021/111823 CN2021111823W WO2023015451A1 WO 2023015451 A1 WO2023015451 A1 WO 2023015451A1 CN 2021111823 W CN2021111823 W CN 2021111823W WO 2023015451 A1 WO2023015451 A1 WO 2023015451A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
compressed
dft
data
electronic device
Prior art date
Application number
PCT/CN2021/111823
Other languages
English (en)
French (fr)
Inventor
刘娟
刘文佳
侯晓林
李安新
陈岚
岸山祥久
浅井孝浩
Original Assignee
株式会社Ntt都科摩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ntt都科摩 filed Critical 株式会社Ntt都科摩
Priority to CN202180100424.3A priority Critical patent/CN117716672A/zh
Priority to PCT/CN2021/111823 priority patent/WO2023015451A1/zh
Publication of WO2023015451A1 publication Critical patent/WO2023015451A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present disclosure relates to the field of wireless communication, in particular to an electronic device, and more particularly to an electronic device based on a unified non-orthogonal waveform.
  • the future 6G communication system puts forward higher requirements on the peak-to-average power ratio (PAPR) of the waveform.
  • PAPR peak-to-average power ratio
  • DFT-s-OFDM discrete Fourier transform extended orthogonal frequency division multiplexing
  • the current DFT-s-OFDM scheme still cannot meet the requirements of the 5G evolution communication system and the 6G communication system.
  • the 6G communication system also puts forward higher requirements on the out-of-band energy leakage (OOBE) and spectral efficiency (SE) of the waveform.
  • OOBE out-of-band energy leakage
  • SE spectral efficiency
  • DFT-s-OFDM further improvement of DFT-s-OFDM is needed to simultaneously improve the PAPR, OOBE and SE performance of the waveform, and integrate the waveform with the 6G communication system framework to improve compatibility and flexibility.
  • an electronic device including: an input unit configured to: determine a sequence to be compressed based on a data sequence, a header sequence and a tail sequence, the sequence to be compressed has Q elements, Q is an integer greater than 0; the processing unit is configured to: based on the sequence to be compressed, use DFT extension to determine a DFT extension sequence, and perform at least one of data deletion or data superposition on the DFT extension sequence to determine the compressed sequence, wherein the compressed sequence has M symbols, M is an integer greater than 0, and M is less than Q.
  • the processing unit is further configured to: compress the head sequence and tail sequence in the sequence to be compressed by a first compression factor, and compress the data sequence in the sequence to be compressed by a second compression factor compression, wherein the first compression factor indicates the ratio of the data volume of the header sequence and the tail sequence in the sequence to be compressed to the data volume of the header sequence and the tail sequence in the compressed sequence, and the second compression factor indicates the ratio of the data volume of the header sequence and the tail sequence in the compressed sequence.
  • the ratio of the data amount of the data sequence in the compressed sequence to the data amount of the data sequence in the compressed sequence, the first compression factor is the same as or different from the second compression factor.
  • the processing unit is further configured to: perform a zero padding operation on the sequence to be compressed at least according to the first compression factor and/or the second compression factor, so as to determine a zero embedding sequence, and the zero embedding
  • the sequence is subjected to a DFT spreading operation to determine the DFT spreading sequence.
  • the processing unit is further configured to: perform a data removal operation on the DFT spread sequence to determine the compressed sequence.
  • the processing unit is further configured to: perform a reordering operation on the zero embedding sequence to determine multiple zero embedding subsequences; perform a DFT extension operation on the multiple zero embedding subsequences to determine multiple DFT An extended subsequence, performing a phase compensation operation on each DFT extended subsequence in the plurality of DFT extended subsequences, and performing a data superposition operation on the DFT extended subsequences after the phase compensation operation, so as to determine the compressed sequence .
  • the header sequence and the tail sequence are all zero.
  • DFT-s-OFDM discrete Fourier transform extended orthogonal frequency division multiplexing
  • UW unique word
  • an electronic device including: an input unit configured to: determine a sequence to be compressed based on a data sequence; a processing unit configured to: use a discrete Fourier transform based on a sequence to be compressed Transforming and spreading, determining a compressed sequence, and using frequency domain spectrum shaping (FDSS) based on the compressed sequence, determining a sequence to be transmitted.
  • FDSS frequency domain spectrum shaping
  • the electronic device is applied to a discrete Fourier transform extended orthogonal frequency division multiplexing (DFT-s-OFDM) system without a cyclic prefix (NCP) or a unique word (UW) discrete Fourier transform extended orthogonal frequency division multiplexing In a (DFT-s-OFDM) system
  • the input unit is further configured to: determine a sequence to be compressed based on the input data sequence, the head sequence and the tail sequence, the sequence to be compressed has Q elements, Q is an integer greater than 0
  • the processing unit is further configured to: based on the sequence to be compressed, use DFT extension to determine a DFT extension sequence, and perform at least one of data deletion or data superposition on the DFT extension sequence to determine the already A compressed sequence, wherein the compressed sequence has M symbols, M is an integer greater than 0, and M is smaller than Q, and based on the compressed sequence, a sequence to be transmitted is determined using frequency domain spectrum shaping (FDSS).
  • FDSS frequency domain spectrum shaping
  • the processing unit is further configured to: add a cyclic prefix sequence to the sequence to be transmitted based on a cyclic prefix indicator, wherein the cyclic prefix indicator is included in RRC signaling, MAC CE signaling or DCI signaling middle.
  • a unified non-orthogonal waveform (unified Non-Orthogonal waveform, uNOW) scheme.
  • the scheme adds a head sequence and a tail sequence to the data sequence to form the sequence to be compressed before the DFT operation, and performs a data deletion operation or a data superposition operation after the DFT module to determine the compressed sequence.
  • the compression of domain symbols improves the PAPR, OOBE and SE performance of DFT-s-OFDM waveforms at the same time.
  • the scheme also realizes flexible time-domain compression adjustment by performing irregular zero-padding operation on the sequence to be compressed before the DFT operation.
  • the uNOW solution according to the present disclosure can be integrated with other solutions in the framework of the 6G communication system to improve compatibility and flexibility.
  • FIG. 1 is a schematic block diagram illustrating an electronic device according to an embodiment of the present disclosure.
  • Fig. 2 is a schematic diagram showing signal processing performed by an electronic device under the NCP or UW framework according to an embodiment of the present disclosure.
  • Fig. 3 is a schematic diagram showing signal processing performed by an electronic device under the NCP or UW framework according to an embodiment of the present disclosure.
  • Fig. 4 is a schematic diagram illustrating signal processing performed by an electronic device under the NCP or UW framework according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram showing signal processing performed by an electronic device under the NCP or UW framework according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram illustrating signal processing performed by an electronic device under the NCP or UW framework according to an embodiment of the present disclosure.
  • Fig. 7 is a schematic diagram illustrating signal processing performed by an electronic device under the NCP or UW framework according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic block diagram illustrating still another electronic device according to an embodiment of the present disclosure.
  • FIG. 9 is a flowchart of a method performed by an electronic device according to an embodiment of the present disclosure.
  • FIG. 10 is a flowchart of a method performed by an electronic device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of a hardware structure of an electronic device according to an embodiment of the present disclosure.
  • the future 6G communication system puts forward higher requirements on the peak-to-average power ratio (PAPR), out-of-band energy leakage (OOBE) and spectral efficiency (SE) of the waveform.
  • PAPR peak-to-average power ratio
  • OOBE out-of-band energy leakage
  • SE spectral efficiency
  • DFT-s-OFDM discrete Fourier transform extended orthogonal frequency division multiplexing
  • various improvement schemes to DFT-s-OFDM have been proposed in an attempt to improve the above-mentioned various performances.
  • NCP No Cyclic Prefix
  • NCP No Cyclic Prefix
  • UW unique word
  • a DFT-s-OFDM scheme based on Frequency Domain Spectrum Shaping is also proposed at present.
  • the scheme adjusts the correlation and distribution of the time domain signal by shaping the frequency domain signal to reduce the PAPR.
  • a DFT-s-OFDM scheme based on super-Nyquist (FTN) modulation has also been proposed, which is also called a Non-Orthogonal waveform framework (NOW) scheme.
  • FTN super-Nyquist
  • NOW Non-Orthogonal waveform framework
  • further FTN modulation operation is performed on DFT-s-OFDM to realize the compression of time-domain sampling signals, and reduce PAPR while improving SE.
  • a unified non-orthogonal waveform (unified Non-Orthogonal waveform, uNOW) solution.
  • the scheme adds a head sequence and a tail sequence to the data sequence to form the sequence to be compressed before the DFT operation, and performs a data deletion operation or a data superposition operation after the DFT module to determine the compressed sequence.
  • the compression of domain symbols improves the PAPR, OOBE and SE performance of DFT-s-OFDM waveforms at the same time.
  • the scheme also realizes flexible time-domain compression adjustment by performing irregular zero-padding operation on the sequence to be compressed before the DFT operation.
  • the uNOW solution according to the present disclosure can be integrated with other solutions in the framework of the 6G communication system to improve compatibility and flexibility.
  • FIG. 1 is a schematic block diagram showing an electronic device 100 according to an embodiment of the present disclosure, the electronic device 100 can perform signal processing under the NCP or UW framework to determine the compressed sequence involved in the above-mentioned uNOW scheme.
  • an electronic device 100 may serve as a part of a transmitting end in a communication system.
  • the electronic device 100 may serve as a part of a base station or a user terminal.
  • a 5G evolved communication network and a 6G communication network are taken as examples to describe embodiments of the present disclosure, but it should be recognized that the following description may also be applicable to other types of wireless communication networks.
  • the electronic device 100 may include an input unit 110 and a processing unit 120 .
  • the electronic device 100 may also include other components (for example, an antenna and a transmitting unit for transmitting a compressed sequence, etc.), however, since these components have nothing to do with the content of the embodiments of the present disclosure, hereby Illustrations and descriptions thereof are omitted.
  • the input unit 110 may be configured to determine a sequence to be compressed based on the data sequence, the head sequence and the tail sequence, the sequence to be compressed has Q elements, and Q is an integer greater than 0.
  • the processing unit 120 may be configured to determine a DFT extension sequence by using DFT extension based on the sequence to be compressed, and perform at least one of data deletion or data superposition on the DFT extension sequence to determine a compressed sequence, wherein the already A compressed sequence has M symbols, where M is an integer greater than zero and M is less than Q.
  • each element in the data sequence may be a time domain symbol to be transmitted.
  • the header sequence and the The elements in the tail sequence are all zero.
  • the header sequence and the tail sequence are predefined sequence. That is, the elements in the head sequence and the tail sequence are predefined elements.
  • the scheme By extending the head sequence and the tail sequence of the time domain symbol to be transmitted before the DFT expansion operation, and performing at least one of data deletion or data superposition after the DFT expansion operation, flexible time domain compression adjustment is realized.
  • the scheme also realizes the DFT orthogonal multiplexing of the head sequence and the tail sequence and the DFT non-orthogonal multiplexing of the data sequence, so that the uNOW scheme according to the present disclosure can be combined with other schemes in the framework of the 6G communication system (such as , NCP or UW scheme) to improve compatibility and flexibility.
  • the processing unit 120 can implement flexible time-domain compression by using different compression factors.
  • the processing unit 120 may also be configured to compress the head sequence and tail sequence in the sequence to be compressed by a first compression factor, and compress the data sequence in the sequence to be compressed by a second compression factor .
  • the first compression factor indicates the ratio of the data volume of the header sequence and the tail sequence in the sequence to be compressed to the data volume of the header sequence and the tail sequence in the compressed sequence
  • the second compression factor indicates the data volume of the sequence to be compressed The ratio of the data size of the sequence to the data size of the data sequence in the compressed sequence.
  • the first compression factor and the second compression factor may be the same or different.
  • the cases where the first compression factor and the second compression factor are the same and different are discussed respectively below. It should be noted that, in the case that the first compression factor and the second compression factor are the same, the first compression factor and the second compression factor may be the same compression factor. That is, in this case, the electronic device 100 may only be provided with a single compression factor to achieve compression of the sequence to be compressed.
  • An example of a header sequence is Wherein, 0 ⁇ i ⁇ N H -1.
  • An example of a tail sequence is Wherein, 0 ⁇ i ⁇ NT -1.
  • An example of a data sequence is Wherein, 0 ⁇ i ⁇ Q d ⁇ 1.
  • the sequence s to be compressed is processed by the processing unit 120 to obtain a compressed sequence with M symbols.
  • M Q d0 +N H0 +N T0 . in, The process of obtaining the compressed sequence will be further described with reference to FIG. 2 to FIG. 4 , and details will not be repeated here.
  • examples of the sequence to be compressed and the compressed sequence can be shown as follows. Assume that the first compression factor is ⁇ 1 and the second compression factor is ⁇ 2 . And it is further assumed that the first compression factor is different from the second compression factor, that is, ⁇ 1 ⁇ 2 . Optionally, in some examples, ⁇ 1 > ⁇ 2 .
  • An example of a header sequence in the above case would be Wherein, 0 ⁇ i ⁇ N H -1.
  • An example of a tail sequence is Wherein, 0 ⁇ i ⁇ NT -1.
  • An example of a data sequence is Wherein, 0 ⁇ i ⁇ Q d ⁇ 1.
  • the present disclosure achieves compression of time-domain symbols while improving PAPR, OOBE and SE performance of DFT-s-OFDM waveforms.
  • the scheme also realizes flexible time-domain compression adjustment by performing irregular zero-padding operation on the sequence to be compressed before the DFT operation.
  • the uNOW solution according to the present disclosure can be integrated with other solutions in the framework of the 6G communication system to improve compatibility and flexibility.
  • the processing unit 120 can further implement flexible time-domain compression adjustment by using different compression factors. The operations performed by the processing unit 120 are further described below with reference to FIG. 2 to FIG. 7 , and those skilled in the art should understand that the present disclosure is not limited thereto.
  • the presently specified transmission time may be in units of the transmission time of a single OFDM symbol.
  • the present disclosure is not limited thereto.
  • electronic devices according to disclosed embodiments may also use less time for transmission than is currently required for a given amount of data.
  • FIG. 2 is a schematic diagram showing signal processing performed by the electronic device 100 under the NCP or UW framework according to an embodiment of the present disclosure.
  • the processing unit 120 is further configured to perform zero embedding operations, cM-point DFT expansion operations and data removal operations on the sequence to be compressed.
  • the processing unit 120 may perform a zero padding operation on the sequence to be compressed according to at least a part of the first compression factor or the second compression factor, so as to determine a zero embedding sequence.
  • the processing unit 120 performs a DFT spreading operation on the zero embedding sequence to determine a DFT spreading sequence.
  • the processing unit 120 performs a data removal operation on the DFT spread sequence (that is, discards part of the data in the DFT spread sequence) to determine the compressed sequence.
  • the header sequence is Wherein, 0 ⁇ i ⁇ N H -1.
  • An example of a tail sequence is Wherein, 0 ⁇ i ⁇ NT -1.
  • An example of a data sequence is Wherein, 0 ⁇ i ⁇ Q d ⁇ 1.
  • a total of (cM-Q) zeros are added. Since the above expression involves a round-down operation, in some examples, (cM-bQ+b-1) zeros may be added after the last element s Q-1 in the sequence to be compressed s.
  • the i-th element s' i in the zero-embedding sequence s' can be shown in formula (2).
  • the processing unit 120 realizes the DFT orthogonal multiplexing or DFT non-orthogonal multiplexing of the data sequence, the head sequence and the tail sequence simultaneously by using the flexible zero embedding operation and a single cM-point DFT matrix, so that according to this
  • the disclosed uNOW scheme can be integrated with other schemes (eg, NCP and UW schemes) in the 6G communication system framework to improve compatibility and flexibility.
  • FIG. 3 is another schematic diagram illustrating signal processing performed by the electronic device 100 under the NCP or UW framework according to an embodiment of the present disclosure.
  • the processing unit 120 is further configured to use c M-point DFT matrices to implement time-domain compression adjustment.
  • the processing unit 120 may perform zero embedding operations, reordering operations, M-point DFT extension operations, phase compensation operations, and data superposition operations on the sequence to be compressed.
  • the zero embedding operation is the same as that in FIG. 2 , and will not be repeated here.
  • the processing unit 120 may perform a reordering operation on the zero embedding sequence to determine multiple zero embedding subsequences.
  • the processing unit 120 may perform a DFT extension operation on the multiple zero-embedded subsequences to determine multiple DFT extended subsequences.
  • the processing unit 120 performs a phase compensation operation on each of the multiple DFT extended subsequences, and performs a data superposition operation on the DFT extended subsequences after the phase compensation operation, so as to determine the compressed sequence.
  • the above c zero embedding subsequences are respectively subjected to M-point DFT spreading operations to obtain c DFT subspreading sequences.
  • the DFT sub-spread sequence X′ k and the zero-embedded sub-sequence The relationship between can be shown by formula (5).
  • F M is the M-point DFT matrix.
  • the compressed sequence X [ X 0 .
  • the i-th element in the compressed sequence X it can be calculated as follows with formula (6).
  • the processing unit 120 utilizes the flexible zero embedding operation and c M-point DFT matrices to realize the DFT orthogonal multiplexing or DFT non-orthogonal multiplexing of the data sequence, head sequence and tail sequence at the same time, so that according to The uNOW solution of the present disclosure can be integrated with other solutions (for example, NCP and UW solutions) in the framework of the 6G communication system to improve compatibility and flexibility.
  • solutions for example, NCP and UW solutions
  • FIG. 4 is another schematic diagram illustrating signal processing performed by the electronic device 100 under the NCP or UW framework according to an embodiment of the present disclosure.
  • the processing unit 120 can also be configured to use a Q-point DFT matrix to implement time-domain compression adjustment.
  • the processing unit 120 may perform a Q-point DFT extension operation and a data removal operation on the sequence to be compressed.
  • the processing unit 120 may perform a Q-point DFT extension operation on the sequence to be compressed to determine a DFT extension sequence with Q elements. Then, the processing unit 120 performs a data removal operation on the DFT spread sequence to determine the compressed sequence.
  • the relationship between the DFT extended sequence X' and the sequence to be compressed s can be shown by formula (7).
  • the processing unit 120 utilizes a single Q-point DFT matrix and data removal operation to realize the DFT orthogonal multiplexing or DFT non-orthogonal multiplexing of the data sequence, head sequence and tail sequence at the same time, so that according to the present disclosure
  • the uNOW solution can be integrated with other solutions (such as NCP and UW solutions) in the 6G communication system framework to improve compatibility and flexibility.
  • the operations performed by the input unit 110 and the processing unit 120 will be described below with reference to FIG. 5 to FIG. 7 when the first compression factor is not equal to the second compression factor, that is, when ⁇ 1 ⁇ ⁇ 2 .
  • FIG. 5 is a schematic diagram illustrating signal processing performed by the electronic device 100 under the NCP or UW framework according to an embodiment of the present disclosure.
  • the processing unit 120 is further configured to perform zero embedding operations, cM-point DFT expansion operations and data removal operations on the sequence to be compressed.
  • the processing unit 120 may perform a zero padding operation on the sequence to be compressed according to at least the first compression factor and the second compression factor, so as to determine a zero embedding sequence.
  • the processing unit 120 performs a DFT spreading operation on the zero embedding sequence to determine a DFT spreading sequence.
  • the processing unit 120 performs a data removal operation on the DFT spread sequence to determine the compressed sequence.
  • the header sequence is Wherein, 0 ⁇ i ⁇ N H -1.
  • An example of a tail sequence is Wherein, 0 ⁇ i ⁇ NT -1.
  • An example of a data sequence is Wherein, 0 ⁇ i ⁇ Q d ⁇ 1.
  • the zero-embedded sequence s' [s' 0 ...s' i ...s' cM-1 can be obtained ] T , 0 ⁇ i ⁇ cM-1.
  • the i-th element s' i in the zero-embedding sequence s' can be shown in formula (9).
  • the processing unit 120 realizes the DFT orthogonal multiplexing of the head sequence and the tail sequence and the DFT non-orthogonal multiplexing of the data sequence by using the flexible zero embedding operation and a single cM-point DFT matrix, so that according to this
  • the disclosed uNOW scheme can be integrated with other schemes (eg, NCP and UW schemes) in the 6G communication system framework to improve compatibility and flexibility.
  • the header sequence and the tail sequence have different compression factors from the data sequence, so that, for example, the header sequence and the tail sequence are not compressed but only the data sequence is compressed.
  • FIG. 6 is another schematic diagram illustrating signal processing performed by the electronic device 100 under the NCP or UW framework according to an embodiment of the present disclosure.
  • the processing unit 120 is further configured to use c M-point DFT matrices to implement time-domain compression adjustment.
  • the processing unit 120 may perform zero embedding operations, reordering operations, M-point DFT extension operations, phase compensation operations, and data superposition operations on the sequence to be compressed.
  • the zero embedding operation is the same as the zero embedding operation in FIG. 5
  • the processing unit 120 may perform a reordering operation on the zero embedding sequence to determine multiple zero embedding subsequences.
  • the reordering operation, M-point DFT extension operation, phase compensation operation and data superposition operation are all the same as the reordering operation in FIG. 3 .
  • the above c zero embedding subsequences are respectively subjected to M-point DFT spreading operations to obtain c DFT subspreading sequences.
  • the DFT sub-spread sequence X′ k and the zero-embedded sub-sequence The relationship between can be shown by formula (12).
  • F M is the M-point DFT matrix.
  • the compressed sequence X [ X 0 .
  • the i-th element in the compressed sequence X it can be calculated as follows by formula (13).
  • the processing unit 120 can also generate the sequence to be transmitted based on the compressed sequence.
  • the electronic device according to the embodiment of the present disclosure can use the same time as the current specific transmission time to transmit more data .
  • the processing unit 120 utilizes the flexible zero embedding operation and c M-point DFT matrices to realize the DFT orthogonal multiplexing of the head sequence and the tail sequence and the DFT non-orthogonal multiplexing of the data sequence, so that according to The uNOW solution of the present disclosure can be integrated with other solutions (for example, NCP and UW solutions) in the framework of the 6G communication system to improve compatibility and flexibility.
  • the header sequence and the tail sequence have different compression factors from the data sequence, so that, for example, the header sequence and the tail sequence are not compressed but only the data sequence is compressed.
  • FIG. 7 is another schematic diagram illustrating signal processing performed by the electronic device 100 under the NCP or UW framework according to an embodiment of the present disclosure.
  • the processing unit 120 can also be configured to use a Q 1 -point DFT matrix and a Q 2 -point DFT matrix to implement time domain compression adjustment.
  • the processing unit 120 may perform a Q 1 -point DFT expansion operation and a data removal operation on a part of the sequence to be compressed to obtain the first compressed subsequence, and then perform a Q 2 -point DFT expansion operation on another part of the sequence to be compressed and data removal operations to obtain the second compressed subsequence. Then perform data superposition on the first compressed subsequence and the second compressed subsequence to determine the compressed sequence.
  • a Q 1 -point DFT matrix is used with the first compression factor to compress the head sequence and tail sequence, therefore, Q 2 -point DFT matrix for the second compression factor to compress the data sequence, therefore,
  • the first subsequence to be compressed in represents the header sequence elements of the , and represents the tail sequence For each element in , Q 1 -Q zeros are added between the head sequence and the tail sequence.
  • the second subsequence to be compressed in Represents a data sequence each element in . s d adds a total of Q 2 -Q zeros at the head and tail of the data sequence d.
  • the first DFT extension subsequence can be obtained.
  • the relationship between the first DFT extended subsequence X 1 and the first uncompressed subsequence u can be shown by formula (14).
  • the second DFT extension subsequence can be obtained.
  • the relationship between the second DFT extended subsequence X 2 and the second to-be-compressed subsequence s d can be shown by formula (16).
  • the compressed sequence X [X 0 ...X i ...X M-1 ] T , 0 ⁇ i ⁇ M-1.
  • ith element in the compressed sequence X it can be calculated as follows by formula (18).
  • the processing unit 120 can also generate the sequence to be transmitted based on the compressed sequence.
  • the electronic device according to the embodiment of the present disclosure can use the same time as the current specific transmission time to transmit more data .
  • the processing unit 120 utilizes a Q 1 -point DFT matrix, a Q 2 -point DFT matrix and data removal operation to simultaneously realize the DFT orthogonal multiplexing of the head sequence and the tail sequence and the DFT non-orthogonality of the data sequence Multiplexing, so that the uNOW solution according to the present disclosure can be integrated with other solutions (for example, NCP and UW solutions) in the framework of the 6G communication system to improve compatibility and flexibility.
  • the header sequence and the tail sequence have different compression factors from the data sequence, so that, for example, the header sequence and the tail sequence are not compressed but only the data sequence is compressed.
  • FIG. 8 is a schematic block diagram showing an electronic device 800 according to an embodiment of the present disclosure.
  • the electronic device 800 may perform signal processing in combination with FDSS to determine the sequence to be transmitted involved in the above-mentioned uNOW solution.
  • an electronic device 800 may serve as a part of a transmitting end in a communication system.
  • electronic device 800 may serve as a part of a base station or a user terminal.
  • a 5G evolved communication network and a 6G communication network are taken as examples to describe embodiments of the present disclosure, but it should be recognized that the following description may also be applicable to other types of wireless communication networks.
  • the electronic device 800 may include an input unit 880 and a processing unit 820 .
  • the electronic device 800 may also include other components (such as an antenna and a transmitting unit for transmitting a compressed sequence, etc.), however, since these components are irrelevant to the content of the embodiments of the present disclosure, they are hereby Illustrations and descriptions thereof are omitted.
  • the input unit 810 is configured to: determine a sequence to be compressed based on the data sequence.
  • the processing unit 820 is configured to: determine a compressed sequence based on the sequence to be compressed by using discrete Fourier transform extension, and determine a sequence to be transmitted by using frequency domain spectrum shaping based on the compressed sequence.
  • the processing unit 820 further adds a cyclic prefix sequence to the sequence to be transmitted.
  • the cyclic prefix indicator indicates whether a cyclic prefix sequence needs to be added to the sequence to be transmitted. If a cyclic prefix sequence needs to be added to the sequence to be transmitted, it implies that the electronic device 800 does not need to generate the sequence to be compressed through the header sequence and the tail sequence. That is, at this time, the electronic device 800 is not applied to the DFT-s-OFDM system under the NCP or UW architecture. At this time, the sequence s to be compressed is the same as the data sequence d.
  • the sequence to be compressed The manner in which the processing unit 820 determines the compressed sequence based on the sequence to be compressed s is similar to that of the processing unit 120 , which will not be repeated here.
  • the electronic device 800 needs to add a cyclic prefix sequence to the sequence to be transmitted by default, unless the cyclic prefix indicator indicates that no cyclic prefix sequence is added.
  • the input unit 810 may determine the sequence to be compressed based on the data sequence, the header sequence and the trailer sequence when the header sequence and the trailer sequence are provided.
  • the electronic device 800 will be applied to the DFT-s-OFDM system under the NCP or UW architecture.
  • the operation performed by the input unit 810 may be the same as or similar to the operation performed by the above-mentioned input unit 110, that is, the input unit 810 may also be configured to: based on the input data sequence, the head sequence and the tail sequence, A sequence to be compressed is determined, the sequence to be compressed has Q elements, and Q is an integer greater than 0.
  • Processing unit 820 determines the compressed sequence in a similar manner to processing unit 120 .
  • the processing unit 820 is further configured to: based on the sequence to be compressed, use DFT extension to determine a DFT extension sequence, and perform at least one of data deletion or data superposition on the DFT extension sequence to determine a compressed sequence, wherein
  • the compressed sequence has M symbols, M is an integer greater than zero, and M is less than Q. The details of the processing unit 820 determining the compressed sequence will not be repeated here.
  • the sequence to be transmitted can be obtained sequence to be launched
  • the i-th element in can be calculated with Equation (19) as follows.
  • p [p 0 ...p i ...p M-1 ] T , 0 ⁇ i ⁇ M-1.
  • p [p 0 ...p i ...p M-1 ] T is a vector for spectral shaping in the frequency domain, and
  • the processing unit 820 is performing the frequency-domain spectrum shaping operation , it is also possible to first perform an expansion operation on the compressed sequence to determine the expansion sequence,
  • Extended operation can reduce ISI.
  • time-domain compression adjustment and frequency-domain spectrum shaping is realized by performing frequency-domain spectrum shaping on the compressed sequence, and the PAPR, OOBE and SE performance of DFT-s-OFDM waveforms are improved while compressing time-domain symbols.
  • the uNOW solution according to the present disclosure can be integrated with other solutions (such as FDSS) in the framework of the 6G communication system, which improves compatibility and flexibility.
  • FIG. 9 is a flowchart of a method 9000 performed by the electronic device 100 according to one embodiment of the present disclosure. Since the steps of the method 9000 performed by the electronic device 100 correspond to the operations of the electronic device 100 described above with reference to the figures, detailed descriptions of the same content are omitted here for simplicity.
  • step S9001 the electronic device 100 determines a sequence to be compressed based on the data sequence, header sequence and trailer sequence, the sequence to be compressed has Q elements, and Q is an integer greater than 0.
  • step S9002 the electronic device 100 uses DFT extension to determine a DFT extension sequence based on the sequence to be compressed, and performs at least one of data deletion or data superposition on the DFT extension sequence to determine a compressed sequence, wherein the The compressed sequence has M symbols, M is an integer greater than zero, and M is less than Q.
  • the method 9000 realizes flexible time-domain compression adjustment by performing irregular zero-padding operation on the sequence to be compressed before the DFT operation.
  • the uNOW solution according to the present disclosure can be integrated with other solutions (such as NCP and UW) in the framework of the 6G communication system, improving compatibility and flexibility.
  • FIG. 10 is a flowchart of a method 10000 performed by the electronic device 800 according to one embodiment of the present disclosure. Since the steps of the method 10000 performed by the electronic device 800 correspond to the operations of the electronic device 800 described above with reference to the figures, detailed descriptions of the same content are omitted here for simplicity.
  • step S10001 the electronic device 800 determines a sequence to be compressed based on the data sequence.
  • step S10002 the electronic device 800 determines the compressed sequence based on the sequence to be compressed by using discrete Fourier transform extension, and determines the sequence to be transmitted by using frequency domain spectrum shaping based on the compressed sequence.
  • Method 10000 realizes the combination of time domain compression adjustment and frequency domain spectrum shaping by performing frequency domain spectrum shaping on the compressed sequence.
  • the uNOW solution according to the present disclosure can be integrated with other solutions (such as FDSS) in the framework of the 6G communication system, which improves compatibility and flexibility.
  • each functional block is not particularly limited. That is, each functional block may be realized by one device that is physically and/or logically combined, or two or more devices that are physically and/or logically separated may be directly and/or indirectly (e.g. By wired and/or wireless) connections and thus by the various means described above.
  • FIG. 11 is a schematic diagram of a hardware structure of a related device 1000 (electronic device) according to an embodiment of the present disclosure.
  • the aforementioned device 1000 (first network element) can be configured as a computer device physically including a processor 1010, a memory 1020, a storage 1030, a communication device 1040, an input device 1050, an output device 1060, a bus 1070, and the like.
  • the word “device” may be replaced with a circuit, a device, a unit, or the like.
  • the hardware structure of the electronic device may include one or more of the devices shown in the figure, or may not include part of the devices.
  • processor 1010 For example, only one processor 1010 is shown in the figure, but there may be multiple processors. In addition, processing may be performed by one processor, or may be performed by more than one processor simultaneously, sequentially, or in other ways. In addition, the processor 1010 may be implemented by more than one chip.
  • Each function of the device 1000 is realized, for example, by reading predetermined software (program) into hardware such as the processor 1010 and the memory 1020, so that the processor 1010 performs calculations and controls communication by the communication device 1040. , and control the reading and/or writing of data in the memory 1020 and the storage 1030 .
  • predetermined software program
  • the processor 1010 operates, for example, an operating system to control the entire computer.
  • the processor 1010 may be composed of a central processing unit (CPU, Central Processing Unit) including an interface with peripheral devices, a control device, a computing device, registers, and the like.
  • CPU Central Processing Unit
  • control unit and the like may be implemented by the processor 1010 .
  • the processor 1010 reads programs (program codes), software modules, data, and the like from the memory 1030 and/or the communication device 1040 to the memory 1020, and executes various processes based on them.
  • programs program codes
  • software modules software modules
  • data data
  • the like data
  • the program a program that causes a computer to execute at least part of the operations described in the above-mentioned embodiments can be used.
  • the processing unit of the first network element may be implemented by a control program stored in the memory 1020 and operated by the processor 1010, and other functional blocks may also be implemented in the same way.
  • the memory 1020 is a computer-readable recording medium, such as a read-only memory (ROM, Read Only Memory), a programmable read-only memory (EPROM, Erasable Programmable ROM), an electrically programmable read-only memory (EEPROM, Electrically EPROM), At least one of random access memory (RAM, Random Access Memory) and other appropriate storage media.
  • the memory 1020 may also be called a register, a cache, a main memory (main storage), or the like.
  • the memory 1020 can store executable programs (program codes), software modules, and the like for implementing the method according to an embodiment of the present disclosure.
  • the memory 1030 is a computer-readable recording medium, and can be composed of, for example, a flexible disk (flexible disk), a floppy (registered trademark) disk (floppy disk), a magneto-optical disk (for example, a CD-ROM (Compact Disc ROM), etc.), Digital Versatile Disc, Blu-ray (registered trademark) Disc), removable disk, hard drive, smart card, flash memory device (e.g., card, stick, key driver), magnetic stripe, database , a server, and at least one of other appropriate storage media.
  • the memory 1030 may also be called an auxiliary storage device.
  • the communication device 1040 is hardware (a transmission and reception device) for performing communication between computers via a wired and/or wireless network, and is also called a network device, a network controller, a network card, a communication module, and the like, for example.
  • the communication device 1040 may include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like.
  • the above-mentioned sending unit, receiving unit, etc. may be implemented by the communication device 1040 .
  • the input device 1050 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1060 is an output device (for example, a display, a speaker, a light emitting diode (LED, Light Emitting Diode) lamp, etc.) that performs output to the outside.
  • the input device 1050 and the output device 1060 may also have an integrated structure (such as a touch panel).
  • bus 1070 for communicating information.
  • the bus 1070 may be composed of a single bus, or may be composed of different buses among devices.
  • electronic equipment can include microprocessors, digital signal processors (DSP, Digital Signal Processor), application specific integrated circuits (ASIC, Application Specific Integrated Circuit), programmable logic devices (PLD, Programmable Logic Device), field programmable gates Array (FPGA, Field Programmable Gate Array) and other hardware can be used to realize part or all of each function block.
  • DSP digital signal processors
  • ASIC Application Specific Integrated Circuit
  • PLD programmable logic devices
  • FPGA Field Programmable Gate Array
  • FPGA Field Programmable Gate Array
  • a channel and/or a symbol may also be a signal (signaling).
  • a signal can also be a message.
  • the reference signal can also be referred to as RS (Reference Signal) for short, and it can also be called Pilot (Pilot), pilot signal, etc. according to the applicable standard.
  • a component carrier CC, Component Carrier
  • CC Component Carrier
  • information, parameters, and the like described in this specification may be expressed by absolute values, relative values to predetermined values, or other corresponding information.
  • radio resources may be indicated by a specified index.
  • formulas and the like using these parameters may also be different from those explicitly disclosed in this specification.
  • the information, signals, etc. described in this specification may be represented using any of a variety of different technologies.
  • data, commands, instructions, information, signals, bits, symbols, chips, etc. may be transmitted through voltage, current, electromagnetic wave, magnetic field or magnetic particles, light field or photons, or any of them. combination to represent.
  • information, signals, etc. may be output from upper layers to lower layers, and/or from lower layers to upper layers.
  • Information, signals, etc. may be input or output via a plurality of network nodes.
  • Input or output information, signals, etc. can be stored in a specific location (such as memory), or can be managed through a management table. Imported or exported information, signals, etc. may be overwritten, updated or supplemented. Outputted information, signals, etc. can be deleted. Inputted information, signals, etc. may be sent to other devices.
  • Notification of information is not limited to the modes/embodiments described in this specification, and may be performed by other methods.
  • the notification of information may be through physical layer signaling (for example, downlink control information (DCI, Downlink Control Information), uplink control information (UCI, Uplink Control Information)), upper layer signaling (for example, radio resource control (RRC, Radio Resource Control) signaling, broadcast information (MIB, Master Information Block, System Information Block (SIB, System Information Block), etc.), media access control (MAC, Medium Access Control) signaling ), other signals, or a combination of them.
  • DCI downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may also be called L1/L2 (Layer 1/Layer 2) control information (L1/L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may also be called an RRC message, such as an RRC Connection Setup (RRC Connection Setup) message, an RRC Connection Reconfiguration (RRC Connection Reconfiguration) message, and the like.
  • the MAC signaling can be notified by, for example, a MAC control element (MAC CE (Control Element)).
  • notification of prescribed information is not limited to being performed explicitly, but may be performed implicitly (eg, by not notifying the prescribed information or by notifying other information).
  • judgment it can be performed by a value (0 or 1) represented by 1 bit, or by a true or false value (Boolean value) represented by true (true) or false (false), or by comparison of numerical values (such as a comparison with a specified value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise, shall be construed broadly to mean commands, command sets, code, code segments, program code, programs, Program, software module, application, software application, software package, routine, subroutine, object, executable, thread of execution, step, function, etc.
  • software, commands, information, etc. may be sent or received via transmission media.
  • transmission media For example, when sending from a website, server, or other remote source using wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL, Digital Subscriber Line), etc.) and/or wireless technology (infrared, microwave, etc.)
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL, Digital Subscriber Line), etc.
  • wireless technology infrared, microwave, etc.
  • system and "network” used in this specification are used interchangeably.
  • base station BS, Base Station
  • radio base station eNB
  • gNB gNodeB
  • cell gNodeB
  • cell group femtocell
  • carrier femtocell
  • a base station may house one or more (eg three) cells (also called sectors). When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also be connected by a base station subsystem (for example, a small base station for indoor use (Remote Radio Head (RRH, RRH, Remote Radio Head)) to provide communication services.
  • a base station subsystem for example, a small base station for indoor use (Remote Radio Head (RRH, RRH, Remote Radio Head)
  • RRH Remote Radio Head
  • the term "cell” or “sector” refers to a part or the entire coverage area of a base station and/or a base station subsystem that provides communication services in the coverage.
  • mobile station MS, Mobile Station
  • user terminal user terminal
  • UE User Equipment
  • terminal mobile station
  • a mobile station is also sometimes referred to by those skilled in the art as subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other appropriate term.
  • radio base stations in this specification may be replaced by user terminals.
  • each mode/embodiment of the present disclosure may be applied to a configuration in which communication between a radio base station and a user terminal is replaced with communication between multiple user terminals (D2D, Device-to-Device).
  • D2D Device-to-Device
  • the above-mentioned functions of the electronic device may be regarded as functions of the user terminal.
  • words like "up” and “down” can be replaced with "side”.
  • uplink channels can also be replaced by side channels.
  • the user terminal in this specification can also be replaced by a wireless base station.
  • the above-mentioned functions of the user terminal may be regarded as functions of the first communication device or the second communication device.
  • a specific operation performed by a base station may also be performed by an upper node (upper node) in some cases.
  • various actions for communication with the terminal can be performed through the base station or one or more networks other than the base station.
  • Nodes such as Mobility Management Entity (MME, Mobility Management Entity), Serving-Gateway (S-GW, Serving-Gateway) can be considered, but not limited to this), or their combination.
  • LTE Long-term evolution
  • LTE-A Long-term evolution
  • LTE-B Long-term evolution
  • LTE-Beyond Super 3rd generation mobile communication system
  • IMT-Advanced 4th generation mobile communication system
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FAA Future Radio Access
  • New-RAT Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM Global System for Mobile Communications
  • CDMA3000 Code Division Multiple Access 3000
  • UMB Ultra Mobile Broadband
  • IEEE 920.11 Wi-Fi (registered trademark)
  • IEEE 920.16 WiMA
  • any reference to an element using designations such as “first”, “second”, etc. used in this specification does not limit the quantity or order of these elements comprehensively. These designations may be used in this specification as a convenient method of distinguishing between two or more units. Thus, a reference to a first unit and a second unit does not mean that only two units may be used or that the first unit must precede the second unit in some fashion.
  • determining (determining) used in this specification may include various actions. For example, regarding “judgment (determination)”, calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up) (such as tables, databases, or other Searching in the data structure), ascertaining (ascertaining) and the like are regarded as performing "judgment (determination)”. In addition, regarding “judgment (determination)”, receiving (receiving) (such as receiving information), transmitting (transmitting) (such as sending information), input (input), output (output), accessing (accessing) (such as access to data in the internal memory), etc., are deemed to be "judgment (determination)”.
  • judgment (determination) resolving (resolving), selecting (selecting), selecting (choosing), establishing (establishing), comparing (comparing), etc. can also be regarded as performing "judgment (determination)”. That is, regarding "judgment (determination)", several actions can be regarded as making "judgment (determination)”.
  • connection refers to any direct or indirect connection or combination between two or more units, which can be Including the following cases: between two units that are “connected” or “combined” with each other, there is one or more intermediate units.
  • the combination or connection between units may be physical or logical, or a combination of both. For example, "connect” could also be replaced with "access”.
  • two units may be considered to be connected by the use of one or more wires, cables, and/or printed electrical connections, and, as several non-limiting and non-exhaustive examples, by the use of , the microwave region, and/or the electromagnetic energy of the wavelength of the light (both visible light and invisible light) region, etc., are “connected” or “combined” with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

本公开提供一种电子设备。该电子设备包括:输入单元,被配置为:基于数据序列、头部序列和尾部序列,确定待压缩序列,所述待压缩序列具有Q个元素,Q为大于0的整数;处理单元,被配置为:基于所述待压缩序列,利用DFT扩展确定DFT扩展序列,以及对所述DFT扩展序列进行数据删除或数据叠加中的至少一个,以确定已压缩序列,其中所述已压缩序列具有M个码元,M为大于O的整数,且M小于Q。

Description

基于统一非正交波形的电子设备 技术领域
本公开涉及无线通信领域,具体地涉及一种电子设备,并且更具体地,涉及一种基于统一非正交波形的电子设备。
背景技术
未来的6G通信系统对波形的峰值平均功率比(PAPR)提出了更高的要求。离散傅里叶变换扩展正交频分复用(DFT-s-OFDM)作为5G系统现有上行波形,具有较低的PAPR,是6G的重要候选波形之一。然而当前的DFT-s-OFDM方案仍不能满足5G演进通信系统的要求和6G通信系统的要求。此外,6G通信系统还对波形的带外能量泄露(OOBE)和频谱效率(SE)提出了更高的要求。
目前已经提出了多种对DFT-s-OFDM的改进方案,然而这些改进方案仅能有限地提升PAPR、OOBE或SE中的一个或最多两个性能指标,而不能同时提升上述三个指标。此外,目前的改进方案的兼容性和灵活性较差,难以与6G通信系统框架相融合,在6G通信系统中应用仍具有较大困难。
因此,需要对DFT-s-OFDM进行进一步改进以同时提高波形的PAPR、OOBE和SE性能,并将该波形与6G通信系统框架相融合,提高兼容性和灵活性。
发明内容
根据本公开的一个方面,提供了一种电子设备,包括:输入单元,被配置为:基于数据序列、头部序列和尾部序列,确定待压缩序列,所述待压缩序列具有Q个元素,Q为大于0的整数;处理单元,被配置为:基于所述待压缩序列,利用DFT扩展确定DFT扩展序列,以及对所述DFT扩展序列进行数据删除或数据叠加中的至少一个,以确定已压缩序列,其中所述已压缩序列具有M个码元,M为大于O的整数,且M小于Q。
例如,所述处理单元还被配置为:通过第一压缩因子对所述待压缩序列中的头部序列和尾部序列进行压缩,并且通过第二压缩因子对所述待压缩序列中的数据序列进行压缩,其中,第一压缩因子指示待压缩序列中的头部序列和尾部序列的数据量与已压缩序列中的头部序列和尾部序列的数据量之比,第二压缩因子指示待压缩序列中的数据序列的数据量与已压缩序列中的数据序列的数据量之比,所述第一压缩因子与所述第二压缩 因子相同或不同。
例如,所述处理单元还配置为:至少根据所述第一压缩因子和/或所述第二压缩因子对所述待压缩序列进行补零操作,以确定零嵌入序列,以及对所述零嵌入序列进行DFT扩展操作,以确定所述DFT扩展序列。
例如,所述处理单元还被配置为:对所述DFT扩展序列进行数据移除操作,以确定所述已压缩序列。
例如,所述处理单元还被配置为:对所述零嵌入序列进行重排序操作,以确定多个零嵌入子序列;对所述多个零嵌入子序列进行DFT扩展操作,以确定多个DFT扩展子序列,对所述多个DFT扩展子序列中的每个DFT扩展子序列进行相位补偿操作,并对经相位补偿操作后的DFT扩展子序列进行数据叠加操作,以确定所述已压缩序列。
例如,在所述电子设备被应用于无循环前缀(NCP)的离散傅立叶变换扩展正交频分复用(DFT-s-OFDM)系统中的情况下,所述头部序列和所述尾部序列中的元素均为零。在所述电子设备被应用于独特字(UW)的离散傅立叶变换扩展正交频分复用(DFT-s-OFDM)系统中的情况下,所述头部序列和所述尾部序列为预定义的序列。
根据本公开的另一方面,提供了一种电子设备,包括:输入单元,被配置为:基于数据序列,确定待压缩序列;处理单元,被配置为:基于待压缩序列,利用离散傅里叶变换扩展,确定已压缩序列,以及基于所述已压缩序列,利用频域频谱整形(FDSS),确定待发射序列。
例如,所述电子设备被应用于无循环前缀(NCP)的离散傅立叶变换扩展正交频分复用(DFT-s-OFDM)系统或独特字(UW)的离散傅立叶变换扩展正交频分复用(DFT-s-OFDM)系统中,其中,所述输入单元还被配置为:基于输入数据序列、头部序列和尾部序列,确定待压缩序列,所述待压缩序列具有Q个元素,Q为大于0的整数;所述处理单元还被配置为:基于所述待压缩序列,利用DFT扩展确定DFT扩展序列,对所述DFT扩展序列进行数据删除或数据叠加中的至少一个,以确定已压缩序列,其中所述已压缩序列具有M个码元,M为大于O的整数,且M小于Q,以及基于所述已压缩序列,利用频域频谱整形(FDSS),确定待发射序列。
例如,所述处理单元还被配置为:基于循环前缀指示符,向所述待发射序列添加循环前缀序列,其中所述循环前缀指示符被包括在RRC信令、MAC CE信令或DCI信令中。
在根据本公开的示例中,提供了一种统一非正交波形(unified Non-Orthogonal waveform,uNOW)的方案。可选地,该方案通过在DFT操作前,向数据序列添加头部序列和尾部序列以形成待压缩序列,在DFT模块后执行数据删除操作或数据叠加操作以确 定已压缩序列,在实现了时域符号的压缩的同时提高DFT-s-OFDM波形的PAPR、OOBE和SE性能。可选地,该方案还通过在DFT操作前对待压缩序列进行不规则的补零操作实现了灵活的时域压缩调整。此外,根据本公开的uNOW方案能够与6G通信系统框架中的其它方案相融合,提高兼容性和灵活性。
附图说明
通过结合附图对本公开实施例进行更详细的描述,本公开的上述以及其它目的、特征和优势将变得更加明显。附图用来提供对本公开实施例的进一步理解,并且构成说明书的一部分,与本公开实施例一起用于解释本公开,并不构成对本公开的限制。在附图中,相同的参考标号通常代表相同部件或步骤。
图1是示出根据本公开实施例的电子设备的示意性框图。
图2是示出根据本公开实施例的电子设备在NCP或UW框架下进行信号处理的示意图。
图3是示出根据本公开实施例的电子设备在NCP或UW框架下进行信号处理的示意图。
图4是示出根据本公开实施例的电子设备在NCP或UW框架下进行信号处理的示意图。
图5是示出根据本公开实施例的电子设备在NCP或UW框架下进行信号处理的示意图。
图6是示出根据本公开实施例的电子设备在NCP或UW框架下进行信号处理的示意图。
图7是示出根据本公开实施例的电子设备在NCP或UW框架下进行信号处理的示意图。
图8是示出根据本公开实施例的又一电子设备的示意性框图。
图9是根据本公开的实施例的由电子设备执行的方法的流程图。
图10是根据本公开的实施例的由电子设备执行的方法的流程图。
图11是根据本公开的实施例的所涉及的电子设备的硬件结构的示意图。
具体实施方式
为了使得本公开的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本公开的示例实施例。在附图中,相同的参考标号自始至终表示相同的元件。应当理解,这里所描述的实施例仅仅是说明性的,而不应被解释为限制本公开的范围。
未来的6G通信系统对波形的峰值平均功率比(PAPR)、带外能量泄露(OOBE)和频谱效率(SE)均提出了更高的要求。离散傅里叶变换扩展正交频分复用(DFT-s-OFDM)作为5G系统现有上行波形,具有较低的PAPR,是6G系统的重要候选波形之一。目前,已经提出了对DFT-s-OFDM的多种改进方案来尝试提升上述的多种性能。
例如,目前已经提出了基于无循环前缀(NCP)的DFT-s-OFDM方案。基于NCP的DFT- s-OFDM方案通过在对数据进行离散傅里叶变换(DFT)之前插入零序列来代替传统的循环前缀来降低OOBE并提高SE。类似地,目前还提出了基于独特字(UW)的DFT-s-OFDM方案。基于UW的DFT-s-OFDM方案通过在对数据进行离散傅里叶变换(DFT)之前插入已知序列来代替传统的循环前缀来降低OOBE并提高SE。
例如,目前还提出了基于频域频谱整型(FDSS)的DFT-s-OFDM方案。该方案通过对频域信号进行整型,调整时域信号的相关性和分布,降低PAPR。此外,目前还提出了基于超奈奎斯特(FTN)调制的DFT-s-OFDM方案,该方案又称为非正交波形架构(Non-Orthogonal waveform framework,NOW)方案。该方案通过对DFT-s-OFDM进行进一步的FTN调制操作,以实现时域采样信号的压缩,在提升SE的同时降低PAPR。然而基于FTN调制的DFT-s-OFDM方案虽然可以实现采样信号的压缩,但是该方案却不能与上述的基于NCP/UW的DFT-s-OFDM方案兼容,无法基于统一框架实现。
然而上述的方案均不能同时提高DFT-s-OFDM波形的PAPR、OOBE和SE性能,并且目前的NOW方案也难以与基于NCP/UW的DFT-s-OFDM方案的框架融合,兼容性、鲁棒性和灵活性都有待进一步增强。
为此,根据本公开的示例中,提供了一种统一非正交波形(unified Non-Orthogonal waveform,uNOW)的方案。可选地,该方案通过在DFT操作前,向数据序列添加头部序列和尾部序列以形成待压缩序列,在DFT模块后执行数据删除操作或数据叠加操作以确定已压缩序列,在实现了时域符号的压缩的同时提高DFT-s-OFDM波形的PAPR、OOBE和SE性能。可选地,该方案还通过在DFT操作前对待压缩序列进行不规则的补零操作实现了灵活的时域压缩调整。此外,根据本公开的uNOW方案能够与6G通信系统框架中的其它方案相融合,提高兼容性和灵活性。
以下,参考图1来说明根据本公开的实施例的电子设备100。图1是示出根据本公开一个实施例的电子设备100的示意性框图,该电子设备100可以在NCP或UW框架下进行信号处理,以确定上述的uNOW方案涉及的已压缩序列。
如图1所示,根据本公开一个实施例的电子设备100可以作为通信系统中的发射端的一部分。例如,电子设备100可以作为基站或用户终端的一部分。在下文中以5G演进通信网和6G通信网为例来描述本公开的实施例,但应当认识到,以下描述也可以适用于其他类型的无线通信网。
如图1所示,电子设备100可包括输入单元110和处理单元120。除了输入单元110和处理单元120,电子设备100还可以包括其他部件(例如天线等用于发射已压缩序列的 发送单元等),然而,由于这些部件与本公开实施例的内容无关,因此在这里省略其图示和描述。
如图1所示,输入单元110可以被配置为基于数据序列、头部序列和尾部序列,确定待压缩序列,所述待压缩序列具有Q个元素,Q为大于0的整数。处理单元120可以被配置为基于所述待压缩序列,利用DFT扩展确定DFT扩展序列,以及对所述DFT扩展序列进行数据删除或数据叠加中的至少一个,以确定已压缩序列,其中所述已压缩序列具有M个码元,M为大于O的整数,且M小于Q。
例如,数据序列中的每个元素可以是待发射的时域符号(time domain symbols)。例如,在电子设备100被应用于无循环前缀(NULL CP,NCP)的离散傅立叶变换扩展正交频分复用(DFT-s-OFDM)系统中的情况下,所述头部序列和所述尾部序列中的元素均为零。又例如,在电子设备100被应用于独特字(UW)的离散傅立叶变换扩展正交频分复用(DFT-s-OFDM)系统中的情况下,所述头部序列和所述尾部序列为预定义的序列。也即,所述头部序列和所述尾部序列中的元素为预定义的元素。
通过对待发射的时域符号在DFT扩展操作之前进行头部序列和尾部序列的扩展,并在DFT扩展操作之后进行数据删除或数据叠加中的至少一个,实现了灵活的时域压缩调整。同时,该方案还实现了头部序列和尾部序列的DFT正交复用和数据序列的DFT非正交复用,以使得根据本公开的uNOW方案能够与6G通信系统框架中的其它方案(例如,NCP或UW方案)相融合,提高兼容性和灵活性。
此外,处理单元120可以通过使用不同的压缩因子来实现灵活的时域压缩。例如,处理单元120还可以被配置为通过第一压缩因子对所述待压缩序列中的头部序列和尾部序列进行压缩,并且通过第二压缩因子对所述待压缩序列中的数据序列进行压缩。其中,第一压缩因子指示待压缩序列中的头部序列和尾部序列的数据量与已压缩序列中的头部序列和尾部序列的数据量之比,第二压缩因子指示待压缩序列中的数据序列的数据量与已压缩序列中的数据序列的数据量之比。
可选地,所述第一压缩因子与所述第二压缩因子可以相同也可以不同。以下分别讨论第一压缩因子和第二压缩因子相同和不同的情况。值得注意的是,在第一压缩因子和第二压缩因子相同的情况下,第一压缩因子和第二压缩因子可以是同一个压缩因子。也即,在该情况下,电子设备100可以仅被提供有单个压缩因子来实现对待压缩序列的压缩。
例如,在第一压缩因子和第二压缩因子相同(或第一压缩因子和第二压缩因子是同 一个压缩因子)的情况下,待压缩序列和已压缩序列可以以如下方式示出。假设第一压缩因子为α 1,第二压缩因子为α 2。并进一步假设第一压缩因子与第二压缩因子相同且均等于α,也即,α 1=α 2=α。或第一压缩因子与第二压缩因子均为压缩因子α。
头部序列的一个示例为
Figure PCTCN2021111823-appb-000001
其中,0≤i≤N H-1。尾部序列的一个示例为
Figure PCTCN2021111823-appb-000002
其中,0≤i≤N T-1。数据序列的一个示例为
Figure PCTCN2021111823-appb-000003
Figure PCTCN2021111823-appb-000004
其中,0≤i≤Q d-1。经输入单元110处理后,可以得到待压缩序列s=[s 0…s i…s Q-1] T,0≤i≤Q-1。其中,待压缩序列的元素个数(数据量)为Q=Q d+N H+N T
待压缩序列s经处理单元120处理后得到具有M个码元的已压缩序列。其中,M=Q d0+N H0+N T0。其中,
Figure PCTCN2021111823-appb-000005
之后将参考图2至图4来进一步说明获取已压缩序列的过程,在此就不再赘述。
例如,在第一压缩因子和第二压缩因子不同的情况下,待压缩序列和已压缩序列的示例可以以如下方式示出。假设第一压缩因子为α 1,第二压缩因子为α 2。并进一步假设第一压缩因子与第二压缩因子不同,也即,α 1≠α 2。可选地,在一些示例中,α 12
在上述情况下,头部序列的一个示例为
Figure PCTCN2021111823-appb-000006
其中,0≤i≤N H-1。尾部序列的一个示例为
Figure PCTCN2021111823-appb-000007
其中,0≤i≤N T-1。数据序列的一个示例为
Figure PCTCN2021111823-appb-000008
其中,0≤i≤Q d-1。经输入单元110处理后,可以得到待压缩序列s=[s 0…s i…s Q-1] T,0≤i≤Q-1。其中,待压缩序列的元素个数(数据量)为Q=Q d+N H+N T。待压缩序列s经处理单元120处理后得到具有M个码元的已压缩序列。其中,M=Q d0+N H0+N T0。其中,
Figure PCTCN2021111823-appb-000009
之后将参考图5至图7来进一步说明获取已压缩序列的过程,在此就不再赘述。
由此,本公开实现了时域符号的压缩的同时提高DFT-s-OFDM波形的PAPR、OOBE和SE性能。可选地,该方案还通过在DFT操作前对待压缩序列进行不规则的补零操作实现了灵活的时域压缩调整。此外,根据本公开的uNOW方案能够与6G通信系统框架中的其它方案相融合,提高兼容性和灵活性。处理单元120还可以通过使用不同的压缩因子来进一步实现灵活的时域压缩调整。以下参考图2至图7来进一步描述处理单元120所执行的操作,本领域技术人员应当理解本公开并不以此为限。
通过根据公开的实施例的电子设备,可使用与目前特定传输时间相同的时间来传输 更多的数据。作为一个示例,目前特定的传输时间可以以单个OFDM码元的传输时间为单位。本领域技术人员也可以理解,本公开并不以此为限。当然,对于特定量的数据,根据公开的实施例的电子设备还可使用与目前所需的传输时间相比更少的时间来进行传输。
以下参考图2至图4来说明在第一压缩因子等于第二压缩因子的情况下,也即α 1=α 2=α的情况下,输入单元110和处理单元120进行的操作。
图2是示出根据本公开实施例的电子设备100在NCP或UW框架下进行信号处理的示意图。
参考图2,处理单元120还配置为针对待压缩序列进行零嵌入操作、cM点DFT扩展操作和数据移除操作。例如,处理单元120可以至少根据所述第一压缩因子或第二压缩因子的一部分对所述待压缩序列进行补零操作,以确定零嵌入序列。然后,处理单元120对所述零嵌入序列进行DFT扩展操作,以确定DFT扩展序列。接着,处理单元120对所述DFT扩展序列进行数据移除操作(也即丢弃DFT扩展序列中的部分数据),以确定所述已压缩序列。
如上所述,假设头部序列为
Figure PCTCN2021111823-appb-000010
其中,0≤i≤N H-1。尾部序列的一个示例为
Figure PCTCN2021111823-appb-000011
其中,0≤i≤N T-1。数据序列的一个示例为
Figure PCTCN2021111823-appb-000012
其中,0≤i≤Q d-1。经输入单元110处理后,可以得到待压缩序列s=[s 0…s i…s Q-1] T,0≤i≤Q-1。其中,待压缩序列的元素个数(数据量)为Q=Q d+N H+N T
作为一个示例,待压缩序列s=[s 0…s i…s Q-1] T中的每个元素s i可以以公式(1)进行表示。
Figure PCTCN2021111823-appb-000013
由于cM点DFT扩展操作将cM个时域符号转换为cM个频域符号,因此需要生成数据量为cM的零嵌入序列。其中,M=Q d0+N H0+N T0。其中,α 1=α 2=α,
Figure PCTCN2021111823-appb-000014
Figure PCTCN2021111823-appb-000015
进一步假设
Figure PCTCN2021111823-appb-000016
b≤c,则根据α对所述待压缩序列s进行补零操作后,可以得到零嵌入序列s′=[s′ 0…s′ i…s′ cM-1] T,0≤i≤cM-1。其中,零嵌入序列s′中的第i个元素s′ i 要么为零,要么是待压缩序列s=[s 0…s i…s Q-1] T中的元素。如图2所示,一共补充了(cM-Q)个零。由于上述的表达式中涉及向下取整运算,在一些示例中,可以在待压缩序列s中的最后一个元素s Q-1后补充(cM-bQ+b-1)个零。例如,零嵌入序列s′中的第i个元素s′ i可以以公式(2)示出。
Figure PCTCN2021111823-appb-000017
对上述零嵌入序列s′=[s′ 0…s′ i…s′ cM-1] T进行cM点DFT扩展操作,可以得到DFT扩展序列X′=[X′ 0…X′ i…X′ cM-1] T,0≤i≤cM-1。其中,DFT扩展序列X′与零嵌入序列s′之间的关系可以以公式(3)示出。
X′=F cMs′            (3)
其中,F cM是cM点DFT矩阵。将上述的DFT扩展序列X′进行数据移除操作后即可得到已压缩序列X=[X 0…X i…X M-1] T,0≤i≤M-1。其中,对于已压缩序列X中的第i个元素,其可以以公式(3)被计算如下。
Figure PCTCN2021111823-appb-000018
由此,处理单元120基于具有Q个元素的待压缩序列s=[s 0…s i…s Q-1] T得到了具有M个码元的已压缩序列X=[X 0…X i…X M-1] T。之后,处理单元120还可以基于已压缩序列生成待发射序列,相比于目前提供的方案,根据本公开的实施例的电子设备,可使用与目前特定传输时间相同的时间来传输更多的数据。
此外,处理单元120还可以对已压缩序列进行进一步的处理。例如,对已压缩序列X=[X 0…X i…X M-1] T依次执行子载波映射操作、IFFT操作和并串转换操作等以生成待发射序列。在一些示例中,处理单元120还可以在IFFT操作之后和并串转换操作之前执行进一步的数据移除操作。由此,实现对于特定量的数据使用与目前所需的传输时间相比更少的时间来进行传输。
在上述过程中,处理单元120利用灵活的零嵌入操作和单个cM点DFT矩阵同时实现了数据序列、头部序列和尾部序列的DFT正交复用或DFT非正交复用,以使得根据本公开的uNOW方案能够与6G通信系统框架中的其它方案(例如,NCP和UW方案)相融合,提高兼容性和灵活性。
图3是示出根据本公开实施例的电子设备100在NCP或UW框架下进行信号处理的又一示意图。
参考图3,处理单元120还配置为使用c个M点DFT矩阵来实现时域压缩调整。例如,处理单元120可以针对待压缩序列进行零嵌入操作、重排序操作、M点DFT扩展操作、相位补偿操作和数据叠加操作。其中,零嵌入操作与图2中的操作相同,在此就不再赘述。接着,处理单元120可以对零嵌入序列进行重排序操作,以确定多个零嵌入子序列。然后,处理单元120可以对所述多个零嵌入子序列进行DFT扩展操作,以确定多个DFT扩展子序列。然后,处理单元120对所述多个DFT扩展子序列中的每个DFT扩展子序列进行相位补偿操作,并对经相位补偿操作后的DFT扩展子序列进行数据叠加操作,以确定所述已压缩序列。
图3中的零嵌入操作与图2中的零嵌入操作相同,也即可以对零嵌入序列s′=[s′ 0…s′ i…s′ cM-1] T进行重排序操作确定c个具有M个元素的零嵌入子序列。对于c个零嵌入子序列中的第k个零嵌入序列(其中,k=0,1,…,c-1),其可以被示出为
Figure PCTCN2021111823-appb-000019
Figure PCTCN2021111823-appb-000020
对上述c个零嵌入子序列分别进行M点DFT扩展操作,可以得到c个DFT子扩展序列。对于c个DFT子扩展序列中的第k个DFT子扩展序列(其中,k=0,1,…,c-1),其可以被示出为X′ k=[X′ k,0…X′ k,i…X′ k,M-1] T,0≤i≤M-1。其中,DFT子扩展序列X′ k与零嵌入子序列
Figure PCTCN2021111823-appb-000021
之间的关系可以以公式(5)示出。
X′ k=F Ms′ k            (5)
其中,F M是M点DFT矩阵。将上述的c个DFT扩展子序列X′进行相位补偿操作和数据叠加后即可得到已压缩序列X=[X 0…X i…X M-1] T,0≤i≤M-1。其中,对于已压缩序列X中的第i个元素,其可以以公式(6)被计算如下。
Figure PCTCN2021111823-appb-000022
由此,处理单元120基于具有Q个元素的待压缩序列s=[s 0…s i…s Q-1] T得到了具有M个码元的已压缩序列X=[X 0…X i…X M-1] T。之后,处理单元120还可以基于已压缩序列生成待发射序列。相比于目前提供的方案,根据本公开的实施例的电子设备100,可使用与目前特定传输时间相同的时间来传输更多的数据。
此外,处理单元120还可以对已压缩序列进行进一步的处理。例如,对已压缩序列X=[X 0…X i…X M-1] T依次执行子载波映射操作、IFFT操作和并串转换操作等以生成待发射序列。在一些示例中,处理单元120还可以在IFFT操作之后和并串转换操作之前执行进一步的数据移除操作。由此,实现对于特定量的数据使用与目前所需的传输时间相比更少的时间来进行传输。
在上述过程中,处理单元120利用灵活的零嵌入操作和c个M点DFT矩阵同时实现了数据序列、头部序列和尾部序列的DFT正交复用或DFT非正交复用,以使得根据本公开的uNOW方案能够与6G通信系统框架中的其它方案(例如,NCP和UW方案)相融合,提高兼容性和灵活性。
图4是示出根据本公开实施例的电子设备100在NCP或UW框架下进行信号处理的又一示意图。
参考图4,处理单元120还可以配置为使用一个Q点DFT矩阵来实现时域压缩调整。例如,处理单元120可以针对待压缩序列进行Q点DFT扩展操作和数据移除操作。例如,处理单元120可以对待压缩序列进行Q点DFT扩展操作,以确定一个具有Q个元素的DFT扩展序列。然后,处理单元120对所述DFT扩展序列进行数据移除操作,以确定所述已压缩序列。
如上所述,经输入单元110处理后,可以得到待压缩序列s=[s 0…s i…s Q-1] T,0≤i≤Q-1。对待压缩序列s=[s 0…s i…s Q-1] T进行Q点DFT扩展操作之后,可以得到DFT扩展序列X′=[X′ 0…X′ i…X′ Q-1] T,0≤i≤Q-1。其中,DFT扩展序列X′与待压缩序列s之间的关系可以以公式(7)示出。
X′=F Qs             (7)
其中,F Q是Q点DFT矩阵。将上述的DFT扩展序列X′进行数据移除操作后即可得到已压缩序列X=[X 0…X i…X M-1] T,0≤i≤M-1。其中,对于已压缩序列X中的第i个元素,其可以以公式(8)被计算如下。
Figure PCTCN2021111823-appb-000023
由此,处理单元120基于具有Q个元素的待压缩序列s=[s 0…s i…s Q-1] T得到了具有M个码元的已压缩序列X=[X 0…X i…X M-1] T。之后,处理单元120还可以基于已压缩序列生成待发射序列,相比于目前提供的方案,根据本公开的实施例的电子设备,可使用与目前特定传输时间相同的时间来传输更多的数据。
在上述过程中,处理单元120利用单个Q点DFT矩阵和数据移除操作同时实现了数据序列、头部序列和尾部序列的DFT正交复用或DFT非正交复用,以使得根据本公开的uNOW方案能够与6G通信系统框架中的其它方案(例如,NCP和UW方案)相融合,提高兼容性和灵活性。
以下参考图5至图7来说明在第一压缩因子不等于第二压缩因子的情况下,也即α 1≠α 2的情况下,输入单元110和处理单元120进行的操作。
图5是示出根据本公开实施例的电子设备100在NCP或UW框架下进行信号处理的示意图。
参考图5,处理单元120还配置为针对待压缩序列进行零嵌入操作、cM点DFT扩展操作和数据移除操作。例如,处理单元120可以至少根据所述第一压缩因子和所述第二压缩因子对所述待压缩序列进行补零操作,以确定零嵌入序列。然后,处理单元120对所述零嵌入序列进行DFT扩展操作,以确定DFT扩展序列。接着,处理单元120对所述DFT扩展序列进行数据移除操作,以确定所述已压缩序列。
如上所述,假设头部序列为
Figure PCTCN2021111823-appb-000024
其中,0≤i≤N H-1。尾部序列的一个示例为
Figure PCTCN2021111823-appb-000025
其中,0≤i≤N T-1。数据序列的一个示例为
Figure PCTCN2021111823-appb-000026
其中,0≤i≤Q d-1。经输入单元110处理后,可以得到待压缩序列s=[s 0…s i…s Q-1] T,0≤i≤Q-1。其中,待压缩序列的元素个数(数据量)为Q=Q d+N H+N T
由于cM点DFT扩展操作将cM个时域符号转换为cM个频域符号,因此需要生成数据量为cM的零嵌入序列。其中,M=Q d0+N H0+N T0。其中,
Figure PCTCN2021111823-appb-000027
Figure PCTCN2021111823-appb-000028
进一步假设
Figure PCTCN2021111823-appb-000029
b 1≤c,b 2≤c。则根据第一压缩因子α 1和第二压缩因子α 2对所述待压缩序列s进行补零操作后,可以得到零嵌入序列s′=[s′ 0…s′ i…s′ cM-1] T,0≤i≤cM-1。其中,零嵌入序列s′中的第i个元素s i′要么为零,要么是待压缩序列s=[s 0…s i…s Q-1] T中的元素。例如,零嵌入序列s′中的第i个元素s′ i可以以公式(9)示出。
Figure PCTCN2021111823-appb-000030
对上述零嵌入序列s′=[s′ 0…s′ i…s′ cM-1] T进行cM点DFT扩展操作,可以得到DFT扩展序列X′=[X′ 0…X′ i…X′ cM-1] T,0≤i≤cM-1。其中,DFT扩展序列X′与零嵌入序列s′之 间的关系可以以公式(10)示出。
X′=F cMs′            (10)
其中,F cM是cM点DFT矩阵。将上述的DFT扩展序列X′进行数据移除操作后即可得到已压缩序列X=[X 0…X i…X M-1] T,0≤i≤M-1。其中,对于已压缩序列X中的第i个元素,其可以以公式(11)被计算如下。
Figure PCTCN2021111823-appb-000031
由此,处理单元120基于具有Q个元素的待压缩序列s=[s 0…s i…s Q-1] T得到了具有M个码元的已压缩序列X=[X 0…X i…X M-1] T。之后,处理单元120还可以基于已压缩序列生成待发射序列,相比于目前提供的方案,根据本公开的实施例的电子设备,可使用与目前特定传输时间相同的时间来传输更多的数据。
此外,处理单元120还可以对已压缩序列进行进一步的处理。例如,对已压缩序列X=[X 0…X i…X M-1] T依次执行子载波映射操作、IFFT操作和并串转换操作等以生成待发射序列。在一些示例中,处理单元120还可以在IFFT操作之后和并串转换操作之前执行进一步的数据移除操作(未示出)。由此,实现对于特定量的数据使用与目前所需的传输时间相比更少的时间来进行传输。
在上述过程中,处理单元120利用灵活的零嵌入操作和单个cM点DFT矩阵同时实现了头部序列和尾部序列的DFT正交复用和数据序列的DFT非正交复用,以使得根据本公开的uNOW方案能够与6G通信系统框架中的其它方案(例如,NCP和UW方案)相融合,提高兼容性和灵活性。并且,头部序列和尾部序列与数据序列对应的压缩因子不同,从而可以能够实现,例如,对头部序列和尾部序列不进行压缩而仅对数据序列进行压缩。
图6是示出根据本公开实施例的电子设备100在NCP或UW框架下进行信号处理的又一示意图。
参考图6,处理单元120还配置为使用c个M点DFT矩阵来实现时域压缩调整。例如,处理单元120可以针对待压缩序列进行零嵌入操作、重排序操作、M点DFT扩展操作、相位补偿操作和数据叠加操作。其中,零嵌入操作与图5中的零嵌入操作相同,接着,处理单元120可以对零嵌入序列进行重排序操作,以确定多个零嵌入子序列。重排序操作、M点DFT扩展操作、相位补偿操作和数据叠加操作均与图3中的重排序操作相同。
图6中的零嵌入操作与图5中的零嵌入操作相同,也即可以对零嵌入序列s′= [s′ 0…s i′…s cM-1] T进行重排序操作确定c个具有M个元素的零嵌入子序列。对于c个零嵌入子序列中的第k个零嵌入序列(其中,k=0,1,…,c-1),其可以被示出为
Figure PCTCN2021111823-appb-000032
Figure PCTCN2021111823-appb-000033
对上述c个零嵌入子序列分别进行M点DFT扩展操作,可以得到c个DFT子扩展序列。对于c个DFT子扩展序列中的第k个DFT子扩展序列(其中,k=0,1,…,c-1),其可以被示出为X′ k=[X′ k,0…X′ k,i…X′ k,M-1] T,0≤i≤M-1。其中,DFT子扩展序列X′ k与零嵌入子序列
Figure PCTCN2021111823-appb-000034
之间的关系可以以公式(12)示出。
X′ k=F Ms′ k             (12)
其中,F M是M点DFT矩阵。将上述的c个DFT扩展子序列X′进行相位补偿操作和数据叠加后即可得到已压缩序列X=[X 0…X i…X M-1] T,0≤i≤M-1。其中,对于已压缩序列X中的第i个元素,其可以以公式(13)被计算如下。
Figure PCTCN2021111823-appb-000035
之后,处理单元120还可以基于已压缩序列生成待发射序列,相比于目前提供的方案,根据本公开的实施例的电子设备,可使用与目前特定传输时间相同的时间来传输更多的数据。
此外,处理单元120还可以对已压缩序列进行进一步的处理。例如,对已压缩序列X=[X 0…X i…X M-1] T依次执行子载波映射操作、IFFT操作和并串转换操作等以生成待发射序列。在一些示例中,处理单元120还可以在IFFT操作之后和并串转换操作之前执行进一步的数据移除操作(未示出)。由此,实现对于特定量的数据使用与目前所需的传输时间相比更少的时间来进行传输。
在上述过程中,处理单元120利用灵活的零嵌入操作和c个M点DFT矩阵同时实现了头部序列和尾部序列的DFT正交复用和数据序列的DFT非正交复用,以使得根据本公开的uNOW方案能够与6G通信系统框架中的其它方案(例如,NCP和UW方案)相融合,提高兼容性和灵活性。并且,头部序列和尾部序列与数据序列对应的压缩因子不同,从而能够实现,例如,对头部序列和尾部序列不进行压缩而仅对数据序列进行压缩。
图7是示出根据本公开实施例的电子设备100在NCP或UW框架下进行信号处理的又一示意图。
参考图7,处理单元120还可以配置为使用一个Q 1点DFT矩阵和一个Q 2点DFT矩阵来实现时域压缩调整。例如,处理单元120可以针对待压缩序列中的一部分进行Q 1点DFT扩 展操作和数据移除操作,以得到第一压缩子序列,然后针对待压缩序列中的另一部分进行Q 2点DFT扩展操作和数据移除操作,以得到第二压缩子序列。然后再将第一压缩子序列和第二压缩子序列进行数据叠加,以确定所述已压缩序列。
可选地,Q 1点DFT矩阵用于以第一压缩因子
Figure PCTCN2021111823-appb-000036
来对头部序列和尾部序列进行压缩,因此,
Figure PCTCN2021111823-appb-000037
Q 2点DFT矩阵用于以第二压缩因子
Figure PCTCN2021111823-appb-000038
来对数据序列进行压缩,因此,
Figure PCTCN2021111823-appb-000039
如上所述,经输入单元110处理后,可以得到待压缩序列s=[s 0…s i…s Q-1] T,0≤i≤Q-1。处理单元120可以将待压缩序列s=[s 0…s i…s Q-1] T进一步拆分为两个待压缩子序列:第一待压缩子序列s u和第二待压缩子序列s d
其中,第一待压缩子序列
Figure PCTCN2021111823-appb-000040
其中,
Figure PCTCN2021111823-appb-000041
代表头部序列
Figure PCTCN2021111823-appb-000042
中的各个元素,而
Figure PCTCN2021111823-appb-000043
代表尾部序列
Figure PCTCN2021111823-appb-000044
Figure PCTCN2021111823-appb-000045
中的各个元素,头部序列和尾部序列中间则补充了Q 1-Q个零。
其中,第二待压缩子序列
Figure PCTCN2021111823-appb-000046
其中,
Figure PCTCN2021111823-appb-000047
代表数据序列
Figure PCTCN2021111823-appb-000048
中的各个元素。s d在数据序列d的头尾一共补充了Q 2-Q个零。
接着对第一待压缩子序列s u进行Q 1点DFT扩展操作之后,可以得到第一DFT扩展子序列
Figure PCTCN2021111823-appb-000049
其中,第一DFT扩展子序列X 1与第一待压缩子序列s u之间的关系可以以公式(14)示出。
Figure PCTCN2021111823-appb-000050
其中,
Figure PCTCN2021111823-appb-000051
是Q 1点DFT矩阵。其中,对于第一DFT扩展子序列X 1中的第i个元素,其可以以公式(15)被计算如下。
Figure PCTCN2021111823-appb-000052
接着对第二待压缩子序列s d进行Q 2点DFT扩展操作之后,可以得到第二DFT扩展子序列
Figure PCTCN2021111823-appb-000053
其中,第二DFT扩展子序列X 2与第二待压缩子序列s d之间的关系可以以公式(16)示出。
Figure PCTCN2021111823-appb-000054
其中,
Figure PCTCN2021111823-appb-000055
是Q 2点DFT矩阵。其中,对于第二DFT扩展子序列X 2中的第i个元素,其可以以公式(17)被计算如下。
Figure PCTCN2021111823-appb-000056
将第一DFT扩展子序列X 1和第二DFT扩展子序列X 2进行数据移除操作和数据叠加操作后即可得到已压缩序列X=[X 0…X i…X M-1] T,0≤i≤M-1。其中,对于已压缩序列X中的第i个元素,其可以以公式(18)被计算如下。
Figure PCTCN2021111823-appb-000057
之后,处理单元120还可以基于已压缩序列生成待发射序列,相比于目前提供的方案,根据本公开的实施例的电子设备,可使用与目前特定传输时间相同的时间来传输更多的数据。
在上述过程中,处理单元120利用一个Q 1点DFT矩阵、一个Q 2点DFT矩阵和数据移除操作同时实现了头部序列和尾部序列的DFT正交复用和数据序列的DFT非正交复用,以使得根据本公开的uNOW方案能够与6G通信系统框架中的其它方案(例如,NCP和UW方案)相融合,提高兼容性和灵活性。并且,头部序列和尾部序列与数据序列对应的压缩因子不同,从而能够实现,例如,对头部序列和尾部序列不进行压缩而仅对数据序列进行压缩。
以下,参考图8来说明根据本公开的实施例的电子设备800。图8是示出根据本公开一个实施例的电子设备800的示意性框图,该电子设备800可以结合FDSS进行信号处理,以确定上述的uNOW方案涉及的待发射序列。
如图8所示,根据本公开一个实施例的电子设备800可以作为通信系统中的发射端的一部分。例如,电子设备800可以作为基站或用户终端的一部分。在下文中以5G演进通信网和6G通信网为例来描述本公开的实施例,但应当认识到,以下描述也可以适用于其他类型的无线通信网。
如图8所示,电子设备800可包括输入单元880和处理单元820。除了输入单元880和处理单元820,电子设备800还可以包括其他部件(例如天线等用于发射已压缩序列的发送单元等),然而,由于这些部件与本公开实施例的内容无关,因此在这里省略其图示和描述。
如图8所示,输入单元810被配置为:基于数据序列,确定待压缩序列。处理单元 820被配置为:基于待压缩序列,利用离散傅里叶变换扩展,确定已压缩序列,以及基于所述已压缩序列,利用频域频谱整形,确定待发射序列。
可选地,在电子设备800通过RRC信令、MAC CE信令或DCI信令获取到循环前缀指示符的情况下,处理单元820还向所述待发射序列添加循环前缀序列。例如,该环前缀指示符指示是否需要对待发射序列添加循环前缀序列。如果需要向待发射序列添加循环前缀序列,其暗示电子设备800并不需要通过头部序列和尾部序列来生成待压缩序列。也即,此时电子设备800不被应用于NCP或UW架构下的DFT-s-OFDM系统。此时,待压缩序列s与数据序列d相同。也即,待压缩序列
Figure PCTCN2021111823-appb-000058
Figure PCTCN2021111823-appb-000059
处理单元820基于待压缩序列s确定已压缩序列的方式与处理单元120类似,在此就不再赘述。在一些示例中,电子设备800默认需要向所述待发射序列添加循环前缀序列,除非循环前缀指示符指示不添加循环前缀序列。
可选地,输入单元810在提供有头部序列和尾部序列的情况下,可以基于数据序列、头部序列和尾部序列,确定待压缩序列。在该情况下,电子设备800将被应用于NCP或UW架构下的DFT-s-OFDM系统。此时输入单元810所执行的操作可以与上述输入单元110所执行的操作相同或相似,也即输入单元810还可以被配置为还被配置为:基于输入数据序列、头部序列和尾部序列,确定待压缩序列,所述待压缩序列具有Q个元素,Q为大于0的整数。处理单元820确定已压缩序列的方式与处理单元120类似。也即,处理单元820还被配置为:基于所述待压缩序列,利用DFT扩展确定DFT扩展序列,对所述DFT扩展序列进行数据删除或数据叠加中的至少一个,以确定已压缩序列,其中所述已压缩序列具有M个码元,M为大于O的整数,且M小于Q。在此就不再赘述处理单元820确定已压缩序列。
如上所述,假设已压缩序列为X=[X 0…X i…X M-1] T,0≤i≤M-1。利用频域频谱整形,可以得到待发射序列
Figure PCTCN2021111823-appb-000060
待发射序列
Figure PCTCN2021111823-appb-000061
中的第i个元素
Figure PCTCN2021111823-appb-000062
可以以公式(19)被计算如下。
Figure PCTCN2021111823-appb-000063
其中,p=[p 0…p i…p M-1] T,0≤i≤M-1。p=[p 0…p i…p M-1] T是用于频域频谱整型的向量,并且
Figure PCTCN2021111823-appb-000064
此外,由于如果只进行频域频谱整型操作(FDSS)会使得等效脉冲形状发生改变,从而会引入符号间干扰(intern symbol interference,ISI),因此,处理单元820在 进行频域频谱整形操作,还可以先对所述已压缩序列进行扩展操作,以确定扩展序列,
然后再对所述扩展序列进行频域频谱整形操作,确定待发射序列。扩展操作可以降低ISI。
继续以已压缩序列为X=[X 0…X i…X M-1] T为例进行说明。对所述已压缩序列进行扩展操作,可以得到扩展序列
Figure PCTCN2021111823-appb-000065
其中,扩展序列
Figure PCTCN2021111823-appb-000066
中的第i个元素
Figure PCTCN2021111823-appb-000067
可以以公式(20)被计算如下。
Figure PCTCN2021111823-appb-000068
其中,mod M表示取余数的运算。公式(20)指示对于已压缩序列X=[X 0…X i…X M-1] T中的第
Figure PCTCN2021111823-appb-000069
个元素,经扩展操作后,其将作为扩展序列
Figure PCTCN2021111823-appb-000070
Figure PCTCN2021111823-appb-000071
的第i个元素。
Figure PCTCN2021111823-appb-000072
代表了扩展操作前后的对应关系。公式(20)可以等效于公式(21)。
Figure PCTCN2021111823-appb-000073
由此,通过对已压缩序列进行频域频谱整形实现了时域压缩调整和频域频谱整形的结合,在时域符号的压缩的同时提高DFT-s-OFDM波形的PAPR、OOBE和SE性能。此外,根据本公开的uNOW方案能够与6G通信系统框架中的其它方案(例如FDSS)相融合,提高了兼容性和灵活性。
下面,参照图9和图10来描述根据本公开实施例的各种方法。
图9是根据本公开的一个实施例的由电子设备100执行的方法9000的流程图。由于由电子设备100执行的方法9000的步骤与上文参照图描述的电子设备100的操作对应,因此在这里为了简单起见,省略对相同内容的详细描述。
如图9所示,在步骤S9001中,电子设备100基于数据序列、头部序列和尾部序列,确定待压缩序列,所述待压缩序列具有Q个元素,Q为大于0的整数。在步骤S9002中,电子设备100基于所述待压缩序列,利用DFT扩展确定DFT扩展序列,以及对所述DFT扩展序列进行数据删除或数据叠加中的至少一个,以确定已压缩序列,其中所述已压缩序列具有M个码元,M为大于O的整数,且M小于Q。
由此,方法9000通过在DFT操作前对待压缩序列进行不规则的补零操作实现了灵活 的时域压缩调整。此外,根据本公开的uNOW方案能够与6G通信系统框架中的其它方案(例如NCP和UW)相融合,提高了兼容性和灵活性。
图10是根据本公开的一个实施例的由电子设备800执行的方法10000的流程图。由于由电子设备800执行的方法10000的步骤与上文参照图描述的电子设备800的操作对应,因此在这里为了简单起见,省略对相同内容的详细描述。
如图10所示,在步骤S10001中,电子设备800基于数据序列,确定待压缩序列。在步骤S10002中,电子设备800基于待压缩序列,利用离散傅里叶变换扩展,确定已压缩序列,并基于所述已压缩序列,利用频域频谱整形,确定待发射序列。
方法10000通过对已压缩序列进行频域频谱整形实现了时域压缩调整和频域频谱整形的结合。此外,根据本公开的uNOW方案能够与6G通信系统框架中的其它方案(例如FDSS)相融合,提高了兼容性和灵活性。
<硬件结构>
另外,上述实施方式的说明中使用的框图示出了以功能为单位的块。这些功能块(结构单元)通过硬件和/或软件的任意组合来实现。此外,各功能块的实现手段并不特别限定。即,各功能块可以通过在物理上和/或逻辑上相结合的一个装置来实现,也可以将在物理上和/或逻辑上相分离的两个以上装置直接地和/或间接地(例如通过有线和/或无线)连接从而通过上述多个装置来实现。
例如,本公开的一个实施例的电子设备可以作为执行本公开的信息发送方法的处理的计算机来发挥功能。图11是根据本公开的实施例的所涉及的设备1000(电子设备)的硬件结构的示意图。上述的设备1000(第一网络元件)可以作为在物理上包括处理器1010、内存1020、存储器1030、通信装置1040、输入装置1050、输出装置1060、总线1070等的计算机装置来构成。
另外,在以下的说明中,“装置”这样的文字也可替换为电路、设备、单元等。电子设备的硬件结构可以包括一个或多个图中所示的各装置,也可以不包括部分装置。
例如,处理器1010仅图示出一个,但也可以为多个处理器。此外,可以通过一个处理器来执行处理,也可以通过一个以上的处理器同时、依次、或采用其它方法来执行处理。另外,处理器1010可以通过一个以上的芯片来安装。
设备1000的各功能例如通过如下方式实现:通过将规定的软件(程序)读入到处理器1010、内存1020等硬件上,从而使处理器1010进行运算,对由通信装置1040进行的通信进行控制,并对内存1020和存储器1030中的数据的读出和/或写入进行控制。
处理器1010例如使操作系统进行工作从而对计算机整体进行控制。处理器1010可以由包括与周边装置的接口、控制装置、运算装置、寄存器等的中央处理器(CPU,Central Processing Unit)构成。例如,上述的控制单元等可以通过处理器1010实现。
此外,处理器1010将程序(程序代码)、软件模块、数据等从存储器1030和/或通信装置1040读出到内存1020,并根据它们执行各种处理。作为程序,可以采用使计算机执行在上述实施方式中说明的动作中的至少一部分的程序。例如,第一网络元件的处理单元可以通过保存在内存1020中并通过处理器1010来工作的控制程序来实现,对于其它功能块,也可以同样地来实现。
内存1020是计算机可读取记录介质,例如可以由只读存储器(ROM,Read Only Memory)、可编程只读存储器(EPROM,Erasable Programmable ROM)、电可编程只读存储器(EEPROM,Electrically EPROM)、随机存取存储器(RAM,Random Access Memory)、其它适当的存储介质中的至少一个来构成。内存1020也可以称为寄存器、高速缓存、主存储器(主存储装置)等。内存1020可以保存用于实施本公开的一实施方式所涉及的方法的可执行程序(程序代码)、软件模块等。
存储器1030是计算机可读取记录介质,例如可以由软磁盘(flexible disk)、软(注册商标)盘(floppy disk)、磁光盘(例如,只读光盘(CD-ROM(Compact Disc ROM)等)、数字通用光盘、蓝光(Blu-ray,注册商标)光盘)、可移动磁盘、硬盘驱动器、智能卡、闪存设备(例如,卡、棒(stick)、密钥驱动器(key driver))、磁条、数据库、服务器、其它适当的存储介质中的至少一个来构成。存储器1030也可以称为辅助存储装置。
通信装置1040是用于通过有线和/或无线网络进行计算机间的通信的硬件(发送接收装置),例如也称为网络设备、网络控制器、网卡、通信模块等。通信装置1040为了实现例如频分双工(FDD,Frequency Division Duplex)和/或时分双工(TDD,Time Division Duplex),可以包括高频开关、双工器、滤波器、频率合成器等。例如,上述的发送单元、接收单元等可以通过通信装置1040来实现。
输入装置1050是接受来自外部的输入的输入设备(例如,键盘、鼠标、麦克风、开关、按钮、传感器等)。输出装置1060是实施向外部的输出的输出设备(例如,显示器、 扬声器、发光二极管(LED,Light Emitting Diode)灯等)。另外,输入装置1050和输出装置1060也可以为一体的结构(例如触控面板)。
此外,处理器1010、内存1020等各装置通过用于对信息进行通信的总线1070连接。总线1070可以由单一的总线构成,也可以由装置间不同的总线构成。
此外,电子设备可以包括微处理器、数字信号处理器(DSP,Digital Signal Processor)、专用集成电路(ASIC,Application Specific Integrated Circuit)、可编程逻辑器件(PLD,Programmable Logic Device)、现场可编程门阵列(FPGA,Field Programmable Gate Array)等硬件,可以通过该硬件来实现各功能块的部分或全部。例如,处理器1010可以通过这些硬件中的至少一个来安装。
(变形例)
另外,关于本说明书中说明的用语和/或对本说明书进行理解所需的用语,可以与具有相同或类似含义的用语进行互换。例如,信道和/或符号也可以为信号(信令)。此外,信号也可以为消息。参考信号也可以简称为RS(Reference Signal),根据所适用的标准,也可以称为导频(Pilot)、导频信号等。此外,分量载波(CC,Component Carrier)也可以称为小区、频率载波、载波频率等。
此外,本说明书中说明的信息、参数等可以用绝对值来表示,也可以用与规定值的相对值来表示,还可以用对应的其它信息来表示。例如,无线资源可以通过规定的索引来指示。进一步地,使用这些参数的公式等也可以与本说明书中明确公开的不同。
在本说明书中用于参数等的名称在任何方面都并非限定性的。例如,各种各样的信道(物理上行链路控制信道(PUCCH,Physical Uplink Control Channel)、物理下行链路控制信道(PDCCH,Physical Downlink Control Channel)等)和信息单元可以通过任何适当的名称来识别,因此为这些各种各样的信道和信息单元所分配的各种各样的名称在任何方面都并非限定性的。
本说明书中说明的信息、信号等可以使用各种各样不同技术中的任意一种来表示。例如,在上述的全部说明中可能提及的数据、命令、指令、信息、信号、比特、符号、芯片等可以通过电压、电流、电磁波、磁场或磁性粒子、光场或光子、或者它们的任意组合来表示。
此外,信息、信号等可以从上层向下层、和/或从下层向上层输出。信息、信号等可以经由多个网络节点进行输入或输出。
输入或输出的信息、信号等可以保存在特定的场所(例如内存),也可以通过管理表进行管理。输入或输出的信息、信号等可以被覆盖、更新或补充。输出的信息、信号等可以被删除。输入的信息、信号等可以被发往其它装置。
信息的通知并不限于本说明书中说明的方式/实施方式,也可以通过其它方法进行。例如,信息的通知可以通过物理层信令(例如,下行链路控制信息(DCI,Downlink Control Information)、上行链路控制信息(UCI,Uplink Control Information))、上层信令(例如,无线资源控制(RRC,Radio Resource Control)信令、广播信息(主信息块(MIB,Master Information Block)、系统信息块(SIB,System Information Block)等)、媒体存取控制(MAC,Medium Access Control)信令)、其它信号或者它们的组合来实施。
另外,物理层信令也可以称为L1/L2(第1层/第2层)控制信息(L1/L2控制信号)、L1控制信息(L1控制信号)等。此外,RRC信令也可以称为RRC消息,例如可以为RRC连接建立(RRC Connection Setup)消息、RRC连接重设定(RRC Connection Reconfiguration)消息等。此外,MAC信令例如可以通过MAC控制单元(MAC CE(Control Element))来通知。
此外,规定信息的通知(例如,“为X”的通知)并不限于显式地进行,也可以隐式地(例如,通过不进行该规定信息的通知,或者通过其它信息的通知)进行。
关于判定,可以通过由1比特表示的值(0或1)来进行,也可以通过由真(true)或假(false)表示的真假值(布尔值)来进行,还可以通过数值的比较(例如与规定值的比较)来进行。
软件无论被称为软件、固件、中间件、微代码、硬件描述语言,还是以其它名称来称呼,都应宽泛地解释为是指命令、命令集、代码、代码段、程序代码、程序、子程序、软件模块、应用程序、软件应用程序、软件包、例程、子例程、对象、可执行文件、执行线程、步骤、功能等。
此外,软件、命令、信息等可以经由传输介质被发送或接收。例如,当使用有线技术(同轴电缆、光缆、双绞线、数字用户线路(DSL,Digital Subscriber Line)等)和/或无线技术(红外线、微波等)从网站、服务器、或其它远程资源发送软件时,这些有线技术和/或无线技术包括在传输介质的定义内。
本说明书中使用的“系统”和“网络”这样的用语可以互换使用。
在本说明书中,“基站(BS,Base Station)”、“无线基站”、“eNB”、“gNB”、“小区”、“扇区”、“小区组”、“载波”以及“分量载波”这样的用语可 以互换使用。基站有时也以固定台(fixed station)、NodeB、eNodeB(eNB)、接入点(access point)、发送点、接收点、毫微微小区、小小区等用语来称呼。
基站可以容纳一个或多个(例如三个)小区(也称为扇区)。当基站容纳多个小区时,基站的整个覆盖区域可以划分为多个更小的区域,每个更小的区域也可以通过基站子系统(例如,室内用小型基站(射频拉远头(RRH,Remote Radio Head)))来提供通信服务。“小区”或“扇区”这样的用语是指在该覆盖中进行通信服务的基站和/或基站子系统的覆盖区域的一部分或整体。
在本说明书中,“移动台(MS,Mobile Station)”、“用户终端(user terminal)”、“用户装置(UE,User Equipment)”以及“终端”这样的用语可以互换使用。移动台有时也被本领域技术人员以用户台、移动单元、用户单元、无线单元、远程单元、移动设备、无线设备、无线通信设备、远程设备、移动用户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或者若干其它适当的用语来称呼。
此外,本说明书中的无线基站也可以用用户终端来替换。例如,对于将无线基站和用户终端间的通信替换为多个用户终端间(D2D,Device-to-Device)的通信的结构,也可以应用本公开的各方式/实施方式。此时,可以将上述的电子设备所具有的功能当作用户终端所具有的功能。此外,“上行”和“下行”等文字也可以替换为“侧”。例如,上行信道也可以替换为侧信道。
同样,本说明书中的用户终端也可以用无线基站来替换。此时,可以将上述的用户终端所具有的功能当作第一通信设备或第二通信设备所具有的功能。
在本说明书中,设为通过基站进行的特定动作根据情况有时也通过其上级节点(upper node)来进行。显然,在具有基站的由一个或多个网络节点(network nodes)构成的网络中,为了与终端间的通信而进行的各种各样的动作可以通过基站、除基站之外的一个以上的网络节点(可以考虑例如移动管理实体(MME,Mobility Management Entity)、服务网关(S-GW,Serving-Gateway)等,但不限于此)、或者它们的组合来进行。
本说明书中说明的各方式/实施方式可以单独使用,也可以组合使用,还可以在执行过程中进行切换来使用。此外,本说明书中说明的各方式/实施方式的处理步骤、序列、流程图等只要没有矛盾,就可以更换顺序。例如,关于本说明书中说明的方法,以示例性的顺序给出了各种各样的步骤单元,而并不限定于给出的特定顺序。
本说明书中说明的各方式/实施方式可以应用于利用长期演进(LTE,Long Term Evolution)、高级长期演进(LTE-A,LTE-Advanced)、超越长期演进(LTE-B,LTE-Beyond)、超级第3代移动通信系统(SUPER 3G)、高级国际移动通信(IMT-Advanced)、第4代移动通信系统(4G,4th generation mobile communication system)、第5代移动通信系统(5G,5th generation mobile communication system)、未来无线接入(FRA,Future Radio Access)、新无线接入技术(New-RAT,Radio Access Technology)、新无线(NR,New Radio)、新无线接入(NX,New radio access)、新一代无线接入(FX,Future generation radio access)、全球移动通信系统(GSM(注册商标),Global System for Mobile communications)、码分多址接入3000(CDMA3000)、超级移动宽带(UMB,Ultra Mobile Broadband)、IEEE 920.11(Wi-Fi(注册商标))、IEEE 920.16(WiMAX(注册商标))、IEEE 920.20、超宽带(UWB,Ultra-WideBand)、蓝牙(Bluetooth(注册商标))、其它适当的无线通信方法的系统和/或基于它们而扩展的下一代系统。
本说明书中使用的“根据”这样的记载,只要未在其它段落中明确记载,则并不意味着“仅根据”。换言之,“根据”这样的记载是指“仅根据”和“至少根据”这两者。
本说明书中使用的对使用“第一”、“第二”等名称的单元的任何参照,均非全面限定这些单元的数量或顺序。这些名称可以作为区别两个以上单元的便利方法而在本说明书中使用。因此,第一单元和第二单元的参照并不意味着仅可采用两个单元或者第一单元必须以若干形式占先于第二单元。
本说明书中使用的“判断(确定)(determining)”这样的用语有时包含多种多样的动作。例如,关于“判断(确定)”,可以将计算(calculating)、推算(computing)、处理(processing)、推导(deriving)、调查(investigating)、搜索(looking up)(例如表、数据库、或其它数据结构中的搜索)、确认(ascertaining)等视为是进行“判断(确定)”。此外,关于“判断(确定)”,也可以将接收(receiving)(例如接收信息)、发送(transmitting)(例如发送信息)、输入(input)、输出(output)、存取(accessing)(例如存取内存中的数据)等视为是进行“判断(确定)”。此外,关于“判断(确定)”,还可以将解决(resolving)、选择(selecting)、选定(choosing)、建立(establishing)、比较(comparing)等视为是进行“判断(确定)”。也就是说,关于“判断(确定)”,可以将若干动作视为是进行“判断(确定)”。
本说明书中使用的“连接的(connected)”、“结合的(coupled)”这样的用语或者它们的任何变形是指两个或两个以上单元间的直接的或间接的任何连接或结合,可以包括以下情况:在相互“连接”或“结合”的两个单元间,存在一个或一个以上的中间单元。单元间的结合或连接可以是物理上的,也可以是逻辑上的,或者还可以是两者的组合。例如,“连接”也可以替换为“接入”。在本说明书中使用时,可以认为两个单元是通过使用一个或一个以上的电线、线缆、和/或印刷电气连接,以及作为若干非限定性且非穷尽性的示例,通过使用具有射频区域、微波区域、和/或光(可见光及不可见光这两者)区域的波长的电磁能等,被相互“连接”或“结合”。
在本说明书或权利要求书中使用“包括(including)”、“包含(comprising)”、以及它们的变形时,这些用语与用语“具备”同样是开放式的。进一步地,在本说明书或权利要求书中使用的用语“或(or)”并非是异或。
以上对本公开进行了详细说明,但对于本领域技术人员而言,显然,本公开并非限定于本说明书中说明的实施方式。本公开在不脱离由权利要求书的记载所确定的本公开的宗旨和范围的前提下,可以作为修改和变更方式来实施。因此,本说明书的记载是以示例说明为目的,对本公开而言并非具有任何限制性的意义。

Claims (10)

  1. 一种电子设备,包括:
    输入单元,被配置为:基于数据序列、头部序列和尾部序列,确定待压缩序列,所述待压缩序列具有Q个元素,Q为大于0的整数;
    处理单元,被配置为:
    基于所述待压缩序列,利用DFT扩展确定DFT扩展序列,以及
    对所述DFT扩展序列进行数据删除或数据叠加中的至少一个,以确定已压缩序列,其中所述已压缩序列具有M个码元,M为大于O的整数,且M小于Q。
  2. 如权利要求1所述的电子设备,其中,所述处理单元还被配置为:
    通过第一压缩因子对所述待压缩序列中的头部序列和尾部序列进行压缩,并且通过第二压缩因子对所述待压缩序列中的数据序列进行压缩,
    其中,第一压缩因子指示待压缩序列中的头部序列和尾部序列的数据量与已压缩序列中的部序列和尾部序列的数据量之比,第二压缩因子指示待压缩序列中的数据序列的数据量与已压缩序列中的数据序列的数据量之比,所述第一压缩因子与所述第二压缩因子相同或不同。
  3. 如权利要求2所述的电子设备,其中,所述处理单元还配置为:
    至少根据所述第一压缩因子和/或所述第二压缩因子对所述待压缩序列进行补零操作,以确定零嵌入序列,以及
    对所述零嵌入序列进行DFT扩展操作,以确定所述DFT扩展序列。
  4. 如权利要求3所述的电子设备,其中,所述处理单元还被配置为:
    对所述DFT扩展序列进行数据移除操作,以确定所述已压缩序列。
  5. 如权利要求3所述的电子设备,其中,所述处理单元还被配置为:
    对所述零嵌入序列进行重排序操作,以确定多个零嵌入子序列;
    对所述多个零嵌入子序列进行DFT扩展操作,以确定多个DFT扩展子序列,
    对所述多个DFT扩展子序列中的每个DFT扩展子序列进行相位补偿操作,并对经相位 补偿操作后的DFT扩展子序列进行数据叠加操作,以确定所述已压缩序列。
  6. 如权利要求1所述的电子设备,其中,
    在所述电子设备被应用于无循环前缀(NCP)的离散傅立叶变换扩展正交频分复用(DFT-s-OFDM)系统中的情况下,所述头部序列和所述尾部序列中的元素均为零,
    在所述电子设备被应用于独特字(UW)的离散傅立叶变换扩展正交频分复用(DFT-s-OFDM)系统中的情况下,所述头部序列和所述尾部序列为预定义的序列。
  7. 一种电子设备,包括:
    输入单元,被配置为:基于数据序列,确定待压缩序列;
    处理单元,被配置为:
    基于待压缩序列,利用离散傅里叶变换扩展,确定已压缩序列,以及
    基于所述已压缩序列,利用频域频谱整形,确定待发射序列。
  8. 如权利要求7所述的电子设备,其中,所述处理单元还被配置为:
    对所述已压缩序列进行扩展操作,以确定扩展序列;
    对所述扩展序列进行频域频谱整形操作,确定待发射序列。
  9. 如权利要求6或7所述的电子设备,其中,所述电子设备被应用于无循环前缀(NCP)的离散傅立叶变换扩展正交频分复用(DFT-s-OFDM)系统或独特字(UW)的离散傅立叶变换扩展正交频分复用(DFT-s-OFDM)系统中,其中,
    所述输入单元还被配置为:
    基于输入数据序列、头部序列和尾部序列,确定待压缩序列,所述待压缩序列具有Q个元素,Q为大于0的整数;
    所述处理单元还被配置为:
    基于所述待压缩序列,利用DFT扩展确定DFT扩展序列,
    对所述DFT扩展序列进行数据删除或数据叠加中的至少一个,以确定已压缩序列,其中所述已压缩序列具有M个码元,M为大于O的整数,且M小于Q,以及
    基于所述已压缩序列,利用频域频谱整形,确定待发射序列。
  10. 如权利要求6所述的电子设备,其中,所述处理单元还被配置为:
    基于循环前缀指示符,向所述待发射序列添加循环前缀序列,其中所述循环前缀指示符被包括在RRC信令、MAC CE信令或DCI信令中。
PCT/CN2021/111823 2021-08-10 2021-08-10 基于统一非正交波形的电子设备 WO2023015451A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180100424.3A CN117716672A (zh) 2021-08-10 2021-08-10 基于统一非正交波形的电子设备
PCT/CN2021/111823 WO2023015451A1 (zh) 2021-08-10 2021-08-10 基于统一非正交波形的电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/111823 WO2023015451A1 (zh) 2021-08-10 2021-08-10 基于统一非正交波形的电子设备

Publications (1)

Publication Number Publication Date
WO2023015451A1 true WO2023015451A1 (zh) 2023-02-16

Family

ID=85200371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111823 WO2023015451A1 (zh) 2021-08-10 2021-08-10 基于统一非正交波形的电子设备

Country Status (2)

Country Link
CN (1) CN117716672A (zh)
WO (1) WO2023015451A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108599891A (zh) * 2017-03-17 2018-09-28 华为技术有限公司 编码方法、编码装置和通信装置
US20190097859A1 (en) * 2016-03-30 2019-03-28 Idac Holdings, Inc. Methods and procedures to improve physical layer efficiency using unique word (uw) discrete fourier transform spread orthogonal frequency division multiplexing (dft-s-ofdm)
CN110476394A (zh) * 2017-03-24 2019-11-19 高通股份有限公司 针对具有修改的循环前缀的参考信号和数据的虚拟时域复用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190097859A1 (en) * 2016-03-30 2019-03-28 Idac Holdings, Inc. Methods and procedures to improve physical layer efficiency using unique word (uw) discrete fourier transform spread orthogonal frequency division multiplexing (dft-s-ofdm)
CN108599891A (zh) * 2017-03-17 2018-09-28 华为技术有限公司 编码方法、编码装置和通信装置
CN110476394A (zh) * 2017-03-24 2019-11-19 高通股份有限公司 针对具有修改的循环前缀的参考信号和数据的虚拟时域复用

Also Published As

Publication number Publication date
CN117716672A (zh) 2024-03-15

Similar Documents

Publication Publication Date Title
US11153856B2 (en) Method and apparatus for transmitting uplink signal
JP2018064253A (ja) ユーザ装置及び信号受信方法
US10856179B2 (en) User equipment
JP6995880B2 (ja) 無線通信方法、端末装置及び送受信ノード
WO2020227866A1 (zh) 终端以及发送方法
US20230291621A1 (en) Terminal
WO2023015451A1 (zh) 基于统一非正交波形的电子设备
WO2023015450A1 (zh) 电子设备
US11108611B2 (en) User terminal and radio communication method
US10917210B2 (en) User terminal and wireless communication method
WO2023015452A1 (zh) 终端设备和处理方法
WO2023168656A1 (zh) 电子设备
WO2023168655A1 (zh) 电子设备
US20220232371A1 (en) Terminal and base station
WO2022077251A1 (zh) 非正交波形的频谱整形方法及电子设备
US11757580B2 (en) User equipment, base station, and method for modifying demodulation reference signal (DMRS) sequences
US11076410B2 (en) User terminal and radio communication method
WO2020014843A1 (zh) 通信方法及相应的用户终端、基站
WO2020094155A1 (zh) 参考信号发送方法和设备
US20220263698A1 (en) Terminal
WO2021261199A1 (ja) 通信装置
WO2023283885A1 (zh) 电子设备和调制方法
US20240064754A1 (en) Terminal and communication method
EP4358612A1 (en) Terminal, and radio communication method
JP2018064252A (ja) ユーザ装置及び信号受信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953082

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180100424.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE