WO2023092360A1 - 通信系统中的终端以及基站 - Google Patents

通信系统中的终端以及基站 Download PDF

Info

Publication number
WO2023092360A1
WO2023092360A1 PCT/CN2021/132923 CN2021132923W WO2023092360A1 WO 2023092360 A1 WO2023092360 A1 WO 2023092360A1 CN 2021132923 W CN2021132923 W CN 2021132923W WO 2023092360 A1 WO2023092360 A1 WO 2023092360A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
signal block
information
index
spatial filter
Prior art date
Application number
PCT/CN2021/132923
Other languages
English (en)
French (fr)
Inventor
王新
侯晓林
陈岚
须山聡
奥山达树
Original Assignee
株式会社Ntt都科摩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ntt都科摩 filed Critical 株式会社Ntt都科摩
Priority to PCT/CN2021/132923 priority Critical patent/WO2023092360A1/zh
Publication of WO2023092360A1 publication Critical patent/WO2023092360A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present disclosure relates to the field of wireless communication, and more particularly, to a method performed by a terminal in a communication system, a method performed by a base station in the communication system, and corresponding terminals and base stations.
  • a multi-antenna technology such as a multiple input multiple output (Multiple Input Multiple Output, MIMO) technology.
  • MIMO Multiple Input Multiple Output
  • a precoding/beam forming technology is proposed on the transmitter side .
  • KPIs Key Performance Indicators
  • the communication industry predicts that the peak data rate of wireless communication network systems after 5G can reach 1Tbps.
  • sufficient MIMO gain/array gain needs to be provided to increase the multiplexing order and SNR.
  • a larger antenna array and a higher number of antennas are required to provide the gain to support such extremely high data rate/capacity.
  • the required antenna array size reaches the order of 100,000.
  • the number of beams is on the order of tens of thousands.
  • the transmitter can transmit multiple beams in different spatial directions, and the receiver can monitor/scan multiple beam transmissions from the transmitter in different receiving spatial directions.
  • the receiver selects the optimal beam by measuring the received power or quality of the Reference Signal (RS) received on each beam to achieve beam alignment between the receiver and the transmitter.
  • RS Reference Signal
  • the present disclosure proposes a beam search operation based on hash mapping, so as to reduce RS overhead and shorten the time for a terminal to access a base station, thereby improving the performance of a communication system.
  • the present disclosure also proposes, in this case, a method performed by a terminal, a method performed by a base station, and the corresponding terminal and base station, so as to reduce RS overhead, thereby further improving the performance of the communication system.
  • a method performed by a terminal in a communication system including: receiving information about a spatial filter of a base station; Corresponding at least one spatial filter index, wherein the at least one spatial filter index corresponding to a specific synchronization signal block index is generated by using a pseudo-random sequence generator.
  • the information about the spatial filter of the base station includes information about the index of the sync signal block burst set associated with the spatial filter of the base station, about the sync signal block in the sync signal block burst set The index information, where a sync signal block burst set includes a plurality of sync signal blocks.
  • the above method further includes: receiving information about a system frame number; and determining the information about a burst set index of a synchronization signal block according to at least a part of bits in the information about a system frame number.
  • the information about the spatial filter of the base station further includes information about the total number of spatial filters used by the base station, information about the number of spatial filters used by the base station in each synchronization signal block at least one of the .
  • the above method further includes: performing beam scanning on the transmission beam of the base station within a beam scanning period to obtain a reference signal of the transmission beam Received power, wherein one of the beam scanning periods includes a plurality of synchronization signal block burst set periods.
  • the above method further includes: determining the preferred transmission according to the transmission beam corresponding to the reference signal received power higher than the first predetermined threshold and the transmission beam corresponding to the reference signal received power lower than the second predetermined threshold beam.
  • the above method further includes: terminating the beam scanning after the preferred transmission beam is determined, regardless of the remaining time of the current beam scanning period.
  • a method performed by a base station in a communication system comprising: in a beam scanning period, hashing at least a part of the transmission beam of the base station with the beam scanning period At least part of the sync signal blocks in the beam scanning period are mapped, wherein the one beam scanning period includes a plurality of sync signal block burst sets, and a sync signal block burst set includes a plurality of sync signal blocks; according to the mapping result, using the specific sync At least one beam corresponding to the signal block transmits the specific synchronization signal block.
  • the method further includes: sending information about a spatial filter of the base station, where the spatial filter of the base station indicates a transmission beam of the base station.
  • the method further includes: based on the information about the index of the sync signal block burst set associated with the spatial filter of the base station, the information about the index of the sync signal block in the sync signal block burst set, using A pseudo-random sequence generator that determines at least one spatial filter index corresponding to a particular sync signal block index.
  • a terminal device including: a receiving unit configured to receive information about the spatial filter of the base station; a control unit configured to determine according to the information about the spatial filter of the base station At least one spatial filter index corresponding to a specific sync signal block index, wherein the at least one spatial filter index corresponding to a specific sync signal block index is generated using a pseudo-random sequence generator.
  • the information about the spatial filter of the base station includes information about the index of the sync signal block burst set associated with the spatial filter of the base station, about the sync signal block in the sync signal block burst set The index information, where a sync signal block burst set includes a plurality of sync signal blocks.
  • the control unit determines the information about the synchronization signal block burst set index according to at least a part of bits in the information about the system frame number information.
  • the information about the spatial filter of the base station further includes information about the total number of spatial filters used by the base station, information about the number of spatial filters used by the base station in each synchronization signal block at least one of the .
  • the spatial filter of the base station indicates the transmission beam of the base station; the control unit is further configured to perform beam scanning on the transmission beam of the base station within a beam scanning period to obtain the The reference signal received power, wherein one beam scanning period includes a plurality of synchronization signal block burst set periods.
  • control unit is further configured to, according to the transmit beam corresponding to the reference signal received power higher than the first predetermined threshold and the transmit beam corresponding to the reference signal received power lower than the second predetermined threshold, Determine the preferred transmit beam.
  • control unit is further configured to end the beam scanning after the preferred transmission beam is determined, regardless of the remaining time of the current beam scanning cycle.
  • a base station including: a control unit configured to, in a beam scanning period, combine at least a part of the transmission beams of the base station in a hash pattern with the beam scanning period At least part of the synchronization signal blocks are mapped, wherein the one beam scanning period includes multiple synchronization signal block burst sets, and one synchronization signal block burst set includes multiple synchronization signal blocks; the sending unit is configured to, according to the mapping result, The particular sync signal block is transmitted using at least one beam corresponding to the particular sync signal block.
  • the sending unit is further configured to send information about a spatial filter of a base station, where the spatial filter of the base station indicates a transmission beam of the base station.
  • control unit is further configured to, based on the information about the index of the sync signal block burst set associated with the spatial filter of the base station, about the index of the sync signal block in the sync signal block burst set Using the pseudo-random sequence generator to determine at least one spatial filter index corresponding to a specific sync signal block index.
  • the efficiency of the beam search operation is improved, the RS overhead is reduced, and the time for the terminal to access the base station is shortened, thereby improving the efficiency of the communication system. performance.
  • Fig. 1 shows a schematic diagram of a wireless communication system in which embodiments of the present disclosure may be applied.
  • Fig. 2 shows a flowchart of a method executed by a terminal according to an embodiment of the present disclosure.
  • FIG. 3A schematically illustrates the operation of performing hash mapping on multiple beams.
  • FIG. 3B schematically illustrates another operation of performing hash mapping on multiple beams.
  • FIG. 3C schematically illustrates an example of performing a hash map operation on transmit beams according to an embodiment of the present disclosure.
  • FIG. 3D schematically shows another example of performing a hash mapping operation on transmit beams according to an embodiment of the present disclosure.
  • FIG. 4 shows a schematic diagram illustrating a wireless communication system 100 applying an embodiment of the present disclosure.
  • Fig. 5 shows a flowchart of a method performed by a base station according to an embodiment of the present disclosure.
  • Fig. 6 shows a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • Fig. 7 shows a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • Fig. 8 is a schematic diagram of a hardware structure of a communication device according to an embodiment of the present disclosure.
  • FIG. 1 shows a schematic diagram of a wireless communication system in which embodiments of the present disclosure may be applied.
  • the wireless communication system 100 shown in FIG. 1 may be a 5G communication system, or any other type of wireless communication system, such as a 6G communication system.
  • a 5G communication system is taken as an example to describe embodiments of the present disclosure, but it should be recognized that the following description may also be applicable to other types of wireless communication systems.
  • a wireless communication system 100 may include a base station 110 and a terminal 120 , where the base station 110 is a serving base station for the terminal 120 .
  • Terminal 120 may communicate with base station 110 via a downlink.
  • the downlink refers to the communication link from the base station 110 to the terminal 120 .
  • the base station 110 can sequentially use beams of different orientations to transmit Reference Signals (RS), and this process is called beam scanning; the terminal 120 can measure the reference signals transmitted by beams of different orientations, and according to the measurement results An optimal transmit beam to aim at terminal 120 is determined.
  • RS Reference Signals
  • the base station 110 can sequentially send a synchronization signal and a physical broadcast channel block (Synchronization Signal and Physical Broadcast Channel, SSB) to the terminal 120 on 64 transmit beams with different directions in a time division multiplexing (Time Division Multiplexing, TDM) manner.
  • SSB Synchronization Signal and Physical Broadcast Channel
  • TDM Time Division Multiplexing
  • Each SSB corresponds to a specific transmit beam.
  • Terminal 120 may measure the hybrid Reference Signal Received Power (RSRP) of each SSB received from each transmit beam.
  • the terminal 120 selects the optimal SSB and the beam used by the terminal 120 to receive the SSB according to the received RSRP measurement result of each SSB for subsequent communication. As shown in FIG.
  • the base station 110 respectively transmits beam #0, transmit beam #1, transmit beam #2 ... transmit beam in the beam index SSBs whose SSB indexes are SSB#0, SSB#1, SSB#2...SSB#63 are sequentially sent on the transmit beam of #63.
  • the terminal 120 receives each SSB on a receive beam whose beam index is receive beam #0 and measures the RSRP of each SSB.
  • the terminal 120 receives each SSB on a receive beam whose beam index is receive beam #1 and measures the RSRP of each SSB.
  • the terminal 120 selects the best transmit-receive beam pair according to the RSRP measurement results of all received SSBs (for example, selects the transmit-receive beam pair corresponding to the maximum value of all RSRP measurement results as the best transmit-receive beam pair ( For example, transmit beam #0-receive beam #0)) or select the best transmit beam (for example, select the transmit beam pair corresponding to the maximum value of all RSRP measurement results as the best transmit beam (for example, transmit beam #0) .
  • a base station as described herein may provide communication coverage for a particular geographic area, which may be referred to as a cell, Node B, gNB, 5G Node B, access point, and/or transceiver point, among others.
  • the terminals described here may include various types of terminals, such as user equipment (User Equipment, UE), mobile terminals (or called mobile stations) or fixed terminals, however, for convenience, sometimes interchangeably hereinafter Use terminal and UE.
  • FIG. 1 only shows one base station and one terminal
  • the wireless communication system may include more base stations and/or more terminals, and one base station may serve multiple terminals, and one terminal may also be served by multiple Base station service.
  • the prior art adopts a method of exhausting all transmit-receive beam pairs/best transmit beams, and each transmit beam A reference signal corresponding to one of them needs to be configured.
  • the overhead of the reference signal will increase linearly, and the time for the UE to search for the best transmit-receive beam pair/best transmit beam will increase with the number of transmit beams and receive beams
  • the product of increases linearly which in turn leads to a longer delay time when the UE accesses the base station.
  • the present disclosure hopes to propose a solution to improve the efficiency of the beam search operation, so as to reduce the RS overhead and shorten the time for the terminal to access the base station, thereby improving the performance of the communication system.
  • Fig. 2 shows a flowchart of a method 200 performed by a base station according to an embodiment of the present disclosure.
  • step S201 in a beam scanning period, at least a part of the transmission beam of the base station is mapped with at least a part of the synchronization signal blocks in the beam scanning period in a hash pattern, wherein the one beam A scanning period includes a plurality of sync signal block bursts, and one sync signal block burst includes a plurality of sync signal blocks.
  • step S202 according to the mapping result, at least one beam corresponding to the specific synchronization signal block is used to transmit the specific synchronization signal block.
  • FIGS. 3A and 3B schematically illustrate the operation of performing hash mapping on multiple beams.
  • each beam has a different Spatially directed, for example, beam 1 may be spatially directed as shown in FIG.
  • beam 3 may be spatially directed as a beam as shown in FIG. 3A , and so on.
  • Figure 3A shows the operation after the first round of hash mapping is performed on these 12 beams.
  • These 12 beams are hash mapped into 4 beam groups, namely beam group #1, beam group #2, beam group #3.
  • Beam group #4 each beam group includes 3 beams randomly selected from the 12 beams.
  • beam group #1 includes beam 1, beam 2, and beam 12 randomly selected from the 12 beams
  • beam group #2 includes beam 3, beam 5, and beam 8 randomly selected from the 12 beams, and so on.
  • Figure 3B shows the operation after the second round of hash mapping is performed on the 12 beams, and the 12 beams are again hash-mapped into 4 beam groups, namely beam group #1, beam group #2, beam group Group #3, beam group #4, each beam group includes 3 beams randomly selected from the 12 beams.
  • beam group #1 includes beam 1, beam 2, and beam 7 randomly selected from the 12 beams
  • beam group #2 includes beam 4, beam 5, and beam 6 randomly selected from the 12 beams, and so on.
  • 3C and 3D schematically illustrate examples of performing hash mapping operations on transmit beams according to embodiments of the present disclosure.
  • the base station 110 can transmit RS on 512 transmit beams with different spatial orientations, and the beam indexes of the 512 transmit beams are transmit beam #0, transmit beam #1, ..., transmit beam #511 , the result after performing a round of hash mapping operations on the 512 transmit beams is shown in FIG. 3C .
  • the first set of beams includes transmit beam #0 and transmit beam #1 randomly selected from the 512 transmit beams
  • the second set of beams includes transmit beam #1 and transmit beam #511 randomly selected from the 512 transmit beams, and so on.
  • FIG. 3C the base station 110 can transmit RS on 512 transmit beams with different spatial orientations, and the beam indexes of the 512 transmit beams are transmit beam #0, transmit beam #1, ..., transmit beam #511 , the result after performing a round of hash mapping operations on the 512 transmit beams is shown in FIG. 3C
  • the beam group with a hash pattern may include at least one beam, and the number of beams included in each beam group is a configurable parameter of the wireless communication system.
  • the synchronization signal block in step S201 may include SSB.
  • SSB includes synchronization signals and broadcast signals
  • synchronization signals include primary synchronization signals (Primary Synchronization Signal, PSS) and secondary synchronization signals (Secondary Synchronization Signal, SSS)
  • broadcast signals include physical broadcasting Channel (Physical Broadcast Channel, PBCH) data and PBCH demodulation reference signal (Demodulation Reference Signal, DMRS).
  • the synchronization signal block burst set includes an SSB burst set (SSB Burst Set).
  • the SSB burst set refers to a set of multiple SSBs within a certain period (for example, 5ms, 10ms, 20ms, 40ms, etc.), and the multiple SSBs in the SSB burst set can be used for beam scanning.
  • the beam scanning period in step S201 may include one or more synchronization signal block burst sets. For example, if the period of a synchronization signal block burst set is T, and a beam scanning period includes N (N is an integer greater than or equal to 1) synchronization signal block burst sets, then the beam scanning period is N ⁇ T.
  • the hash map can convert an input of any length into a fixed-length output through a hash function or a pseudo-random function mapping relationship (such as a Gold sequence or an m sequence) with characteristics similar to a hash function.
  • hash mapping can be performed by means of pseudo-random number generation.
  • the hash map can be implemented by a pseudorandom sequence (Pseudorandom Noise, PN) generator in 3GPP/TS38.211.
  • FIG. 4 shows a schematic diagram of a wireless communication system 100 applying an embodiment of the present disclosure. Step S201 will be described exemplarily below with reference to FIG. 4 .
  • a beam scanning period may include a plurality of sync signal block burst periods, and each sync signal block burst period includes a plurality of sync signal blocks used for beam scanning (i.e. sync signal block # in Figure 4 0, synchronization signal block #1, ..., synchronization signal block #63), the base station 110 uses TDM or frequency division multiplexing (Frequency Division Multiplexing, FDM), code division multiplexing (Code Division Multiplexing, CDM) and other methods and Various combinations of the above methods use the transmission beam to send the above multiple synchronization signal blocks for beam scanning to the terminal 120 .
  • FDM Frequency Division Multiplexing
  • CDM Code Division Multiplexing
  • synchronization signal block #0, synchronization signal block #1, ..., synchronization signal block #63 can perform a first round of hash mapping with the transmit beam index of the base station 110 (as shown in Figure 4 In pattern 1), in the second sync signal block burst period, sync signal block #0, sync signal block #1, ..., sync signal block #63 can perform a second round of hashing with the transmit beam index of the base station 110 Hi-mapping (as shown in pattern 2 in Figure 4), and so on, so as to complete the transmission beam index of synchronization signal block #0, synchronization signal block #1, ..., synchronization signal block #63 and base station 110 in the entire beam scanning period Establish N rounds of hash maps.
  • the hash pattern of the transmit beam after each round of hash mapping can be different, for example, pattern 1 and pattern 2 in Figure 4 are different, specifically, the transmission beam corresponding to the synchronization signal block #0 in pattern 1
  • the beams are not all the same as the transmit beams corresponding to the synchronization signal block #0 in pattern 2.
  • the process of performing hash mapping between the transmit beam and the synchronization signal in a hash pattern has been described in this paper in conjunction with FIG. 3C and FIG. 3D , and will not be repeated here.
  • step S201 a part of all transmit beams of the base station may be mapped with the synchronization signal block in a hash pattern.
  • the base station 110 has 512 transmit beams, and when the hash mapping is performed with pattern 1, some transmit beams of the 512 transmit beams are hash-mapped into 64 beam groups, and each beam group includes two Launch beam.
  • all transmit beams in all transmit beams of the base station may be mapped with the synchronization signal in a hash pattern (similar to the situation shown in FIG. 3A and FIG.
  • the transmission opportunities of each transmission beam of the base station may also be adjusted according to the distribution of users in the area, so as to realize unequal transmission opportunities. That is, the beam transmission opportunity corresponding to the dense user area is high, while the beam transmission opportunity corresponding to the sparse user distribution area is low.
  • Step S202 will be described below in conjunction with FIG. 4 .
  • the base station 110 may send the synchronization signal block corresponding to the synchronization signal block index to the terminal 120 on the transmission beam corresponding to each synchronization signal block index.
  • the sync signal block #0 can be sent using transmit beam #0 and transmit beam #511
  • the sync signal block #1 can be sent using transmit beam #0 and transmit beam #1, and so on
  • transmit beam #0 and transmit beam #2 can be used to transmit synchronization signal block #0
  • transmit beam #1 and transmit beam #2 can be used to transmit synchronization signal block #1, and so on.
  • the terminal 120 can demodulate the synchronization signal block and measure the synchronization signal block, such as measuring the received signal strength and received signal quality of the synchronization signal block; the terminal 120 can according to The measurements determine an optimal transmit-receive beam pair (eg, transmit beam #0-receive beam #0 pair in FIG. 4 ) or an optimal transmit beam (eg, transmit beam #0 in FIG. 4 ).
  • an optimal transmit-receive beam pair eg, transmit beam #0-receive beam #0 pair in FIG. 4
  • an optimal transmit beam eg, transmit beam #0 in FIG. 4
  • each beam group including at least one beam
  • performing a beam search operation based on the beam groups with the hash pattern to determine the optimal Optimal transmit-receive beam pair/optimal transmit beam, thereby reducing RS overhead, shortening the time for terminals to access the base station, and improving the performance of the communication system.
  • the step S202 further includes sending information about a spatial filter of the base station, where the spatial filter of the base station indicates a transmission beam of the base station.
  • precoding/beamforming also known as smart antenna
  • a set of fixed weighting factors corresponds to the precoding matrix, and the direction of the beam can be realized by applying weighting factors to each antenna.
  • the value of the weighting factor is pre- Encodes individual components in the matrix. Changing the weighting factor can make the beam point to other directions, that is, realize spatial filtering.
  • spatial filters and beams are equivalent and used interchangeably in this paper.
  • the spatial filter of the base station may be a precoding matrix indicating the direction of the transmit beam of the base station in the air domain in the beamforming technology, and the spatial filter of the base station indicates the transmit beam of the base station.
  • the information about the spatial filter of the base station may include hash-mapped indexes of one or more transmit beams corresponding to a specific SSB, so that the terminal device can use the information about the spatial filter of the base station
  • the information directly obtains at least one spatial filter index corresponding to a particular sync signal block.
  • the information about the spatial filter of the base station may comprise information about the index of the set of sync signal block bursts associated with the spatial filter of the base station, information about the index of the sync signal block in the set of sync signal block bursts,
  • the terminal device can determine at least one spatial filter index corresponding to a particular synchronization signal block index using, for example, a pseudo-random sequence generator.
  • the base station 110 may send the index of the transmission beam used to transmit the specific synchronization signal block after establishing the hash mapping between the synchronization signal block index and the transmission beam index.
  • the base station 110 may send the indexes of the transmission beams used to transmit the synchronization signal block #0 after the first round of hash mapping shown in FIG. 4: transmission beam #0 and transmission beam #511.
  • the information on the spatial filter of the base station includes a spatial filter index, which is an index associated with a particular synchronization signal block generated using a pseudo-random sequence generator.
  • the base station 110 can explicitly notify the terminal 120 of the hash-mapped transmit beam index, and the terminal 120 does not need to perform the operation of hash-mapping the transmit beam, so that the terminal 120 can quickly perform the beam scanning operation and reduce UE
  • the power consumption improves the overall performance of the communication system.
  • the base station 110 may transmit the information about the index of the sync signal block burst set associated with the spatial filter of the base station 110, the information about the index of the sync signal block in the sync signal block burst set.
  • the base station 110 performs a hash mapping operation according to the index of the sync signal block burst set and the index of the sync signal block in the sync signal block burst set to generate one or more spaces used by the base station to transmit the sync signal block Filter index: terminal 120 performs the hash mapping operation described above in the present disclosure according to the received information, and obtains spatial filter index information used by base station 110 to transmit the synchronization signal index block.
  • the base station 110 since the base station 110 only needs to send the information about the index of the sync signal block burst set and the information about the index of the sync signal block in the sync signal block burst set associated with the spatial filter of the base station 110 to the terminal 120, instead of sending the index of the transmit beam used to send each synchronization signal block after each round of hash mapping, thus reducing the signaling overhead between the base station 110 and the terminal 120, and improving the overall performance of the communication system.
  • all sync signal blocks within one sync signal scan period may be indexed consecutively without explicitly defining individual sync signal block burst periods within one sync signal scan period. In this way, the sync signal block index is the index of all sync signal blocks in a sync signal scanning period.
  • the base station 110 performs a hash mapping operation according to the synchronization signal block index to generate one or more spatial filter indexes used by the base station to transmit the synchronization signal block; the terminal 120 performs the operation according to the received synchronization signal block index
  • the hash mapping operation described above in this disclosure obtains the spatial filter index information used by the base station 110 to transmit the synchronization signal index block.
  • the information on the sync signal block index includes information on the index of the sync signal block burst set and information on the index of the sync signal block in the sync signal block burst set, wherein one sync signal block burst set includes multiple sync block.
  • the sync signal block burst set index may include the index of each sync signal block burst set in the entire beam scanning period.
  • the entire beam scanning period includes N sync signal block burst period sets, the hash mapping of pattern 1 is performed on the first sync signal block burst period set, and the hash map of style 2 is performed on On the second sync signal block burst period set, the index of the sync signal block burst set corresponding to the N sync signal block burst periods sorted sequentially in the time domain can be the sync signal block burst set# 0. Synchronization signal block burst set #1, ..., synchronization signal block burst set #N-1.
  • the index of the synchronization signal block in the synchronization signal block burst set may include the index of each synchronization signal block in the current synchronization signal block burst set, for example, the index corresponding to the first synchronization signal block burst period in FIG. 4
  • the index of each sync signal block is sync signal block #0, sync signal block #1, ..., sync signal block #63, the second sync signal block burst set, the index of each sync signal block
  • the indexes are sync signal block #0, sync signal block #1, . . . , sync signal block #63, and so on.
  • all sync signal blocks within one sync signal scan period may be indexed consecutively without explicitly defining individual sync signal block burst periods within one sync signal scan period.
  • the indexes of N times 64 synchronization signal blocks in the entire beam scanning period are synchronization signal block #0, synchronization signal block #1, . . . , synchronization signal block #(64N-1).
  • explicitly defined signaling may be used to indicate information about the spatial filter index of the base station, where the signaling may be a signaling that uses a specific number of bits to encode information about the spatial filter index of the base station, For example, the signaling may use 12 bits to encode 4096 transmit beam indices at the base station 110 side.
  • the maximum number of bits used for signaling indicating the information on the spatial filter index of the base station may be defined by a wireless communication system standard (for example, 12 bits).
  • the actual number of bits used to indicate the information of the spatial filter index used to send the synchronization signal block may be less than the maximum value (for example, 12 bits) of the signaling length, that is, the number of spatial filters is less than the signaling length
  • the maximum value of the length can indicate the number of spatial filters.
  • the number of actually used bits used to send the information of the spatial filter index of the synchronization signal block can be indicated.
  • the indication can be transmitted in the PBCH, and the higher bits in the signaling that exceed the number of actually used bits are meaningless .
  • part of the spatial filters may also be reused to obtain a number of spatial filters equal to the maximum number of bits used by the signaling indicating the information about the spatial filter index of the base station, instead of indicating the actual The length of the number of bits used.
  • the same spatial filter can correspond to the index information of multiple spatial filters. For example, when the maximum number of bits is 12 bits and 11 bits are actually used, the spatial filter index 0 and the spatial filter index 2048 uses the same spatial filter...
  • the spatial filter index 2047 and the spatial filter index 4095 use the same spatial filter; as another example, the index information of the spatial filter exceeding the actual number of spatial filters can also be corresponding to There is no transmitted signal, for example, when the maximum number of bits is 12 bits and 11 bits are actually used, spatial filter indices 2048 to 4095 all correspond to zero beams.
  • the method 200 further includes determining at least one spatial filter index corresponding to a specific synchronization signal block index by using a pseudo-random sequence generator according to the information about the spatial filter of the base station.
  • the information about the sync signal block index can be determined by the sync signal block burst set index (denoted as L 1 ) and the index of the sync signal block in the sync signal block burst set (denoted as L 2 ) described above .
  • the index of each synchronization signal block in the entire beam scanning period can be determined through L 1 and L 2 .
  • the pseudo-random sequence generator here may be a pseudo-random sequence (Pseudorandom Noise, PN) generator in 3GPP/TS38.211.
  • the steps for determining at least one spatial filter index corresponding to a specific sync signal block index using the PN generator are as follows: Initialize the PN generator to obtain an initial sequence cinit , as an example, cinit multiplies the cell ID with a standard given constant Obtain, even use cell ID initialisation random sequence generator, c init also can use other standard convention constant or variable to carry out initialization; Reuse PN generator to produce pseudo-random sequence c(n) according to initial sequence c init ; And according to following equation (1) Convert the pseudo-random sequence c(n) to a spatial filter index:
  • L 1 and L 2 may not be explicitly distinguished, and are implicitly part of the sync signal block index L.
  • Equation (1) can be written in the following form:
  • the information about the spatial filter of the base station may further include information about the total number of spatial filters used by the base station, information about the number of spatial filters used by the base station in each synchronization signal block at least one.
  • the total number of spatial filters used by the base station may be the total number of all transmit beams with different spatial orientations on the base station side.
  • the total number of transmit beams used by the base station 110 is 512 .
  • the information about the number of spatial filters used by the base station in each synchronization signal block may be the number of beams included in the beam group corresponding to each synchronization signal block in each round of hash mapping. For example, in FIG.
  • the number of transmit beams corresponding to each synchronization signal block is two.
  • signaling can be used to indicate information about the number of spatial filters used by the base station in each synchronization signal block, for example, in one beam scanning period, the number of spatial filters used by the base station in each synchronization signal block If the quantity information is 1, 2, 4, or 8, it can be coded by using signaling with a length of 2 bits.
  • signaling indicating information on the number of spatial filters used by the base station in each synchronization signal block may be transmitted in the PBCH.
  • the step S202 further includes sending a message about a system frame number, wherein at least a part of bits in the message about a system frame number are used to indicate a message about a burst set index of a synchronization signal block.
  • the system frame number may be the system frame number (System Frame Number, SFN) contained in the master system information block (Master Information Block, MIB) in the system information (System Information) of the cell, and the length of the SFN is 10 bits, which can be transmitted on the PBCH.
  • the mapping between the SFN and the index of the sync signal block burst can be determined according to the period of the sync signal block burst (for example, 20 ms).
  • the upper 9 bits in the SFN may be used to encode the index of the burst set of the synchronization signal block.
  • signaling for indicating the index of the burst set of the synchronization signal block may also be added in the synchronization signal block, and the signaling may be transmitted in the PBCH.
  • the method improves the efficiency of the beam search operation, reduces the RS overhead, and shortens the time for the terminal to access the base station, thereby improving the performance of the communication system.
  • FIG. 5 shows a flowchart of a method executed by a terminal according to an embodiment of the present disclosure. Since some details of the method 500 are the same as those of the method 200 described above with reference to FIG. 2 , a detailed description of the same content is omitted for simplicity.
  • step S501 information about a spatial filter of a base station is received.
  • step S502 at least one spatial filter index corresponding to a specific synchronization signal block index is determined according to the information about the spatial filter of the base station, wherein the at least one spatial filter index corresponding to the specific synchronization signal block index is obtained by using Generated by a pseudo-random sequence generator.
  • the terminal 120 may receive the index of the transmit beam after the hash mapping, and may also receive the index of the sync signal block burst set used to perform the hash mapping, and the index of the sync signal block in the sync signal block burst set .
  • the two embodiments are described below respectively.
  • the terminal 120 may receive the index of the transmission beam used to transmit the specific synchronization signal block after establishing the hash mapping between the synchronization signal block index and the transmission beam index sent by the base station 110 .
  • the terminal 120 may receive the indices of the transmit beams sent by the base station 110 as shown in FIG. 4 and used to transmit the synchronization signal block #0 after the first round of hash mapping: transmit beam #0 and transmit beam #511.
  • the information on the spatial filter of the base station includes a spatial filter index, which is an index associated with a specific synchronization signal block generated using a pseudo-random sequence generator.
  • the terminal 120 may demodulate the received information about the spatial filter of the base station and obtain the spatial filter index corresponding to the specific synchronization signal block index.
  • the terminal 120 does not need to perform the hash mapping operation on the transmit beam, which facilitates the terminal 120 to quickly perform the beam scanning operation, reduces the power consumption of the UE, and improves the overall performance of the communication system.
  • the information about the spatial filter of the base station includes information about the index of the sync signal block burst set associated with the spatial filter of the base station, the index of the sync signal block in the sync signal block burst set Information.
  • the information about the sync signal block index can be determined by the sync signal block burst set index (denoted as L 1 ) and the index of the sync signal block in the sync signal block burst set (denoted as L 2 ) described above .
  • the index of each synchronization signal block in the entire beam scanning period can be determined through L 1 and L 2 .
  • the terminal 120 performs the hash mapping operation described above in the present disclosure according to the received L 1 and L 2 to obtain the spatial filter index information used by the base station 110 to transmit the synchronization signal index block.
  • the base station 110 since the base station 110 only needs to send the information about the index of the sync signal block burst set associated with the spatial filter of the base station and the information about the index of the sync signal block in the sync signal block burst set to the terminal 120 , instead of sending the index of the transmit beam used to send each synchronization signal block after each round of hash mapping, thus reducing the signaling overhead between the base station 110 and the terminal 120, and improving the overall performance of the communication system.
  • all sync signal blocks within the entire sync signal scan period may be indexed consecutively without explicitly defining individual sync signal block burst periods within the entire sync signal scan period.
  • the sync signal block index is the index of all sync signal blocks in the entire sync signal scanning period.
  • the base station 110 performs a hash mapping operation according to the synchronization signal block index to generate one or more spatial filter indexes used by the base station to transmit the synchronization signal block; the terminal 120 performs the operation according to the received synchronization signal block index
  • the hash mapping operation described above in this disclosure obtains the spatial filter index information used by the base station 110 to transmit the synchronization signal index block.
  • the pseudo-random sequence generator in step S502 may be a pseudo-random sequence (Pseudorandom Noise, PN) generator in 3GPP/TS38.211.
  • the steps of using the PN generator to determine at least one spatial filter index corresponding to a specific sync signal block index are as follows: initialize the PN generator to obtain an initial sequence c init ; multiplex the PN generator to generate a pseudo-random sequence c according to the initial sequence c init (n); and converting the pseudo-random sequence c(n) into spatial filter indices according to equation (1) above.
  • L 1 and L 2 may not be explicitly distinguished, and are implicitly part of the synchronization signal block index L.
  • the value of L satisfies L The relationship of L 1 L max +L 2 .
  • the pseudo-random sequence c(n) can be converted into spatial filter indices according to equation (2) above.
  • step S501 further includes receiving information about a system frame number and step S502 further includes determining information about a burst set index of a synchronization signal block according to at least a part of bits in the information about the system frame number. Therefore, the UE can multiplex the information about the system frame number to determine the burst set index of the synchronization signal block, which reduces the signaling overhead.
  • the information about the spatial filter of the base station further includes at least one of information about the total number of spatial filters used by the base station, information about the number of spatial filters used by the base station in each synchronization signal block one.
  • the total number of spatial filters used by the base station may be the total number of all transmit beams with different spatial orientations on the base station side.
  • the total number of transmit beams used by the base station 110 is 512 .
  • the information about the number of spatial filters used by the base station in each synchronization signal block may be the number of beams included in the beam group corresponding to each synchronization signal block in each round of hash mapping. For example, in FIG.
  • the number of transmit beams corresponding to each synchronization signal block is two.
  • signaling can be used to indicate information about the number of spatial filters used by the base station in each synchronization signal block, for example, in one beam scanning period, the number of spatial filters used by the base station in each synchronization signal block If the quantity information is 1, 2, 4, or 8, it can be coded by using signaling with a length of 2 bits.
  • the UE may determine beams to be mapped according to at least one of information on the total number of spatial filters used by the base station, information on the number of spatial filters used by the base station in each synchronization signal block.
  • signaling indicating information on the number of spatial filters used by the base station in each synchronization signal block may be transmitted in the PBCH.
  • the spatial filter of the base station indicates the transmission beam of the base station and step S502 further includes performing beam scanning on at least one synchronization signal block transmitted by the base station within the beam scanning period to obtain reference signal reception of at least part of the transmission beam power, where one beam scan period consists of multiple bursts of sync signal blocks.
  • step S502 a part of all transmit beams of the base station mapped with the synchronization signal block in a hash pattern may be received.
  • the base station 110 has 512 transmit beams, and when the hash mapping is performed with pattern 1, some transmit beams of the 512 transmit beams are hash-mapped into 64 beam groups, and each beam group includes two Launch beam.
  • step S502 in each round of hash mapping, all transmit beams of all transmit beams of the receiving base station may be mapped with the synchronization signal in a hash pattern (similar to the situation shown in FIG. 3A and FIG. 3B ), that is, in the entire beam scanning period, the receiving times of each transmitting beam of the base station used to receive the synchronization signal block are equal.
  • the receivers of the transmission beams of the synchronization signal block are equalized, avoiding the worst case that the synchronization signal of the best transmission beam cannot be received, and improving the overall performance of the communication system.
  • the step S502 further includes determining according to the transmit beam corresponding to the reference signal received power higher than the first predetermined threshold and the transmit beam corresponding to the reference signal received power lower than the second predetermined threshold Transmission beams are preferred.
  • the terminal 120 receives the beam index as transmit beam #0, transmit beam #1, transmit beam #2... on the receive beam whose beam index is receive beam #0 Transmit each SSB transmitted on the transmit beam of beam #63 and measure the RSRP for each SSB.
  • the measurement results of terminal 120 are shown in Table 1-1:
  • transmit beam #63-receive beam #0 select the transmit beam with the largest receive power gain (i.e. transmit beam #63-receive beam #0) as the optimal transmit-receive beam pair or select the transmit beam with the maximum receive power gain (i.e. transmit beam # 63) as the optimal transmit beam. Since the existing technology adopts an exhaustive beam detection algorithm, as the number of transmit beams increases, the time for the UE to select the best beam will become longer, thereby causing a delay for the UE to access the network.
  • this disclosure proposes a beam detection algorithm based on two-way voting, which provides forward voting for the transmit beams corresponding to the reference signal reception power higher than the first predetermined threshold, and provides forward voting for the reference signal reception power lower than the second predetermined threshold.
  • the transmit beam corresponding to the power provides reverse voting.
  • An example of the beam detection algorithm of the present disclosure will be described below with reference to FIG. 4 .
  • terminal 120 may receive synchronization signal block #0 on transmit beam #0 and transmit beam #511, and receive synchronization signal block on transmit beam #0 and transmit beam #1 #1, and so on. Afterwards, the terminal 120 can perform RSRP measurement for each synchronization signal block, and the RSRP measurement results are shown in Table 1-2:
  • the terminal 120 can vote on the measurement result of each synchronization signal block, and the measurement result of each synchronization signal block can provide voting information for selecting a preferred transmission beam, for example, for the synchronization signal block # in the first round of hash mapping
  • the RSRP measurement result of 0 can provide the voting information of transmission beam #0 and transmission beam #511, and the RSRP measurement result of synchronization signal block #1 in the first round of hash mapping can provide transmission beam #0 and transmission beam # 1 voting information.
  • a transmit beam may correspond to a plurality of RSRP measurements, and an RSRP with a receive power gain above a first threshold (eg, 5 dB) may provide a forward vote for the transmit beam, with a receive power gain below a second threshold (eg, an RSRP of 0 dB) or no sync signal block detected may provide a negative vote for a transmit beam which in turn pulls down or rejects a forward vote for that transmit beam.
  • a first threshold eg, 5 dB
  • a second threshold For example, an RSRP of 0 dB
  • no sync signal block detected may provide a negative vote for a transmit beam which in turn pulls down or rejects a forward vote for that transmit beam.
  • Tables 1-3 below show an example of this two-way voting algorithm:
  • transmit beam #0 has two RSRP measurements, the first at 15dB and the second at -3dB, the first above a first threshold (eg 5dB) can provide a positive To vote (15dB reserved), the second measurement below a second threshold (eg 0dB) may provide a negative vote for the positive vote, so the final vote for transmit beam #0 is -3dB.
  • a first threshold eg 5dB
  • a second threshold eg 0dB
  • Tables 1-4 below show another example of this two-way voting algorithm:
  • transmit beam #0 has two RSRP measurements, the first at 15dB and the second at -3dB, the first above a first threshold (eg 5dB) can provide a positive Forward voting (15dB reserved), a second measurement below a second threshold (eg 0dB) can pull forward voting down, so the final voting result for transmit beam #0 is 12dB.
  • a first threshold eg 5dB
  • a second measurement below a second threshold eg 0dB
  • the present disclosure provides two examples of the two-way voting algorithm, based on the above two examples, more implementations of the two-way voting algorithm can be derived.
  • different measurement results can be weighted. Specifically, smaller weights may be given to measurement results that exceed the first RSRP threshold or larger values among multiple measurement results, while measurement results that are less than the second RSRP threshold or smaller values among multiple measurement results may be given less weight. Values are assigned higher weights.
  • the algorithm can degenerate to the example of Table 1-3, that is, the measurement results are weighted according to the minimum value.
  • Tables 1-3 and 1-4 show the situation that the UE uses a fixed beam to receive. During the reception of the base station SSB, the UE can also randomly switch the receiving beam. At this time, each column in the table should contain all combinations of transmitting beams and receiving beams. For example, in the case that the UE has two receive beams, the combination of transmit beam #0 may be transmit beam #0+receive beam #0, and transmit beam #0+receive beam #1.
  • the step S502 further includes terminating the beam scanning after the preferred transmission beam is determined, regardless of the remaining time of the current beam scanning period.
  • the reference signal received power higher than the first predetermined threshold may be the reference signal received power of the strong transmit beam, for example, the reference signal received power of the first predetermined threshold may be 14dB.
  • the RSRP of a strong transmit beam must be the RSRP that can be used to provide forward voting information, and the RSRP that can provide forward voting information is not necessarily the RSRP of a strong transmit beam power.
  • the preferred transmit beam can be determined after the ambiguity of the strong transmit beams in the transmit beam voting table is resolved, regardless of the remaining time of the current beam scanning period. For example, in the first round of hash mapping in Figure 4, the RSRP measurement results shown in Table 1-2 appear.
  • the transmission beam #0 is excluded as the strong transmission beam.
  • the transmission beam #511 can be directly output as the preferred beam, regardless of the business time of the entire beam scanning cycle. This embodiment can enable the terminal to quickly complete the beam search, thereby enabling the terminal to quickly access the network.
  • the method improves the efficiency of the beam search operation, reduces the RS overhead, shortens the time for the terminal to access the base station, thereby improving the performance of the communication system.
  • FIG. 6 is a schematic structural diagram of a base station 600 according to an embodiment of the present disclosure. Since the functions of the base station 600 are the same as some details of the method 200 described above with reference to FIG. 2 , detailed descriptions of the same content are omitted for simplicity. As shown in FIG.
  • the base station 600 includes: a control unit 610 configured to map, in a beam scanning period, the transmission beam of the base station with at least part of the synchronization signal blocks in the beam scanning period in a hash pattern, Wherein the one beam scanning cycle includes a plurality of sync signal block burst sets, and a sync signal block burst set includes a plurality of sync signal blocks; and the sending unit 620 is configured to use the specific sync signal block according to the mapping result The corresponding at least one beam transmits the specific synchronization signal block.
  • the base station 600 may also include other components. However, since these components are irrelevant to the content of the embodiments of the present disclosure, illustration and description thereof are omitted here.
  • the sending unit 620 is further configured to send information about a spatial filter of a base station, where the spatial filter of the base station indicates a transmission beam of the base station.
  • control unit 610 is further configured to include, according to the information about the spatial filter of the base station, information about the burst set index of the synchronization signal block associated with the spatial filter of the base station, information about the burst set index of the synchronization signal block in the synchronization signal block
  • the index information of the sync signal block in the burst set is used to determine at least one spatial filter index corresponding to a specific sync signal block index by using a pseudo-random sequence generator.
  • the efficiency of the beam search operation is improved, the RS overhead is reduced, and the time for the terminal to access the base station is shortened, thereby improving the performance of the communication system.
  • FIG. 7 is a schematic structural diagram of a terminal 700 according to an embodiment of the present disclosure. Since the functions of the terminal 700 are the same as some details of the method 500 described above with reference to FIG. 5 , detailed description of the same content is omitted for simplicity. As shown in FIG.
  • the terminal 700 includes: a receiving unit 701 configured to receive information about the spatial filter of the base station; a control unit 702 configured to determine a synchronization signal block related to a specific synchronization signal block according to the information about the spatial filter of the base station At least one spatial filter index corresponding to the index, wherein the at least one spatial filter index corresponding to a specific synchronization signal block index is generated by using a pseudo-random sequence generator.
  • the information about the spatial filter of the base station includes information about the index of the sync signal block burst set associated with the spatial filter of the base station, about the sync signal block in the sync signal block burst set The index information, where a sync signal block burst set includes a plurality of sync signal blocks.
  • the receiving unit 701 receives the information about the system frame number; the control unit 702 determines the burst set about the synchronization signal block according to at least some bits in the information about the system frame number indexed information.
  • the information about the spatial filter of the base station further includes information about the total number of spatial filters used by the base station, information about the number of spatial filters used by the base station in each synchronization signal block at least one of the .
  • the spatial filter of the base station indicates the transmission beam of the base station; the control unit 702 is further configured to perform beam scanning on the transmission beam of the base station within a beam scanning period to obtain a transmission beam The reference signal received power, wherein one beam scanning period includes a plurality of synchronization signal block burst set periods.
  • control unit 702 is further configured to transmit beams corresponding to reference signal received power higher than the first predetermined threshold and transmit beams corresponding to reference signal received power lower than the second predetermined threshold , to determine the preferred transmit beam.
  • control unit 702 is further configured to end the beam scanning after the preferred transmission beam is determined, regardless of the remaining time of the current beam scanning period.
  • the efficiency of the beam search operation is improved, the RS overhead is reduced, and the time for the terminal to access the base station is shortened, thereby improving the performance of the communication system.
  • each functional block is not particularly limited. That is, each functional block may be realized by one device that is physically and/or logically combined, or two or more devices that are physically and/or logically separated may be directly and/or indirectly (e.g. By wired and/or wireless) connections and thus by the various means described above.
  • the communication device (such as the terminal 700 and the base station 600 ) in the embodiment of the present disclosure may function as a computer that executes the processing of the wireless communication method of the present disclosure.
  • Fig. 8 is a schematic diagram of a hardware structure of a communication device 800 (terminal or base station) involved according to an embodiment of the present disclosure.
  • the communication device 800 described above can be configured as a computer device physically including a processor 810, a memory 820, a storage 830, a communication device 840, an input device 850, an output device 860, a bus 870, and the like.
  • the word “device” may be replaced with a circuit, a device, a unit, or the like.
  • the hardware structure of the user terminal and the base station may include one or more devices shown in the figure, or may not include some devices.
  • processor 810 For example, only one processor 810 is shown, but there may be multiple processors. In addition, processing may be performed by one processor, or may be performed by more than one processor simultaneously, sequentially, or in other ways. In addition, the processor 810 may be implemented by more than one chip.
  • Each function of the device 800 is realized, for example, by reading predetermined software (program) into hardware such as the processor 810 and the memory 820, thereby causing the processor 810 to perform calculations and controlling communication performed by the communication device 840. , and control the reading and/or writing of data in the memory 820 and the storage 830 .
  • the processor 810 controls the entire computer by operating an operating system, for example.
  • the processor 810 may be composed of a central processing unit (CPU, Central Processing Unit) including an interface with peripheral devices, a control device, a computing device, registers, and the like.
  • CPU Central Processing Unit
  • the above-mentioned determining unit, adjusting unit, etc. may be implemented by the processor 810 .
  • the processor 810 reads out programs (program codes), software modules, data, etc. from the memory 830 and/or the communication device 840 to the memory 820, and executes various processes based on them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the program a program that causes a computer to execute at least part of the operations described in the above-mentioned embodiments can be used.
  • the control unit of the terminal 500 can be implemented by a control program stored in the memory 820 and operated by the processor 810 , and other functional blocks can also be implemented in the same way.
  • the memory 820 is a computer-readable recording medium, such as a read-only memory (ROM, Read Only Memory), a programmable read-only memory (EPROM, Erasable Programmable ROM), an electrically programmable read-only memory (EEPROM, Electrically EPROM), At least one of random access memory (RAM, Random Access Memory) and other appropriate storage media.
  • the memory 820 may also be called a register, a cache, a main memory (main storage), or the like.
  • the memory 820 can store executable programs (program codes), software modules, and the like for implementing the method according to an embodiment of the present disclosure.
  • the memory 830 is a computer-readable recording medium, for example, can be composed of a flexible disk (flexible disk), a floppy (registered trademark) disk (floppy disk), a magneto-optical disk (for example, a CD-ROM (Compact Disc ROM) etc.), Digital Versatile Disc, Blu-ray (registered trademark) Disc), removable disk, hard drive, smart card, flash memory device (e.g., card, stick, key driver), magnetic stripe, database , a server, and at least one of other appropriate storage media.
  • the memory 830 may also be referred to as an auxiliary storage device.
  • the communication device 840 is hardware (transmitting and receiving equipment) for communication between computers via a wired and/or wireless network, and is also referred to as network equipment, network controller, network card, communication module, etc., for example.
  • the communication device 840 may include a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like.
  • the above-mentioned sending unit and receiving unit of the terminal 500 may be implemented by the communication device 840 .
  • the input device 850 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 860 is an output device (for example, a display, a speaker, a light emitting diode (LED, Light Emitting Diode) lamp, etc.) that performs output to the outside.
  • the input device 850 and the output device 860 may also have an integrated structure (such as a touch panel).
  • bus 870 for communicating information.
  • the bus 870 may be composed of a single bus, or may be composed of different buses among devices.
  • base stations and terminals may include microprocessors, digital signal processors (DSP, Digital Signal Processor), application specific integrated circuits (ASIC, Application Specific Integrated Circuit), programmable logic devices (PLD, Programmable Logic Device), field programmable Gate array (FPGA, Field Programmable Gate Array) and other hardware can be used to realize part or all of each function block.
  • DSP digital signal processors
  • ASIC Application Specific Integrated Circuit
  • PLD programmable logic devices
  • FPGA Field Programmable Gate Array
  • FPGA Field Programmable Gate Array
  • a channel and/or a symbol may also be a signal (signaling).
  • a signal can also be a message.
  • the reference signal can also be referred to as RS (Reference Signal) for short, and it can also be called Pilot (Pilot), pilot signal, etc. according to the applicable standard.
  • a component carrier CC, Component Carrier
  • CC Component Carrier
  • information, parameters, and the like described in this specification may be expressed by absolute values, relative values to predetermined values, or other corresponding information.
  • radio resources may be indicated by a specified index.
  • formulas and the like using these parameters may also be different from those explicitly disclosed in this specification.
  • the information, signals, etc. described in this specification may be represented using any of a variety of different technologies.
  • data, commands, instructions, information, signals, bits, symbols, chips, etc. may be transmitted through voltage, current, electromagnetic wave, magnetic field or magnetic particles, light field or photons, or any of them. combination to represent.
  • information, signals, etc. may be output from upper layers to lower layers, and/or from lower layers to upper layers.
  • Information, signals, etc. may be input or output via a plurality of network nodes.
  • Input or output information, signals, etc. can be stored in a specific location (such as memory), or can be managed through a management table. Imported or exported information, signals, etc. may be overwritten, updated or supplemented. Outputted information, signals, etc. can be deleted. Inputted information, signals, etc. may be sent to other devices.
  • Notification of information is not limited to the modes/embodiments described in this specification, and may be performed by other methods.
  • the notification of information may be through physical layer signaling (for example, downlink control information (DCI, Downlink Control Information), uplink control information (UCI, Uplink Control Information)), upper layer signaling (for example, radio resource control (RRC, Radio Resource Control) signaling, broadcast information (MIB, Master Information Block, System Information Block (SIB, System Information Block), etc.), media access control (MAC, Medium Access Control) signaling ), other signals, or a combination of them.
  • DCI downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may also be called L1/L2 (Layer 1/Layer 2) control information (L1/L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may also be called an RRC message, such as an RRC Connection Setup (RRC Connection Setup) message, an RRC Connection Reconfiguration (RRC Connection Reconfiguration) message, and the like.
  • the MAC signaling can be notified by, for example, a MAC control element (MAC CE (Control Element)).
  • notification of prescribed information is not limited to being performed explicitly, but may be performed implicitly (eg, by not notifying the prescribed information or by notifying other information).
  • judgment it can be performed by a value (0 or 1) represented by 1 bit, or by a true or false value (Boolean value) represented by true (true) or false (false), or by comparison of numerical values (such as a comparison with a specified value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise, shall be construed broadly to mean commands, command sets, code, code segments, program code, programs, Program, software module, application, software application, software package, routine, subroutine, object, executable, thread of execution, step, function, etc.
  • software, commands, information, etc. may be sent or received via transmission media.
  • transmission media For example, when sending from a website, server, or other remote source using wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL, Digital Subscriber Line), etc.) and/or wireless technology (infrared, microwave, etc.)
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL, Digital Subscriber Line), etc.
  • wireless technology infrared, microwave, etc.
  • system and "network” used in this specification are used interchangeably.
  • base station BS, Base Station
  • radio base station eNB
  • gNB gNodeB
  • cell gNodeB
  • cell group femtocell
  • carrier femtocell
  • a base station may house one or more (eg three) cells (also called sectors). When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also be connected by a base station subsystem (for example, a small base station for indoor use (Remote Radio Head (RRH, RRH, Remote Radio Head)) to provide communication services.
  • a base station subsystem for example, a small base station for indoor use (Remote Radio Head (RRH, RRH, Remote Radio Head)
  • RRH Remote Radio Head
  • the term "cell” or “sector” refers to a part or the entire coverage area of a base station and/or a base station subsystem that provides communication services in the coverage.
  • mobile station MS, Mobile Station
  • user terminal user terminal
  • UE User Equipment
  • terminal mobile station
  • a mobile station is also sometimes referred to by those skilled in the art as subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other appropriate term.
  • the base station in this specification can also be replaced by a terminal.
  • each mode/embodiment of the present disclosure can also be applied to a configuration in which communication between a base station and a terminal is replaced with communication between multiple terminals (D2D, Device-to-Device).
  • the functions of the above-mentioned base station 600 may be regarded as functions of the terminal.
  • words like "up” and “down” can be replaced with "side”.
  • uplink channels can also be replaced by side channels.
  • the terminal in this specification can also be replaced by a base station.
  • the above-mentioned functions of the terminal 500 may be regarded as functions of the base station.
  • a specific operation performed by a base station may also be performed by an upper node (upper node) in some cases.
  • various actions for communication with the terminal can be performed through the base station or one or more networks other than the base station.
  • Nodes such as Mobility Management Entity (MME, Mobility Management Entity), Serving-Gateway (S-GW, Serving-Gateway) can be considered, but not limited to this), or their combination.
  • LTE Long-term evolution
  • LTE-A Long-term evolution
  • LTE-B Long-term evolution
  • LTE-Beyond Super 3rd generation mobile communication system
  • IMT-Advanced 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • future wireless access FX, Future Radio Access
  • New-RAT Radio Access Technology
  • New wireless NR, New Radio
  • New Radio Access NX, New radio access
  • FX Future generation radio access
  • GSM Global System for Mobile Communications
  • CDMA3000 Code Division Multiple Access 3000
  • UMB Ultra Mobile Broadband
  • IEEE 920.11 Wi-Fi
  • any reference to an element using designations such as “first”, “second”, etc. used in this specification does not limit the quantity or order of these elements comprehensively. These designations may be used in this specification as a convenient method of distinguishing between two or more units. Thus, a reference to a first unit and a second unit does not mean that only two units may be used or that the first unit must precede the second unit in some fashion.
  • determination (determining) used in this specification may include various actions. For example, regarding “judgment (determination)”, calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up) (such as tables, databases, or other Searching in the data structure), ascertaining (ascertaining) and the like are regarded as performing "judgment (determination)”. In addition, regarding “judgment (determination)”, receiving (receiving) (such as receiving information), transmitting (transmitting) (such as sending information), input (input), output (output), accessing (accessing) (such as access to data in the internal memory), etc., are deemed to be “judgment (determination)”.
  • judgment (determination) resolving (resolving), selecting (selecting), selecting (choosing), establishing (establishing), comparing (comparing), etc. can also be regarded as performing "judgment (determination)”. That is, regarding "judgment (determination)", several actions can be regarded as making "judgment (determination)”.
  • connection refers to any direct or indirect connection or combination between two or more units, which can be Including the following cases: between two units that are “connected” or “combined” with each other, there is one or more intermediate units.
  • the combination or connection between units may be physical or logical, or a combination of both. For example, "connect” could also be replaced with "access”.
  • two units may be considered to be connected by the use of one or more wires, cables, and/or printed electrical connections, and, as several non-limiting and non-exhaustive examples, by the use of , the microwave region, and/or the electromagnetic energy of the wavelength of the light (both visible light and invisible light) region, etc., are “connected” or “combined” with each other.

Abstract

本公开提供了一种通信系统中的终端以及基站。该终端包括接收单元,被配置为接收关于基站的空间滤波器的信息;控制单元,被配置为根据关于基站的空间滤波器的信息,确定与特定同步信号块索引对应的至少一个空间滤波器索引,其中所述与特定同步信号块索引对应的至少一个空间滤波器索引是利用伪随机序列生成器生成的。

Description

通信系统中的终端以及基站 技术领域
本公开涉及无线通信领域,并且更具体地涉及由通信系统中的终端执行的方法、由通信系统中的基站执行的方法、以及相应的终端和基站。
背景技术
为了提高通信系统的吞吐量,提出了多天线技术,例如多输入多输出(Multiple Input Multiple Output,MIMO)技术。在应用多天线技术的场景中,为了有效地消除多用户干扰、提高系统容量、以及降低接收器的信号处理难度,提出了在发送器侧应用预编码(precoding)/波束成形(beam forming)技术。
在5G及其之后的无线通信网络系统中,极高的数据速率/容量是其关键性能指标(Key Performance Indicators,KPIs)之一。例如,通信行业预测5G之后的无线通信网络系统,峰值数据速率可以达到1Tbps。为了实现这种极高的数据速率/容量,需要提供足够的MIMO增益/阵列增益以提高复用阶数和信噪比。为此,为了能够覆盖大范围的3D区域,需要更大的天线阵列以及更多的天线数量以提供支持这种极高的数据速率/容量的增益。例如,为了能够实现1Tbps的峰值数据速率,当采用20GHz带宽、12个MIMO层、64正交幅度调制(Quadrature Amplitude Modulation,QAM)的配置,需要的天线阵列规模达到十万阵子量级,对应的波束数量高达数万量级。
预编码/波束成形技术中,发送器可以在不同的空间方向上发送多个波束,接收器可以在不同的接收空间方向上监听/扫描来自发送器的多个波束传输。接收器通过测量在每个波束上接收的参考信号(Reference Signal,RS)的接收功率或质量来选择最优波束,以实现接收器与发送器之间的波束对齐。
然而,随着波束数量增多,无线通信网络系统中发送器与接收器间进行波束对齐的RS开销增大,波束对齐过程中对波束搜索/扫描的 时间也增加,进而导致接收器接入发送器的时间增加,因此存在对波束对齐技术的进一步改进的需要。
发明内容
为了克服现有技术中的缺陷,本公开提出了基于哈希映射的波束搜索操作,以降低RS开销、缩短终端接入基站的时间,从而提升通信系统的性能。本公开还提出了,在这种情形下,由终端执行的方法、由基站执行的方法、以及相应的终端和基站,以降低RS开销,从而进一步提升通信系统的性能。
根据本公开的一个方面,提供了一种由通信系统中的终端执行的方法,包括:接收关于基站的空间滤波器的信息;根据关于基站的空间滤波器的信息,确定与特定同步信号块索引对应的至少一个空间滤波器索引,其中所述与特定同步信号块索引对应的至少一个空间滤波器索引是利用伪随机序列生成器生成的。
根据本公开的一个示例,其中所述关于基站的空间滤波器的信息包括关于与基站的空间滤波器相关联的同步信号块突发集索引的信息、关于在同步信号块突发集中同步信号块的索引的信息,其中一个同步信号块突发集包括多个同步信号块。
根据本公开的一个示例,上述方法还包括:接收关于系统帧号的信息;根据所述关于系统帧号的信息中的至少一部分比特确定所述关于同步信号块突发集索引的信息。
根据本公开的一个示例,其中所述关于基站的空间滤波器的信息还包括关于基站使用的空间滤波器的总数的信息、关于在每个同步信号块中基站使用的空间滤波器的数量信息中的至少一个。
根据本公开的一个示例,其中所述基站的空间滤波器指示所述基站的发送波束,上述方法还包括:在波束扫描周期内对所述基站的发送波束进行波束扫描以获得发送波束的参考信号接收功率,其中一个所述波束扫描周期包括多个同步信号块突发集周期。
根据本公开的一个示例,上述方法还包括:根据高于第一预定阈值的参考信号接收功率所对应的发送波束和低于第二预定阈值的参 考信号接收功率所对应的发送波束,确定优选发送波束。
根据本公开的一个示例,上述方法还包括:在确定了优选发送波束之后结束波束扫描,而不考虑当前波束扫描周期的剩余时间。
根据本公开的另一方面,提供了一种由通信系统中的基站执行的方法,包括:在一个波束扫描周期中,将所述基站的发送波束的至少一部分以哈希样式与该波束扫描周期中的至少部分同步信号块进行映射,其中所述一个波束扫描周期包括多个同步信号块突发集,并且一个同步信号块突发集包括多个同步信号块;根据映射结果,使用与特定同步信号块对应的至少一个波束发送该特定同步信号块。
根据本公开的一个示例,该方法还包括:发送关于基站的空间滤波器的信息,其中所述基站的空间滤波器指示所述基站的发送波束。
根据本公开的一个示例,该方法还包括:根据关于与基站的空间滤波器相关联的同步信号块突发集索引的信息、关于在同步信号块突发集中同步信号块的索引的信息,利用伪随机序列生成器,确定与特定同步信号块索引对应的至少一个空间滤波器索引。
根据本公开的另一方面,提供了一种终端设备,包括:接收单元,被配置为接收关于基站的空间滤波器的信息;控制单元,被配置为根据关于基站的空间滤波器的信息,确定与特定同步信号块索引对应的至少一个空间滤波器索引,其中所述与特定同步信号块索引对应的至少一个空间滤波器索引是利用伪随机序列生成器生成的。
根据本公开的一个示例,其中所述关于基站的空间滤波器的信息包括关于与基站的空间滤波器相关联的同步信号块突发集索引的信息、关于在同步信号块突发集中同步信号块的索引的信息,其中一个同步信号块突发集包括多个同步信号块。
根据本公开的一个示例,其中所述接收单元接收关于系统帧号的信息;所述控制单元根据所述关于系统帧号的信息中的至少一部分比特确定所述关于同步信号块突发集索引的信息。
根据本公开的一个示例,其中所述关于基站的空间滤波器的信息还包括关于基站使用的空间滤波器的总数的信息、关于在每个同步信号块中基站使用的空间滤波器的数量信息中的至少一个。
根据本公开的一个示例,所述基站的空间滤波器指示所述基站的发送波束;所述控制单元还被配置为在波束扫描周期内对所述基站的发送波束进行波束扫描以获得发送波束的参考信号接收功率,其中一个所述波束扫描周期包括多个同步信号块突发集周期。
根据本公开的一个示例,所述控制单元还被配置为根据高于第一预定阈值的参考信号接收功率所对应的发送波束和低于第二预定阈值的参考信号接收功率所对应的发送波束,确定优选发送波束。
根据本公开的一个示例,所述控制单元还被配置为在确定了优选发送波束之后结束波束扫描,而不考虑当前波束扫描周期的剩余时间。
根据本公开的另一方面,提供了一种基站,包括:控制单元,被配置为在一个波束扫描周期中,将所述基站的发送波束的至少一部分以哈希样式与该波束扫描周期中的至少部分同步信号块进行映射,其中所述一个波束扫描周期包括多个同步信号块突发集,并且一个同步信号块突发集包括多个同步信号块;发送单元,被配置为根据映射结果,使用与特定同步信号块对应的至少一个波束发送该特定同步信号块。
根据本公开的一个示例,其中所述发送单元还配置来发送关于基站的空间滤波器的信息,其中所述基站的空间滤波器指示所述基站的发送波束。
根据本公开的一个示例,其中所述控制单元还被配置为根据关于与基站的空间滤波器相关联的同步信号块突发集索引的信息、关于在同步信号块突发集中同步信号块的索引的信息,利用伪随机序列生成器,确定与特定同步信号块索引对应的至少一个空间滤波器索引。
根据本公开上述各方面的由终端执行的方法、由基站执行的方法、以及相应的终端和基站,提高波束搜索操作的效率,降低RS开销、缩短终端接入基站的时间,从而提升通信系统的性能。
附图说明
通过结合附图对本公开实施例进行更详细的描述,本公开的上述以及其它目的、特征和优势将变得更加明显。附图用来提供对本公开 实施例的进一步理解,并且构成说明书的一部分,与本公开实施例一起用于解释本公开,并不构成对本公开的限制。在附图中,相同的参考标号通常代表相同部件或步骤。
图1示出了可在其中应用本公开实施例的无线通信系统的示意图。
图2示出了根据本公开实施例的由终端执行的方法的流程图。
图3A是示意性地示出了对多个波束执行哈希映射的操作。
图3B是示意性地示出了对多个波束执行哈希映射的另一操作。
图3C示意性地示出了根据本公开实施例的对发射波束执行哈希映射操作的示例。
图3D示意性地示出了根据本公开实施例的对发射波束执行哈希映射操作的另一示例。
图4示出了示出了应用本公开实施例的无线通信系统100的示意图。
图5示出了根据本公开实施例的由基站执行的方法的流程图。
图6示出了根据本公开实施例的基站的结构示意图。
图7出了根据本公开实施例的终端的结构示意图。
图8是根据本公开实施例的通信设备的硬件结构的示意图。
具体实施方式
为了使得本公开的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本公开的示例实施例。在附图中,相同的参考标号自始至终表示相同的元件。应当理解,这里所描述的实施例仅仅是说明性的,而不应被解释为限制本公开的范围。
首先,参照图1来描述可在其中应用本公开实施例的无线通信系统。图1示出了可在其中应用本公开实施例的无线通信系统的示意图。图1所示的无线通信系统100可以是5G通信系统,也可以是任何其他类型的无线通信系统,比如6G通信系统等。在下文中,以5G通信系统为例来描述本公开的实施例,但应当认识到,以下描述也可以适用于其他类型的无线通信系统。
如图1所示,无线通信系统100可以包括基站110和终端120,该基站110是终端120的服务基站。终端120可以经由下行链路与基站110通信。下行链路是指从基站110到终端120的通信链路。在下行链路中,基站110可以依次使用不同指向的波束发射参考信号(Reference Signal,RS),该过程被称作波束扫描;终端120可以测量不同指向的波束发射的参考信号,并根据测量结果确定对准终端120的最佳发射波束。
基站110可以以时分复用(Time Division Multiplexing,TDM)的方式在64个具有不同指向的发射波束上依次向终端120发送同步信号和物理广播信道块(Synchronization Signal and Physical Broadcast Channel,SSB)。每个SSB对应一个特定的发射波束。终端120可以测量从每个发射波束接收的每个SSB的混合参考信号接收功率(Reference Signal Received Power,RSRP)。终端120根据接收到的每个SSB的RSRP测量结果选择最优的SSB和终端120用于接收该SSB的波束,用于后续通信。如图1所示,对于SSB突发周期中的SBB突发(SBB Burst,即半帧5ms),基站110分别在波束索引为发射波束#0、发射波束#1、发射波束#2…发射波束#63的发射波束上依次发送SSB索引为SSB#0、SSB#1、SSB#2…SSB#63的SSB。终端120在波束索引为接收波束#0的接收波束上接收每个SSB并测量每个SSB的RSRP。终端120在波束索引为接收波束#1的接收波束上接收每个SSB并测量每个SSB的RSRP。终端120根据所有接收到的SSB的RSRP测量结果,选择最佳发射-接收波束对(例如,选择所有RSRP测量结果中的最大值所对应的发射-接收波束对作为最佳发射-接收波束对(例如,发射波束#0-接收波束#0))或者选择最佳发射波束(例如,选择所有RSRP测量结果中的最大值所对应的发射波束对作为最佳发射波束(例如,发射波束#0)。
这里所描述的基站可以提供针对特定地理区域的通信覆盖,其可以被称为小区、节点B、gNB、5G节点B、接入点和/或发送接收点等。这里所描述的终端可以包括各种类型的终端,例如用户装置(User Equipment,UE)、移动终端(或称为移动台)或者固定终端,然而, 为方便起见,在下文中有时候可互换地使用终端和UE。
需要认识到,虽然图1仅示出一个基站和一个终端,但是无线通信系统可以包括更多个基站和/或更多个终端,并且一个基站可以服务多个终端,一个终端也可以被多个基站服务。
在上面所描述的基站确定最佳发射-接收波束对/最佳发射波束的过程中,现有技术采用的是穷尽所有发射-接收波束对/最佳发射波束的方法,每个发射波束上都需要配置与之一一对应的参考信号。随着波束数量增多(例如达到上万数级),参考信号的开销将随之线性增加,UE搜索最佳发射-接收波束对/最佳发射波束的时间将随着发射波束和接收波束的数量的乘积线性增加,进而导致UE接入基站时较长的延迟时间。
为了克服现有技术中的缺陷,本公开希望提出一种提高波束搜索操作的效率的方案,以期降低RS开销、缩短终端接入基站的时间,从而提升通信系统的性能。
下面将从终端的角度和基站的角度分别来描述本公开的用于降低RS开销、缩短终端接入基站的时间的技术方案的具体实现方式。
首先,结合图2来描述根据本公开实施例的由基站执行的方法。图2示出了根据本公开实施例的由基站执行的方法200的流程图。如图2所示,在步骤S201中,在一个波束扫描周期中,将基站的发送波束的至少一部分以哈希样式与该波束扫描周期中的至少部分同步信号块进行映射,其中所述一个波束扫描周期包括多个同步信号块突发集,并且一个同步信号块突发集包括多个同步信号块。然后,在步骤S202中,根据映射结果,使用与特定同步信号块对应的至少一个波束发送该特定同步信号块。
本公开提出了通过将波束(尤其是发射波束)映射成具有哈希样式的多个波束组的操作。这里的哈希样式可以通过哈希函数或者具有类似哈希函数特点的伪随机函数映射关系(例如Gold序列或m序列)进行映射来获得。为了方便理解本公开中的哈希映射操作,图3A和3B示意性地示出了对多个波束执行哈希映射的操作。如图3A所示,若在空域方向上存在波束索引分别为1、2、3、4、5、6、7、8、9、 10、11、12的12个波束,每个波束具有不同的空域指向,例如,波束1可以是空域指向如图3A所示的波束,波束3可以是空域指向如图3A所示的波束等等。图3A示出了对这12个波束执行第一轮哈希映射后的操作,这12个波束被哈希映射成了4个波束组,分别为波束组#1、波束组#2、波束组#3、波束组#4,每个波束组包括随机从这12个波束中选择的3个波束。例如波束组#1包括随机从这12个波束中选择的波束1、波束2和波束12,波束组#2包括随机从这12个波束中选择的波束3、波束5和波束8等等。图3B示出了对这12个波束执行第二轮哈希映射后的操作,这12个波束再次被哈希映射成了4个波束组,分别为波束组#1、波束组#2、波束组#3、波束组#4,每个波束组包括随机从这12个波束中选择的3个波束。例如波束组#1包括随机从这12个波束中选择的波束1、波束2和波束7,波束组#2包括随机从这12个波束中选择的波束4、波束5和波束6等等。
图3C和3D示意性地示出了根据本公开实施例的对发射波束执行哈希映射操作的示例。如图3C所示,基站110可以在512个具有不同空域指向的发射波束上发送RS,这512个发射波束的波束索引分别是发射波束#0、发射波束#1、….、发射波束#511,对这512个发射波束执行一轮哈希映射操作后的结果如图3C所示。第一组波束包括随机从512个发射波束中选择的发射波束#0和发射波束#1,第二组波束包括随机从512个发射波束中选择的发射波束#1和发射波束#511等等。图3D示出了对这512个发射波束执行另一种哈希映射操作后的结果。第一组波束包括随机从这512个发射波束中选择的发射波束#0、发射波束#1、发射波束#2,第二组波束包括随机从512个发射波束中选择的发射波束#1、发射波束#2、发射波束#511等等。需要说明的是,尽管图3C和3D分别示出了每个波束组分别包括两个波束和三个波束的示例,但本公开在任何方面均不旨在限制于此,并且根据本公开实施例的具有哈希样式的波束组可以包括至少一个波束,并且每个波束组包括的波束数量是无线通信系统可配置的参数。
根据本公开的一个示例,步骤S201中的同步信号块可以包括SSB。在5G新无线电(New Radio,NR)中,SSB包括同步信号和广 播信号,同步信号包括主同步信号(Primary Synchronization Signal,PSS)和辅同步信号(Secondary Synchronization Signal,SSS),广播信号包括物理广播信道(Physical Broadcast Channel,PBCH)数据和PBCH的解调参考信号(Demodulation Reference Signal,DMRS)。在该示例中,同步信号块突发集包括SSB突发集(SSB Burst Set)。SSB突发集是指在一定周期(例如,5ms、10ms、20ms、40ms等等)内的多个SSB的集合,SSB突发集中的多个SSB可用于波束扫描。
根据本公开的一个示例,步骤S201中的波束扫描周期可以包括一个或多个同步信号块突发集。例如,若一个同步信号块突发集的周期为T,一个波束扫描周期包括N个(N为大等于1的整数)同步信号块突发集,则该波束扫描周期为N×T。在该示例中,N可以为无线通信系统可配置的参数,例如N=512或1024等。
哈希映射可以是把任意长度的输入,通过哈希函数或者具有类似哈希函数特点的伪随机函数映射关系(例如Gold序列或m序列)变换成固定长度的输出。例如可以通过伪随机数生成的方式来进行哈希映射。例如可以通过3GPP/TS38.211中的伪随机序列(Pseudorandom Noise,PN)发生器来实现哈希映射。图4示出了应用本公开实施例的无线通信系统100的示意图。下面结合图4对步骤S201进行示例性地说明。如图4所示,一个波束扫描周期可以包括多个同步信号块突发周期,每个同步信号块突发周期包括用于波束扫描的多个同步信号块(即图4中的同步信号块#0、同步信号块#1、…、同步信号块#63),基站110以TDM的方式或频分复用(Frequency Division Multiplexing,FDM)、码分复用(Code Division Multiplexing,CDM)等方式以及上述方式的各种组合使用发射波束向终端120发送上述用于波束扫描的多个同步信号块。在第一个同步信号块突发周期中,同步信号块#0、同步信号块#1、…、同步信号块#63可以与基站110的发射波束索引进行第一轮哈希映射(如图4中的样式1),在第二个同步信号块突发周期中,同步信号块#0、同步信号块#1、…、同步信号块#63可以与基站110的发射波束索引进行第二轮哈希映射(如图4中的样式2),以此类推,从而完成同步信号块#0、同步信号块#1、…、同步信 号块#63在整个波束扫描周期内与基站110的发射波束索引建立N轮哈希映射。在该示例中,每轮哈希映射后发射波束的哈希样式可以是不同的,例如图4中的样式1和样式2是不同的,具体地,样式1中同步信号块#0对应的发射波束与样式2中同步信号块#0对应的发射波束不是全都相同的。发射波束以哈希样式与同步信号进行哈希映射的过程本文已结合图3C和图3D予以了说明,这里不再赘述。
需要认识到,在步骤S201中,可以将基站的所有发射波束中的一部分发射波束以哈希样式与同步信号块进行映射。如图4所示,基站110具有512个发射波束,以样式1进行哈希映射时,这512个发射波束的部分发射波束被哈希映射成了64个波束组,每个波束组包括两个发射波束。可选地,在步骤S201中,也可以在每轮哈希映射中将基站的所有发射波束中的全部发射波束以哈希样式与同步信号进行映射(类似于图3A和图3B示出的情形),即在整个波束扫描周期中,用来传输同步信号块的基站的每个发射波束传输次数相等。在该可选的实施例中,通过将基站的各个发射波束的传输机会(也可称为发射机会)均等化,实现小区的均匀覆盖,提高了通信系统的整体性能。作为另一个实例,也可以根据区域内用户分布情况对各个波束的发射机会进行调整,实现不均等的传输机会。即用户密集区域对应的波束发射机会较高,而用户分布稀疏区域对应的波束发射机会较低。
下面继续结合图4对步骤S202进行说明。在建立同步信号块索引与发射波束索引的哈希映射后,基站110可以在每个同步信号块索引对应的发射波束上向终端120发送该同步信号块索引对应的同步信号块。例如,在第一轮哈希映射后,可以使用发射波束#0和发射波束#511发送同步信号块#0、使用发射波束#0和发射波束#1发送同步信号块#1等等;在第二轮哈希映射后,可以使用发射波束#0和发射波束#2发送同步信号块#0、使用发射波束#1和发射波束#2发送同步信号块#1等等。需要认识到,在同步信号块被发送到终端120后,终端120可以解调同步信号块并对同步信号块进行测量,如测量同步信号块的接收信号强度、接收信号质量等;终端120可以根据测量结果确定最优发射-接收波束对(例如,图4中的发射波束#0-接收波束#0 对)或者最优发射波束(例如图4中的发射波束#0)。
在本公开的上述示例中,通过以伪随机的方式将发射波束哈希成多个波束组,每个波束组包括至少一个波束,并基于具有哈希样式的波束组进行波束搜索操作以确定最优发射-接收波束对/最佳发射波束,从而降低RS开销、缩短终端接入基站的时间,提升通信系统的性能。
根据本公开的另一示例,所述步骤S202还包括发送关于基站的空间滤波器的信息,其中所述基站的空间滤波器指示所述基站的发送波束。
在预编码/波束成形(又称智能天线)技术中,一组固定的加权因子对应预编码矩阵,波束的指向可以通过在每个天线上施加权重因子来实现,该权重因子的取值为预编码矩阵中的各个分量。改变加权因子,即可以使波束指向其他的方向,即实现空域滤波。为清楚起见,本文中空间滤波器和波束是等价的,可以互换使用。在该示例中,基站的空间滤波器可以是波束成形技术中的指示基站的发射波束在空域指向的预编码矩阵,该基站的空间滤波器指示基站的发射波束。
根据本公开的一个示例,关于基站的空间滤波器的信息可包括经哈希映射后的、与特定SSB对应的一个或多个发射波束的索引,从而终端设备可以根据关于基站的空间滤波器的信息直接获得与特定同步信号块对应的至少一个空间滤波器索引。可替换地,关于基站的空间滤波器的信息可包括关于与基站的空间滤波器相关联的同步信号块突发集索引的信息、关于在同步信号块突发集中同步信号块的索引的信息,从而终端设备可利用,例如伪随机序列生成器,确定与特定同步信号块索引对应的至少一个空间滤波器索引。下面分别对这两个实施例予以说明。
在一个示例中,基站110可以发送在建立同步信号块索引与发射波束索引的哈希映射后,用于发送特定同步信号块的发射波束的索引。例如,基站110可以发送图4所示的、在第一轮哈希映射后用以发送同步信号块#0的发射波束的索引:发射波束#0和发射波束#511。在该示例中,关于基站的空间滤波器的信息包括空间滤波器索引,该空间滤波器索引是利用伪随机序列生成器生成的、与特定同步信号块相 关联的索引。在该示例中,基站110可以显式地通知终端120经哈希映射后的发射波束索引,终端120不需要执行对发射波束进行哈希映射的操作,方便终端120快速执行波束扫描操作、降低UE的功耗,提升了通信系统的整体性能。
在另一个示例中,基站110可以发送与基站110的空间滤波器相关联的关于同步信号块突发集索引的信息、关于在同步信号块突发集中同步信号块的索引的信息。在该示例中,基站110根据同步信号块突发集索引、在同步信号块突发集中同步信号块的索引执行哈希映射的操作,生成基站发射该同步信号块所使用的一个或者多个空间滤波器索引;终端120根据接收到的这些信息来执行本公开上文描述的哈希映射操作,获得基站110用于发射该同步信号索引块的空间滤波器索引信息。在该示例中,由于基站110只需要将与基站110的空间滤波器相关联的关于同步信号块突发集索引的信息、关于在同步信号块突发集中同步信号块的索引的信息发送给终端120,而不需要发送每轮哈希映射后的用于发送每个同步信号块的发射波束的索引,因此降低了基站110和终端120之间的信令开销,提升了通信系统的整体性能。作为另一个示例,一个同步信号扫描周期内的所有同步信号块可以连续索引,而不显式定义一个同步信号扫描周期内的各个同步信号块突发周期。这样同步信号块索引是一个同步信号扫描周期内所有同步信号块的索引。在该示例中,基站110根据同步信号块索引执行哈希映射的操作,生成基站发射该同步信号块所使用的一个或者多个空间滤波器索引;终端120根据接收到的同步信号块索引来执行本公开上文描述的哈希映射操作,获得基站110用于发射该同步信号索引块的空间滤波器索引信息。
在该示例中,关于同步信号块索引的信息包括关于同步信号块突发集索引的信息和关于在同步信号块突发集中同步信号块的索引的信息,其中一个同步信号块突发集包括多个同步信号块。在该示例中,同步信号块突发集索引可以包括各个同步信号块突发集在整个波束扫描周期中的索引。例如图4中,整个波束扫描周期包括N个同步信号块突发周期集,样式1的哈希映射是在第一个同步信号块突发周 期集上进行的,样式2的哈希映射是在第二个同步信号块突发周期集上进行的,在时域上依次排序的N个同步信号块突发周期所对应的同步信号块突发集的索引可以依次为同步信号块突发集#0、同步信号块突发集#1、…、同步信号块突发集#N-1。在该示例中,同步信号块突发集中同步信号块的索引可以包括在当前同步信号块突发集中各个同步信号块的索引,例如图4中的第一个同步信号块突发周期所对应的同步信号块突发集集中,各个同步信号块的索引为同步信号块#0、同步信号块#1、…、同步信号块#63,第二个同步信号块突发集中,各个同步信号块的索引为同步信号块#0、同步信号块#1、…、同步信号块#63等。作为另一个示例,一个同步信号扫描周期内的所有同步信号块可以连续索引,而不显式定义一个同步信号扫描周期内的各个同步信号块突发周期。例如图4中,整个波束扫描周期中的N乘64个同步信号块的索引为同步信号块#0、同步信号块#1、…、同步信号块#(64N-1)。在该示例中,可以使用显示定义的信令指示关于基站的空间滤波器索引的信息,该信令可以为采用特定数量的比特位对关于基站的空间滤波器索引的信息进行编码的信令,例如该信令可以使用12比特对基站110侧4096个发射波束索引进行编码。根据本公开的另一示例,指示关于基站的空间滤波器索引的信息的信令使用的最大比特数可以由无线通信系统标准定义(例如12比特)。在该示例中,指示用于发送同步信号块的空间滤波器索引的信息的实际使用比特数可以小于该信令长度的最大值(例如12比特),即空间滤波器的个数小于该信令长度的最大值所能指示空间滤波器个数。在该示例中,可以指示用于发送同步信号块的空间滤波器索引的信息的实际使用比特数,例如该指示可以在PBCH中传输,该信令中超过实际使用比特数的高比特位无意义。作为另外一个示例,也可以将部分空间滤波器重复使用,得到与指示关于基站的空间滤波器索引的信息的信令使用的最大比特数所对应个数相等的空间滤波器,而不再指示实际使用的比特数的长度,此时同一个空间滤波器可以对应多个空间滤波器的索引信息,例如在最大比特数为12比特,实际使用11比特时,空间滤波器索引0与空间滤波器索引2048使用同一个空间滤波器…空 间滤波器索引2047与空间滤波器索引4095使用同一个空间滤波器;作为另外一个示例,也可以将超过实际空间滤波器个数的空间滤波器的索引信息对应到无发射信号,例如在最大比特数为12比特,实际使用11比特时,空间滤波器索引2048至4095均对应零波束。
根据本公开的另一示例,所述方法200还包括根据关于基站的空间滤波器的信息,利用伪随机序列生成器,确定与特定同步信号块索引对应的至少一个空间滤波器索引。在该示例中,关于同步信号块索引的信息可以由上文描述的同步信号块突发集索引(标记为L 1)和同步信号块突发集中同步信号块的索引(标记为L 2)确定。通过L 1和L 2可以确定各个同步信号块在整个波束扫描周期中的索引。可选地,这里的伪随机序列生成器可以是3GPP/TS38.211中的伪随机序列(Pseudorandom Noise,PN)发生器。利用PN发生器确定与特定同步信号块索引对应的至少一个空间滤波器索引的步骤如下:初始化PN发生器以获得初始序列c init,作为一个示例,c init使用小区ID与标准给定常数相乘得到,即使用小区ID初始化随机序列发生器,c init也可以使用其它标准约定常数或变量进行初始化;复用PN发生器以根据初始序列c init产生伪随机序列c(n);以及根据以下方程式(1)将伪随机序列c(n)转换空间滤波器索引:
Figure PCTCN2021132923-appb-000001
其中I m为特定同步信号块索引所对应的空间滤波器索引,K为空间滤波器索引长度,L 1为同步信号块突发集索引,L 2为同步信号块突发集中同步信号块的索引,L max为L 2的最大值,M为发送一个同步信号块所使用的空间滤波器个数,m=0,…,M-1。在另一个示例中,当不需显式定义同步信号块突发集时,L 1和L 2可不显式区分,隐含为同步信号块索引L的一部分,作为一个示例,L取值满足L=L 1L max+L 2的关系。方程式(1)可以写为以下形式:
Figure PCTCN2021132923-appb-000002
根据本公开的另一示例,关于基站的空间滤波器的信息还可以包括关于基站使用的空间滤波器的总数的信息、关于在每个同步信号块 中基站使用的空间滤波器的数量信息中的至少一个。基站使用的空间滤波器的总数可以是基站侧所有具有不同空域指向的发射波束的总数量。例如图4中,基站110使用的发射波束的总数量为512。每个同步信号块中基站使用的空间滤波器的数量信息可以是在每轮哈希映射中,每个同步信号块所对应的波束组中包括的波束数量。例如图4中,每个同步信号块对应的发射波束的数量均为2。在该示例中,可以使用信令指示关于在每个同步信号块中基站使用的空间滤波器的数量信息,例如在一个波束扫描周期中,在每个同步信号块中基站使用的空间滤波器的数量信息为1、2、4、8,则可以使用长度为2比特的信令对其进行编码。根据本公开的另一示例,指示关于在每个同步信号块中基站使用的空间滤波器的数量信息的信令可以在PBCH中传输。
根据本公开的另一示例,所述步骤S202还包括发送关于系统帧号的消息,其中所述关于系统帧号的消息中的至少一部分比特用于指示关于同步信号块突发集索引的消息。在该示例中,系统帧号可以是小区的系统信息(System Information)中的主系统信息块(Master Information Block,MIB)包含的系统帧号(System Frame Number,SFN),SFN的长度为10个比特,可以在PBCH传输。在该示例中,可以根据同步信号块突发集的周期(例如20ms)确定SFN到同步信号块突发集的索引之间的映射。例如,可以取SFN中的高9比特对同步信号块突发集的索引进行编码。根据本公开的另一示例,还可以在同步信号块中增加用于指示同步信号块突发集的索引的信令,该信令可以在PBCH中传输。
通过上述本公开实施例的由基站执行的方法,该方法提高了波束搜索操作的效率,降低RS开销、缩短终端接入基站的时间,从而提升通信系统的性能。
下面,结合图5来描述根据本公开实施例的由终端执行的方法。图5示出了根据本公开实施例的由终端执行的方法的流程图。由于方法500与在上文中参照图2描述的方法200的某些细节相同,因此, 为了简单起见,省略了对相同内容的详细描述。
如图5所示,在步骤S501中,接收关于基站的空间滤波器的信息。在步骤S502中,根据关于基站的空间滤波器的信息,确定与特定同步信号块索引对应的至少一个空间滤波器索引,其中所述与特定同步信号块索引对应的至少一个空间滤波器索引是利用伪随机序列生成器生成的。
在该示例中,终端120可以接收经哈希映射后的发射波束的索引,也可以接收用以执行哈希映射的同步信号块突发集索引、在同步信号块突发集中同步信号块的索引。下面分别对这两个实施例予以说明。
在一个示例中,终端120可以接收基站110发送的在建立同步信号块索引与发射波束索引的哈希映射后,用于发送特定同步信号块的发射波束的索引。例如,终端120可以接收基站110发送的图4所示的、在第一轮哈希映射后用以发送同步信号块#0的发射波束的索引:发射波束#0和发射波束#511。在该示例中,关于基站的空间滤波器的信息包括空间滤波器索引,该空间滤波器索引是利用伪随机序列生成器生成的、与特定同步信号块相关联的索引。终端120可以对接收的关于基站的空间滤波器的信息进行解调并得到与特定同步信号块索引对应的空间滤波器索引。在该示例中,终端120不需要执行对发射波束进行哈希映射的操作,方便终端120快速执行波束扫描操作、降低UE的功耗,提升了通信系统的整体性能。
根据本公开的另一示例,关于基站的空间滤波器的信息包括关于与基站的空间滤波器相关联的同步信号块突发集索引的信息、关于在同步信号块突发集中同步信号块的索引的信息。在该示例中,关于同步信号块索引的信息可以由上文描述的同步信号块突发集索引(标记为L 1)和同步信号块突发集中同步信号块的索引(标记为L 2)确定。通过L 1和L 2可以确定各个同步信号块在整个波束扫描周期中的索引。终端120根据接收到的L 1和L 2来执行本公开上文描述的哈希映射操作,获得基站110用于发射该同步信号索引块的空间滤波器索引信息。在该示例中,由于基站110只需要将关于与基站的空间滤波器相关联 的同步信号块突发集索引的信息、关于在同步信号块突发集中同步信号块的索引的信息发送给终端120,而不需要发送每轮哈希映射后的用于发送每个同步信号块的发射波束的索引,因此降低了基站110和终端120之间的信令开销,提升了通信系统的整体性能。作为另一个示例,整个同步信号扫描周期内的所有同步信号块可以连续索引,而不显式定义整个同步信号扫描周期内的各个同步信号块突发周期。这样同步信号块索引是整个同步信号扫描周期内所有同步信号块的索引。在该示例中,基站110根据同步信号块索引执行哈希映射的操作,生成基站发射该同步信号块所使用的一个或者多个空间滤波器索引;终端120根据接收到的同步信号块索引来执行本公开上文描述的哈希映射操作,获得基站110用于发射该同步信号索引块的空间滤波器索引信息。
可选择地,上述步骤S502中的伪随机序列生成器可以是3GPP/TS38.211中的伪随机序列(Pseudorandom Noise,PN)发生器。利用PN发生器确定与特定同步信号块索引对应的至少一个空间滤波器索引的步骤如下:初始化PN发生器以获得初始序列c init;复用PN发生器以根据初始序列c init产生伪随机序列c(n);以及根据上述方程(1)将伪随机序列c(n)转换空间滤波器索引。在另一个示例中,当不显式定义同步信号块突发集时,L 1和L 2可不显式区分,隐含为同步信号块索引L的一部分,作为一个示例,L取值满足L=L 1L max+L 2的关系。在此情况下,可以根据上述方程(2)将伪随机序列c(n)转换空间滤波器索引。
根据本公开的另一个示例,步骤S501还包括接收关于系统帧号的信息以及步骤S502还包括根据关于系统帧号的信息中的至少一部分比特确定关于同步信号块突发集索引的信息。从而,UE可复用关于系统帧号的信息来确定同步信号块突发集索引,减少了信令开销。
根据本公开的另一个示例,关于基站的空间滤波器的信息还包括关于基站使用的空间滤波器的总数的信息、关于在每个同步信号块中基站使用的空间滤波器的数量信息中的至少一个。基站使用的空间滤波器的总数可以是基站侧所有具有不同空域指向的发射波束的总数 量。例如图4中,基站110使用的发射波束的总数量为512。每个同步信号块中基站使用的空间滤波器的数量信息可以是在每轮哈希映射中,每个同步信号块所对应的波束组中包括的波束数量。例如图4中,每个同步信号块对应的发射波束的数量均为2。在该示例中,可以使用信令指示关于在每个同步信号块中基站使用的空间滤波器的数量信息,例如在一个波束扫描周期中,在每个同步信号块中基站使用的空间滤波器的数量信息为1、2、4、8,则可以使用长度为2比特的信令对其进行编码。从而,UE可根据关于基站使用的空间滤波器的总数的信息、关于在每个同步信号块中基站使用的空间滤波器的数量信息中的至少一个来确定需要映射的波束。根据本公开的另一示例,指示关于在每个同步信号块中基站使用的空间滤波器的数量信息的信令可以在PBCH中传输。
根据本公开的另一个示例,基站的空间滤波器指示基站的发送波束以及步骤S502还包括在波束扫描周期内对基站发送的至少一个同步信号块进行波束扫描以获得至少部分发送波束的参考信号接收功率,其中一个波束扫描周期包括多个同步信号块突发集。需要认识到,在步骤S502中,可以接收以哈希样式与同步信号块进行映射的基站的所有发射波束中的一部分发射波束。如图4所示,基站110具有512个发射波束,以样式1进行哈希映射时,这512个发射波束的部分发射波束被哈希映射成了64个波束组,每个波束组包括两个发射波束。可选地,在步骤S502中,也可以在每轮哈希映射中接收基站的所有发射波束中的全部发射波束以哈希样式与同步信号进行映射(类似于图3A和图3B示出的情形),即在整个波束扫描周期中,用来接收同步信号块的基站的每个发射波束的接收次数相等。在该可选的实施例中,同步信号块的各个发射波束的接收机会均等化,避免无法接收最佳发射波束的同步信号的最坏情况发生,提高了通信系统的整体性能。
根据本公开的另一个示例,所述步骤S502还包括根据高于第一预定阈值的参考信号接收功率所对应的发送波束和低于第二预定阈值的参考信号接收功率所对应的发送波束,确定优选发送波束。
下面结合图1对现有技术中波束检测算法进行说明。如图1所示,对于SSB突发周期中的SSB突发,终端120在波束索引为接收波束#0的接收波束上接收波束索引为发射波束#0、发射波束#1、发射波束#2…发射波束#63的发射波束上发送的每个SSB并测量每个SSB的RSRP。终端120的测量结果如表1-1所示:
表1-1
Figure PCTCN2021132923-appb-000003
然后根据上述表格,选择接收功率增益最大的发射-接收波束对(即发射波束#63-接收波束#0)为最优发射-接收波束对或者选择接收功率增益最大的发射波束(即发射波束#63)作为最优发射波束。由于现有技术采用了穷尽式的波束检测算法,随着发射波束数量的增多会导致UE选择最佳波束的时间变长,进而产生UE接入网络的延迟。为此,本公开提出了一种基于双向投票的波束检测算法,对于高于第一预定阈值的参考信号接收功率所对应的发射波束提供正向投票,对于低于第二预定阈值的参考信号接收功率所对应的发射波束提供反向投票。下面结合图4对本公开的波束检测算法的示例进行说明。如上文所描述,在第一轮哈希映射中,终端120可以在发射波束#0和发射波束#511上接收同步信号块#0,在发射波束#0和发射波束#1上接收同步信号块#1,依次类推。之后,终端120可以针对每个同步信号块执行RSRP测量,RSRP测量结果如表1-2所示:
表1-2
Figure PCTCN2021132923-appb-000004
接着,终端120可以对每个同步信号块的测量结果进行投票,每个同步信号块的测量结果可以提供用于选择优选发射波束的投票信息,例 如针对第一轮哈希映射中同步信号块#0的RSRP测量结果,可以提供发射波束#0和发射波束#511的投票信息,针对第一轮哈希映射中的同步信号块#1的RSRP测量结果,可以提供发射波束#0和发射波束#1的投票信息。在该示例中,发射波束可以对应多个RSRP测量结果,具有高于第一阈值接收功率增益(例如5dB)的RSRP可以提供该发射波束的正向投票,具有低于第二阈值接收功率增益(例如0dB)的RSRP或者未检测到同步信号块可以提供发射波束的反向投票进而拉低或否决该发射波束的正向投票。下表1-3示出了该双向投票算法的一个示例:
表1-3
Figure PCTCN2021132923-appb-000005
如上表所示,发射波束#0具有两个RSRP测量结果,第一次测量结果为15dB,第二次测量结果为-3dB,第一次测量结果高于第一阈值(例如5dB)可以提供正向投票(保留15dB),第二次测量结果低于第二阈值(例如0dB)可以提供正向投票的否决票,因此发射波束#0的最终投票结果为-3dB。
下表1-4示出了该双向投票算法的另一个示例:
表1-4
Figure PCTCN2021132923-appb-000006
如上表所示,发射波束#0具有两个RSRP测量结果,第一次测量结果为15dB,第二次测量结果为-3dB,第一次测量结果高于第一阈值(例如5dB)可以提供正向投票(保留15dB),第二次测量结果低于第二 阈值(例如0dB)可以拉低正向投票,因此发射波束#0的最终投票结果为12dB。
虽然本公开提供了双向投票算法的两个示例,但基于以上两个示例,双向投票算法可以衍生更多种实现方式。例如,可以对不同的测量结果进行加权。具体而言,可以针对超过第一RSRP阈值的测量结果或在多个测量结果中较大的值赋予较小的权重,而针对小于第二RSRP阈值的测量结果或在多个测量结果中较小的值赋予较高的权重。当较低测量结果的权重为1,较高测量结果的权重为0时,算法可蜕化到表1-3的示例,即按照最小值对测量结果进行加权。
表1-3和1-4给出了UE使用固定波束接收的情况,在接收基站SSB期间,UE还可以随机切换接收波束,此时表中各列应包含所有发射波束和接收波束的组合。例如,在UE具有两个接收波束的情况下,可针对发射波束#0的组合为发射波束#0+接收波束#0,发射波束#0+接收波束#1。根据本公开的另一个示例,所述步骤S502还包括在确定了优选发送波束之后结束波束扫描,而不考虑当前波束扫描周期的剩余时间。在该示例中,上述高于第一预定阈值的参考信号接收功率可以是强发射波束的参考信号接收功率,例如第一预定阈值的参考信号接收功率可以是14dB。需要认识到,强发射波束的参考信号接收功率一定是可以用于提供正向投票信息的参考信号接收功率,而可以提供正向投票信息的参考信号接收功率不一定是强发射波束的参考信号接收功率。在发射波束投票表中的强发射波束的模糊性被排除后即可确定优选发送波束,而无需考虑当前波束扫描周期的剩余时间。例如,图4中在第一轮哈希映射中,出现了如表1-2所示的RSRP测量结果,该RSRP测量结果中出现了强发送波束发射波束#0和发射波束#511,在经过了表1-3的投票结果后即排除了发射波束#0为强发送波束,此时可以直接输出发射波束#511为优选波束,而不考虑整个波束扫描周期的生意时间。该实施例可以使终端能够快速完成波束搜索,进而使终端可以快速接入网络。
通过上述本公开实施例的由终端执行的方法,该方法提高了波束搜索操作的效率,降低RS开销、缩短终端接入基站的时间,从而提 升通信系统的性能。
下面,参照图6来描述根据本公开实施例的基站。图6是根据本公开实施例的基站600的结构示意图。由于基站600的功能与在上文中参照图2描述的方法200的某些细节相同,因此为了简单起见,省略对相同内容的详细描述。如图6所示,基站600包括:控制单元610,被配置为在一个波束扫描周期中,将所述基站的发送波束以哈希样式与该波束扫描周期中的至少部分同步信号块进行映射,其中所述一个波束扫描周期包括多个同步信号块突发集,并且一个同步信号块突发集包括多个同步信号块;以及发送单元620,被配置为根据映射结果,使用与特定同步信号块对应的至少一个波束发送该特定同步信号块。除了这两个单元以外,基站600还可以包括其他部件,然而,由于这些部件与本公开实施例的内容无关,因此在这里省略其图示和描述。
根据本公开的一个示例,发送单元620还配置来发送关于基站的空间滤波器的信息,其中所述基站的空间滤波器指示所述基站的发送波束。
根据本公开的另一示例,控制单元610还被配置为根据关于基站的空间滤波器的信息包括关于与基站的空间滤波器相关联的同步信号块突发集索引的信息、关于在同步信号块突发集中同步信号块的索引的信息,利用伪随机序列生成器,确定与特定同步信号块索引对应的至少一个空间滤波器索引。
通过上述本公开实施例的基站,提高了波束搜索操作的效率,降低RS开销、缩短终端接入基站的时间,从而提升通信系统的性能。
下面,参照图7来描述根据本公开实施例的终端。图7是根据本公开实施例的终端700的结构示意图。由于终端700的功能与在上文中参照图5描述的方法500的某些细节相同,因此为了简单起见,省略对相同内容的详细描述。如图7所示,终端700包括:接收单元701,被配置为接收关于基站的空间滤波器的信息;控制单元702,被 配置为根据关于基站的空间滤波器的信息,确定与特定同步信号块索引对应的至少一个空间滤波器索引,其中所述与特定同步信号块索引对应的至少一个空间滤波器索引是利用伪随机序列生成器生成的。
根据本公开的一个示例,其中所述关于基站的空间滤波器的信息包括关于与基站的空间滤波器相关联的同步信号块突发集索引的信息、关于在同步信号块突发集中同步信号块的索引的信息,其中一个同步信号块突发集包括多个同步信号块。
根据本公开的一个示例,其中所述接收单元701接收关于系统帧号的信息;所述控制单元702根据所述关于系统帧号的信息中的至少一部分比特确定所述关于同步信号块突发集索引的信息。
根据本公开的一个示例,其中所述关于基站的空间滤波器的信息还包括关于基站使用的空间滤波器的总数的信息、关于在每个同步信号块中基站使用的空间滤波器的数量信息中的至少一个。
根据本公开的一个示例,所述基站的空间滤波器指示所述基站的发送波束;所述控制单元702还被配置为在波束扫描周期内对所述基站的发送波束进行波束扫描以获得发送波束的参考信号接收功率,其中一个所述波束扫描周期包括多个同步信号块突发集周期。
根据本公开的一个示例,所述控制单元702还被配置为根据高于第一预定阈值的参考信号接收功率所对应的发送波束和低于第二预定阈值的参考信号接收功率所对应的发送波束,确定优选发送波束。
根据本公开的一个示例,所述控制单元702还被配置为在确定了优选发送波束之后结束波束扫描,而不考虑当前波束扫描周期的剩余时间。
通过上述本公开实施例的终端,提高了波束搜索操作的效率,降低RS开销、缩短终端接入基站的时间,从而提升通信系统的性能。
<硬件结构>
另外,上述实施方式的说明中使用的框图示出了以功能为单位的块。这些功能块(结构单元)通过硬件和/或软件的任意组合来实现。此外,各功能块的实现手段并不特别限定。即,各功能块可以通过在 物理上和/或逻辑上相结合的一个装置来实现,也可以将在物理上和/或逻辑上相分离的两个以上装置直接地和/或间接地(例如通过有线和/或无线)连接从而通过上述多个装置来实现。
例如,本公开实施例的通信设备(比如终端700、基站600)可以作为执行本公开的无线通信方法的处理的计算机来发挥功能。图8是根据本公开的实施例的所涉及的通信设备800(终端或基站)的硬件结构的示意图。上述的通信设备800可以作为在物理上包括处理器810、内存820、存储器830、通信装置840、输入装置850、输出装置860、总线870等的计算机装置来构成。
另外,在以下的说明中,“装置”这样的文字也可替换为电路、设备、单元等。用户终端和基站的硬件结构可以包括一个或多个图中所示的各装置,也可以不包括部分装置。
例如,处理器810仅图示出一个,但也可以为多个处理器。此外,可以通过一个处理器来执行处理,也可以通过一个以上的处理器同时、依次、或采用其它方法来执行处理。另外,处理器810可以通过一个以上的芯片来安装。
设备800的各功能例如通过如下方式实现:通过将规定的软件(程序)读入到处理器810、内存820等硬件上,从而使处理器810进行运算,对由通信装置840进行的通信进行控制,并对内存820和存储器830中的数据的读出和/或写入进行控制。
处理器810例如使操作系统进行工作从而对计算机整体进行控制。处理器810可以由包括与周边装置的接口、控制装置、运算装置、寄存器等的中央处理器(CPU,Central Processing Unit)构成。例如,上述的确定单元、调整单元等可以通过处理器810实现。
此外,处理器810将程序(程序代码)、软件模块、数据等从存储器830和/或通信装置840读出到内存820,并根据它们执行各种处理。作为程序,可以采用使计算机执行在上述实施方式中说明的动作中的至少一部分的程序。例如,终端500的控制单元可以通过保存在内存820中并通过处理器810来工作的控制程序来实现,对于其它功能块,也可以同样地来实现。
内存820是计算机可读取记录介质,例如可以由只读存储器(ROM,Read Only Memory)、可编程只读存储器(EPROM,Erasable Programmable ROM)、电可编程只读存储器(EEPROM,Electrically EPROM)、随机存取存储器(RAM,Random Access Memory)、其它适当的存储介质中的至少一个来构成。内存820也可以称为寄存器、高速缓存、主存储器(主存储装置)等。内存820可以保存用于实施本公开的一实施方式所涉及的方法的可执行程序(程序代码)、软件模块等。
存储器830是计算机可读取记录介质,例如可以由软磁盘(flexible disk)、软(注册商标)盘(floppy disk)、磁光盘(例如,只读光盘(CD-ROM(Compact Disc ROM)等)、数字通用光盘、蓝光(Blu-ray,注册商标)光盘)、可移动磁盘、硬盘驱动器、智能卡、闪存设备(例如,卡、棒(stick)、密钥驱动器(key driver))、磁条、数据库、服务器、其它适当的存储介质中的至少一个来构成。存储器830也可以称为辅助存储装置。
通信装置840是用于通过有线和/或无线网络进行计算机间的通信的硬件(发送接收设备),例如也称为网络设备、网络控制器、网卡、通信模块等。通信装置840为了实现例如频分双工(FDD,Frequency Division Duplex)和/或时分双工(TDD,Time Division Duplex),可以包括高频开关、双工器、滤波器、频率合成器等。例如,上述终端500的发送单元、接收单元等可以通过通信装置840来实现。
输入装置850是接受来自外部的输入的输入设备(例如,键盘、鼠标、麦克风、开关、按钮、传感器等)。输出装置860是实施向外部的输出的输出设备(例如,显示器、扬声器、发光二极管(LED,Light Emitting Diode)灯等)。另外,输入装置850和输出装置860也可以为一体的结构(例如触控面板)。
此外,处理器810、内存820等各装置通过用于对信息进行通信的总线870连接。总线870可以由单一的总线构成,也可以由装置间不同的总线构成。
此外,基站和终端可以包括微处理器、数字信号处理器(DSP,Digital Signal Processor)、专用集成电路(ASIC,Application Specific Integrated Circuit)、可编程逻辑器件(PLD,Programmable Logic Device)、现场可编程门阵列(FPGA,Field Programmable Gate Array)等硬件,可以通过该硬件来实现各功能块的部分或全部。例如,处理器810可以通过这些硬件中的至少一个来安装。
(变形例)
另外,关于本说明书中说明的用语和/或对本说明书进行理解所需的用语,可以与具有相同或类似含义的用语进行互换。例如,信道和/或符号也可以为信号(信令)。此外,信号也可以为消息。参考信号也可以简称为RS(Reference Signal),根据所适用的标准,也可以称为导频(Pilot)、导频信号等。此外,分量载波(CC,Component Carrier)也可以称为小区、频率载波、载波频率等。
此外,本说明书中说明的信息、参数等可以用绝对值来表示,也可以用与规定值的相对值来表示,还可以用对应的其它信息来表示。例如,无线资源可以通过规定的索引来指示。进一步地,使用这些参数的公式等也可以与本说明书中明确公开的不同。
在本说明书中用于参数等的名称在任何方面都并非限定性的。例如,各种各样的信道(物理上行链路控制信道(PUCCH,Physical Uplink Control Channel)、物理下行链路控制信道(PDCCH,Physical Downlink Control Channel)等)和信息单元可以通过任何适当的名称来识别,因此为这些各种各样的信道和信息单元所分配的各种各样的名称在任何方面都并非限定性的。
本说明书中说明的信息、信号等可以使用各种各样不同技术中的任意一种来表示。例如,在上述的全部说明中可能提及的数据、命令、指令、信息、信号、比特、符号、芯片等可以通过电压、电流、电磁波、磁场或磁性粒子、光场或光子、或者它们的任意组合来表示。
此外,信息、信号等可以从上层向下层、和/或从下层向上层输出。信息、信号等可以经由多个网络节点进行输入或输出。
输入或输出的信息、信号等可以保存在特定的场所(例如内存),也可以通过管理表进行管理。输入或输出的信息、信号等可以被覆盖、更新或补充。输出的信息、信号等可以被删除。输入的信息、信号等可以被发往其它装置。
信息的通知并不限于本说明书中说明的方式/实施方式,也可以通过其它方法进行。例如,信息的通知可以通过物理层信令(例如,下行链路控制信息(DCI,Downlink Control Information)、上行链路控制信息(UCI,Uplink Control Information))、上层信令(例如,无线资源控制(RRC,Radio Resource Control)信令、广播信息(主信息块(MIB,Master Information Block)、系统信息块(SIB,System Information Block)等)、媒体接入控制(MAC,Medium Access Control)信令)、其它信号或者它们的组合来实施。
另外,物理层信令也可以称为L1/L2(第1层/第2层)控制信息(L1/L2控制信号)、L1控制信息(L1控制信号)等。此外,RRC信令也可以称为RRC消息,例如可以为RRC连接建立(RRC Connection Setup)消息、RRC连接重设定(RRC Connection Reconfiguration)消息等。此外,MAC信令例如可以通过MAC控制单元(MAC CE(Control Element))来通知。
此外,规定信息的通知(例如,“为X”的通知)并不限于显式地进行,也可以隐式地(例如,通过不进行该规定信息的通知,或者通过其它信息的通知)进行。
关于判定,可以通过由1比特表示的值(0或1)来进行,也可以通过由真(true)或假(false)表示的真假值(布尔值)来进行,还可以通过数值的比较(例如与规定值的比较)来进行。
软件无论被称为软件、固件、中间件、微代码、硬件描述语言,还是以其它名称来称呼,都应宽泛地解释为是指命令、命令集、代码、代码段、程序代码、程序、子程序、软件模块、应用程序、软件应用程序、软件包、例程、子例程、对象、可执行文件、执行线程、步骤、功能等。
此外,软件、命令、信息等可以经由传输介质被发送或接收。例如,当使用有线技术(同轴电缆、光缆、双绞线、数字用户线路(DSL,Digital Subscriber Line)等)和/或无线技术(红外线、微波等)从网站、服务器、或其它远程资源发送软件时,这些有线技术和/或无线技术包括在传输介质的定义内。
本说明书中使用的“系统”和“网络”这样的用语可以互换使用。
在本说明书中,“基站(BS,Base Station)”、“无线基站”、“eNB”、“gNB”、“小区”、“扇区”、“小区组”、“载波”以及“分量载波”这样的用语可以互换使用。基站有时也以固定台(fixed station)、NodeB、eNodeB(eNB)、接入点(access point)、发送点、接收点、毫微微小区、小小区等用语来称呼。
基站可以容纳一个或多个(例如三个)小区(也称为扇区)。当基站容纳多个小区时,基站的整个覆盖区域可以划分为多个更小的区域,每个更小的区域也可以通过基站子系统(例如,室内用小型基站(射频拉远头(RRH,Remote Radio Head)))来提供通信服务。“小区”或“扇区”这样的用语是指在该覆盖中进行通信服务的基站和/或基站子系统的覆盖区域的一部分或整体。
在本说明书中,“移动台(MS,Mobile Station)”、“用户终端(user terminal)”、“用户装置(UE,User Equipment)”以及“终端”这样的用语可以互换使用。移动台有时也被本领域技术人员以用户台、移动单元、用户单元、无线单元、远程单元、移动设备、无线设备、无线通信设备、远程设备、移动用户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或者若干其它适当的用语来称呼。
此外,本说明书中的基站也可以用终端来替换。例如,对于将基站和终端间的通信替换为多个终端间(D2D,Device-to-Device)的通信的结构,也可以应用本公开的各方式/实施方式。此时,可以将上述基站600所具有的功能当作终端所具有的功能。此外,“上行”和“下行”等文字也可以替换为“侧”。例如,上行信道也可以替换为侧信道。
同样,本说明书中的终端也可以用基站来替换。此时,可以将上述的终端500所具有的功能当作基站所具有的功能。
在本说明书中,设为通过基站进行的特定动作根据情况有时也通过其上级节点(upper node)来进行。显然,在具有基站的由一个或多个网络节点(network nodes)构成的网络中,为了与终端间的通信而进行的各种各样的动作可以通过基站、除基站之外的一个以上的网络节点(可以考虑例如移动管理实体(MME,Mobility Management Entity)、服务网关(S-GW,Serving-Gateway)等,但不限于此)、或者它们的组合来进行。
本说明书中说明的各方式/实施方式可以单独使用,也可以组合使用,还可以在执行过程中进行切换来使用。此外,本说明书中说明的各方式/实施方式的处理步骤、序列、流程图等只要没有矛盾,就可以更换顺序。例如,关于本说明书中说明的方法,以示例性的顺序给出了各种各样的步骤单元,而并不限定于给出的特定顺序。
本说明书中说明的各方式/实施方式可以应用于利用长期演进(LTE,Long Term Evolution)、高级长期演进(LTE-A,LTE-Advanced)、超越长期演进(LTE-B,LTE-Beyond)、超级第3代移动通信系统(SUPER 3G)、高级国际移动通信(IMT-Advanced)、第4代移动通信系统(4G,4th generation mobile communication system)、第5代移动通信系统(5G,5th generation mobile communication system)、第6代移动通信系统(6G,6th generation mobile communication system)、未来无线接入(FRA,Future Radio Access)、新无线接入技术(New-RAT,Radio Access Technology)、新无线(NR,New Radio)、新无线接入(NX,New radio access)、新一代无线接入(FX,Future generation radio access)、全球移动通信系统(GSM(注册商标),Global System for Mobile communications)、码分多址接入3000(CDMA3000)、超级移动宽带(UMB,Ultra Mobile Broadband)、IEEE 920.11(Wi-Fi(注册商标))、IEEE 920.16(WiMAX(注册商标))、IEEE 920.20、超宽带(UWB,Ultra-WideBand)、蓝牙(Bluetooth(注册商标))、其它适当的无线通信方法的系统和/或基于它们而扩展的下一代系统。
本说明书中使用的“根据”这样的记载,只要未在其它段落中明确记载,则并不意味着“仅根据”。换言之,“根据”这样的记载是指“仅根据”和“至少根据”这两者。
本说明书中使用的对使用“第一”、“第二”等名称的单元的任何参照,均非全面限定这些单元的数量或顺序。这些名称可以作为区别两个以上单元的便利方法而在本说明书中使用。因此,第一单元和第二单元的参照并不意味着仅可采用两个单元或者第一单元必须以若干形式占先于第二单元。
本说明书中使用的“判断(确定)(determining)”这样的用语有时包含多种多样的动作。例如,关于“判断(确定)”,可以将计算(calculating)、推算(computing)、处理(processing)、推导(deriving)、调查(investigating)、搜索(looking up)(例如表、数据库、或其它数据结构中的搜索)、确认(ascertaining)等视为是进行“判断(确定)”。此外,关于“判断(确定)”,也可以将接收(receiving)(例如接收信息)、发送(transmitting)(例如发送信息)、输入(input)、输出(output)、存取(accessing)(例如存取内存中的数据)等视为是进行“判断(确定)”。此外,关于“判断(确定)”,还可以将解决(resolving)、选择(selecting)、选定(choosing)、建立(establishing)、比较(comparing)等视为是进行“判断(确定)”。也就是说,关于“判断(确定)”,可以将若干动作视为是进行“判断(确定)”。
本说明书中使用的“连接的(connected)”、“结合的(coupled)”这样的用语或者它们的任何变形是指两个或两个以上单元间的直接的或间接的任何连接或结合,可以包括以下情况:在相互“连接”或“结合”的两个单元间,存在一个或一个以上的中间单元。单元间的结合或连接可以是物理上的,也可以是逻辑上的,或者还可以是两者的组合。例如,“连接”也可以替换为“接入”。在本说明书中使用时,可以认为两个单元是通过使用一个或一个以上的电线、线缆、和/或印刷电气连接,以及作为若干非限定性且非穷尽性的示例,通过使用具有射频区域、微波区域、和/或光(可见光及不可见光这两者)区域的波长的电磁能等,被相互“连接”或“结合”。
在本说明书或权利要求书中使用“包括(including)”、“包含(comprising)”、以及它们的变形时,这些用语与用语“具备”同样是开放式的。进一步地,在本说明书或权利要求书中使用的用语“或(or)”并非是异或。
以上对本公开进行了详细说明,但对于本领域技术人员而言,显然,本公开并非限定于本说明书中说明的实施方式。本公开在不脱离由权利要求书的记载所确定的本公开的宗旨和范围的前提下,可以作为修改和变更方式来实施。因此,本说明书的记载是以示例说明为目的,对本公开而言并非具有任何限制性的意义。

Claims (10)

  1. 一种终端设备,包括:
    接收单元,被配置为接收关于基站的空间滤波器的信息;
    控制单元,被配置为根据关于基站的空间滤波器的信息,确定与特定同步信号块索引对应的至少一个空间滤波器索引,其中所述与特定同步信号块索引对应的至少一个空间滤波器索引是利用伪随机序列生成器生成的。
  2. 如权利要求1所述的终端设备,其中
    所述关于基站的空间滤波器的信息包括关于与基站的空间滤波器相关联的同步信号块突发集索引的信息、关于在同步信号块突发集中同步信号块的索引的信息,其中一个同步信号块突发集包括多个同步信号块。
  3. 如权利要求2所述的终端设备,其中
    所述接收单元接收关于系统帧号的信息;
    所述控制单元根据所述关于系统帧号的信息中的至少一部分比特确定所述关于同步信号块突发集索引的信息。
  4. 如权利要求2所述的终端设备,其中
    所述关于基站的空间滤波器的信息还包括关于基站使用的空间滤波器的总数的信息、关于在每个同步信号块中基站使用的空间滤波器的数量信息中的至少一个。
  5. 如权利要求1-4中至少一项所述的终端设备,其中
    所述基站的空间滤波器指示所述基站的发送波束;
    所述控制单元还被配置为在波束扫描周期内对所述基站的发送波束进行波束扫描以获得发送波束的参考信号接收功率,其中一个所述波束扫描周期包括多个同步信号块突发集周期。
  6. 如权利要求5所述的终端设备,其中
    所述控制单元还被配置为根据高于第一预定阈值的参考信号接收功率所对应的发送波束和低于第二预定阈值的参考信号接收功率所对应的发送波束,确定优选发送波束。
  7. 如权利要求6所述的终端设备,其中
    所述控制单元还被配置为在确定了优选发送波束之后结束波束扫描,而不考虑当前波束扫描周期的剩余时间。
  8. 一种基站,包括:
    控制单元,被配置为在一个波束扫描周期中,将所述基站的发送波束的至少一部分以哈希样式与该波束扫描周期中的至少部分同步信号块进行映射,其中所述一个波束扫描周期包括多个同步信号块突发集,并且一个同步信号块突发集包括多个同步信号块;
    发送单元,被配置为根据映射结果,使用与特定同步信号块对应的至少一个波束发送该特定同步信号块。
  9. 如权利要求8所述的基站,其中
    所述发送单元还配置来发送关于基站的空间滤波器的信息,其中所述基站的空间滤波器指示所述基站的发送波束。
  10. 如权利要求8所述的基站,其中
    所述控制单元还被配置为根据关于与基站的空间滤波器相关联的同步信号块突发集索引的信息、关于在同步信号块突发集中同步信号块的索引的信息,利用伪随机序列生成器,确定与特定同步信号块索引对应的至少一个空间滤波器索引。
PCT/CN2021/132923 2021-11-24 2021-11-24 通信系统中的终端以及基站 WO2023092360A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/132923 WO2023092360A1 (zh) 2021-11-24 2021-11-24 通信系统中的终端以及基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/132923 WO2023092360A1 (zh) 2021-11-24 2021-11-24 通信系统中的终端以及基站

Publications (1)

Publication Number Publication Date
WO2023092360A1 true WO2023092360A1 (zh) 2023-06-01

Family

ID=86538442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132923 WO2023092360A1 (zh) 2021-11-24 2021-11-24 通信系统中的终端以及基站

Country Status (1)

Country Link
WO (1) WO2023092360A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103684700A (zh) * 2013-12-31 2014-03-26 重庆邮电大学 一种基于正交联合码本集的3d mu-mimo预编码方法
US20140192768A1 (en) * 2013-01-04 2014-07-10 Electronics And Telecommunications Research Institute Method for transmitting signal using multiple antennas
CN105103463A (zh) * 2013-04-10 2015-11-25 Lg电子株式会社 用于无线通信系统中的多层三维波束成形的层对齐方法和设备
CN105391513A (zh) * 2014-09-03 2016-03-09 中国电信股份有限公司 基于反馈信息形成预编码矩阵的方法、装置和系统
US20180139712A1 (en) * 2016-11-11 2018-05-17 Qualcomm Incorporated Synchronization signal design
CN110326246A (zh) * 2017-02-23 2019-10-11 高通股份有限公司 新无线电中同步信号块索引的使用
CN112787785A (zh) * 2019-11-08 2021-05-11 华为技术有限公司 一种波束建立方法及装置
WO2022031692A1 (en) * 2020-08-04 2022-02-10 Intel Corporation Discovery reference signal beamforming randomization

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140192768A1 (en) * 2013-01-04 2014-07-10 Electronics And Telecommunications Research Institute Method for transmitting signal using multiple antennas
CN105103463A (zh) * 2013-04-10 2015-11-25 Lg电子株式会社 用于无线通信系统中的多层三维波束成形的层对齐方法和设备
CN103684700A (zh) * 2013-12-31 2014-03-26 重庆邮电大学 一种基于正交联合码本集的3d mu-mimo预编码方法
CN105391513A (zh) * 2014-09-03 2016-03-09 中国电信股份有限公司 基于反馈信息形成预编码矩阵的方法、装置和系统
US20180139712A1 (en) * 2016-11-11 2018-05-17 Qualcomm Incorporated Synchronization signal design
CN110326246A (zh) * 2017-02-23 2019-10-11 高通股份有限公司 新无线电中同步信号块索引的使用
CN112787785A (zh) * 2019-11-08 2021-05-11 华为技术有限公司 一种波束建立方法及装置
WO2022031692A1 (en) * 2020-08-04 2022-02-10 Intel Corporation Discovery reference signal beamforming randomization

Similar Documents

Publication Publication Date Title
US11304073B2 (en) User equipment and methods for operation in coverage enhancement mode with physical random access channel preamble
CN110476450B (zh) 用户终端以及无线通信方法
WO2018173238A1 (ja) ユーザ端末及び無線通信方法
US10728810B2 (en) User terminal and radio communication method
WO2018143390A1 (ja) ユーザ端末及び無線通信方法
US10945225B2 (en) User apparatus, and preamble transmission method
US11678174B2 (en) User terminal and radio communication method
US11483868B2 (en) Access method, network device, and mobile communication terminal
WO2018095305A1 (zh) 一种波束训练方法及装置
US20210400508A1 (en) User device and base station device
WO2018202137A1 (zh) 一种通信方法及装置
KR20210032402A (ko) 유저단말 및 무선 통신 방법
WO2018201910A1 (zh) 波束信息反馈方法及用户装置
WO2018196505A1 (zh) 星座图旋转方法及装置
US20210068093A1 (en) Wireless communication apparatus, wireless communication system, and processing method
CN112889252A (zh) 用户终端以及无线通信方法
WO2017000269A1 (zh) 一种数据传输方法及装置
WO2023092360A1 (zh) 通信系统中的终端以及基站
WO2018025907A1 (ja) ユーザ端末及び無線通信方法
CN111279736B (zh) 一种用于生成扩展符号的方法及装置
US11284371B2 (en) Method and device executing beamforming properly even when terminals are in idle mode
JP2019186923A (ja) アンテナポートを割り当てる方法及び基地局
US20230027788A1 (en) Communication device and method
US20230300650A1 (en) Terminal and measurement method
WO2023199433A1 (ja) 端末装置、基地局装置、及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965098

Country of ref document: EP

Kind code of ref document: A1