WO2018173238A1 - ユーザ端末及び無線通信方法 - Google Patents

ユーザ端末及び無線通信方法 Download PDF

Info

Publication number
WO2018173238A1
WO2018173238A1 PCT/JP2017/011897 JP2017011897W WO2018173238A1 WO 2018173238 A1 WO2018173238 A1 WO 2018173238A1 JP 2017011897 W JP2017011897 W JP 2017011897W WO 2018173238 A1 WO2018173238 A1 WO 2018173238A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
signal
transmission
user terminal
rsrp
Prior art date
Application number
PCT/JP2017/011897
Other languages
English (en)
French (fr)
Inventor
和晃 武田
浩樹 原田
一樹 武田
聡 永田
佑一 柿島
スウネイ ナ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to BR112019019697A priority Critical patent/BR112019019697A2/pt
Priority to RU2019131693A priority patent/RU2739843C1/ru
Priority to US16/495,505 priority patent/US11888570B2/en
Priority to PCT/JP2017/011897 priority patent/WO2018173238A1/ja
Priority to CN201780088829.3A priority patent/CN110731055A/zh
Priority to JP2019506871A priority patent/JP6813662B2/ja
Priority to EP17902397.3A priority patent/EP3605862A4/en
Priority to KR1020197029561A priority patent/KR20190129919A/ko
Publication of WO2018173238A1 publication Critical patent/WO2018173238A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/06Channels characterised by the type of signal the signals being represented by different frequencies
    • H04L5/10Channels characterised by the type of signal the signals being represented by different frequencies with dynamo-electric generation of carriers; with mechanical filters or demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication

Definitions

  • the present invention relates to a user terminal and a wireless communication method in a next generation mobile communication system.
  • LTE Long Term Evolution
  • LTE-A also referred to as LTE Advanced, LTE Rel. 10, 11 or 12
  • LTE Long Term Evolution
  • Successor systems for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), NR (New Radio), NX (New radio access), FX (Future generation radio access), LTE Rel. 14 or later Etc.
  • FRA Fluture Radio Access
  • 5G 5th generation mobile communication system
  • NR New Radio
  • NX New radio access
  • FX Fluture generation radio access
  • CA Carrier Aggregation
  • CC Component Carrier
  • UE User Equipment
  • DC dual connectivity
  • CG Cell Group
  • CC cell
  • Inter-eNB CA inter-base station CA
  • a user terminal can use a downlink (DL) control channel (for example, PDCCH: Physical Downlink Control Channel, EPDCCH: Enhanced Physical Downlink Control Channel, MPDCCH: MTC (Machine type communication), Physical Downlink Control Channel, etc.) to receive downlink control information (DCI).
  • the user terminal receives a DL data channel (for example, PDSCH: Physical Downlink Shared Channel) and / or transmits a UL data channel (for example, PUSCH: Physical Uplink Shared Channel) based on the DCI.
  • DL data channel for example, PDSCH: Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • a frequency band higher than the existing frequency band for example, 3 to 40 GHz, etc.
  • MIMO also referred to as Multiple Input, Multiple Output, Massive MIMO, etc.
  • a beam in MIMO using a large number of antenna elements, a beam (antenna directivity) can be formed by controlling the amplitude and / or phase of a signal transmitted or received by each antenna element (Beam Forming (BF)).
  • Beam Forming BF
  • the number of antenna elements that can be arranged in a predetermined area increases as the frequency increases.
  • the beam width becomes narrower, so that the beam forming gain increases. Therefore, when beam forming is applied, propagation loss (path loss) can be reduced, and coverage can be ensured even in a high frequency band.
  • the present invention has been made in view of such a point, and an object thereof is to provide a user terminal and a wireless communication method capable of appropriately triggering beam recovery.
  • a user terminal includes a transmitter that transmits an active beam switching request signal used for transmitting a downlink signal, and a channel state information reference signal (CSI-RS) resource associated with the active beam And a control unit that controls transmission of the request signal based on a first received power measured using a predetermined threshold, and the control unit is inactive with the first received power. The transmission of the request signal is controlled based on the second received power measured using the CSI-RS resource associated with the beam.
  • CSI-RS channel state information reference signal
  • a user terminal includes a transmitter that transmits an active beam switching request signal used for transmitting a downlink signal, and a channel state information reference signal (CSI-RS) associated with the active beam.
  • a control unit that controls transmission of the request signal based on a first received power measured using a resource and a predetermined threshold, and the control unit includes a synchronization signal (SS) of the active beam. ) Controlling transmission of the request signal based on a third received power measured using a block and a fourth received power measured using an SS block of the inactive beam. .
  • beam recovery can be appropriately triggered.
  • 1A to 1C are conceptual diagrams showing an example of beam management.
  • 2A and 2B are diagrams illustrating an example of setting CSI-RS resources. It is a figure which shows an example of the beam measurement which concerns on this Embodiment. It is a figure which shows the other example of the beam measurement which concerns on this Embodiment. It is a flowchart which shows an example of the 1st trigger condition which concerns on this Embodiment. It is a flowchart which shows an example of the 2nd trigger condition which concerns on this Embodiment. It is a figure which shows an example of the recovery operation
  • Beam forming includes digital BF and analog beam BF.
  • Digital BF is a method of performing precoding signal processing (for a digital signal) on baseband.
  • parallel processing of inverse fast Fourier transform (IFFT: Inverse Fast Fourier Transform), digital-analog conversion (DAC: Digital to Analog Converter), and RF (Radio Frequency) is required for the number of antenna ports (RF chains). Become. On the other hand, as many beams as the number of RF chains can be formed at an arbitrary timing.
  • Analog BF is a method using a phase shifter on RF. In this case, since only the phase of the RF signal is rotated, the configuration is easy and can be realized at low cost, but a plurality of beams cannot be formed at the same timing. Specifically, in analog BF, only one beam can be formed at a time for each phase shifter.
  • wireless base stations for example, gNB (gNodeB), transmission / reception points (Transmission and Reception Point (TRP), TRxP (Transmission and Reception x Point)), eNB (eNodeB), base station (Base Station (BS)), etc.
  • TRP Transmission and Reception Point
  • TRxP Transmission and Reception x Point
  • eNB eNodeB
  • Base Station Base Station
  • a hybrid BF configuration in which a digital BF and an analog BF are combined can also be used.
  • introduction of MIMO for example, Massive MIMO
  • MIMO for example, Massive MIMO
  • the circuit configuration becomes expensive. There is a fear. For this reason, it is assumed that a hybrid BF is used in a future wireless communication system.
  • the quality of a beam (also referred to as a beam pair link (BPL) or the like) deteriorates due to obstruction by an obstacle, and as a result, Radio link failure (RLF) can occur frequently.
  • RLF Radio link failure
  • cells need to be reconnected. Therefore, frequent RLF generation may cause deterioration in system performance. Therefore, in order to ensure the robustness of the BPL, it has been studied to perform beam management.
  • FIG. 1 is a diagram showing an example of beam management.
  • signals for mobility measurement RRM (Radio Resource Management) measurement, L3 measurement (Layer 3 Measurement), L3-RSRP (Layer 3 Reference Signal Received Power) measurement, L3 mobility measurement, etc.) (for mobility measurement)
  • the management of the beam used for the signal is shown.
  • the beam used for the mobility measurement signal may be a rough beam having a relatively wide beam width. Further, since one or more beams having a relatively narrow beam width (also referred to as finer beam, narrow beam, etc.) can be arranged in the rough beam, the rough beam may be called a beam group.
  • the mobility measurement signal is a synchronization signal (SS: Synchronization Signal) block, a mobility reference signal (MRS: Mobility Reference Signal), a channel state information reference signal (CSI-RS: Channel State Information-Reference Signal), and beam specific. It is also called a signal or a cell specific signal.
  • the SS block is a signal group including at least one of a primary synchronization signal (PSS: Primary Synchronization Signal), a secondary synchronization signal (SSS: Secondary Synchronization Signal), and a broadcast channel (PBCH: Physical Broadcast Channel).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the mobility measurement signal may be at least one of PSS, SSS, PBCH, MRS, and CSI-RS, and at least one of PSS, SSS, PBCH, MRS, and CSI-RS is extended and It may also be a signal configured by changing (for example, a signal configured by changing density and / or period).
  • the user terminal may be in an RRC connected state or an idle state as long as it can recognize the configuration of the mobility measurement signal. Further, the user terminal may not form an Rx beam (reception beam).
  • the radio base station transmits a mobility measurement signal (eg, SS block and / or CSI-RS) associated with the beams B1 to B3.
  • a mobility measurement signal eg, SS block and / or CSI-RS
  • FIG. 1A since analog BF is applied, mobility measurement signals associated with beams B1 to B3 are transmitted at different times (for example, symbols and / or slots) (beam sweep).
  • the MRS associated with the beams B1 to B3 may be transmitted at the same time.
  • UE User terminal
  • L3 measurement uses a signal for mobility measurement associated with beams B1 to B3.
  • the received power of a mobility measurement signal for example, at least one of RSRP and RSSI: Reference Signal Strength Indicator
  • RSSI Reference Signal Strength Indicator
  • reception quality for example, RSRQ: Reference Signal Received Quality
  • SNR Signal- Noise Ratio
  • SINR Signal-to-Interference plus Noise power Ratio
  • the user terminal may select (group) beams (beam groups) based on the result of L3 measurement. For example, in FIG. 1A, the user terminal may classify beam B2 as an active beam and beams B1 and B3 as inactive beams (backup beams).
  • the active beam is a beam that can be used for the DL control channel (hereinafter also referred to as NR-PDCCH) and / or the DL data channel (hereinafter also referred to as PDSCH), and the inactive beam is a beam other than the active beam. It may be a beam (candidate beam).
  • a set of one or more active beams may be referred to as an active beam set or the like, and a set of one or more inactive beams may be referred to as an inactive beam set or the like.
  • the user terminal sends one or more beam identifiers (also referred to as beam ID, beam index (BI), etc.) and / or a measurement report (MR: Measurement Report) including measurement results of the one or more beams to the upper layer. Transmit using signaling (eg, RRC signaling). Note that instead of the beam ID, the resource of the mobility measurement signal and the antenna port may be reported. For example, in FIG. 1A, the user terminal transmits a measurement report including the BI and / or RSRP of beam B2 with the best RSRP.
  • FIG. 1B shows L1 (physical layer) beam management (also called beam measurement, L1 measurement (Layer 1 Measurement), channel state information (CSI) measurement, L1-RSRP measurement, etc.).
  • the beam measurement signal (beam measurement signal) may be at least one of CSI-RS, SS block, PSS, SSS, PBCH, and MRS, and at least one of these is expanded and / or changed. (For example, a signal configured by changing the density and / or period).
  • a beam also referred to as a Tx beam, a transmission beam, etc.
  • a beam used for NR-PDCCH and / or PDSCH (hereinafter also referred to as NR-PDCCH / PDSCH) and / or the NR-PDCCH / A beam (also referred to as an Rx beam or a reception beam) used for PDSCH reception is managed.
  • the CSI-RS resource is, for example, at least one of a resource for non-zero power (NZP-) CSI-RS and a resource for zero power (ZP-) CSI-RS for interference measurement (IM).
  • the user terminal performs CSI measurement for each CSI process in which one or more CSI-RS resources are set.
  • the CSI-RS resource can be rephrased as CSI-RS (including NZP-CSI-RS and ZP-CSI-RS) transmitted using the CSI-RS resource.
  • L1 measurement for example, CSI measurement and / or L1-RSRP
  • CSI includes channel quality identifier (CQI: Channel Quality Indicator), precoding matrix identifier (PMI: Precoding Matrix Indicator), rank identifier (RI: Rank Indicator), CSI-RS resource identifier (CRI: CSI-RS resource). at least one of indicator).
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI rank Indicator
  • CRI CSI-RS resource identifier
  • CRI CSI-RS resource identifier
  • the user terminal selects N (K ⁇ N) Tx beams on the basis of the measurement results of K Tx beams (corresponding to K CSI-RS resources).
  • the number N of Tx beams may be determined in advance, may be set by higher layer signaling, or may be specified by physical layer signaling.
  • the user terminal may determine an Rx beam suitable for each selected Tx beam, and may determine a beam pair link (BPL).
  • BPL is an optimal combination of a Tx beam and an Rx beam.
  • the combination of Tx beam B23 and Rx beam b3 is determined as the best BPL
  • the combination of Tx beam B22 and Rx beam b2 is determined as the second best BPL.
  • the user terminal transmits N CRIs corresponding to the selected N Tx beams and at least one of CQI, RI, and PMI in the N Tx beams indicated by the N CRIs to the radio base station. . Further, the user terminal may transmit RSRPs of N Tx beams to the radio base station. Further, the user terminal may transmit Rx beam IDs (also referred to as Rx beam ID, BI, beam ID, etc.) corresponding to N Tx beams.
  • Rx beam IDs also referred to as Rx beam ID, BI, beam ID, etc.
  • the radio base station determines a Tx beam (or BPL) to be used for NR-PDCCH and / or PDSCH (NR-PDCCH / PDSCH) and instructs the user terminal of the Tx beam (or BPL). Specifically, the radio base station receives N CSIs from user terminals (for example, N CRIs and at least one of CQI, RI, and PMI in a Tx beam indicated by the N CRIs) and / or L1 -The Tx beam used for NR-PDCCH and / or PDSCH (NR-PDCCH / PDSCH) may be determined based on RSRP. Further, the radio base station may determine the BPL based on the Rx beam ID of the Rx beam corresponding to the Tx beam.
  • the beam instruction from the radio base station to the user terminal is obtained by associating the NR-PDCCH / PDSCH demodulation reference signal (DMRS: Demodulation Reference Signal) antenna port (DMRS port) with the CSI-RS resource (QCL: Quasi-Co -Location).
  • DMRS Demodulation Reference Signal
  • QCL Quasi-Co -Location
  • the CSI-RS resource # 2 of the best BPL (Tx beam B23 and Rx beam b3) in FIG. 1B is associated with the DMRS port # 0, and the second best BPL (Tx beam B22 and Rx beam b2).
  • the information indicating the association between the CSI-RS resource # 1 and the DMRS port # 1 is notified from the radio base station to the user terminal by higher layer signaling and / or physical layer signaling (for example, DCI).
  • the user terminal assumes that the NR-PDCCH is transmitted using the Tx beam B23 having the best measurement result of the CSI-RS resource # 2 at the DMRS port # 0. / Demodulates PDSCH. Further, the user terminal may demodulate NR-PDCCH / PDSCH using the Rx beam b3 corresponding to the Tx beam B23.
  • the user terminal assumes that the NR-PDCCH / NR is transmitted using the Tx beam B22 with the best measurement result of the CSI-RS resource # 1. Demodulate the PDSCH. Further, the user terminal may demodulate the NR-PDCCH / PDSCH using the Rx beam b2 corresponding to the Tx beam B22.
  • FIG. 2 is a diagram showing an example of setting CSI-RS resources.
  • FIG. 2A shows a setting example of CSI-RS resources commonly used for L1-RSRP measurement and L3-RSRP measurement.
  • the user terminal performs L1-RSRP measurement and L3-RSRP measurement using CSI-RS resources # 0 to # 3 associated with Tx beams B21 to B24, respectively.
  • the same RSRP measured using each CSI-RS resource can be used as L1-RSRP and / or L3-RSRP.
  • FIG. 2B shows individual setting examples of CSI-RS resources for L1-RSRP measurement ((L1) CSI-RS resource) and CSI-RS resources for L3-RSRP measurement ((L3) CSI-RS resource). It is.
  • the user terminal performs L1-RSRP measurement using (L1) CSI-RS resources # 0 to # 3 associated with Tx beams B21 to B24, respectively. Further, the user terminal performs L3-RSRP measurement using (L3) CSI-RS resources # 0 to # 3 associated with Tx beams B11, B14, B23, and B32, respectively.
  • the (L3) CSI-RS resource may be associated with rough beams (for example, Tx beams B1 to B3).
  • L1-RSRP is used for beam management (for example, beam management for NR-PDCCH / PDSCH), whereas L3-RSRP is assumed to be used for mobility management.
  • (L1) CSI-RS resources # 0 to # 3 are associated with a predetermined number of Tx beams (B21 to B24 in this case) within a relatively narrow range.
  • (L3) CSI-RS resources # 0 to # 3 have a predetermined number of Tx beams within a wider range than (L1) CSI-RS resources # 0 to # 3 (here, B11, B14, B23, B32). ).
  • both (L1) CSI-RS resources and (L3) CSI-RS resources are associated with beams having the same beam width (finer beams), but (L3) CSI-RS resources are (L1). ) It may be associated with a beam having a wider beam width (rough beam, eg, beams B1 to B3 in FIG. 2B) than the CSI-RS resource. (L3) A wider range can be covered by associating CSI-RS resources with rough beams. *
  • CSI-RS (CSI-RS resource) is used for at least one measurement of CSI, L1-RSRP, and L3-RSRP.
  • the measurement load on the user terminal may increase.
  • a plurality of different measurement signals are used to transmit one or more beams.
  • received power eg, L1-RSRP and / or L3-RSRP
  • L1-RSRP and / or L3-RSRP received power
  • the present inventors use one or more different received signals (for example, L1-RSRP and / or L3-RSRP) using a plurality of different measurement signals (for example, CSI-RS and / or SS block).
  • a method for appropriately detecting beam failure (BF) and / or triggering beam recovery has been studied, and the present invention has been achieved.
  • beam refers to a beam (also referred to as a transmission beam or a Tx beam) used for transmitting a DL signal from a radio base station and / or a beam used for receiving a DL signal at a user terminal. (Also referred to as a reception beam, an Rx beam, or the like).
  • the combination of the Tx beam and the Rx beam may be called a beam pair link (BPL) or the like.
  • Beam measurement An example of beam measurement according to the present embodiment will be described with reference to FIGS.
  • FIG. 3 is a diagram showing an example of beam measurement according to the present embodiment.
  • CSI-RS resources # 0 to # 3 are set for the Tx beams B21 to B24 (active beams) in the beam B2, respectively.
  • CSI-RS resources are not set for the Tx beams B11 to B14 and B31 to B34 (inactive beam and backup beam) in the beams B1 and B3.
  • L1-RSRP and / or L3-RSRP of Tx beams B21 to B24 are measured using CSI-RS resources # 0 to # 3, respectively.
  • L1-RSRP and / or L3-RSRP of beams B1 and B3 are measured using the respective SS blocks.
  • the L1-RSRP and / or L3-RSRP of the beam B2 may be measured using the SS block.
  • FIG. 4 is a diagram showing another example of beam measurement according to the present embodiment.
  • CSI-RS resources # 0 to # 7 are set for the Tx beams B21 to B24 in the beam B2 and the Tx beams B31 to B34 in the beam B3, respectively.
  • the Tx beams B21 to B24 are validated (activated) and the Tx beams B31 to B34 are invalidated (deactivated).
  • CSI-RS resources are not set for the Tx beams B11 to B14 in the beam B1.
  • CSI-RS resources # 0 to # 3 are set to measure L1 RSRP for beam management
  • CSI-RS resources # 0 to # 7 are set to measure L3 RSRP for mobility. ing.
  • L1-RSRP and / or L3-RSRP of Tx beams B21 to B24 are measured using CSI-RS resources # 0 to # 3, respectively. Also, the L1-RSRP and / or L3-RSRP of the Tx beams B31 to B34 are measured using CSI-RS resources # 4 to # 7, respectively. On the other hand, L1-RSRP and / or L3-RSRP of beam B1 are measured using the respective SS blocks.
  • L1-RSRP and / or L3-RSRP of beams B2 and / or B3 may be measured using an SS block.
  • the CSI-RS resource is associated with a narrow beam, but the CSI-RS resource is associated with a rough beam (eg, beams B1 to B3), and the L1-RSRP and / or L3-RSRP of the rough beam. May be measured using CSI-RS resources.
  • L1-RSRP and / or L3RSRP are measured using the set CSI-RS resource.
  • CSI may be measured using the CSI-RS resource. is there.
  • Trigger condition A trigger condition for transmitting a beam recovery request signal (beam recovery signal) in the present embodiment will be described with reference to FIGS. Since the beam recovery signal is transmitted when a beam failure event occurs, the trigger condition may be referred to as a beam failure event condition. Further, the beam recovery signal may be a signal for notifying the occurrence of a beam failure.
  • the first trigger condition assumes a case where L CSI-RS resources are set for L3-RSRP measurement and N CSI-RS resources are set for L1-RSRP measurement. For example, as shown in FIG. 4, CSI-RS resources # 0 to # 3 associated with N Tx beams B21 to B24 (active beams) are set for L1-RSRP measurement, and L Tx beams Assume that CSI-RS resources # 4 to # 7 associated with B21 to B24 (inactive beams) are set for L3-RSRP measurement.
  • FIG. 5 is a flowchart showing an example of the first trigger condition according to the present embodiment.
  • the user terminal sets L1-RSRP (also referred to as L1-CSI-RSRP, etc.) measured using CSI-RS resources of a predetermined number of active beams and a predetermined threshold. Compare.
  • L1-RSRP also referred to as L1-CSI-RSRP, etc.
  • the predetermined number of active beams is N Tx beams (for example, Tx beams B21 to B24 in FIG. 4) associated with N CSI-RS resources set for L1-RSRP measurement. May be.
  • the predetermined number of active beams may be M (M ⁇ N) Tx beams whose measurement results are reported to the radio base station among the N Tx beams.
  • the user terminal may determine whether L1-CSI-RSRP of a predetermined number of active beams is smaller than a predetermined threshold. Alternatively, it may be determined whether or not L1-CSI-RSRP of the active beam having the lowest quality is smaller than a predetermined threshold. Alternatively, it may be determined whether or not L1-CSI-RSRP of the active beam with the highest quality is larger than a predetermined threshold.
  • the user terminal may proceed to step S102.
  • the user terminal may proceed to step S102.
  • step S102 the user terminal performs L1-CSI-RSRP measured using the CSI-RS resource of the active beam and L3-RSRP (L3-CSI) measured using the CSI-RS resource of the inactive beam.
  • L3-CSI L3-RSRP
  • the user terminal determines that the L1-CSI-RSRP of the active beam in use (eg, at least one of the Tx beams B21 and B22 in FIG. 4) is changed to the inactive beam (eg, the Tx beam in FIG. It may be determined whether it is smaller than L3-CSI-RSRP of at least one of B31 to B32. Alternatively, the user terminal may determine whether or not a value obtained by adding a predetermined offset to the L1-CSI-RSRP is smaller than the L3-CSI-RSRP.
  • the L1-CSI-RSRP of the active beam (or a value obtained by adding a predetermined offset to the L1-CSI-RSRP, and the offset can take a positive or negative value) is greater than the L3-CSI-RSRP of the inactive beam. If it is smaller, the user terminal may proceed to step S103. Alternatively, when the state in which the above condition is satisfied continues for a predetermined period or longer, the user terminal may proceed to step S103.
  • steps S101 and S102 are satisfied, a beam failure event occurs, and in step S103, the user terminal transmits a beam recovery signal.
  • steps S101 and S102 may be reversed, or steps S101 and S102 may be performed simultaneously.
  • transmission of the beam recovery signal is triggered based on the L1-CSI-RSRP of the active beam and the L3-CSI-RSRP of the inactive beam (for example, the Tx beams B31 to B33 in FIG. 4). Therefore, when the CSI-RSI resource is set for the inactive beam, the user terminal can appropriately recognize the presence of the switching candidate Tx beam and appropriately perform the beam recovery. be able to.
  • CSI-RS resources are not associated with L rough beams (for example, beams B1 to B3), but it is also assumed that CSI-RS resources are associated with L rough beams.
  • CSI-RS resources # 0 to # 3 associated with N Tx beams B21 to B24 are set for L1-RSRP measurement
  • L rough beams for example, beams
  • CSI-RS resources # 4 to # 6 associated with B1 to B3 are set for L3-RSRP measurement.
  • step S102 the active beam L1-CSI-RSRP and the rough beam L3-CSI-RSRP may not be simply compared because the beam range and measurement accuracy are different.
  • CSI-RS resources for example, CSI-RS # 5
  • the L3-CSI-RSRP measured in step (1) may be compared with the inactive beam L3-CSI-RSRP.
  • the association between the CSI-RS resources # 0 to # 3 for beam management and / or CSI measurement and the CSI-RS resources for mobility is based on (QCL: Quasi-Co-Location) from the base station to the UE. May be performed according to the instructions. Specifically, when setting CSI-RS resources # 0 to # 3 for beam management and / or CSI measurement, they are notified by higher layer signals. *
  • ⁇ Second trigger condition> The second trigger condition assumes a case where L CSI-RS resources are not set for L3-RSRP measurement and N CSI-RS resources are set for L1-RSRP measurement.
  • CSI-RS resources # 0 to # 3 associated with N Tx beams B21 to B24 are set for L1-RSRP measurement, but inactive beams
  • L1-RSRP and / or L3-RSRP also referred to as L1 / L3-SS-RSRP or the like is measured using the SS blocks of the beams B1 to B3.
  • FIG. 6 is a flowchart showing an example of the second trigger condition according to the present embodiment. Steps S201 and S203 in FIG. 6 are the same as steps S101 and S103 in FIG. 5, respectively. As in FIG. 5, the order of steps S201 and S202 may be reversed, and steps S201 and S202 may be performed simultaneously.
  • step S202 the user terminal compares the L1 / L3-SS-RSRP of the active beam with the L1 / L3-SS-RSRP of the inactive beam.
  • the association between the CSI-RS resources # 0 to # 3 and the SS block may be performed by an instruction from the base station to the UE based on (QCL: Quasi-Co-Location). Specifically, when setting CSI-RS resources # 0 to # 3 for beam management and CSI measurement, they are notified by higher layer signals.
  • the user terminal may have an L1 / L3-SS-RSRP of an active beam (eg, beam B2 in FIG. 3) or an L1 / L3-L3 of an inactive beam (eg, at least one of beams B1 and B3 in FIG. 3). It may be determined whether it is smaller than SS-RSRP. Alternatively, the user terminal may determine whether or not the value obtained by adding a predetermined offset to L1 / L3-SS-RSRP of the active beam is smaller than L1 / L3-SS-RSRP of the inactive beam. Good.
  • the user terminal When the L1 / L3-SS-RSRP of the active beam (or the value obtained by adding a predetermined offset to the L1 / L3-SS-RSRP) is smaller than the L1 / L3-SS-RSRP of the inactive beam, the user terminal May proceed to step S203. Alternatively, when the state in which the above condition is satisfied continues for a predetermined period or longer, the user terminal may proceed to step S203.
  • the user terminal In the second trigger condition, transmission of the beam recovery signal is triggered based on L1 / L3-SS-RSRP of the active beam and L1 / L3-SS-RSRP of the inactive beam (a beam failure event occurs). Therefore, when the CSI-RSI resource is not set for the inactive beam, the user terminal can appropriately recognize the presence of the switching candidate Tx beam and can appropriately perform beam recovery.
  • the trigger condition for transmitting the beam recovery signal is not limited to the first and second trigger conditions.
  • L3-RSRP (L3-SS-RSRP) measured using the SS block L1-RSRP (L1-SS-RSRP) measured using the SS block, and L3-RSRP measured using the CSI-RS resource
  • the trigger condition can be defined using at least one of RSRP (L3-CSI-RSRP) and L1-RSRP (L1-CSI-RSRP) measured using CSI-RS resources.
  • the SS block may be transmitted with a rough beam (for example, at least one of the beams B1 to B3 in FIGS. 3 and 4).
  • the CSI-RS resource includes rough beams (for example, at least one of the beams B1 to B3 in FIGS. 3 and 4) and / or narrow beams (for example, the Tx beams B11 to B14, B21 to B24, and B31 in FIGS. 3 and 4). To at least one of B34).
  • the CSI-RS resources for L1-CSI-RSRP measurement and L3-CSI-RSRP measurement may be set in common or may be set individually.
  • RSRQ may be considered as the trigger condition.
  • RSRQ may also be measured at one or more layers (eg, L1 and / or L3) using SS blocks and / or CSI-RS resources, similar to RSRP.
  • the CSI of K Tx beams for which CSI-RS resources are set may be considered as the trigger condition.
  • FIG. 7 is a diagram illustrating an example of the recovery operation according to the present embodiment.
  • the active beam is Tx beam # 3 and the inactive beams are Tx beams # 1, # 2, and # 4.
  • the user terminal measures at least one of L3-RSRP, L3-RSRQ, and L1-RSRQ using a mobility measurement signal (eg, SS block and / or CSI-RS) at a predetermined period.
  • a mobility measurement signal eg, SS block and / or CSI-RS
  • the user terminal detects the occurrence of a beam failure (new best beam) using the trigger condition described above.
  • the user terminal transmits a beam recovery signal (for example, PRACH preamble, scheduling request (SR) or UL grant-free UL signal).
  • the beam recovery signal may be transmitted using a UL resource associated with the resource (or antenna port) of the mobility measurement signal. Thereby, the user terminal can implicitly notify the radio base station of the beam ID of the new best beam.
  • the beam recovery signal is at least one of the beam ID (or information associated with the beam ID (eg, CRI)), L3-RSRP, L1-RSRP, L3-RSRQ, and L1-RSRQ of a beam that is a switching candidate.
  • the beam ID or information associated with the beam ID (eg, CRI)
  • L3-RSRP Long Term Evolution
  • L1-RSRP Long Term Evolution
  • L3-RSRQ L1-RSRQ
  • L1-RSRQ L1-RSRQ of a beam that is a switching candidate.
  • SR modulated by BPSK (Binary Phase Shift Keying) or QPSK (Quadrature Phase Shift Keying) may be used as the beam recovery signal.
  • PRACH may be used as the beam recovery signal.
  • the user terminal may transmit a PRACH as a beam recovery signal using a resource different from the initial access.
  • the radio base station transmits a response signal (for example, RAR) to the beam recovery signal from the user terminal.
  • the response signal includes configuration information about a beam set including a new best beam (for example, at least one of CSI-RS resource configuration information, CSI report and / L1-RSRP report configuration information, and resource configuration information). May be included.
  • NR-PDCCH search space specific to the user terminal.
  • DCI scheduling information
  • NR-PDCCH also referred to as common search space (CSS)
  • SCS common search space
  • SIB system information block
  • the scheduling information may be scrambled (masked) using an identifier unique to the user terminal (for example, C-RNTI: Cell-Radio Network Temporary Identifier).
  • a PDCCH also referred to as a UE group search space or the like
  • the scheduling information also referred to as group DCI or the like
  • the activation instruction information is included.
  • a MAC control element may be included in the response signal.
  • the instruction information may be included in DCI including scheduling information of the response signal.
  • wireless communication system (Wireless communication system)
  • communication is performed using any one or a combination of the wireless communication methods according to the above embodiments of the present invention.
  • FIG. 8 is a diagram illustrating an example of a schematic configuration of the wireless communication system according to the present embodiment.
  • carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied. can do.
  • DC dual connectivity
  • the wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced 4G (4th generation mobile communication system), 5G. (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system that realizes these.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced 4G (4th generation mobile communication system)
  • 5G. 5th generation mobile communication system
  • FRA Full Radio Access
  • New-RAT Radio Access Technology
  • the radio communication system 1 includes a radio base station 11 that forms a macro cell C1 having a relatively wide coverage, and a radio base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. It is equipped with. Moreover, the user terminal 20 is arrange
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 simultaneously by CA or DC. Moreover, the user terminal 20 may apply CA or DC using a plurality of cells (CC) (for example, 5 or less CCs, 6 or more CCs).
  • CC cells
  • Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (referred to as an existing carrier or a legacy carrier).
  • a carrier having a relatively high frequency band for example, 3 to 40 GHz
  • a wide bandwidth may be used between the user terminal 20 and the radio base station 12.
  • the same carrier may be used.
  • the configuration of the frequency band used by each radio base station is not limited to this.
  • a wired connection for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, etc.
  • a wireless connection It can be set as the structure to do.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point or the like.
  • a radio base station 10 when the radio base station 11 and the radio base station 12 are not distinguished, they are collectively referred to as a radio base station 10.
  • Each user terminal 20 is a terminal that supports various communication schemes such as LTE and LTE-A, and may include not only a mobile communication terminal (mobile station) but also a fixed communication terminal (fixed station).
  • orthogonal frequency division multiple access (OFDMA) is applied to the downlink, and single carrier-frequency division multiple access (SC-FDMA) is used for the uplink.
  • SC-FDMA single carrier-frequency division multiple access
  • Frequency Division Multiple Access and / or OFDMA is applied.
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single-carrier transmission scheme that reduces interference between terminals by dividing the system bandwidth into bands consisting of one or continuous resource blocks for each terminal and using a plurality of terminals with mutually different bands. is there.
  • the uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
  • a downlink (DL) channel a DL data channel (PDSCH: Physical Downlink Shared Channel) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), downlink L1 / L2 control A channel or the like is used.
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • MIB Master Information Block
  • Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and the like.
  • Downlink control information (DCI: Downlink Control Information) including PDSCH and PUSCH scheduling information is transmitted by the PDCCH.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
  • the PHICH transmits HARQ (Hybrid Automatic Repeat reQuest) delivery confirmation information (for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.) to the PUSCH.
  • HARQ Hybrid Automatic Repeat reQuest
  • the EPDCCH is frequency-division multiplexed with the PDSCH, and is used for transmission of DCI and the like as with the PDCCH.
  • PDCCH and / or EPDCCH are also called DL control channel, NR-PDCCH, and the like.
  • a UL data channel shared by each user terminal 20
  • a UL control channel PUCCH: Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • User data and higher layer control information are transmitted by PUSCH.
  • downlink radio quality information CQI: Channel Quality Indicator
  • delivery confirmation information and the like are transmitted by PUCCH.
  • a random access preamble for establishing connection with a cell is transmitted by the PRACH.
  • a cell-specific reference signal CRS
  • CSI-RS channel state information reference signal
  • DMRS demodulation reference signal
  • PRS DeModulation Reference Signal
  • PRS Positioning Reference Signal
  • MRS Mobility Reference Signal
  • a reference signal for measurement SRS: Sounding Reference Signal
  • DMRS reference signal for demodulation
  • the DMRS may be referred to as a user terminal specific reference signal (UE-specific Reference Signal).
  • UE-specific Reference Signal user terminal specific reference signal
  • the transmitted reference signal is not limited to these.
  • a synchronization signal PSS and / or SSS
  • PBCH broadcast channel
  • FIG. 9 is a diagram illustrating an example of the overall configuration of the radio base station according to the present embodiment.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may each be configured to include one or more.
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access
  • Retransmission control for example, HARQ transmission processing
  • scheduling transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, and other transmission processing
  • IFFT inverse fast Fourier transform
  • precoding processing precoding processing
  • other transmission processing are performed and the transmission / reception unit 103.
  • the DL control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal.
  • the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
  • the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device, which is described based on common recognition in the technical field according to the present invention.
  • the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmission / reception unit 103 receives the UL signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing, and error correction on user data included in the input UL signal. Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing such as communication channel setting and release, status management of the radio base station 10, and radio resource management.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from other radio base stations 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). May be.
  • CPRI Common Public Radio Interface
  • X2 interface May be.
  • the transmission / reception unit 103 may further include an analog beam forming unit that performs analog beam forming.
  • the analog beam forming unit includes an analog beam forming circuit (for example, phase shifter, phase shift circuit) or an analog beam forming apparatus (for example, phase shifter) described based on common recognition in the technical field according to the present invention. can do.
  • the transmission / reception antenna 101 can be configured by an array antenna, for example.
  • the transmission / reception unit 103 is configured to be able to apply single BF and multi-BF.
  • the transceiver 103 transmits a DL signal (for example, at least one of NR-PDCCH / PDSCH, mobility measurement signal, CSI-RS, DMRS, DCI, DL data) and a UL signal (for example, PUCCH, PUSCH, beam).
  • a DL signal for example, at least one of NR-PDCCH / PDSCH, mobility measurement signal, CSI-RS, DMRS, DCI, DL data
  • a UL signal for example, PUCCH, PUSCH, beam.
  • the transmission / reception unit 103 sets the configuration information for L3 measurement and / or L1 measurement (for example, information indicating the configuration of the mobility measurement signal (for example, CSI-RS and / or SS block), the configuration of the CSI-RS resource) At least one of the information indicating the association between the DMRS port and the CSI-RS).
  • the transmission / reception unit 103 includes information indicating the association (QCL) between the CSI-RS resource for beam management and / or CSI measurement and the CSI-RS resource for mobility, and / or the beam management and / or CSI measurement. Indicating the association (QCL) between the CSI-RS resource for use and the SS block for mobility may be transmitted.
  • the transmission / reception unit 103 may receive the PRACH preamble and transmit the RAR. Further, the transmission / reception unit 103 may receive the SR. Further, the transmission / reception unit 103 may receive a UL signal transmitted without DCI (UL grant) from the radio base station 10.
  • FIG. 10 is a diagram illustrating an example of a functional configuration of the radio base station according to the present embodiment.
  • the functional block of the characteristic part in this Embodiment is mainly shown, and the wireless base station 10 shall also have another functional block required for radio
  • the baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. These configurations may be included in the radio base station 10, and a part or all of the configurations may not be included in the baseband signal processing unit 104.
  • the control unit (scheduler) 301 controls the entire radio base station 10.
  • the control part 301 can be comprised from the controller, the control circuit, or control apparatus demonstrated based on the common recognition in the technical field which concerns on this invention.
  • the control unit 301 controls signal generation by the transmission signal generation unit 302 and signal allocation by the mapping unit 303, for example.
  • the control unit 301 also controls signal reception processing by the reception signal processing unit 304 and signal measurement by the measurement unit 305.
  • the control unit 301 controls scheduling of the DL data channel and the UL data channel, and controls generation and transmission of DCI (DL assignment) for scheduling the DL data channel and DCI (UL grant) for scheduling the UL data channel. .
  • the control unit 301 uses the digital BF (for example, precoding) by the baseband signal processing unit 104 and / or the analog BF (for example, phase rotation) by the transmission / reception unit 103 to form a Tx beam and / or an Rx beam. To control.
  • digital BF for example, precoding
  • analog BF for example, phase rotation
  • the control unit 301 controls a beam (Tx beam and / or Rx beam) used for transmission and / or reception of a DL signal (for example, NR-PDCCH / PDSCH). Specifically, the control unit 301 may control the beam based on CSI (at least one of CRI, CQI, PMI, and RI) from the user terminal 20.
  • CSI at least one of CRI, CQI, PMI, and RI
  • the control unit 301 may control a beam used for transmission and / or reception of a plurality of measurement signals (mobility measurement signal and beam measurement signal, for example, CSI-RS and SS block).
  • a plurality of measurement signals mobility measurement signal and beam measurement signal, for example, CSI-RS and SS block.
  • control unit 301 may control beam recovery (switching) based on the beam recovery signal from the user terminal 20. Specifically, the control unit 301 recognizes the best beam of the user terminal 20 based on the beam recovery signal, and resets the beam (CSI-RS resource reset, DMRS port and QSI of the CSI-RS resource QCL). (Resetting) may be controlled.
  • control unit 301 receives the configuration information of the reset beam (for example, information indicating the configuration of the reset CSI-RS resource and / or information indicating the QCL of the DMRS port and the CSI-RS resource). Alternatively, it may be controlled to be included in a response signal to the recovery signal.
  • control unit 301 may control generation and / or transmission of scheduling information (DCI) of the response signal.
  • DCI scheduling information
  • an NR-PDCCH also referred to as a common search space (CSS)
  • CCS system information block
  • SIB system information block
  • the DCI may be scrambled (masked) using an identifier (for example, C-RNTI) unique to the user terminal.
  • the transmission signal generation unit 302 generates a DL signal based on an instruction from the control unit 301 and outputs the DL signal to the mapping unit 303.
  • the transmission signal generation unit 302 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 302 generates DCI (DL assignment, UL grant) based on an instruction from the control unit 301, for example.
  • the DL data channel (PDSCH) is subjected to encoding processing, modulation processing, and beamforming processing (precoding processing) according to a coding rate, a modulation scheme, and the like determined based on CSI and the like from each user terminal 20. Is called.
  • the mapping unit 303 maps the DL signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs the DL signal to the transmission / reception unit 103.
  • the mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 103.
  • the received signal is, for example, a UL signal transmitted from the user terminal 20.
  • the reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when feedback information (for example, CSI, HARQ-ACK, etc.) is received from the user terminal, the feedback information is output to the control unit 301.
  • the reception signal processing unit 304 outputs the reception signal and the signal after reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measurement part 305 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 305 is, for example, at least one of reception power (for example, RSRP and / or RSSI), reception quality (for example, RSRQ, SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)) of the received signal. Or the channel state may be measured. The measurement result may be output to the control unit 301.
  • reception power for example, RSRP and / or RSSI
  • reception quality for example, RSRQ, SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)
  • reception quality for example, RSRQ, SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)
  • the measurement result may be output to the control unit 301.
  • FIG. 11 is a diagram illustrating an example of the overall configuration of the user terminal according to the present embodiment.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmission / reception antenna 201, the amplifier unit 202, and the transmission / reception unit 203 may each be configured to include one or more.
  • the radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202.
  • the transmission / reception unit 203 receives the DL signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
  • the transmission / reception unit 203 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention.
  • the transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer.
  • broadcast information in the downlink data is also transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs transmission / reception by performing retransmission control transmission processing (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like. Is transferred to the unit 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
  • the transmission / reception unit 203 may further include an analog beam forming unit that performs analog beam forming.
  • the analog beam forming unit includes an analog beam forming circuit (for example, phase shifter, phase shift circuit) or an analog beam forming apparatus (for example, phase shifter) described based on common recognition in the technical field according to the present invention. can do.
  • the transmission / reception antenna 201 can be configured by, for example, an array antenna.
  • the transmission / reception unit 203 is configured to be able to apply single BF and multi-BF.
  • the transmission / reception unit 203 receives a DL signal (for example, at least one of NR-PDCCH / PDSCH, mobility measurement signal, beam measurement signal, CSI-RS, DMRS, DCI, DL data, SS block) and UL signal.
  • a DL signal for example, at least one of NR-PDCCH / PDSCH, mobility measurement signal, beam measurement signal, CSI-RS, DMRS, DCI, DL data, SS block
  • UL signal for example, at least one of PUCCH, PUSCH, recovery signal, measurement report, beam report, CSI report, UCI, UL data
  • the transmission / reception unit 203 sets the configuration information for L3 measurement and / or L1 measurement (for example, information indicating the configuration of the mobility measurement signal (for example, CSI-RS and / or SS block), and the configuration of the CSI-RS resource). And at least one of the information indicating the association between the DMRS port and the CSI-RS). Further, the transmission / reception unit 203 includes information indicating an association (QCL) between the CSI-RS resource for beam management and / or CSI measurement and the CSI-RS resource for mobility, and / or the beam management and / or CSI measurement. The information indicating the association (QCL) between the CSI-RS resource for use and the SS block for mobility may be received.
  • the configuration information for L3 measurement and / or L1 measurement for example, information indicating the configuration of the mobility measurement signal (for example, CSI-RS and / or SS block), and the configuration of the CSI-RS resource. And at least one of the information indicating the association between the DMRS port and
  • the transmission / reception unit 203 may transmit the PRACH preamble and receive the RAR. Further, the transmission / reception unit 203 may transmit the SR. Further, the transmission / reception unit 203 may transmit the UL signal without DCI (UL grant) from the radio base station 10.
  • FIG. 12 is a diagram illustrating an example of a functional configuration of the user terminal according to the present embodiment.
  • the functional blocks of the characteristic part in the present embodiment are mainly shown, and the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 included in the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations may be included in the user terminal 20, and some or all of the configurations may not be included in the baseband signal processing unit 204.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be composed of a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the control unit 401 controls, for example, signal generation by the transmission signal generation unit 402 and signal allocation by the mapping unit 403.
  • the control unit 401 controls signal reception processing by the reception signal processing unit 404 and signal measurement by the measurement unit 405.
  • the control unit 401 acquires the DL control signal (DL control channel) and the DL data signal (DL data channel) transmitted from the radio base station 10 from the received signal processing unit 404.
  • the control unit 401 controls generation of a UL control signal (for example, delivery confirmation information) and a UL data signal based on a DL control signal, a result of determining whether retransmission control is required for the DL data signal, or the like.
  • the control unit 401 uses the digital BF (for example, precoding) by the baseband signal processing unit 204 and / or the analog BF (for example, phase rotation) by the transmission / reception unit 203 to form a transmission beam and / or a reception beam. To control.
  • digital BF for example, precoding
  • analog BF for example, phase rotation
  • the control unit 401 controls a beam (Tx beam and / or Rx beam) used for transmission and / or reception of a DL signal (for example, NR-PDCCH / PDSCH).
  • a beam Tx beam and / or Rx beam
  • a DL signal for example, NR-PDCCH / PDSCH.
  • control unit 401 requests switching of a beam (active beam) used for transmission and / or reception of a DL signal based on reception power (for example, RSRP) measured using one or more measurement signals. Control transmission of signal (beam recovery signal).
  • a beam active beam
  • reception power for example, RSRP
  • control unit 401 controls transmission of the beam recovery signal based on L1-CSI-RSRP (first received power) measured using a CSI-RS resource associated with the active beam and a predetermined threshold value. (Step S101 in FIG. 5 and Step S201 in FIG. 6).
  • control unit 401 uses L1-CSI-RSRP measured using the CSI-RS resource associated with the active beam and L3-CSI- measured using the CSI-RS resource associated with the inactive beam. Based on RSRP (second received power), transmission of the request signal is controlled (step S102 in FIG. 5).
  • control unit 401 measures the L1 / L3-SS-RSRP (third received power) measured using the SS block associated with the active beam and the SS block associated with the inactive beam.
  • the transmission of the request signal is controlled based on L1 / L3-SS-RSRP (fourth received power) (step S202 in FIG. 6).
  • the beam recovery signal may be any of a PRACH preamble, SR, and UL grant-free UL signal.
  • the UL grant-free UL signal may be transmitted using a predetermined UL resource.
  • control unit 401 controls transmission of a measurement report based on the result of L3 measurement using a mobility measurement signal (for example, CSI-RS and / or SS block).
  • the measurement report may include at least one of a beam ID (or information indicating the beam ID) and RSRP / RSRQ of a beam for which RSRP / RSRQ satisfies a predetermined condition.
  • control unit 401 controls transmission of the CSI report and / or the L1-RSRP report based on the result of the L1 measurement using the beam measurement signal (for example, the CSI-RS and / or SS block).
  • the CSI report and / or the L1-RSRP report may be transmitted to the radio base station 10 using a UL physical channel (for example, PUSCH and / or PUCCH).
  • control unit 401 may control DL signal reception processing (demodulation and / or decoding) based on information indicating the QCL of the DMRS port and the CSI-RS resource from the radio base station 10. Specifically, the control unit 401 may assume that the same beam as the CSI-RS resource associated with the DMRS port is used for DL signal transmission and / or reception.
  • control unit 401 may control reception processing (demodulation and / or decoding) of a response signal with respect to the beam recovery signal. For example, the control unit 401 determines that the beam used for transmission and / or reception of the response signal (and / or NR-PDCCH or search space for scheduling the response signal) has the best RSRP / RSRQ reference signal. May be assumed to be used for transmission and / or reception.
  • the transmission signal generation unit 402 generates a UL signal (UL control signal, UL data signal, UL reference signal, etc.) based on an instruction from the control unit 401, and outputs the UL signal to the mapping unit 403.
  • the transmission signal generation unit 402 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 402 generates feedback information (for example, at least one of HARQ-ACK, CSI, and scheduling request) based on an instruction from the control unit 401, for example. In addition, the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when a UL grant is included in the DL control signal notified from the radio base station 10.
  • feedback information for example, at least one of HARQ-ACK, CSI, and scheduling request
  • the mapping unit 403 maps the UL signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs it to the transmission / reception unit 203.
  • the mapping unit 403 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 203.
  • the received signal is, for example, a DL signal (DL control signal, DL data signal, downlink reference signal, etc.) transmitted from the radio base station 10.
  • the reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention. Further, the reception signal processing unit 404 can constitute a reception unit according to the present invention.
  • the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
  • the reception signal processing unit 404 outputs broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401, for example.
  • the reception signal processing unit 404 outputs the reception signal and the signal after reception processing to the measurement unit 405.
  • the measurement unit 405 performs measurement on the received signal.
  • the measurement unit 405 performs measurement using a mobility measurement signal and / or CSI-RS resource transmitted from the radio base station 10.
  • the measurement part 405 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 405 may measure, for example, received power (for example, RSRP and / or RSSI), reception quality (for example, at least one of RSRQ, SINR, SNR), channel state, and the like of the received signal.
  • the measurement result may be output to the control unit 401.
  • each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wireless) and may be realized by these plural devices.
  • a radio base station, a user terminal, etc. in an embodiment of the present invention may function as a computer that performs processing of the radio communication method of the present invention.
  • FIG. 13 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • the wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
  • processor 1001 may be implemented by one or more chips.
  • each function in the radio base station 10 and the user terminal 20 reads predetermined software (program) on hardware such as the processor 1001 and the memory 1002, so that the processor 1001 performs computation and communication by the communication device 1004. It is realized by controlling the reading and / or writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • programs program codes
  • software modules software modules
  • data data
  • the like data
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, and may be realized similarly for other functional blocks.
  • the memory 1002 is a computer-readable recording medium such as a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), or any other suitable storage medium. It may be configured by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store programs (program codes), software modules, and the like that can be executed to implement the wireless communication method according to an embodiment of the present invention.
  • the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM)), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium It may be constituted by.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to realize frequency division duplex (FDD) and / or time division duplex (TDD). It may be configured.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized by the hardware. For example, the processor 1001 may be implemented by at least one of these hardware.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the channel and / or symbol may be a signal (signaling).
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like depending on an applied standard.
  • a component carrier CC: Component Carrier
  • CC Component Carrier
  • the radio frame may be configured with one or a plurality of periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on the neurology.
  • the slot may be configured with one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain). Further, the slot may be a time unit based on the numerology.
  • the slot may include a plurality of mini slots. Each minislot may be composed of one or more symbols in the time domain. The minislot may also be called a subslot.
  • Radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting signals. Different names may be used for the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • a plurality of consecutive subframes may be called a TTI
  • TTI slot or one minislot
  • a unit representing TTI may be called a slot, a minislot, or the like instead of a subframe.
  • TTI means, for example, a minimum time unit for scheduling in wireless communication.
  • a radio base station performs scheduling for assigning radio resources (frequency bandwidth, transmission power, etc. that can be used in each user terminal) to each user terminal in units of TTI.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit of a channel-encoded data packet (transport block), a code block, and / or a code word, or may be a processing unit such as scheduling or link adaptation.
  • a time interval for example, the number of symbols
  • a transport block, a code block, and / or a code word is actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling unit. Further, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, or a long subframe.
  • a TTI shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, or a subslot.
  • a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (eg, shortened TTI) is less than the TTI length of the long TTI and 1 ms. It may be replaced with a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. Further, the RB may include one or a plurality of symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. One TTI and one subframe may each be composed of one or a plurality of resource blocks.
  • One or more RBs include physical resource blocks (PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. May be called.
  • the resource block may be composed of one or a plurality of resource elements (RE: Resource Element).
  • RE Resource Element
  • 1RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • the structure of the above-described radio frame, subframe, slot, minislot, symbol, etc. is merely an example.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in the slot, the number of symbols and RBs included in the slot or minislot, and the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be variously changed.
  • information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information.
  • the radio resource may be indicated by a predetermined index.
  • mathematical formulas and the like using these parameters may differ from those explicitly disclosed herein.
  • PUCCH Physical Uplink Control Channel
  • PDCCH Physical Downlink Control Channel
  • information elements can be identified by any suitable name, so the various channels and information elements assigned to them.
  • the name is not limiting in any way.
  • information, signals, etc. can be output from the upper layer to the lower layer and / or from the lower layer to the upper layer.
  • Information, signals, and the like may be input / output via a plurality of network nodes.
  • the input / output information, signals, etc. may be stored in a specific location (for example, a memory), or may be managed by a management table. Input / output information, signals, and the like can be overwritten, updated, or added. The output information, signals, etc. may be deleted. Input information, signals, and the like may be transmitted to other devices.
  • information notification includes physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling), It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • DCI downlink control information
  • UCI uplink control information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be referred to as L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • the MAC signaling may be notified by, for example, a MAC control element (MAC CE (Control Element)).
  • notification of predetermined information is not limited to explicitly performed, but implicitly (for example, by not performing notification of the predetermined information or another (By notification of information).
  • the determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false.
  • the comparison may be performed by numerical comparison (for example, comparison with a predetermined value).
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • software can use websites, servers using wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or wireless technology (infrared, microwave, etc.) , Or other remote sources, these wired and / or wireless technologies are included within the definition of transmission media.
  • system and “network” used in this specification are used interchangeably.
  • base station BS
  • radio base station eNB
  • gNB gNodeB
  • cell gNodeB
  • cell group a base station
  • carrier a base station
  • component carrier a base station
  • a base station may also be called in terms such as a fixed station, NodeB, eNodeB (eNB), access point, transmission point, reception point, femtocell, and small cell.
  • the base station can accommodate one or a plurality of (for example, three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, an indoor small base station (RRH: The term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication service in this coverage. Point to.
  • RRH indoor small base station
  • MS mobile station
  • UE user equipment
  • terminal may be used interchangeably.
  • a base station may also be called in terms such as a fixed station, NodeB, eNodeB (eNB), access point, transmission point, reception point, femtocell, and small cell.
  • NodeB NodeB
  • eNodeB eNodeB
  • access point transmission point
  • reception point femtocell
  • small cell small cell
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called terminal, remote terminal, handset, user agent, mobile client, client or some other suitable terminology.
  • the radio base station in this specification may be read by the user terminal.
  • each aspect / embodiment of the present invention may be applied to a configuration in which communication between a radio base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device).
  • the user terminal 20 may have a function that the wireless base station 10 has.
  • words such as “up” and “down” may be read as “side”.
  • the uplink channel may be read as a side channel.
  • a user terminal in this specification may be read by a radio base station.
  • the wireless base station 10 may have a function that the user terminal 20 has.
  • the specific operation assumed to be performed by the base station may be performed by the upper node in some cases.
  • various operations performed for communication with a terminal may be performed by one or more network nodes other than the base station and the base station (for example, It is obvious that this can be done by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc., but not limited thereto) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect / embodiment described in this specification may be used alone, in combination, or may be switched according to execution.
  • the order of the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in this specification may be changed as long as there is no contradiction.
  • the methods described herein present the elements of the various steps in an exemplary order and are not limited to the specific order presented.
  • Each aspect / embodiment described herein includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile). communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802 .20, UWB (Ultra-WideBand), Bluetooth (registered trademark), The present invention may be applied to a system using other appropriate wireless communication methods and / or a next generation system extended based on these.
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using designations such as “first”, “second”, etc. as used herein does not generally limit the amount or order of those elements. These designations can be used herein as a convenient way to distinguish between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be employed or that the first element must precede the second element in some way.
  • determining may encompass a wide variety of actions. For example, “determination” means calculating, computing, processing, deriving, investigating, looking up (eg, table, database or other data). It may be considered to “judge” (search in structure), ascertaining, etc.
  • “determination (decision)” includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access ( accessing) (e.g., accessing data in memory), etc. may be considered to be “determining”. Also, “determination” is considered to be “determination (resolving)”, “selecting”, “choosing”, “establishing”, “comparing”, etc. Also good. That is, “determination (determination)” may be regarded as “determination (determination)” of some operation.
  • connection refers to any direct or indirect connection between two or more elements or By coupling, it can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as “access”.
  • the two elements are radio frequency by using one or more wires, cables and / or printed electrical connections, and as some non-limiting and non-inclusive examples It can be considered to be “connected” or “coupled” to each other, such as by using electromagnetic energy having wavelengths in the region, microwave region, and / or light (both visible and invisible) region.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

ビームのリカバリを適切にトリガすること。本発明のユーザ端末は、下りリンク信号の送信に用いられるアクティブビームの切り替えの要求信号を送信する送信部と、前記アクティブビームに関連付けられるチャネル状態情報参照信号(CSI-RS)リソースを用いて測定される第1の受信電力と所定の閾値とに基づいて、前記要求信号の送信を制御する制御部と、を具備し、前記制御部は、前記第1の受信電力と非アクティブビームに関連付けられるCSI-RSリソースを用いて測定される第2の受信電力とに基づいて、前記要求信号の送信を制御する。

Description

ユーザ端末及び無線通信方法
 本発明は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延等を目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8又は9ともいう)からの更なる広帯域化及び高速化を目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11又は12ともいう)が仕様化され、LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、LTE Rel.14又は15以降等ともいう)も検討されている。
 LTE Rel.10/11では、広帯域化を図るために、複数のコンポーネントキャリア(CC:Component Carrier)を統合するキャリアアグリゲーション(CA:Carrier Aggregation)が導入されている。各CCは、LTE Rel.8のシステム帯域を一単位として構成される。また、CAでは、同一の無線基地局(eNB:eNodeB)の複数のCCがユーザ端末(UE:User Equipment)に設定される。
 一方、LTE Rel.12では、異なる無線基地局の複数のセルグループ(CG:Cell Group)がUEに設定されるデュアルコネクティビティ(DC:Dual Connectivity)も導入されている。各セルグループは、少なくとも一つのセル(CC)で構成される。DCでは、異なる無線基地局の複数のCCが統合されるため、DCは、基地局間CA(Inter-eNB CA)等とも呼ばれる。
 既存のLTEシステム(例えば、LTE Rel.8-13)では、ユーザ端末は、下りリンク(DL)制御チャネル(例えば、PDCCH:Physical Downlink Control Channel、EPDCCH:Enhanced Physical Downlink Control Channel、MPDCCH:MTC(Machine type communication) Physical Downlink Control Channelなど)を介して、下りリンク制御情報(DCI)を受信する。ユーザ端末は、当該DCIに基づいてDLデータチャネル(例えば、PDSCH:Physical Downlink Shared Channel)の受信及び/又はULデータチャネル(例えば、PUSCH:Physical Uplink Shared Channel)の送信を行う。
 将来の無線通信システム(例えば、5G、NR)では、高速及び大容量化(例えば、eMBB:enhanced Mobile Broad Band)を実現するため、既存の周波数帯よりも高い周波数帯(例えば、3~40GHzなど)を利用することが検討されている。一般に、周波数帯が高くなるほど、距離減衰が増大するため、カバレッジを確保することが難しくなる。そこで、多数のアンテナ素子を用いたMIMO(Multiple Input Multiple Output、Massive MIMO等ともいう)が検討されている。
 多数のアンテナ素子を用いたMIMOでは、各アンテナ素子で送信又は受信される信号の振幅及び/又は位相を制御して、ビーム(アンテナ指向性)を形成できる(ビームフォーミング(BF:Beam Forming))。例えば、アンテナ素子が2次元に配置される場合、周波数が高くなるほど所定面積で配置可能なアンテナ素子の数(アンテナ素子数)が増加する。所定面積あたりのアンテナ素子数が多いほど、ビーム幅が狭く(narrower)なるので、ビームフォーミングゲインは増加する。したがって、ビームフォーミングを適用する場合、伝搬損失(パスロス)を低減でき、高い周波数帯でもカバレッジを確保できる。
 一方で、ビームフォーミングを適用する場合(例えば、高い周波数帯において狭ビーム(narrower beam)を用いることが想定される場合)、障害物による妨害(blockage)などによって、ビーム(ビームペアリンク(BPL:Beam Pair Link)等ともいう)の品質が悪化し、その結果、無線リンク障害(RLF:Radio Link Failure)が頻繁に発生する恐れがある。RLFが発生するとセルの再接続が必要となるため、頻繁なRLFの発生は、システム性能の劣化を招く恐れがある。
 したがって、RLFの発生を防止するために、特定のビームの品質が悪化する場合、他のビームへの切り替え(ビームリカバリ又はL1/L2ビームリカバリ等ともいう)を適切に行うことが望まれる。この場合、どのような条件で、ビーム障害(BF:Beam Failure)の検出及び/又はビームリカバリのトリガを行うが問題となる。
 本発明はかかる点に鑑みてなされたものであり、ビームリカバリを適切にトリガすることが可能なユーザ端末及び無線通信方法を提供することを目的の1つとする。
 本発明の一態様に係るユーザ端末は、下りリンク信号の送信に用いられるアクティブビームの切り替えの要求信号を送信する送信部と、前記アクティブビームに関連付けられるチャネル状態情報参照信号(CSI-RS)リソースを用いて測定される第1の受信電力と所定の閾値とに基づいて、前記要求信号の送信を制御する制御部と、を具備し、前記制御部は、前記第1の受信電力と非アクティブビームに関連付けられるCSI-RSリソースを用いて測定される第2の受信電力とに基づいて、前記要求信号の送信を制御することを特徴とする。
 本発明の他の態様に係るユーザ端末は、下りリンク信号の送信に用いられるアクティブビームの切り替えの要求信号を送信する送信部と、前記アクティブビームに関連付けられるチャネル状態情報参照信号(CSI-RS)リソースを用いて測定される第1の受信電力と所定の閾値とに基づいて、前記要求信号の送信を制御する制御部と、を具備し、前記制御部は、前記アクティブビームの同期信号(SS)ブロックを用いて測定される第3の受信電力と前記非アクティブビームのSSブロックを用いて測定される第4の受信電力とに基づいて、前記要求信号の送信を制御することを特徴とする。
 本発明によれば、ビームリカバリを適切にトリガできる。
図1A~1Cは、ビーム管理の一例を示す概念図である。 図2A及び2Bは、CSI-RSリソースの設定の一例を示す図である。 本実施の形態に係るビーム測定の一例を示す図である。 本実施の形態に係るビーム測定の他の例を示す図である。 本実施の形態に係る第1のトリガ条件の一例を示すフローチャートである。 本実施の形態に係る第2のトリガ条件の一例を示すフローチャートである。 本実施の形態に係るリカバリ動作の一例を示す図である。 本実施の形態に係る無線通信システムの概略構成の一例を示す図である。 本実施の形態に係る無線基地局の全体構成の一例を示す図である。 本実施の形態に係る無線基地局の機能構成の一例を示す図である。 本実施の形態に係るユーザ端末の全体構成の一例を示す図である。 本実施の形態に係るユーザ端末の機能構成の一例を示す図である。 本実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。
 将来の無線通信システム(例えば、NR、5G又はLTE Rel.14以降)では、高速及び大容量(例えば、eMBB)、超多数端末(例えば、massive MTC(Machine Type Communication))、超高信頼及び低遅延(例えば、URLLC(Ultra Reliable and Low Latency Communications))などのユースケースが想定される。これらのユースケースを想定して、例えば、将来の無線通信システムでは、ビームフォーミング(BF)を利用して通信を行うことが検討されている。
 ビームフォーミング(BF)は、デジタルBF及びアナログビームBFを含む。デジタルBFは、ベースバンド上で(デジタル信号に対して)プリコーディング信号処理を行う方法である。この場合、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)、デジタル-アナログ変換(DAC:Digital to Analog Converter)及びRF(Radio Frequency)の並列処理が、アンテナポート(RF chain)の個数だけ必要となる。一方で、任意のタイミングで、RF chain数に応じた数だけビームを形成できる。
 アナログBFは、RF上で位相シフト器を用いる方法である。この場合、RF信号の位相を回転させるだけなので、構成が容易で安価に実現できるが、同じタイミングで複数のビームを形成することができない。具体的には、アナログBFでは、位相シフト器ごとに、一度に1ビームしか形成できない。
 このため、無線基地局(例えば、gNB(gNodeB)、送受信ポイント(Transmission and Reception Point(TRP)、TRxP(Transmission and Reception x Point))、eNB(eNodeB)、基地局(Base Station(BS))等と呼ばれる)が位相シフト器を1つのみ有する場合には、ある時間において形成できるビームは、1つとなる。したがって、アナログBFのみを用いて複数のビームを送信する場合には、同じリソースで同時に送信することはできないため、ビームを時間的に切り替えたり、回転させたりする必要がある。
 なお、デジタルBFとアナログBFとを組み合わせたハイブリッドBF構成とすることも可能である。将来の無線通信システムでは、多数のアンテナ素子を用いたMIMO(例えば、Massive MIMO)の導入が検討されているが、膨大な数のビーム形成をデジタルBFだけで行うとすると、回路構成が高価になる恐れがある。このため、将来の無線通信システムではハイブリッドBFが利用されることも想定される。
 以上のようなBF(デジタルBF、アナログBF、ハイブリッドBFを含む)を適用する場合、障害物による妨害などにより、ビーム(ビームペアリンク(BPL)等ともいう)の品質が悪化し、その結果、無線リンク障害(RLF)が頻繁に発生する恐れがある。RLFが発生するとセルの再接続が必要となるため、頻繁なRLFの発生は、システム性能の劣化を招く恐れがある。したがって、BPLのロバスト性(robustness)を確保するために、ビーム管理(beam management)を行うことが検討されている。
 図1は、ビーム管理の一例を示す図である。図1Aでは、モビリティ測定(RRM(Radio Resource Management)測定、L3測定(Layer 3 Measurement)、L3-RSRP(Layer 3 Reference Signal Received Power)測定、L3モビリティ測定等ともいう)用の信号(モビリティ測定用信号)に用いられるビームの管理が示される。モビリティ測定用信号に用いられるビームは、相対的に広いビーム幅を有するラフビーム(rough beam)であってもよい。また、ラフビーム内には相対的に狭いビーム幅を有する一以上のビーム(ファイナービーム(finer beam)、狭ビーム等ともいう)を配置可能であるので、ラフビームはビームグループと呼ばれてもよい。
 ここで、モビリティ測定用信号は、同期信号(SS:Synchronization Signal)ブロック、モビリティ参照信号(MRS:Mobility Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、ビーム固有信号又はセル固有信号等とも呼ばれる。SSブロックは、プライマリ同期信号(PSS:Primary Synchronization Signal)、セカンダリ同期信号(SSS:Secondary Synchronization Signal)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)の少なくとも一つを含む信号群である。このように、モビリティ測定用信号は、PSS、SSS、PBCH、MRS、CSI-RSの少なくとも一つであってもよいし、PSS、SSS、PBCH、MRS、CSI-RSの少なくとも一つを拡張及び/又は変更して構成される信号(例えば、密度及び/又は周期を変更して構成される信号))であってもよい。
 なお、図1Aにおいて、ユーザ端末は、RRCコネクティッド状態又はアイドル状態のいずれであってもよく、モビリティ測定用信号の構成(configuration)を認識できる状態であればよい。また、ユーザ端末は、Rxビーム(受信ビーム)を形成していなくともよい。
 図1Aにおいて、無線基地局(TRP)は、ビームB1~B3に関連付けられるモビリティ測定用信号(例えば、SSブロック及び/又はCSI-RS)を送信する。図1Aでは、アナログBFが適用されるので、ビームB1~B3に関連付けられるモビリティ測定用信号はそれぞれ異なる時間(例えば、シンボル及び/又はスロットなど)に送信される(ビームスイープ(beam sweep))。なお、デジタルBFが適用される場合、ビームB1~B3に関連付けられるMRSは同一時間に送信されてもよい。
 ユーザ端末(UE)は、ビームB1~B3に関連付けられるモビリティ測定用信号を用いて、L3測定を行う。なお、L3測定では、モビリティ測定用信号の受信電力(例えば、RSRP及びRSSI:Reference Signal Strength Indicatorの少なくとも一つ)、及び/又は、受信品質(例えば、RSRQ:Reference Signal Received Quality、SNR:Signal-Noise Ratio及びSINR:Signal-to-Interference plus Noise power Ratioの少なくとも一つ)が測定されればよい。
 また、ユーザ端末は、L3測定の結果に基づいてビーム(ビームグループ)を選択(グループ化)してもよい。例えば、図1Aでは、ユーザ端末は、ビームB2をアクティブビーム、ビームB1及びB3を非アクティブビーム(バックアップビーム)に分類してもよい。ここで、アクティブビームとは、DL制御チャネル(以下、NR-PDCCHともいう)及び/又はDLデータチャネル(以下、PDSCHともいう)に利用可能なビームであり、非アクティブビームは、アクティブビーム以外のビーム(候補ビーム)であってもよい。一以上のアクティブビームのセット(集合)は、アクティブビームセット等と呼ばれてもよく、一以上の非アクティブビームのセットは、非アクティブビームセット等と呼ばれてもよい。
 ユーザ端末は、一以上のビームの識別子(ビームID、ビームインデックス(BI)等ともいう)、及び/又は、当該一以上のビームの測定結果を含む測定報告(MR:Measurement Report)を、上位レイヤシグナリング(例えば、RRCシグナリング)を用いて送信する。なお、ビームIDの代わりに、モビリティ測定用信号のリソースやアンテナポートが報告されてもよい。例えば、図1Aでは、ユーザ端末は、RSRPが最も良いビームB2のBI及び/又はRSRPを含む測定報告を送信する。
 図1Bでは、L1(物理レイヤ)のビーム管理(ビーム測定(Beam measurement)、L1測定(Layer 1 Measurement)、チャネル状態情報(CSI)測定、L1-RSRP測定等ともいう)が示される。ビーム測定用の信号(ビーム測定用信号)は、CSI-RS、SSブロック、PSS、SSS、PBCH、MRSの少なくとも一つであってもよいし、これらの少なくとも一つを拡張及び/又は変更して構成される信号(例えば、密度及び/又は周期を変更して構成される信号))であってもよい。
 例えば、L1のビーム管理では、NR-PDCCH及び/又はPDSCH(以下、NR-PDCCH/PDSCHともいう)に用いられるビーム(Txビーム、送信ビーム等ともいう)、及び/又は、当該NR-PDCCH/PDSCHの受信に用いられるビーム(Rxビーム、受信ビーム等ともいう)が管理される。
 図1Bにおいて、無線基地局(TRP)は、ユーザ端末に対して、K(ここでは、K=4)個のTxビームB21~B24に関連付けられるK個のCSI-RSリソース#1~#4の設定(configuration)情報を送信する。
 CSI-RSリソースとは、例えば、ノンゼロパワー(NZP-)CSI-RS用のリソース、干渉測定(IM)用のゼロパワー(ZP-)CSI-RS用のリソースの少なくとも一つである。ユーザ端末は、一以上のCSI-RSリソースが設定されるCSIプロセス毎にCSI測定を行う。CSI-RSリソースは、当該CSI-RSリソースを用いて送信されるCSI-RS(NZP-CSI-RS、ZP-CSI-RSを含む)と言い換えることもできる。
 ユーザ端末(UE)は、設定されたCSI-RSリソース#0~#3を測定する。具体的には、ユーザ端末は、K(ここでは、K=4)個のTxビームB21~B24にそれぞれ関連付けられるK個のCSI-RSリソースについてL1測定(例えば、CSI測定及び/又はL1-RSRP測定)を行い、測定結果に基づいてCSI及び/又はL1-RSRPを生成する。
 ここで、CSIは、チャネル品質識別子(CQI:Channel Quality Indicator)、プリコーディング行列識別子(PMI:Precoding Matrix Indicator)、ランク識別子(RI:Rank Indicator)、CSI-RSリソース識別子(CRI:CSI-RS resource indicator)の少なくとも一つを含んでもよい。上述のように、CSI-RSリソースにはTxビームが関連付けられるので、CRIは、Txビームを示すともいえる。
 ユーザ端末は、K個のTxビーム(に対応するK個のCSI-RSリソース)の測定結果に基づいて、N(K≦N)個のTxビームを選択する。ここで、Txビームの数Nは、予め定められてもよいし、上位レイヤシグナリングにより設定されてもよいし、物理レイヤシグナリングにより指定されてもよい。
 ユーザ端末は、選択された各Txビームに適するRxビームを決定し、ビームペアリンク(BPL)を決定してもよい。ここで、BPLとは、TxビームとRxビームとの最適な組み合わせである。例えば、図1Bでは、最も良いBPLとして、TxビームB23及びRxビームb3の組み合わせが決定され、2番目に良いBPLとして、TxビームB22及びRxビームb2の組み合わせが決定される。
 ユーザ端末は、選択されたN個のTxビームに対応するN個のCRIと、当該N個のCRIが示すN個のTxビームにおけるCQI、RI、PMIの少なくとも一つを無線基地局に送信する。また、ユーザ端末は、N個のTxビームのRSRPを無線基地局に送信してもよい。また、ユーザ端末は、N個のTxビームに対応するRxビームのID(RxビームID、BI、ビームID等ともいう)を送信してもよい。
 無線基地局は、NR-PDCCH及び/又はPDSCH(NR-PDCCH/PDSCH)に用いるTxビーム(又はBPL)を決定し、当該Txビーム(又はBPL)をユーザ端末に指示する。具体的には、無線基地局は、ユーザ端末からのN個のCSI(例えば、N個のCRI、当該N個のCRIが示すTxビームにおけるCQI、RI、PMIの少なくとも一つ)及び/又はL1-RSRPに基づいて、NR-PDCCH及び/又はPDSCH(NR-PDCCH/PDSCH)に用いるTxビームを決定してもよい。また、無線基地局は、当該Txビームに対応するRxビームのRxビームIDに基づいて、BPLを決定してもよい。
 無線基地局からユーザ端末に対するビームの指示は、NR-PDCCH/PDSCHの復調用参照信号(DMRS:Demodulation Reference Signal)のアンテナポート(DMRSポート)とCSI-RSリソースとの関連付け(QCL:Quasi-Co-Location)に基づいて行われてもよい。なお、DMRSポートとCSI-RSリソースとの間のQCLは、NR-PDCCH及びPDSCHで個別に示されてもよい。
 例えば、図1Cでは、図1Bで最も良いBPL(TxビームB23及びRxビームb3)のCSI-RSリソース#2とDMRSポート#0との関連付け、2番目に良いBPL(TxビームB22及びRxビームb2)のCSI-RSリソース#1とDMRSポート#1との関連付けを示す情報が、上位レイヤシグナリング及び/又は物理レイヤシグナリング(例えば、DCI)により無線基地局からユーザ端末に通知される。
 図1Cにおいて、ユーザ端末は、DMRSポート#0では、CSI-RSリソース#2の測定結果が最も良かったTxビームB23を用いて当該NR-PDCCHが送信されると想定して、当該NR-PDCCH/PDSCHを復調する。また、ユーザ端末は、当該TxビームB23に対応するRxビームb3を用いて、NR-PDCCH/PDSCHを復調してもよい。
 同様に、ユーザ端末は、DMRSポート#1では、CSI-RSリソース#1の測定結果が最も良かったTxビームB22を用いて当該NR-PDCCHが送信されると想定して、当該NR-PDCCH/PDSCHを復調する。また、ユーザ端末は、当該TxビームB22に対応するRxビームb2を用いて、NR-PDCCH/PDSCHを復調してもよい。
 以上のようなビーム管理では、特定のビームの品質が悪化する場合、どのような条件で、ビーム障害(BF:Beam Failure)の検出及び/又はビームリカバリのトリガを行うかが問題になる。
 ところで、将来の無線通信システム(例えば、NR、5G又はLTE Rel.14以降)では、L1-RSRP測定及びL3-RSRP測定用それぞれに共通又は個別のCSI-RSリソースを設定することが想定される。
 図2は、CSI-RSリソースの設定の一例を示す図である。図2Aでは、L1-RSRP測定及びL3-RSRP測定に共通にCSI-RSリソースの設定例が示される。例えば、図2Aでは、ユーザ端末は、TxビームB21~B24にそれぞれ関連付けられるCSI-RSリソース#0~#3を用いて、L1-RSRP測定及びL3-RSRP測定を行う。なお、図2Aでは、各CSI-RSリソースを用いて測定された同一のRSRPを、L1-RSRP及び/又はL3-RSRPとして利用することもできる。
 図2Bでは、L1-RSRP測定用のCSI-RSリソース((L1)CSI-RSリソース)及びL3-RSRP測定用のCSI-RSリソース((L3)CSI-RSリソース)の個別の設定例が示される。
 例えば、図2Bでは、ユーザ端末は、TxビームB21~B24にそれぞれ関連付けられる(L1)CSI-RSリソース#0~#3を用いて、L1-RSRP測定を行う。また、ユーザ端末は、TxビームB11、B14、B23、B32にそれぞれ関連づけられる(L3)CSI-RSリソース#0~#3を用いて、L3-RSRP測定を行う。なお、図示しないが、(L3)CSI-RSリソースは、ラフビーム(例えば、TxビームB1~B3)に関連付けられてもよい。
 L1-RSRPはビーム管理(例えば、NR-PDCCH/PDSCH用のビーム管理)に用いられるのに対して、L3-RSRPはモビリティ管理に用いられることが想定される。このため、図2Bに示すように、(L1)CSI-RSリソース#0~#3は、相対的に狭い範囲内の所定数のTxビーム(ここでは、B21~B24)に関連付けられる。一方、(L3)CSI-RSリソース#0~#3は、(L1)CSI-RSリソース#0~#3よりも広い範囲内の所定数のTxビーム(ここでは、B11、B14、B23、B32)に関連付けられる。
 なお、図2Bでは、(L1)CSI-RSリソースと(L3)CSI-RSリソースとの双方が同じビーム幅のビーム(ファイナービーム)に関連付けられるが、(L3)CSI-RSリソースは、(L1)CSI-RSリソースよりも広いビーム幅のビーム(ラフビーム、例えば、図2BのビームB1~B3)に関連付けられてもよい。(L3)CSI-RSリソースをラフビームに関連付けることにより、より広い範囲をカバーできる。 
 このように、将来の無線通信システムでは、CSI-RS(CSI-RSリソース)は、CSI、L1-RSRP及びL3-RSRPの少なくとも一つの測定に用いられる。しかしながら、CSI-RSリソースが設定されるビーム数の増加に伴い、ユーザ端末における測定負荷が増大する恐れがある。このため、将来の無線通信システムでは、CSI-RSリソースが設定されるビーム数を制限し、SSブロックを用いて、L1-RSRP測定及び/又はL3-RSRP測定を行うことも検討されている。
 このように、将来の無線通信システム(例えば、NR、5G又はLTE Rel.14以降)では、異なる複数の測定用信号(例えば、CSI-RS及び/又はSSブロック)を用いて一以上のビームの受信電力(例えば、L1-RSRP及び/又はL3-RSRP)を測定することが想定される。この場合、どのような条件でビームリカバリをトリガするかが問題となる。
 そこで、本発明者らは、異なる複数の測定用信号(例えば、CSI-RS及び/又はSSブロック)を用いて一以上のビームの受信電力(例えば、L1-RSRP及び/又はL3-RSRP)が測定される場合において、ビーム障害(BF:Beam Failure)の検出及び/又はビームリカバリのトリガを適切に行う方法を検討し、本発明に至った。
 以下、本実施の形態について、図面を参照して詳細に説明する。なお、本実施の形態におけるビームフォーミングは、デジタルBFを想定するが、アナログBF、ハイブリッドBFにも適宜適用可能である。
 また、本実施の形態において、「ビーム」は、無線基地局からのDL信号の送信に用いられるビーム(送信ビーム、Txビーム等ともいう)及び/又はユーザ端末におけるDL信号の受信に用いられるビーム(受信ビーム、Rxビーム等ともいう)を含んでもよい。Txビーム及びRxビームの組み合わせは、ビームペアリンク(BPL)等と呼ばれてもよい。
(ビーム測定)
 図3及び4を参照し、本実施の形態に係るビーム測定について例示する。
 図3は、本実施の形態に係るビーム測定の一例を示す図である。例えば、図3では、ビームB2内のTxビームB21~B24(アクティブビーム)に、それぞれ、CSI-RSリソース#0~#3が設定される。一方、ビームB1及びB3内のTxビームB11~B14及びB31~B34(非アクティブビーム、バックアップビーム)にはCSI-RSリソースが設定されていない。
 図3において、TxビームB21~B24のL1-RSRP及び/又はL3-RSRPは、それぞれ、CSI-RSリソース#0~#3を用いて測定される。一方、ビームB1及びB3のL1-RSRP及び/又はL3-RSRPは、それぞれのSSブロックを用いて測定される。なお、図3では、ビームB2のL1-RSRP及び/又はL3-RSRPが、SSブロックを用いて測定されてもよい。
 図4は、本実施の形態に係るビーム測定の他の例を示す図である。例えば、図4では、ビームB2内のTxビームB21~B24及びビームB3内のTxビームB31~B34に、それぞれ、CSI-RSリソース#0~#7が設定される。ここでは、TxビームB21~B24が有効化(アクティベイト)され、TxビームB31~B34は無効化(ディアクティベイト)されているものとする。一方、ビームB1内のTxビームB11~B14にはCSI-RSリソースが設定されていない。あるいは、CSI-RSリソース#0~#3はビーム管理用にL1 RSRPを測定するために設定されており、CSI-RSリソース#0~#7はモビリティ用にL3 RSRPを測定するために設定されている。
 図4において、TxビームB21~B24のL1-RSRP及び/又はL3-RSRPは、それぞれ、CSI-RSリソース#0~#3を用いて測定される。また、TxビームB31~B34のL1-RSRP及び/又はL3-RSRPは、それぞれ、CSI-RSリソース#4~#7を用いて測定される。一方、ビームB1のL1-RSRP及び/又はL3-RSRPは、それぞれのSSブロックを用いて測定される。
 なお、図4では、ビームB2及び/又はB3のL1-RSRP及び/又はL3-RSRPが、SSブロックを用いて測定されてもよい。また、図3及び4では、CSI-RSリソースが狭ビームに関連付けられるが、CSI-RSリソースは、ラフビーム(例えば、ビームB1~B3)に関連付けられ、ラフビームのL1-RSRP及び/又はL3-RSRPが、CSI-RSリソースを用いて測定されてもよい。
 また、図3及び4では、設定されたCSI-RSリソースを用いてL1-RSRP及び/又はL3RSRPが測定されるが、当該CSI-RSリソースを用いてCSIが測定されてもよいことは勿論である。
(トリガ条件)
 図3~6を参照し、本実施の形態において、ビームリカバリの要求信号(ビームリカバリ信号)を送信するトリガ条件について説明する。ビームリカバリ信号は、ビーム障害イベントが発生する場合に送信されるので、当該トリガ条件は、ビーム障害イベントの条件と呼ばれてもよい。また、ビームリカバリ信号は、ビーム障害の発生を通知する信号であってもよい。
<第1のトリガ条件>
 第1のトリガ条件は、L個のCSI-RSリソースがL3-RSRP測定用に設定され、N個のCSI-RSリソースがL1-RSRP測定用に設定される場合を想定する。例えば、図4に示すように、N個のTxビームB21~B24(アクティブビーム)に関連付けられたCSI-RSリソース#0~#3が、L1-RSRP測定用に設定され、L個のTxビームB21~B24(非アクティブビーム)に関連付けられたCSI-RSリソース#4~#7が、L3-RSRP測定用に設定される場合を想定する。
 図5は、本実施の形態に係る第1のトリガ条件の一例を示すフローチャートである。図5に示すように、ステップS101において、ユーザ端末は、所定数のアクティブビームのCSI-RSリソースを用いて測定されたL1-RSRP(L1-CSI-RSRP等ともいう)と所定の閾値とを比較する。
 ここで、所定数のアクティブビームとは、L1-RSRP測定用に設定されるN個のCSI-RSリソースに関連付けられるN個のTxビーム(例えば、図4では、TxビームB21~B24)であってもよい。或いは、当該所定数のアクティブビームとは、当該N個のTxビームのうち、測定結果が無線基地局に報告されるM(M≦N)個のTxビームであってもよい。
 例えば、ステップS101において、ユーザ端末は、所定数のアクティブビームのL1-CSI-RSRPが所定の閾値より小さいか否かを判定してもよい。或いは、最も品質が悪いアクティブビームのL1-CSI-RSRPが所定の閾値より小さいか否かを判定してもよい。或いは、最も品質の良いアクティブビームのL1-CSI-RSRPが所定の閾値より大きいか否かを判定してもよい。
 所定数のアクティブビームのL1-CSI-RSRP(又は、品質が最も悪い又は最も良いアクティブビームのL1-CSI-RSRP)が所定の閾値よりも小さい場合、ユーザ端末は、ステップS102に進んでもよい。或いは、上記条件が満たされる状態が所定期間以上継続する場合、ユーザ端末は、ステップS102に進んでもよい。
 ステップS102において、ユーザ端末は、上記アクティブビームのCSI-RSリソースを用いて測定されたL1-CSI-RSRPと、非アクティブビームのCSI-RSリソースを用いて測定されたL3-RSRP(L3-CSI-RSRP等ともいう)とを比較する。
 例えば、ステップS102において、ユーザ端末は、使用中のアクティブビーム(例えば、図4のTxビームB21及びB22の少なくとも一つ)のL1-CSI-RSRPが、非アクティブビーム(例えば、図4のTxビームB31~B32の少なくとも一つ)のL3-CSI-RSRPよりも小さいか否かを判定してもよい。或いは、ユーザ端末は、当該L1-CSI-RSRPに所定のオフセットを加算した値が、当該L3-CSI-RSRPよりも小さいか否かを判定してもよい。
 アクティブビームのL1-CSI-RSRP(又は、当該L1-CSI-RSRPに所定のオフセットを加算した値であり、オフセットは正負の値を取り得る)が、非アクティブビームのL3-CSI-RSRPよりも小さい場合、ユーザ端末は、ステップS103に進んでもよい。或いは、上記条件が満たされる状態が所定期間以上継続する場合、ユーザ端末は、ステップS103に進んでもよい。
 ステップS101及びS102の双方の条件が満たされる場合、ビーム障害イベントが発生し、ステップS103において、ユーザ端末は、ビームリカバリ信号を送信する。なお、図5において、ステップS101及びS102の順序は逆であってもよいし、ステップS101及びS102が同時に行われてもよい。
 第1のトリガ条件では、アクティブビームのL1-CSI-RSRPと、非アクティブビーム(例えば、図4のTxビームB31~B33)のL3-CSI-RSRPとに基づいて、ビームリカバリ信号の送信がトリガされる(ビーム障害イベントが発生する)ので、非アクティブビームにCSI-RSIリソースが設定される場合に、ユーザ端末は、切り替え候補のTxビームの存在を適切に認識でき、ビームリカバリを適切に行うことができる。
 また、図4では、L個のラフビーム(例えば、ビームB1~B3)にはCSI-RSリソースが関連づけられていないが、L個のラフビームにCSI-RSリソースを関連付けることも想定される。例えば、図4において、N個のTxビームB21~B24(アクティブビーム)に関連付けられたCSI-RSリソース#0~#3が、L1-RSRP測定用に設定され、L個のラフビーム(例えば、ビームB1~B3)に関連付けられたCSI-RSリソース#4~#6が、L3-RSRP測定用に設定される場合も想定される。
 この場合、ステップS102において、アクティブビームのL1-CSI-RSRPとラフビームのL3-CSI-RSRPでは、ビームの範囲や測定精度が異なるため、単純に比較できない場合がある。このような場合を想定して、ステップS102において、アクティブビームのL1-CSI-RSRPの代わりに、CSI-RSリソース#0~#3と関連付けられたCSI-RSリソース(例えばCSI-RS#5)で測定したL3-CSI-RSRPを用いて、非アクティブビームのL3-CSI-RSRPと比較を行っても良い。
 ここで、ビーム管理及び/又はCSI測定用のCSI-RSリソース#0~#3とモビリティ用のCSI-RSリソースとの関連付けは(QCL:Quasi-Co-Location)に基づいて基地局からUEへの指示により行われてもよい。具体的には、ビーム管理及び/又はCSI測定用のCSI-RSリソース#0~#3を設定する際に上位レイヤ信号により通知される。 
<第2のトリガ条件>
 第2のトリガ条件は、L個のCSI-RSリソースがL3-RSRP測定用に設定されずに、N個のCSI-RSリソースがL1-RSRP測定用に設定される場合を想定する。
 例えば、図3に示すように、N個のTxビームB21~B24(アクティブビーム)に関連付けられたCSI-RSリソース#0~#3が、L1-RSRP測定用に設定されるが、非アクティブビームにL3-RSRP測定用のCSI-RSリソースが設定されない場合を想定する。なお、図3では、ビームB1~B3それぞれのSSブロックを用いて、L1-RSRP及び/又はL3-RSRP(L1/L3-SS-RSRP等ともいう)が測定されるものとする。
 図6は、本実施の形態に係る第2のトリガ条件の一例を示すフローチャートである。図6のステップS201及びS203は、それぞれ、図5のステップS101及びS103と同様である。なお、図5と同様、ステップS201及びS202の順序は逆であってもよいし、ステップS201及びS202が同時に行われてもよい。
 ステップS202において、ユーザ端末は、アクティブビームのL1/L3-SS-RSRPと、非アクティブビームのL1/L3-SS-RSRPとを比較する。
 ここで、ビーム管理及び/又はCSI測定用のCSI-RSリソース#0~#3とモビリティ用のSSブロックとの関連付けにより、どのSSブロックがアクティブビームに該当するかを知ることが出来る。CSI-RSリソース#0~#3とSSブロックの関連付けは(QCL:Quasi-Co-Location)に基づいて基地局からUEへの指示により行われてもよい。具体的には、ビーム管理およびCSI測定用のCSI-RSリソース#0~#3を設定する際に上位レイヤ信号により通知される。
 例えば、ユーザ端末は、アクティブビーム(例えば、図3のビームB2)のL1/L3-SS-RSRPが、非アクティブビーム(例えば、図3のビームB1及びB3の少なくとも一つ)のL1/L3-SS-RSRPよりも小さいか否かを判定してもよい。或いは、ユーザ端末は、当該アクティブビームのL1/L3-SS-RSRPに所定のオフセットを加算した値が、当該非アクティブビームのL1/L3-SS-RSRPよりも小さいか否かを判定してもよい。
 アクティブビームのL1/L3-SS-RSRP(又は、当該L1/L3-SS-RSRPに所定のオフセットを加算した値)が、非アクティブビームのL1/L3-SS-RSRPよりも小さい場合、ユーザ端末は、ステップS203に進んでもよい。或いは、上記条件が満たされる状態が所定期間以上継続する場合、ユーザ端末は、ステップS203に進んでもよい。
 第2のトリガ条件では、アクティブビームのL1/L3-SS-RSRPと、非アクティブビームのL1/L3-SS-RSRPとに基づいて、ビームリカバリ信号の送信がトリガされる(ビーム障害イベントが発生する)ので、非アクティブビームにCSI-RSIリソースが設定されない場合に、ユーザ端末は、切り替え候補のTxビームの存在を適切に認識でき、ビームリカバリを適切に行うことができる。
<その他のトリガ条件>
 なお、ビームリカバリ信号を送信するトリガ条件は、上記第1及び第2のトリガ条件に限られない。SSブロックを用いて測定されるL3-RSRP(L3-SS-RSRP)、SSブロックを用いて測定されるL1-RSRP(L1-SS-RSRP)、CSI-RSリソースを用いて測定されるL3-RSRP(L3-CSI-RSRP)、CSI-RSリソースを用いて測定されるL1-RSRP(L1-CSI-RSRP)の少なくとも一つを用いて、トリガ条件を規定することができる。
 また、SSブロックは、ラフビーム(例えば、図3、4のビームB1~B3の少なくとも一つ)で送信されてもよい。また、CSI-RSリソースは、ラフビーム(例えば、図3、4のビームB1~B3の少なくとも一つ)及び/又は狭ビーム(例えば、図3、4のTxビームB11~B14、B21~B24、B31~B34の少なくとも一つ)に設定されてもよい。図2A及び2Bで説明したように、L1-CSI-RSRP測定及びL3-CSI-RSRP測定用のCSI-RSリソースは共通に設定されてもよいし、個別に設定されてもよい。
 また、トリガ条件には、RSRPだけでなく、RSRQが考慮されてもよい。RSRQも、RSRPと同様に、SSブロック及び/又はCSI-RSリソースを用いて、一以上のレイヤ(例えば、L1及び/又はL3)で測定されてもよい。また、トリガ条件には、CSI-RSリソースが設定されたK個のTxビームのCSIが考慮されてもよい。
(リカバリ動作)
 図7を参照し、以上のようなトリガ条件を用いたビームリカバリ動作について説明する。
 図7は、本実施の形態に係るリカバリ動作の一例を示す図である。なお、図7では、アクティブビームがTxビーム#3であり、非アクティブビームがTxビーム#1、#2、#4である場合を想定する。
 図7において、ユーザ端末は、所定周期で、モビリティ測定用信号(例えば、SSブロック及び/又はCSI-RS)を用いて、L3-RSRP、L3-RSRQ及びL1-RSRQの少なくとも一つを測定する。ユーザ端末は、上述のトリガ条件を用いてビーム障害の発生(新たなベストビーム)を検出する。
 ユーザ端末は、ビームリカバリ信号(例えば、PRACHプリアンブル、スケジューリング要求(SR)又はULグラントフリーのUL信号)を送信する。ビームリカバリ信号は、モビリティ測定用信号のリソース(又はアンテナポート)に関連付けられたULリソースで送信されてもよい。これにより、ユーザ端末は、新たなベストビームのビームIDを黙示的に無線基地局に通知できる。
 また、当該ビームリカバリ信号は、切り替え候補となるビームのビームID(又はビームIDに関連付けられる情報(例えば、CRIなど))、L3-RSRP、L1-RSRP、L3-RSRQ及びL1-RSRQの少なくとも一つを含んでもよい。これらを含まない場合、当該ビームリカバリ信号として、BPSK(Binary Phase Shift Keying)又はQPSK(Quadrature Phase Shift Keying)で変調されるSRが用いられてもよい。
 また、ULの同期が外れている(out of synchronization)場合、当該ビームリカバリ信号としてPRACHが用いられてもよい。この場合、ユーザ端末は、初期アクセスとは異なるリソースを用いて、ビームリカバリ信号としてのPRACHを送信してもよい。
 無線基地局は、ユーザ端末からのビームリカバリ信号に対する応答信号(例えば、RAR)を送信する。当該応答信号には、新たなベストビームを含むビームセットについての構成情報(例えば、CSI-RSリソースの構成情報、CSI報告及び/L1-RSRP報告に関する設定情報、リソースの設定情報の少なくとも一つ)が含まれてもよい。
 当該応答信号を送信するためには、NR-PDCCH(ユーザ端末固有のサーチスペース)により当該応答信号のスケジューリング情報(DCI)を送信する必要がある。一方、図7では、ビーム障害の発生のため、NR-PDCCHを使用できない。
 そこで、当該応答信号のスケジューリング情報(DCI)を送信するために、RAR、ページング及びシステム情報ブロック(SIB)の少なくとも一つに用いられるNR-PDCCH(共通サーチスペース(CSS)等ともいう)が用いられてもよい。この場合、当該スケジューリング情報は、ユーザ端末固有の識別子(例えば、C-RNTI:Cell-Radio Network Temporary Identifier)を用いてスクランブル(マスク)されてもよい。
 或いは、当該応答信号のスケジューリング情報を送信するために、一以上のユーザ端末のグループに共通のPDCCH(UEグループサーチスペース等ともいう)が用いられてもよい。この場合、当該スケジューリング情報(グループDCI等ともいう)は、当該一以上のユーザ端末に共通の識別子を用いてスクランブル(マスク)されてもよい。
 また、当該応答信号により、非アクティブビーム(例えば、図4のTxビームB31~B34)のCSI-RSの送信及びCSI報告が有効化(アクティベイト)される場合、当該有効化の指示情報を含むMAC制御要素(MAC CE)が、当該応答信号に含まれてもよい。或いは、当該指示情報は、上記応答信号のスケジューリング情報を含むDCIに含まれてもよい。
(無線通信システム)
 以下、本実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本発明の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図8は、本実施の形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。
 なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)等と呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCにより同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、5個以下のCC、6個以上のCC)を用いてCA又はDCを適用してもよい。
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、Legacy carrier等と呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3~40GHz等)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線接続(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース等)又は無線接続する構成とすることができる。
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)等が含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、等と呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイント等と呼ばれてもよい。以下、無線基地局11及び無線基地局12を区別しない場合は、無線基地局10と総称する。
 各ユーザ端末20は、LTE、LTE-A等の各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。
 無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)及び/又はOFDMAが適用される。
 OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。
 無線通信システム1では、下りリンク(DL)のチャネルとして、各ユーザ端末20で共有されるDLデータチャネル(PDSCH:Physical Downlink Shared Channel)、報知チャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネル等が用いられる。PDSCHにより、ユーザデータや上位レイヤ制御情報、SIB(System Information Block)等が伝送される。また、PBCHにより、MIB(Master Information Block)が伝送される。
 下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)等を含む。PDCCHにより、PDSCH及びPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)等が伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。PHICHにより、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACK等ともいう)が伝送される。EPDCCHは、PDSCHと周波数分割多重され、PDCCHと同様にDCI等の伝送に用いられる。PDCCH及び/又はEPDCCHは、DL制御チャネル、NR-PDCCH等とも呼ばれる。
 無線通信システム1では、上りリンク(UL)のチャネルとして、各ユーザ端末20で共有されるULデータチャネル(PUSCH:Physical Uplink Shared Channel)、UL制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)等が用いられる。PUSCHにより、ユーザデータや上位レイヤ制御情報が伝送される。また、PUCCHにより、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報等が伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
 無線通信システム1では、DL参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)、モビリティ参照信号(MRS)等が伝送される。また、無線通信システム1では、UL参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)等が伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。また、無線通信システム1では、下りリンクにおいて、同期信号(PSS及び/又はSSS)、ブロードキャストチャネル(PBCH)等が伝送される。
<無線基地局>
 図9は、本実施の形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御等のRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理等の送信処理が行われて送受信部103に転送される。また、DL制御信号に関しても、チャネル符号化や逆高速フーリエ変換等の送信処理が行われて、送受信部103に転送される。
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 一方、UL信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅されたUL信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 ベースバンド信号処理部104では、入力されたUL信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放等の呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
 なお、送受信部103は、アナログビームフォーミングを実施するアナログビームフォーミング部をさらに有してもよい。アナログビームフォーミング部は、本発明に係る技術分野での共通認識に基づいて説明されるアナログビームフォーミング回路(例えば、位相シフタ、位相シフト回路)又はアナログビームフォーミング装置(例えば、位相シフト器)から構成することができる。また、送受信アンテナ101は、例えばアレーアンテナにより構成することができる。また、送受信部103は、シングルBF、マルチBFを適用できるように構成されている。
 送受信部103は、DL信号(例えば、NR-PDCCH/PDSCH、モビリティ測定用信号、CSI-RS、DMRS、DCI、DLデータの少なくとも一つ)を送信し、UL信号(例えば、PUCCH、PUSCH、ビームリカバリ信号、測定報告、ビーム報告、CSI報告、L1-RSRP報告、UCI、ULデータの少なくとも一つ)を受信する。
 また、送受信部103は、L3測定及び/又はL1測定用の構成情報(例えば、モビリティ測定用信号(例えば、CSI-RS及び/又はSSブロック)の構成を示す情報、CSI-RSリソースの構成を示す情報、DMRSポート及びCSI-RSの関連付けを示す情報の少なくとも一つ)を送信する。また、送受信部103は、ビーム管理及び/又はCSI測定用のCSI-RSリソースとモビリティ用のCSI-RSリソースとの関連付け(QCL)を示す情報、及び/又は、当該ビーム管理及び/又はCSI測定用のCSI-RSリソースとモビリティ用のSSブロックとの関連付け(QCL)を示す情報を送信してもよい。
 また、送受信部103は、PRACHプリアンブルを受信し、RARを送信してもよい。また、送受信部103は、SRを受信してもよい。また、送受信部103は、無線基地局10からのDCI(ULグラント)なしに送信されるUL信号を受信してもよい。
 図10は、本実施の形態に係る無線基地局の機能構成の一例を示す図である。なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。
 ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、無線基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。
 制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部301は、例えば、送信信号生成部302による信号の生成や、マッピング部303による信号の割り当てを制御する。また、制御部301は、受信信号処理部304による信号の受信処理や、測定部305による信号の測定を制御する。
 制御部301は、DLデータチャネル、ULデータチャネルのスケジューリングを制御し、DLデータチャネルをスケジューリングするDCI(DLアサインメント)、ULデータチャネルをスケジューリングするDCI(ULグラント)の生成及び送信の制御を行う。
 制御部301は、ベースバンド信号処理部104によるデジタルBF(例えば、プリコーディング)及び/又は送受信部103によるアナログBF(例えば、位相回転)を用いて、Txビーム及び/又はRxビームを形成するように制御する。
 制御部301は、DL信号(例えば、NR-PDCCH/PDSCH)の送信及び/又は受信に用いられるビーム(Txビーム及び/又はRxビーム)を制御する。具体的には、制御部301は、ユーザ端末20からのCSI(CRI、CQI、PMI、RIの少なくとも一つ)に基づいて、当該ビームを制御してもよい。
 制御部301は、複数の測定用信号(モビリティ測定用信号及びビーム測定用信号、例えば、CSI-RS及びSSブロック)の送信及び/又は受信に用いられるビームを制御してもよい。
 また、制御部301は、ユーザ端末20からのビームリカバリ信号に基づいて、ビームのリカバリ(切り替え)を制御してもよい。具体的には、制御部301は、ビームリカバリ信号に基づいて、ユーザ端末20のベストビームを認識し、ビームの再設定(CSI-RSリソースの再設定、DMRSポートとCSI-RSリソースのQCLの再設定)を制御してもよい。
 また、制御部301は、再設定されたビームの構成情報(例えば、再設定されたCSI-RSリソースの構成を示す情報、及び/又は、DMRSポートとCSI-RSリソースのQCLを示す情報)を、リカバリ信号に対する応答信号に含めて送信するよう制御してもよい。
 また、制御部301は、当該応答信号のスケジューリング情報(DCI)の生成及び/又は送信を制御してもよい。当該DCIの送信には、RAR、ページング及びシステム情報ブロック(SIB)の少なくとも一つに用いられるNR-PDCCH(共通サーチスペース(CSS)等ともいう)が用いられてもよい。この場合、当該DCIは、ユーザ端末固有の識別子(例えば、C-RNTI)を用いてスクランブル(マスク)されてもよい。
 送信信号生成部302は、制御部301からの指示に基づいて、DL信号を生成して、マッピング部303に出力する。送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部302は、例えば、制御部301からの指示に基づいて、DCI(DLアサインメント、ULグラント)を生成する。また、DLデータチャネル(PDSCH)には、各ユーザ端末20からのCSI等に基づいて決定された符号化率、変調方式等に従って符号化処理、変調処理、ビームフォーミング処理(プリコーディング処理)が行われる。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成されたDL信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号等)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信されるUL信号である。受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
 受信信号処理部304は、受信処理により復号された情報を制御部301に出力する。例えば、ユーザ端末からのフィードバック情報(例えば、CSI、HARQ-ACKなど)を受信した場合、当該フィードバック情報を制御部301に出力する。また、受信信号処理部304は、受信信号や、受信処理後の信号を、測定部305に出力する。
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 測定部305は、例えば、受信した信号の受信電力(例えば、RSRP及び/又はRSSI)、受信品質(例えば、RSRQ、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio)の少なくとも一つ)やチャネル状態等について測定してもよい。測定結果は、制御部301に出力されてもよい。
<ユーザ端末>
 図11は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅されたDL信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理や、誤り訂正復号、再送制御の受信処理等を行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理等を行う。また、下りリンクのデータのうち、報知情報もアプリケーション部205に転送される。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)や、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理等が行われて送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。
 なお、送受信部203は、アナログビームフォーミングを実施するアナログビームフォーミング部をさらに有してもよい。アナログビームフォーミング部は、本発明に係る技術分野での共通認識に基づいて説明されるアナログビームフォーミング回路(例えば、位相シフタ、位相シフト回路)又はアナログビームフォーミング装置(例えば、位相シフト器)から構成することができる。また、送受信アンテナ201は、例えばアレーアンテナにより構成することができる。また、送受信部203は、シングルBF、マルチBFを適用できるように構成されている。
 送受信部203は、DL信号(例えば、NR-PDCCH/PDSCH、モビリティ測定用信号、ビーム測定用信号、CSI-RS、DMRS、DCI、DLデータ、SSブロックの少なくとも一つ)を受信し、UL信号(例えば、PUCCH、PUSCH、リカバリ信号、測定報告、ビーム報告、CSI報告、UCI、ULデータの少なくとも一つ)を送信する。
 また、送受信部203は、L3測定及び/又はL1測定用の構成情報(例えば、モビリティ測定用信号(例えば、CSI-RS及び/又はSSブロック)の構成を示す情報、CSI-RSリソースの構成を示す情報、DMRSポート及びCSI-RSの関連付けを示す情報の少なくとも一つ)を受信する。また、送受信部203は、ビーム管理及び/又はCSI測定用のCSI-RSリソースとモビリティ用のCSI-RSリソースとの関連付け(QCL)を示す情報、及び/又は、当該ビーム管理及び/又はCSI測定用のCSI-RSリソースとモビリティ用のSSブロックとの関連付け(QCL)を示す情報を受信してもよい。
 また、送受信部203は、PRACHプリアンブルを送信し、RARを受信してもよい。また、送受信部203は、SRを送信してもよい。また、送受信部203は、無線基地局10からのDCI(ULグラント)なしにUL信号を送信してもよい。
 図12は、本実施の形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。
 ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部401は、例えば、送信信号生成部402による信号の生成や、マッピング部403による信号の割り当てを制御する。また、制御部401は、受信信号処理部404による信号の受信処理や、測定部405による信号の測定を制御する。
 制御部401は、無線基地局10から送信されたDL制御信号(DL制御チャネル)及びDLデータ信号(DLデータチャネル)を、受信信号処理部404から取得する。制御部401は、DL制御信号や、DLデータ信号に対する再送制御の要否を判定した結果等に基づいて、UL制御信号(例えば、送達確認情報等)やULデータ信号の生成を制御する。
 制御部401は、ベースバンド信号処理部204によるデジタルBF(例えば、プリコーディング)及び/又は送受信部203によるアナログBF(例えば、位相回転)を用いて、送信ビーム及び/又は受信ビームを形成するように制御する。
 制御部401は、DL信号(例えば、NR-PDCCH/PDSCH)の送信及び/又は受信に用いられるビーム(Txビーム及び/又はRxビーム)を制御する。
 また、制御部401は、一以上の測定用信号を用いて測定される受信電力(例えば、RSRP)に基づいて、DL信号の送信及び/又は受信に用いられるビーム(アクティブビーム)の切り替えの要求信号(ビームリカバリ信号)の送信を制御する。
 例えば、制御部401は、アクティブビームに関連付けられるCSI-RSリソースを用いて測定されるL1-CSI-RSRP(第1の受信電力)と所定の閾値とに基づいて、ビームリカバリ信号の送信を制御する(図5のステップS101及び図6のステップS201)。
 また、制御部401は、上記アクティブビームに関連付けられるCSI-RSリソースを用いて測定されるL1-CSI-RSRPと、非アクティブビームに関連付けられるCSI-RSリソースを用いて測定されるL3-CSI-RSRP(第2の受信電力)とに基づいて、前記要求信号の送信を制御する(図5のステップS102)。
 また、制御部401は、上記アクティブビームに関連付けられるSSブロックを用いて測定されるL1/L3-SS-RSRP(第3の受信電力)と、非アクティブビームに関連付けられるSSブロックを用いて測定されるL1/L3-SS-RSRP(第4の受信電力)とに基づいて、前記要求信号の送信を制御する(図6のステップS202)。
 なお、ビームリカバリ信号は、PRACHプリアンブル、SR、ULグラントフリーのUL信号のいずれであってもよい。ULグラントフリーのUL信号は、予め定められたULリソースで送信されてもよい。
 また、制御部401は、モビリティ測定用信号(例えば、CSI-RS及び/又はSSブロック)を用いたL3測定の結果に基づいて、測定報告の送信を制御する。当該測定報告には、RSRP/RSRQが所定条件を満たすビームのビームID(又はビームIDを示す情報)、RSRP/RSRQの少なくとも一つが含まれてもよい。
 また、制御部401は、ビーム測定用信号(例えば、CSI-RS及び/又はSSブロック)を用いたL1測定の結果に基づいて、CSI報告及び/又はL1-RSRP報告の送信を制御する。当該CSI報告及び/又はL1-RSRP報告は、UL物理チャネル(例えば、PUSCH及び/又はPUCCH)を用いて無線基地局10に送信されてもよい。
 また、制御部401は、無線基地局10からのDMRSポートとCSI-RSリソースとのQCLを示す情報に基づいて、DL信号の受信処理(復調及び/又は復号)を制御してもよい。具体的には、制御部401は、DMRSポートに関連付けられたCSI-RSリソースと同一のビームがDL信号の送信及び/又は受信に用いられると想定してもよい。
 また、制御部401は、ビームリカバリ信号に対する応答信号の受信処理(復調及び/又は復号)を制御してもよい。例えば、制御部401は、当該応答信号(及び/又は当該応答信号をスケジューリングするNR-PDCCH又はサーチスペース)の送信及び/又は受信に用いられるビームは、RSRP/RSRQが最も良いモビリティ測定用参照信号の送信及び/又は受信に用いられると想定してもよい。
 送信信号生成部402は、制御部401からの指示に基づいて、UL信号(UL制御信号、ULデータ信号、UL参照信号等)を生成して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、フィードバック情報(例えば、HARQ-ACK、CSI、スケジューリング要求の少なくとも一つ)を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知されるDL制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成されたUL信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号等)を行う。ここで、受信信号は、例えば、無線基地局10から送信されるDL信号(DL制御信号、DLデータ信号、下り参照信号等)である。受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
 受信信号処理部404は、受信処理により復号された情報を制御部401に出力する。受信信号処理部404は、例えば、報知情報、システム情報、RRCシグナリング、DCI等を、制御部401に出力する。また、受信信号処理部404は、受信信号や、受信処理後の信号を、測定部405に出力する。
 測定部405は、受信した信号に関する測定を実施する。例えば、測定部405は、無線基地局10から送信されたモビリティ測定用信号及び/又はCSI-RSリソースを用いて測定を実施する。測定部405は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 測定部405は、例えば、受信した信号の受信電力(例えば、RSRP及び/又はRSSI)、受信品質(例えば、RSRQ、SINR、SNRの少なくとも一つ)やチャネル状態等について測定してもよい。測定結果は、制御部401に出力されてもよい。
<ハードウェア構成>
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
 例えば、本発明の一実施形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図13は、本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサで実行されてもよいし、処理が同時に、逐次に、又はその他の手法で、1以上のプロセッサで実行されてもよい。なお、プロセッサ1001は、1以上のチップで実装されてもよい。
 無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御したりすることで実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001で実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び/又は時分割複信(TDD:Time Division Duplex)を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004で実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
(変形例)
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)で構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットで構成されてもよい。サブフレームは、ニューメロロジーに依存しない固定の時間長(例えば、1ms)であってもよい。
 さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)で構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。また、スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルで構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及び/又はTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、及び/又はコードワードの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、及び/又はコードワードがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、又は、サブスロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)で構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースは、所定のインデックスで指示されるものであってもよい。さらに、これらのパラメータを使用する数式などは、本明細書で明示的に開示したものと異なってもよい。
 本明細書においてパラメータなどに使用する名称は、いかなる点においても限定的なものではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的なものではない。
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ、及び/又は下位レイヤから上位レイヤへ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))で通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 本明細書で使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 本明細書では、「基地局(BS:Base Station)」、「無線基地局」、「eNB」、「gNB」、「セル」、「セクタ」、「セルグループ」、「キャリア」及び「コンポーネントキャリア」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び/又は基地局サブシステムのカバレッジエリアの一部又は全体を指す。
 本明細書では、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」及び「端末」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本発明の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。
 同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。
 本明細書において、基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)から成るネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本明細書で使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本明細書で使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 本明細書で使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」と読み替えられてもよい。本明細書で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を使用することにより、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び/又は光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを使用することにより、互いに「接続」又は「結合」されると考えることができる。
 本明細書又は請求の範囲で「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 

Claims (6)

  1.  下りリンク信号の送信に用いられるアクティブビームの切り替えの要求信号を送信する送信部と、
     前記アクティブビームに関連付けられるチャネル状態情報参照信号(CSI-RS)リソースを用いて測定される第1の受信電力と所定の閾値とに基づいて、前記要求信号の送信を制御する制御部と、を具備し、
     前記制御部は、前記第1の受信電力と非アクティブビームに関連付けられるCSI-RSリソースを用いて測定される第2の受信電力とに基づいて、前記要求信号の送信を制御することを特徴とするユーザ端末。
  2.  前記第1の受信電力は、物理レイヤシグナリングを用いて無線基地局に報告され、
     前記第2の受信電力は、上位レイヤシグナリングを用いて前記無線基地局に報告されることを特徴とする請求項1に記載のユーザ端末。
  3.  下りリンク信号の送信に用いられるアクティブビームの切り替えの要求信号を送信する送信部と、
     前記アクティブビームに関連付けられるチャネル状態情報参照信号(CSI-RS)リソースを用いて測定される第1の受信電力と所定の閾値とに基づいて、前記要求信号の送信を制御する制御部と、を具備し、
     前記制御部は、前記アクティブビームの同期信号(SS)ブロックを用いて測定される第3の受信電力と前記非アクティブビームのSSブロックを用いて測定される第4の受信電力とに基づいて、前記要求信号の送信を制御することを特徴とするユーザ端末。
  4.  前記第1の受信電力は、物理レイヤシグナリングを用いて無線基地局に報告され、
     前記第3の受信電力及び第4の受信電力は、それぞれ、上位レイヤシグナリング又は物理レイヤシグナリングを用いて前記無線基地局に報告されることを特徴とする請求項3に記載のユーザ端末。
  5.  ユーザ端末において、
     下りリンク信号の送信に用いられるアクティブビームの切り替えの要求信号を送信する工程と、
     前記アクティブビームに関連付けられるチャネル状態情報参照信号(CSI-RS)リソースを用いて測定される第1の受信電力と所定の閾値とに基づいて、前記要求信号の送信を制御する工程と、
     前記第1の受信電力と非アクティブビームに関連付けられるCSI-RSリソースを用いて測定される第2の受信電力とに基づいて、前記要求信号の送信を制御する工程と、を有することを特徴とする無線通信方法。
  6.  下りリンク信号の送信に用いられるアクティブビームの切り替えの要求信号を送信する工程と、
     前記アクティブビームに関連付けられるチャネル状態情報参照信号(CSI-RS)リソースを用いて測定される第1の受信電力と所定の閾値とに基づいて、前記要求信号の送信を制御する工程と、
     前記アクティブビームの同期信号(SS)ブロックを用いて測定される第3の受信電力と前記非アクティブビームのSSブロックを用いて測定される第4の受信電力とに基づいて、前記要求信号の送信を制御する工程と、を有することを特徴とする無線通信方法。
     
     
PCT/JP2017/011897 2017-03-23 2017-03-23 ユーザ端末及び無線通信方法 WO2018173238A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BR112019019697A BR112019019697A2 (pt) 2017-03-23 2017-03-23 terminal de usuário e método de radiocomunicação
RU2019131693A RU2739843C1 (ru) 2017-03-23 2017-03-23 Терминал пользователя и способ радиосвязи
US16/495,505 US11888570B2 (en) 2017-03-23 2017-03-23 User terminal and radio communication method
PCT/JP2017/011897 WO2018173238A1 (ja) 2017-03-23 2017-03-23 ユーザ端末及び無線通信方法
CN201780088829.3A CN110731055A (zh) 2017-03-23 2017-03-23 用户终端以及无线通信方法
JP2019506871A JP6813662B2 (ja) 2017-03-23 2017-03-23 ユーザ端末及び無線通信方法
EP17902397.3A EP3605862A4 (en) 2017-03-23 2017-03-23 USER TERMINAL AND WIRELESS COMMUNICATION PROCESS
KR1020197029561A KR20190129919A (ko) 2017-03-23 2017-03-23 유저단말 및 무선 통신 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/011897 WO2018173238A1 (ja) 2017-03-23 2017-03-23 ユーザ端末及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2018173238A1 true WO2018173238A1 (ja) 2018-09-27

Family

ID=63585182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011897 WO2018173238A1 (ja) 2017-03-23 2017-03-23 ユーザ端末及び無線通信方法

Country Status (8)

Country Link
US (1) US11888570B2 (ja)
EP (1) EP3605862A4 (ja)
JP (1) JP6813662B2 (ja)
KR (1) KR20190129919A (ja)
CN (1) CN110731055A (ja)
BR (1) BR112019019697A2 (ja)
RU (1) RU2739843C1 (ja)
WO (1) WO2018173238A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020069164A1 (en) 2018-09-28 2020-04-02 Intel Corporation Systems and methods for measurement period and accuracy for beam reporting based on l1-rsrp
CN111148268A (zh) * 2018-11-02 2020-05-12 维沃移动通信有限公司 随机接入资源确定方法、终端及网络设备
CN113271605A (zh) * 2020-02-14 2021-08-17 上海诺基亚贝尔股份有限公司 用于控制信道状态指示参考信号测量的方法和装置
CN114175710A (zh) * 2019-07-19 2022-03-11 株式会社Ntt都科摩 终端以及无线通信方法
CN114208261A (zh) * 2019-08-15 2022-03-18 株式会社Ntt都科摩 终端及通信方法
RU2805306C1 (ru) * 2023-02-02 2023-10-13 Самсунг Электроникс Ко., Лтд. Способ и устройство связи, реализующие процедуру связи в сети с ранним получением информации о состоянии канала

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018175852A1 (en) * 2017-03-24 2018-09-27 Intel IP Corporation Beam recovery frame structure and recovery request for communication systems
CN110463332A (zh) * 2017-03-24 2019-11-15 摩托罗拉移动有限责任公司 用于无线通信网络上的随机接入的方法和装置
CN113395779A (zh) * 2017-03-24 2021-09-14 中兴通讯股份有限公司 波束恢复的处理方法及装置
WO2018170880A1 (en) * 2017-03-24 2018-09-27 Mediatek Singapore Pte. Ltd. Methods and apparatus for enhanced random access procedure
US11140667B2 (en) 2017-03-24 2021-10-05 Qualcomm Incorporated Techniques for communicating synchronization signal block index in a timing synchronization signal
US11134492B2 (en) * 2017-04-12 2021-09-28 Samsung Electronics Co., Ltd. Method and apparatus for beam recovery in next generation wireless systems
CN108923896B (zh) 2017-04-19 2021-03-26 上海朗帛通信技术有限公司 一种被用于寻呼的用户设备、基站中的方法和装置
CN108810940B (zh) * 2017-04-28 2020-06-02 维沃移动通信有限公司 波束恢复处理方法和终端
CN108112074B (zh) * 2017-05-05 2023-07-18 中兴通讯股份有限公司 信息的上报、接收方法、装置及计算机可读存储介质
EP3626016A4 (en) * 2017-05-15 2020-12-30 Apple Inc. METHODS AND DEVICES FOR RADIO CONNECTION MONITORING
US10694480B2 (en) 2017-08-11 2020-06-23 Lenovo (Singapore) Pte. Ltd. Determining synchronization signal block positions
WO2019047948A1 (en) * 2017-09-11 2019-03-14 Intel IP Corporation METHOD AND APPARATUS FOR RECOVERING FAULT AFTER BEAM FAILURE
US10873866B2 (en) * 2017-09-27 2020-12-22 Electronics And Telecommunications Research Institute Method for managing radio resources in communication system and apparatus for the same
US10735923B2 (en) * 2017-10-24 2020-08-04 Qualcomm Incorporated Techniques and apparatuses for beam-based scheduling of vehicle-to-everything (V2X) communications
CN108093481B (zh) * 2017-11-28 2023-04-18 中兴通讯股份有限公司 发送波束恢复信息的方法和装置、波束检测方法和装置
US11212860B2 (en) * 2017-11-29 2021-12-28 Qualcomm Incorporated Determining beam candidates for transmitting beam failure recovery signal
CN110475257A (zh) * 2018-05-11 2019-11-19 华为技术有限公司 通信方法及装置
US11224088B2 (en) * 2018-07-02 2022-01-11 Qualcomm Incorporated Beam sweeping during an on-period of a DRX cycle
EP3591856B1 (en) * 2018-07-04 2021-10-27 Intel Corporation Techniques for control of beam switching
US11196524B2 (en) * 2018-07-18 2021-12-07 Qualcomm Incorporated Multi-beam CSI feedback
US11258547B2 (en) 2019-06-21 2022-02-22 Qualcomm Incorporated Techniques for performing retransmission based on a beam sweep
CN113840380A (zh) * 2020-06-24 2021-12-24 华为技术有限公司 一种波束指示方法及通信装置
US20220053353A1 (en) * 2020-08-14 2022-02-17 Samsung Electronics Co., Ltd. Method and apparatus for measurement and reporting for multi-beam operations
CN112351447B (zh) * 2020-10-15 2024-06-14 太原云时代技术有限公司 基于区块链系统的公共场所安防大数据的收集方法及系统
CN116830645A (zh) * 2020-12-28 2023-09-29 株式会社Ntt都科摩 终端以及基站
EP4290952A4 (en) * 2021-05-11 2024-05-29 Guangdong Oppo Mobile Telecommunications Corp Ltd INFORMATION INDICATION METHOD, TERMINAL DEVICE, NETWORK DEVICE AND COMMUNICATION SYSTEM

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026790A (ja) * 2000-07-03 2002-01-25 Matsushita Electric Ind Co Ltd 無線通信装置及び無線通信方法
JP2014526217A (ja) * 2011-08-12 2014-10-02 サムスン エレクトロニクス カンパニー リミテッド 無線通信システムにおける適応的ビームフォーミング装置及び方法
WO2016148127A1 (ja) * 2015-03-16 2016-09-22 株式会社Nttドコモ ユーザ装置、基地局及び通信方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130083739A1 (en) 2011-10-04 2013-04-04 Sharp Laboratories Of America, Inc. Devices for random access response scheduling
US9119209B2 (en) * 2012-03-30 2015-08-25 Samsung Electronics Co., Ltd. Apparatus and method for channel-state-information pilot design for an advanced wireless network
WO2014054903A1 (ko) 2012-10-04 2014-04-10 엘지전자 주식회사 무선 통신 시스템에서 안테나 포트 관계를 고려한 하향링크 신호 송수신 방법 및 장치
KR20150108349A (ko) * 2013-01-16 2015-09-25 엘지전자 주식회사 다중 셀 기반 무선 통신 시스템에서 채널 상태 정보의 산출 방법 및 이를 위한 장치
WO2015078001A1 (zh) * 2013-11-29 2015-06-04 华为技术有限公司 预编码向量的确定方法、预编码处理方法及基站
CN105471559B (zh) 2014-09-05 2020-01-14 中兴通讯股份有限公司 准共位置的配置、确定方法及装置
US10070478B2 (en) * 2015-01-22 2018-09-04 Intel IP Corporation Devices and methods for EPDCCH monitoring in wireless communication systems
JP6968706B2 (ja) * 2016-02-03 2021-11-17 三菱電機株式会社 通信システム
WO2017171322A2 (ko) * 2016-03-29 2017-10-05 엘지전자 주식회사 차세대 무선 통신 시스템에서 랜덤 액세스 절차 수행 방법 및 이를 위한 장치
US20190191434A1 (en) * 2016-07-21 2019-06-20 Nokia Technologies Oy Downlink control channel search space definition for reduced processing time
US11290160B2 (en) * 2016-08-02 2022-03-29 Lg Electronics Inc. Method for transmitting feedback information for three-dimensional MIMO on basis of beamformed reference signal in wireless communication system, and apparatus therefor
US10637624B2 (en) 2016-08-11 2020-04-28 Lg Electronics Inc. Method for indicating QCL information for aperiodic CSI-RS in wireless communication system and apparatus for same
US10951291B2 (en) * 2016-09-28 2021-03-16 Idac Holdings, Inc. Systems and methods for beam management
US10206232B2 (en) * 2016-09-29 2019-02-12 At&T Intellectual Property I, L.P. Initial access and radio resource management for integrated access and backhaul (IAB) wireless networks
CN108307413B (zh) * 2016-09-30 2023-06-30 华为技术有限公司 接入方法、终端设备和基站
CN115209529A (zh) * 2017-01-05 2022-10-18 中兴通讯股份有限公司 一种寻呼信息的传输方法、装置及系统
US10505773B2 (en) * 2017-01-17 2019-12-10 Qualcomm Incorporated Association between synchronization signal beams and reference signal beams
US11943677B2 (en) * 2017-01-19 2024-03-26 Qualcomm Incorporated Beam selection and radio link failure during beam recovery
US10194442B2 (en) * 2017-02-10 2019-01-29 Qualcomm Incorporated Uplink resources for beam recovery
US20200119839A1 (en) * 2017-03-15 2020-04-16 Lg Electronics Inc. Method for transmitting or receiving signal in wireless communication system and apparatus therefor
US10454755B2 (en) * 2017-03-22 2019-10-22 Qualcomm Incorporated Beam failure identification and recovery techniques

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026790A (ja) * 2000-07-03 2002-01-25 Matsushita Electric Ind Co Ltd 無線通信装置及び無線通信方法
JP2014526217A (ja) * 2011-08-12 2014-10-02 サムスン エレクトロニクス カンパニー リミテッド 無線通信システムにおける適応的ビームフォーミング装置及び方法
WO2016148127A1 (ja) * 2015-03-16 2016-09-22 株式会社Nttドコモ ユーザ装置、基地局及び通信方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall Description; Stage 2 (Release 8", 3GPP TS 36.300, April 2010 (2010-04-01)
NOKIA ET AL.: "On beam management in NR - procedures", 3GPP TSG-RAN WG1#86B, R1-1610239, 30 September 2016 (2016-09-30), XP051158645 *
See also references of EP3605862A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112740578A (zh) * 2018-09-28 2021-04-30 苹果公司 基于l1-rsrp的波束报告的测量周期和精度的系统和方法
WO2020069164A1 (en) 2018-09-28 2020-04-02 Intel Corporation Systems and methods for measurement period and accuracy for beam reporting based on l1-rsrp
EP3804179A4 (en) * 2018-09-28 2021-09-01 Apple Inc. SYSTEMS AND METHODS FOR DETERMINING A MEASUREMENT PERIOD AND ACCURACY FOR A BEAM RATIO BASED ON LAYER 1 RSRP (L1)
CN112740578B (zh) * 2018-09-28 2023-02-28 苹果公司 基于l1-rsrp的波束报告的测量周期和精度的系统和方法
US11956048B2 (en) 2018-09-28 2024-04-09 Apple Inc. Systems and methods for measurement period and accuracy for beam reporting based on L1-RSRP
CN111148268A (zh) * 2018-11-02 2020-05-12 维沃移动通信有限公司 随机接入资源确定方法、终端及网络设备
CN111148268B (zh) * 2018-11-02 2022-02-01 维沃移动通信有限公司 随机接入资源确定方法、终端及网络设备
CN114175710B (zh) * 2019-07-19 2024-02-06 株式会社Ntt都科摩 终端以及无线通信方法
CN114175710A (zh) * 2019-07-19 2022-03-11 株式会社Ntt都科摩 终端以及无线通信方法
CN114208261A (zh) * 2019-08-15 2022-03-18 株式会社Ntt都科摩 终端及通信方法
CN114208261B (zh) * 2019-08-15 2023-10-31 株式会社Ntt都科摩 终端及通信方法
CN113271605A (zh) * 2020-02-14 2021-08-17 上海诺基亚贝尔股份有限公司 用于控制信道状态指示参考信号测量的方法和装置
CN113271605B (zh) * 2020-02-14 2024-05-28 上海诺基亚贝尔股份有限公司 用于控制信道状态指示参考信号测量的方法和装置
RU2805306C1 (ru) * 2023-02-02 2023-10-13 Самсунг Электроникс Ко., Лтд. Способ и устройство связи, реализующие процедуру связи в сети с ранним получением информации о состоянии канала

Also Published As

Publication number Publication date
RU2739843C1 (ru) 2020-12-28
JPWO2018173238A1 (ja) 2020-01-23
CN110731055A (zh) 2020-01-24
JP6813662B2 (ja) 2021-01-13
EP3605862A1 (en) 2020-02-05
US20200014453A1 (en) 2020-01-09
EP3605862A4 (en) 2020-11-25
KR20190129919A (ko) 2019-11-20
BR112019019697A2 (pt) 2020-04-14
US11888570B2 (en) 2024-01-30

Similar Documents

Publication Publication Date Title
JP6813662B2 (ja) ユーザ端末及び無線通信方法
JP7197371B2 (ja) 端末、無線通信方法、基地局及びシステム
CN110622432B (zh) 用户终端以及无线通信方法
WO2018143390A1 (ja) ユーザ端末及び無線通信方法
WO2018173124A1 (ja) ユーザ端末及び無線通信方法
WO2018167958A1 (ja) ユーザ端末及び無線通信方法
WO2018088538A1 (ja) ユーザ端末及び無線通信方法
WO2019215888A1 (ja) ユーザ端末及び無線通信方法
WO2018173163A1 (ja) ユーザ端末及び無線通信方法
JP7007289B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2018124028A1 (ja) ユーザ端末及び無線通信方法
WO2018203378A1 (ja) ユーザ端末及び無線通信方法
WO2018128180A1 (ja) ユーザ端末及び無線通信方法
WO2018198342A1 (ja) ユーザ端末及び無線通信方法
WO2018229952A1 (ja) ユーザ端末及び無線通信方法
WO2020021725A1 (ja) ユーザ端末及び無線通信方法
JP7010927B2 (ja) 端末及び無線通信方法
WO2018084135A1 (ja) 装置及び無線通信方法
WO2018124027A1 (ja) ユーザ端末及び無線通信方法
WO2019193735A1 (ja) ユーザ端末及び無線基地局
WO2018229928A1 (ja) ユーザ端末及び無線通信方法
WO2018207373A1 (ja) 装置及び無線通信方法
WO2019225657A1 (ja) ユーザ端末及び無線通信方法
JP7210673B2 (ja) 端末、無線通信方法及び無線基地局
JP7269386B2 (ja) 端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902397

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019506871

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019019697

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197029561

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017902397

Country of ref document: EP

Effective date: 20191023

ENP Entry into the national phase

Ref document number: 112019019697

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190920