WO2018207373A1 - 装置及び無線通信方法 - Google Patents

装置及び無線通信方法 Download PDF

Info

Publication number
WO2018207373A1
WO2018207373A1 PCT/JP2017/018118 JP2017018118W WO2018207373A1 WO 2018207373 A1 WO2018207373 A1 WO 2018207373A1 JP 2017018118 W JP2017018118 W JP 2017018118W WO 2018207373 A1 WO2018207373 A1 WO 2018207373A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
transmission
gnb
signal
unit
Prior art date
Application number
PCT/JP2017/018118
Other languages
English (en)
French (fr)
Inventor
良介 大澤
浩樹 原田
佑一 柿島
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to US16/612,644 priority Critical patent/US11012127B2/en
Priority to PCT/JP2017/018118 priority patent/WO2018207373A1/ja
Priority to JP2019516871A priority patent/JPWO2018207373A1/ja
Publication of WO2018207373A1 publication Critical patent/WO2018207373A1/ja
Priority to JP2021113256A priority patent/JP7171839B2/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present invention relates to an apparatus and a wireless communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • Non-patent Document 1 LTE Advanced, LTE Rel. 10, 11, 12, 13
  • LTE Rel. 8, 9 LTE Advanced, LTE Rel. 10, 11, 12, 13
  • LTE successor systems for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), 5G + (plus), NR (New Radio), NX (New radio access), FX (Future generation radio access), LTE Also referred to as Rel.
  • a user terminal In an existing LTE system (for example, LTE Rel. 8-13), a user terminal (UE: User Equipment) is a precoding matrix index (for example, a base station (eNB (eNode B))) fed back. Based on PMI (Precoding Matrix Indicator), transmission can be performed by applying precoding to a transmission signal for each transmission antenna.
  • UE User Equipment
  • eNB eNode B
  • PMI Precoding Matrix Indicator
  • beam forming for both transmission and reception
  • BF Beam Forming
  • an object of the present invention is to provide an apparatus and a wireless communication method that can suppress a decrease in communication throughput even when a predetermined apparatus can autonomously determine a beam.
  • An apparatus is an apparatus that communicates using a beam, and that autonomously transmits a transmission beam based on the presence or absence of a receiving unit that receives information about a beam of another apparatus. And a control unit that determines whether or not to determine.
  • FIG. 1A-1C are diagrams illustrating an example of inappropriate UE beam selection in the UE centric case.
  • FIG. 2 is a diagram illustrating an example of a flowchart regarding centric determination in the first embodiment.
  • FIG. 3 is a diagram illustrating an example of a flowchart relating to centric determination in the second embodiment.
  • FIG. 4 is a diagram illustrating an example of a flowchart regarding centric determination in the third embodiment.
  • FIG. 5 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating an example of the overall configuration of a radio base station according to an embodiment of the present invention.
  • FIG. 1A-1C are diagrams illustrating an example of inappropriate UE beam selection in the UE centric case.
  • FIG. 2 is a diagram illustrating an example of a flowchart regarding centric determination in the first embodiment.
  • FIG. 3 is a diagram illustrating an example of a flowchart
  • FIG. 7 is a diagram illustrating an example of a functional configuration of a radio base station according to an embodiment of the present invention.
  • FIG. 8 is a diagram illustrating an example of the overall configuration of a user terminal according to an embodiment of the present invention.
  • FIG. 9 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment of the present invention.
  • FIG. 10 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • BF beam forming
  • BF is a technique for forming a beam (antenna directivity) by controlling the amplitude and / or phase of a signal transmitted / received from each element (also called precoding) using, for example, a super multi-element antenna. It is.
  • MIMO Multiple Input Multiple Output
  • MIMO Multiple Input Multiple Output
  • large-scale MIMO massive MIMO
  • Digital BF can be classified into digital BF and analog BF.
  • Digital BF is a method of performing precoding signal processing (for a digital signal) on the baseband, and can form beams as many as the number of antenna ports (or RF chains) at an arbitrary timing. .
  • Analog BF is a method of using a phase shifter on RF (Radio Frequency). In this case, since only the phase of the RF signal is rotated, the configuration is easy and can be realized at low cost, but a plurality of beams cannot be formed at the same timing.
  • a hybrid BF configuration combining a digital BF and an analog BF can also be realized.
  • the circuit configuration becomes expensive, and it is assumed that this is particularly suitable for large-scale MIMO.
  • a base station also called BS (Base Station), transmission / reception point (TRP), eNB (eNode B), gNB, etc.
  • TRP transmission / reception point
  • eNB eNode B
  • gNB gNode B
  • the transmission side determines a transmission beam (and / or transmission beam candidate) based on the measurement result of the signal transmitted from the reception side.
  • the transmission side is a UE and the reception side is a gNB
  • the UE may determine a transmission beam based on a signal (for example, a reference signal) transmitted from the gNB.
  • the measurement in this specification includes RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), RSSI (Received Signal Strength Indicator), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio). ), At least one measurement of path loss, interference power, etc., or may be related to a measurement for obtaining other power and / or quality indicators.
  • the signals used for the measurement include a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a measurement reference signal (SRS: Sounding). It may be a reference signal (Reference Signal) or the like, or may be a separately defined reference signal (for example, a beam-specific reference signal (BRS: Beam-specific Reference Signal) unique to each beam).
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • SRS Sounding
  • It may be a reference signal (Reference Signal) or the like, or may be a separately defined reference signal (for example, a beam-specific reference signal (BRS: Beam-specific Reference Signal) unique to each beam).
  • BRS Beam-specific Reference Signal
  • the receiving side transmits a signal (information) for designating a beam on the transmitting side, and the transmitting side uses the designated beam.
  • codebook transmission codebook-based transmission
  • existing LTE Rel. 8-13
  • the like corresponds to non-reciprocity-based transmission.
  • the mode in which beam determination is autonomously performed by the UE as described above for reciprocity-based transmission may be referred to as UE-centric, UE-centric mode, UE-driven control, and the like.
  • the UE may autonomously determine which transmit beam and / or receive beam to use.
  • the gNB may perform an operation to assist the determination of the beam in the UE.
  • the UE centric may be referred to as a gNB-assisted mode, a gNB-aided mode, or the like.
  • the modes in which beam determination is autonomously performed by gNB and notified to the UE are gNB centric, gNB centric mode, gNB initiative control, BS centric, etc. May be called.
  • the UE may be notified of information on the transmission beam and / or the reception beam (for example, information specifying (specifying) the beam) from the gNB.
  • Information related to the transmission beam and / or the reception beam includes upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling (for example, MAC control element (MAC CE (Control Element))), broadcast information, etc. ), Physical layer signaling (for example, downlink control information (DCI: Downlink Control Information), uplink control information (UCI: Uplink Control Information)), or a combination thereof may be used.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC CE Control element
  • Physical layer signaling for example, downlink control information (DCI: Downlink Control Information), uplink control information (UCI: Uplink Control Information)
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • beams are distinguished by at least one of the following (1) to (8) (difference between a plurality of beams is determined), but is not limited to this: (1) Resource (for example, time and / or frequency resource, number of resources, etc.), (2) Antenna port (for example, DMRS (DeModulation Reference Signal) and / or measurement reference signal (SRS: Sounding Reference Signal) port number) , Number of ports, resources corresponding to ports, etc.), (3) precoding (eg, presence / absence of precoding, precoding weight), (4) transmission power, (5) phase rotation, (6) beam width, (7 ) Beam angle (for example, tilt angle), (8) Number of layers.
  • (1) Resource for example, time and / or frequency resource, number of resources, etc.
  • Antenna port for example, DMRS (DeModulation Reference Signal) and / or measurement reference signal (SRS: Sounding Reference Signal) port number
  • precoding eg, presence / absence of precoding, precoding weight
  • transmission power (5) phase rotation, (6)
  • beam used herein may be used interchangeably with at least one of the above (1) to (8).
  • “beam” is “resource”, “antenna port” ”,“ DMRS port ”,“ SRS port ”,“ reference signal antenna port ”, and the like.
  • “beam” may be read as “transmit beam and / or receive beam”.
  • UE centric In the case of UE centric, it is not necessary to notify the UE of information on the transmission beam and / or the reception beam (for example, the above-described BI, TPMI, etc.) from the gNB, so that overhead can be reduced. On the other hand, in the case of gNB centric, although overhead is required for the notification of the UE beam, it is effective for interference control and ensuring robustness.
  • NR for the purpose of flexible beam control, it is considered to switch between UE centric and gNB centric as appropriate. For example, it is conceivable to determine which centric to use depending on whether or not the UE has received notification of information specifying the beam of the UE.
  • the UE autonomously determines the transmission beam, it is preferable to consider the reception beam of gNB.
  • gNB performs analog BF (including hybrid)
  • analog BF including hybrid
  • Beam sweeping is a method of switching and transmitting a plurality of beams (for example, a plurality of beams having different directivities) in different time domains and / or different frequency domains.
  • gNB uses analog BF, it is considered that the gNB beam is directed to a predetermined UE only in a specific time slot, and the optimal transmission beam of the UE varies with time. Therefore, if the UE determines a transmission beam freely without considering the beam on the gNB side, there is a risk that unintended communication quality degradation, communication throughput degradation, and the like may occur.
  • FIGS. 1A-1C are diagrams illustrating an example of inappropriate UE beam selection in the UE centric case.
  • FIG. 1A shows an example of a gNB beam and a UE beam.
  • the gNB sweeps the beam temporally by the analog BF (gNB beams # 0, # 1, # 2,).
  • the UE operates in UE centric mode, and selects and uses a transmission beam from beam candidates (UE beams # 0, # 1, # 2,).
  • the UE determines that the UE beam # 0 is appropriate based on the gNB beam # 0 transmitted at a certain timing (FIG. 1B). However, if the gNB beam moves to the next beam (gNB beam # 1), it may not be preferable to continue using the UE beam # 0 (FIG. 1C).
  • the present inventors determine which beam (and / or time-frequency resource) the UE should determine the beam based on the downlink signal. Focused on the need to share between.
  • the present inventors have conceived that the gNB beam assumed in the UE-centric beam determination is specified by designating the gNB beam to the UE, and thus the operation based on the UE-centric is instructed.
  • the UE can enable the operation based on the UE centric only when the gNB beam can be identified.
  • an uplink transmission beam used for data (for example, uplink shared channel (PUSCH) transmission) is determined will be described.
  • PUSCH uplink shared channel
  • the beam determination target channel is PUSCH.
  • the present invention is not limited to this.
  • “Channel” may be read as “signal”.
  • UE centric may be read as reciprocity-based transmission
  • gNB centric may be read as non-reciprocity-based transmission
  • UE centric and gNB centric are implicitly notified depending on whether or not a gNB beam (and / or a reference signal transmitted by the gNB beam) is designated.
  • FIG. 2 is a diagram showing an example of a flowchart relating to centric judgment in the first embodiment.
  • the UE determines whether information on the gNB beam (and / or a reference signal transmitted by the gNB beam) (which may be referred to as gNB beam information) has been received (step S101).
  • the UE determines whether to use the UE centric or the gNB centric based on the gNB beam information. Specifically, when receiving the gNB beam information (step S101—Yes), the UE operates based on UE centric (for example, determines a transmission beam) (step S102). On the other hand, when the UE does not receive the gNB beam information (step S101—No), the UE operates based on the gNB centric (step S103).
  • gNB beam information includes beam index (BI: Beam Index), rank index (RI: Rank Indicator), precoding matrix index (PMI: Precoding Matrix Indicator), TRI (Transmitted RI), TPMI (Transmitted PMI), predetermined reference Signal port index (for example, DMRS port index (DPI: DMRS Port Index), SRS port index (SPI: SRS Port Index)), resource index of a predetermined reference signal (for example, CSI-RS resource index (CRI: CSI- RS Resource Indicator, DMRS Resource Index (DRI: DMRS Resource Index), SRS Resource Index (SRI: SRS Resource Index)), QCL (Quasi-Co-Location) Information, Beam Pair Link (BPL: Beam Pair Link) Information, etc. Be notified using at least one of Good.
  • BPL Beam Pair Link
  • QCL means that the pseudo geographical relationship is the same (can be regarded as the same). For example, considering the geographical position of each transmission point (the propagation path characteristics of the downlink signal transmitted from each transmission point), if the long-term propagation path characteristics are the same between different antenna ports, these antenna ports are You may assume that it is QCL.
  • the QCL information may be information indicating that a predetermined signal, channel, or antenna port may be assumed to be another signal, channel, antenna port, and QCL.
  • the UE may assume that the same beam is applied to a plurality of signals (channel / antenna port) based on the QCL information.
  • the BPL information is information relating to a combination of a transmission / reception beam pair (a combination of a transmission beam on a transmission side (for example, UE) and a reception beam on a reception side (for example, gNB)). Beam Pair Index).
  • the UE can specify the gNB beam corresponding to the UE beam based on the notified BPL information.
  • the UE may determine that there is a gNB beam designation when the gNB beam information is notified, and the UE determines the transmission beam decision based on the UE centric until another gNB beam information is notified. You may perform based on a gNB beam.
  • the gNB beam information may include information on a plurality of gNB beams used in different times (periods).
  • UE may determine the transmission beam in a certain time based on the gNB beam used at the said time.
  • the UE may determine that the gNB beam is not designated, or when specific information is notified (for example, the notified predetermined index or index is a specific value). It may be determined that the gNB beam is not designated (for example, in the case of # 0).
  • the gNB beam information may be notified from the gNB to the UE using higher layer signaling (for example, RRC signaling, MAC signaling, broadcast information (MIB, SIB)), physical layer signaling (for example, DCI) or a combination thereof. Good.
  • higher layer signaling for example, RRC signaling, MAC signaling, broadcast information (MIB, SIB)
  • MIB, SIB broadcast information
  • DCI physical layer signaling
  • the gNB beam information may be DCI (such as DCI format 1/2, which may be referred to as DL assignment) for scheduling DL data reception, or DCI (DCI format 0/4 for scheduling UL data transmission). Etc., which may be referred to as UL grant).
  • DCI such as DCI format 1/2, which may be referred to as DL assignment
  • DCI DCI format 0/4 for scheduling UL data transmission
  • Etc. which may be referred to as UL grant
  • the UE can perform transmission beam determination considering the gNB beam information when transmitting data instructed by the UL grant.
  • the notification cycle of gNB beam information can be lengthened, and the signaling overhead related to the notification of the information can be reduced.
  • the DCI may not instruct data scheduling.
  • the UE may determine whether to use UE centric or gNB centric based on the difference in the received DCI format. For example, when a UE that has controlled UL transmission using a UL grant according to a predetermined DCI format receives a UL grant according to another DCI format, the UE centric and the gNB centric may be switched.
  • the operation based on UE centric can be validated only when the gNB beam can be specified.
  • the UE centric and the gNB centric are implicitly notified depending on whether the gNB beam or the UE beam is designated. That is, even if the gNB beam is not designated, the UE determines the UE centric and the gNB centric based on the designation of the UE beam.
  • FIG. 3 is a diagram illustrating an example of a flowchart relating to centric judgment in the second embodiment. Steps S101 to S103 may be the same as those in FIG.
  • the example of FIG. 3 is different from the example of FIG. 2 in that when the UE does not receive the gNB beam information (step S101-No), further information on the UE beam (and / or the reference signal transmitted by the UE beam). It is where it is determined whether or not (which may be called UE beam information) has been received (step S104). Note that the order of steps S101 and S104 may be switched.
  • the UE When the UE receives the UE beam information (step S104—Yes), the UE operates based on the gNB centric (step S103). If the UE has not received both gNB beam information and UE beam information (step S104-No), the UE may operate based on UE centric or communicate using a predetermined beam. Control may be performed.
  • gNB beam information and UE beam information are BI, RI, PMI, TRI, TPMI, port index (eg, SPI) of a predetermined reference signal, resource index (eg, CRI) of a predetermined reference signal, QCL information, BPL, respectively. Notification may be made using at least one of information and the like.
  • the UE may determine that it is UE centric when gNB beam information is notified, and may determine that it is gNB centric when UE beam information is notified. Further, the UE may determine that the gNB centric is received when the gNB beam information is not notified, and may determine that the UE is centric when the UE beam information is not notified.
  • the gNB beam information and the UE beam information are respectively transmitted from the gNB to the UE using higher layer signaling (eg, RRC signaling, MAC signaling, broadcast information (MIB, SIB)), physical layer signaling (eg, DCI), or a combination thereof. May be notified.
  • higher layer signaling eg, RRC signaling, MAC signaling, broadcast information (MIB, SIB)
  • MIB, SIB broadcast information
  • DCI physical layer signaling
  • Either one of the gNB beam information and the UE beam information may be notified using the same type of signal and / or channel.
  • the gNB beam information and the UE beam information may be notified using DCI conforming to the same DCI format (hereinafter also referred to as gNB / UE beam designation DCI).
  • the gNB / UE beam designation DCI may include information for indicating which beam of the gNB or UE is indicated, and the information may be indicated by a 1-bit field, for example.
  • the gNB beam information and the UE beam information are represented by the same type of index or index (eg, BI), a part of the index or index candidates corresponds to the gNB beam, and the remaining candidates correspond to the UE beam. It may be assumed. For example, when indexes # 0 to # 7 are used for gNB beam information and UE beam information, the UE determines that indexes # 0 to # 3 correspond to gNB beams and # 4 to # 7 correspond to UE beams. Good.
  • indexes # 0 to # 7 are used for gNB beam information and UE beam information
  • the UE determines that indexes # 0 to # 3 correspond to gNB beams and # 4 to # 7 correspond to UE beams. Good.
  • the gNB / UE beam designation DCI is a cyclic redundancy check (CRC) bit masked (scrambled) using a predetermined identifier (for example, a network temporary identifier (RNTI)). May be included. According to this configuration, the UE can appropriately recognize the gNB / UE beam designation DCI.
  • CRC cyclic redundancy check
  • RNTI network temporary identifier
  • DCI including gNB beam information and DCI including UE beam information may be CRC masked using the same identifier, or may be CRC masked using different identifiers.
  • the identifier applied to DCI including gNB beam information and / or DCI including UE beam information may be set by higher layer signaling, for example.
  • the UE may determine whether the gNB beam or the UE beam is designated based on the received DCI format difference. For example, when a UE that has controlled UL transmission using a UL grant according to a predetermined DCI format receives a UL grant according to another DCI format, the UE centric and the gNB centric may be switched.
  • the UE can determine whether the beam designated by the gNB is a gNB beam or a UE beam, thereby enabling appropriate centric control.
  • the gNB beam may be notified separately by CRI or the like for a specific use (for example, downlink quality measurement for mobility, etc.). In this case, just because the gNB beam information is notified, the UE does not necessarily have reciprocity (and / or should operate based on UE centricity).
  • the centric control is possible without being limited to the notification of the gNB beam information.
  • FIG. 4 is a diagram illustrating an example of a flowchart relating to centric determination in the third embodiment.
  • step S105 is defined instead of step S101 in FIG.
  • step S105 the UE determines whether information indicating UE centric has been received (step S105).
  • step S105-Yes when receiving information instructing UE centric (step S105-Yes), the UE operates based on the UE centric (for example, determines a transmission beam) (step S102).
  • step S105—No when the UE does not receive the information indicating the UE centric (step S105—No), the UE operates based on the gNB centric (step S103).
  • “received (not received) information instructing UE centric” may be read as “not received (received) information instructing gNB centric”.
  • the information indicating UE centric and the information indicating gNB centric may be simply referred to as information indicating centric.
  • the information indicating the centric may be, for example, 1-bit information.
  • '1' may indicate UE centric and '0' may indicate gNB centric. Note that this may be reversed.
  • the UE transmission beam is used for data (PUSCH) transmission, but is not limited thereto.
  • the UE transmission beam is used to transmit other uplink signals (for example, SRS) and / or channels (for example, uplink control channel (PUCCH: Physical Uplink Control Channel), random access channel (PRACH: Physical Random Access Channel)). May be used.
  • uplink control channel PUCCH: Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • the above-described embodiments may be applied independently or in common for each signal type and usage (for example, for control (PUCCH), for random access procedure (PRACH), for data (PUSCH)). May be applied.
  • the UE may autonomously determine the PUSCH transmission beam while not autonomously determining the PUCCH transmission beam.
  • the beam determined in each centric is not limited to the transmission beam, but may be a reception beam.
  • the UE beam determination described in the above embodiment may be read as gNB beam determination.
  • the UE and gNB in the above description may be interchanged.
  • uplink and downlink are interchanged with each other, reciprocity-based transmission corresponds to gNB centric (gNB beam is determined autonomously by gNB), and non-reciprocity-based transmission corresponds to UE centric. .
  • the gNB reception beam does not change, so it is assumed that the UE centric operation can be appropriately performed even without the gNB beam information.
  • gNB does not perform analog BF (performs full digital BF)
  • gNB can attempt to receive simultaneously using multiple receive beams, so UE centric operation is appropriate even without gNB beam information. It is assumed that it can be implemented.
  • information regarding whether to perform control based on any of the above-described embodiments may be notified from the gNB to the UE using higher layer signaling (for example, RRC signaling).
  • higher layer signaling for example, RRC signaling.
  • the UE may be notified of information on BF (digital BF, analog BF, hybrid BF, etc.) used by gNB using higher layer signaling, etc., and any one of the above-described embodiments based on the information. It may be determined whether to perform control based on the above. For example, when the gNB recognizes that the analog BF (or hybrid BF) is used based on the information, the UE may determine to perform control based on any of the above-described embodiments.
  • BF digital BF, analog BF, hybrid BF, etc.
  • wireless communication system Wireless communication system
  • communication is performed using any one or a combination of the wireless communication methods according to the above embodiments of the present invention.
  • FIG. 5 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention.
  • carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied. can do.
  • DC dual connectivity
  • the wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced 4G (4th generation mobile communication system), 5G. (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system that realizes these.
  • the radio communication system 1 includes a radio base station 11 that forms a macro cell C1 having a relatively wide coverage, and a radio base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. It is equipped with. Moreover, the user terminal 20 is arrange
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 at the same time using CA or DC. Moreover, the user terminal 20 may apply CA or DC using a plurality of cells (CC) (for example, 5 or less CCs, 6 or more CCs).
  • CC cells
  • Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier).
  • a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz, etc.
  • the same carrier may be used.
  • the configuration of the frequency band used by each radio base station is not limited to this.
  • the user terminal 20 can perform communication using time division duplex (TDD) and / or frequency division duplex (FDD) in each cell.
  • TDD time division duplex
  • FDD frequency division duplex
  • a single neurology may be applied, or a plurality of different neurology may be applied.
  • the wireless base station 11 and the wireless base station 12 are connected by wire (for example, optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface, etc.) or wirelessly. May be.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
  • Each user terminal 20 is a terminal that supports various communication schemes such as LTE and LTE-A, and may include not only a mobile communication terminal (mobile station) but also a fixed communication terminal (fixed station).
  • orthogonal frequency division multiple access (OFDMA) is applied to the downlink, and single carrier-frequency division multiple access (SC-FDMA) is used for the uplink.
  • SC-FDMA single carrier-frequency division multiple access
  • Frequency Division Multiple Access and / or OFDMA is applied.
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single carrier transmission in which the system bandwidth is divided into bands each composed of one or continuous resource blocks for each terminal, and a plurality of terminals use different bands to reduce interference between terminals. It is a method.
  • the uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
  • downlink channels include a downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like. Used. User data, higher layer control information, SIB (System Information Block), etc. are transmitted by PDSCH. Moreover, MIB (Master Information Block) is transmitted by PBCH.
  • PDSCH downlink shared channel
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • MIB Master Information Block
  • Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and the like.
  • Downlink control information (DCI: Downlink Control Information) including PDSCH and / or PUSCH scheduling information is transmitted by the PDCCH.
  • scheduling information may be notified by DCI.
  • DCI for scheduling DL data reception may be referred to as DL assignment
  • DCI for scheduling UL data transmission may be referred to as UL grant.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
  • the PHICH transmits HARQ (Hybrid Automatic Repeat reQuest) delivery confirmation information (for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.) to the PUSCH.
  • HARQ Hybrid Automatic Repeat reQuest
  • EPDCCH is frequency-division multiplexed with PDSCH (downlink shared data channel), and is used for transmission of DCI and the like in the same manner as PDCCH.
  • an uplink shared channel (PUSCH) shared by each user terminal 20
  • an uplink control channel (PUCCH: Physical Uplink Control Channel)
  • a random access channel (PRACH: Physical Random Access Channel)
  • User data, higher layer control information, etc. are transmitted by PUSCH.
  • downlink radio quality information CQI: Channel Quality Indicator
  • delivery confirmation information SR
  • scheduling request etc.
  • a random access preamble for establishing connection with the cell is transmitted by the PRACH.
  • a cell-specific reference signal CRS
  • CSI-RS channel state information reference signal
  • DMRS demodulation reference signal
  • PRS Positioning Reference Signal
  • a measurement reference signal SRS: Sounding Reference Signal
  • a demodulation reference signal DMRS
  • the DMRS may be referred to as a user terminal specific reference signal (UE-specific Reference Signal). Further, the transmitted reference signal is not limited to these.
  • FIG. 6 is a diagram illustrating an example of the overall configuration of a radio base station according to an embodiment of the present invention.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may each be configured to include one or more.
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access
  • Retransmission control for example, HARQ transmission processing
  • scheduling transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, precoding processing, and other transmission processing
  • IFFT Inverse Fast Fourier Transform
  • precoding processing precoding processing, and other transmission processing
  • the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal.
  • the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
  • the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device, which is described based on common recognition in the technical field according to the present invention.
  • the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmission / reception unit 103 receives the uplink signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processor 105 performs communication channel call processing (setting, release, etc.), status management of the radio base station 10, radio resource management, and the like.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from other radio base stations 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). May be.
  • CPRI Common Public Radio Interface
  • X2 interface May be.
  • the transmission / reception unit 103 may further include an analog beam forming unit that performs analog beam forming.
  • the analog beam forming unit includes an analog beam forming circuit (for example, phase shifter, phase shift circuit) or an analog beam forming apparatus (for example, phase shifter) described based on common recognition in the technical field according to the present invention. May be.
  • the transmission / reception antenna 101 may be constituted by, for example, an array antenna.
  • the transmission / reception unit 103 may transmit a signal using a transmission beam or may receive a signal using a reception beam.
  • the transmission / reception unit 103 may transmit and / or receive a signal using a predetermined beam determined by the control unit 301.
  • the transmission / reception unit 103 may transmit gNB beam information, UE beam information, centric instruction information, and the like to the user terminal 20. Further, the transmission / reception unit 103 may receive gNB beam information, UE beam information, centric information, and the like from the user terminal 20.
  • FIG. 7 is a diagram illustrating an example of a functional configuration of a radio base station according to an embodiment of the present invention.
  • the functional block of the characteristic part in this embodiment is mainly shown, and it may be assumed that the wireless base station 10 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. These configurations may be included in the radio base station 10, and a part or all of the configurations may not be included in the baseband signal processing unit 104.
  • the control unit (scheduler) 301 controls the entire radio base station 10.
  • the control part 301 can be comprised from the controller, the control circuit, or control apparatus demonstrated based on the common recognition in the technical field which concerns on this invention.
  • the control unit 301 controls, for example, signal generation in the transmission signal generation unit 302, signal allocation in the mapping unit 303, and the like.
  • the control unit 301 also controls signal reception processing in the reception signal processing unit 304, signal measurement in the measurement unit 305, and the like.
  • the control unit 301 schedules system information, downlink data signals (for example, signals transmitted by PDSCH), downlink control signals (for example, signals transmitted by PDCCH and / or EPDCCH, delivery confirmation information, etc.) (for example, resource Control).
  • the control unit 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is necessary for the uplink data signal.
  • the control unit 301 controls scheduling of synchronization signals (for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)), downlink reference signals (for example, CRS, CSI-RS, DMRS) and the like.
  • control unit 301 includes an uplink data signal (for example, a signal transmitted on PUSCH), an uplink control signal (for example, a signal transmitted on PUCCH and / or PUSCH, delivery confirmation information, etc.), a random access preamble (for example, Scheduling of the uplink reference signal and the like.
  • uplink data signal for example, a signal transmitted on PUSCH
  • uplink control signal for example, a signal transmitted on PUCCH and / or PUSCH, delivery confirmation information, etc.
  • a random access preamble for example, Scheduling of the uplink reference signal and the like.
  • the control unit 301 uses the digital BF (for example, precoding) in the baseband signal processing unit 104 and / or the analog BF (for example, phase rotation) in the transmission / reception unit 103 to form a transmission beam and / or a reception beam. May be performed.
  • the control unit 301 may perform control to form a beam based on downlink propagation path information, uplink propagation path information, and the like. Such propagation path information may be acquired from the reception signal processing unit 304 and / or the measurement unit 305.
  • control unit 301 autonomously determines a transmission beam by transmitting predetermined information (for example, gNB beam information, UE beam information, centric information, etc.) to the user terminal 20.
  • predetermined information for example, gNB beam information, UE beam information, centric information, etc.
  • the control unit 301 determines whether or not to autonomously determine a transmission beam based on the presence or absence of predetermined information (for example, whether or not predetermined information is received) (whether it operates based on UE centric, gNB It may be determined whether to operate based on centric.
  • the transmission signal generation unit 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from the control unit 301, and outputs it to the mapping unit 303.
  • the transmission signal generation unit 302 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 302 generates, for example, a DL assignment for notifying downlink data allocation information and / or a UL grant for notifying uplink data allocation information based on an instruction from the control unit 301.
  • the DL assignment and UL grant are both DCI and follow the DCI format.
  • the downlink data signal is subjected to coding processing and modulation processing according to a coding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel State Information) from each user terminal 20.
  • CSI Channel State Information
  • the mapping unit 303 maps the downlink signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs it to the transmission / reception unit 103.
  • the mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 103.
  • the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
  • the reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when receiving PUCCH including HARQ-ACK, HARQ-ACK is output to control section 301.
  • the reception signal processing unit 304 outputs the reception signal and / or the signal after reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measurement part 305 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, and the like based on the received signal.
  • the measurement unit 305 includes received power (for example, RSRP (Reference Signal Received Power)), received quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)).
  • Signal strength for example, RSSI (Received Signal Strength Indicator)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 301.
  • FIG. 8 is a diagram illustrating an example of the overall configuration of a user terminal according to an embodiment of the present invention.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmission / reception antenna 201, the amplifier unit 202, and the transmission / reception unit 203 may each be configured to include one or more.
  • the radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202.
  • the transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
  • the transmission / reception unit 203 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention.
  • the transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, broadcast information of downlink data may be transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs transmission / reception units for retransmission control (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
  • the transmission / reception unit 203 may further include an analog beam forming unit that performs analog beam forming.
  • the analog beam forming unit includes an analog beam forming circuit (for example, phase shifter, phase shift circuit) or an analog beam forming apparatus (for example, phase shifter) described based on common recognition in the technical field according to the present invention. May be.
  • the transmission / reception antenna 201 may be constituted by, for example, an array antenna.
  • the transmission / reception unit 203 may transmit a signal using a transmission beam, or may receive a signal using a reception beam.
  • the transmission / reception unit 203 may transmit and / or receive a signal using a predetermined beam determined by the control unit 401.
  • the transmission / reception unit 203 may receive gNB beam information, UE beam information, centric information, and the like from the radio base station 10. Further, the transmission / reception unit 203 may transmit gNB beam information, UE beam information, centric instruction information, and the like to the radio base station 10.
  • FIG. 9 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment of the present invention.
  • the functional block of the characteristic part in this embodiment is mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 included in the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations may be included in the user terminal 20, and some or all of the configurations may not be included in the baseband signal processing unit 204.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be composed of a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal allocation in the mapping unit 403, and the like.
  • the control unit 401 also controls signal reception processing in the reception signal processing unit 404, signal measurement in the measurement unit 405, and the like.
  • the control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the radio base station 10 from the reception signal processing unit 404.
  • the control unit 401 controls the generation of the uplink control signal and / or the uplink data signal based on the result of determining the necessity of retransmission control for the downlink control signal and / or the downlink data signal.
  • the control unit 401 uses the digital BF (for example, precoding) in the baseband signal processing unit 204 and / or the analog BF (for example, phase rotation) in the transmission / reception unit 203 to form a transmission beam and / or a reception beam. May be performed.
  • the control unit 401 may perform control to form a beam based on downlink propagation path information, uplink propagation path information, and the like. Such propagation path information may be acquired from the reception signal processing unit 404 and / or the measurement unit 405.
  • the control unit 401 determines whether or not to autonomously determine a transmission beam based on the presence / absence of predetermined information (for example, whether predetermined information is received) (whether it operates based on UE centric, gNB It may be determined whether to operate based on centric.
  • the predetermined information may be information (for example, gNB beam information) regarding a beam of another device.
  • the control unit 401 may determine that the transmission beam is autonomously determined when information on the beam of the other device is received. Further, the control unit 401 may determine that it does not autonomously determine a transmission beam when it does not receive information regarding the beam of the other device (for example, when UE beam information is received instead of gNB beam information). .
  • the predetermined information may be information (for example, information that instructs centric) that instructs whether or not to determine a transmission beam autonomously.
  • the control unit 401 may determine whether to autonomously determine a transmission beam based on the presence / absence of the predetermined information without receiving information on the beam of the other device. .
  • the control unit 401 may determine the presence / absence of the predetermined information based on a downlink control information (DCI) format. For example, when the received signal processing unit 404 decodes DCI conforming to the DCI format X, the control unit 401 determines that there is predetermined information, and when the received signal processing unit 404 decodes DCI conforming to another DCI format Y, It may be determined that there is no information.
  • DCI downlink control information
  • control unit 401 autonomously determines a transmission beam by transmitting predetermined information (for example, gNB beam information, UE beam information, centric information, etc.) to the radio base station 10. Control may be performed to determine whether or not to operate based on UE centric or whether to operate based on gNB centric.
  • predetermined information for example, gNB beam information, UE beam information, centric information, etc.
  • control unit 401 may update parameters used for control based on the information.
  • the transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from the control unit 401 and outputs the uplink signal to the mapping unit 403.
  • the transmission signal generation unit 402 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 402 generates an uplink control signal related to delivery confirmation information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. In addition, the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station 10.
  • CSI channel state information
  • the mapping unit 403 maps the uplink signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the radio signal to the transmission / reception unit 203.
  • the mapping unit 403 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 203.
  • the received signal is, for example, a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) transmitted from the radio base station 10.
  • the reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention. Further, the reception signal processing unit 404 can constitute a reception unit according to the present invention.
  • the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
  • the reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401.
  • the reception signal processing unit 404 outputs the reception signal and / or the signal after reception processing to the measurement unit 405.
  • the measurement unit 405 performs measurement on the received signal.
  • the measurement part 405 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal.
  • the measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 401.
  • each functional block (components) are realized by any combination of hardware and / or software.
  • the method for realizing each functional block is not particularly limited. That is, each functional block may be realized using one device physically and / or logically coupled, or directly and / or two or more devices physically and / or logically separated. Alternatively, it may be realized indirectly by connecting (for example, using wired and / or wireless) and using these plural devices.
  • a radio base station, a user terminal, etc. in an embodiment of the present invention may function as a computer that performs processing of the radio communication method of the present invention.
  • FIG. 10 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • the wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
  • processor 1001 may be implemented by one or more chips.
  • Each function in the radio base station 10 and the user terminal 20 is calculated by causing the processor 1001 to perform calculations by reading predetermined software (programs) on hardware such as the processor 1001 and the memory 1002, for example, via the communication device 1004. This is realized by controlling communication and controlling reading and / or writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • programs program codes
  • software modules software modules
  • data data
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized similarly for other functional blocks.
  • the memory 1002 is a computer-readable recording medium such as a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), or any other suitable storage medium. It may be configured by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store programs (program codes), software modules, and the like that can be executed to implement the wireless communication method according to an embodiment of the present invention.
  • the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM)), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium It may be constituted by.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to realize frequency division duplex (FDD) and / or time division duplex (TDD). It may be configured.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • the devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
  • the radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these hardware.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the channel and / or symbol may be a signal (signaling).
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like depending on an applied standard.
  • a component carrier CC: Component Carrier
  • CC Component Carrier
  • the radio frame may be configured by one or a plurality of periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on the neurology.
  • the slot may be configured by one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain.
  • the slot may be a time unit based on the numerology.
  • the slot may include a plurality of mini slots. Each minislot may be configured with one or more symbols in the time domain. The minislot may also be called a subslot.
  • Radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting signals. Different names may be used for the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • a plurality of consecutive subframes may be called a TTI
  • TTI slot or one minislot
  • a unit representing TTI may be called a slot, a minislot, or the like instead of a subframe.
  • TTI means, for example, a minimum time unit for scheduling in wireless communication.
  • a radio base station performs scheduling for assigning radio resources (frequency bandwidth, transmission power, etc. that can be used in each user terminal) to each user terminal in units of TTI.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit of a channel-encoded data packet (transport block), a code block, and / or a code word, or may be a processing unit such as scheduling or link adaptation.
  • a time interval for example, the number of symbols
  • a transport block, a code block, and / or a code word is actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling unit. Further, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, or a long subframe.
  • a TTI shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, or a subslot.
  • a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (eg, shortened TTI) is less than the TTI length of the long TTI and 1 ms. It may be replaced with a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. Further, the RB may include one or a plurality of symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. One TTI and one subframe may each be composed of one or a plurality of resource blocks.
  • One or more RBs include physical resource blocks (PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. May be called.
  • the resource block may be configured by one or a plurality of resource elements (RE: Resource Element).
  • RE Resource Element
  • 1RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • the structure of the above-described radio frame, subframe, slot, minislot, symbol, etc. is merely an example.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in the slot, the number of symbols and RBs included in the slot or minislot, and the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be variously changed.
  • the information, parameters, and the like described in this specification may be expressed using absolute values, may be expressed using relative values from a predetermined value, or other corresponding information may be used. May be represented.
  • the radio resource may be indicated by a predetermined index.
  • names used for parameters and the like are not limited names in any way.
  • various channels PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.
  • information elements can be identified by any suitable name, so the various channels and information elements assigned to them.
  • the name is not limited in any way.
  • information, signals, etc. can be output from the upper layer to the lower layer and / or from the lower layer to the upper layer.
  • Information, signals, and the like may be input / output via a plurality of network nodes.
  • the input / output information, signals, etc. may be stored in a specific location (for example, a memory) or may be managed using a management table. Input / output information, signals, and the like can be overwritten, updated, or added. The output information, signals, etc. may be deleted. Input information, signals, and the like may be transmitted to other devices.
  • information notification includes physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling), It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • DCI downlink control information
  • UCI uplink control information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be referred to as L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • the MAC signaling may be notified using, for example, a MAC control element (MAC CE (Control Element)).
  • notification of predetermined information is not limited to explicit notification, but implicitly (for example, by not performing notification of the predetermined information or other information) May be performed).
  • the determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false.
  • the comparison may be performed by numerical comparison (for example, comparison with a predetermined value).
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • software can use websites, servers using wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or wireless technology (infrared, microwave, etc.) , Or other remote sources, these wired and / or wireless technologies are included within the definition of transmission media.
  • system and “network” used in this specification are used interchangeably.
  • base station BS
  • radio base station eNB
  • gNB gNodeB
  • cell gNodeB
  • cell group a base station
  • carrier a base station
  • a base station may also be called in terms such as a fixed station, NodeB, eNodeB (eNB), access point, transmission point, reception point, femtocell, and small cell.
  • the base station can accommodate one or a plurality of (for example, three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, an indoor small base station (RRH: The term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication service in this coverage. Point to.
  • RRH indoor small base station
  • MS mobile station
  • UE user equipment
  • terminal may be used interchangeably.
  • a base station may also be called in terms such as a fixed station, NodeB, eNodeB (eNB), access point, transmission point, reception point, femtocell, and small cell.
  • NodeB NodeB
  • eNodeB eNodeB
  • access point transmission point
  • reception point femtocell
  • small cell small cell
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called terminal, remote terminal, handset, user agent, mobile client, client or some other suitable terminology.
  • the radio base station in this specification may be read by the user terminal.
  • each aspect / embodiment of the present invention may be applied to a configuration in which communication between a radio base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device).
  • the user terminal 20 may have a function that the wireless base station 10 has.
  • words such as “up” and “down” may be read as “side”.
  • the uplink channel may be read as a side channel.
  • a user terminal in this specification may be read by a radio base station.
  • the wireless base station 10 may have a function that the user terminal 20 has.
  • the operation performed by the base station may be performed by the upper node in some cases.
  • various operations performed for communication with a terminal may include a base station and one or more network nodes other than the base station (for example, It is obvious that this can be done by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc., but not limited thereto) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect / embodiment described in this specification may be used alone, may be used in combination, or may be switched according to execution.
  • the order of the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in this specification may be changed as long as there is no contradiction.
  • the methods described herein present the elements of the various steps in an exemplary order and are not limited to the specific order presented.
  • Each aspect / embodiment described in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile) communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802 .20, UWB (Ultra-WideBand), Bluetooth (registered trademark) ), A system using another appropriate wireless communication method, and / or a next generation system extended based on these methods.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using designations such as “first”, “second”, etc. as used herein does not generally limit the amount or order of those elements. These designations can be used herein as a convenient way to distinguish between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be employed or that the first element must precede the second element in some way.
  • determining may encompass a wide variety of actions. For example, “determination” means calculating, computing, processing, deriving, investigating, looking up (eg, table, database or other data). It may be considered to “judge” (search in structure), ascertaining, etc.
  • “determination (decision)” includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access ( accessing) (e.g., accessing data in memory), etc. may be considered to be “determining”. Also, “determination” is considered to be “determination (resolving)”, “selecting”, “choosing”, “establishing”, “comparing”, etc. Also good. That is, “determination (determination)” may be regarded as “determination (determination)” of some operation.
  • connection is any direct or indirect connection between two or more elements or By coupling, it can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
  • the radio frequency domain can be considered “connected” or “coupled” to each other, such as with electromagnetic energy having wavelengths in the microwave and / or light (both visible and invisible) regions.

Abstract

本発明の一態様に係る装置は、ビームを用いて通信する装置であって、他の装置のビームに関する情報を受信する受信部と、所定の情報の有無に基づいて、自律的に送信ビームを決定するか否かを判断する制御部と、を有することを特徴とする。本発明の一態様によれば、ビームを所定の装置が自律的に決定できる場合であっても、通信スループットの低下などを抑制できる。

Description

装置及び無線通信方法
 本発明は、次世代移動通信システムにおける装置及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8、9)の更なる大容量、高度化などを目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11、12、13)が仕様化された。
 LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(plus)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、LTE Rel.14又は15以降などともいう)も検討されている。
 既存のLTEシステム(例えば、LTE Rel.8-13)においては、ユーザ端末(UE:User Equipment)は、ネットワーク(例えば、基地局(eNB(eNode B)))からフィードバックされたプリコーディング行列指標(PMI:Precoding Matrix Indicator)に基づいて、各送信アンテナに対して送信信号にプリコーディングを適用して送信することができる。
 将来の無線通信システム(例えば、NR)においては、キャリア周波数の増大に伴うカバレッジ確保の困難さを軽減し、電波伝播損失を低減することを主な目的として、送信及び受信の両方にビームフォーミング(BF:Beam Forming)を用いることが検討されている。
 ビームの決定方法としては、UEによって自律的に行われるか、基地局によって行われてUEに指示されるかの2通りが想定される。前者の場合、gNB側のビーム制御を考慮せずにUEに自由に送信ビームを決めさせると、決定したビームが適切でない事態が生じる。この場合、意図せぬ通信品質の劣化、通信スループットの劣化などが発生するおそれがある。
 そこで、本発明は、ビームを所定の装置が自律的に決定できる場合であっても、通信スループットの低下などを抑制できる装置及び無線通信方法を提供することを目的の1つとする。
 本発明の一態様に係る装置は、ビームを用いて通信する装置であって、他の装置のビームに関する情報を受信する受信部と、所定の情報の有無に基づいて、自律的に送信ビームを決定するか否かを判断する制御部と、を有することを特徴とする。
 本発明によれば、ビームを所定の装置が自律的に決定できる場合であっても、通信スループットの低下などを抑制できる。
図1A-1Cは、UEセントリックの場合における適切でないUEビームの選択の一例を示す図である。 図2は、第1の実施形態におけるセントリックの判断に関するフローチャートの一例を示す図である。 図3は、第2の実施形態におけるセントリックの判断に関するフローチャートの一例を示す図である。 図4は、第3の実施形態におけるセントリックの判断に関するフローチャートの一例を示す図である。 図5は、本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図6は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。 図7は、本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。 図8は、本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。 図9は、本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。 図10は、本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。
 将来の無線通信システム(例えば、NR)では、キャリア周波数の増大に伴うカバレッジ確保の困難さを軽減し、電波伝播損失を低減することを主な目的として、送信及び受信の両方にビームフォーミング(BF:Beam Forming)を用いることが検討されている。
 BFは、例えば、超多素子アンテナを用いて、各素子から送信/受信される信号の振幅及び/又は位相を制御(プリコーディングとも呼ばれる)することによって、ビーム(アンテナ指向性)を形成する技術である。なお、このような超多素子アンテナを用いるMIMO(Multiple Input Multiple Output)は、大規模MIMO(massive MIMO)とも呼ばれる。
 BFは、デジタルBF及びアナログBFに分類できる。デジタルBFは、ベースバンド上で(デジタル信号に対して)プリコーディング信号処理を行う方法であり、任意のタイミングにおいてアンテナポート(又はRFチェーン(RF chain))数に応じた数だけビームを形成できる。
 アナログBFは、RF(Radio Frequency)上で位相シフト器を用いる方法である。この場合、RF信号の位相を回転させるだけなので、構成が容易で安価に実現できるが、同じタイミングで複数のビームを形成することができない。
 なお、デジタルBFとアナログBFとを組み合わせたハイブリッドBF構成も実現可能である。膨大な数のビーム形成をデジタルBFだけで行う場合、回路構成が高価になってしまうため、特に大規模MIMOにおいては好適であると想定される。
 NRでは、基地局(BS(Base Station)、送受信ポイント(TRP:Transmission/Reception Point)、eNB(eNode B)、gNBなどと呼ばれてもよい)及びUEが双方で送受信ビームを形成し利得を稼ぐことが検討されている。
 ビームの決定方法としては、レシプロシティベース送信(reciprocity-based transmission)及び非レシプロシティベース送信(non-reciprocity-based transmission)が検討されている。前者の場合、受信側から送信された信号の測定結果に基づいて、送信側が送信ビーム(及び/又は送信ビーム候補)を決定する。例えば、送信側がUE、受信側がgNBの場合、レシプロシティベース送信においては、UEはgNBから送信された信号(例えば、参照信号)に基づいて、送信ビームを決定してもよい。
 ここで、本明細書における測定は、RSRP(Reference Signal Received Power)、RSRQ(Reference Signal Received Quality)、RSSI(Received Signal Strength Indicator)、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio)、パスロス、干渉電力などの少なくとも1つの測定に関してもよいし、その他の電力及び/又は品質に関する指標を求めるための測定に関してもよい。
 また、上記測定に用いられる信号は、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、測定用参照信号(SRS:Sounding Reference Signal)などであってもよいし、別途定義される参照信号(例えば、ビーム固有の(ビームごとに異なる)ビーム固有参照信号(BRS:Beam-specific Reference Signal))であってもよい。
 非レシプロシティベース送信の場合、受信側が送信側のビームを指定するための信号(情報)を送信し、送信側は指定されたビームを用いる。例えば、既存のLTE(Rel.8-13)などで用いられるコードブック送信(コードブックベース送信)は、非レシプロシティベース送信に該当する。
 レシプロシティベース送信について上述したような、UEによってビーム決定が自律的に行われるモードは、UEセントリック、UEセントリックモード、UE主導制御などと呼ばれてもよい。UEセントリックの場合、UEは、使用する送信ビーム及び/又は受信ビームを自律的に決定してもよい。
 gNBは、UEセントリックの場合にはUEにおけるビームの決定をアシストする動作を行ってもよい。このため、UEセントリックはgNBアシスト(gNB-assisted)モード、gNB支援(gNB-aided)モードなどと呼ばれてもよい。
 また、非レシプロシティベース送信について上述したような、gNBによってビーム決定が自律的に行われてUEに通知されるモードは、gNBセントリック、gNBセントリックモード、gNB主導制御、BSセントリックなどと呼ばれてもよい。
 gNBセントリックの場合、UEは、gNBから、送信ビーム及び/又は受信ビームに関する情報(例えば、ビームを指定(特定)する情報)を通知されてもよい。送信ビーム及び/又は受信ビームに関する情報は、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング(例えば、MAC制御要素(MAC CE(Control Element))、ブロードキャスト情報など)、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、又はこれらの組み合わせを用いて通知されてもよい。
 なお、本明細書において、ビームは、下記(1)-(8)のうち少なくとも1つによって区別される(複数のビームの違いが判断される)ことを想定するが、これに限られない:(1)リソース(例えば、時間及び/又は周波数リソース、リソース数など)、(2)アンテナポート(例えば、DMRS(DeModulation Reference Signal)及び/又は測定用参照信号(SRS:Sounding Reference Signal)のポート番号、ポート数、ポートに対応するリソースなど)、(3)プリコーディング(例えば、プリコーディングの有無、プリコーディングウェイト)、(4)送信電力、(5)位相回転、(6)ビーム幅、(7)ビームの角度(例えば、チルト角)、(8)レイヤ数。
 また、本明細書で使用される「ビーム」という用語は、上記(1)-(8)の少なくとも1つと互換的に使用されてもよく、例えば「ビーム」は、「リソース」、「アンテナポート」、「DMRSポート」、「SRSポート」、「参照信号のアンテナポート」などで読み替えられてもよい。また、「ビーム」は、「送信ビーム及び/又は受信ビーム」で読み替えられてもよい。
 UEセントリックの場合、送信ビーム及び/又は受信ビームに関する情報(例えば、上述したようなBI、TPMIなど)を、gNBからUEに対して通知する必要がなくなるため、オーバーヘッド削減が可能である。一方、gNBセントリックの場合、UEのビームの通知のためにオーバーヘッドを要するものの、干渉制御、ロバスト性の確保などに有効である。
 ところで、NRにおいては、柔軟なビーム制御を目的として、UEセントリック及びgNBセントリックを適宜切り替えて用いることが検討されている。例えば、UEのビームを指定する情報の通知をUEが受信したか否かによって、どちらのセントリックを用いるかを判断することが考えられる。
 しかしながら、UEが自律的に送信ビームを決定する場合、gNBの受信ビームも考慮することが好ましい。例えば、gNBがアナログBF(ハイブリッドも含む)を行う場合、gNBの受信ビームに応じて、適切なUEの送信ビームが異なると考えられる。
 gNBがアナログBFを用いる場合、gNBは少なくとも時間方向においてビームスイーピング(sweeping)を行うと想定される。ビームスイーピングは、複数のビーム(例えば指向性の異なる複数のビーム)を、異なる時間領域及び/又は異なる周波数領域で切り替えて送信する方法である。
 このため、gNBがアナログBFを用いる場合、所定のUEに対してgNBのビームが向けられるのは特定の時間スロットに限られ、UEの最適な送信ビームは時間とともに変動すると考えられる。したがって、gNB側のビームを考慮せずにUEに自由に送信ビームを決めさせると、意図せぬ通信品質の劣化、通信スループットの劣化などが発生するおそれがある。
 図1A-1Cを参照して、この問題について具体的に説明する。図1A-1Cは、UEセントリックの場合における適切でないUEビームの選択の一例を示す図である。図1Aは、gNBビーム及びUEビームの一例を示している。本例では、gNBはアナログBFにより時間的にビームをスイーピング(gNBビーム#0、#1、#2、…)させている。一方で、UEはUEセントリックにて動作し、送信ビームをビーム候補(UEビーム#0、#1、#2、…)から選択して用いる。
 例えば、gNBがあるタイミングにおいて送信したgNBビーム#0に基づいて、UEはUEビーム#0が適切であると判断したとする(図1B)。しかしながら、gNBビームが次のビーム(gNBビーム#1)に移った場合には、UEビーム#0を使い続けることは好適でないと考えられる(図1C)。
 以上の検討から、本発明者らは、UEにおいてレシプロシティベース送信を行う場合には、どのビーム(及び/又は時間周波数リソース)における下り信号に基づいてUEがビーム決定すべきかを、gNB及びUE間で共有する必要があることに着目した。
 そこで、本発明者らは、UEに対してgNBビームを指定することによって、UEセントリックのビーム決定において想定するgNBビームを特定し、ひいてはUEセントリックに基づく動作を指示することを着想した。本発明の一態様によれば、例えばUEはgNBビームが特定できる場合に限ってUEセントリックに基づく動作を有効にすることができる。
 以下、本発明に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 また、以下の実施形態では、データ(例えば、上り共有チャネル(PUSCH:Physical Uplink Shared Channel))送信に用いる上り送信ビームを決定する例を示す。言い換えると、ビーム決定対象のチャネルがPUSCHである例を示す。ただし、後述するとおり、本発明はこれに限られない。また、「チャネル」は「信号」で読み替えられてもよい。
 なお、以下の実施形態において、UEセントリックはレシプロシティベース送信と読み替えられてもよく、gNBセントリックは非レシプロシティベース送信と読み替えられてもよい。
(無線通信方法)
<第1の実施形態>
 第1の実施形態においては、gNBビーム(及び/又は当該gNBビームによって送信される参照信号)の指定の有無によって、UEセントリック及びgNBセントリックが暗示的に通知される。
 図2は、第1の実施形態におけるセントリックの判断に関するフローチャートの一例を示す図である。UEは、gNBビーム(及び/又は当該gNBビームによって送信される参照信号)に関する情報(gNBビーム情報と呼ばれてもよい)を受信したか否かを判断する(ステップS101)。
 そして、UEは、gNBビーム情報に基づいてUEセントリック及びgNBセントリックのいずれを用いるかを判断する。具体的には、UEは、gNBビーム情報を受信した場合(ステップS101-Yes)、UEセントリックに基づいて動作する(例えば、送信ビームを決定する)(ステップS102)。一方、UEは、gNBビーム情報を受信しない場合(ステップS101-No)、gNBセントリックに基づいて動作する(ステップS103)。
 gNBビーム情報は、ビームインデックス(BI:Beam Index)、ランク指標(RI:Rank Indicator)、プリコーディング行列指標(PMI:Precoding Matrix Indicator)、TRI(Transmitted RI)、TPMI(Transmitted PMI)、所定の参照信号のポートインデックス(例えば、DMRSポートインデックス(DPI:DMRS Port Index)、SRSポートインデックス(SPI:SRS Port Index))、所定の参照信号のリソース指標(例えば、CSI-RSリソース指標(CRI:CSI-RS Resource Indicator)、DMRSリソースインデックス(DRI:DMRS Resource Index)、SRSリソースインデックス(SRI:SRS Resource Index))、QCL(Quasi-Co-Location)情報、ビームペアリンク(BPL:Beam Pair Link)情報などの少なくとも1つを用いて通知されてもよい。
 なお、QCLは、疑似的な地理関係が同一である(同一とみなせる)ことをいう。例えば、各送信ポイントの地理的位置(各送信ポイントから送信される下りリンク信号の伝搬路特性)を考慮し、異なるアンテナポート間で長期的伝搬路特性が同一である場合、これらのアンテナポートはQCLであると想定してもよい。
 QCL情報は、所定の信号、チャネル又はアンテナポートが別の信号、チャネル又はアンテナポートとQCLと想定してもよいことを示す情報であってもよい。UEは、QCL情報に基づいて、複数の信号(チャネル/アンテナポート)について、同じビームが適用されていると想定してもよい。
 BPL情報は、送受信ビームペアの組み合わせ(送信側(例えばUE)の送信ビームと受信側(例えばgNB)の受信ビームとの組み合わせ)に関する情報であり、例えば、BPLと関連付けられたビームペアインデックス(BPI:Beam Pair Index)であってもよい。UEは、通知されたBPL情報に基づいて、UEビームに対応するgNBビームを特定できる。
 UEは、gNBビーム情報が通知される場合にgNBビームの指定があると判断してもよく、別のgNBビーム情報が通知されるまでは、UEセントリックに基づく送信ビーム決定を、指定されたgNBビームに基づいて行ってもよい。
 また、gNBビーム情報は、別々の時間(期間)において用いられる複数のgNBビームに関する情報を含んでもよい。UEは、UEセントリックで制御する場合、ある時間における送信ビームの決定を、当該時間で用いられるgNBビームに基づいて行ってもよい。
 一方、UEは、gNBビーム情報が通知されない場合にgNBビームの指定がないと判断してもよいし、特定の情報が通知された場合(例えば、通知された所定のインデックス又は指標が特定の値(例えば、#0)に対応する場合)にgNBビームの指定がないと判断してもよい。
 gNBビーム情報は、上位レイヤシグナリング(例えば、RRCシグナリング、MACシグナリング、ブロードキャスト情報(MIB、SIB))、物理レイヤシグナリング(例えば、DCI)又はこれらの組み合わせを用いて、gNBからUEに通知されてもよい。
 例えば、gNBビーム情報は、DLデータ受信をスケジューリングするためのDCI(DCIフォーマット1/2など。DLアサインメントと呼ばれてもよい)又はULデータ送信をスケジューリングするためのDCI(DCIフォーマット0/4など。ULグラントと呼ばれてもよい)に含まれて通知されてもよい。
 gNBビーム情報をULグラントに含めると、UEは当該ULグラントによって指示されるデータ送信の際、gNBビーム情報を考慮した送信ビーム決定を行うことができる。一方で、gNBビーム情報をULグラント以外の情報/信号によって通知する場合、gNBビーム情報の通知の周期を長くすることができ、当該情報の通知にかかるシグナリングオーバーヘッドを低減できる。
 なお、本明細書において、DLアサインメント、ULグラントなどの呼称は、これらのDCIとフォーマットが同一又は類似であることを示すために利用されており、本発明の一実施形態においては、これらのDCIはデータのスケジューリングを指示しなくてもよい。
 また、UEは、受信したDCIフォーマットの違いに基づいて、UEセントリック及びgNBセントリックのいずれを用いるかを判断してもよい。例えば、所定のDCIフォーマットに従うULグラントを用いてUL送信を制御していたUEが、別のDCIフォーマットに従うULグラントを受信した場合、UEセントリック及びgNBセントリックを切り替えてもよい。
 以上説明した第1の実施形態によれば、gNBビームが特定できる場合に限ってUEセントリックに基づく動作を有効にすることができる。
<第2の実施形態>
 第2の実施形態においては、gNBビーム又はUEビームのどちらが指定されるかによって、UEセントリック及びgNBセントリックが暗示的に通知される。つまり、gNBビームの指定がなくても、UEビームの指定に基づいて、UEはUEセントリック及びgNBセントリックを判断する。
 図3は、第2の実施形態におけるセントリックの判断に関するフローチャートの一例を示す図である。ステップS101-S103は図2と同様であってもよいため、説明を省略する。
 図3の例が図2の例と異なる点は、UEが、gNBビーム情報を受信しない場合(ステップS101-No)、さらにUEビーム(及び/又は当該UEビームによって送信される参照信号)に関する情報(UEビーム情報と呼ばれてもよい)を受信したか否かを判断するところである(ステップS104)。なお、ステップS101及びS104は順番が入れ替わってもよい。
 UEは、UEビーム情報を受信した場合(ステップS104-Yes)、gNBセントリックに基づいて動作する(ステップS103)。なお、UEは、gNBビーム情報及びUEビーム情報の両方を受信していない場合(ステップS104-No)、UEセントリックに基づいて動作してもよいし、予め定められたビームを用いて通信する制御を行ってもよい。
 gNBビーム情報及びUEビーム情報はそれぞれ、BI、RI、PMI、TRI、TPMI、所定の参照信号のポートインデックス(例えば、SPI)、所定の参照信号のリソース指標(例えば、CRI)、QCL情報、BPL情報などの少なくとも1つを用いて通知されてもよい。
 UEは、gNBビーム情報が通知される場合にはUEセントリックであると判断し、UEビーム情報が通知される場合にはgNBセントリックであると判断してもよい。また、UEは、gNBビーム情報が通知されない場合にはgNBセントリックであると判断し、UEビーム情報が通知されない場合にはUEセントリックであると判断してもよい。
 gNBビーム情報及びUEビーム情報はそれぞれ、上位レイヤシグナリング(例えば、RRCシグナリング、MACシグナリング、ブロードキャスト情報(MIB、SIB))、物理レイヤシグナリング(例えば、DCI)又はこれらの組み合わせを用いて、gNBからUEに通知されてもよい。
 gNBビーム情報及びUEビーム情報は、同じ種類の信号及び/又はチャネルを用いていずれか一方が通知されてもよい。例えば、gNBビーム情報及びUEビーム情報は、同一のDCIフォーマットに従うDCI(以下、gNB/UEビーム指定DCIともいう)を用いて通知されてもよい。gNB/UEビーム指定DCIは、gNB又はUEのどちらのビームを指示するかを示すための情報を含んでもよく、当該情報は例えば1ビットのフィールドによって示されてもよい。
 gNBビーム情報及びUEビーム情報が同じ種類のインデックス又は指標(例えば、BI)によって表される場合、当該インデックス又は指標の候補の一部がgNBビームに対応し、残りの候補がUEビームに対応すると想定してもよい。例えば、gNBビーム情報及びUEビーム情報に関してインデックス#0-#7が用いられる場合に、UEは、インデックス#0-#3はgNBビーム、#4-#7はUEビームに対応すると判断してもよい。
 また、gNB/UEビーム指定DCIは、所定の識別子(例えば、ネットワーク一時識別子(RNTI:Radio Network Temporary Identifier))を用いてマスクされた(スクランブルされた)巡回冗長検査(CRC:Cyclic Redundancy Check)ビットを含んでもよい。この構成によれば、UEは、gNB/UEビーム指定DCIを適切に認識できる。
 なお、gNBビーム情報を含むDCI及びUEビーム情報を含むDCIは、同じ識別子を用いてCRCマスクされてもよいし、それぞれ異なる識別子を用いてCRCマスクされてもよい。gNBビーム情報を含むDCI及び/又はUEビーム情報を含むDCIに適用される上記識別子は、例えば上位レイヤシグナリングによって設定されてもよい。
 また、UEは、受信したDCIフォーマットの違いに基づいて、gNBビーム又はUEビームのどちらが指定されているかを判断してもよい。例えば、所定のDCIフォーマットに従うULグラントを用いてUL送信を制御していたUEが、別のDCIフォーマットに従うULグラントを受信した場合、UEセントリック及びgNBセントリックを切り替えてもよい。
 以上説明した第2の実施形態によれば、例えばgNBによって指定されたビームがgNBビームかUEビームかをUEが判断できることによって、適切なセントリック制御が可能である。
<第3の実施形態>
 第3の実施形態においては、UEセントリック及びgNBセントリックのいずれかが明示的に通知される。
 gNBビームは、特定の用途(例えば、モビリティ用の下り品質測定など)のために、CRIなどによって別途通知されている場合がある。この場合、gNBビーム情報が通知されているからといって、UEがレシプロシティを有する(及び/又はUEセントリックに基づいて動作すべき)とは限らない。
 第3の実施形態において、セントリックはgNBビームとは別々に指示されるため、gNBビーム情報の通知に制限されずにセントリックの制御が可能である。
 図4は、第3の実施形態におけるセントリックの判断に関するフローチャートの一例を示す図である。図4においては、図2におけるステップS101の代わりにステップS105が規定されている。ステップS105において、UEは、UEセントリックを指示する情報を受信したか否かを判断する(ステップS105)。
 そして、UEは、UEセントリックを指示する情報を受信した場合(ステップS105-Yes)、UEセントリックに基づいて動作する(例えば、送信ビームを決定する)(ステップS102)。一方、UEは、UEセントリックを指示する情報を受信しない場合(ステップS105-No)、gNBセントリックに基づいて動作する(ステップS103)。
 なお、上述のステップにおいて、「UEセントリックを指示する情報を受信した(受信しない)」は「gNBセントリックを指示する情報を受信しない(受信した)」と読み替えられてもよい。
 UEセントリックを指示する情報及びgNBセントリックを指示する情報は、単にセントリックを指示する情報と呼ばれてもよい。セントリックを指示する情報は例えば1ビットの情報でもよく、‘1’がUEセントリックを指示し、‘0’がgNBセントリックを指示してもよい。なお、この逆でもよい。
 以上説明した第3の実施形態によれば、明示的にセントリック方式をUEが通知されることによって、適切なセントリック制御が可能である。
<変形例>
 上述の実施形態において、UE送信ビームは、データ(PUSCH)送信に用いられることを想定したが、これに限られない。例えば、UE送信ビームは、他の上り信号(例えば、SRS)及び/又はチャネル(例えば、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel))の送信に用いられてもよい。
 また、信号の種別、用途(例えば、制御用(PUCCH)、ランダムアクセス手順用(PRACH)、データ用(PUSCH))ごとに、上述の実施形態が独立して適用されてもよいし、共通して適用されてもよい。例えば、UEは、所定のgNBビーム情報が通知された場合に、PUCCH用の送信ビームを自律的に決定しない一方で、PUSCH用の送信ビームを自律的に決定してもよい。また、各セントリックにおいて決定されるビームは、送信ビームに限られず、受信ビームであってもよい。
 なお、上述の実施形態において説明したUEビーム決定は、gNBビーム決定に読み替えてもよい。例えば、上述の説明におけるUE及びgNBは互いに読み替えられてもよい。また、この場合、上り及び下りは互いに読み替えられ、レシプロシティベース送信はgNBセントリック(gNBによってgNBビームが自律的に決定される)に対応し、非レシプロシティベース送信はUEセントリックに対応する。
 また、例えばgNBがシングルビーム運用を行っている場合などには、gNBの受信ビームは変化しないため、gNBビーム情報がなくてもUEセントリック動作は適切に実施できると想定される。gNBがアナログBFを行わない(フルデジタルBFを行う)場合にも、gNBは同時に複数の受信ビームを利用して受信を試みることができるため、gNBビーム情報がなくてもUEセントリック動作は適切に実施できると想定される。
 このため、上述の実施形態のいずれかに基づく制御を行うか否かに関する情報が、gNBからUEに対して上位レイヤシグナリング(例えば、RRCシグナリング)などを用いて通知されてもよい。上述の実施形態に基づく制御を行わないことを示す情報が通知された場合、UEは、gNBビーム情報がなくても、gNBセントリック及びUEセントリックを切り替えてもよい。
 また、UEは、gNBが利用するBF(デジタルBF、アナログBF、ハイブリッドBFなど)に関する情報を、上位レイヤシグナリングなどを用いて通知されてもよく、当該情報に基づいて上述の実施形態のいずれかに基づく制御を行うか否かを判断してもよい。例えば、UEは、当該情報に基づいてgNBがアナログBF(又はハイブリッドBF)を利用することを認識した場合、上述の実施形態のいずれかに基づく制御を行うと判断してもよい。
(無線通信システム)
 以下、本発明の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本発明の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図5は、本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。
 なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、NR(New Radio)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCを用いて同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、5個以下のCC、6個以上のCC)を用いてCA又はDCを適用してもよい。
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
 また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)及び/又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。また、各セル(キャリア)では、単一のニューメロロジーが適用されてもよいし、複数の異なるニューメロロジーが適用されてもよい。
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線によって接続されてもよい。
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。
 無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)及び/又はOFDMAが適用される。
 OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックによって構成される帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHによって、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHによって、MIB(Master Information Block)が伝送される。
 下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHによって、PDSCH及び/又はPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。
 なお、DCIによってスケジューリング情報が通知されてもよい。例えば、DLデータ受信をスケジューリングするDCIは、DLアサインメントと呼ばれてもよいし、ULデータ送信をスケジューリングするDCIは、ULグラントと呼ばれてもよい。
 PCFICHによって、PDCCHに用いるOFDMシンボル数が伝送される。PHICHによって、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHによって、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報、スケジューリングリクエスト(SR:Scheduling Request)などが伝送される。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
 無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。
(無線基地局)
 図6は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
 下りリンクによって無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102によって増幅され、送受信アンテナ101から送信される。送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、無線基地局10の状態管理、無線リソースの管理などを行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
 なお、送受信部103は、アナログビームフォーミングを実施するアナログビームフォーミング部をさらに有してもよい。アナログビームフォーミング部は、本発明に係る技術分野での共通認識に基づいて説明されるアナログビームフォーミング回路(例えば、位相シフタ、位相シフト回路)又はアナログビームフォーミング装置(例えば、位相シフト器)から構成してもよい。また、送受信アンテナ101は、例えばアレーアンテナによって構成してもよい。
 送受信部103は、送信ビームを用いて信号を送信してもよいし、受信ビームを用いて信号を受信してもよい。送受信部103は、制御部301によって決定された所定のビームを用いて信号を送信及び/又は受信してもよい。
 送受信部103は、gNBビーム情報、UEビーム情報、セントリックを指示する情報などを、ユーザ端末20に対して送信してもよい。また、送受信部103は、gNBビーム情報、UEビーム情報、セントリックを指示する情報などを、ユーザ端末20から受信してもよい。
 図7は、本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。なお、本例では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
 ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、無線基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。
 制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部301は、例えば、送信信号生成部302における信号の生成、マッピング部303における信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304における信号の受信処理、測定部305における信号の測定などを制御する。
 制御部301は、システム情報、下りデータ信号(例えば、PDSCHで送信される信号)、下り制御信号(例えば、PDCCH及び/又はEPDCCHで送信される信号。送達確認情報など)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号、下りデータ信号などの生成を制御する。また、制御部301は、同期信号(例えば、PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))、下り参照信号(例えば、CRS、CSI-RS、DMRS)などのスケジューリングの制御を行う。
 また、制御部301は、上りデータ信号(例えば、PUSCHで送信される信号)、上り制御信号(例えば、PUCCH及び/又はPUSCHで送信される信号。送達確認情報など)、ランダムアクセスプリアンブル(例えば、PRACHで送信される信号)、上り参照信号などのスケジューリングを制御する。
 制御部301は、ベースバンド信号処理部104におけるデジタルBF(例えば、プリコーディング)及び/又は送受信部103におけるアナログBF(例えば、位相回転)を用いて、送信ビーム及び/又は受信ビームを形成する制御を行ってもよい。制御部301は、下り伝搬路情報、上り伝搬路情報などに基づいて、ビームを形成する制御を行ってもよい。これらの伝搬路情報は、受信信号処理部304及び/又は測定部305から取得されてもよい。
 制御部301は、ユーザ端末20に対して、所定の情報(例えば、gNBビーム情報、UEビーム情報、セントリックを指示する情報など)を送信して、自律的に送信ビームを決定するか否か(UEセントリックに基づいて動作するか、gNBセントリックに基づいて動作するか)を判断させる制御を行ってもよい。
 制御部301は、所定の情報の有無(例えば、所定の情報を受信したか否か)に基づいて、自律的に送信ビームを決定するか否か(UEセントリックに基づいて動作するか、gNBセントリックに基づいて動作するか)を判断してもよい。
 送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部302は、例えば、制御部301からの指示に基づいて、下りデータの割り当て情報を通知するDLアサインメント及び/又は上りデータの割り当て情報を通知するULグラントを生成する。DLアサインメント及びULグラントは、いずれもDCIであり、DCIフォーマットに従う。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
 受信信号処理部304は、受信処理によって復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力する。
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 例えば、測定部305は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部305は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。
(ユーザ端末)
 図8は、本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202によって増幅され、送受信アンテナ201から送信される。
 なお、送受信部203は、アナログビームフォーミングを実施するアナログビームフォーミング部をさらに有してもよい。アナログビームフォーミング部は、本発明に係る技術分野での共通認識に基づいて説明されるアナログビームフォーミング回路(例えば、位相シフタ、位相シフト回路)又はアナログビームフォーミング装置(例えば、位相シフト器)から構成してもよい。また、送受信アンテナ201は、例えばアレーアンテナによって構成してもよい。
 送受信部203は、送信ビームを用いて信号を送信してもよいし、受信ビームを用いて信号を受信してもよい。送受信部203は、制御部401によって決定された所定のビームを用いて信号を送信及び/又は受信してもよい。
 送受信部203は、gNBビーム情報、UEビーム情報、セントリックを指示する情報などを、無線基地局10から受信してもよい。また、送受信部203は、gNBビーム情報、UEビーム情報、セントリックを指示する情報などを、無線基地局10に対して送信してもよい。
 図9は、本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
 ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部401は、例えば、送信信号生成部402における信号の生成、マッピング部403における信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404における信号の受信処理、測定部405における信号の測定などを制御する。
 制御部401は、無線基地局10から送信された下り制御信号及び下りデータ信号を、受信信号処理部404から取得する。制御部401は、下り制御信号及び/又は下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号及び/又は上りデータ信号の生成を制御する。
 制御部401は、ベースバンド信号処理部204におけるデジタルBF(例えば、プリコーディング)及び/又は送受信部203におけるアナログBF(例えば、位相回転)を用いて、送信ビーム及び/又は受信ビームを形成する制御を行ってもよい。制御部401は、下り伝搬路情報、上り伝搬路情報などに基づいて、ビームを形成する制御を行ってもよい。これらの伝搬路情報は、受信信号処理部404及び/又は測定部405から取得されてもよい。
 制御部401は、所定の情報の有無(例えば、所定の情報を受信したか否か)に基づいて、自律的に送信ビームを決定するか否か(UEセントリックに基づいて動作するか、gNBセントリックに基づいて動作するか)を判断してもよい。
 例えば、上記所定の情報は、他の装置のビームに関する情報(例えば、gNBビーム情報)であってもよい。この場合、制御部401は、当該他の装置のビームに関する情報を受信した場合、自律的に送信ビームを決定すると判断してもよい。また、制御部401は、当該他の装置のビームに関する情報を受信しない場合(例えば、gNBビーム情報ではなくUEビーム情報を受信した場合)、自律的に送信ビームを決定しないと判断してもよい。
 また、上記所定の情報は、自律的に送信ビームを決定するか否かを指示する情報(例えば、セントリックを指示する情報)であってもよい。この場合、制御部401は、上記他の装置のビームに関する情報を受信しなくても、当該所定の情報の有無に基づいて、自律的に送信ビームを決定するか否かを判断してもよい。
 制御部401は、上記所定の情報の有無を、下り制御情報(DCI:Downlink Control Information)フォーマットによって判断してもよい。例えば、制御部401は、受信信号処理部404がDCIフォーマットXに従うDCIを復号した場合には、所定の情報があると判断し、別のDCIフォーマットYに従うDCIを復号した場合には、所定の情報がないと判断してもよい。
 また、制御部401は、無線基地局10に対して、所定の情報(例えば、gNBビーム情報、UEビーム情報、セントリックを指示する情報など)を送信して、自律的に送信ビームを決定するか否か(UEセントリックに基づいて動作するか、gNBセントリックに基づいて動作するか)を判断させる制御を行ってもよい。
 また、制御部401は、無線基地局10から通知された各種情報を受信信号処理部404から取得した場合、当該情報に基づいて制御に用いるパラメータを更新してもよい。
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
 受信信号処理部404は、受信処理によって復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、測定部405に出力する。
 測定部405は、受信した信号に関する測定を実施する。測定部405は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 例えば、測定部405は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部405は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線を用いて)接続し、これら複数の装置を用いて実現されてもよい。
 例えば、本発明の一実施形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図10は、本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、1以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び/又は時分割複信(TDD:Time Division Duplex)を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本明細書において説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジーに依存しない固定の時間長(例えば、1ms)であってもよい。
 さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。また、スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及び/又はTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、及び/又はコードワードの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、及び/又はコードワードがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、又は、サブスロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 また、本明細書において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本明細書においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本明細書において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ、及び/又は下位レイヤから上位レイヤへ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本明細書において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 本明細書において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 本明細書においては、「基地局(BS:Base Station)」、「無線基地局」、「eNB」、「gNB」、「セル」、「セクタ」、「セルグループ」、「キャリア」及び「コンポーネントキャリア」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び/又は基地局サブシステムのカバレッジエリアの一部又は全体を指す。
 本明細書においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」及び「端末」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本発明の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。
 同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。
 本明細書において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本明細書において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本明細書において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本明細書において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 本明細書において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」と読み替えられてもよい。
 本明細書において、2つの要素が接続される場合、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び/又は光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本明細書において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も同様に解釈されてもよい。
 本明細書又は請求の範囲において、「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されないということは明らかである。本発明は、請求の範囲の記載に基づいて定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とし、本発明に対して何ら制限的な意味をもたらさない。
 

Claims (6)

  1.  ビームを用いて通信する装置であって、
     他の装置のビームに関する情報を受信する受信部と、
     所定の情報の有無に基づいて、自律的に送信ビームを決定するか否かを判断する制御部と、を有することを特徴とする装置。
  2.  前記所定の情報は、前記他の装置のビームに関する情報であり、
     前記制御部は、前記他の装置のビームに関する情報を受信した場合、自律的に送信ビームを決定すると判断することを特徴とする請求項1に記載の装置。
  3.  前記所定の情報は、前記他の装置のビームに関する情報であり、
     前記制御部は、前記他の装置のビームに関する情報を受信しない場合、自律的に送信ビームを決定しないと判断することを特徴とする請求項1又は請求項2に記載の装置。
  4.  前記制御部は、前記所定の情報の有無を、下り制御情報(DCI:Downlink Control Information)フォーマットによって判断することを特徴とする請求項1から請求項3のいずれかに記載の装置。
  5.  前記所定の情報は、自律的に送信ビームを決定するか否かを指示する情報であり、
     前記制御部は、前記他の装置のビームに関する情報を受信しなくても、前記所定の情報の有無に基づいて、自律的に送信ビームを決定するか否かを判断することを特徴とする請求項1に記載の装置。
  6.  ビームを用いて通信する装置の無線通信方法であって、
     他の装置のビームに関する情報を受信する工程と、
     所定の情報の有無に基づいて、自律的に送信ビームを決定するか否かを判断する工程と、を有することを特徴とする無線通信方法。
     
PCT/JP2017/018118 2017-05-12 2017-05-12 装置及び無線通信方法 WO2018207373A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/612,644 US11012127B2 (en) 2017-05-12 2017-05-12 Apparatus and radio communication method
PCT/JP2017/018118 WO2018207373A1 (ja) 2017-05-12 2017-05-12 装置及び無線通信方法
JP2019516871A JPWO2018207373A1 (ja) 2017-05-12 2017-05-12 装置及び無線通信方法
JP2021113256A JP7171839B2 (ja) 2017-05-12 2021-07-08 端末、無線通信方法、基地局及びシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/018118 WO2018207373A1 (ja) 2017-05-12 2017-05-12 装置及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2018207373A1 true WO2018207373A1 (ja) 2018-11-15

Family

ID=64105508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018118 WO2018207373A1 (ja) 2017-05-12 2017-05-12 装置及び無線通信方法

Country Status (3)

Country Link
US (1) US11012127B2 (ja)
JP (2) JPWO2018207373A1 (ja)
WO (1) WO2018207373A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220406505A1 (en) * 2019-11-27 2022-12-22 Lg Display Co., Ltd. Mounting jig for manufacturing tiling display device, and tiling display device and manufacturing method therefor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019028834A1 (en) * 2017-08-11 2019-02-14 Qualcomm Incorporated SIGNALING OF TRANSMISSION RANK AND PRECODER IN NON-UPLINK CODE TRANSMISSION
CN108833061B (zh) * 2018-04-12 2022-02-18 中兴通讯股份有限公司 一种信道状态信息报告方法、装置、接收方法和装置
CN114845413A (zh) * 2018-05-25 2022-08-02 成都华为技术有限公司 通信方法、终端设备和网络设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102664663B (zh) * 2007-07-05 2015-04-08 松下电器(美国)知识产权公司 无线通信装置、无线通信系统以及无线通信方法
US8014265B2 (en) * 2007-08-15 2011-09-06 Qualcomm Incorporated Eigen-beamforming for wireless communication systems
US8711716B2 (en) * 2009-06-19 2014-04-29 Texas Instruments Incorporated Multiple CQI feedback for cellular networks
CN106256144B (zh) * 2014-04-30 2022-02-11 株式会社Ntt都科摩 用户装置、基站、通信接入方法以及通信方法
US9722726B2 (en) * 2015-03-28 2017-08-01 Intel IP Corporation Reciprocity detection and utilization techniques for beamforming training
TW201728207A (zh) * 2015-11-10 2017-08-01 Idac控股公司 波束成形系統下行控制頻道設計及傳訊
US10159087B2 (en) * 2015-12-11 2018-12-18 Qualcomm Incorporated Channel state information framework for advanced receivers
US10069555B2 (en) * 2016-04-13 2018-09-04 Qualcomm Incorporated System and method for beam management
US10142073B2 (en) * 2016-08-05 2018-11-27 Panasonic Corporation Terminal apparatus, radio communication system and communication method
US11621747B2 (en) * 2016-10-28 2023-04-04 Qualcomm Incorporated Receiver beamforming for measurements
US20180241452A1 (en) * 2017-02-23 2018-08-23 Qualcomm Incorporated Beam sweeping for control and data transmissions
DE102018121493A1 (de) * 2018-09-04 2020-03-05 Scheidt & Bachmann Gmbh Kontrollverfahren

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Beam determination for non- codebook based transmission for uplink", 3GPP TSG RAN WG1 MEETING#89 RL-1708450, 6 May 2017 (2017-05-06), XP051262457, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg-ran/WG1-RL1/TSGR1-89/Docs/R1-1708450.zip> *
"RAN WG's progress on NR technology SI in the August meeting", 3GPP TSG-RAN WG2#95BIS R2- 166079, October 2016 (2016-10-01), pages 9, XP051162040, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_95bis/Docs/R2-166079.zip> *
SAMSUNG: "CSI acquisition for UL NR MIMO", 3GPP TSG-RAN WG1#86B RL-1609088, 14 October 2016 (2016-10-14), XP051149139, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_86b/Docs/Rl-1609088.zip> *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220406505A1 (en) * 2019-11-27 2022-12-22 Lg Display Co., Ltd. Mounting jig for manufacturing tiling display device, and tiling display device and manufacturing method therefor

Also Published As

Publication number Publication date
US11012127B2 (en) 2021-05-18
JP2021177643A (ja) 2021-11-11
US20200099422A1 (en) 2020-03-26
JP7171839B2 (ja) 2022-11-15
JPWO2018207373A1 (ja) 2020-03-12

Similar Documents

Publication Publication Date Title
EP3541112B1 (en) User terminal and wireless communication method
CN110679197B (zh) 用户终端以及无线通信方法
WO2018043560A1 (ja) ユーザ端末及び無線通信方法
WO2018173163A1 (ja) ユーザ端末及び無線通信方法
WO2018025908A1 (ja) ユーザ端末及び無線通信方法
WO2019215888A1 (ja) ユーザ端末及び無線通信方法
WO2018143390A1 (ja) ユーザ端末及び無線通信方法
WO2019138499A1 (ja) ユーザ端末及び無線通信方法
WO2018128187A1 (ja) ユーザ端末及び無線通信方法
JP7007289B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2018167958A1 (ja) ユーザ端末及び無線通信方法
WO2018203378A1 (ja) ユーザ端末及び無線通信方法
WO2018167935A1 (ja) ユーザ端末及び無線通信方法
JPWO2018147346A1 (ja) ユーザ端末及び無線通信方法
WO2018198342A1 (ja) ユーザ端末及び無線通信方法
WO2018084135A1 (ja) 装置及び無線通信方法
WO2019111862A1 (ja) ユーザ端末及び無線通信方法
JP7171839B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7351829B2 (ja) 端末及び無線通信方法
WO2018143397A1 (ja) ユーザ端末及び無線通信方法
JP7264915B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2018167959A1 (ja) ユーザ端末及び無線通信方法
WO2019193735A1 (ja) ユーザ端末及び無線基地局
CN112868209B (zh) 用户终端以及无线通信方法
WO2020035949A1 (ja) ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908789

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019516871

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17908789

Country of ref document: EP

Kind code of ref document: A1