WO2023283885A1 - 电子设备和调制方法 - Google Patents

电子设备和调制方法 Download PDF

Info

Publication number
WO2023283885A1
WO2023283885A1 PCT/CN2021/106530 CN2021106530W WO2023283885A1 WO 2023283885 A1 WO2023283885 A1 WO 2023283885A1 CN 2021106530 W CN2021106530 W CN 2021106530W WO 2023283885 A1 WO2023283885 A1 WO 2023283885A1
Authority
WO
WIPO (PCT)
Prior art keywords
modulation
bit
pseudo
order
symbol mapping
Prior art date
Application number
PCT/CN2021/106530
Other languages
English (en)
French (fr)
Inventor
王小娟
潘健雄
叶能
李祥明
刘文佳
刘娟
侯晓林
陈岚
岸山祥久
Original Assignee
株式会社Ntt都科摩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ntt都科摩 filed Critical 株式会社Ntt都科摩
Priority to CN202180099484.8A priority Critical patent/CN117529902A/zh
Priority to PCT/CN2021/106530 priority patent/WO2023283885A1/zh
Publication of WO2023283885A1 publication Critical patent/WO2023283885A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits

Definitions

  • the present disclosure relates to the field of wireless communication, and more particularly to a modulation method and corresponding electronic equipment.
  • the first type of constellation modulation scheme is a constellation modulation scheme for high spectral efficiency, such as quadrature amplitude modulation (Quadrature Amplitude Modulation, QAM), geometric shaping-based non-uniform constellation (non-uniform constellation, NUC) modulation, etc.
  • QAM Quadrature Amplitude Modulation
  • NUC non-uniform constellation
  • QAM has been used in various broadband wireless communication systems such as LTE, HSPA, 802.11n, and 5G.
  • QAM by combining amplitude and phase parameters, the entire signal plane is fully utilized, and all vector endpoints are redistributed reasonably. Therefore, without reducing the minimum Euclidean distance of the endpoint position, the number of endpoints of the signal vector is increased, and the anti-interference ability and spectrum utilization rate of the system are improved.
  • QAM has a high Peak to Average Power Ratio (PAPR) for the OFDM system, which leads to a significant negative impact on system transmission due to nonlinear distortion generated by high power amplifiers.
  • PAPR Peak to Average Power Ratio
  • the second type of constellation modulation scheme is a constellation modulation scheme for low peak-to-average ratio (PAPR), for example, amplitude phase keying (Amplitude and phase-shift keying, APSK) modulation, constellation expansion modulation, and the like.
  • PAPR peak-to-average ratio
  • APSK modulation uses maximization of Euclidean distance and maximization of mutual information (ie, channel capacity) as optimization criteria to determine the number of circles, points on the ring, relative radius ratio, and relative phase offset of the constellation. It can be used in mMTC, satellite communication and other scenarios where high power amplifiers are applied, requiring low hardware loss and long battery life, etc., and low PAPR modulation schemes can be considered.
  • APSK modulation can effectively reduce PAPR
  • the current APSK constellation modulation is not adopted by standards such as 5G
  • APSK modulation is not compatible with constellation modulation schemes such as QAM for high spectrum efficiency.
  • electronic devices may require different transceiver structures for different modulation methods, making hardware design complex.
  • an electronic device including: a receiving unit configured to obtain a first input bit sequence; a control unit configured to perform a pseudo-N-order first type on the first input bit sequence modulation, wherein the N first symbols obtainable by said pseudo-N-order first-type modulation are a part of M second-symbols obtainable by M-order second-type modulation, wherein M and N are positive integers, and M is greater than N.
  • control unit of the electronic device performs pseudo-N-order first type modulation on the first input bit sequence according to a bit-to-symbol mapping formula or a bit-to-symbol mapping table.
  • bit-to-symbol mapping is performed in units of p first bits; according to the M-order second-type modulation, q second bits are used as The unit performs bit-to-symbol mapping; for the same symbol obtained according to the pseudo-N-order first-type modulation and the M-order second-type modulation, the p first bits are at least Part of the function of the second bit, where p and q are positive integers, and q is greater than p.
  • bit-to-symbol mapping formula or bit-to-symbol mapping table of pseudo-N-order first-type modulation corresponds to the bit-to-symbol mapping formula or bit-to-symbol mapping table of M-order second-type modulation.
  • bit-to-symbol mapping is performed in units of p first bits; according to the M-order second-type modulation, q second bits are used as The unit performs bit-to-symbol mapping; for the same symbol obtained according to the pseudo-N-order first-type modulation and the M-order second-type modulation, the p first bits and the first p of the q second bits The second bit is the same, where p and q are positive integers, and q is greater than p.
  • the bit-to-symbol mapping table of the pseudo-N-order first type modulation corresponds to the bit-to-symbol mapping table of the M-order second type modulation.
  • the electronic device further includes: a receiving unit configured to receive modulation and coding strategy signaling, and the control unit, according to the modulation and coding strategy signaling and a predetermined modulation and coding
  • the strategy table performs pseudo-N-order first-type modulation on the first input bit sequence, wherein the first-type modulation is APSK modulation, and the predetermined modulation and coding strategy table includes at least parameters related to pseudo-N-order APSK modulation .
  • the predetermined modulation and coding strategy table is a table about some or all modulation and coding strategies supported by the communication system where the electronic device is located.
  • a modulation method including: obtaining a first input bit sequence; performing pseudo-N-order first type modulation on the first input bit sequence, wherein the pseudo-N-order first
  • the N first symbols that can be obtained by the type modulation are a part of the M second symbols that can be obtained by the M-order second type modulation, where M and N are positive integers, and M is greater than N.
  • the pseudo-N order first type modulation is performed on the first input bit sequence according to a bit-to-symbol mapping formula or a bit-to-symbol mapping table.
  • FIG. 1A is a schematic bit-to-symbol mapping constellation diagram showing 16QAM.
  • FIG. 1B shows symbol values after 16QAM bit-to-symbol mapping.
  • FIG. 2A is a schematic bit-to-symbol mapping constellation diagram showing 16APSK modulation.
  • FIG. 2B is a graph showing symbol values after 16APSK modulation bit-to-symbol mapping.
  • FIG. 3 is a schematic block diagram illustrating an electronic device according to one embodiment of the present disclosure.
  • Fig. 4 is a schematic diagram illustrating selection of pseudo 16APSK constellation points from 256QAM constellation points according to an embodiment of the present disclosure.
  • Fig. 5A is a schematic diagram showing a bit-to-symbol mapping table of pseudo 16APSK modulation obtained according to the 64QAM bit-to-symbol mapping table in the 3GPP standard.
  • FIG. 5B is a schematic diagram showing a bit-to-symbol mapping table of pseudo 16APSK modulation obtained according to the 256QAM bit-to-symbol mapping table in the 3GPP standard.
  • FIG. 5C is a schematic diagram showing a pseudo 32APSK modulated bit-to-symbol mapping table obtained according to the 256QAM bit-to-symbol mapping table in the 3GPP standard.
  • FIG. 6A is a schematic diagram showing a bit-to-symbol mapping table of pseudo 16APSK modulation obtained according to the 64QAM bit-to-symbol mapping table in the 3GPP standard.
  • Fig. 6B is a schematic diagram showing a bit-to-symbol mapping table of pseudo 16APSK modulation obtained according to the 256QAM bit-to-symbol mapping table in the 3GPP standard.
  • FIGS. 7A and 7B are diagrams illustrating modulation and coding strategies according to an embodiment of the present disclosure.
  • FIG. 8 is a flowchart of a modulation method according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a hardware structure of a device involved according to an embodiment of the present disclosure.
  • FIG. 1A is a schematic bit-to-symbol mapping constellation diagram showing 16QAM in the 3GPP standard.
  • FIG. 1B shows symbol values after 16QAM bit-to-symbol mapping.
  • Fig. 2A is a schematic bit-to-symbol mapping constellation diagram showing 16APSK modulation in the DVB-S2 standard.
  • FIG. 2B is a graph showing symbol values after 16APSK modulation bit-to-symbol mapping. As shown with reference to FIG. 1A , FIG. 1B , FIG. 2A and FIG.
  • the symbols obtained through QAM and APSK modulation are different, and the bit-to-symbol mapping methods of QAM and APSK modulation are also different.
  • the value of the real or imaginary part (I/Q) of a QAM symbol as shown in Figure 1B is an integer, while the value of the real or imaginary part (I/Q) of an APSK modulated symbol as shown in Figure 2B Value is not necessarily an integer.
  • the independent phase and amplitude bit-to-symbol mapping method in APSK modulation is also different from QAM.
  • APSK modulation can effectively reduce the low peak-to-average ratio (PAPR)
  • PAPR peak-to-average ratio
  • the current APSK modulation has not been adopted by 3GPP standards such as 5G NR, and APSK modulation is not compatible with constellation modulation schemes such as QAM for high spectral efficiency . Therefore, it is desirable to provide a modulation method and a corresponding electronic device that meet different requirements and are compatible with modulation methods in existing communication standards.
  • FIG. 3 is a schematic block diagram illustrating an electronic device according to one embodiment of the present disclosure.
  • an electronic device 300 may include a receiving unit 310 and a control unit 320 .
  • the electronic device 300 may also include other components, however, since these components are irrelevant to the content of the embodiments of the present disclosure, illustration and description thereof are omitted here.
  • the electronic device 300 may be a base station or a terminal in a communication system or the like.
  • a base station as described herein may provide communication coverage for a particular geographic area, which may be referred to as a cell, Node B, gNB, 5G Node B, access point, and/or transceiver point, among others.
  • the terminals described here may include various types of terminals, such as user equipment (User Equipment, UE), mobile terminals (or called mobile stations) or fixed terminals, however, for convenience, sometimes interchangeably hereinafter Use terminal and UE.
  • the receiving unit 310 of the electronic device 300 can obtain a first input bit sequence.
  • the control unit 320 may perform pseudo-N-order first type modulation on the first input bit sequence.
  • the electronic device 300 is a base station, and the receiving unit 310 can obtain the first input bit sequence.
  • the control unit 320 may perform pseudo-N order first type modulation on the first input bit sequence to obtain a first symbol to be sent to a UE connected to the base station.
  • the N first symbols that can be obtained through the pseudo-N-order first-type modulation are part of the M second symbols that can be obtained through the M-order second-type modulation, where M and N are positive Integer, and M is greater than N.
  • the first type of modulation and the second type of modulation may be different modulation methods.
  • the symbols obtainable by using the N-order first-type modulation may be simulated by using a part of the M second-type symbols obtainable by using the M-order second-type modulation.
  • this Nth-order first type modulation performed in an analog manner can be referred to as a pseudo Nth-order first type modulation, or an Nth-order first type modulation based on an M-order second type modulation (ie, N-first modulation_M-second modulation).
  • the second type of modulation may be traditional QAM
  • the first type of modulation may be APSK modulation, circular QAM, or spiral (Spiral) QAM, etc.
  • symbols obtained by using modulation methods such as N-order APSK modulation, circular QAM, or spiral (Spiral) QAM can be simulated by using a part of the M second symbols that can be obtained by using M-order QAM.
  • Fig. 4 is a schematic diagram illustrating selection of pseudo 16APSK constellation points from 256QAM constellation points according to an embodiment of the present disclosure.
  • the black dots show the constellation points obtained by bit-to-symbol mapping according to 256QAM
  • the gray diamonds show the constellation points obtained by bit-to-symbol mapping according to 16APSK modulation .
  • the points satisfying the predetermined condition can be selected as the constellation points of the pseudo 16APSK modulation.
  • the point with the minimum Euclidean distance (Euclidean distance) from the constellation point obtained by performing bit-to-symbol mapping according to 16APSK modulation can be selected as the pseudo-16APSK modulation Constellation points.
  • the constellation points that are pseudo-16APSK modulated (ie, 16APSK_256QAM) having the minimum Euclidean distance from constellation points obtained according to 16APSK modulation are shown with small black circles with squares added around them.
  • N-order APSK constellation points can be selected to achieve the advantages of APSK, such as low PAPR, while ensuring compatibility.
  • the N-order Spiral QAM constellation point can be selected to achieve the advantage of anti-phase noise while ensuring compatibility.
  • bit-to-symbol mapping may be performed in units of p first bits.
  • bit-to-symbol mapping may be performed in units of q second bits.
  • p and q are positive integers, and q is greater than p.
  • 16APSK modulation performs bit-to-symbol mapping in units of 4 bits.
  • pseudo-16APSK modulation also performs bit-to-symbol mapping in units of 4 first bits.
  • 256QAM uses Bit-to-symbol mapping is performed in units of 8 second bits.
  • the p first bits are among the q second bits A function of at least a portion of the second bit.
  • the 4 first bits b(4i), b(4i+1) can be , b(4i+2), b(4i+3) are units for bit-to-symbol mapping, where i is an integer greater than or equal to 0.
  • the 4 first bits can be 6 A function of at least a second portion of the two bits.
  • the correspondence between each bit in the first bit and the second bit can be expressed by the following formula (1):
  • pseudo-16APSK modulation performs bit-to-symbol mapping in units of 4 first bits
  • 64QAM performs bit-to-symbol mapping in units of 6 second bits
  • the 4 first bits of pseudo 16APSK modulation can be the first 4 bits c(6i), c(6i+1), c(6i+2), c(6i) of the 6 second bits of 64QAM +3) functions.
  • the 4 first bits of pseudo-16APSK modulation may also correspond to all of the 6 second bits using 64QAM.
  • the following formula (2) can also be used to represent each bit in the first bit and the last two bits c(6i+4), c(6i+5) in the second bit
  • the pseudo N-order first type modulation is pseudo 16APSK modulation
  • the M-order second type modulation is 256QAM
  • the 4 first bits b(4i), b(4i+1 ), b(4i+2), b(4i+3) as units for bit-to-symbol mapping, where i is an integer greater than or equal to 0.
  • the 4 first bits can be 8 A function of at least a second portion of the two bits.
  • the correspondence between each bit in the first bit and the second bit can be represented by the following formula (3):
  • pseudo-16APSK modulation performs bit-to-symbol mapping in units of 4 first bits
  • 256QAM performs bit-to-symbol mapping in units of 8 second bits
  • the 4 first bits of pseudo 16APSK modulation can be the first 4 bits c(8i), c(8i+1), c(8i+2), c(8i) of the 8 second bits of 256QAM +3) functions.
  • the 4 first bits of pseudo-16APSK modulation can also correspond to all of the 8 second bits using 256QAM.
  • the following formula (4) can also be used to represent each bit in the first bit and the following 4 bits b(8i+4), b(8i+5) in the second bit , the correspondence of b(8i+6), b(8i+7):
  • control unit 320 may perform pseudo-N-order first type modulation on the first input bit sequence according to a bit-to-symbol mapping formula or a bit-to-symbol mapping table.
  • the p first bits correspond to at least a part of the second bits in the q second bits, therefore, the symbols that can be modulated according to the second type
  • the mapping formula or bit-to-symbol mapping table obtains a corresponding symbol mapping formula or bit-to-symbol mapping table for pseudo-first type modulation.
  • bit-to-symbol mapping formula of 64QAM is shown in the following formula (5):
  • the bit-to-symbol mapping formula for 16APSK modulation is shown in the following formula (6):
  • bit-to-symbol mapping formula of 256QAM is shown in the following formula (7):
  • the bit-to-symbol mapping formula for 16APSK modulation is shown in the following formula (8):
  • FIG. 5A to FIG. 5C show schematic diagrams of obtaining a corresponding pseudo first-type modulation bit-to-symbol mapping table according to a second-type modulation bit-to-symbol mapping table according to an example of the present disclosure.
  • FIG. 5A to FIG. 5C exemplarily show that the bit-to-symbol mapping table of pseudo APSK modulation is obtained according to the QAM bit-to-symbol mapping table in the 3GPP standard.
  • FIG. 5A is a schematic diagram showing a pseudo 16APSK modulated bit-to-symbol mapping table obtained according to the 64QAM bit-to-symbol mapping table in the 5G NR standard of 3GPP.
  • the symbol symbol can be obtained according to the correspondence between the first bit of pseudo 16APSK modulation and the second bit of 64QAM shown in the above formulas (1) and (2), the first bit of pseudo 16APSK modulation corresponding to the second bit 000011 can be obtained as 1100.
  • the symbol symbol can also be obtained.
  • the power normalization factor of 64QAM is
  • the power normalization factor of pseudo 16APSK is Since the table shown in Figure 5A is based on the bit-to-symbol mapping table of the pseudo 16APSK modulation obtained from the 64QAM bit-to-symbol mapping table, the table shown in Figure 5A is represented by as a factor of code element symbols.
  • the corresponding following can also be obtained according to the second bit Symbol symbol as factor, but this symbol is not power normalized for 64QAM.
  • the bit-to-symbol mapping table is used to obtain the symbol mapping formula of pseudo 16APSK modulation.
  • the symbol symbol can be obtained Only according to the correspondence between the first bit of pseudo 16APSK modulation shown in the above formula (1) and the first 4 bits in the second bit of 64QAM, the first bit of pseudo 16APSK modulation corresponding to the second bit 000011 can be obtained as 1100 .
  • the corresponding first bit of pseudo 16APSK modulation can be obtained as 1100.
  • the symbol symbol can also be obtained
  • FIG. 5B is a schematic diagram showing a pseudo 16APSK modulated bit-to-symbol mapping table obtained according to the 256QAM bit-to-symbol mapping table in the 5G NR standard.
  • the symbol symbol can be obtained According to the correspondence between the first bit of pseudo-16APSK modulation and the second bit of 256QAM shown in the above formulas (3) and (4), the first bit of pseudo-16APSK modulation corresponding to the second bit 00001100 can be obtained as 1100. That is to say, using pseudo 16APSK modulation to map the first bit 1100, the symbol symbol can also be obtained.
  • the power normalization factor of 256QAM is
  • the power normalization factor of pseudo 16APSK is Since the table shown in FIG.
  • 5B is a bit-to-symbol mapping table obtained based on the 256QAM bit-to-symbol mapping table, the bit-to-symbol mapping table of pseudo 16APSK modulation, therefore, in the table shown in FIG. 5B as a factor of code element symbols.
  • bit-to-symbol mapping according to 256QAM the corresponding following can also be obtained according to the second bit Symbol symbol as factor, but this symbol is not power normalized for 256QAM.
  • the symbol symbol can be obtained Only according to the correspondence between the first bit of the pseudo 16APSK modulation shown in the above formula (3) and the first 4 bits in the second bit of 256QAM, the first bit of the pseudo 16APSK modulation corresponding to the second bit 00001100 can be obtained as 1100 . That is to say, only according to the first 4 bits "0000" in the second bit 00001100, the corresponding first bit of pseudo 16APSK modulation can be obtained as 1100. And using pseudo 16APSK modulation to map the first bit 1100, the symbol symbol can also be obtained
  • FIG. 5C is a schematic diagram showing a bit-to-symbol mapping table of pseudo 32APSK modulation obtained according to the 256QAM bit-to-symbol mapping table in the 5G NR standard.
  • a symbol mapping table of pseudo-32APSK modulation can be obtained according to the correspondence between the first bit of pseudo-32APSK modulation and the second bit of 256QAM.
  • the p first bits may be combined with the q
  • the first p second bits of the second bits are the same.
  • the bit-to-symbol mapping table of the pseudo-N-order first-type modulation can be obtained according to the bit-to-symbol mapping table of the M-order second-type modulation.
  • FIG. 6A is a schematic diagram showing a pseudo 16APSK modulated bit-to-symbol mapping table obtained according to the 64QAM bit-to-symbol mapping table in the 5G NR standard.
  • the first 4 bits of the 4 first bits used by the pseudo-16APSK modulation are the same as the first 4 bits of the 6 second bits used by 64QAM.
  • the first bit used by the pseudo-16APSK modulation is 0000, which is the same as the first 4 bits in the second bit used by 64QAM which is 000011.
  • Fig. 6B is a schematic diagram showing a bit-to-symbol mapping table of pseudo 16APSK modulation obtained according to the 256QAM bit-to-symbol mapping table in the 3GPP standard.
  • the first 4 bits of the 4 first bits used by pseudo-16APSK modulation are the same as the first 4 bits of the 8 second bits used by 256QAM.
  • the first bit used by pseudo-16APSK modulation is 0000, which is the same as the first 4 bits in which the second bit used by 256QAM is 00001100.
  • FIGS. 6A and 6B above show an example of obtaining a bit-to-symbol mapping table for pseudo APSK modulation according to a QAM bit-to-symbol mapping table in the present disclosure. It should be understood that, according to the embodiments of the present disclosure, a similar method can also be used to obtain other N-order first type modulations that need to be simulated. For example, pseudo-32APSK modulation is modulated in units of 5 first bits.
  • the bit-to-symbol mapping table of pseudo-32APSK modulation can be obtained according to the correspondence between the first 5 bits in 256QAM and the first bit of pseudo-32APSK modulation, and the 256QAM bit-to-symbol mapping table in the 3GPP standard.
  • pseudo-64APSK modulation is modulated in units of 6 first bits.
  • the bit-to-symbol mapping table of pseudo-64APSK modulation can be obtained according to the correspondence between the first 6 bits in 256QAM and the first bit of pseudo-64APSK modulation, and the 256QAM bit-to-symbol mapping table in the 3GPP standard.
  • the electronic device 300 may further include a receiving unit to receive modulation and coding strategy (MCS) signaling.
  • MCS modulation and coding strategy
  • the control unit 320 may perform pseudo-N-order first type modulation on the first input bit sequence according to the received modulation and coding strategy signaling and a predetermined modulation and coding strategy table, wherein the first type modulation is APSK modulation.
  • the predetermined modulation and coding strategy table according to an embodiment of the present disclosure, at least parameters related to pseudo-N-order APSK modulation are included.
  • a modulation and coding strategy related to pseudo-APSK modulation can be added to the current modulation and coding strategy table.
  • the modulation and coding strategies for some modulations in the current modulation and coding strategy table can be deleted, and the modulation and coding strategies for pseudo-APSK modulation can be added.
  • the modulation and coding strategy related to 16QAM in the current modulation and coding strategy table can be replaced with the modulation and coding strategy of pseudo 16APSK.
  • the modulation and coding strategy related to 64QAM in the current modulation and coding strategy table can be replaced by the pseudo 64APSK modulation and coding strategy.
  • the modulation and coding strategy of pseudo-APSK modulation can be added on the basis of the current modulation and coding strategy table without deleting the modulation and coding strategy in the current modulation and coding strategy table.
  • the number of bits used for MCS signaling needs to be increased.
  • modulation and coding strategies for modulation modes such as pseudo 16APSK, pseudo 32APSK, and pseudo 64APSK can be added.
  • FIG. 7A and 7B are diagrams illustrating modulation and coding strategies according to an embodiment of the present disclosure.
  • delete the modulation and coding strategy indicated when the MCS indication I MCS value is 10-22 in the current modulation and coding strategy table and use the MCS indication I MCS 10 -22 indicates the modulation and coding strategy for 16APSK_256QAM modulation.
  • the MCS indication I MCS can be notified using the same number of bits as the number of bits required for the current MCS indication.
  • a modulation and coding strategy for 16APSK_256QAM modulation is added on the basis of the current modulation and coding strategy table as shown in gray. Therefore, in the example shown in FIG. 7B , it is necessary to use more bits than the number of bits required by the current MCS indication to notify the MCS indication I MCS .
  • a table about some modulation and coding strategies supported by the communication system where the electronic device is located may be predetermined.
  • a new MCS table containing only low PAPR constellation modulations may be predetermined.
  • MCS signaling for a new MCS table containing only low PAPR constellation modulations can thus be sent with fewer bits.
  • local MCS tables can be set for low PAPR constellation modulation methods such as BPSK, ⁇ /2-BPSK, ⁇ /4-BPSK, QPSK, ⁇ /4-QPSK, pseudo 16APSK, pseudo 32APSK, pseudo 64APSK, etc., so as to flexibly select different MCS table, adjust the overhead indicated by MCS.
  • the base station may choose whether to use the low peak-to-average ratio MCS table according to the information about the equivalent channel fed back by the user equipment. If the base station determines that the equivalent channel gain is high, it can choose to use the traditional MCS table, otherwise, it can choose the MCS table based on the N-APSK_M-QAM constellation, and send the corresponding MCS identification information to the user equipment. For another example, the electronic device 300 may proactively send MCS identification information to the base station to notify the base station that it needs an MCS solution with a low peak-to-average ratio.
  • the base station may also notify the user equipment which MCS table to use through the MCS identification information, or the user equipment may select a specific MCS table and notify the base station through the MCS identification information.
  • the MCS identification information may be sent by using Downlink Control Information (DCI), MAC Layer Control Element (MAC CE), or Radio Resource Control (RRC) signaling.
  • DCI Downlink Control Information
  • MAC CE MAC Layer Control Element
  • RRC Radio Resource Control
  • the MCS identification information in the case that the electronic device 300 can actively send the MCS identification information to the base station, the MCS identification information can be sent using uplink control information (UCI) or the like.
  • UCI uplink control information
  • FIG. 8 is a flowchart of a modulation method 800 according to one embodiment of the present disclosure. Since the steps of the modulation method 800 correspond to the operations of the electronic device 300 described above with reference to the figures, detailed descriptions of the same contents are omitted here for simplicity.
  • step S801 a first input bit sequence is obtained. Then, in step S802, a pseudo-N-order first type modulation is performed on the first input bit sequence.
  • the base station may first obtain the first input bit sequence, and then perform pseudo-N order first type modulation on the first input bit sequence to obtain the first symbol to be sent to the UE connected to the base station.
  • the N first symbols that can be obtained through the pseudo-N-order first-type modulation are part of the M second symbols that can be obtained through the M-order second-type modulation, where M and N are positive Integer, and M is greater than N.
  • the symbols obtainable by using the N-order first-type modulation may be simulated by using a part of the M second-type symbols obtainable by using the M-order second-type modulation.
  • this Nth-order first type modulation performed in an analog manner can be referred to as a pseudo Nth-order first type modulation, or an Nth-order first type modulation based on an M-order second type modulation .
  • the second type of modulation may be traditional QAM
  • the first type of modulation may be APSK modulation, circular QAM, or spiral (Spiral) QAM, etc.
  • symbols obtained by using modulation methods such as N-order APSK modulation, circular QAM, or spiral (Spiral) QAM can be simulated by using a part of the M second symbols that can be obtained by using M-order QAM.
  • simulating the symbols obtainable by using the N-order first-type modulation from a part of the M second-type symbols obtainable by using the M-order second-type modulation may be performed with reference to FIG. 4 .
  • control unit 320 may perform pseudo-N-order first type modulation on the first input bit sequence according to a bit-to-symbol mapping formula or a bit-to-symbol mapping table.
  • the p first bits are the q-th A function of at least a second portion of the two bits. Therefore, the corresponding symbol mapping formula or bit-to-symbol mapping table of the pseudo-first type modulation can be obtained according to the symbol mapping formula or bit-to-symbol mapping table of the second type modulation.
  • the corresponding bit-to-symbol mapping formula of the pseudo-first type modulation may be obtained according to the symbol mapping formula of the second type of modulation or the bit-to-symbol mapping table with reference to formula (1) to formula (8).
  • it may be performed to obtain the corresponding bit-to-symbol mapping table of the pseudo-first type modulation according to the symbol mapping formula or the bit-to-symbol mapping table of the second type of modulation.
  • the p first bits may be q-th
  • the first p second bits of the two bits are the same.
  • the bit-to-symbol mapping table of the pseudo-N-order first-type modulation can be obtained according to the bit-to-symbol mapping table of the M-order second-type modulation. Obtaining the corresponding bit-to-symbol mapping table of the pseudo-first type modulation according to the symbol mapping formula or the bit-to-symbol mapping table of the second type modulation may be performed with reference to FIG. 6A and FIG. 6B .
  • the method 800 may further include receiving modulation and coding strategy (MCS) signaling.
  • MCS modulation and coding strategy
  • step S802 perform pseudo N-order first type modulation on the first input bit sequence according to the received modulation and coding strategy signaling and a predetermined modulation and coding strategy table, wherein the first type modulation is APSK modulation.
  • the predetermined modulation and coding strategy table according to an embodiment of the present disclosure, at least parameters related to pseudo-N-order APSK modulation are included.
  • a modulation and coding strategy related to pseudo-APSK modulation can be added to the current modulation and coding strategy table.
  • the modulation and coding strategies for some modulations in the current modulation and coding strategy table can be deleted, and the modulation and coding strategies for pseudo-APSK modulation can be added. Therefore, the number of bits used for MCS signaling may not be increased.
  • the modulation and coding strategy related to 16QAM in the current modulation and coding strategy table can be replaced with the modulation and coding strategy of pseudo 16APSK.
  • the modulation and coding strategy related to 64QAM in the current modulation and coding strategy table can be replaced by the pseudo 64APSK modulation and coding strategy.
  • a modulation and coding strategy for pseudo-APSK modulation can be added to the current modulation and coding strategy table without deleting the modulation and coding strategy in the current modulation and coding strategy table.
  • the number of bits used for MCS signaling needs to be increased.
  • modulation and coding strategies for modulation modes such as pseudo 16APSK, pseudo 32APSK, and pseudo 64APSK can be added.
  • a table about some modulation and coding strategies supported by the communication system where the electronic device is located may be predetermined.
  • a new MCS table containing only low PAPR constellation modulations may be predetermined.
  • MCS signaling for a new MCS table containing only low PAPR constellation modulations can thus be sent with fewer bits.
  • local MCS tables can be set for BPSK, ⁇ /2-BPSK, ⁇ /4-BPSK, QPSK, ⁇ /4-QPSK, pseudo 16APSK, pseudo 32APSK, pseudo 64APSK and other low PAPR constellation modulation methods, so as to flexibly select different MCS table, adjust the overhead indicated by MCS.
  • MCS identification information For example, downlink control information (DCI), MAC layer control element (MAC CE) or radio resource control (RRC) signaling can be used to send the MCS identification information.
  • DCI downlink control information
  • MAC CE MAC layer control element
  • RRC radio resource control
  • the MCS identification information can be sent using uplink control information (UCI) or the like.
  • UCI uplink control information
  • each functional block is not particularly limited. That is, each functional block may be realized by one device that is physically and/or logically combined, or two or more devices that are physically and/or logically separated may be directly and/or indirectly (e.g. By wired and/or wireless) connections and thus by the various means described above.
  • FIG. 9 is a schematic diagram of a hardware structure of a related device 900 (electronic device) according to an embodiment of the present disclosure.
  • the aforementioned device 900 (first network element) can be configured as a computer device physically including a processor 910, memory 920, storage 930, communication device 940, input device 950, output device 960, bus 970, and the like.
  • the word “device” may be replaced with a circuit, a device, a unit, or the like.
  • the hardware structure of the electronic device may include one or more of the devices shown in the figure, or may not include part of the devices.
  • processor 910 For example, only one processor 910 is shown, but there may be multiple processors. In addition, processing may be performed by one processor, or may be performed by more than one processor simultaneously, sequentially, or in other ways. In addition, the processor 910 may be implemented by more than one chip.
  • Each function of the device 900 is realized, for example, by reading predetermined software (program) into hardware such as the processor 910 and the memory 920, thereby causing the processor 910 to perform calculations and controlling communication performed by the communication device 940. , and control the reading and/or writing of data in the memory 920 and the storage 930.
  • predetermined software program
  • the processor 910 controls the entire computer by operating an operating system, for example.
  • the processor 910 may be composed of a central processing unit (CPU, Central Processing Unit) including an interface with peripheral devices, a control device, a computing device, registers, and the like.
  • CPU Central Processing Unit
  • control unit and the like may be implemented by the processor 910 .
  • the processor 910 reads programs (program codes), software modules, data, etc. from the memory 930 and/or the communication device 940 to the memory 920, and executes various processes based on them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the program a program that causes a computer to execute at least part of the operations described in the above-mentioned embodiments can be used.
  • the processing unit of the first network element may be implemented by a control program stored in the memory 920 and operated by the processor 910, and other functional blocks may also be implemented in the same way.
  • the memory 920 is a computer-readable recording medium, such as a read-only memory (ROM, Read Only Memory), a programmable read-only memory (EPROM, Erasable Programmable ROM), an electrically programmable read-only memory (EEPROM, Electrically EPROM), At least one of random access memory (RAM, Random Access Memory) and other appropriate storage media.
  • the memory 920 may also be called a register, a cache, a main memory (main storage), or the like.
  • the memory 920 can store executable programs (program codes), software modules, and the like for implementing the method according to an embodiment of the present disclosure.
  • the memory 930 is a computer-readable recording medium, and can be composed of, for example, a flexible disk (flexible disk), a floppy (registered trademark) disk (floppy disk), a magneto-optical disk (for example, a CD-ROM (Compact Disc ROM) etc.), Digital Versatile Disc, Blu-ray (registered trademark) Disc), removable disk, hard drive, smart card, flash memory device (e.g., card, stick, key driver), magnetic stripe, database , a server, and at least one of other appropriate storage media.
  • the memory 930 may also be called an auxiliary storage device.
  • the communication device 940 is hardware (a transmission and reception device) for performing communication between computers via a wired and/or wireless network, and is also called a network device, a network controller, a network card, a communication module, and the like, for example.
  • the communication device 940 may include a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like.
  • the above-mentioned sending unit, receiving unit, etc. may be implemented by the communication device 940 .
  • the input device 950 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 960 is an output device (for example, a display, a speaker, a light emitting diode (LED, Light Emitting Diode) lamp, etc.) that performs output to the outside.
  • the input device 950 and the output device 960 may also have an integrated structure (such as a touch panel).
  • bus 970 for communicating information.
  • the bus 970 may be composed of a single bus, or may be composed of different buses among devices.
  • electronic equipment can include microprocessors, digital signal processors (DSP, Digital Signal Processor), application specific integrated circuits (ASIC, Application Specific Integrated Circuit), programmable logic devices (PLD, Programmable Logic Device), field programmable gates Array (FPGA, Field Programmable Gate Array) and other hardware can be used to realize part or all of each function block.
  • DSP digital signal processors
  • ASIC Application Specific Integrated Circuit
  • PLD programmable logic devices
  • FPGA Field Programmable Gate Array
  • the processor 910 may be installed by at least one of these hardwares.
  • a channel and/or a symbol may also be a signal (signaling).
  • a signal can also be a message.
  • the reference signal can also be referred to as RS (Reference Signal) for short, and it can also be called Pilot (Pilot), pilot signal, etc. according to the applicable standard.
  • a component carrier CC, Component Carrier
  • CC Component Carrier
  • information, parameters, and the like described in this specification may be expressed by absolute values, relative values to predetermined values, or other corresponding information.
  • radio resources may be indicated by a specified index.
  • formulas and the like using these parameters may also be different from those explicitly disclosed in this specification.
  • the information, signals, etc. described in this specification may be represented using any of a variety of different technologies.
  • data, commands, instructions, information, signals, bits, symbols, chips, etc. may be transmitted through voltage, current, electromagnetic wave, magnetic field or magnetic particles, light field or photons, or any of them. combination to represent.
  • information, signals, etc. may be output from upper layers to lower layers, and/or from lower layers to upper layers.
  • Information, signals, etc. may be input or output via a plurality of network nodes.
  • Input or output information, signals, etc. can be stored in a specific location (such as memory), or can be managed through a management table. Imported or exported information, signals, etc. may be overwritten, updated or supplemented. Outputted information, signals, etc. can be deleted. Inputted information, signals, etc. may be sent to other devices.
  • Notification of information is not limited to the modes/embodiments described in this specification, and may be performed by other methods.
  • the notification of information may be through physical layer signaling (for example, downlink control information (DCI, Downlink Control Information), uplink control information (UCI, Uplink Control Information)), upper layer signaling (for example, radio resource control (RRC, Radio Resource Control) signaling, broadcast information (MIB, Master Information Block, System Information Block (SIB, System Information Block), etc.), media access control (MAC, Medium Access Control) signaling ), other signals, or a combination of them.
  • DCI downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may also be called L1/L2 (Layer 1/Layer 2) control information (L1/L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may also be called an RRC message, such as an RRC Connection Setup (RRC Connection Setup) message, an RRC Connection Reconfiguration (RRC Connection Reconfiguration) message, and the like.
  • the MAC signaling can be notified by, for example, a MAC control element (MAC CE (Control Element)).
  • notification of prescribed information is not limited to being performed explicitly, but may be performed implicitly (eg, by not notifying the prescribed information or by notifying other information).
  • judgment it can be performed by a value (0 or 1) represented by 1 bit, or by a true or false value (Boolean value) represented by true (true) or false (false), or by comparison of numerical values (such as comparison with a specified value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise, shall be construed broadly to mean commands, command sets, code, code segments, program code, programs, Program, software module, application, software application, software package, routine, subroutine, object, executable, thread of execution, step, function, etc.
  • software, commands, information, etc. may be sent or received via transmission media.
  • transmission media For example, when sending from a website, server, or other remote source using wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL, Digital Subscriber Line), etc.) and/or wireless technology (infrared, microwave, etc.)
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL, Digital Subscriber Line), etc.
  • wireless technology infrared, microwave, etc.
  • system and "network” used in this specification are used interchangeably.
  • base station BS, Base Station
  • radio base station eNB
  • gNB gNodeB
  • cell gNodeB
  • cell group femtocell
  • carrier femtocell
  • a base station may house one or more (eg three) cells (also called sectors). When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also be connected by a base station subsystem (for example, a small base station for indoor use (Remote Radio Head (RRH, RRH, Remote Radio Head)) to provide communication services.
  • a base station subsystem for example, a small base station for indoor use (Remote Radio Head (RRH, RRH, Remote Radio Head)
  • RRH Remote Radio Head
  • the term "cell” or “sector” refers to a part or the entire coverage area of a base station and/or a base station subsystem that provides communication services in the coverage.
  • mobile station MS, Mobile Station
  • user terminal user terminal
  • UE User Equipment
  • terminal mobile station
  • a mobile station is also sometimes referred to by those skilled in the art as subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other appropriate term.
  • radio base stations in this specification may be replaced by user terminals.
  • each mode/embodiment of the present disclosure may be applied to a configuration in which communication between a radio base station and a user terminal is replaced with communication between multiple user terminals (D2D, Device-to-Device).
  • D2D Device-to-Device
  • the above-mentioned functions of the electronic device may be regarded as functions of the user terminal.
  • words like "up” and “down” can be replaced with "side”.
  • uplink channels can also be replaced by side channels.
  • the user terminal in this specification can also be replaced by a wireless base station.
  • the above-mentioned functions of the user terminal may be regarded as functions of the first communication device or the second communication device.
  • a specific operation performed by a base station may also be performed by an upper node (upper node) in some cases.
  • various actions for communication with the terminal can be performed through the base station or one or more networks other than the base station.
  • Nodes such as Mobility Management Entity (MME, Mobility Management Entity), Serving-Gateway (S-GW, Serving-Gateway) can be considered, but not limited to this), or their combination.
  • LTE Long-term evolution
  • LTE-A Long-term evolution
  • LTE-B Long-term evolution
  • LTE-Beyond Super 3rd generation mobile communication system
  • IMT-Advanced 4th generation mobile communication system
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FAA Future Radio Access
  • New-RAT Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM Global System for Mobile Communications
  • CDMA3000 Code Division Multiple Access 3000
  • UMB Ultra Mobile Broadband
  • IEEE 920.11 Wi-Fi (registered trademark)
  • IEEE 920.16 WiMA
  • any reference to an element using designations such as “first”, “second”, etc. used in this specification does not limit the quantity or order of these elements comprehensively. These designations may be used in this specification as a convenient method of distinguishing between two or more units. Thus, a reference to a first unit and a second unit does not mean that only two units may be used or that the first unit must precede the second unit in some fashion.
  • determining (determining) used in this specification may include various actions. For example, regarding “judgment (determination)”, calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up) (such as tables, databases, or other Searching in the data structure), ascertaining (ascertaining) and the like are regarded as performing "judgment (determination)”. In addition, regarding “judgment (determination)”, receiving (receiving) (such as receiving information), transmitting (transmitting) (such as sending information), input (input), output (output), accessing (accessing) (such as access to data in the internal memory), etc., are deemed to be "judgment (determination)”.
  • judgment (determination) resolving (resolving), selecting (selecting), selecting (choosing), establishing (establishing), comparing (comparing), etc. can also be regarded as performing "judgment (determination)”. That is, regarding "judgment (determination)", several actions can be regarded as making "judgment (determination)”.
  • connection refers to any direct or indirect connection or combination between two or more units, which can be Including the following cases: between two units that are “connected” or “combined” with each other, there is one or more intermediate units.
  • the combination or connection between units may be physical or logical, or a combination of both. For example, "connect” could also be replaced with "access”.
  • two units may be considered to be connected by the use of one or more wires, cables, and/or printed electrical connections, and, as several non-limiting and non-exhaustive examples, by the use of , the microwave region, and/or the electromagnetic energy of the wavelength of the light (both visible light and invisible light) region, etc., are “connected” or “combined” with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本公开提供一种电子设备和调制方法。所述电子设备包括:接收单元,被配置为获得第一输入比特序列;控制单元,被配置为对所述第一输入比特序列进行伪N阶第一类型调制,其中通过所述伪N阶第一类型调制能够得到的N个第一符号是通过M阶第二类型调制能够得到的第二符号中的一部分,其中M和N为正整数,并且M大于N。

Description

电子设备和调制方法 技术领域
本公开涉及无线通信领域,并且更具体地涉及一种调制方法以及相应的电子设备。
背景技术
为了保证高数据速率,在6G通信系统中,要求充分利用全部可用于通信的频谱,例如厘米波(Sub-6 GHz)、毫米波(mm Wave)、太赫兹(THz)、光通信频段等等。然而在高频段的状态下工作会给硬件设备带来一系列非理想行为。例如,高功放带来的非线性失真等问题。这使得数学建模困难,严重影响系统功率效率、传输性能。
另一方面,目前提出的星座调制方案主要有两类。第一类星座调制方案是针对高频谱效率的星座调制方案,例如正交幅度调制(Quadrature Amplitude Modulation,QAM)、基于几何整形的非均匀星座(non-uniform constellation,NUC)调制等。
例如,QAM已被用于LTE、HSPA、802.11n、5G等多种宽带无线通信系统中。在QAM中,通过结合幅度与相位参数,充分利用整个信号平面,将全部矢量端点重新合理分布。从而在不减小端点位置最小欧式距离的情况下,增加信号矢量的端点数目,提高系统的抗干扰能力、频谱利用率。然而,QAM对于OFDM系统峰均比(Peak to Average Power Ratio,PAPR)较高,导致高功放产生的非线性失真对系统传输带来显著负面影响。
此外,第二类星座调制方案是针对低峰均比(PAPR)的星座调制方案,例如,幅度相位键控(Amplitude and phase-shift keying,APSK)调制、星座扩展调制等。例如,APSK调制以欧氏距离最大化、互信息(即,信道容量)最大化为优化准则,确定星座的圆周个数、环上点数、相对半径比、相对相位偏移。可在mMTC、卫星通信等应用高功率放大器,要求低硬件损耗、长电池使用寿命等场景中,考虑使用低PAPR的调制方案。
然而,虽然APSK调制能够有效地降低PAPR,但是目前的APSK星座 调制未被5G等标准采用,并且APSK调制与例如QAM等针对高频谱效率的星座调制方案不兼容。这导致电子设备对于不同的调制方法可能需要不同的收发器结构,使得硬件设计复杂。
发明内容
根据本公开的一个方面,提供了一种电子设备,包括:接收单元,被配置为获得第一输入比特序列;控制单元,被配置为对所述第一输入比特序列进行伪N阶第一类型调制,其中通过所述伪N阶第一类型调制能够得到的N个第一符号是通过M阶第二类型调制能够得到的M个第二符号中的一部分,其中M和N为正整数,并且M大于N。
根据本公开的另一方面,所述电子设备的控制单元根据比特到符号映射公式或比特到符号映射表对所述第一输入比特序列进行伪N阶第一类型调制。
根据本公开的另一方面,根据所述伪N阶第一类型调制,以p个第一比特为单位进行比特到符号映射;根据所述M阶第二类型调制,以q个第二比特为单位进行比特到符号映射;对于根据所述伪N阶第一类型调制和根据所述M阶第二类型调制得到的相同符号,所述p个第一比特是所述q个第二比特中至少一部分第二比特的函数,其中p和q为正整数,并且q大于p。在此情况下,例如,伪N阶第一类型调制的比特到符号映射公式或比特到符号映射表与M阶第二类型调制的比特到符号映射公式或比特到符号映射表对应。
根据本公开的另一方面,根据所述伪N阶第一类型调制,以p个第一比特为单位进行比特到符号映射;根据所述M阶第二类型调制,以q个第二比特为单位进行比特到符号映射;对于根据所述伪N阶第一类型调制和根据所述M阶第二类型调制得到的相同符号,所述p个第一比特与q个第二比特中的前p个第二比特相同,其中p和q正整数,并且q大于p。在此情况下,例如,所述伪N阶第一类型调制的比特到符号映射表与所述M阶第二类型调制的比特到符号映射表对应。根据本公开的另一方面,所述电子设备,还包括:接收单元,配置来接收调制与编码策略信令,所述控制单元,根据所述调制与编码策略信令和预先确定的调制与编码策略表对所述第一输入比特序列进行伪N阶第一类型调制,其中所述第一类型调制为APSK调制,所述预先确 定的调制与编码策略表至少包括关于伪N阶APSK调制的参数。
根据本公开的另一方面,所述预先确定的调制与编码策略表为关于所述电子设备所在的通信系统支持的部分或全部调制与编码策略的表。
根据本公开的另一方面,提供了一种调制方法,包括:获得第一输入比特序列;对所述第一输入比特序列进行伪N阶第一类型调制,其中通过所述伪N阶第一类型调制能够得到的N个第一符号是通过M阶第二类型调制能够得到的M个第二符号中的一部分,其中M和N为正整数,并且M大于N。
根据本公开的另一方面,根据比特到符号映射公式或比特到符号映射表对所述第一输入比特序列进行伪N阶第一类型调制。
附图说明
通过结合附图对本公开实施例进行更详细的描述,本公开的上述以及其它目的、特征和优势将变得更加明显。附图用来提供对本公开实施例的进一步理解,并且构成说明书的一部分,与本公开实施例一起用于解释本公开,并不构成对本公开的限制。在附图中,相同的参考标号通常代表相同部件或步骤。
图1A是示出了16QAM的示意性比特到符号映射星座图。
图1B是示出了经过16QAM比特到符号映射后的符号的值。
图2A是示出了16APSK调制的示意性比特到符号映射星座图。
图2B是示出了经过16APSK调制比特到符号映射后的符号的值。
图3是示出了根据本公开一个实施例的电子设备的示意性框图。
图4是示出了根据本公开一个实施例,从256QAM的星座点中选择伪16APSK星座点的示意图。
图5A是示出了根据3GPP标准中的64QAM比特到符号映射表获得的伪16APSK调制的比特到符号映射表的示意图。
图5B是示出了根据3GPP标准中的256QAM比特到符号映射表获得的伪16APSK调制的比特到符号映射表的示意图。
图5C是示出了根据3GPP标准中的256QAM比特到符号映射表获得的伪32APSK调制的比特到符号映射表的示意图。
图6A是示出了根据3GPP标准中的64QAM比特到符号映射表获得的伪16APSK调制的比特到符号映射表的示意图。
图6B是示出了根据3GPP标准中的256QAM比特到符号映射表获得的伪16APSK调制的比特到符号映射表的示意图。
图7A和图7B是示出了根据本公开实施例的调制与编码策略表示意图。
图8是根据本公开的一个实施例的调制方法的流程图。
图9是根据本公开的实施例的所涉及的设备的硬件结构的示意图。
具体实施方式
为了使得本公开的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本公开的示例实施例。在附图中,相同的参考标号自始至终表示相同的元件。应当理解,这里所描述的实施例仅仅是说明性的,而不应被解释为限制本公开的范围。
首先,参照图1A、图1B、图2A和图2B来描述QAM和APSK调制的示例。图1A是示出了3GPP标准中16QAM的示意性比特到符号映射星座图。图1B是示出了经过16QAM比特到符号映射后的符号的值。图2A是示出了DVB-S2标准中16APSK调制的示意性比特到符号映射星座图。图2B是示出了经过16APSK调制比特到符号映射后的符号的值。如参照图1A、图1B、图2A和图2B所示,经过QAM和APSK调制得到的符号不同,并且QAM和APSK调制的比特到符号映射方式也不同。例如,如图1B所示经过QAM的符号的实部或虚部(I/Q)的值是整数,而如图2B所示经过APSK调制的符号的实部或虚部(I/Q)的值不是一定整数。此外,APSK调制中独立的相位和幅度比特到符号映射方法也不同于QAM。
如上所述,虽然APSK调制能够有效地降低低峰均比(PAPR),但是目前的APSK调制未被5G NR等3GPP标准采用,并且APSK调制与例如QAM等针对高频谱效率的星座调制方案不兼容。因此,希望能够提供同时满足不同需求,且与现有的通信标准中的调制方式兼容的调制方法和相应的电子设备。
以下,参考图3来说明根据本公开的实施例的电子设备。图3是示出根 据本公开一个实施例的电子设备的示意性框图。如图3所示,根据本公开一个实施例的电子设备300可包括接收单元310和控制单元320。除了接收单元和控制单元,电子设备300还可以包括其他部件,然而,由于这些部件与本公开实施例的内容无关,因此在这里省略其图示和描述。此外,在根据本公开的实施例中,电子设备300可以是通信系统中的基站或终端等。这里所描述的基站可以提供针对特定地理区域的通信覆盖,其可以被称为小区、节点B、gNB、5G节点B、接入点和/或发送接收点等。这里所描述的终端可以包括各种类型的终端,例如用户装置(User Equipment,UE)、移动终端(或称为移动台)或者固定终端,然而,为方便起见,在下文中有时候可互换地使用终端和UE。
如图3所示,电子设备300的接收单元310可获得第一输入比特序列。然后,控制单元320可对所述第一输入比特序列进行伪N阶第一类型调制。例如,电子设备300为基站,接收单元310可获得第一输入比特序列。控制单元320可对所述第一输入比特序列进行伪N阶第一类型调制,以获得要向与该基站连接的UE发送的第一码元。在本公开的实施例中,通过伪N阶第一类型调制能够得到的N个第一符号是通过M阶第二类型调制能够得到的M个第二符号中的一部分,其中M和N为正整数,并且M大于N。换言之,第一类型调制和第二类型调制可以为不同的调制方法。在根据本公开的实施例中,可通过使用M阶第二类型调制能够得到的M个第二符号中的一部分来模拟使用N阶第一类型调制能够得到的符号。在根据本公开的实施例中,可将这种通过模拟方式进行的N阶第一类型调制,称为伪N阶第一类型调制,或基于M阶第二类型调制的N阶第一类型调制(即,N-第一调制_M-第二调制)。
例如,第二类型调制可以是传统的QAM,第一类型调制可以是APSK调制、圆形QAM或螺旋(Spiral)QAM等。在本公开的实施例中,可通过使用M阶QAM能够得到的M个第二符号中的一部分来模拟使用N阶APSK调制、圆形QAM或螺旋(Spiral)QAM等调制方式能够得到的符号。
图4是示出根据本公开的一个实施例,从256QAM的星座点中选择伪16APSK星座点的示意图。在图4所示的星座图中,黑色小圆点示出了根据256QAM进行比特到码元映射而获得的星座点,灰色菱形示出了根据16APSK 调制进行比特到码元映射而获得的星座点。可选择在根据256QAM进行比特到码元映射而获得的星座点中,满足预定条件的点作为伪16APSK调制的星座点。例如,可选择在根据256QAM进行比特到码元映射而获得的星座点中,与根据16APSK调制进行比特到码元映射而获得的星座点具有最小欧式距离(Euclidean distance)的点作为伪16APSK调制的星座点。在图4所示的示例中,以周围添加了方块的黑色小圆点示出了与根据16APSK调制获得的星座点具有最小欧式距离、作为伪16APSK调制(即,16APSK_256QAM)的星座点。
在以上结合图3和图4描述的示例中,通过使用M阶第二类型调制能够得到的M个第二符号中的一部分来模拟使用N阶第一类型调制能够得到的符号,可在保证兼容性的同时,获得满足不同需求的星座调制。例如,对于需要具有低PAPR的通信系统,可在M阶QAM星座中,挑选N阶APSK星座点,以在确保兼容性的同时实现APSK的优点,比如低PAPR。又例如,对于需要具有抗相位噪声的通信系统,可在M阶QAM星座中,挑选N阶Spiral QAM星座点,以在确保兼容性的同时实现对抗相位噪声的优点。
在根据伪N阶第一类型调制时,可以以p个第一比特为单位进行比特到符号映射。此外,在根据M阶第二类型调制时,可以以q个第二比特为单位进行比特到符号映射。p和q为正整数,并且q大于p。例如,在图4所示的示例中,16APSK调制以4个比特为单位进行比特到符号映射,相应地,伪16APSK调制也以4个第一比特为单位进行比特到符号映射,此外,256QAM以8个第二比特为单位进行比特到符号映射。
根据本公开的一个实施例,对于根据所述伪N阶第一类型调制和根据所述M阶第二类型调制得到的相同符号,所述p个第一比特是所述q个第二比特中至少一部分第二比特的函数。
例如,在伪N阶第一类型调制为伪16APSK调制,M阶第二类型调制为64QAM的情况下,对于伪16APSK调制,可以以4个第一比特b(4i),b(4i+1),b(4i+2),b(4i+3)为单位进行比特到符号映射,其中i为大于或等于0的整数。此外,对于64QAM,可以以6个第二比特c(6i),c(6i+1),c(6i+2),c(6i+3),c(6i+4),c(6i+5)为单位进行比特到符 号映射。在通过伪16APSK调制能够得到的第一符号是通过64QAM能够得到的第二符号中的一部分的情况下,对于经过伪16APSK调制和64QAM能够得到的相同符号,4个第一比特可以是6个第二比特中至少一部分第二比特的函数。例如,可通过以下公式(1)表示第一比特中各个比特和第二比特的对应性:
Figure PCTCN2021106530-appb-000001
其中,“~”表示逻辑运算符“非”。
如以上公式(1)所示,伪16APSK调制以4个第一比特为单位进行比特到符号映射,64QAM以6个第二比特为单位进行比特到符号映射,并且对于经过伪16APSK调制和64QAM能够得到的相同符号,伪16APSK调制的4个第一比特可以是64QAM的6个第二比特中前4个比特c(6i),c(6i+1),c(6i+2),c(6i+3)的函数。
可附加或替换地,对于经过伪16APSK调制和64QAM能够得到的相同符号,伪16APSK调制的4个第一比特也可与使用64QAM的6个第二比特中的全部比特相对应。例如,在以上公式(1)的基础上,还可通过以下公式(2)来表示第一比特中各个比特和第二比特中后面两个比特c(6i+4),c(6i+5)的对应性:
c(6i+4)=c(6i+5)=b(4i)∨b(4i+1)          ……(2)
其中“∨”表示逻辑运算符“或”。
又例如,在伪N阶第一类型调制为伪16APSK调制,M阶第二类型调制为256QAM的情况下,对于伪16APSK调制,可以以4个第一比特b(4i),b(4i+1),b(4i+2),b(4i+3)为单位进行比特到符号映射,其中i为大于或等于0的整数。此外,对于256QAM,可以以8个第二比特c(8i),c(8i+1),c(8i+2),c(8i+3),c(8i+4),c(8i+5),c(8i+6),c(8i+7)为单位进行比特到符号映射。在通过伪16APSK调制能够得到的第一符号是通过256QAM能够得到的第二符号中的一部分的情况下,对于经过伪16APSK调制和256QAM能够得到的相同符号,4个第一比特可以是8个第 二比特中至少一部分第二比特的函数。例如,可通过以下公式(3)表示第一比特中各个比特和第二比特的对应性:
Figure PCTCN2021106530-appb-000002
其中,“~”表示逻辑运算符“非”。
如以上公式(3)所示,伪16APSK调制以4个第一比特为单位进行比特到符号映射,256QAM以8个第二比特为单位进行比特到符号映射,并且对于经过伪16APSK调制和256QAM能够得到的相同符号,伪16APSK调制的4个第一比特可以是256QAM的8个第二比特中前4个比特c(8i),c(8i+1),c(8i+2),c(8i+3)的函数。
可附加或替换地,对于经过伪16APSK调制和256QAM能够得到的相同符号,伪16APSK调制的4个第一比特也可与使用256QAM的8个第二比特中的全部比特相对应。例如,在以上公式(3)的基础上,还可通过以下公式(4)来表示第一比特中各个比特和第二比特中后面4个比特b(8i+4),b(8i+5),b(8i+6),b(8i+7)的对应性:
Figure PCTCN2021106530-appb-000003
其中
Figure PCTCN2021106530-appb-000004
表示逻辑运算符“异或”。
根据本公开的一个示例,控制单元320可根据比特到符号映射公式或比特到符号映射表对所述第一输入比特序列进行伪N阶第一类型调制。
由于以上结合公式(1)-(4)所描述的,对于相同符号,p个第一比特与q个第二比特中至少一部分第二比特具有对应性,因此,可根据第二类型调制的符号映射公式或比特到符号映射表获得对应的伪第一类型调制的符号映射公式或比特到符号映射表。
例如,64QAM的比特到符号映射公式如以下公式(5)所示:
Figure PCTCN2021106530-appb-000005
可根据以上公式(1)和(2)所示的伪16APSK调制的第一比特与64QAM的第二比特的对应性,并且根据公式(5)所示的64QAM的比特到符号映射公式来获得伪16APSK调制的符号映射公式。具体地,16APSK的比特到符号映射公式如以下公式(6)所示:
Figure PCTCN2021106530-appb-000006
其中,
Figure PCTCN2021106530-appb-000007
Figure PCTCN2021106530-appb-000008
C=b(4i)∨b(4i+1)
Figure PCTCN2021106530-appb-000009
又例如,256QAM的比特到符号映射公式如以下公式(7)所示:
Figure PCTCN2021106530-appb-000010
可根据以上公式(3)和(4)所示的伪16APSK调制的第一比特与256QAM的第二比特的对应性,并且根据公式(7)所示的256QAM的比特到符号映射公式来获得伪16APSK调制的符号映射公式。具体地,16APSK的比特到符号映射公式如以下公式(8)所示:
Figure PCTCN2021106530-appb-000011
其中,
Figure PCTCN2021106530-appb-000012
Figure PCTCN2021106530-appb-000013
C=b(4i)∨b(4i+1)
Figure PCTCN2021106530-appb-000014
此外,图5A至图5C示出了根据本公开的一个示例,根据第二类型调制的比特到符号映射表获得对应的伪第一类型调制比特到符号映射表的示意图。图5A至图5C示例性地示出了根据3GPP标准中QAM的比特到符号映射表获得伪APSK调制的比特到符号映射表。
具体地,图5A是示出了根据3GPP的5G NR标准中的64QAM比特到符号映射表获得的伪16APSK调制的比特到符号映射表的示意图。在图5A所示的示例中,可根据以上公式(1)和(2)所示的伪16APSK调制的第一比特与64QAM的第二比特的对应性,并且根据5G NR标准中的64QAM比特到符号映射表来获得伪16APSK调制的符号映射公式。如图5A所示,使用64QAM的比特到符号映射表对于第二比特000011进行映射,可得到码元符号
Figure PCTCN2021106530-appb-000015
根据以上公式(1)和(2)所示的伪16APSK调制的第一比特与64QAM的第二比特的对应性,可得到与第二比特000011对应的伪16APSK调制的第一比特为1100。也就是说,使用伪16APSK调制对于第一比特1100进行映射,也可得到码元符号
Figure PCTCN2021106530-appb-000016
应理解,如公式(5)所示,64QAM的功率归一化因子是
Figure PCTCN2021106530-appb-000017
并且如公式(6)所示,伪16APSK的功率归一化因子是
Figure PCTCN2021106530-appb-000018
由于图5A所示的表格是基于64QAM比特到符号映射表获得的伪16APSK调制的比特到符号映射表,因此,在图5A所示的表格中以
Figure PCTCN2021106530-appb-000019
作为码元符号的因子。当根据64QAM进行比特到符号映射时,根据第二比特也可以得到对应的以
Figure PCTCN2021106530-appb-000020
作为因子的码元符号,但是该符号对于64QAM来说是未进行功率归一化的。
可替换地,在图5A所示的示例中,可仅根据以上公式(1)所示的伪16APSK调制的第一比特与64QAM的部分第二比特的对应性,并且根据5G NR标准中的64QAM比特到符号映射表来获得伪16APSK调制的符号映射公式。如图5A所示,使用64QAM的比特到符号映射表对于第二比特000011进行映射,可得到码元符号
Figure PCTCN2021106530-appb-000021
仅根据以上公式(1)所示的伪16APSK调制的第一比特与64QAM的第二比特中前4个比特的对应性,可得到与第二比特000011对应的伪16APSK调制的第一比特为1100。也就是说,仅根据第二比特000011中的前4个比特“0000”即可得到对应的伪16APSK调制的第一比特为1100。并且使用伪16APSK调制对于第一比特1100进行映射,也可得到码元符号
Figure PCTCN2021106530-appb-000022
图5B是示出了根据5G NR标准中的256QAM比特到符号映射表获得的伪16APSK调制的比特到符号映射表的示意图。在图5B所示的示例中,可根据以上公式(3)和(4)所示的伪16APSK调制的第一比特与256QAM的第二比特的对应性,并且根据5G NR标准中的256QAM比特到符号映射表来获得伪16APSK调制的符号映射公式。如图5B所示,使用256QAM的比特到符号映射表对于第二比特00001100进行映射,可得到码元符号
Figure PCTCN2021106530-appb-000023
根据以上公式(3)和(4)所示的伪16APSK调制的第一比特与256QAM的第二比特的对应性,可得到与第二比特00001100对应的伪16APSK调制的第一比特为1100。也就是说,使用伪16APSK调制对于第一比特1100进行映射,也可得到码元符号
Figure PCTCN2021106530-appb-000024
应理解,如公式(7)所示,256QAM的功率归一化因子是
Figure PCTCN2021106530-appb-000025
并且如公式(8)所示,伪16APSK的功率归一化因子是
Figure PCTCN2021106530-appb-000026
由于图5B所示的表格是基于256QAM比特到符号映射表获得的伪16APSK调制的比特到符号映射表,因此,在图5B所示的表格中以
Figure PCTCN2021106530-appb-000027
作为码元符号的因子。当根据256QAM进行比特到符号映射时,根据第二比特也可以得到对应的以
Figure PCTCN2021106530-appb-000028
作为因子的码元符号,但是该符号对于256QAM来说是未进行功率归一化的。
可替换地,在图5B所示的示例中,可仅根据以上公式(3)所示的伪16APSK调制的第一比特与256QAM的部分第二比特的对应性,并且根据5G NR标准中的256QAM比特到符号映射表来获得伪16APSK调制的符号映射公式。如图5B所示,使用256QAM的比特到符号映射表对于第二比特00001100进行映射,可得到码元符号
Figure PCTCN2021106530-appb-000029
仅根据以上公式(3)所示的伪16APSK调制的第一比特与256QAM的第二比特中前4个比特的对应性,可得到与第二比特00001100对应的伪16APSK调制的第一比特为1100。也就是说,仅根据第二比特00001100中的前4个比特“0000”即可得到对应的伪16APSK调制的第一比特为1100。并且使用伪16APSK调制对于第一比特1100进行映射,也可得到码元符号
Figure PCTCN2021106530-appb-000030
图5C是示出了根据5G NR标准中的256QAM比特到符号映射表获得的伪32APSK调制的比特到符号映射表的示意图。在图5C所示的示例中,可根据伪32APSK调制的第一比特与256QAM的第二比特的对应性,获得伪32APSK调制的符号映射表。
可替换地,根据本公开的另一实施例,对于根据所述伪N阶第一类型调制和根据所述M阶第二类型调制得到的相同符号,所述p个第一比特可以与q个第二比特中的前p个第二比特相同。进一步地,可根据M阶第二类型调制的比特到符号映射表得到伪N阶第一类型调制的比特到符号映射表。
图6A和图6B示例性地示出了根据本公开的另一示例,根据3GPP标准中QAM的比特到符号映射表获得伪APSK调制的比特到符号映射表。具体地,图6A是示出了根据5G NR标准中的64QAM比特到符号映射表获得的伪16APSK调制的比特到符号映射表的示意图。如图6A所示,对于相同的码元符号,伪16APSK调制所使用的4个第一比特与64QAM所使用的6个第二比特中的前4个比特相同。例如,对于码元符号
Figure PCTCN2021106530-appb-000031
伪16APSK调制所使用的第一比特为0000,其与64QAM所使用的第二比特为000011中的前4个比特相同。
图6B是示出了根据3GPP标准中的256QAM比特到符号映射表获得的伪16APSK调制的比特到符号映射表的示意图。如图6B所示,对于相同的码元符号,伪16APSK调制所使用的4个第一比特与256QAM所使用的8个第二比特中的前4个比特相同。例如,对于码元符号
Figure PCTCN2021106530-appb-000032
伪16APSK调制所使用的第一比特为0000,其与256QAM所使用的第二比特为00001100中的前4个比特相同。
以上结合图5A-图5C以及图6A和图6B示出了在本公开中,根据QAM的比特到符号映射表获得伪APSK调制的比特到符号映射表的示例。应理解,根据本公开的实施例,还可使用类似的方法获得其他需要模拟的N阶第一类型调制。例如,伪32APSK调制以5个第一比特为单位进行调制。可根据256QAM中的前5个比特与伪32APSK调制的第一比特的对应性,以及3GPP标准中的256QAM比特到符号映射表获得伪32APSK调制的比特到符号映射表。例如,伪64APSK调制以6个第一比特为单位进行调制。可根据256QAM中的前6个比特与伪64APSK调制的第一比特的对应性,以及3GPP标准中的256QAM比特到符号映射表获得的伪64APSK调制的比特到符号映射表。
根据本公开的另一实施例,电子设备300还可包括接收单元,以接收调制与编码策略(MCS)信令。控制单元320可根据所接收到的调制与编码策 略信令和预先确定的调制与编码策略表对所述第一输入比特序列进行伪N阶第一类型调制,其中第一类型调制为APSK调制。在根据本公开实施例的预先确定的调制与编码策略表中,至少包括关于伪N阶APSK调制的参数。
根据本公开的一个示例,可在目前的调制与编码策略表中添加关于伪APSK调制的调制与编码策略。例如,可删除目前的调制与编码策略表中部分调制的调制与编码策略,并增加关于伪APSK调制的调制与编码策略。
从而可不增加MCS信令所使用的比特数。例如,可使用伪16APSK的调制与编码策略替换目前的调制与编码策略表中的16QAM相关的调制与编码策略。此外,还可使用伪64APSK的调制与编码策略替换目前的调制与编码策略表中的64QAM相关的调制与编码策略。
又例如,可在目前的调制与编码策略表的基础上增加伪APSK调制的调制与编码策略,而不删除目前的调制与编码策略表中的调制与编码策略。在此情况下,需要增加MCS信令所使用的比特数。例如,可在目前的调制与编码策略表的基础上,增加关于伪16APSK、伪32APSK、伪64APSK等调制方式的调制与编码策略。
图7A和图7B是示出了根据本公开实施例的调制与编码策略表示意图。在图7A所示的示例中,如灰色部分所示,删除目前的调制与编码策略表中MCS指示I MCS取值为10-22时所指示的调制与编码策略,并使用MCS指示I MCS 10-22指示关于16APSK_256QAM调制的调制与编码策略。在图7A所示的示例中,由于删除了目前的调制与编码策略表中的部分调制方式,因此可使用与目前MCS指示所需的比特数相同的比特来通知MCS指示I MCS
可替换地,在图7B所示的示例中,如灰色部分所示在目前的调制与编码策略表的基础上,增加关于16APSK_256QAM调制的调制与编码策略。因此在图7B所示的示例中,需要使用比目前MCS指示所需的比特数更多的比特来通知MCS指示I MCS
根据本公开的一个示例,可预先确定关于所述电子设备所在的通信系统支持的部分调制与编码策略的表。例如,可预先确定只包含低PAPR星座调制的新MCS表。从而可通过较少的比特发送针对只包含低PAPR星座调制的新MCS表的MCS信令。例如可针对BPSK、π/2-BPSK、π/4-BPSK,QPSK、π/4-QPSK,伪16APSK、伪32APSK、伪64APSK等低PAPR的星座调制方 式设置局部MCS表,以便于灵活选用不同MCS表格,调整MCS指示的开销。
在设置了局部MCS表的情况下,根据本公开的一个示例,可通过MCS标识信息来确定使用哪种MCS表。在下行传输的情况下,例如,基站可根据用户设备反馈的关于等效信道等的信息选择是否采用低峰均比MCS表。如果基站确定等效信道增益高,则可选择使用传统的MCS表,反之,则选择可基于N-APSK_M-QAM星座的MCS表,并向用户设备发送相应的MCS标识信息。又例如,电子设备300可主动向基站发送MCS标识信息以通知基站其需要低峰均比的MCS方案。类似地,在上行传输的情况下,也可由基站通过MCS标识信息向用户设备通知使用哪种MCS表,或者由用户设备自行选择特定MCS表并通过MCS标识信息通知基站。根据本公开的一个示例,可使用下行控制信息(DCI)、MAC层控制单元(MAC CE)或无线资源控制(RRC)信令等发送所述MCS标识信息。根据本公开的另一示例,在电子设备300可主动向基站发送MCS标识信息的情况下,可使用上行控制信息(UCI)等发送所述MCS标识信息。
下面,参照图8来描述根据本公开实施例的调制方法。图8是根据本公开的一个实施例的调制方法800的流程图。由于调制方法800的步骤与上文参照图描述的电子设备300的操作对应,因此在这里为了简单起见,省略对相同内容的详细描述。
如图8所示,在步骤S801中,获得第一输入比特序列。然后,步骤S802中对所述第一输入比特序列进行伪N阶第一类型调制。例如,根据步骤S801基站可首先获得第一输入比特序列,然后对所述第一输入比特序列进行伪N阶第一类型调制,以获得要向与该基站连接的UE发送的第一码元。在本公开的实施例中,通过伪N阶第一类型调制能够得到的N个第一符号是通过M阶第二类型调制能够得到的M个第二符号中的一部分,其中M和N为正整数,并且M大于N。
在根据本公开的实施例中,可通过使用M阶第二类型调制能够得到的M个第二符号中的一部分来模拟使用N阶第一类型调制能够得到的符号。在根据本公开的实施例中,可将这种通过模拟方式进行的N阶第一类型调制,称为伪N阶第一类型调制,或基于M阶第二类型调制的N阶第一类型调制。
例如,第二类型调制可以是传统的QAM,第一类型调制可以是APSK调制、圆形QAM或螺旋(Spiral)QAM等。在本公开的实施例中,可通过使用M阶QAM能够得到的M个第二符号中的一部分来模拟使用N阶APSK调制、圆形QAM或螺旋(Spiral)QAM等调制方式能够得到的符号。在一些示例中,可参考图4来执行从使用M阶第二类型调制能够得到的M个第二符号中的一部分来模拟使用N阶第一类型调制能够得到符号。
根据本公开的一个实施例,控制单元320可根据比特到符号映射公式或比特到符号映射表对所述第一输入比特序列进行伪N阶第一类型调制。此外,根据本公开的另一实施例,对于根据所述伪N阶第一类型调制和根据所述M阶第二类型调制得到的相同符号,所述p个第一比特是所述q个第二比特中至少一部分第二比特的函数。因此,可根据第二类型调制的符号映射公式或比特到符号映射表获得对应的伪第一类型调制的符号映射公式或比特到符号映射表。可参考公式(1)-公式(8)来执行根据第二类型调制的符号映射公式或比特到符号映射表获得对应的伪第一类型调制的比特到符号映射公式。此外,可参考图5A-图5C来执行根据第二类型调制的符号映射公式或比特到符号映射表获得对应的伪第一类型调制的比特到符号映射表。
可替换地,根据本公开的另一实施例,对于根据所述伪N阶第一类型调制和根据所述M阶第二类型调制得到的相同符号,所述p个第一比特可q个第二比特中的前p个第二比特相同。进一步地,可根据M阶第二类型调制的比特到符号映射表得到伪N阶第一类型调制的比特到符号映射表。可参考图6A和图6B来执行根据第二类型调制的符号映射公式或比特到符号映射表获得对应的伪第一类型调制的比特到符号映射表。
根据本公开的另一实施例,方法800还可包括接收调制与编码策略(MCS)信令。在步骤S802中,可根据所接收到的调制与编码策略信令和预先确定的调制与编码策略表对所述第一输入比特序列进行伪N阶第一类型调制,其中第一类型调制为APSK调制。在根据本公开实施例的预先确定的调制与编码策略表中,至少包括关于伪N阶APSK调制的参数。
根据本公开的一个示例,可在目前的调制与编码策略表中添加关于伪APSK调制的调制与编码策略。例如,可删除目前的调制与编码策略表中部分调制的调制与编码策略,并增加关于伪APSK调制的调制与编码策略。从而 可不增加MCS信令所使用的比特数。例如,可使用伪16APSK的调制与编码策略替换目前的调制与编码策略表中的16QAM相关的调制与编码策略。此外,还可使用伪64APSK的调制与编码策略替换目前的调制与编码策略表中的64QAM相关的调制与编码策略。
又例如,可在目前的调制与编码策略表的基础上增加关于伪APSK调制的调制与编码策略,而不删除目前的调制与编码策略表中的调制与编码策略。在此情况下,需要增加MCS信令所使用的比特数。例如,可在目前的调制与编码策略表的基础上,增加关于伪16APSK、伪32APSK、伪64APSK等调制方式的调制与编码策略。
根据本公开的一个示例,可预先确定关于所述电子设备所在的通信系统支持的部分调制与编码策略的表。例如,可预先确定只包含低PAPR星座调制的新MCS表。从而可通过较少的比特发送针对只包含低PAPR星座调制的新MCS表的MCS信令。例如可针对BPSK、π/2-BPSK、π/4-BPSK、QPSK、π/4-QPSK,伪16APSK、伪32APSK、伪64APSK等低PAPR的星座调制方式设置局部MCS表,以便于灵活选用不同MCS表格,调整MCS指示的开销。
在设置了局部MCS表的情况下,根据本公开的一个示例,可通过MCS标识信息来确定使用哪种MCS表。例如,可使用下行控制信息(DCI)、MAC层控制单元(MAC CE)或无线资源控制(RRC)信令等发送所述MCS标识信息。根据本公开的另一示例,在电子设备300可主动向基站发送MCS标识信息的情况下,可使用上行控制信息(UCI)等发送所述MCS标识信息。
在以上结合图8描述的调制方法中,通过使用M阶第二类型调制能够得到的M个第二符号中的一部分来模拟使用N阶第一类型调制能够得到符号,可在保证兼容性的同时,获得满足不同需求的星座调制。
<硬件结构>
另外,上述实施方式的说明中使用的框图示出了以功能为单位的块。这些功能块(结构单元)通过硬件和/或软件的任意组合来实现。此外,各功能块的实现手段并不特别限定。即,各功能块可以通过在物理上和/或逻辑上相结合的一个装置来实现,也可以将在物理上和/或逻辑上相分离的两个以上装 置直接地和/或间接地(例如通过有线和/或无线)连接从而通过上述多个装置来实现。
例如,本公开的一个实施例的电子设备可以作为执行本公开的信息发送方法的处理的计算机来发挥功能。图9是根据本公开的实施例的所涉及的设备900(电子设备)的硬件结构的示意图。上述的设备900(第一网络元件)可以作为在物理上包括处理器910、内存920、存储器930、通信装置940、输入装置950、输出装置960、总线970等的计算机装置来构成。
另外,在以下的说明中,“装置”这样的文字也可替换为电路、设备、单元等。电子设备的硬件结构可以包括一个或多个图中所示的各装置,也可以不包括部分装置。
例如,处理器910仅图示出一个,但也可以为多个处理器。此外,可以通过一个处理器来执行处理,也可以通过一个以上的处理器同时、依次、或采用其它方法来执行处理。另外,处理器910可以通过一个以上的芯片来安装。
设备900的各功能例如通过如下方式实现:通过将规定的软件(程序)读入到处理器910、内存920等硬件上,从而使处理器910进行运算,对由通信装置940进行的通信进行控制,并对内存920和存储器930中的数据的读出和/或写入进行控制。
处理器910例如使操作系统进行工作从而对计算机整体进行控制。处理器910可以由包括与周边装置的接口、控制装置、运算装置、寄存器等的中央处理器(CPU,Central Processing Unit)构成。例如,上述的控制单元等可以通过处理器910实现。
此外,处理器910将程序(程序代码)、软件模块、数据等从存储器930和/或通信装置940读出到内存920,并根据它们执行各种处理。作为程序,可以采用使计算机执行在上述实施方式中说明的动作中的至少一部分的程序。例如,第一网络元件的处理单元可以通过保存在内存920中并通过处理器910来工作的控制程序来实现,对于其它功能块,也可以同样地来实现。
内存920是计算机可读取记录介质,例如可以由只读存储器(ROM,Read Only Memory)、可编程只读存储器(EPROM,Erasable Programmable ROM)、电可编程只读存储器(EEPROM,Electrically EPROM)、随机存取存储器(RAM, Random Access Memory)、其它适当的存储介质中的至少一个来构成。内存920也可以称为寄存器、高速缓存、主存储器(主存储装置)等。内存920可以保存用于实施本公开的一实施方式所涉及的方法的可执行程序(程序代码)、软件模块等。
存储器930是计算机可读取记录介质,例如可以由软磁盘(flexible disk)、软(注册商标)盘(floppy disk)、磁光盘(例如,只读光盘(CD-ROM(Compact Disc ROM)等)、数字通用光盘、蓝光(Blu-ray,注册商标)光盘)、可移动磁盘、硬盘驱动器、智能卡、闪存设备(例如,卡、棒(stick)、密钥驱动器(key driver))、磁条、数据库、服务器、其它适当的存储介质中的至少一个来构成。存储器930也可以称为辅助存储装置。
通信装置940是用于通过有线和/或无线网络进行计算机间的通信的硬件(发送接收装置),例如也称为网络设备、网络控制器、网卡、通信模块等。通信装置940为了实现例如频分双工(FDD,Frequency Division Duplex)和/或时分双工(TDD,Time Division Duplex),可以包括高频开关、双工器、滤波器、频率合成器等。例如,上述的发送单元、接收单元等可以通过通信装置940来实现。
输入装置950是接受来自外部的输入的输入设备(例如,键盘、鼠标、麦克风、开关、按钮、传感器等)。输出装置960是实施向外部的输出的输出设备(例如,显示器、扬声器、发光二极管(LED,Light Emitting Diode)灯等)。另外,输入装置950和输出装置960也可以为一体的结构(例如触控面板)。
此外,处理器910、内存920等各装置通过用于对信息进行通信的总线970连接。总线970可以由单一的总线构成,也可以由装置间不同的总线构成。
此外,电子设备可以包括微处理器、数字信号处理器(DSP,Digital Signal Processor)、专用集成电路(ASIC,Application Specific Integrated Circuit)、可编程逻辑器件(PLD,Programmable Logic Device)、现场可编程门阵列(FPGA,Field Programmable Gate Array)等硬件,可以通过该硬件来实现各功能块的部分或全部。例如,处理器910可以通过这些硬件中的至少一个来安装。
(变形例)
另外,关于本说明书中说明的用语和/或对本说明书进行理解所需的用语,可以与具有相同或类似含义的用语进行互换。例如,信道和/或符号也可以为信号(信令)。此外,信号也可以为消息。参考信号也可以简称为RS(Reference Signal),根据所适用的标准,也可以称为导频(Pilot)、导频信号等。此外,分量载波(CC,Component Carrier)也可以称为小区、频率载波、载波频率等。
此外,本说明书中说明的信息、参数等可以用绝对值来表示,也可以用与规定值的相对值来表示,还可以用对应的其它信息来表示。例如,无线资源可以通过规定的索引来指示。进一步地,使用这些参数的公式等也可以与本说明书中明确公开的不同。
在本说明书中用于参数等的名称在任何方面都并非限定性的。例如,各种各样的信道(物理上行链路控制信道(PUCCH,Physical Uplink Control Channel)、物理下行链路控制信道(PDCCH,Physical Downlink Control Channel)等)和信息单元可以通过任何适当的名称来识别,因此为这些各种各样的信道和信息单元所分配的各种各样的名称在任何方面都并非限定性的。
本说明书中说明的信息、信号等可以使用各种各样不同技术中的任意一种来表示。例如,在上述的全部说明中可能提及的数据、命令、指令、信息、信号、比特、符号、芯片等可以通过电压、电流、电磁波、磁场或磁性粒子、光场或光子、或者它们的任意组合来表示。
此外,信息、信号等可以从上层向下层、和/或从下层向上层输出。信息、信号等可以经由多个网络节点进行输入或输出。
输入或输出的信息、信号等可以保存在特定的场所(例如内存),也可以通过管理表进行管理。输入或输出的信息、信号等可以被覆盖、更新或补充。输出的信息、信号等可以被删除。输入的信息、信号等可以被发往其它装置。
信息的通知并不限于本说明书中说明的方式/实施方式,也可以通过其它方法进行。例如,信息的通知可以通过物理层信令(例如,下行链路控制信息(DCI,Downlink Control Information)、上行链路控制信息(UCI,Uplink Control Information))、上层信令(例如,无线资源控制(RRC,Radio Resource Control)信令、广播信息(主信息块(MIB,Master Information Block)、系统信息块 (SIB,System Information Block)等)、媒体存取控制(MAC,Medium Access Control)信令)、其它信号或者它们的组合来实施。
另外,物理层信令也可以称为L1/L2(第1层/第2层)控制信息(L1/L2控制信号)、L1控制信息(L1控制信号)等。此外,RRC信令也可以称为RRC消息,例如可以为RRC连接建立(RRC Connection Setup)消息、RRC连接重设定(RRC Connection Reconfiguration)消息等。此外,MAC信令例如可以通过MAC控制单元(MAC CE(Control Element))来通知。
此外,规定信息的通知(例如,“为X”的通知)并不限于显式地进行,也可以隐式地(例如,通过不进行该规定信息的通知,或者通过其它信息的通知)进行。
关于判定,可以通过由1比特表示的值(0或1)来进行,也可以通过由真(true)或假(false)表示的真假值(布尔值)来进行,还可以通过数值的比较(例如与规定值的比较)来进行。
软件无论被称为软件、固件、中间件、微代码、硬件描述语言,还是以其它名称来称呼,都应宽泛地解释为是指命令、命令集、代码、代码段、程序代码、程序、子程序、软件模块、应用程序、软件应用程序、软件包、例程、子例程、对象、可执行文件、执行线程、步骤、功能等。
此外,软件、命令、信息等可以经由传输介质被发送或接收。例如,当使用有线技术(同轴电缆、光缆、双绞线、数字用户线路(DSL,Digital Subscriber Line)等)和/或无线技术(红外线、微波等)从网站、服务器、或其它远程资源发送软件时,这些有线技术和/或无线技术包括在传输介质的定义内。
本说明书中使用的“系统”和“网络”这样的用语可以互换使用。
在本说明书中,“基站(BS,Base Station)”、“无线基站”、“eNB”、“gNB”、“小区”、“扇区”、“小区组”、“载波”以及“分量载波”这样的用语可以互换使用。基站有时也以固定台(fixed station)、NodeB、eNodeB(eNB)、接入点(access point)、发送点、接收点、毫微微小区、小小区等用语来称呼。
基站可以容纳一个或多个(例如三个)小区(也称为扇区)。当基站容纳多个小区时,基站的整个覆盖区域可以划分为多个更小的区域,每个更小的区域也可以通过基站子系统(例如,室内用小型基站(射频拉远头(RRH, Remote Radio Head)))来提供通信服务。“小区”或“扇区”这样的用语是指在该覆盖中进行通信服务的基站和/或基站子系统的覆盖区域的一部分或整体。
在本说明书中,“移动台(MS,Mobile Station)”、“用户终端(user terminal)”、“用户装置(UE,User Equipment)”以及“终端”这样的用语可以互换使用。移动台有时也被本领域技术人员以用户台、移动单元、用户单元、无线单元、远程单元、移动设备、无线设备、无线通信设备、远程设备、移动用户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或者若干其它适当的用语来称呼。
此外,本说明书中的无线基站也可以用用户终端来替换。例如,对于将无线基站和用户终端间的通信替换为多个用户终端间(D2D,Device-to-Device)的通信的结构,也可以应用本公开的各方式/实施方式。此时,可以将上述的电子设备所具有的功能当作用户终端所具有的功能。此外,“上行”和“下行”等文字也可以替换为“侧”。例如,上行信道也可以替换为侧信道。
同样,本说明书中的用户终端也可以用无线基站来替换。此时,可以将上述的用户终端所具有的功能当作第一通信设备或第二通信设备所具有的功能。
在本说明书中,设为通过基站进行的特定动作根据情况有时也通过其上级节点(upper node)来进行。显然,在具有基站的由一个或多个网络节点(network nodes)构成的网络中,为了与终端间的通信而进行的各种各样的动作可以通过基站、除基站之外的一个以上的网络节点(可以考虑例如移动管理实体(MME,Mobility Management Entity)、服务网关(S-GW,Serving-Gateway)等,但不限于此)、或者它们的组合来进行。
本说明书中说明的各方式/实施方式可以单独使用,也可以组合使用,还可以在执行过程中进行切换来使用。此外,本说明书中说明的各方式/实施方式的处理步骤、序列、流程图等只要没有矛盾,就可以更换顺序。例如,关于本说明书中说明的方法,以示例性的顺序给出了各种各样的步骤单元,而并不限定于给出的特定顺序。
本说明书中说明的各方式/实施方式可以应用于利用长期演进(LTE,Long Term Evolution)、高级长期演进(LTE-A,LTE-Advanced)、超越长期演进(LTE-B,LTE-Beyond)、超级第3代移动通信系统(SUPER 3G)、高 级国际移动通信(IMT-Advanced)、第4代移动通信系统(4G,4th generation mobile communication system)、第5代移动通信系统(5G,5th generation mobile communication system)、未来无线接入(FRA,Future Radio Access)、新无线接入技术(New-RAT,Radio Access Technology)、新无线(NR,New Radio)、新无线接入(NX,New radio access)、新一代无线接入(FX,Future generation radio access)、全球移动通信系统(GSM(注册商标),Global System for Mobile communications)、码分多址接入3000(CDMA3000)、超级移动宽带(UMB,Ultra Mobile Broadband)、IEEE 920.11(Wi-Fi(注册商标))、IEEE 920.16(WiMAX(注册商标))、IEEE 920.20、超宽带(UWB,Ultra-WideBand)、蓝牙(Bluetooth(注册商标))、其它适当的无线通信方法的系统和/或基于它们而扩展的下一代系统。
本说明书中使用的“根据”这样的记载,只要未在其它段落中明确记载,则并不意味着“仅根据”。换言之,“根据”这样的记载是指“仅根据”和“至少根据”这两者。
本说明书中使用的对使用“第一”、“第二”等名称的单元的任何参照,均非全面限定这些单元的数量或顺序。这些名称可以作为区别两个以上单元的便利方法而在本说明书中使用。因此,第一单元和第二单元的参照并不意味着仅可采用两个单元或者第一单元必须以若干形式占先于第二单元。
本说明书中使用的“判断(确定)(determining)”这样的用语有时包含多种多样的动作。例如,关于“判断(确定)”,可以将计算(calculating)、推算(computing)、处理(processing)、推导(deriving)、调查(investigating)、搜索(looking up)(例如表、数据库、或其它数据结构中的搜索)、确认(ascertaining)等视为是进行“判断(确定)”。此外,关于“判断(确定)”,也可以将接收(receiving)(例如接收信息)、发送(transmitting)(例如发送信息)、输入(input)、输出(output)、存取(accessing)(例如存取内存中的数据)等视为是进行“判断(确定)”。此外,关于“判断(确定)”,还可以将解决(resolving)、选择(selecting)、选定(choosing)、建立(establishing)、比较(comparing)等视为是进行“判断(确定)”。也就是说,关于“判断(确定)”,可以将若干动作视为是进行“判断(确定)”。
本说明书中使用的“连接的(connected)”、“结合的(coupled)”这样的用语或者它们的任何变形是指两个或两个以上单元间的直接的或间接的任何连接或结合,可以包括以下情况:在相互“连接”或“结合”的两个单元间,存在一个或一个以上的中间单元。单元间的结合或连接可以是物理上的,也可以是逻辑上的,或者还可以是两者的组合。例如,“连接”也可以替换为“接入”。在本说明书中使用时,可以认为两个单元是通过使用一个或一个以上的电线、线缆、和/或印刷电气连接,以及作为若干非限定性且非穷尽性的示例,通过使用具有射频区域、微波区域、和/或光(可见光及不可见光这两者)区域的波长的电磁能等,被相互“连接”或“结合”。
在本说明书或权利要求书中使用“包括(including)”、“包含(comprising)”、以及它们的变形时,这些用语与用语“具备”同样是开放式的。进一步地,在本说明书或权利要求书中使用的用语“或(or)”并非是异或。
以上对本公开进行了详细说明,但对于本领域技术人员而言,显然,本公开并非限定于本说明书中说明的实施方式。本公开在不脱离由权利要求书的记载所确定的本公开的宗旨和范围的前提下,可以作为修改和变更方式来实施。因此,本说明书的记载是以示例说明为目的,对本公开而言并非具有任何限制性的意义。

Claims (10)

  1. 一种电子设备,包括:
    接收单元,被配置为获得第一输入比特序列;
    控制单元,被配置为对所述第一输入比特序列进行伪N阶第一类型调制,其中
    通过所述伪N阶第一类型调制能够得到的N个第一符号是通过M阶第二类型调制能够得到的M个第二符号中的一部分,其中M和N为正整数,并且M大于N。
  2. 如权利要求1所述的电子设备,其中
    所述控制单元根据比特到符号映射公式或比特到符号映射表对所述第一输入比特序列进行伪N阶第一类型调制。
  3. 如权利要求1或2所述的电子设备,其中
    根据所述伪N阶第一类型调制,以p个第一比特为单位进行比特到符号映射;
    根据所述M阶第二类型调制,以q个第二比特为单位进行比特到符号映射;
    对于根据所述伪N阶第一类型调制和根据所述M阶第二类型调制得到的相同符号,所述p个第一比特是所述q个第二比特中至少一部分第二比特的函数,
    其中p和q为正整数,并且q大于p。
  4. 如权利要求3所述的电子设备,其中
    所述伪N阶第一类型调制的比特到符号映射公式或比特到符号映射表与所述M阶第二类型调制的比特到符号映射公式或比特到符号映射表对应。
  5. 如权利要求2所述的电子设备,其中
    根据所述伪N阶第一类型调制,以p个第一比特为单位进行比特到符号 映射;
    根据所述M阶第二类型调制,以q个第二比特为单位进行比特到符号映射;
    对于根据所述伪N阶第一类型调制和根据所述M阶第二类型调制得到的相同符号,所述p个第一比特与q个第二比特中的前p个第二比特相同,
    其中p和q正整数,并且q大于p。
  6. 如权利要求5所述的电子设备,其中
    所述伪N阶第一类型调制的比特到符号映射表与所述M阶第二类型调制的比特到符号映射表对应。
  7. 如权利要求1或2所述的电子设备,还包括:
    接收单元,配置来接收调制与编码策略信令,
    所述控制单元,根据所述调制与编码策略信令和预先确定的调制与编码策略表对所述第一输入比特序列进行伪N阶第一类型调制,其中
    所述第一类型调制为APSK调制,
    所述预先确定的调制与编码策略表至少包括关于伪N阶APSK调制的参数。
  8. 如权利要7所述的电子设备,其中
    所述预先确定的调制与编码策略表为关于所述电子设备所在的通信系统支持的部分或全部调制与编码策略的表。
  9. 一种调制方法,包括:
    获得第一输入比特序列;
    对所述第一输入比特序列进行伪N阶第一类型调制,其中
    通过所述伪N阶第一类型调制能够得到的N个第一符号是通过M阶第二类型调制能够得到的第二符号中的一部分,其中M和N为正整数,并且M大于N。
  10. 如权利要求9所述的方法,其中
    根据比特到符号映射公式或比特到符号映射表对所述第一输入比特序列进行伪N阶第一类型调制。
PCT/CN2021/106530 2021-07-15 2021-07-15 电子设备和调制方法 WO2023283885A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180099484.8A CN117529902A (zh) 2021-07-15 2021-07-15 电子设备和调制方法
PCT/CN2021/106530 WO2023283885A1 (zh) 2021-07-15 2021-07-15 电子设备和调制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/106530 WO2023283885A1 (zh) 2021-07-15 2021-07-15 电子设备和调制方法

Publications (1)

Publication Number Publication Date
WO2023283885A1 true WO2023283885A1 (zh) 2023-01-19

Family

ID=84918907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106530 WO2023283885A1 (zh) 2021-07-15 2021-07-15 电子设备和调制方法

Country Status (2)

Country Link
CN (1) CN117529902A (zh)
WO (1) WO2023283885A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160127166A1 (en) * 2014-10-31 2016-05-05 Tyco Electronics Subsea Communications Llc System and method for multi-dimensional modulation using multiple constellations
US20160127046A1 (en) * 2014-10-31 2016-05-05 Tyco Electronics Subsea Communications Llc System and Method for Multi-Dimensional Modulation Using Multiple Constellations
CN105723673A (zh) * 2014-05-30 2016-06-29 华为技术有限公司 一种高阶调制、解调装置、方法及系统
CN108551384A (zh) * 2018-03-26 2018-09-18 西南电子技术研究所(中国电子科技集团公司第十研究所) 吉比特率量级并行编码与调制的无线数据传输方法
CN108989253A (zh) * 2018-09-26 2018-12-11 南京信息工程大学 基于菱形调制与符号级部分标记方式的光概率成形方法
US20200028727A1 (en) * 2017-03-29 2020-01-23 Huawei Technologies Co., Ltd. Phase Adjustment Method, Related Device, and Communications System
WO2021105546A1 (en) * 2019-11-28 2021-06-03 Nokia Technologies Oy Reducing peak to average power ratio in wireless communication systems

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105723673A (zh) * 2014-05-30 2016-06-29 华为技术有限公司 一种高阶调制、解调装置、方法及系统
US20160127166A1 (en) * 2014-10-31 2016-05-05 Tyco Electronics Subsea Communications Llc System and method for multi-dimensional modulation using multiple constellations
US20160127046A1 (en) * 2014-10-31 2016-05-05 Tyco Electronics Subsea Communications Llc System and Method for Multi-Dimensional Modulation Using Multiple Constellations
US20200028727A1 (en) * 2017-03-29 2020-01-23 Huawei Technologies Co., Ltd. Phase Adjustment Method, Related Device, and Communications System
CN108551384A (zh) * 2018-03-26 2018-09-18 西南电子技术研究所(中国电子科技集团公司第十研究所) 吉比特率量级并行编码与调制的无线数据传输方法
CN108989253A (zh) * 2018-09-26 2018-12-11 南京信息工程大学 基于菱形调制与符号级部分标记方式的光概率成形方法
WO2021105546A1 (en) * 2019-11-28 2021-06-03 Nokia Technologies Oy Reducing peak to average power ratio in wireless communication systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INMARSAT, INTELSAT, SES, FRAUNHOFER IIS: "OFDM operation over satellite", 3GPP DRAFT; RP-192203 OFDM OPERATION OVER SATELLITE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Newport Beach, USA; 20190916 - 20190920, 11 September 2019 (2019-09-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051782745 *

Also Published As

Publication number Publication date
CN117529902A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
KR102551990B1 (ko) 전력 제어 방법 및 전력 제어 장치
EP3487213B1 (en) User terminal, radio base station and radio communication method for receiving downlink shared channel
WO2018202063A1 (zh) 干扰协调信息交互方法、减轻交叉链路干扰的方法和基站
WO2021019631A1 (ja) 通信装置及び通信方法
US11595883B2 (en) Wireless communication methods and corresponding base stations and user terminals
WO2018233543A1 (zh) 接入方法、网络设备及移动通信终端
US11362879B2 (en) Constellation rotation method and base station
CN113498175A (zh) 一种通信方法、设备及系统
WO2018083863A1 (ja) ユーザ装置
US11784746B2 (en) Bandwidth puncture and response rules
WO2023283885A1 (zh) 电子设备和调制方法
WO2020227866A1 (zh) 终端以及发送方法
US20230164688A1 (en) Method and system for managing power of radio unit (ru)
US20230345314A1 (en) Terminal and communication method
WO2019062535A1 (zh) 比特到符号的映射方法和通信装置
US20230239781A1 (en) Cell Selection Method and Apparatus
WO2023130377A1 (zh) 发送设备、接收设备和调制方法
WO2023130378A1 (zh) 发送设备和接收设备
WO2023130379A1 (zh) 发送设备、接收设备和接收方法
US11211970B2 (en) Communication method and corresponding user terminal, and base station
US20220263698A1 (en) Terminal
WO2019052441A1 (zh) 一种用于生成扩展符号的方法及装置
WO2019163113A1 (ja) ユーザ端末及び無線通信方法
WO2023015452A1 (zh) 终端设备和处理方法
WO2023092360A1 (zh) 通信系统中的终端以及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949671

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180099484.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE