WO2023130379A1 - 发送设备、接收设备和接收方法 - Google Patents

发送设备、接收设备和接收方法 Download PDF

Info

Publication number
WO2023130379A1
WO2023130379A1 PCT/CN2022/070808 CN2022070808W WO2023130379A1 WO 2023130379 A1 WO2023130379 A1 WO 2023130379A1 CN 2022070808 W CN2022070808 W CN 2022070808W WO 2023130379 A1 WO2023130379 A1 WO 2023130379A1
Authority
WO
WIPO (PCT)
Prior art keywords
modulation
information
order
pseudo
spiral
Prior art date
Application number
PCT/CN2022/070808
Other languages
English (en)
French (fr)
Inventor
闫晓睿
叶能
李祥明
刘文佳
侯晓林
陈岚
王静
岸山祥久
浅井孝浩
Original Assignee
株式会社Ntt都科摩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ntt都科摩 filed Critical 株式会社Ntt都科摩
Priority to PCT/CN2022/070808 priority Critical patent/WO2023130379A1/zh
Publication of WO2023130379A1 publication Critical patent/WO2023130379A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits

Definitions

  • the present disclosure relates to the field of wireless communication, and more particularly relates to a modulation method and a corresponding sending device and receiving device.
  • QAM which is widely used in the 3rd Generation Partnership Project (3GPP) standard, has been used in various broadband wireless communication systems such as LTE, HSPA, 802.11n, and 5G.
  • 3GPP 3rd Generation Partnership Project
  • QAM by combining amplitude and phase parameters, the entire signal plane is fully utilized, and all vector endpoints are redistributed reasonably. Therefore, without reducing the minimum Euclidean distance of the endpoint position, the number of endpoints of the signal vector is increased, and the anti-interference ability and spectrum utilization rate of the system are improved.
  • QAM has poor robustness against phase noise, which causes the phase noise generated by the RF oscillator to have a significant negative impact on system transmission.
  • phase noise can generally be divided into system phase noise and non-system phase noise.
  • Systematic phase noise may include, for example, phase noise related to frequency processing equipment
  • non-system phase noise may include, for example, phase noise related to operating environments, channel conditions, mobility, and the like.
  • some anti-phase noise techniques are usually selected in the modulation process performed at the transmitting end or in the detection, estimation and demodulation processes performed at the receiving end.
  • the existing anti-phase noise schemes mainly include: anti-phase noise based on neural network, modification or optimization of the modulation module at the sending end, suppression and compensation of phase noise by the carrier recovery module at the receiving end, and soft demodulation at the receiving end. Estimation and compensation of phase noise interference.
  • spiral (Spiral) structure constellation modulation (hereinafter also referred to as “spiral modulation” or “spiral constellation modulation”) is considered to have a significant performance against phase noise.
  • spiral modulation spiral structure constellation modulation
  • helical modulation is effective against phase noise, the current helical modulation is not adopted by standards such as 5G.
  • helical modulation is not compatible with modulation schemes such as QAM for high spectral efficiency.
  • electronic equipment may require different transceiver structures for different modulation methods, making hardware design complex.
  • a sending device including: a receiving unit configured to obtain a bit sequence to be sent; a control unit configured to perform pseudo-N on the bit sequence to be sent according to information about phase noise Order first type modulation, wherein the 2 ⁇ N first symbols of pseudo-N order first type modulation correspond to a part of the second symbols in the M order second type modulation of 2 ⁇ M second symbols, where M and N are positive integer.
  • control unit of the sending device performs pseudo-N-order first type modulation on the bit sequence to be sent according to the bit-to-symbol mapping table.
  • bit-to-symbol mapping is performed in units of N first bits according to pseudo-N-order first-type modulation; bit-to-symbol mapping is performed in units of M second bits according to M-order second-type modulation.
  • Symbol mapping where M is greater than N and is a positive integer.
  • the pseudo-Nth-order first type modulation is a pseudo-N-order helical modulation.
  • the 2 ⁇ N first symbols of the pseudo-N-order first type modulation are determined based on the 2 ⁇ M second symbols according to at least one of an amplitude weighting parameter and a phase weighting parameter.
  • symbols in the Nth-order first-type modulation corresponding to the pseudo-N-order first-type modulation are determined according to the spiral factor, and the spiral factor is determined according to the number of symbols in the outermost layer of the spiral.
  • a receiving device including: a receiving unit configured to obtain symbols after pseudo-N-order first-type modulation; and a control unit configured to pair The symbols are demodulated to obtain the received bit sequence, where N is a positive integer.
  • control unit of the receiving device demodulates symbols according to a bit-to-symbol mapping table.
  • a modulation method including: obtaining a bit sequence to be transmitted; performing pseudo-N-order first type modulation on the bit sequence to be transmitted according to information about phase noise, wherein the pseudo-N-order The 2 ⁇ N first symbols of the first-type modulation correspond to a part of the second symbols of the 2 ⁇ M second symbols of the M-order second-type modulation, where M and N are positive integers.
  • performing pseudo-N-order first type modulation on the bit sequence to be transmitted is based on a bit-to-symbol mapping table.
  • a sending device including: a control unit configured to determine a modulation and coding strategy MCS index according to information about phase noise; a sending unit configured to send information about the MCS index.
  • control unit of the transmitting device determines one of the plurality of MCS tables based on the information on phase noise, and determines the MCS index from the determined MCS table.
  • control unit of the transmitting device determines the MCS index from the determined MCS table according to the information on the phase noise.
  • the determined MCS table includes a modulation that is robust to phase noise.
  • the determined MCS table further includes a second type of modulation different from the modulation that is immune to phase noise.
  • the modulation capable of resisting phase noise is a pseudo-helical modulation based on the second type of modulation.
  • the sending unit of the sending device is further configured to send information about an MCS table identifier, wherein the MCS table identifier indicates whether the determined MCS table includes modulation capable of resisting phase noise.
  • the sending device further includes a receiving unit configured to receive information about the MCS table identifier, and the control unit of the sending device is further configured to An MCS table is determined, and an MCS index is determined from the determined MCS table.
  • the sending unit of the sending device may be further configured to send information about a demodulation mode identifier, wherein the demodulation mode identifier indicates that the bit-to-symbol mapping table used by the receiving device is the same as or different from that used by the sending device .
  • a receiving device including: a receiving unit configured to receive information about a modulation and coding strategy (MCS) index; a control unit configured to, according to the received information about an MCS index, A corresponding MCS table is determined for demodulation, wherein the MCS table includes modulation capable of resisting phase noise.
  • MCS modulation and coding strategy
  • a receiving device includes: a receiving unit configured to receive information about a modulation parameter indicating a spiral factor; a control unit configured to determine a pseudo-N-order first type modulation according to the modulation parameter, wherein the pseudo-N-order first The 2 ⁇ N first symbols of the type modulation correspond to a part of the second symbols of the 2 ⁇ M second symbols of the M-order second type modulation, and M and N are positive integers.
  • the modulation parameter further indicates at least one of an amplitude weighting parameter and a phase weighting parameter.
  • the modulation parameter further indicates at least one of M and N.
  • the information about the modulation parameters directly includes information about the spiral factor, and the control unit determines the pseudo-N order first type modulation according to the information about the spiral factor.
  • the information about the modulation parameter includes information about the index of the modulation parameter table, the control unit determines the spiral factor in the modulation parameter table according to the information about the index of the modulation parameter table, and according to the determined spiral factor A pseudo-Nth order first type modulation is determined.
  • the receiving device may further include a sending unit.
  • the sending unit may be configured to send information about modulation schemes supported by the receiving device to the sending device.
  • the information about the modulation scheme supported by the receiving device indicates at least one of the M-order second type modulation and the pseudo-N-order first type modulation supported by the receiving device.
  • a sending device includes: a control unit configured to determine information on a modulation parameter indicating a spiral factor from the information on phase noise; and a transmitting unit configured to transmit the determined information on the modulation parameter.
  • the sending device may further include a receiving unit configured to receive information about modulation schemes supported by the receiving device, wherein the control unit is further configured to, according to the information about the receiving device The information of the supported modulation mode determines whether to use the pseudo-N-order first type modulation.
  • a receiving method including: receiving information about a modulation parameter indicating a spiral factor; determining a pseudo-N-order first type modulation according to the modulation parameter, wherein the pseudo-N-order first type modulation
  • the 2 ⁇ N first symbols correspond to some of the 2 ⁇ M second symbols of the M-order second type modulation, and M and N are positive integers.
  • Fig. 1 shows a schematic diagram of a constellation diagram of a helical modulation in the presence of phase noise.
  • Figure 2A shows the symbol values after 16QAM bit-to-symbol mapping.
  • Figure 2B shows the symbol values after 16-spiral modulation bit-to-symbol mapping.
  • Fig. 3 shows a schematic block diagram of a sending device according to an embodiment of the present disclosure.
  • FIG. 4A shows a constellation diagram for 1024QAM-based pseudo-16 helical modulation with a phase variance size of 0.04 according to one embodiment of the present disclosure.
  • FIG. 4B shows a constellation diagram for 1024QAM-based pseudo-64 helical modulation with a phase variance size of 0.01 according to an embodiment of the present disclosure.
  • FIG. 4C shows a constellation diagram for 1024QAM-based pseudo-64 helical modulation with a phase variance size of 0.04 according to one embodiment of the present disclosure.
  • 5A-1 and 5A-2 show bit-to-symbol mapping tables for the pseudo-16 helical modulation of FIG. 4A.
  • 5B to 5F illustrate examples of pseudo-Nth-order spiral modulation bit-to-symbol mapping tables for different phase noises according to embodiments of the present disclosure.
  • Fig. 6 shows a schematic block diagram of a receiving device corresponding to the sending device in Fig. 3 according to an embodiment of the present disclosure.
  • Fig. 7 shows a schematic block diagram of a sending device according to an embodiment of the present disclosure.
  • 8A-8E illustrate an example of a new MCS table according to an embodiment of the present disclosure.
  • 9A-9E illustrate an example of a new MCS table according to yet another embodiment of the present disclosure.
  • 10A-10C illustrate an example of a new MCS table according to another embodiment of the present disclosure.
  • FIG. 11 is a schematic block diagram illustrating a receiving device corresponding to the transmitting device of FIG. 7 according to one embodiment of the present disclosure.
  • Fig. 12 shows a schematic block diagram of a sending device according to an embodiment of the present disclosure.
  • Fig. 13 shows a schematic block diagram of a receiving device corresponding to the sending device in Fig. 12 according to an embodiment of the present disclosure.
  • FIG. 14A shows a schematic diagram of a preset modulation parameter table according to an embodiment of the present disclosure.
  • Fig. 14B shows a schematic diagram of a preset modulation parameter table according to another embodiment of the present disclosure.
  • FIG. 15 shows a modulation method corresponding to the sending device in FIG. 3 according to an embodiment of the present disclosure.
  • FIG. 16 shows a demodulation method corresponding to the receiving device of FIG. 6 according to one embodiment of the present disclosure.
  • FIG. 17 shows a sending method corresponding to the sending device in FIG. 7 according to an embodiment of the present disclosure.
  • FIG. 18 illustrates a receiving method corresponding to the receiving device of FIG. 11 according to one embodiment of the present disclosure.
  • FIG. 19 shows a sending method corresponding to the sending device in FIG. 12 according to an embodiment of the present disclosure
  • FIG. 20 illustrates a receiving method corresponding to the receiving device of FIG. 13 according to one embodiment of the present disclosure.
  • FIG. 21 shows a schematic diagram of a hardware structure of a device involved according to an embodiment of the present disclosure.
  • the sending device may be a base station or terminal in the communication system; correspondingly, the receiving device may be a base station or terminal in the communication system relative to the sending device.
  • a base station as described herein may provide communication coverage for a particular geographic area, which may be referred to as a cell, Node B, gNB, 5G Node B, access point, and/or transceiver point, among others.
  • the terminals described here may include various types of terminals, such as user equipment (User Equipment, UE), mobile terminals (or called mobile stations) or fixed terminals, however, for convenience, sometimes interchangeably hereinafter Use terminal and UE.
  • the receiving device when the sending device is a base station, the receiving device may be a UE, a mobile terminal (or called a mobile station) or a fixed terminal. Conversely, when the sending device is a terminal, the receiving device may be a base station.
  • each of the transmitting device and the receiving device may include a transmitting unit, a control unit, and a receiving unit. However, it should be understood that the sending device and the receiving device may also include other units.
  • QAM which is widely used in the 3rd Generation Partnership Project (3GPP) standard, has been used in various broadband wireless communication systems such as LTE, HSPA, 802.11n, and 5G.
  • 3GPP 3rd Generation Partnership Project
  • QAM by combining amplitude and phase parameters, the entire signal plane is fully utilized, and all vector endpoints are redistributed reasonably. Therefore, without reducing the minimum Euclidean distance of the endpoint position, the number of endpoints of the signal vector is increased, and the anti-interference ability and spectrum utilization rate of the system are improved.
  • QAM has poor robustness against phase noise, which causes the phase noise generated by the RF oscillator to have a significant negative impact on system transmission.
  • Fig. 1 schematically shows a constellation diagram of helical modulation.
  • the phase noise since the phase noise has a greater impact on the constellation points with larger outer amplitudes, as shown in Figure 1, the density of constellation points near the origin of the spirally modulated constellation is high, while the density of outer constellation points is low.
  • Helical modulation is therefore effective against phase noise.
  • helical modulation is effective against phase noise
  • the current helical constellation modulation is not adopted by standards such as 5G.
  • helical modulation differs from constellation modulation schemes such as QAM for high spectral efficiency.
  • electronic equipment may require different transceiver structures for different modulation methods, making hardware design complex.
  • FIG. 2A shows the symbol values after 16QAM bit-to-symbol mapping.
  • Figure 2B shows the symbol values after 16-spiral modulation bit-to-symbol mapping.
  • the value of the symbol after 16QAM bit-to-symbol mapping is different from the value of the symbol after 16-spiral modulation bit-to-symbol mapping, in other words, QAM and
  • the symbols obtained by helical modulation are different.
  • the value of a symbol after modulation bit-to-symbol mapping can be divided into three parts, including a power normalization factor, a real part (I) and an imaginary part (Q).
  • the value of the part is 1, both of which are integers; and the value of the real part or the imaginary part of the value of the symbol after the 16 spiral modulation bits are mapped to the symbol is not an integer, for example, in Figure 2B
  • the value of the real part is 5.1921, and the value of the imaginary part is 4.7272, obviously neither of them is an integer. Therefore, the 16QAM shown in FIG. 2A is not compatible with the 16-spiral modulation shown in FIG. 2B.
  • Fig. 3 is a schematic block diagram illustrating a sending device 300 according to an embodiment of the present disclosure.
  • a sending device 300 may include a receiving unit 310 and a control unit 320 .
  • the sending device 300 may also include other components, however, since these components are irrelevant to the content of the embodiments of the present disclosure, illustration and description thereof are omitted here.
  • the receiving unit 310 of the sending device 300 can obtain the bit sequence to be sent. Then, the control unit 320 may perform pseudo-N-order first type modulation on the bit sequence to be transmitted according to the information about the phase noise.
  • the sending device 300 is a base station, and the receiving unit 310 can obtain the bit sequence to be sent.
  • the control unit 320 may perform pseudo-N-order first type modulation on the bit sequence to be transmitted according to the information about the phase noise, so as to obtain the first symbol to be transmitted to the UE connected to the base station.
  • the information about the phase noise may include: information about the phase noise itself, information about the variance of the phase noise, or any other information that can characterize the phase noise.
  • the pseudo-N order first type modulation performed by the control unit 320 on the bit sequence to be transmitted may be different.
  • the symbols obtained by the control unit 320 after performing the pseudo-N-order first type modulation on the bit sequence to be transmitted based on different phase noise information may be different. This is further described in FIGS. 4A-4C , which may be referred to below.
  • the 2 ⁇ N first symbols of the pseudo-N-order first type modulation correspond to some of the 2 ⁇ M second symbols of the M-order second type modulation, where M and N is a positive integer.
  • the symbols obtained by using the N-order first-type modulation may be simulated by using a part of the 2 ⁇ M second symbols that can be obtained by using the M-order second-type modulation.
  • N-order first type modulation performed in an analog manner may be called pseudo-N-order first type modulation, N-order first type modulation based on M-order second type modulation, 2 ⁇ N first type modulation_2 ⁇ M second type modulation or N order first type modulation-M order second type modulation.
  • the first type of modulation and the second type of modulation may be different modulation methods.
  • the first type of modulation may be a modulation method that is not used in existing standards such as 3GPP, 802.11n, etc.
  • the second type of modulation is a modulation method that is not used in existing standards such as 3GPP, 802.11n, etc.
  • the modulation method used in the standard Therefore, according to the solutions in the embodiments of the present disclosure, it is possible to provide modulation methods and corresponding electronic devices that meet different requirements and are compatible with modulation modes in existing communication standards.
  • the first type of modulation may be a modulation method with anti-phase noise (hereinafter also referred to as "phase noise") performance
  • the second type of modulation is a modulation method with high spectral efficiency.
  • the first type of modulation may be helical modulation and the second type of modulation may be QAM, in which case it may be called pseudo-helical modulation, or QAM-based helical modulation.
  • the N-order first-type modulation is 16-helical modulation
  • the M-order second-type modulation is 1024QAM
  • it can be called pseudo-16-helical modulation or 1024QAM-based 16-helical modulation, or it can be simply called , for example, 16-helix modulation_1024QAM or 16-helix-1024QAM.
  • the symbols obtained by using the N-order helical modulation method can be simulated by using a part of the 2 ⁇ M second symbols that can be obtained by using the M-order QAM.
  • Such pseudo-N-order helical modulation maintains the anti-phase noise performance of helical modulation, while maintaining the high spectral efficiency of QAM, and the pseudo-N-order helical modulation is also compatible with existing 5G standards.
  • the constellation diagram of the Nth-order spiral modulation can be determined according to the symbol number M out of the outermost layer of the spiral and the spiral factor f s .
  • the spiral factor f s may be determined first according to the symbol number M out of the outermost layer of the spiral, and then the constellation diagram of the N-order spiral modulation is determined according to the determined spiral factor f s .
  • the value of the spiral factor f s can be determined according to the symbol number M out of the outermost layer of the spiral by the following formula (1):
  • the constellation diagram of the Nth order helical modulation can then be determined.
  • the parameter t n that can be used in the Archimedes spiral formula can be obtained by the following formula (2):
  • the shape of the spiral constellation diagram can be further determined by the following formula (3) according to the Archimedes spiral formula:
  • n is the index of the spiral constellation point
  • N is the order of the spiral constellation
  • c n represents the N-order spiral constellation points placed along the Archimedes spiral.
  • the order N of the spiral constellation may be predetermined, replaceable, or determined according to the channel environment. Then, the constellation diagram of the Nth-order helical modulation is obtained by the normalized average power being 1.
  • the Nth-order spiral constellation points can be determined by the above formulas (1)-(3).
  • a set of candidate spiral factor f s values can be firstly obtained based on a set of symbol numbers M out of the outermost layer of the spiral. Then, based on the group of candidate spiral factor f s values and the above formula (2) and formula (3), the corresponding c n set is obtained. Then find out the c n with the best performance in the current situation from the set of c n , that is, obtain the constellation diagram of the best N-order helical modulation against the current phase noise.
  • the value of the helical factor f s corresponding to the best N-order helical modulation is the best helical factor f s value. It should be understood that the optimal spiral factor value is obtained by performing a refined search around candidate spiral factors, and may be the same as or different from the f s value in the candidate set.
  • the value of the candidate spiral factor f s obtained based on the above formula (1) can belong to the set [3.46 2.77 2.27 1.89 1.60 1.37 1.19 1.04] ⁇ 10 -3 .
  • the spiral factor f s value corresponding to the best N-th order spiral modulation constellation diagram can be determined as the best spiral factor f s value among the candidate spiral factor f s values and its vicinity.
  • the method for generating the constellation diagram of the N-order helical modulation described here is only used as an example method. According to the embodiment of the present disclosure, the constellation diagram of the Nth-order helical modulation generated by other methods may also be used.
  • a part of the constellation points in the existing constellation diagram of the M-order second type modulation is used to simulate the determined constellation diagram of the N-order helical modulation, where M is greater than N.
  • the amplitude weighting parameter ⁇ and the phase weighting parameter ⁇ based on the 2 ⁇ M second symbols of the M-order second type modulation, the 2 ⁇ N-th symbols of the pseudo-N-order spiral modulation can be determined. a symbol.
  • the pseudo-N can be determined based on the 2 ⁇ M constellation points of the M-order second type modulation and according to at least one of the amplitude weighting parameter ⁇ and the phase weighting parameter ⁇ . 2 ⁇ N constellation points for order helical modulation.
  • the pseudo-N order can be determined according to at least one of the amplitude weighting parameter ⁇ and the phase weighting parameter ⁇ .
  • 2 ⁇ N constellation points of helical modulation ie, Nth order helical modulation - M order QAM.
  • each constellation point in the constellation diagram of the N-order helical modulation obtained above is compared with the M-order QAM constellation point, so as to select the N-order distance from the M-order QAM constellation point
  • Each constellation point of the helical modulation is radial to the constellation point with the smallest normal weighted distance to form the constellation point of the pseudo-N-order helical modulation, and the QAM constellation point is not repeatedly selected. That is, the sum of the weighted values of the magnitude difference and the phase difference of each selected constellation point is the smallest ⁇ ( ⁇ ) 2 + ⁇ ( ⁇ ) 2 , where ⁇ is the constellation point to the IQ coordinate system (that is, the symbol to The distance (i.e.
  • is the angle (i.e. the phase) between the constellation point and the positive direction of the I axis
  • the corresponding spiral constellation parameter f s and the weighting coefficients ⁇ and ⁇ of the point selection criterion can be determined for different phase noises.
  • the spiral constellation parameter f s and the weighting coefficients ⁇ and ⁇ of the point selection criterion also change, so that the pseudo-N-order spiral constellation determined according to the above method achieves better anti-phase noise performance.
  • the above-mentioned method of determining the pseudo-N-order spiral constellation based on parameters such as weighting coefficients ⁇ , ⁇ , and ⁇ is relatively complicated.
  • the 2 ⁇ N first symbols of the pseudo-N-order helical modulation may be determined based on the 2 ⁇ M second symbols according to the Euclidean distance criterion. For example, using an exhaustive search method, each constellation point in the constellation diagram of the N-order spiral modulation obtained above is compared with the M-order QAM constellation point, so as to select the N-order QAM constellation point obtained above from the M-order QAM constellation point. The point with the smallest Euclidean distance of each constellation point in the constellation diagram of the first-order spiral modulation constitutes the constellation point of the pseudo-N-order spiral modulation, and the QAM constellation points are not repeatedly selected.
  • 4A-4C show constellation diagrams of pseudo-spiral modulation based on 1024QAM constellation diagrams for specific phase noises according to embodiments of the present disclosure.
  • FIG. 4A shows a constellation diagram of 1024QAM-based pseudo-16 helical modulation for a phase noise variance size of 0.04 according to an embodiment of the present disclosure.
  • the black “ ⁇ ” shows the constellation points obtained by bit-to-symbol mapping for the pseudo-16 helical modulation with a phase noise variance size of 0.04.
  • These constellation points are obtained from the constellation points obtained by performing bit-to-symbol mapping according to 1024QAM, based on the above-mentioned method, and selecting points satisfying predetermined conditions.
  • the optimal spiral factor f s value can be determined to be 0.00794, and thus the constellation diagram of 16 spiral modulation can be obtained.
  • FIG. 4B shows a constellation diagram of 1024QAM-based pseudo-64 spiral modulation for a phase noise variance size of 0.01 according to an embodiment of the present disclosure.
  • the constellation points in this constellation diagram are the constellation diagram with the optimal spiral factor f s value of 0.00352 and its corresponding 64 spiral modulation determined under the condition that the variance of the phase noise is 0.01, and then weighted based on the point selection criterion
  • 4C shows a constellation diagram of pseudo-64 helical modulation based on 1024QAM when the phase noise variance is 0.04 according to an embodiment of the present disclosure, wherein the constellation points in the constellation diagram are when the phase noise variance is 0.04.
  • the specific manner of forming the pseudo-64 helical modulation constellation shown in FIG. 4B and FIG. 4C is similar to the above description of the pseudo 16 helical modulation constellation shown in FIG. 4A , and will not be repeated here.
  • the constellation diagram for pseudo-64 spiral modulation with a phase noise variance of 0.01 is the same as the constellation diagram for a pseudo-64 spiral modulation with a phase noise variance of 0.04 (as Figure 4C) are different. That is, the helical modulations of the same modulation order are different for different phase noises.
  • the helical modulations of different modulation orders for different phase noises are obviously different.
  • the use of N-order first-type modulation i.e. , helical modulation
  • the pseudo-helical modulation obtained by the symbols that can be obtained not only ensures compatibility, but also retains the ability of helical modulation to effectively resist phase noise.
  • the pseudo-helical modulation according to the embodiments of the present disclosure achieves an advantage against phase noise while ensuring compatibility.
  • the control unit 320 of the sending device 300 can perform pseudo-N-order first type modulation on the bit sequence to be sent according to the bit-to-symbol mapping table.
  • the 2 ⁇ N first symbols of the pseudo-N-order first type modulation correspond to some of the 2 ⁇ M second symbols of the M-order second type modulation. Therefore, based on the M-order second
  • the bit-to-symbol mapping table of the type modulation determines the bit-to-symbol mapping table of the pseudo-N-order first type modulation, and the determined bit-to-symbol mapping table of the pseudo-N-order first type modulation can be stored in advance for the pseudo-N-order first Type modulation.
  • bit-to-symbol mapping when performing pseudo-N-order first-type modulation, bit-to-symbol mapping may be performed in units of N first bits; and when performing bit-to-symbol mapping based on M-order second-type modulation, Bit-to-symbol mapping may be performed in units of M second bits, where N and M are positive integers and M is greater than N. Further, the symbols obtained by performing pseudo-N-order first-type modulation bit-to-symbol mapping in units of N first bits can be compared with the symbols obtained by performing M-order second-type modulation bit-to-symbol mapping in units of M second bits symbols are the same.
  • Figure 5A-1 shows a bit-to-symbol mapping table for pseudo-16 helical modulation with a phase noise variance of 0.04.
  • Figure 5A-2 further shows the correspondence between the symbols in the bit-to-symbol mapping table of the pseudo-16 spiral modulation in Figure 5A-1 and a part of the symbols in the 1024QAM bit-to-symbol mapping table in the 5G NR standard of 3GPP . As described above in conjunction with FIG.
  • the 16 constellation points in the constellation diagram of the pseudo-16 spiral modulation with a phase noise variance of 0.04 are all selected from the constellation points of the 1024QAM constellation diagram, that is, the pseudo-16 spiral modulation
  • the 16 constellation points in the constellation diagram correspond to a part of the 1024 constellation points in the 1024QAM constellation diagram. Therefore, the bit-to-symbol mapping table of pseudo-16 spiral modulation can be determined according to the bit-to-symbol mapping table of 1024QAM, that is, the bit-to-symbol mapping table shown in FIG. Symbol mapping.
  • bit-to-symbol mapping when performing pseudo-16 helical modulation, bit-to-symbol mapping can be performed in units of 4 first bits; while in 1024QAM, bit-to-symbol mapping can be performed in units of 10 second bits map.
  • bit-to-symbol mapping table for pseudo-16 helical modulation with a phase noise variance of 0.04 when determining the bit-to-symbol mapping table for pseudo-16 helical modulation with a phase noise variance of 0.04, if the symbol The corresponding constellation point in the constellation diagram of 1024QAM is selected as a constellation point in the constellation diagram of pseudo-16 spiral modulation, and the symbol obtained by mapping bit 1001010101 using the bit-to-symbol mapping table of 1024QAM will be included in the bit-to-symbol mapping table for pseudo-16 spiral modulation, and bit-to-symbol mapping can be performed in units of 4 bits when pseudo-16 spiral modulation is performed.
  • all 16 symbols in the bit-to-symbol mapping table of the pseudo-16-spiral modulation can be determined according to a part of the symbols in the bit-to-symbol mapping table of 1024QAM, and these symbols can be divided into 4 according to the pseudo-16-spiral modulation It can be obtained by performing bit-to-symbol mapping in units of bits, or can be obtained by performing bit-to-symbol mapping in units of 10 bits according to pseudo-1024QAM modulation, as shown in FIG. 5A-2 . For example, as shown in FIG.
  • pseudo-16 helical modulation bit-to-symbol mapping with 0011 results in the same symbols as 1024QAM bit-to-symbol mapping with 1011001111.
  • the power normalization factor in 1024QAM is obtained for 1024 constellation points
  • the power normalization factor for pseudo-16 helical modulation is obtained for 16 constellation points
  • the power normalization factors of the symbols obtained by the bit-to-symbol mapping of the pseudo-16 spiral modulation and the symbols obtained by the 1024QAM bit-to-symbol mapping may be different, but there is a corresponding relationship between the values before the power normalization of the two , that is, there is a corresponding relationship between the values of I (amplitude) and Q (phase). Therefore, the pseudo-helical modulation according to the embodiments of the present disclosure has compatibility with existing QAM while achieving anti-phase noise.
  • the bit-to-symbol mapping table of pseudo-16-spiral modulation may be generated based on preset conditions.
  • a bit-to-symbol mapping table for pseudo-16 spiral modulation can be generated based on Gray mapping, that is, two constellation points corresponding to two symbols obtained by mapping two bit sequences with a difference of 1 in the bit-to-symbol mapping table are in The helical lines in the pseudo-helical modulation constellation diagram are adjacent (or from the perspective of phase noise, the distance between the two constellation points is the closest), thereby determining the bit-to-symbol mapping table of the pseudo-16 helical modulation as shown in FIG.
  • the values of the real part and the imaginary part of the value of the symbol after the pseudo-16-spiral modulation bit-to-symbol mapping shown in Fig. 5A-1 are both is an integer (e.g., the symbol The value of the real part of is 1, the value of the imaginary part is 15, both of which are integers), it can also be seen that the pseudo spiral modulation obtained according to the embodiments of the present disclosure can be compared with the modulation in the existing communication standard (for example, QAM) mode compatible.
  • the existing communication standard for example, QAM
  • the corresponding relationship between the constellation points of the pseudo-16 helical modulation and a part of the constellation points of 1024QAM is determined from the bits of 1024QAM to a part of symbols in the symbol mapping table.
  • the corresponding relationship between the constellation points of the pseudo-16 helical modulation and a part of the constellation points of 1024QAM is determined from the bits of 1024QAM to a part of symbols in the symbol mapping table.
  • the corresponding relationship between the constellation points of the pseudo-64 helical modulation and a part of the constellation points of 1024QAM is determined from the bits of 1024QAM to a part of symbols in the symbol mapping table.
  • the corresponding relationship between the constellation points of the pseudo-64 helical modulation and a part of the constellation points of 1024QAM is determined from the bits of 1024QAM to a part of symbols in the symbol mapping table.
  • the corresponding relationship between the constellation points of the pseudo-64 helical modulation and a part of the constellation points of 1024QAM is determined from the bits of 1024QAM to a part of symbols in the symbol mapping table.
  • the formation of these bit-to-symbol mapping tables is similar to the above-mentioned descriptions of FIG. 5A-1 and FIG. 5A-2 , and will not be repeated here.
  • FIG. 6 is a schematic block diagram illustrating a receiving device 600 according to an embodiment of the present disclosure.
  • a receiving device 600 according to an embodiment of the present disclosure may include a receiving unit 610 and a control unit 620 .
  • the receiving unit 610 of the receiving device 600 can obtain symbols after pseudo-N-order first type modulation.
  • the receiving unit 610 may obtain symbols sent by the sending device 300 (for example, a base station) after undergoing pseudo-N-order first type modulation.
  • the 2 ⁇ N first symbols of the pseudo-N-order first type modulation and a part of the second symbols of the M-order second type modulation 2 ⁇ M second symbols correspondingly, where M and N are positive integers and M is greater than N.
  • the symbols obtained by using the N-order first-type modulation may be simulated by using a part of the 2 ⁇ M second symbols that can be obtained by using the M-order second-type modulation.
  • the control unit 620 of the receiving device 600 can demodulate the symbols according to the information about the phase noise to obtain a received bit sequence.
  • the information about the phase noise may include: information about the phase noise itself, information about the variance of the phase noise, or any other information that can characterize the phase noise.
  • the control unit 620 of the receiving device 600 may then demodulate the received symbols according to the bit-to-symbol mapping table.
  • the control unit 620 may demodulate the symbols according to the above bit-to-symbol mapping table for different phase noises, so as to obtain the received bit sequence.
  • the bit-to-symbol mapping table for different phase noises may be a pseudo-N-order first-type modulation bit-to-symbol mapping table determined based on the M-order second-type modulation bit-to-symbol mapping table, for example, FIG. 5A-1, Figures 5A-2, and the pseudo-spiral bit-to-symbol mapping tables shown in Figures 5B-5F.
  • the control unit 620 can demodulate according to the pseudo-N-order first type modulation to obtain a bit sequence in units of N first bits, or can also perform M-order second-type modulation Demodulation is performed to obtain a bit sequence in units of M second bits. For example, in some embodiments, if the receiving unit 620 of the receiving device 600 obtains symbols after pseudo-16 spiral modulation, its control unit 620 may perform demodulation according to pseudo-16 spiral modulation to obtain a bit sequence including 4 bits.
  • demodulation can be performed according to 1024QAM to obtain a bit sequence containing 10 bits, and then according to the correspondence between 10 bits and 4 bits, that is, the correspondence between 1024QAM and 16 spiral bits as shown in Figure 5A-2 Relationship, get the bit sequence of 4 bits sent as a unit.
  • the transmitting device may determine a modulation scheme according to the information on the phase noise, and transmit the information on the determined modulation scheme to the receiving device. Accordingly, the receiving device can determine the modulation scheme based on the information about the modulation scheme in order to perform demodulation.
  • an entry about pseudo-N-order first-type modulation may be added to the MCS table used in various current standards or an MCS table about pseudo-N-order first-type modulation may be added.
  • the transmitting device may determine a Modulation and Coding Strategy (MCS) index according to the information on the phase noise, and indicate the modulation scheme by transmitting the information on the MCS index to the receiving device.
  • MCS Modulation and Coding Strategy
  • the information about the MCS index may include information about the MCS index itself; if there are multiple MCS tables, it may also include information about a specific MCS table and MCS index. Therefore, the pseudo-N-order first type modulation scheme can be determined by a method similar to the current MCS determination.
  • the sending device may directly send modulation parameter information to the receiving device according to the information about the phase noise to indicate the modulation mode. Therefore, it is not necessary to modify the existing MCS table, and it is also possible to determine the first type of pseudo-N-order modulation.
  • Fig. 7 is a schematic block diagram of a sending device 700 according to another example of the present disclosure.
  • a sending device 700 may include a control unit 720 and a sending unit 730 .
  • the sending device 700 may also include other components, however, since these components are irrelevant to the content of the embodiments of the present disclosure, illustration and description thereof are omitted here.
  • the sending device 700 may be a base station or a terminal in a communication system.
  • the control unit 720 of the transmitting device 700 may determine a modulation and coding strategy (MCS) index according to information about phase noise. For example, in some embodiments, the control unit 720 of the sending device 700 may determine an MCS table from multiple MCS tables according to information about phase noise, and determine an MCS index from the determined MCS table. Then, the sending unit 730 of the sending device 700 may send information on the MCS index.
  • MCS modulation and coding strategy
  • the existing 5G NR standard contains 5 MCS tables that can be used for QAM with different requirements (for example, high spectral efficiency (SE), low peak-to-average ratio (PAPR), etc.), and three MCS tables can be used for physical downlink Modulation and coding of shared channel (PDSCH) transmission, while the other two MCS tables can be used for modulation and coding of physical uplink shared channel (PUSCH) transmission.
  • these MCS tables all lack modulation methods against phase noise.
  • the existing MCS tables are only suitable for QAM and do not include modulation capable of resisting phase noise.
  • some embodiments of the present disclosure further provide an MCS table including the aforementioned pseudo-spiral modulation schemes for different phase noises.
  • some modulation methods in the current MCS table can be replaced with a pseudo-spiral modulation method to generate a new MCS table with the same MCS index number as the existing 5G NR standard.
  • 8A-8E illustrate a new MCS table according to an embodiment of the present disclosure, wherein the new MCS table has the same MCS index number as the existing NR standard (ie, the MCS index number is 5 bits).
  • the N-order helical modulation-M-order QAM modulation method obtained based on the aforementioned method is used to replace part of the modulation method in the existing 5G NR standard.
  • a 16-spiral-1024QAM modulation scheme may be used to replace at least part of the 16QAM-related modulation schemes in the existing 5G NR standard.
  • the 64 spiral-1024QAM modulation method can be used to replace at least part of the modulation method related to 64QAM in the existing 5G NR standard; the 256 spiral-1024QAM modulation method can be used to replace the modulation method related to 256QAM in the existing 5G NR standard at least part of it.
  • the MCS table shown in Figure 8A uses 16 spiral-1024QAM modulation modes and 64 spiral-1024QAM modulation modes to replace some modulation modes in the existing MCS index table 1 for PDSCH, so that the obtained new
  • the MCS table contains a pseudo-16 spiral modulation method and a pseudo-64 spiral modulation method, so the new MCS table can provide a modulation method that is resistant to phase noise, that is, a pseudo-spiral modulation method, and the total number of modulation methods contained in the new MCS table obtained from this remains unchanged, so the MCS indication overhead also remains unchanged.
  • the same 16-spiral-1024QAM or 64-spiral-1024QAM is used for different code rates in the MCS index table in FIG.
  • the rate uses different 16 helix-1024QAM or 64 helix-1024QAM. For example, under different code rate conditions, the number of symbols in the outermost layer of the spiral in the constellation diagram of the pseudo-spiral modulation used may be different.
  • a pseudo-spiral modulation method can be added to the current MCS table to generate a new MCS table, and the generated new MCS table retains all existing modulation methods while adding an anti-phase noise modulation method.
  • the MCS indication overhead also increases accordingly.
  • 9A-9E illustrate a new MCS table according to an embodiment of the present disclosure, wherein the new MCS table has more MCS index numbers than the existing NR standard (ie, the MCS index number is greater than 5 bits).
  • the N-order helical modulation-M-order QAM modulation method obtained based on the above method is added to the MCS table used by the existing 5G NR standard.
  • 16-spiral-1024QAM modulation can be added, thereby increasing the number of MCS indexes related to 16QAM in the MCS table used by the existing 5G NR standard.
  • 64-spiral-1024QAM modulation can be added, so that the number of MCS indexes related to 64QAM in the MCS table used by the existing 5G NR standard can be increased;
  • 256-spiral-1024QAM modulation can be added, so that the existing 5G NR standard Increased number of MCS indexes related to 256QAM in the used MCS table.
  • FIG. 9A shows that a 16-spiral-1024QAM modulation mode and a 64-spiral-1024QAM modulation mode are added to the existing MCS index table 1 for PDSCH, and a new MCS table with an MCS index of 6 bits is formed. Therefore, the generated new MCS table not only includes the pseudo-spiral modulation mode and thus can be modulated against phase noise, but also retains all the modulation modes in the existing table.
  • a new MCS table may be generated using only a pseudo-spiral modulation method, or an existing anti-phase noise modulation method and a pseudo-spiral modulation method may be used together to generate a new MCS table.
  • Existing anti-phase noise modulations may include, for example, binary phase shift keying (BPSK) modulation, quadrature phase shift keying (QPSK) modulation, and the like.
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • 10A-10C show a new MCS table according to an embodiment of the present disclosure, where the new MCS table only includes modulation modes that can resist phase noise, including: spiral (Spiral) modulation, pseudo modulation obtained according to an embodiment of the present disclosure Spiral modulation, BPSK modulation, QPSK modulation, etc.
  • a new MCS table may be generated using only pseudo-spiral modulation modes with different modulation orders.
  • the MCS table of FIG. 10A the MCS table only includes 16-spiral-1024QAM modulation schemes and 64-spiral-1024QAM modulation schemes. Since the low-order modulation itself is not sensitive to phase noise, the present disclosure only uses the MCS table including the 16-spiral-1024QAM modulation mode and the 64-spiral-1024QAM modulation mode as an example, but not as a limitation.
  • the new MCS table may also include pseudo-spiral modulation modes of other modulation orders, for example, 256-spiral or pseudo-spiral modulation modes.
  • a pseudo spiral modulation mode may be added to generate a new MCS table.
  • the MCS table shown in Figure 10B and Figure 10C in addition to different modulation order pseudo-spiral modulation modes, also includes BPSK modulation mode, PI/2BPSK modulation mode, PI/4BPSK modulation mode, QPSK modulation mode, PI/4QPSK modulation mode wait.
  • the resulting new MCS table can provide multiple modulation modes that are resistant to phase noise, and is not limited to pseudo-spiral modulation modes.
  • the above-mentioned MCS table formed according to the embodiments of the present disclosure that only includes modulation methods capable of resisting phase noise can be used in combination with the MCS table in the existing 5G NR standard, and indicated by additional indication bits according to whether there is phase noise Whether to use a new MCS table that can resist phase noise modulation or an existing MCS table that only includes a QAM modulation mode, so as to realize flexible selection among multiple sets of MCS tables.
  • a further example of selecting an MCS table to be used from multiple sets of MCS tables (including new MCS tables and existing MCS tables) will be described in detail later.
  • the pseudo-spiral modulation schemes in all the new MCS tables shown above may be aimed at the same phase noise. Additionally or alternatively, the pseudo-spiral modulation modes in the new MCS table may also be aimed at different phase noises.
  • the control unit 720 of the sending device 700 shown in FIG. phase noise variance
  • the MCS table in Figure 9A not only includes pseudo-spiral modulation schemes with different modulation orders, but also includes pseudo-spiral modulation schemes with the same modulation order for different phase noises.
  • index number 32 of the MCS table in FIG. 9A corresponds to low phase noise pseudo-16 spiral modulation
  • index number 33 corresponds to high phase noise pseudo-16 spiral modulation.
  • the index numbers 57, 58 and 59 of the MCS table in FIG. 9E correspond to pseudo-64 spiral modulation modes with low phase noise, medium phase noise and high phase noise, respectively.
  • the control unit 720 of the transmitting device 700 shown in FIG. 7 needs to first determine the MCS table to be used according to the information about the phase noise, and then Based on the information about the phase noise again, the MCS index and the corresponding modulation mode are determined from the determined MCS table.
  • control unit 720 may also determine the MCS index using other channel measurement results other than the information on phase noise.
  • the above-mentioned new MCS tables including modulation schemes capable of resisting phase noise for example, FIGS. 8A-8E , FIGS. 9A-9E and 10A-10C The MCS table shown in ) and the MCS table used in existing standards.
  • whether to use a new MCS table including an anti-phase noise modulation scheme or an existing MCS table including only a QAM modulation scheme may be indicated according to whether there is phase noise.
  • the receiving device may feed back to the sending device whether information about the MCS table identifier is needed.
  • the sending device may send the information about the MCS table identifier to the receiving device according to the feedback from the receiving device.
  • the sending device may determine whether to use a new MCS table containing a modulation method capable of resisting phase noise according to information about phase noise, and when it is determined to use a new MCS table containing a modulation method capable of resisting phase noise, actively report to the receiving device Send information about the MCS table ID.
  • the sending device 700 shown in FIG. 7 may also optionally include a receiving unit 710 (shown in a dotted line box), configured to receive information about the MCS table identifier, and the control unit 720 of the sending device 700 may also be configured To determine the MCS table according to the received information about the MCS table identifier, and determine the MCS index from the determined MCS table.
  • a receiving unit 710 shown in a dotted line box
  • the control unit 720 of the sending device 700 may also be configured To determine the MCS table according to the received information about the MCS table identifier, and determine the MCS index from the determined MCS table.
  • the information about the flag of the MCS table may be, for example, I flag , which is used to indicate whether to use the MCS table including the anti-phase noise modulation mode.
  • the sending device first receives the I flag , then determines the MCS table to be used from multiple MCS tables according to the received I flag , and determines the corresponding MCS index from the determined MCS table.
  • a plurality of MCS tables may include the new MCS tables shown in FIGS. stored in at least one of the sending device and the receiving device. Therefore, the sending device selects the received information about the I flag from multiple MCS tables in a targeted manner, which improves the efficiency of the MCS table determined by the sending device.
  • the I flag can be transmitted through radio resource control (Radio Resource Control, RRC) signaling, medium access control-control element (Medium Access Control-Control Element, MAC CE), uplink control information (Uplink Control Information, UCI) and other signaling to transfer.
  • RRC Radio Resource Control
  • medium access control-control element Medium Access Control-Control Element
  • UCI Uplink Control Information
  • the value of I flag may not be limited to 0 and 1, for example, I flag ⁇ 0,1,2,... ⁇ , wherein each value except 0 corresponds to multiple One of the MCS tables of the noise modulation mode (such as the MCS tables shown in Fig. 8A-Fig. 8E, Fig. 9A-Fig. 9E and Fig. 10A-Fig.
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • the sending device may also determine the MCS table and the MCS index by itself according to the information about the phase noise, and send the information about the MCS index.
  • the sending device notifies the receiving device whether a modulation method capable of resisting phase noise is used, so that the receiving device can perform targeted selection of the received information about the I flag from multiple MCS tables, thereby improving the determination of the receiving device. Efficiency of the MCS table.
  • the control unit 720 of the sending device 700 shown in FIG. 7 may determine whether an MCS table including an anti-phase noise modulation mode is needed according to phase noise or phase noise variance. For example, if the phase noise (or phase noise variance) is small, one of the MCS tables of QAM in the existing 5G NR standard can be selected and the MCS index can be determined; if the phase noise (and/or phase noise variance) is large, the pseudo spiral One of the MCS tables of the modulation scheme and determine the MCS index.
  • the corresponding MCS index may be determined from the determined MCS table according to other received information (such as reference signal received power (RSRP), reference signal received quality (RSRQ), etc.), and then according to the determined MCS index to determine Determine the modulation order to be used (Q m ) and the target code rate (R), so as to perform modulation.
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • the sending unit may also send information about the MCS table identifier to indicate the used MCS table.
  • the sending unit 730 of the sending device 700 in FIG. 7 may also be configured to send information about the determined MCS table identifier, and the MCS table identifier may indicate whether the MCS table includes modulation capable of resisting phase noise.
  • the sending device after the sending device (for example, the sending device 700 in FIG. 7 ) determines the MCS index, it can generate information about the determined MCS table identifier, for example, to indicate whether an MCS index against phase noise is required.
  • the value of the generated I flag may not be limited to 0 and 1, for example, I flag ⁇ 0,1,2,... ⁇ , wherein each value except 0 corresponds to in one of the MCS tables containing pseudo-spiral modulation schemes.
  • the sending unit 730 of the sending device 700 can send the information about the I flag and the MCS index together or separately to other devices.
  • the information about the I flag is sent to other devices through RRC, MAC CE, downlink control information (Downlink Control Information, DCI) and the like.
  • the sending device may indicate whether to select the MCS table against phase noise based on the existing selection manner of determining the MCS table and the existing signaling in the 3GPP standard.
  • the sending device 700 in FIG. 7 can multiplex the process of 5.1.3.1 of TS38.214.
  • the parameters related to the MCS table to Spiral or PhaseNoise or PN to indicate whether to use The MCS table of the modulation method of the phase noise.
  • a high layer parameter ifSpiral or ifPhaseNoise or ifPN may be added in the downlink transmission to indicate the MCS table identifier I flag .
  • it is also possible to indicate whether to use the MCS table including the modulation mode against phase noise by adding the high-layer parameter ifSpiral or ifPhaseNoise or ifPN, for example, when ifSpiral or ifPhaseNoise or ifPN 1, use The MCS table of the modulation method.
  • the sending device may also send information about the demodulation mode identifier, which is used to indicate the modulation mode of the receiving device. For example, the sending device may instruct the receiving device to use the same modulation method as that of the sending device to perform demodulation; alternatively, the sending device may instruct the receiving device to use a different modulation method from that of the sending device to perform demodulation.
  • the sending unit 730 of the sending device 700 may be configured to send (for example, to the receiving device) information about the demodulation mode identifier I decode , which is used to indicate the demodulation mode of the receiving device, For example, whether to use a demodulation method that can resist phase noise.
  • the information about the demodulation mode identifier I decode can be sent to other devices through RRC, MAC CE, DCI and so on.
  • the receiving device can select a corresponding demodulation mode according to the indication of I decode .
  • the demodulation mode of the receiving device may be indicated according to different values of I decode .
  • the value of I decode may not be limited to 0 and 1, for example, I decode ⁇ ⁇ 0, 1, 2, ... ⁇ , wherein each value except 0 corresponds to the A corresponding one of a plurality of bit-to-symbol mapping tables different from the modulated bit-to-symbol mapping table.
  • the sending device can use the M-order second type modulation to modulate the bit sequence to be sent, and obtain the symbols to be sent to the receiving device;
  • the modulated and demodulated I decode is sent to the receiving device together.
  • the base station can use a 16-spiral-1024QAM modulation mode to modulate a group of bit sequences, and obtain symbols to be sent to the UE.
  • the base station may send the 16-spiral-1024QAM modulated symbols and I decode indicating to use 1024QAM for demodulation to the UE, and then the UE uses 1024QAM to demodulate the received symbols to obtain a bit sequence corresponding to the 16-spiral-1024QAM.
  • the sending device and the receiving device can perform modulation and demodulation according to different bit-to-symbol mapping tables, so that even if the receiving device only supports traditional demodulation methods such as QAM and does not support pseudo-spiral demodulation methods, The pseudo-spiral constellation data can still be received using conventional receive demodulation algorithms. Therefore, the requirement on the receiving device is reduced, and the compatibility is improved.
  • the receiving unit 710 may also receive information about modulation schemes supported by the receiving device.
  • the control unit 720 may also determine the MCS index suitable for the receiving device according to the information about the modulation modes supported by the receiving device.
  • the information indication about the modulation scheme supported by the receiving device may include at least one of the M-order second type modulation and the pseudo-N-order first type modulation supported by the receiving device.
  • FIG. 11 is a schematic block diagram illustrating a receiving device 1100 according to one embodiment of the present disclosure.
  • a receiving device 1100 according to one embodiment of the present disclosure may include a receiving unit 1110 and a control unit 1120 .
  • the receiving unit 1110 of the receiving device 1100 may be configured to receive information about the MCS index, and the control unit 1120 of the receiving device 1100 may determine the corresponding MCS table according to the received information about the MCS index to perform demodulation.
  • the control unit 1120 of the receiving device 1100 can determine the MCS table to be used from a plurality of pre-stored MCS tables according to the received information about the MCS index and determine the modulation order (Q m ) and the target code rate (R) for demodulation.
  • the pre-stored multiple MCS tables may include MCS tables of modulation modes that are resistant to phase noise, for example, according to the above shown in FIGS. 8A-8E , 9A-9E and 10A-10C The MCS table will not be described in detail here.
  • the MCS table determined according to the received information about the MCS index is an MCS table including a modulation method capable of resisting phase noise
  • the determined MCS table includes a pseudo-N-order first type modulation method capable of resisting phase noise
  • the control unit 1120 of the receiving device 1100 can use the pseudo-N-order first type modulation (such as pseudo-N-order helical modulation) for demodulation.
  • the determined MCS table may also include a second type of modulation different from said phase noise resistant modulation, eg QAM.
  • the receiving device 1100 may also be configured to receive information about the demodulation mode identifier, and perform demodulation according to the information of the demodulation mode identifier, where the demodulation mode identifier may indicate that the receiving device 1100 uses the same
  • the sending device performs demodulation in the same way as the modulation method, or may instruct the receiving device 1100 to use a different modulation method from that of the sending device to perform demodulation.
  • the control unit 1120 of the receiving device 1100 may perform pseudo-N-order first type demodulation on the received symbols.
  • the receiving device 1100 may use 1024QAM to demodulate received symbols modulated by 16-spiral-1024QAM according to I decode indicating to use 1024QAM for demodulation, so as to obtain a bit sequence corresponding to 16-spiral-1024QAM.
  • the receiving device 1100 may further include a sending unit 1130 (shown by a dashed box in FIG. 11 ).
  • the sending unit 1130 may send information about the modulation mode supported by the receiving device to the sending device. Therefore, the sending device can determine whether to use the above-mentioned pseudo-N-order first type modulation according to the information about the modulation modes supported by the receiving device, and further determine the MCS index suitable for the receiving device.
  • the information indication about the modulation scheme supported by the receiving device may include at least one of the M-order second-type modulation and the pseudo-N-order first-type modulation supported by the receiving device 1100 .
  • Fig. 12 is a schematic block diagram of a sending device 1200 according to another example of the present disclosure.
  • the sending device 1200 may include a control unit 1210 and a sending unit 1220 .
  • the sending device 1200 may also include other components, however, since these components are irrelevant to the content of the embodiments of the present disclosure, illustration and description thereof are omitted here.
  • the sending device 1200 may be a base station or a terminal in a communication system.
  • control unit 1210 may determine information on a modulation parameter indicating a spiral factor from information on phase noise.
  • the sending unit 1220 may then send information about the determined modulation parameters. Therefore, the receiving device can determine the modulation mode according to the information about the modulation parameters so as to demodulate the received data.
  • the receiving device may obtain the other of the amplitude weighting parameter ⁇ and the phase weighting parameter ⁇ indicated by the modulation parameter according to one of the amplitude weighting parameter ⁇ and the phase weighting parameter ⁇ indicated by the modulation parameter. Signaling overhead can thereby be reduced.
  • the modulation parameter further indicates at least one of M and N.
  • the modulation orders of the first type of modulation and the second type of modulation can be static or semi-static, and only information about at least one of M and N can be transmitted as required, or neither can be transmitted. . Signaling overhead can thus be further reduced.
  • the information about the modulation parameter may directly include the information about the spiral factor.
  • the information on the modulation parameters also indicates one or
  • the information about the modulation parameters may directly include the information of the one or more parameters. Therefore, the receiving device can directly determine the demodulation mode according to the received information about the modulation parameters.
  • each parameter in the information about the modulation parameter may be explicitly notified through RRC signaling, MAC CE, DCI or UCI.
  • each parameter in the information about the modulation parameter can be explicitly notified through the newly set RRC signaling, MAC CE, DCI or UCI.
  • some parameters in the information about the modulation parameters may be notified in a conventional manner, and the information about the modulation parameters may be explicitly notified through newly set RRC signaling, MAC CE, DCI or UCI other parameters.
  • the MCS index can be transmitted by a method currently used in each standard (for example, 3GPP standard) to inform the order N of the pseudo-first type modulation, and can be transmitted through newly set RRC signaling, MAC CE, DCI or UCI to explicitly notify other parameters in the information about the modulation parameters.
  • 3GPP standard for example, 3GPP standard
  • the candidate value set of each parameter in the information about the modulation parameter can be preset, and the index in the preset candidate value set can be indicated through RRC signaling, MAC CE, DCI or UCI, thereby indicating the value of each parameter value.
  • a set of candidate values for the spiral factor f s ⁇ f s 1, f s 2,...f s L ⁇ can be set according to common phase noise or phase noise variance, where L can be 2 to the nth power. Therefore, n bits can be used to indicate a specific f s value in the candidate value set.
  • the parameter candidate value set may not be preset, but the parameter may be directly quantized and notified explicitly.
  • the information on the modulation parameter includes information on the modulation parameter table index.
  • the sending device 1200 may further include a receiving unit 1230 (shown as a dotted box in FIG. 12 ) to receive information about modulation modes supported by the receiving device.
  • the control unit 1210 may also determine whether to use the pseudo-N-order first type modulation according to the information about the modulation modes supported by the receiving device.
  • the information indication about the modulation scheme supported by the receiving device may include at least one of the M-order second type modulation and the pseudo-N-order first type modulation supported by the receiving device.
  • the sending unit 1220 of the sending device 1200 can also send information about the demodulation mode identifier I decode , which is used to indicate the demodulation mode of the receiving device, for example, whether to use a demodulation mode that can resist phase noise.
  • the information about the demodulation mode identifier I decode can be sent to other devices through RRC, MAC CE, DCI and so on.
  • the receiving device in response to the received I deoo , the receiving device can select a corresponding demodulation mode according to the instruction of I decode .
  • the demodulation mode of the receiving device may be indicated according to different values of I decode .
  • the modulated bit-to-symbol mapping table is different from the bit-to-symbol mapping table for demodulation, and vice versa.
  • the sending device can use the M-order second type modulation to modulate the bit sequence to be sent, and obtain the symbols to be sent to the receiving device;
  • the modulated and demodulated I decode is sent to the receiving device together.
  • the base station may use a 16-spiral-1024QAM modulation mode to modulate a group of bit sequences, and obtain symbols to be sent to the UE.
  • the base station may send the 16-spiral-1024QAM modulated symbols and I decode indicating demodulation using 1024QAM to the UE, and then the UE demodulates the received symbols using 1024QAM.
  • the sending device and the receiving device can respectively perform modulation and demodulation according to different modulation modes, thereby reducing requirements on the receiving device and improving compatibility.
  • FIG. 13 is a schematic block diagram of a receiving device 1300 according to another example of the present disclosure.
  • a receiving device 1300 may include a receiving unit 1310 and a control unit 1320 .
  • the receiving device 1300 may also include other components, however, since these components are irrelevant to the content of the embodiments of the present disclosure, illustration and description thereof are omitted here.
  • the receiving device 1300 may be a base station or a terminal in a communication system.
  • a receiving unit 1310 of a receiving device 1300 receives information on a modulation parameter indicating a spiral factor.
  • the control unit 1320 may determine the pseudo-N-order first-type modulation according to the received modulation parameters, wherein 2 ⁇ N first symbols of the pseudo-N-order first-type modulation and 2 ⁇ M second symbols of the M-order second-type modulation Part of the second symbols in correspond to, and M and N are positive integers.
  • control unit 1320 may determine the spiral factor according to the information about the modulation parameters, and based on the method described above in conjunction with formulas (1)-(3), determine the Nth-order spiral constellation point according to the spiral factor.
  • the control unit 1320 may calculate the Nth-order spiral constellation point each time according to the spiral factor indicated by the received information about the modulation parameter.
  • the receiving device 1300 may further include a storage unit to pre-store the correspondence between the spiral factors and the N-th order spiral constellation points. Therefore, the control unit 1320 can obtain the Nth-order helical constellation point corresponding to the helical factor indicated by the received information about the modulation parameter according to the pre-stored correspondence between the helical factor and the Nth-order helical constellation point.
  • the control unit 1320 may use a part of the constellation points in the existing constellation diagram of the M-order second type modulation to simulate the determined constellation diagram of the N-order helical modulation. For example, as described above, the control unit 1320 can determine 2 ⁇ N constellation points of pseudo-N-order helical modulation (ie, N-order helical modulation-M-order QAM) according to the amplitude weighting parameter ⁇ and the phase weighting parameter ⁇ . In an example according to the present disclosure, the control unit 1320 may select from the constellation points of the M-order second type modulation each time according to at least one of the amplitude weighting parameter ⁇ and the phase weighting parameter ⁇ indicated by the received information about the modulation parameters The selection of pseudo-N order spiral constellation points.
  • pseudo-N-order helical modulation ie, N-order helical modulation-M-order QAM
  • the receiving device 1300 may further include a storage unit to pre-store the correspondence between at least one of the amplitude weighting parameter ⁇ and the phase weighting parameter ⁇ and the pseudo-N-order spiral constellation points. Therefore, the control unit 1320 can obtain the pseudo-N-order helix corresponding to the received information about the modulation parameters according to the correspondence between at least one of the pre-stored amplitude weighting parameters ⁇ and phase weighting parameters ⁇ and the pseudo-N-order helix constellation points Constellation points.
  • control unit 1320 may simulate the determined constellation of the N-order helical modulation from a part of the constellation points in the existing constellation of the M-order second type modulation according to other conditions such as Euclidean distance.
  • the control unit 1320 can obtain the modulation parameter indicating the amplitude weighting parameter ⁇ and the phase weighting parameter ⁇ according to one of the amplitude weighting parameter ⁇ and the phase weighting parameter ⁇ indicated by the modulation parameter Another one of the phase weighting parameters ⁇ .
  • the order N of the pseudo-first type modulation and/or the order M of the second type modulation may be predetermined.
  • the order N of pseudo-first type modulation and/or the order M of second type modulation may be static or semi-static.
  • the order M of the second type of modulation may be predetermined to be 1024.
  • the order N of the second type of modulation may be predetermined to be 16 or 64.
  • the modulation parameter also indicates at least one of M and N.
  • the control unit 1320 may determine the pseudo-Nth-order first type modulation according to the received information on the modulation parameters.
  • the information about the modulation parameters may directly include the information about the spiral factor, and the control unit 1320 may determine the pseudo-Nth-order first type modulation according to the information about the spiral factor.
  • the information on the modulation parameters also indicates one or In the case of multiple parameters, the information about the modulation parameters may directly include the information of the one or more parameters.
  • the candidate value set of each parameter in the information about the modulation parameter can be preset, and the index in the preset candidate value set can be indicated through RRC signaling, MAC CE, DCI or UCI, thereby indicating the value of each parameter value.
  • a set of candidate values for the spiral factor f s ⁇ f s 1, f s 2,...f s L ⁇ can be set according to common phase noise or phase noise variance, where L can be 2 to the nth power. Therefore, n bits can be used to indicate a specific f s value in the candidate value set.
  • the parameter candidate value set may not be preset, but the parameter may be directly quantized and notified explicitly.
  • the information about the modulation parameter includes information about the index of the modulation parameter table
  • the control unit 1320 can determine the spiral factor in the modulation parameter table according to the information about the index of the modulation parameter table, and A pseudo-Nth order first type modulation is determined according to the determined spiral factor. Signaling overhead can thus be reduced in case the receiving device requires multiple modulation parameters.
  • a modulation parameter table corresponding to different modulation orders N of the second type of modulation may be preset.
  • values of one or more parameters in the spiral factor f s corresponding to the entry index, the amplitude weighting parameter ⁇ , the phase weighting parameter ⁇ , the order M of the second type of modulation, etc. can be set .
  • different parameter values may be set for different phase noises or phase noise variances.
  • FIGS. 14A and 14B are diagrams illustrating preset modulation parameter tables according to an example of the present disclosure.
  • the spiral factor f s for a specific modulation order of the first type of modulation, the spiral factor f s , the amplitude weighting parameter ⁇ , and the phase weighting parameter ⁇ for different phase noises or different phase noise levels can be set and the order M of the second type of modulation.
  • the parameter value for a specific phase noise or for a different phase noise level at a specific modulation order of the first type of modulation may be indicated by the modulation parameter table index.
  • different modulation parameter table indices may indicate the same phase noise level parameter value.
  • the modulation order of the first type of modulation is N2 and the phase noise level is PN22
  • f s 24 , ⁇ 24 , ⁇ 24 and M24 can be indicated by the modulation parameter table index value 1.
  • the information on modulation parameters received by the receiving unit 1310 may include information on modulation parameter table indexes.
  • the information on the modulation parameters may include information on the modulation parameter table index 1 to indicate the spiral factor f s , the amplitude weighting parameter ⁇ , the phase weighting
  • the values of the parameter ⁇ and the order M of the second type of modulation are f s 11, ⁇ 11, ⁇ 11, M11 respectively.
  • the modulation order of the first type of modulation may be static or semi-static, or the MCS index may be sent by a method currently used in each standard (for example, 3GPP standard) to inform the pseudo-first Order of type modulation.
  • the receiving device 1300 may detect phase noise and obtain information on the phase noise. Alternatively, the information about the phase noise may also be determined by the sending device and sent to the receiving device 1300 .
  • different modulation parameter table indexes may indicate different phase noise level parameter values.
  • the modulation order of the first type of modulation is N2
  • the index value of the modulation parameter table can be selected according to the phase noise.
  • the index value is 1 to indicate the parameter f s 22 corresponding to the phase noise PN22, ⁇ 22, ⁇ 22, M22.
  • the information on modulation parameters received by the receiving unit 1310 may include information on modulation parameter table indexes.
  • the information about the modulation parameters may include information corresponding to the phase noise PN22 to indicate the spiral factor f s , the amplitude weighting parameter ⁇ , the phase weighting parameter ⁇
  • the values of the order M of the second type of modulation are f s 22, ⁇ 22, ⁇ 22, M22 respectively.
  • the receiving device 1300 may further include a sending unit 1330 .
  • the sending unit 1330 may send information about the modulation mode supported by the receiving device to the sending device. Therefore, the sending device can determine whether to use the above-mentioned pseudo-N-order first type modulation according to the information about the modulation modes supported by the receiving device.
  • the information indication about the modulation scheme supported by the receiving device may include at least one of the M-order second type modulation and the pseudo-N-order first type modulation supported by the receiving device 1300.
  • the receiving unit 1310 may also be configured to receive information about the identification of the demodulation mode, and perform demodulation according to the information of the identification of the demodulation mode, wherein the demodulation mode
  • the identifier may indicate that the receiving device 1300 uses the same modulation method as that of the sending device to perform demodulation, or may indicate that the receiving device 1300 uses a different modulation method from that of the sending device to perform demodulation.
  • FIG. 15 is a flowchart of a modulation method 1500 according to one embodiment of the present disclosure.
  • the modulation method 1500 can be performed by a sending device. Since the steps of the modulation method 1500 correspond to the operations of the transmitting device 300 in FIG. 3 above, detailed descriptions of the same content are omitted here for simplicity.
  • step S1501 a bit sequence to be sent is obtained. Then, in step S1502, perform pseudo N-order first type modulation on the bit sequence to be transmitted according to the information about the phase noise.
  • the bit sequence to be sent can be obtained.
  • a bit sequence to be sent in units of N first bits can be obtained.
  • the received bit sequence to be transmitted can be pseudo-N-order first type modulated according to the information about the phase noise, so as to obtain the first symbol to be transmitted.
  • the 2 ⁇ N first symbols of the pseudo-N-order first type modulation and a part of the second symbols of the M-order second type modulation 2 ⁇ M second symbols correspondingly, where M and N are positive integers and M is greater than N.
  • the symbols obtained by using the N-order first-type modulation may be simulated by using a part of the 2 ⁇ M second symbols that can be obtained by using the M-order second-type modulation.
  • the bit sequence After receiving the bit sequence to be transmitted, the bit sequence can be modulated according to the information about the phase noise to obtain the symbol to be transmitted.
  • the information about the phase noise may include: information about the phase noise itself, information about the variance of the phase noise, or any other information that can characterize the phase noise.
  • the pseudo-N order first type modulation can be performed on the bit sequence to be transmitted according to the bit-to-symbol mapping table.
  • the bit sequence to be transmitted may be modulated according to the above-mentioned bit-to-symbol mapping table for different phase noises, so as to obtain the symbols to be transmitted.
  • the bit-to-symbol mapping table for different phase noises may be a bit-to-symbol mapping table determined based on the bit-to-symbol mapping table of the M-order second type modulation, for example , the pseudo-spiral bit-to-symbol mapping tables shown in FIGS. 5A-1 , 5A-2 , and 5B-5F.
  • modulation can be performed according to pseudo-N-order first-type modulation, so as to modulate the received bit sequence in units of N first bits into symbols to be transmitted.
  • the received bit sequence to be transmitted is 0001
  • a pseudo-16 helical modulation can be performed on the bit sequence, and the symbol to be transmitted can be obtained
  • FIG. 16 is a flowchart of a demodulation method 1600 according to one embodiment of the present disclosure.
  • the receiving method 1600 may be performed by a receiving device. Since the steps of the demodulation method 1600 correspond to the operations of the receiving device 600 in FIG. 6 , detailed descriptions of the same content are omitted here for simplicity.
  • step S1601 symbols after pseudo-N-order first-type modulation are obtained. Then, in step S1602, the symbols are demodulated according to the information about the phase noise, so as to obtain the actual transmitted bit sequence.
  • step S1601 a part of the 2 ⁇ N first symbols of the pseudo-N-order first type modulation and the 2 ⁇ M second symbols of the M-order second type modulation
  • the second symbol corresponds, wherein M and N are positive integers and M is greater than N.
  • the symbols obtained by using the N-order first-type modulation may be simulated by using a part of the 2 ⁇ M second symbols that can be obtained by using the M-order second-type modulation.
  • the symbols can be demodulated according to the information about the phase noise to obtain a received bit sequence.
  • the information about the phase noise may include: information about the phase noise itself, information about the variance of the phase noise, or any other information that can characterize the phase noise.
  • the received symbols may be demodulated according to a bit-to-symbol mapping table.
  • symbols may be demodulated according to the bit-to-symbol mapping table for different phase noises as described above, so as to obtain a received bit sequence.
  • the bit-to-symbol mapping table for different phase noises may be a pseudo-N-order first-type modulation bit-to-symbol mapping table determined based on the M-order second-type modulation bit-to-symbol mapping table, for example, The pseudo-spiral bit-to-symbol mapping tables shown in Figures 5A-1, 5A-2, and 5B-5F.
  • demodulation can be performed according to the pseudo N-order first-type modulation to obtain a bit sequence in units of N first bits, or demodulation can be performed according to M-order second-type modulation, to obtain a bit sequence in units of M second bits.
  • demodulation can be performed according to the pseudo N-order first-type modulation to obtain a bit sequence in units of N first bits, or demodulation can be performed according to M-order second-type modulation, to obtain a bit sequence in units of M second bits.
  • a symbol subjected to pseudo-16 spiral modulation if a symbol subjected to pseudo-16 spiral modulation is obtained, it may be demodulated according to pseudo-16 spiral modulation to obtain a bit sequence including 4 bits.
  • the symbol when receiving the symbol
  • the symbol can be demodulated according to the bit-to-symbol mapping table corresponding to the pseudo-16 helical modulation, and the bit sequence 0001, which is the actually transmitted bit sequence, can be obtained.
  • FIG. 17 is a flowchart of a modulation method 1700 according to one embodiment of the present disclosure.
  • the sending method 1700 can be executed by a sending device. Since the steps of the modulation method 1700 correspond to the operations of the transmitting device 700 in FIG. 7 above, detailed descriptions of the same content are omitted here for simplicity.
  • step S1701 a modulation and coding strategy (MCS) index is determined according to information about phase noise. Then, in step S1702, information on the MCS index is transmitted.
  • MCS modulation and coding strategy
  • one MCS table may be determined from a plurality of MCS tables according to information about phase noise, and an MCS index may be determined from the determined MCS table.
  • the determined MCS table may include a modulation method capable of resisting phase noise.
  • the determined MCS table may include a modulation scheme of the pseudo-Nth order first type modulation as described above, such as a pseudo-Nth order spiral modulation scheme.
  • the determined MCS table may be formed according to the corresponding method of the MCS table shown in FIGS. 8A-8E , 9A-9E and 10A-10C , which will not be described in detail here.
  • an MCS index may be further determined from the determined MCS table according to information about phase noise.
  • the information about the phase noise may include: information about the phase noise itself, information about the variance of the phase noise, or any other information that can characterize the phase noise, which will not be described in detail here.
  • information about phase noise may indicate whether phase noise is low, medium, or high.
  • the sending method 1700 may also include receiving information about the MCS table identifier, and then determining the MCS table according to the received information about the MCS table identifier in step S1701, and from the determined MCS The MCS index is determined in the table.
  • the information about the MCS table flag may be I flag , which is used to indicate whether to use the MCS table including the anti-phase noise modulation mode.
  • the sending device first receives the I flag , then determines the MCS table to be used from multiple MCS tables according to the received I flag , and determines the corresponding MCS index from the determined MCS table.
  • the I flag can be transmitted through signaling such as RRC, MAC CE, and UCI, and will not be described in detail here.
  • the multiple MCS tables here may include the above-mentioned new MCS tables shown in Figures 8A-8E or 9A-9E or 10A-10C, and may also include the MCS table in the existing 5G NR standard. Tables, these MCS tables may be pre-stored in at least one of the sending device and the receiving device, which will not be described in detail here.
  • the MCS table and the MCS index can be determined by itself according to the information about the phase noise. For example, it may be determined according to phase noise or phase noise variance whether an MCS table including an anti-phase noise modulation mode is required. For example, if the phase noise (or phase noise variance) is small, one of the MCS tables of QAM in the existing 5G NR standard can be selected and the MCS index can be determined; if the phase noise (or phase noise variance) is large, the pseudo-spiral modulation method can be selected One of the MCS tables and determine the MCS index.
  • the MCS index may be determined from the determined MCS table according to information such as Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ) and the like.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • step S1702 information about the MCS index may be sent. For example, information on the MCS index determined from the determined MCS table may be transmitted.
  • the sending method 1700 may also include sending information about the MCS table identifier.
  • the MCS table identifier indicates whether the determined MCS table includes modulation capable of resisting phase noise.
  • information about the MCS table identification of the determined MCS table may be transmitted, which may indicate whether the MCS table to be used includes modulation that is immune to phase noise.
  • the information about the MCS table identifier can be transmitted through signaling such as RRC, MAC CE, DCI, and will not be described in detail here.
  • the sending method 1700 may further include sending information about a demodulation mode identifier, which is used to indicate the demodulation mode of the receiving device.
  • the receiving device may be instructed to demodulate using the same bit-to-symbol mapping table that the transmitting device used for modulation; alternatively, the receiving device may be instructed to use the same bit-to-symbol mapping that the transmitting device used for modulation Table different bit-to-symbol mapping tables for demodulation.
  • information about the demodulation mode identifier I decode may be sent to indicate the demodulation mode of the receiving device, for example, whether to adopt a demodulation mode that can resist phase noise, which will not be described in detail here.
  • the information about the demodulation mode identifier I decode can be sent to other devices through RRC, MAC CE, DCI and so on.
  • the receiving device in response to the received I decode , the receiving device can select a corresponding demodulation mode according to the indication of I decode .
  • the demodulation mode of the receiving device may be indicated according to different values of I decode . In this case, the sending device and the receiving device can respectively perform modulation and demodulation according to different modulation modes, thereby reducing requirements on the receiving device and improving compatibility.
  • the sending method 1700 may further include receiving information about modulation modes supported by the receiving device.
  • an MCS index suitable for the receiving device may also be determined according to the information about the modulation schemes supported by the receiving device.
  • the information indication about the modulation scheme supported by the receiving device may include at least one of the M-order second type modulation and the pseudo-N-order first type modulation supported by the receiving device.
  • FIG. 18 is a flowchart of a receiving method 1800 according to one embodiment of the present disclosure.
  • the receiving method 1800 may be performed by a receiving device. Since the steps of the demodulation method 1800 correspond to the operations of the receiving device 1100 of FIG. 11 , detailed descriptions of the same contents are omitted here for simplicity.
  • step S1801 information about MCS index is received. Then, in step S1802, according to the received information about the MCS index, a corresponding MCS table is determined for demodulation, wherein the MCS table includes modulation capable of resisting phase noise.
  • the corresponding MCS table may be determined for demodulation according to the received information about the MCS index, wherein the MCS table includes modulation capable of resisting phase noise.
  • the MCS table to be used may be determined from a plurality of pre-stored MCS tables according to the received information about the MCS index, and the modulation order (Q m ) and the target code rate (R) to be used may be determined, so that to demodulate.
  • the plurality of pre-stored MCS tables may include MCS tables of modulation modes capable of resisting phase noise, for example, the above shown in FIGS. 8A-8E , 9A-9E and 10A-10C The MCS table will not be described in detail here.
  • the determined MCS table determined according to the received information about the MCS index is an MCS table including a modulation method capable of resisting phase noise
  • the determined MCS table includes a pseudo-N-order first type modulation method capable of resisting phase noise
  • the pseudo-N-order first type modulation such as pseudo-N-order helical modulation
  • the determined MCS table may further include a second type of modulation different from the modulation capable of resisting phase noise, for example, QAM.
  • the receiving method 1800 may further include receiving information about the demodulation mode identifier, and performing demodulation according to the information about the demodulation mode identifier.
  • the demodulation mode flag indicates whether the receiving device uses the same bit-to-symbol mapping table as that used by the sending device for modulation to perform demodulation.
  • the demodulation mode identifier may indicate that the receiving device uses the same bit-to-symbol mapping table as that used by the sending device for modulation to perform demodulation; alternatively, it may also indicate that the receiving device uses the same The bit-to-symbol mapping table of different bit-to-symbol mapping table is demodulated.
  • the receiving method 1800 may further include sending information about modulation modes supported by the receiving device to the sending device. Therefore, the sending device can determine whether to use the above-mentioned pseudo-N-order first type modulation according to the information about the modulation modes supported by the receiving device.
  • the information indication about the modulation scheme supported by the receiving device may include at least one of the M-order second type modulation and the pseudo-N-order first type modulation supported by the receiving device.
  • FIG. 19 is a flowchart of a sending method 1900 according to another embodiment of the present disclosure. Since the steps of the sending method 1900 correspond to the operations of the sending device 1200 in FIG. 12 above, detailed descriptions of the same content are omitted here for simplicity.
  • step S1901 information on a modulation parameter indicating a spiral factor is determined based on information on phase noise. Then in step S1902 the information on the determined modulation parameters is sent. Therefore, the receiving device can determine the modulation mode according to the information about the modulation parameters so as to demodulate the received data.
  • the modulation parameter can also indicate the amplitude weighting parameter ⁇ and the phase weighting parameter ⁇ at least one of the According to another example of the present disclosure, the modulation parameter further indicates at least one of M and N.
  • the information about the modulation parameter may directly include the information about the spiral factor.
  • the information on the modulation parameters also indicates one or
  • the information about the modulation parameters may directly include the information of the one or more parameters.
  • each parameter in the information about the modulation parameter may be explicitly notified through RRC signaling, MAC CE, DCI or UCI.
  • each parameter in the information about the modulation parameter can be explicitly notified through the newly set RRC signaling, MAC CE, DCI or UCI.
  • some parameters in the information about the modulation parameters may be notified in a conventional manner, and the information about the modulation parameters may be explicitly notified through newly set RRC signaling, MAC CE, DCI or UCI other parameters.
  • the candidate value set of each parameter in the information about the modulation parameter can be preset, and the index in the preset candidate value set can be indicated through RRC signaling, MAC CE, DCI or UCI, thereby indicating the value of each parameter value.
  • the parameter candidate value set may not be preset, but the parameter may be directly quantized and notified explicitly.
  • the information on the modulation parameter includes information on the modulation parameter table index.
  • the sending method 1900 shown in FIG. 19 may further include receiving information about modulation modes supported by the receiving device.
  • step S1902 it may also be determined whether to use the pseudo-N-order first type modulation according to the information about the modulation modes supported by the receiving device.
  • the information indication about the modulation scheme supported by the receiving device may include at least one of the M-order second type modulation and the pseudo-N-order first type modulation supported by the receiving device.
  • the sending method 1900 shown in FIG. 19 may also include sending information about the demodulation mode identifier I decode , which is used to indicate the demodulation mode of the receiving device, for example, whether to use a demodulation mode that can resist phase noise demodulation method.
  • the information about the demodulation mode identifier I decode can be sent to other devices through RRC, MAC CE, DCI and so on.
  • the receiving device in response to the received I decode , the receiving device can select a corresponding demodulation mode according to the indication of I decode .
  • the demodulation mode of the receiving device may be indicated according to different values of I decode . In this case, the sending device and the receiving device can respectively perform modulation and demodulation according to different bit-to-symbol mapping tables, thereby reducing requirements on the receiving device and improving compatibility.
  • FIG. 20 is a flowchart of a receiving method 2000 according to another embodiment of the present disclosure. Since the steps of the receiving method 2000 correspond to the operations of the receiving device 1300 in FIG. 13 above, detailed descriptions of the same contents are omitted here for simplicity.
  • step S2001 information on a modulation parameter indicating a spiral factor is received.
  • step S2002 determine the pseudo N-order first type modulation according to the received modulation parameters, wherein the 2 ⁇ N first symbols of the pseudo N-order first type modulation and the 2 ⁇ M first symbols of the M-order second type modulation Part of the second symbols in the two symbols corresponds, and M and N are positive integers.
  • the spiral factor can be determined according to the information about the modulation parameters, and based on the methods described above in conjunction with formulas (1)-(3), the Nth-order spiral constellation points can be determined according to the spiral factor.
  • the Nth-order spiral constellation point may be calculated each time according to the spiral factor indicated by the received information about the modulation parameter.
  • the receiving method 2000 may also include pre-storing correspondences between spiral factors and N-order spiral constellation points. Therefore, in step S2002, the Nth-order spiral constellation point corresponding to the spiral factor indicated by the received information about the modulation parameter can be obtained according to the pre-stored correspondence between the spiral factor and the Nth-order spiral constellation point.
  • step S2002 a part of the constellation points in the existing constellation diagram of the M-order second type modulation may be used to simulate the determined constellation diagram of the N-order helical modulation.
  • 2 ⁇ N constellation points of pseudo-N-order helical modulation that is, N-order helical modulation-M-order QAM
  • the amplitude weighting parameter
  • the phase weighting parameter
  • step S2002 at least one of the amplitude weighting parameter ⁇ and the phase weighting parameter ⁇ indicated by the received information about the modulation parameter can be used to select the constellation points of the M-order second type modulation The selection of pseudo-N order spiral constellation points in .
  • the method 2000 may include pre-storing the correspondence between at least one of the amplitude weighting parameter ⁇ and the phase weighting parameter ⁇ and the pseudo-N-order spiral constellation points.
  • step S2002 according to the correspondence between at least one of the pre-stored amplitude weighting parameters ⁇ and phase weighting parameters ⁇ and the pseudo-N-order spiral constellation points, the pseudo-N-order corresponding to the received information about the modulation parameters can be obtained Spiral constellation points.
  • step S2002 according to other conditions such as Euclidean distance, the determined constellation diagram of the N-order helical modulation can be simulated from a part of the constellation points in the existing constellation diagram of the M-order second type modulation.
  • the order N of the pseudo-first type modulation and/or the order M of the second type modulation may be predetermined.
  • the order N of the pseudo-first type of modulation and/or the order M of the second type of modulation may be static or semi-static.
  • the order M of the second type of modulation may be predetermined to be 1024.
  • the order N of the second type of modulation may be predetermined to be 16 or 64.
  • the modulation parameter also indicates at least one of M and N.
  • the pseudo-N order first type modulation may be determined according to the received information about the modulation parameters.
  • the information about the modulation parameters may directly include the information about the spiral factor, and in step S2002, the pseudo-N order first type modulation may be determined according to the information about the spiral factor .
  • the information on the modulation parameters also indicates one or In the case of multiple parameters, the information about the modulation parameters may directly include the information of the one or more parameters.
  • the candidate value set of each parameter in the information about the modulation parameter can be preset, and the index in the preset candidate value set can be indicated through RRC signaling, MAC CE, DCI or UCI, thereby indicating the value of each parameter value.
  • a set of candidate values for the spiral factor f s ⁇ f s 1, f s 2,...f s L ⁇ can be set according to common phase noise or phase noise variance, where L can be 2 to the nth power. Therefore, n bits can be used to indicate a specific f s value in the candidate value set.
  • the parameter candidate value set may not be preset, but the parameter may be directly quantized and notified explicitly.
  • the information about the modulation parameter includes information about the index of the modulation parameter table
  • the spiral factor may be determined in the modulation parameter table according to the information about the index of the modulation parameter table, And a pseudo-N order first type modulation is determined according to the determined spiral factor. Signaling overhead can thus be reduced in case the receiving device requires multiple modulation parameters.
  • a modulation parameter table corresponding to different modulation orders N of the second type of modulation may be preset.
  • values of one or more parameters among the spiral factor fs, the amplitude weighting parameter ⁇ , the phase weighting parameter ⁇ , the order M of the second type of modulation, etc. corresponding to the entry index can be set.
  • different parameter values may be set for different phase noises or phase noise variances. This has been described in detail above in conjunction with FIG. 14A and FIG. 14B , so details will not be repeated here.
  • the receiving method 2000 may further include sending information about modulation modes supported by the receiving device to the sending device. Therefore, the sending device can determine whether to use the above-mentioned pseudo-N-order first type modulation according to the information about the modulation modes supported by the receiving device.
  • the information indication about the modulation scheme supported by the receiving device may include at least one of the M-order second type modulation and the pseudo-N-order first type modulation supported by the receiving device.
  • the receiving method 2000 may further include receiving information about a demodulation mode identifier, and performing demodulation according to the information of the demodulation mode identifier, where the demodulation mode identifier may indicate that the receiving device uses the same
  • the bit-to-symbol mapping table used by the sending device for modulation is the same bit-to-symbol mapping table for demodulation, and the receiving device can also be instructed to use a different bit-to-symbol mapping table for demodulation than the bit-to-symbol mapping table used by the sending device for modulation .
  • each functional block is not particularly limited. That is, each functional block may be realized by one device that is physically and/or logically combined, or two or more devices that are physically and/or logically separated may be directly and/or indirectly (e.g. By wired and/or wireless) connections and thus by the various means described above.
  • an electronic device can function as a computer that executes the processing of the information transmission method of the present disclosure.
  • Fig. 21 is a schematic diagram of a hardware structure of a related device 2100 (for example, the above-mentioned sending device and receiving device) according to an embodiment of the present disclosure.
  • the aforementioned device 2100 (first network element) can be configured as a computer device physically including a processor 2110, a memory 2120, a storage 2130, a communication device 2140, an input device 2150, an output device 2160, a bus 2170, and the like.
  • the word “device” may be replaced with a circuit, a device, a unit, or the like.
  • the hardware structure of the electronic device may include one or more of the devices shown in the figure, or may not include part of the devices.
  • processor 2110 For example, only one processor 2110 is shown, but there may be multiple processors. In addition, processing may be performed by one processor, or may be performed by more than one processor simultaneously, sequentially, or in other ways. In addition, the processor 2110 may be implemented by more than one chip.
  • Each function of the device 2100 is realized, for example, by reading predetermined software (program) into hardware such as the processor 2110 and the memory 2120, thereby causing the processor 2110 to perform calculations and controlling communication performed by the communication device 2140. , and control the reading and/or writing of data in the memory 2120 and the storage 2130 .
  • the processor 2110 controls the entire computer by operating an operating system, for example.
  • the processor 2110 may be composed of a central processing unit (CPU, Central Processing Unit) including an interface with peripheral devices, a control device, a computing device, registers, and the like.
  • CPU Central Processing Unit
  • control unit and the like may be implemented by the processor 2110 .
  • the processor 2110 reads out programs (program codes), software modules, data, etc. from the memory 2130 and/or the communication device 2140 to the memory 2120, and executes various processes based on them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the program a program that causes a computer to execute at least part of the operations described in the above-mentioned embodiments can be used.
  • the processing unit of the first network element can be implemented by a control program stored in the memory 2120 and operated by the processor 2110, and other functional blocks can also be implemented in the same way.
  • the memory 2120 is a computer-readable recording medium, such as a read-only memory (ROM, Read Only Memory), a programmable read-only memory (EPROM, Erasable Programmable ROM), an electrically programmable read-only memory (EEPROM, Electrically EPROM), At least one of random access memory (RAM, Random Access Memory) and other appropriate storage media.
  • the memory 2120 may also be called a register, a cache, a main memory (main storage), or the like.
  • the memory 2120 can store executable programs (program codes), software modules, and the like for implementing the method according to an embodiment of the present disclosure.
  • the memory 2130 is a computer-readable recording medium, and can be composed of, for example, a flexible disk (flexible disk), a floppy (registered trademark) disk (floppy disk), a magneto-optical disk (for example, a CD-ROM (Compact Disc ROM), etc.), Digital Versatile Disc, Blu-ray (registered trademark) Disc), removable disk, hard drive, smart card, flash memory device (e.g., card, stick, key driver), magnetic stripe, database , a server, and at least one of other appropriate storage media.
  • the storage 2130 may also be called an auxiliary storage device.
  • the communication device 2140 is hardware (a transmission and reception device) for performing communication between computers via a wired and/or wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, and the like.
  • the communication device 2140 may include a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like.
  • the above-mentioned sending unit, receiving unit, etc. may be implemented by the communication device 2140 .
  • the input device 2150 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 2160 is an output device (for example, a display, a speaker, a light emitting diode (LED, Light Emitting Diode) lamp, etc.) that performs output to the outside.
  • the input device 2150 and the output device 2160 may also have an integrated structure (such as a touch panel).
  • bus 2170 for communicating information.
  • the bus 2170 may be composed of a single bus, or may be composed of different buses among devices.
  • electronic equipment can include microprocessors, digital signal processors (DSP, Digital Signal Processor), application specific integrated circuits (ASIC, Application Specific Integrated Circuit), programmable logic devices (PLD, Programmable Logic Device), field programmable gates Array (FPGA, Field Programmable Gate Array) and other hardware can be used to realize part or all of each function block.
  • DSP digital signal processors
  • ASIC Application Specific Integrated Circuit
  • PLD programmable logic devices
  • FPGA Field Programmable Gate Array
  • the processor 2110 may be installed by at least one of these hardwares.
  • a channel and/or a symbol may also be a signal (signaling).
  • a signal can also be a message.
  • the reference signal can also be referred to as RS (Reference Signal) for short, and it can also be called Pilot (Pilot), pilot signal, etc. according to the applicable standard.
  • a component carrier CC, Component Carrier
  • CC Component Carrier
  • information, parameters, and the like described in this specification may be expressed by absolute values, relative values to predetermined values, or other corresponding information.
  • a radio resource may be indicated by a specified index.
  • formulas and the like using these parameters may also be different from those explicitly disclosed in this specification.
  • the information, signals, etc. described in this specification may be represented using any of a variety of different technologies.
  • data, commands, instructions, information, signals, bits, symbols, chips, etc. may be transmitted through voltage, current, electromagnetic wave, magnetic field or magnetic particles, light field or photons, or any of them. combination to represent.
  • information, signals, etc. may be output from upper layers to lower layers, and/or from lower layers to upper layers.
  • Information, signals, etc. may be input or output via a plurality of network nodes.
  • Input or output information, signals, etc. can be stored in a specific location (such as memory), or can be managed through a management table. Imported or exported information, signals, etc. may be overwritten, updated or supplemented. Outputted information, signals, etc. can be deleted. Inputted information, signals, etc. may be sent to other devices.
  • Notification of information is not limited to the modes/embodiments described in this specification, and may be performed by other methods.
  • the notification of information may be through physical layer signaling (for example, downlink control information (DCI, Downlink Control Information), uplink control information (UCI, Uplink Control Information)), upper layer signaling (for example, radio resource control (RRC, Radio Resource Control) signaling, broadcast information (MIB, Master Information Block, System Information Block (SIB, System Information Block), etc.), media access control (MAC, Medium Access Control) signaling ), other signals, or a combination of them.
  • DCI downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may also be called L1/L2 (Layer 1/Layer 2) control information (L1/L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may also be called an RRC message, such as an RRC Connection Setup (RRC Connection Setup) message, an RRC Connection Reconfiguration (RRC Connection Reconfiguration) message, and the like.
  • the MAC signaling can be notified by, for example, a MAC control element (MAC CE (Control Element)).
  • notification of prescribed information is not limited to being performed explicitly, but may be performed implicitly (eg, by not notifying the prescribed information or by notifying other information).
  • judgment it can be performed by a value (0 or 1) represented by 1 bit, or by a true or false value (Boolean value) represented by true (true) or false (false), or by comparison of numerical values (such as a comparison with a specified value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise, shall be construed broadly to mean commands, command sets, code, code segments, program code, programs, Program, software module, application, software application, software package, routine, subroutine, object, executable, thread of execution, step, function, etc.
  • software, commands, information, etc. may be sent or received via transmission media.
  • transmission media For example, when sending from a website, server, or other remote source using wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL, Digital Subscriber Line), etc.) and/or wireless technology (infrared, microwave, etc.)
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL, Digital Subscriber Line), etc.
  • wireless technology infrared, microwave, etc.
  • system and "network” used in this specification are used interchangeably.
  • base station BS, Base Station
  • radio base station eNB
  • gNB gNodeB
  • cell gNodeB
  • cell group femtocell
  • carrier femtocell
  • a base station may house one or more (eg three) cells (also called sectors). When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also be connected by a base station subsystem (for example, a small base station for indoor use (Remote Radio Head (RRH, RRH, Remote Radio Head)) to provide communication services.
  • a base station subsystem for example, a small base station for indoor use (Remote Radio Head (RRH, RRH, Remote Radio Head)
  • RRH Remote Radio Head
  • the term "cell” or “sector” refers to a part or the entire coverage area of a base station and/or a base station subsystem that provides communication services in the coverage.
  • mobile station MS, Mobile Station
  • user terminal user terminal
  • UE User Equipment
  • terminal mobile station
  • a mobile station is also sometimes referred to by those skilled in the art as subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other appropriate term.
  • radio base stations in this specification may be replaced by user terminals.
  • each mode/embodiment of the present disclosure may be applied to a configuration in which communication between a radio base station and a user terminal is replaced with communication between multiple user terminals (D2D, Device-to-Device).
  • D2D Device-to-Device
  • the functions of the above-mentioned electronic equipment can be regarded as the functions of the user terminal.
  • words like "up” and “down” can be replaced with "side”.
  • uplink channels can also be replaced by side channels.
  • the user terminal in this specification can also be replaced by a wireless base station.
  • the above-mentioned functions of the user terminal may be regarded as functions of the first communication device or the second communication device.
  • a specific operation performed by a base station may also be performed by an upper node (upper node) in some cases.
  • various actions for communication with the terminal can be performed through the base station or one or more networks other than the base station.
  • Nodes such as Mobility Management Entity (MME, Mobility Management Entity), Serving-Gateway (S-GW, Serving-Gateway) can be considered, but not limited to this), or their combination.
  • LTE Long-term evolution
  • LTE-A Long-term evolution
  • LTE-B Long-term evolution
  • LTE-Beyond Super 3rd generation mobile communication system
  • IMT-Advanced 4th generation mobile communication system
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FAA Future Radio Access
  • New-RAT Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM Global System for Mobile Communications
  • CDMA3000 Code Division Multiple Access 3000
  • UMB Ultra Mobile Broadband
  • IEEE 920.11 Wi-Fi (registered trademark)
  • IEEE 920.16 WiMA
  • any reference to an element using designations such as “first”, “second”, etc. used in this specification does not limit the quantity or order of these elements comprehensively. These designations may be used in this specification as a convenient method of distinguishing between two or more units. Thus, a reference to a first unit and a second unit does not mean that only two units may be used or that the first unit must precede the second unit in some fashion.
  • determination (determining) used in this specification may include various actions. For example, regarding “judgment (determination)”, calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up) (such as tables, databases, or other Searching in the data structure), ascertaining (ascertaining) and the like are regarded as performing "judgment (determination)”. In addition, regarding “judgment (determination)”, receiving (receiving) (such as receiving information), transmitting (transmitting) (such as sending information), input (input), output (output), accessing (accessing) (such as access to data in the internal memory), etc., are deemed to be “judgment (determination)”.
  • judgment (determination) resolving (resolving), selecting (selecting), selecting (choosing), establishing (establishing), comparing (comparing), etc. can also be regarded as performing "judgment (determination)”. That is, regarding "judgment (determination)", several actions can be regarded as making "judgment (determination)”.
  • connection refers to any direct or indirect connection or combination between two or more units, which can be Including the following cases: between two units that are “connected” or “combined” with each other, there is one or more intermediate units.
  • the combination or connection between units may be physical or logical, or a combination of both. For example, "connect” could also be replaced with "access”.
  • two units may be considered to be connected by the use of one or more wires, cables, and/or printed electrical connections, and, as several non-limiting and non-exhaustive examples, by the use of , the microwave region, and/or the electromagnetic energy of the wavelength of the light (both visible light and invisible light) region, etc., are “connected” or “combined” with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本公开提供一种发送设备、接收设备和接收方法。所述接收设备,包括:接收单元,被配置为接收关于指示螺旋因子的调制参数的信息;控制单元,被配置为根据所述调制参数确定伪N阶第一类型调制,其中伪N阶第一类型调制的2^N个第一符号与M阶第二类型调制的2^M个第二符号中的一部分第二符号对应,M和N为正整数。

Description

发送设备、接收设备和接收方法 技术领域
本公开涉及无线通信领域,并且更具体地涉及一种调制方法以及相应的发送设备和接收设备。
背景技术
为了保证高数据速率,在6G通信系统中,要求充分利用全部可用于通信的频谱,例如厘米波(Sub-6GHz)、毫米波(mm Wave)、太赫兹(THz)、光通信频段等等。然而在高频段的状态下工作会给硬件设备带来一系列非理想行为。例如,射频振荡器产生的相位噪声等问题。这使得数学建模困难,严重影响系统功率效率、传输性能。
在第三代移动通信伙伴项目(3GPP)标准中广泛采用的QAM已被用于LTE、HSPA、802.11n、5G等多种宽带无线通信系统中。在QAM中,通过结合幅度与相位参数,充分利用整个信号平面,将全部矢量端点重新合理分布。从而在不减小端点位置最小欧式距离的情况下,增加信号矢量的端点数目,提高系统的抗干扰能力、频谱利用率。然而,QAM对抗相位噪声鲁棒性差,导致射频振荡器产生的相位噪声对系统传输带来显著负面影响。
根据相位噪声的来源,一般可以将相位噪声分为系统相位噪声和非系统相位噪声。系统相位噪声可以包括,例如,与频率处理设备有关的相位噪声,而非系统相位噪声可以包括,例如,与工作环境、信道条件、移动情况等有关的相位噪声。为了降低相位噪声带来的影响,通常会选择在发送端处进行的调制过程中或者在接收端处进行的检测、估计和解调过程中采用一些抗相噪技术。现有对抗相位噪声的方案主要包括:基于神经网络来对抗相位噪声、对发送端的调制模块进行修改或优化、由接收端的载波恢复模块对相位噪声进行抑制和补偿、以及在接收端软解调以对相位噪声干扰进行估计和补偿。
目前,螺旋(Spiral)结构星座调制(下文中又称为“螺旋调制”或“螺旋星座调制”)被认为具有显著的对抗相位噪声的性能。然而,虽然螺旋调制能够有效地对抗相位噪声,但是目前的螺旋调制未被5G等标准采用。并且,螺旋调制与例如QAM等针对高频谱效率的调制方案不兼容。这导致电子设备对 于不同的调制方法可能需要不同的收发器结构,使得硬件设计复杂。
发明内容
根据本公开的一个方面,提供了一种发送设备,包括:接收单元,被配置为获得待发送的比特序列;控制单元,被配置为根据关于相位噪声的信息,对待发送的比特序列进行伪N阶第一类型调制,其中伪N阶第一类型调制的2^N个第一符号与M阶第二类型调制的2^M个第二符号中的一部分第二符号对应,其中M和N为正整数。
根据本公开的另一方面,所述发送设备的控制单元根据比特到符号映射表对待发送的比特序列进行伪N阶第一类型调制。
根据本公开的另一方面,根据伪N阶第一类型调制,以N个第一比特为单位进行比特到符号映射;根据M阶第二类型调制,以M个第二比特为单位进行比特到符号映射,其中M大于N,且为正整数。
根据本公开的另一方面,伪N阶第一类型调制为伪N阶螺旋调制。
根据本公开的另一方面,伪N阶第一类型调制的2^N个第一符号是根据幅度加权参数和相位加权参数中的至少一个,基于2^M个第二符号确定的。
根据本公开的另一方面,根据螺旋因子确定与伪N阶第一类型调制对应的N阶第一类型调制中的符号,以及根据螺旋最外层的符号数确定螺旋因子。
根据本公开的又一方面,提供了一种接收设备,包括:接收单元,被配置为获得经过伪N阶第一类型调制后的符号;以及控制单元,被配置为根据关于相位噪声的信息对符号进行解调以获得接收比特序列,其中N为正整数。
根据本公开的另一方面,所述接收设备的控制单元根据比特到符号映射表对符号进行解调。
根据本公开的又一方面,提供了一种调制方法,包括:获得待发送的比特序列;根据关于相位噪声的信息,对待发送的比特序列进行伪N阶第一类型调制,其中伪N阶第一类型调制的2^N个第一符号与M阶第二类型调制的2^M个第二符号中的一部分第二符号对应,其中M和N为正整数。
根据本公开的另一方面,对待发送的比特序列进行伪N阶第一类型调制是基于比特到符号映射表进行的。
根据本公开的又一方面,提供了一种发送设备,包括:控制单元,被配置为根据关于相位噪声的信息确定调制与编码策略MCS索引;发送单元,被配 置为发送关于MCS索引的信息。
根据本公开的另一方面,所述发送设备的控制单元根据关于相位噪声的信息确定多个MCS表中的一个MCS表,以及从所确定的MCS表中确定MCS索引。
根据本公开的另一方面,所述发送设备的控制单元根据关于相位噪声的信息从所确定的MCS表中确定MCS索引。
根据本公开的另一方面,所确定的MCS表包括能够抗相位噪声的调制。
根据本公开的另一方面,所确定的MCS表还包括与能够抗相位噪声的调制不同的第二类型调制。
根据本公开的另一方面,所述能够抗相位噪声的调制为基于第二类型调制的伪螺旋调制。
根据本公开的另一方面,所述发送设备的发送单元还被配置为发送关于MCS表标识的信息,其中MCS表标识指示所确定的MCS表是否包括能够抗相位噪声的调制。
根据本公开的另一方面,所述发送设备还包括接收单元,被配置为接收关于MCS表标识的信息,并且所述发送设备的控制单元还被配置为根据所接收的关于MCS表标识的信息确定MCS表,并从所确定的MCS表中确定MCS索引。
根据本公开的另一方面,所述发送设备的发送单元还可以被配置为发送关于解调方式标识的信息,其中解调方式标识指示接收设备与发送设备使用的比特到符号映射表相同或不同。
根据本公开的又一方面,提供了一种接收设备,包括:接收单元,被配置为接收关于调制与编码策略MCS索引的信息;控制单元,被配置为根据接收到的关于MCS索引的信息来确定对应的MCS表以进行解调,其中MCS表包括能够抗相位噪声的调制。
根据本公开的另一方面,提供了一种接收设备。所示接收设备,包括:接收单元,被配置为接收关于指示螺旋因子的调制参数的信息;控制单元,被配置为根据所述调制参数确定伪N阶第一类型调制,其中伪N阶第一类型调制的2^N个第一符号与M阶第二类型调制的2^M个第二符号中的一部分第二符号对应,M和N为正整数。
可选择地,根据本公开的一个方面,所述调制参数还指示幅度加权参数 和相位加权参数中的至少一个。
可选择地,根据本公开的一个方面,所述调制参数还指示M和N中的至少一个。
可选择地,根据本公开的一个方面,关于的调制参数的信息直接包括关于所述螺旋因子的信息,所述控制单元根据关于所述螺旋因子的信息确定伪N阶第一类型调制。可替换地,关于的调制参数的信息包括关于调制参数表格索引的信息,所述控制单元根据所述关于调制参数表格索引的信息,在调制参数表格中确定螺旋因子,并且根据所确定的螺旋因子确定伪N阶第一类型调制。
可选择地,根据本公开的一个方面,接收设备还可包括发送单元。发送单元可被配置为向发送设备发送关于所述接收设备支持的调制方式的信息。
可选择地,根据本公开的一个方面,关于所述接收设备支持的调制方式的信息指示所述接收设备支持的M阶第二类型调制方式和伪N阶第一类型调制中的至少一个。
根据本公开的另一方面,提供了一种发送设备。所述发送设备包括:控制单元,配置为根据关于相位噪声的信息确定关于指示螺旋因子的调制参数的信息;以及发送单元,配置为发送关于所确定的关于调制参数的信息。
可选择地,根据本公开的一个方面,发送设备,还可包括接收单元,被配置为接收关于接收设备支持的调制方式的信息,其中所述控制单元还被配置为,根据所述关于接收设备支持的调制方式的信息,确定是否使用所述伪N阶第一类型调制。
根据本公开的又一方面,提供了一种接收方法,包括:接收关于指示螺旋因子的调制参数的信息;根据所述调制参数确定伪N阶第一类型调制,其中伪N阶第一类型调制的2^N个第一符号与M阶第二类型调制的2^M个第二符号中的一部分第二符号对应,M和N为正整数。
附图说明
通过结合附图对本公开实施例进行更详细的描述,本公开的上述以及其它目的、特征和优势将变得更加明显。附图用来提供对本公开实施例的进一步理解,并且构成说明书的一部分,与本公开实施例一起用于解释本公开,并不构成对本公开的限制。在附图中,相同的参考标号通常代表相同部件或 步骤。
图1示出有相位噪声时的螺旋调制的星座图的示意图。
图2A示出经过16QAM比特到符号映射后的符号的值。
图2B示出经过16螺旋调制比特到符号映射后的符号的值。
图3示出根据本公开一个实施例的发送设备的示意性框图。
图4A示出根据本公开的一个实施例的针对相位方差大小为0.04的基于1024QAM的伪16螺旋调制的星座图。
图4B示出根据本公开的一个实施例的针对相位方差大小为0.01的基于1024QAM的伪64螺旋调制的星座图。
图4C示出根据本公开的一个实施例的针对相位方差大小为0.04的基于1024QAM的伪64螺旋调制的星座图。
图5A-1和图5A-2示出图4A的伪16螺旋调制的比特到符号映射表。
图5B至图5F示出根据本公开的实施例的针对不同相位噪声的伪N阶螺旋调制比特到符号映射表的示例。
图6示出根据本公开一个实施例的与图3的发送设备对应的接收设备的示意性框图。
图7示出根据本公开一个实施例的发送设备的示意性框图。
图8A-图8E示出根据本公开一实施例的新MCS表的示例。
图9A-图9E示出根据本公开又一实施例的新MCS表的示例。
图10A-图10C示出根据本公开另一实施例的新MCS表的示例。
图11是示出根据本公开一个实施例的与图7的发送设备对应的接收设备的示意性框图。
图12示出根据本公开一个实施例的发送设备的示意性框图。
图13示出根据本公开一个实施例的与图12的发送设备对应的接收设备的示意性框图。
图14A示出根据本公开一个实施例的预先设置的调制参数表格的示意图。
图14B示出根据本公开另一实施例的预先设置的调制参数表格的示意图。
图15示出根据本公开一个实施例的与图3的发送设备对应的调制方法。
图16示出根据本公开一个实施例的与图6的接收设备对应的解调方法。
图17示出根据本公开一个实施例的与图7的发送设备对应的发送方法。
图18示出根据本公开一个实施例的与图11的接收设备对应的接收方法。
图19示出根据本公开一个实施例的与图12的发送设备对应的发送方法
图20示出根据本公开一个实施例的与图13的接收设备对应的接收方法。
图21示出根据本公开的实施例的所涉及的设备的硬件结构的示意图。
具体实施方式
为了使得本公开的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本公开的示例实施例。在附图中,相同的参考标号自始至终表示相同的元件。应当理解,这里所描述的实施例仅仅是说明性的,而不应被解释为限制本公开的范围。
在根据本公开的实施例中,发送设备可以是通信系统中的基站或终端等;相应地,接收设备可以是相对于发送设备的通信系统中的基站或终端等。这里所描述的基站可以提供针对特定地理区域的通信覆盖,其可以被称为小区、节点B、gNB、5G节点B、接入点和/或发送接收点等。这里所描述的终端可以包括各种类型的终端,例如用户装置(User Equipment,UE)、移动终端(或称为移动台)或者固定终端,然而,为方便起见,在下文中有时候可互换地使用终端和UE。例如,当发送设备为基站时,接收设备可以是UE、移动终端(或称为移动台)或者固定终端。反之,当发送设备为终端时,接收设备可以是基站。此外,在本公开的实施例中,发送设备和接收设备中的每个可以包括发送单元、控制单元和接收单元。然而,应当理解,发送设备和接收设备还可以包括其它单元。
在第三代移动通信伙伴项目(3GPP)标准中广泛采用的QAM已被用于LTE、HSPA、802.11n、5G等多种宽带无线通信系统中。在QAM中,通过结合幅度与相位参数,充分利用整个信号平面,将全部矢量端点重新合理分布。从而在不减小端点位置最小欧式距离的情况下,增加信号矢量的端点数目,提高系统的抗干扰能力、频谱利用率。然而,QAM对抗相位噪声鲁棒性差,导致射频振荡器产生的相位噪声对系统传输带来显著负面影响。
为了降低相位噪声带来的影响,通常会选择在发送端处进行的调制过程中或者在接收端处进行的检测、估计和解调过程中采用一些抗相噪技术。目前,螺旋调制被认为具有显著的对抗相位噪声的性能。图1示意性地示出了螺旋调制的星座图。当有相位噪声时,由于相位噪声对外侧幅度较大的星座点影响较大,如图1所示,经过螺旋调制的星座原点附近的星座点密度大, 而外侧星座点密度低。因此螺旋调制可有效地对抗相位噪声。
然而,虽然螺旋调制能够有效地对抗相位噪声,但是目前的螺旋星座调制未被5G等标准采用。并且,螺旋调制与例如QAM等针对高频谱效率的星座调制方案不同。这导致电子设备对于不同的调制方法可能需要不同的收发器结构,使得硬件设计复杂。
图2A示出了经过16QAM比特到符号映射后的符号的值。图2B示出了经过16螺旋调制比特到符号映射后的符号的值。如图2A和图2B中的表格所示,经过16QAM比特到符号映射后的符号的值与经过16螺旋调制比特到符号映射后的符号的值均不相同,换言之,相同调制阶数的QAM和螺旋调制得到的符号并不同。例如,经过调制比特到符号映射后的符号的值可以分为三个部分,包括功率归一化因子、实部(I)和虚部(Q)。以图2A中的
Figure PCTCN2022070808-appb-000001
为例,其中,
Figure PCTCN2022070808-appb-000002
为功率归一化因子,3为实部,1为虚部。参照图2A和图2B,明显的是,经过16QAM比特到符号映射后的符号的实部和虚部的值均为整数,例如,在前述图2A的示例中,实部的值为3,虚部的值为1,两者均为整数;而经过16螺旋调制比特到符号映射后的符号的值的实部或虚部的值均不是整数,例如,以图2B中的
Figure PCTCN2022070808-appb-000003
为例,其实部的值为5.1921,虚部的值为4.7272,显然两者均不是整数。因此,图2A中示出的16QAM与图2B中示出的16螺旋调制并不兼容。
由上可知,虽然螺旋调制能够有效地对抗相位噪声,但是与被标准广泛采用的、例如QAM等针对高频谱效率的调制方案不兼容。因此,希望能够提供同时满足不同需求,且与现有的通信标准中的调制方式兼容的调制方法和相应的电子设备。
以下,参照图3来说明根据本公开一些实施例的发送设备。图3是示出根据本公开一个实施例的发送设备300的示意性框图。如图3所示,根据本公开一个实施例的发送设备300可包括接收单元310和控制单元320。除了接收单元310和控制单元320,发送设备300还可以包括其它部件,然而,由于这些部件与本公开实施例的内容无关,因此在这里省略其图示和描述。
如图3所示,发送设备300的接收单元310可获得待发送的比特序列。然后,控制单元320可根据关于相位噪声的信息对待发送的比特序列进行伪N阶第一类型调制。
例如,发送设备300为基站,接收单元310可获得待发送的比特序列。此外,控制单元320可根据关于相位噪声的信息对待发送的比特序列进行伪N阶第一类型调制,以获得要向与该基站连接的UE发送的第一符号。
根据本公开的一些实施例,关于相位噪声的信息可以包括:关于相位噪声本身的信息、关于相位噪声的方差大小的信息、或者其它能够表征相位噪声的任何信息。基于不同的相位噪声的信息,控制单元320对待发送的比特序列进行的伪N阶第一类型调制可以不同。此外,即使进行的伪第一类型调制的调制阶数相同,控制单元320基于不同的相位噪声信息对待发送的比特序列进行的伪N阶第一类型调制后得到符号可能不同。下面可参照的图4A-图4C对此进行进一步描述。
在本公开的实施例中,伪N阶第一类型调制的2^N个第一符号与M阶第二类型调制的2^M个第二符号中的一部分第二符号对应,其中M和N为正整数。例如,在本公开的一些实施例中,可以通过使用M阶第二类型调制能够得到的2^M个第二符号中的一部分来模拟使用N阶第一类型调制能够得到的符号。根据本公开的实施例,可以将这种通过模拟方式进行的N阶第一类型调制,称为伪N阶第一类型调制,基于M阶第二类型调制的N阶第一类型调制,2^N第一类型调制_2^M第二类型调制或N阶第一类型调制-M阶第二类型调制。
第一类型调制和第二类型调制可以为不同的调制方法。在本公开的一些实施例中,第一类型调制可以是在现有的例如3GPP、802.11n等标准中未被使用的调制方式,并且第二类型调制是在现有的例如3GPP、802.11n等标准中使用的调制方式。从而根据本公开实施例中的方案,能够提供同时满足不同需求,且与现有的通信标准中的调制方式兼容的调制方法和相应的电子设备。
此外,第一类型调制可以是具有抗相位噪声(以下也可简称为“相噪”)性能的调制方式,并且第二类型调制是具有高频谱效率的调制方式。例如,第一类型调制可以是螺旋调制,第二类型调制可以是QAM,在这种情况下,可称为伪螺旋调制,或基于QAM的螺旋调制。例如,当N阶第一类型调制为16螺旋调制、M阶第二类型调制为1024QAM时,在这种情况下,可称为伪16螺旋调制或基于1024QAM的16螺旋调制,又或者可以简称为,例如,16螺旋调制_1024QAM或16螺旋-1024QAM。
在本公开的实施例中,可以通过使用M阶QAM能够得到的2^M个第二符号中的一部分来模拟使用N阶螺旋调制方式能够得到的符号。这样的伪N阶螺旋调制即保持了螺旋调制的抗相位噪声性能,同时保持了QAM的高频谱效率,并且该伪N阶螺旋调制还与现有的5G标准兼容。
下面将结合公式(1)至公式(3)详细描述,在本公开的实施例中,与伪N阶螺旋调制对应的N阶螺旋调制的星座图的确定。
根据本公开的至少一实施例,可以根据例如阿基米德螺线公式(即,x=te t)来设计与伪N阶螺旋调制对应的N阶螺旋调制的星座图。具体地,可以根据螺旋最外层的符号数M out和螺旋因子f s来确定N阶螺旋调制的星座图。例如,可以首先根据螺旋最外层的符号数M out确定螺旋因子f s,然后再根据所确定的螺旋因子f s确定N阶螺旋调制的星座图。在本公开的一些实施例中,可以首先通过下面的公式(1)来根据螺旋最外层的符号数M out确定螺旋因子f s值:
Figure PCTCN2022070808-appb-000004
基于通过上述公式(1)确定的螺旋因子f s,然后可以确定N阶螺旋调制的星座图。例如,基于所确定的螺旋因子f s,可以通过下面的公式(2)得到可用于阿基米德螺线公式的参数t n
Figure PCTCN2022070808-appb-000005
基于所得到的参数t n,可以再进一步通过下面根据阿基米德螺线公式的公式(3)来确定螺旋星座图的形状:
Figure PCTCN2022070808-appb-000006
其中,n为螺旋星座点的索引;
Figure PCTCN2022070808-appb-000007
N为螺旋星座的阶数;c n表示沿阿基米德螺旋线放置的N阶螺旋星座点。螺旋星座的阶数N可以是预先确定的、可替换的、也可以是根据信道环境确定的。然后,由归一化平均功率为1得到N阶螺旋调制的星座图。
在一些实施例中,根据关于相位噪声的信息,可以通过上述公式(1)-(3) 确定N阶螺旋星座点。例如,对于特定的相位噪声,可以先基于一组螺旋最外层的符号数M out得到一组候选螺旋因子f s值。然后,基于该组候选螺旋因子f s值和上述公式(2)及公式(3)得到相应的c n集合。然后从该c n集合中的找出当前情况下性能最佳的c n,即得到对抗当前相位噪声的最佳N阶螺旋调制的星座图。此外,根据本公开的一个示例,最佳N阶螺旋调制所对应的螺旋因子f s值即为最佳螺旋因子f s值。应理解,最佳螺旋因子值是在候选螺旋因子附近进行精细化搜索得到的,可与候选集合中的f s值相同或不同。
例如,对于特定的关于相位噪声的信息,螺旋最外层的符号数M out∈[8,15],基于上述公式(1)所得到的候选螺旋因子f s值则可以属于集合[3.46 2.77 2.27 1.89 1.60 1.37 1.19 1.04]×10 -3。再在这些候选螺旋因子f s值附近进行精细化搜索,具体而言,基于上述公式(2)和(3),确定与每个候选螺旋因子f s对应的c n,从而得到c n集合;然后对c n集合中的每个c n确定其在当前相位噪声下的抗相位噪声的性能,以确定性能最佳的c n,即在当前相位噪声影响下性能最佳的N阶螺旋调制的星座图。此外,可确定最佳的N阶螺旋调制的星座图所对应的螺旋因子f s值为候选螺旋因子f s值中及其附近的最佳螺旋因子f s值。
应理解,这里所描述的生成N阶螺旋调制的星座图的方法仅作为一种示例方法。根据本公开的实施例,还可以使用其它方法生成的N阶螺旋调制的星座图。
接下来,使用现有的M阶第二类型调制的星座图中的一部分星座点来模拟所确定的N阶螺旋调制的星座图,其中M大于N。根据本公开的一个示例,可根据幅度加权参数α和相位加权参数β中的至少一个,基于M阶第二类型调制的2^M个第二符号确定伪N阶螺旋调制的2^N个第一符号。也就是说,在得到上述N阶螺旋调制的星座图后,可以基于M阶第二类型调制的2^M个星座点,根据幅度加权参数α和相位加权参数β中的至少一个,确定伪N阶螺旋调制的2^N个星座点。
例如,以第二类型调制为QAM为例,在一些实施例中,可以基于M阶QAM的2^M个星座点,根据幅度加权参数α和相位加权参数β中的至少一个,确定伪N阶螺旋调制的2^N个星座点(即,N阶螺旋调制-M阶QAM)。具体地,首先利用穷举搜索的方法,将上述得到的N阶螺旋调制的星座图中的每个星座点与M阶QAM星座点进行比较,以从M阶QAM星座点中选取出 距离N阶螺旋调制的每个星座点径向法向加权距离最小的星座点来构成伪N阶螺旋调制的星座点,且QAM星座点不重复选取。即每个选挑选出的星座点的幅度差值与相位差值的加权值的和α(Δρ) 2+β(Δθ) 2最小,其中ρ为星座点到IQ坐标系(即,进行符号到星座点的映射的复坐标系)原点的距离(即幅度),θ为星座点与I轴正向间夹角(即相位),并且其中幅度加权参数α和相位加权参数β的取值分别与高斯噪声、相位噪声大小有关,以及α和β的值需满足α+β=1且在给定信道环境下搜索使所确定的伪N阶螺旋调制性能最佳的。
通过如上所述的方法,可以针对不同的相位噪声确定相应的螺旋星座参数f s及选点准则加权系数α、β。换言之,相位噪声改变时,螺旋星座参数f s及选点准则加权系数α、β也改变,从而依据上述方法确定的伪N阶螺旋星座实现了较好的抗相噪性能。然而,上述依据加权系数α、βα、β等参数确定伪N阶螺旋星座的方法相对复杂。根据本公开的另一实施例,可根据欧氏距离准则,基于2^M个第二符号确定伪N阶螺旋调制的2^N个第一符号。例如,利用穷举搜索的方法,将上述得到的N阶螺旋调制的星座图中的每个星座点与M阶QAM星座点进行比较,以在M阶QAM星座点中挑选出与上述得到的N阶螺旋调制的星座图中的每个星座点的欧式距离最小的点来构成伪N阶螺旋调制的星座点,且QAM星座点不重复选取。由此可得到基于欧式距离准则的伪N阶螺旋调制的2^N个星座点。与依据加权系数α、β等参数确定伪N阶螺旋星座的方法相比,根据欧氏距离准则确定伪N阶螺旋星座的方法复杂度更低。
通过如上所述的方法,可以针对不同的相位噪声,根据不同的螺旋因子f s和选点准则加权系数α和β,基于M阶第二类型调制(例如,QAM)生成相应的伪N阶螺旋调制,从而在实现抗相位噪声的性能的同时使其具有兼容性。下面将参照图4A-图4C描述通过上述方法得到的伪N阶螺旋调制的星座图的示例。
图4A-图4C示出了根据本公开的实施例的针对特定相位噪声的基于1024QAM星座图得到的伪螺旋调制的星座图。
图4A示出了根据本公开的一个实施例的针对相位噪声方差大小为0.04的基于1024QAM的伪16螺旋调制的星座图。在图4A所示的星座图中,黑色的“×”示出了针对相位噪声方差大小为0.04的伪16螺旋调制进行比特到符 号映射而获得的星座点。这些星座点是从根据1024QAM进行比特到符号映射而获得的星座点中,基于上述方法,挑选出的满足预定条件的点而得到的。具体地,相位噪声方差大小为0.04的情况下,可确定最佳螺旋因子f s值为0.00794,并由此得到16螺旋调制的星座图。再基于选点准则加权系数α=0.91和β=0.09并根据径向法向分量加权和最小,从1024QAM的星座点中确定如图4A所示的伪16螺旋调制的16个星座点,从而得到伪16螺旋调制的星座图。
图4B示出了根据本公开的一个实施例的针对相位噪声方差大小为0.01的基于1024QAM的伪64螺旋调制的星座图。类似地,该星座图中的星座点是在相位噪声方差大小为0.01的情况下,确定了最佳螺旋因子f s值为0.00352及其对应的64螺旋调制的星座图,再基于选点准则加权系数α=0.88和β=0.12并根据径向法向分量加权和最小,从1024QAM的星座点中确定的。图4C示出了根据本公开的一个实施例的针对相位噪声方差大小为0.04时基于1024QAM的伪64螺旋调制的星座图,其中,该星座图中的星座点是在相位噪声方差大小为0.04的情况下,确定了最佳螺旋因子f s值为0.00728及其对应的64螺旋调制的星座图,再基于α=0.98和β=0.02并根据径向法向分量加权和最小,从1024QAM的星座点中确定的。图4B和图4C中示出的伪64螺旋调制的星座图的具体形成方式与上面关于图4A中示出的伪16螺旋调制的星座图的描述类似,这里不再赘述。
此外,参照图4B和图4C可知,针对相位噪声方差大小为0.01的伪64螺旋调制的星座图(如图4B所示)与针对相位噪声方差大小为0.04的伪64螺旋调制的星座图(如图4C所示)不同。也就是说,针对不同相位噪声的相同调制阶数的螺旋调制不同。另外,参照图4A和图4B可知,针对不同相位噪声的不同调制阶数的螺旋调制显然也不同。
在以上结合图3和图4描述的示例中,通过使用M阶第二类型调制(例如,QAM)能够得到的2^M个第二符号中的一部分来模拟使用N阶第一类型调制(即,螺旋调制)能够得到的符号而得到的伪螺旋调制,不仅保证了兼容性,还保留了螺旋调制能够有效地对抗相位噪声的能力。换言之,根据本公开的实施例的伪螺旋调制在确保了兼容性的同时实现了对抗相位噪声的优点。
返回图3,根据本公开的一个示例,发送设备300的控制单元320可根 据比特到符号映射表对待发送的比特序列进行伪N阶第一类型调制。如上所述,伪N阶第一类型调制的2^N个第一符号与M阶第二类型调制的2^M个第二符号中的一部分第二符号对应,因此,可以基于M阶第二类型调制的比特到符号映射表确定伪N阶第一类型调制的比特到符号映射表,并可以预先存储所确定的伪N阶第一类型调制的比特到符号映射表用于伪N阶第一类型调制。
根据本公开的一些实施例,在进行伪N阶第一类型调制时,可以以N个第一比特为单位进行比特到符号映射;而在基于M阶第二类型调制进行比特到符号映射时,可以以M个第二比特为单位进行比特到符号映射,其中N和M为正整数且M大于N。进一步地,以N个第一比特为单位进行伪N阶第一类型调制比特到符号映射所得到的符号可以与以M个第二比特为单位进行M阶第二类型调制比特到符号映射所得到的符号相同。下面将以图4A中示出的针对相位噪声方差大小为0.04的伪16螺旋调制的星座图为例,结合图5A-1和图5A-2,详细描述该伪16螺旋调制的比特到符号映射表及其生成方法。
图5A-1示出了针对相位噪声方差为0.04的伪16螺旋调制的比特到符号映射表。图5A-2则进一步示出了图5A-1中的伪16螺旋调制的比特到符号映射表中的符号与3GPP的5G NR标准中的1024QAM比特到符号映射表中的符号的一部分的对应关系。如以上结合图4A所描述的,上述针对相位噪声方差为0.04的伪16螺旋调制的星座图中的16个星座点均是从1024QAM的星座图的星座点中挑选出来的,即伪16螺旋调制的星座图中的16个星座点与1024QAM的星座图的1024个星座点中一部分对应。因此,可根据1024QAM的比特到符号映射表确定伪16螺旋调制的比特到符号映射表,即图5A-1中示出的比特到符号映射表,从而可获得相应的伪16螺旋调制的比特到符号映射关系。如图5A-2所示,在进行伪16螺旋调制时,可以以4个第一比特为单位进行比特到符号映射;而进行1024QAM时,则可以以10个第二比特为单位进行比特到符号映射。例如,在确定针对相位噪声方差为0.04的伪16螺旋调制的比特到符号映射表时,若符号
Figure PCTCN2022070808-appb-000008
所对应的1024QAM的星座图中的星座点被挑选出来作为伪16螺旋调制的星座图中的一个星座点,则使用1024QAM的比特到符号映射表对于比特1001010101进行映射而得到的符号
Figure PCTCN2022070808-appb-000009
将被包含在该伪16螺旋调制的比特到符号映射表中,并 且在进行伪16螺旋调制时,可以以4个比特为单位进行比特到符号映射。基于类似的方法,可以根据1024QAM的比特到符号映射表中的符号的一部分来确定伪16螺旋调制的比特到符号映射表中的所有16个符号,并且这些符号既可以根据伪16螺旋调制以4个比特为单位进行比特到符号映射而得到,也可以根据伪1024QAM调制以10个比特为单位进行比特到符号映射而得到,如图5A-2所示的那样。例如,如图5A-2所示,以0011进行的伪16螺旋调制比特到符号映射所得到的符号与以1011001111进行的1024QAM比特到符号映射所得到的符号相同。然而,应当理解,由于1024QAM中的功率归一化因子是针对1024个星座点得到的,而伪16螺旋调制的功率归一化因子是针对16个星座点得到的,因此在一些情况下,经过伪16螺旋调制比特到符号映射所得到的符号与经过1024QAM比特到符号映射所得到的符号的功率归一化因子可能不同,但是,在对两者进行功率归一化之前的取值存在对应关系,即I(幅度)、Q(相位)的取值有对应关系。因此,根据本公开实施例的伪螺旋调制在实现抗相位噪声的同时,也具备了与现有QAM的兼容性。
另一方面,当确定了伪16螺旋调制的比特到符号映射表中的所有16个符号,可以基于预先设置的条件生成伪16螺旋调制的比特到符号映射表。例如,可以基于格雷映射生成伪16螺旋调制的比特到符号映射表,即满足对比特到符号映射表中相差1的两个比特序列进行映射而得到的两个符号所对应的两个星座点在伪螺旋调制星座图中的螺旋线上相邻(或从相位噪声角度看,两个星座点距离最近),从而确定了如图5A-1所示的伪16螺旋调制的比特到符号映射表。此外,不同于一般的经过16螺旋调制比特到符号映射后的符号的值,经过图5A-1示出的伪16螺旋调制比特到符号映射后的符号的值的实部和虚部的值均为整数(例如,符号
Figure PCTCN2022070808-appb-000010
的实部的值为1,虚部的值为15,两者皆为整数),由此同样可知,根据本公开实施例得到的伪螺旋调制可以与现有的通信标准中的调制(例如,QAM)方式兼容。
图5B至图5F示出了根据本公开的实施例的针对不同噪声的伪N阶螺旋调制比特到符号映射表的更多示例。具体地,图5B示出了针对相位噪声方差为0.06的伪16螺旋调制的比特到符号映射表,其中,该比特到符号映射表中的符号是根据由f s=0.01441、α=0.97和β=0.03确定的伪16螺旋调制的星座点与1024QAM的星座点中的一部分的对应关系而从1024QAM的比特到符号映射表中的符号的一部分确定的。图5C示出了针对相位噪声方差 为0.08的伪16螺旋调制的比特到符号映射表,其中,该比特到符号映射表中的符号是根据由f s=0.00175、α=0.25和β=0.75确定的伪16螺旋调制的星座点与1024QAM的星座点中的一部分的对应关系而从1024QAM的比特到符号映射表中的符号的一部分确定的。图5D示出了针对相位噪声方差为0.01的伪64螺旋调制的比特到符号映射表,其中,该比特到符号映射表中的符号是根据由f s=0.00352、α=0.88和β=0.12确定的伪64螺旋调制的星座点与1024QAM的星座点中的一部分的对应关系而从1024QAM的比特到符号映射表中的符号的一部分确定的。图5E示出了针对相位噪声方差为0.04的伪64螺旋调制的比特到符号映射表,其中,该比特到符号映射表中的符号是根据由f s=0.00728、α=0.98和β=0.02确定的伪64螺旋调制的星座点与1024QAM的星座点中的一部分的对应关系而从1024QAM的比特到符号映射表中的符号的一部分确定的。图5F示出了针对相位噪声方差为0.08的伪64螺旋调制的比特到符号映射表,其中,该比特到符号映射表中的符号是根据由f s=0.01065、α=0.92和β=0.08确定的伪64螺旋调制的星座点与1024QAM的星座点中的一部分的对应关系而从1024QAM的比特到符号映射表中的符号的一部分确定的。这些比特到符号映射表的形成与上述关于图5A-1和图5A-2的描述类似,这里不再赘述。
以下,参照图6来说明根据本公开一些实施例的接收设备。图6是示出根据本公开一个实施例的接收设备600的示意性框图。如图3所示,根据本公开一个实施例的接收设备600可包括接收单元610和控制单元620。
如图6所示,接收设备600的接收单元610可获得经过伪N阶第一类型调制后的符号。例如,接收设备600为UE时,接收单元610可获得由发送设备300(例如,基站)发送的经过伪N阶第一类型调制后的符号。
根据本公开的一些实施例,如上所述,这里的伪N阶第一类型调制的2^N个第一符号与M阶第二类型调制的2^M个第二符号中的一部分第二符号对应,其中M和N为正整数且M大于N。例如,可以通过使用M阶第二类型调制能够得到的2^M个第二符号中的一部分来模拟使用N阶第一类型调制能够得到的符号。
例如,可根据以上结合公式(1)-(3)以及图4A-图4C所示的方式来根据使用M阶第二类型调制能够得到的2^M个第二符号中的一部分来模拟使用N阶第一类型调制能够得到的符号,这里不再详述。
接收经过伪N阶第一类型调制后的符号后,接收设备600的控制单元620可以根据关于相位噪声的信息对符号进行解调,以获得接收比特序列。如上所述,关于相位噪声的信息可以包括:关于相位噪声本身的信息、关于相位噪声的方差大小的信息、或者其它能够表征相位噪声的任何信息。接收设备600的控制单元620然后可以根据比特到符号映射表对接收到的符号进行解调。
例如,控制单元620可以根据如上所述的针对不同相位噪声的比特到符号映射表对符号进行解调,从而获得接收比特序列。在一些实施例中,针对不同相位噪声的比特到符号映射表可以是基于M阶第二类型调制的比特到符号映射表所确定伪N阶第一类型调制的比特到符号映射表,例如,图5A-1、图5A-2以及图5B-图5F中示出的伪螺旋比特到符号映射表。根据上述比特到符号映射表,控制单元620即可以根据所述伪N阶第一类型调制进行解调,以获得以N个第一比特为单位的比特序列,也可以根据M阶第二类型调制进行解调,以获得M个第二比特为单位的比特序列。例如,在一些实施例中,如果接收设备600的接收单元620获得经过伪16螺旋调制后的符号,其控制单元620可以根据伪16螺旋调制进行解调,以获得包含4个比特的比特序列。可替换地,可以根据1024QAM进行解调,以获得包含10个比特的比特序列,再根据10个比特与4个比特的对应关系,即如图5A-2所示的1024QAM与16螺旋的比特对应关系,得到发送的4个比特为单位的比特序列。
根据本公开的另一实施例,发送设备可根据关于相位噪声的信息确定调制方式,并向接收设备发送关于所确定的调制方式的信息。相应地,接收设备可根据关于调制方式的信息来确定调制方式,以便进行解调。
例如,可在目前各个标准中使用的MCS表中增加关于伪N阶第一类型调制的条目或者增加关于伪N阶第一类型调制的MCS表。发送设备可根据关于相位噪声的信息确定调制与编码策略(MCS)索引,并且通过向接收设备发送关于MCS索引的信息来指示调制方式。这里,关于MCS索引的信息可以包括MCS索引本身的信息;在存在多个MCS表的情况下,也可以包括关于特定MCS表及MCS索引的信息。从而可以通过与目前的MCS确定类似的方法来确定关于伪N阶第一类型调制方式。
又例如,发送设备可根据关于相位噪声的信息直接向接收设备发送调制 参数的信息以指示调制方式。从而不需要对现有的MCS表进行修改,也可确定关于伪N阶第一类型调制方式。
以下将结合图7对发送设备根据关于相位噪声的信息确定MCS索引的示例进行描述。图7是根据本公开另一示例的发送设备700的示意性框图。
如图7所示,根据本公开另一实施例的发送设备700可包括控制单元720和发送单元730。除了控制单元720和发送单元730,发送设备700还可以包括其它部件,然而,由于这些部件与本公开实施例的内容无关,因此在这里省略其图示和描述。此外,与发送设备300类似,发送设备700可以是通信系统中的基站或终端等。
如图7所示,发送设备700的控制单元720可以根据关于相位噪声的信息确定调制与编码策略(MCS)索引。例如,在一些实施例中,发送设备700的控制单元720可以根据关于相位噪声的信息从多个MCS表中确定一个MCS表,并从所确定的MCS表中确定MCS索引。然后,发送设备700的发送单元730可以发送关于MCS索引的信息。
现有5G NR标准中包含5个可用于不同的需求(例如,高频谱效率(SE)、低峰值均值比(PAPR)等)QAM的MCS表,其中的三个MCS表可用于物理下行链路共享信道(PDSCH)传输的调制与编码,而另外两个MCS表可用于物理上行链路共享信道(PUSCH)传输的调制与编码。然而这些MCS表均缺少抗相位噪声的调制方式,换言之,现有的MCS表仅适用于QAM而不包含能够对抗相位噪声的调制。为了解决这一问题,本公开的一些实施例还提供了包含关于上述针对不同相位噪声的伪螺旋调制方式的MCS表。
例如,在一些实施例中,可以用伪螺旋调制方式替换目前MCS表中的部分调制方式,以生成与现有5G NR标准相同MCS索引数的新MCS表。图8A-图8E示出了根据本公开的实施例的新MCS表,其中,新MCS表具有与现有NR标准相同的MCS索引数(即MCS索引数为5比特)。
具体地,使用基于前述方法得到的N阶螺旋调制-M阶QAM调制方式替换现有5G NR标准中的部分调制方式。例如,可以使用16螺旋-1024QAM调制方式替换现有5G NR标准中与16QAM相关的调制方式中的至少部分。类似地,可以使用64螺旋-1024QAM调制方式替换现有5G NR标准中与64QAM相关的调制方式中的至少部分;可以使用256螺旋-1024QAM调制方式替换现有5G NR标准中与256QAM相关的调制方式中的至少部分。
例如,如图8A所示的MCS表,使用了16螺旋-1024QAM调制方式和64螺旋-1024QAM调制方式替换了现有的用于PDSCH的MCS索引表1中的部分调制方式,使得所得到的新MCS表包含伪16螺旋调制方式和伪64螺旋调制方式,因此该新MCS表能够提供抗相位噪声的调制方式,即伪螺旋调制方式,并且由此得到的新MCS表中包含的调制方式的总数不变,所以MCS指示开销也保持不变。此外,虽然图8A中的MCS索引表中针对不同码率使用了相同的16螺旋-1024QAM或64螺旋-1024QAM,但本公开对此不作限制,在另一些实施例中,也可以针对不同的码率使用不同的16螺旋-1024QAM或64螺旋-1024QAM。例如,在不同码率条件下,所使用的伪螺旋调制的星座图中的螺旋最外层的符号数可以不同。
例如,在一些实施例中,可在目前的MCS表中添加伪螺旋调制方式以生成新MCS表,所生成的新MCS表在保留了现有的全部调制方式的同时,增加了能够抗相位噪声的调制方式。然而,应当理解,随着所生成的新MCS表中的调制方式的总数的增加,MCS指示开销也相应增加。图9A-图9E示出了根据本公开的实施例的新MCS表,其中,新MCS表具有与现有NR标准相比更多的MCS索引数(即MCS索引数大于5比特)。
具体地,将基于上述方法得到的N阶螺旋调制-M阶QAM调制方式添加到现有5G NR标准所使用的MCS表中。例如,可以添加16螺旋-1024QAM调制方式,从而使现有5G NR标准所使用的MCS表中与16QAM相关的MCS索引数增加。类似地,可以添加64螺旋-1024QAM调制方式,从而使现有5G NR标准所使用的MCS表中与64QAM相关的MCS索引数增加;可以添加256螺旋-1024QAM调制方式,从而使现有5G NR标准所使用的MCS表中与256QAM相关的MCS索引数增加。
例如,图9A示出了在现有的用于PDSCH的MCS索引表1中增加了16螺旋-1024QAM调制方式和64螺旋-1024QAM调制方式,并形成MCS索引数为6比特的新MCS表。从而使得所生成的新MCS表不仅包含了伪螺旋调制方式而因此能够进行抗相位噪声的调制,同时也保留了现有表中的所有调制方式。
此外,在一些实施例中,还可以仅使用伪螺旋调制方式生成新的MCS表,或者使用现有的抗相位噪声调制方式和伪螺旋调制方式一起以生成新的MCS表。现有的抗相位噪声调制可以包括,例如,二进制相移键控(BPSK) 调制、正交相移键控(QPSK)调制等。图10A-图10C示出了根据本公开的实施例的新MCS表,其中,新MCS表只包含能够抗相位噪声的调制方式,包括:螺旋(Spiral)调制、根据本公开实施例得到的伪螺旋调制、BPSK调制、QPSK调制等。
例如,可以仅使用不同调制阶数的伪螺旋调制方式生成新的MCS表。如图10A的新MCS表所示,该MCS表仅包含16螺旋-1024QAM调制方式以及64螺旋-1024QAM调制方式。由于低阶调制本身对于相位噪声不敏感,本公开仅以包含16螺旋-1024QAM调制方式和64螺旋-1024QAM调制方式的MCS表作为示例,但不是作为限制性的。在另一些实施例中,新MCS表也可以包括其它调制阶数的伪螺旋调制方式,例如,256螺旋或伪螺旋调制方式等。
例如,还可以基于现有的抗相位噪声调制(例如,BPSK调制、QPSK调制等)的调制方式,添加伪螺旋调制方式以生成新的MCS表。如图10B和图10C所示的MCS表,除了不同调制阶数伪螺旋调制方式以外,还包括BPSK调制方式、PI/2BPSK调制方式、PI/4BPSK调制方式、QPSK调制方式、PI/4QPSK调制方式等。不同于图8A-图8E和图9A-图9E中示出的MCS表,由此得到的新MCS表可以提供多种抗相位噪声的调制方式,而不仅限于伪螺旋调制方式。
并且进一步地,上述根据本公开实施例形成的只包含能够抗相位噪声的调制方式的MCS表可以与现有5G NR标准中的MCS表结合使用,通过额外的指示比特根据是否存在相位噪声来指示是使用能够抗相位噪声调制的新MCS表还是现有的仅包含QAM调制方式的MCS表,从而实现在多套MCS表中的灵活选择。关于从多套MCS表(包括新MCS表和现有的MCS表)中选择要使用的MCS表的进一步示例将在后面详细描述。
此外,根据本公开的一些实施例,上述所有示出的新MCS表中的伪螺旋调制方式可以是针对相同的相位噪声。附加地或替代地,新MCS表中的伪螺旋调制方式也可以是针对不同的相位噪声。根据本公开的另一示例,当特定的MCS表中包括针对不同相位噪声的伪螺旋调制方式时,图7所示的发送设备700的控制单元720还可以配置为根据关于相位噪声的信息(例如,相位噪声方差)从该特定的MCS表中确定MCS索引。
如图9A所示,图9A中的MCS表不仅包含了不同调制阶数的伪螺旋调 制方式,并且还包含了针对不同相位噪声的相同调制阶数的伪螺旋调制方式。例如,图9A中的MCS表的索引数32对应于低相位噪声的伪16螺旋调制,而索引数33对应于高相位噪声的伪16螺旋调制。又例如,图9E中的MCS表的索引数57、58和59分别对应于低相位噪声、中相位噪声和高相位噪声的伪64螺旋调制方式。如上所示,当新MCS表中的伪螺旋调制方式是针对不同的相位噪声时,图7所示的发送设备700的控制单元720需要首先根据关于相位噪声的信息确定要使用的MCS表,然后再次根据关于相位噪声的信息,从所确定的MCS表中确定MCS索引及相应的调制方式。
根据本公开的另一示例,控制单元720还可使用除了关于相位噪声的信息以外的其他信道测量结果来确定MCS索引。
此外,根据本公开的另一实施例,通信系统中可同时存在上述包含能够抗相位噪声的调制方式的新MCS表(例如,图8A-图8E、图9A-图9E和图10A-图10C中示出的MCS表)以及现有标准中所使用的MCS表。根据本公开的一个示例,可根据是否存在相位噪声来指示是使用包含抗相位噪声调制方式的新MCS表还是现有的仅包含QAM调制方式的MCS表。
例如,接收设备可向发送设备反馈是否需要关于MCS表标识的信息。当接收设备的反馈指示需要关于MCS表标识的信息时,发送设备可根据接收设备的反馈向接收设备发送关于MCS表标识的信息。又例如,发送设备可根据关于相位噪声的信息确定是否使用包含能够抗相位噪声的调制方式的新MCS表,并且当确定使用包含能够抗相位噪声的调制方式的新MCS表时,主动向接收设备发送关于MCS表标识的信息。
例如,如图7所示的发送设备700还可以可选地包括接收单元710(虚线框示出),被配置为接收关于MCS表标识的信息,并且发送设备700的控制单元720还可被配置为根据所接收的关于MCS表标识的信息确定MCS表,并从所确定的MCS表中确定MCS索引。
在一些实施例中,关于MCS表标识的信息可以是,例如,I flag,用于指示是否需要使用包含抗相位噪声调制方式的MCS表。根据本公开的一些实施例,发送设备先接收I flag,然后根据接收到的I flag从多个MCS表中确定要使用的MCS表,并从所确定的MCS表中确定相应的MCS索引。例如,多个MCS表可以包括上述如图8A-图8E或图9A-图9E或图10A-图10C中示出的新MCS表以及现有5G NR标准中MCS表,这些MCS表可以被预先存储 在发送设备和接收设备的至少一个中。从而发送设备从多个MCS表中对于所接收的关于I flag的信息进行有针对性的选择,提高了发送设备确定的MCS表的效率。
例如,在一些实施例中,如图7所示的发送设备700的接收单元710接收到用于指示是否需要包括抗相位噪声调制方式的MCS表的I flag,其中,I flag=1表示需要包括抗相位噪声调制方式的MCS表,I flag=0表示不需要包括抗相位噪声调制方式的MCS表。I flag可通过无线资源控制(Radio Resource Control,RRC)信令、质访问控制-控制元素(Medium Access Control-Control Element,MAC CE)、上行链路控制信息(Uplink Control Information,UCI)等信令进行传输。在另一些实施例中,I flag的取值可以不仅限于0和1,例如,I flag∈{0,1,2,…},其中,除0外的每个值对应于多个包括抗相位噪声调制方式的MCS表(诸如,图8A-图8E、图9A-图9E和图10A-图10C中示出的MCS表)中的一个,例如,不同的I flag的取值可以对应于不同的包括抗相位噪声调制方式的MCS表,诸如针对不同相位噪声的MCS表。在接收到信令I flag之后,发送设备700的控制单元720然后根据接收到的I flag,从多个MCS表中确定要使用的MCS表,例如,当接收I flag=1时,表示需要包含抗相位噪声调制方式的MCS表,则控制单元720可以从多个MCS表中选择例如包含伪螺旋调制方式的MCS表中的一个,例如,图8A-图8E、图9A-图9E和图10A-图10C中示出的MCS表中的一个;当接收I flag=0时,表示不需要包含伪螺旋调制方式的MCS表,则控制单元720从多个MCS表中选择现有5G NR标准中仅包含QAM调制方式的MCS表中一个。基于所确定的MCS表,发送设备700的控制单元720可以进一步根据,例如,接收到的其它信息(诸如,参考信号接收功率(RSRP)、参考信号接收质量(RSRQ)等)从所确定的MCS表中确定对应的MCS索引,进而根据该确定的MCS索引来确定所要使用的调制阶数(Q m)和目标码率(R),从而进行调制。
根据本公开的另一些实施例,发送设备也可以根据关于相位噪声的信息自行确定MCS表及MCS索引,并发送关于该MCS索引的信息。从而发送设备向接收设备通知是否使用了能够抗相位噪声的调制方式,以便于接收设备从多个MCS表中对于所接收的关于I flag的信息进行有针对性的选择,提高了接收设备确定的MCS表的效率。
例如,在一些实施例中,如图7所示的发送设备700的控制单元720可 以根据相位噪声或相位噪声方差确定是否需要包含抗相位噪声调制方式的MCS表。例如,若相位噪声(或相位噪声方差)小,可选择现有5G NR标准中QAM的MCS表中一个并确定MCS索引;若相位噪声(和/或相位噪声方差)大,则选择包含伪螺旋调制方式的MCS表中的一个并确定MCS索引。例如,可以根据接收到的其它信息(诸如,参考信号接收功率(RSRP)、参考信号接收质量(RSRQ)等)从所确定的MCS表中确定对应的MCS索引,进而根据该确定的MCS索引来确定所要使用的调制阶数(Q m)和目标码率(R),从而进行调制。
根据本公开的一些实施例,发送单元还可以发送关于MCS表标识的信息,以指示使用的MCS表。例如,图7的发送设备700的发送单元730还可以被配置为发送关于所确定的MCS表标识的信息,该MCS表标识可以指示MCS表是否包括能够抗相位噪声的调制。
例如,在一些实施例中,当发送设备(例如,图7的发送设备700)确定了MCS索引之后,可以生成关于所确定的MCS表标识的信息,例如用于指示是否需要抗相位噪声的MCS表的I flag。如果MCS索引是从现有5G NR标准中的MCS表中确定的,则生成I flag=0;如果MCS索引是从包含伪螺旋调制方式的MCS表中确定的,则生成I flag=1。应当理解,在其它一些实施例中,所生成的I flag的取值可以不仅限于0和1,例如,I flag∈{0,1,2,…},其中,除0外的每个值对应于包含伪螺旋调制方式的MCS表中的一个。然后,发送设备700的发送单元730可以将关于的I flag和MCS索引的信息一起或分别发送给其它设备。例如将关于I flag的信息通过RRC、MAC CE、下行链路控制信息(Downlink Control Information,DCI)等发送给其它设备。
例如,发送设备可以基于3GPP标准中已有的确定MCS表的选择方式和已有的信令来指示是否选择抗相位噪声的MCS表。例如,对于下行传输,图7的发送设备700可以复用TS38.214的5.1.3.1的流程,在DCI中,将与MCS表相关参数设定为Spiral或PhaseNoise或PN,以指示是否使用包含抗相位噪声的调制方式的MCS表。可替换地,可以在下行传输中增加高层参数ifSpiral或ifPhaseNoise或ifPN,以指示MCS表标识I flag。当ifSpiral或ifPhaseNoise或ifPN=1时,指示使用包含抗相位噪声的调制方式的MCS表。类似地,对于上行传输,也可以通过增加高层参数ifSpiral或ifPhaseNoise或ifPN来指示是否使用包含抗相位噪声的调制方式的MCS表,例如,当ifSpiral或 ifPhaseNoise或ifPN=1时,使用包含抗相位噪声的调制方式的MCS表。
根据本公开另一些实施例,发送设备还可以发送关于解调方式标识的信息,用于指示接收设备的调制方式。例如,发送设备可以指示接收设备使用与发送设备相同的调制方式进行解调;可替代地,发送设备可以指示接收设备使用与发送设备不同的调制方式进行解调。
以图7中的发送设备700为例,发送设备700的发送单元730可以被配置为(例如,向接收设备)发送关于解调方式标识I decode的信息,用于指示接收设备的解调方式,例如是否采用能够对抗相位噪声的解调方式。关于解调方式标识I decode的信息可以通过RRC、MAC CE、DCI等发送给其它设备。相应地,响应于接收到的I decode,接收设备可以根据I decode的指示选择相应的解调方式。
在一些实施例中,可以根据I decode的不同取值来指示接收设备的解调方式。例如,I decode=0可以表示指示接收设备使用与发送设备用于调制的比特到符号映射表相同的比特到符号映射表进行解调;I decode=1可以表示指示接收设备使用与发送设备用于调制的比特到符号映射表不同的比特到符号映射表进行解调。在另一些实施例中,I decode的取值可以不仅限于0和1,例如,I decode∈{0,1,2,…},其中,除0外的每个值分别对应于与发送设备用于调制的比特到符号映射表不同的多个比特到符号映射表中相应的一个。
例如,发送设备可以使用M阶第二类型调制方式对待发送的比特序列进行调制,并得到要发送给接收设备的符号;发送设备然后可以将要发送的符号和指示接收设备使用伪N阶第一类型调制进行解调的I decode一起发送给接收设备。例如,当发送设备700为基站时,基站可以使用16螺旋-1024QAM的调制方式对一组比特序列进行调制,并得到要发送给UE的符号。基站可向UE发送了经16螺旋-1024QAM调制后的符号以及指示使用1024QAM进行解调的I decode,则UE使用1024QAM对接收到的符号进行解调,以获得16螺旋-1024QAM对应的比特序列。在这种情况下,发送设备和接收设备可以分别根据不同的比特到符号映射表进行调制和解调,从而即使接收设备仅支持例如QAM等传统的解调方式而不支持伪螺旋解调方式,仍然可以使用传统的接收解调算法来接收伪螺旋星座数据。因此,降低了对接收设备的要求,并且提高了兼容性。
此外,根据本公开的另一实施例,接收单元710还可以接收关于接收设 备支持的调制方式的信息。控制单元720还可根据所述关于接收设备支持的调制方式的信息,确定适用于接收设备的MCS索引。例如,关于所述接收设备支持的调制方式的信息指示可包括接收设备支持的M阶第二类型调制方式和伪N阶第一类型调制中的至少一个。
以下,参照图11来说明根据本公开另一实施例的与发送设备700对应的接收设备。图11是示出根据本公开一个实施例的接收设备1100的示意性框图。如图11所示,根据本公开一个实施例的接收设备1100可包括接收单元1110和控制单元1120。
如图11所示,接收设备1100的接收单元1110可以被配置为接收关于MCS索引的信息,并且接收设备1100的控制单元1120可以根据接收到的关于MCS索引的信息来确定对应的MCS表以进行解调。
根据本公开的一实施例,接收设备1100的控制单元1120可以根据接收到的关于MCS索引的信息从预先存储的多个MCS表中确定要使用的MCS表并确定所要使用的调制阶数(Q m)和目标码率(R),从而进行解调。在一些实施例中,预先存储的多个MCS表可以包括能够抗相位噪声的调制方式的MCS表,例如,根据上面图8A-图8E、图9A-图9E和图10A-图10C中示出的MCS表,这里不再详述。当根据接收到的关于MCS索引的信息所确定的MCS表为包括能够抗相位噪声的调制方式的MCS表时,例如,所确定的MCS表包括能够抗相位噪声的伪N阶第一类型调制方式,在一些实施例中,接收设备1100的控制单元1120可以使用该伪N阶第一类型调制方式(诸如,伪N阶螺旋调制)进行解调。在一些实施例中,所确定的MCS表还可以包括与所述能够抗相位噪声的调制不同的第二类型调制,例如,QAM。
根据本公开的另一实施例,接收设备1100还可以配置为接收关于解调方式标识的信息,并根据该解调方式标识的信息进行解调,其中解调方式标识可以指示接收设备1100使用与发送设备调制方式相同的方式进行解调,也可以指示接收设备1100使用与发送设备调制方式不同的方式进行解调。例如,当接收设备1100的接收单元1110从发送设备(例如,图7的发送设备700)接收到经M阶第二类型调制后的符号以及指示使用伪N阶第一类型进行解调的标识I decode后,响应于该I decode,接收设备1100的控制单元1120可以对接收到的符号进行伪N阶第一类型的解调。例如,接收设备1100可以根据指示使用1024QAM进行解调的I decode,使用1024QAM对接收到的经16螺旋 -1024QAM调制后的符号进行解调,以获得16螺旋-1024QAM对应的比特序列。
此外,根据本公开的另一实施例,接收设备1100还可包括发送单元1130(如图11中的虚线框所示)。发送单元1130可向发送设备发送关于所述接收设备支持的调制方式的信息。从而发送设备可根据关于接收设备支持的调制方式的信息,确定是否使用上述伪N阶第一类型调制,并且进一步确定适用于接收设备的MCS索引。例如,关于所述接收设备支持的调制方式的信息指示可包括接收设备1100支持的M阶第二类型调制方式和伪N阶第一类型调制中的至少一个。
以下将结合图12到图14B对发送设备根据关于相位噪声的信息直接向接收设备发送调制参数的信息的示例进行描述。图12是根据本公开另一示例的发送设备1200的示意性框图。
如图12所示,发送设备1200可包括控制单元1210和发送单元1220。除了控制单元1210和发送单元1220,发送设备1200还可以包括其它部件,然而,由于这些部件与本公开实施例的内容无关,因此在这里省略其图示和描述。此外,与发送设备300类似,发送设备1200可以是通信系统中的基站或终端等。
在图12所示的示例中,控制单元1210可根据关于相位噪声的信息确定关于指示螺旋因子的调制参数的信息。然后发送单元1220可发送关于所确定的关于调制参数的信息。从而接收设备可根据关于调制参数的信息来确定调制方式以便于对接收的数据进行解调。
当需要根据幅度加权参数α和相位加权参数β确定伪N阶螺旋调制的2^N个星座点时,根据本公开的一个示例,所述调制参数还可指示幅度加权参数α和相位加权参数β中的至少一个。如上所述,α和β的值需满足α+β=1。因此,发送设备可仅发送关于调制参数指示幅度加权参数α和相位加权参数β中的一个信息。接收设备可根据调制参数所指示幅度加权参数α和相位加权参数β中的一个获得调制参数指示幅度加权参数α和相位加权参数β中的另一个。从而可减少信令开支。
根据本公开的另一示例,所述调制参数还指示M和N中的至少一个。根据本公开的一个示例,第一类型调制和第二类型调制的调制阶数可是静态 或者半静态的,可根据需要,仅发送关于M和N中的至少一个的信息,或者两者都不发送。从而可进一步减少信令开支。
此外,根据本公开的另一示例,关于的调制参数的信息可直接包括关于所述螺旋因子的信息。此外,与螺旋因子类似地,在关于的调制参数的信息还指示幅度加权参数α、相位加权参数β、伪第一类型调制的阶数N、第二类型调制的阶数M等中的一个或多个参数的情况下,关于的调制参数的信息可直接包括该一个或多个参数的信息。从而,接收设备可直接根据接收到的关于的调制参数的信息确定解调方式。
例如,可通过RRC信令、MAC CE、DCI或UCI来显式地通知关于的调制参数的信息中的各个参数。更进一步地,可通过新设置的RRC信令、MAC CE、DCI或UCI来显式地通知关于的调制参数的信息中的各个参数。可替换地,可通过传统的方式来通知关于的调制参数的信息中的一部分参数,并且可通过新设置的RRC信令、MAC CE、DCI或UCI来显式地通知关于的调制参数的信息中的其他参数。例如,可通过目前各个标准(例如,3GPP标准)中使用的方法来发送MCS索引,以通知伪第一类型调制的阶数N,并且可通过新设置的RRC信令、MAC CE、DCI或UCI来显式地通知关于的调制参数的信息中的其他参数。
此外,可以预先设置关于的调制参数的信息中的各个参数的候选值集合,并且可通过RRC信令、MAC CE、DCI或UCI来指示预先设置的候选值集合中的索引,从而指示各个参数的值。例如,可根据常见的相位噪声或相位噪声方差,设置螺旋因子f s的候选值集合{f s1,f s2,…f sL},其中L可以是2的n次方。从而可以通过n个比特指示候选值集合中的特定f s值。可替换地,也可不预先设置参数的候选值集合,而是直接将参数进行量化,并显式地通知。
此外,根据本公开的另一示例,关于的调制参数的信息包括关于调制参数表格索引的信息。从而在需要向接收设备发送多个调制参数的情况下,可减少信令开支。
以下将结合与发送设备1200对应的接收设备以及图13和14对关于的调制参数的信息进行进一步描述。
此外,根据本公开的另一实施例,与发送设备700类似,发送设备1200还可包括接收单元1230(如图12中的虚线框所示)以接收关于接收设备支持的调制方式的信息。控制单元1210还可根据所述关于接收设备支持的调制方 式的信息,确定是否使用所述伪N阶第一类型调制。例如,关于所述接收设备支持的调制方式的信息指示可包括接收设备支持的M阶第二类型调制方式和伪N阶第一类型调制中的至少一个。
此外,与发送设备700类似,发送设备1200的发送单元1220也可发送关于解调方式标识I decode的信息,用于指示接收设备的解调方式,例如是否采用能够对抗相位噪声的解调方式。关于解调方式标识I decode的信息可以通过RRC、MAC CE、DCI等发送给其它设备。相应地,响应于接收到的I deoo,接收设备可以根据I decode的指示选择相应的解调方式。
在一些实施例中,可以根据I decode的不同取值来指示接收设备的解调方式。例如,I decode=0可以表示指示接收设备使用与发送设备用于调制的比特到符号映射表相同的比特到符号映射表进行解调;I decode=1可以表示指示接收设备使用与发送设备用于调制的比特到符号映射表不同的比特到符号映射表进行解调,反之亦然。
例如,发送设备可以使用M阶第二类型调制方式对待发送的比特序列进行调制,并得到要发送给接收设备的符号;发送设备然后可以将要发送的符号和指示接收设备使用伪N阶第一类型调制进行解调的I decode一起发送给接收设备。例如,当发送设备1200为基站时,基站可以使用16螺旋-1024QAM的调制方式对一组比特序列进行调制,并得到要发送给UE的符号。并且,基站可向UE发送了经16螺旋-1024QAM调制后的符号以及指示使用1024QAM进行解调的I decode,则UE使用1024QAM对接收到的符号进行解调。在这种情况下,发送设备和接收设备可以分别根据不同的调制方式进行调制和解调,从而降低了对接收设备的要求,并且提高了兼容性。
以下,参照图13来说明根据本公开另一实施例的与发送设备1200对应的接收设备。图13是根据本公开另一示例的接收设备1300的示意性框图。
如图13所示,根据本公开另一实施例的接收设备1300可包括接收单元1310和控制单元1320。除了接收单元1310和控制单元1320,接收设备1300还可以包括其它部件,然而,由于这些部件与本公开实施例的内容无关,因此在这里省略其图示和描述。此外,接收设备1300可以是通信系统中的基站或终端等。
如图13所示,接收设备1300的接收单元1310接收关于指示螺旋因子的调制参数的信息。控制单元1320可根据接收到的调制参数确定伪N阶第 一类型调制,其中伪N阶第一类型调制的2^N个第一符号与M阶第二类型调制的2^M个第二符号中的一部分第二符号对应,M和N为正整数。
例如,控制单元1320可根据关于调制参数的信息确定螺旋因子,并且基于以上结合公式(1)-(3)描述的方法,根据螺旋因子确定N阶螺旋星座点。在根据本公开的示例中,控制单元1320可以每次根据所接收到关于调制参数的信息指示的螺旋因子来计算N阶螺旋星座点。可替换地,接收设备1300还可包括存储单元,以预先存储螺旋因子与N阶螺旋星座点的对应关系。从而,控制单元1320可根据预先存储的螺旋因子与N阶螺旋星座点的对应关系,获得与所接收到关于调制参数的信息指示的螺旋因子对应的N阶螺旋星座点。
然后,控制单元1320可使用现有的M阶第二类型调制的星座图中的一部分星座点来模拟所确定的N阶螺旋调制的星座图。例如,如上所述,控制单元1320可根据幅度加权参数α和相位加权参数β确定伪N阶螺旋调制的2^N个星座点(即,N阶螺旋调制-M阶QAM)。在根据本公开的示例中,控制单元1320可以每次根据所接收到关于调制参数的信息指示的幅度加权参数α和相位加权参数β中的至少一个来从M阶第二类型调制的星座点中的选择伪N阶螺旋星座点。可替换地,接收设备1300还可包括存储单元,以预先存储幅度加权参数α和相位加权参数β中的至少一个与伪N阶螺旋星座点的对应关系。从而,控制单元1320可根据预先存储的幅度加权参数α和相位加权参数β中的至少一个与伪N阶螺旋星座点的对应关系,获得与所接收到关于调制参数的信息对应的伪N阶螺旋星座点。
可替换地,控制单元1320可根据欧式距离等其他条件,从现有的M阶第二类型调制的星座图中的一部分星座点来模拟所确定的N阶螺旋调制的星座图。
当需要根据幅度加权参数α和相位加权参数β确定伪N阶螺旋调制的2^N个星座点时,根据本公开的一个示例,所述调制参数还可指示幅度加权参数α和相位加权参数β中的至少一个。如上所述,α和β的值需满足α+β=1。因此,当调制参数指示幅度加权参数α和相位加权参数β中的一个时,控制单元1320可根据调制参数所指示幅度加权参数α和相位加权参数β中的一个获得调制参数指示幅度加权参数α和相位加权参数β中的另一个。
此外,根据本公开的一个示例,伪第一类型调制的阶数N和/或第二类型调制的阶数M可以是预先确定的。例如,伪第一类型调制的阶数N和/或第 二类型调制的阶数M可以是静态或者半静态的。例如,可以预先确定第二类型调制的阶数M为1024。又例如,可以预先确定第二类型调制的阶数N为16或64。
可替换地,根据本公开的另一示例,所述调制参数还指示M和N中的至少一个。控制单元1320可根据所接收的关于调制参数的信息来确定伪N阶第一类型调制。
如上所述,根据本公开的一个示例,关于的调制参数的信息可直接包括关于所述螺旋因子的信息,并且控制单元1320可根据关于所述螺旋因子的信息确定伪N阶第一类型调制。此外,与螺旋因子类似地,在关于的调制参数的信息还指示幅度加权参数α、相位加权参数β、伪第一类型调制的阶数N、第二类型调制的阶数M等中的一个或多个参数的情况下,关于的调制参数的信息可直接包括该一个或多个参数的信息。
此外,可以预先设置关于的调制参数的信息中的各个参数的候选值集合,并且可通过RRC信令、MAC CE、DCI或UCI来指示预先设置的候选值集合中的索引,从而指示各个参数的值。例如,可根据常见的相位噪声或相位噪声方差,设置螺旋因子f s的候选值集合{f s1,f s2,…f sL},其中L可以是2的n次方。从而可以通过n个比特指示候选值集合中的特定f s值。可替换地,也可不预先设置参数的候选值集合,而是直接将参数进行量化,并显式地通知。
此外,根据本公开的另一示例,关于的调制参数的信息包括关于调制参数表格索引的信息,控制单元1320可根据所述关于调制参数表格索引的信息,在调制参数表格中确定螺旋因子,并且根据所确定的螺旋因子确定伪N阶第一类型调制。从而在接收设备需要多个调制参数的情况下,可减少信令开支。
例如,可预先设置与不同的第二类型调制的调制阶数N对应的调制参数表格。在调制参数表格的每个条目中可设置与该条目索引对应的螺旋因子f s、幅度加权参数α、相位加权参数β、第二类型调制的阶数M等中的一个或多个参数的值。可选择地,可对于不同的相位噪声或相位噪声方差,设置不同的参数值。
图14A和图14B是示出根据本公开一个示例的预先设置的调制参数表格的示意图。如图14A和图14B所示,对于特定的第一类型调制的调制阶数,可设置针对不同的相位噪声或者针对不同的相位噪声等级的螺旋因子f s、幅度加权参数α、相位加权参数β以及第二类型调制的阶数M。可通过调制参数 表格索引来指示在特定的第一类型调制的调制阶数下,针对的特定相位噪声或者针对不同的相位噪声等级的参数值。
例如,在本公开的一些实施例中,不同的调制参数表格索引可以指示相同的相位噪声等级的参数值。如图14A所示,当第一类型调制的调制阶数为N2,相位噪声等级为PN22时,可通过调制参数表格索引值1来指示f s24,α24,β24以及M24。
在图14A所示的示例中,接收单元1310所接收的关于调制参数的信息可包括关于调制参数表格索引的信息。例如,当第一类型调制的调制阶数为N1,相位噪声等级为PN11时,关于调制参数的信息可包括关于调制参数表格索引1的信息以指示螺旋因子f s、幅度加权参数α、相位加权参数β以及第二类型调制的阶数M的取值分别为f s11,α11,β11,M11。此外,根据本公开的一个示例,第一类型调制的调制阶数可是静态或者半静态的,或者可通过目前各个标准(例如,3GPP标准)中使用的方法来发送MCS索引,以通知伪第一类型调制的阶数。此外,根据本公开的另一示例,接收设备1300可对相位噪声进行检测并获得关于相位噪声的信息。可替换地,也可通过发送设备确定关于相位噪声的信息并发送给接收设备1300。
例如,在本公开的另一些实施例中,不同的调制参数表格索引可以指示不同的相位噪声等级的参数值。例如,如图14B所示,第一类型调制的调制阶数为N2,可根据相位噪声选择调制参数表格索引值,比如索引值为1来指示对应于相位噪声PN22的参数f s22,α22,β22,M22。
在图14B所示的示例中,接收单元1310所接收的关于调制参数的信息可包括关于调制参数表格索引的信息。例如,当第一类型调制的调制阶数为N2,索引值为1时,关于调制参数的信息可包括对应于相位噪声PN22的信息以指示螺旋因子f s、幅度加权参数α、相位加权参数β以及第二类型调制的阶数M的取值分别为f s22,α22,β22,M22。
此外,根据本公开的另一实施例,与接收设备1100类似,接收设备1300还可包括发送单元1330。发送单元1330可向发送设备发送关于所述接收设备支持的调制方式的信息。从而发送设备可根据关于接收设备支持的调制方式的信息,确定是否使用上述伪N阶第一类型调制。例如,关于所述接收设备支持的调制方式的信息指示可包括接收设备1300支持的M阶第二类型调 制方式和伪N阶第一类型调制中的至少一个。
此外,与接收设备1100类似,根据本公开的另一实施例,接收单元1310还可以配置为接收关于解调方式标识的信息,并根据该解调方式标识的信息进行解调,其中解调方式标识可以指示接收设备1300使用与发送设备调制方式相同的方式进行解调,也可以指示接收设备1300使用与发送设备调制方式不同的方式进行解调。
下面,参照图15来描述根据本公开一个实施例,与发送设备300对应的调制方法。图15是根据本公开的一个实施例的调制方法1500的流程图。调制方法1500可由发送设备执行。由于调制方法1500的步骤与上文图3的发送设备300的操作对应,因此在这里为了简单起见,省略对相同内容的详细描述。
如图15所示,在步骤S1501中,获得待发送的比特序列。然后,在步骤S1502中,根据关于相位噪声的信息对待发送的比特序列进行伪N阶第一类型调制。
如步骤S1501所示,可获得待发送的比特序列。例如,在步骤S1501中可获得以N个第一比特为单位的待发送的比特序列。
接收到待发送的比特序列后,如步骤S1502所示,可以根据关于相位噪声的信息对接收到的待发送的比特序列进行伪N阶第一类型调制,以获得要发送的第一符号。
根据本公开的一些实施例,如上所述,这里的伪N阶第一类型调制的2^N个第一符号与M阶第二类型调制的2^M个第二符号中的一部分第二符号对应,其中M和N为正整数且M大于N。例如,可以通过使用M阶第二类型调制能够得到的2^M个第二符号中的一部分来模拟使用N阶第一类型调制能够得到的符号。
例如,可根据以上结合公式(1)-(3)以及图4A-图4C所示的方式来根据使用M阶第二类型调制能够得到的2^M个第二符号中的一部分来模拟使用N阶第一类型调制能够得到的符号,这里不再详述。
接收到的待发送的比特序列后,可以根据关于相位噪声的信息对比特序列进行调制,以获得要发送的、符号。如上所述,关于相位噪声的信息可以包括:关于相位噪声本身的信息、关于相位噪声的方差大小的信息、或者其它 能够表征相位噪声的任何信息。然后可根据比特到符号映射表对待发送的比特序列进行伪N阶第一类型调制。
例如,可根据如上所述的针对不同相位噪声的比特到符号映射表对待发送的比特序列进行调制,从而获得要发送的符号。如在一些实施例中,针对不同相位噪声的比特到符号映射表而可以是基于M阶第二类型调制的比特到符号映射表所确定伪N阶第一类型调制的比特到符号映射表,例如,图5A-1、图5A-2以及图5B-图5F中示出的伪螺旋比特到符号映射表。根据上述比特到符号映射表,可以根据伪N阶第一类型调制进行调制,以将接收到的以N个第一比特为单位的比特序列调制为成要发送的符号。
例如,根据本公开的一个示例当接收到的待发送的比特序列为0001时,可以对该比特序列进行伪16螺旋调制,并获得要发送的符号
Figure PCTCN2022070808-appb-000011
下面,参照图16来描述根据本公开一个实施例,与接收设备600对应的解调方法。图16是根据本公开的一个实施例的解调方法1600的流程图。接收方法1600可由接收设备执行。由于解调方法1600的步骤与图6的接收设备600的操作对应,因此在这里为了简单起见,省略对相同内容的详细描述。
如图16所示,在步骤S1601中,获得经过伪N阶第一类型调制后的符号。然后,在步骤S1602中,根据关于相位噪声的信息对符号进行解调,以获得真实发送的比特序列。
根据本公开的一些实施例,如上所述,在步骤S1601中的伪N阶第一类型调制的2^N个第一符号与M阶第二类型调制的2^M个第二符号中的一部分第二符号对应,其中M和N为正整数且M大于N。例如,可以通过使用M阶第二类型调制能够得到的2^M个第二符号中的一部分来模拟使用N阶第一类型调制能够得到的符号。
例如,可根据以上结合公式(1)-(3)以及图4A-图4C所示的方式来根据使用M阶第二类型调制能够得到的2^M个第二符号中的一部分来模拟使用N阶第一类型调制能够得到的符号,这里不再详述。
接收经过伪N阶第一类型调制后的符号后,然后在步骤S1602中,可以根据关于相位噪声的信息对符号进行解调,以获得接收比特序列。如上所述,关于相位噪声的信息可以包括:关于相位噪声本身的信息、关于相位噪声的方差大小的信息、或者其它能够表征相位噪声的任何信息。在一些实施例中,可以根据比特到符号映射表对接收到的符号进行解调。
例如,可以根据如上所述的针对不同相位噪声的比特到符号映射表对符号进行解调,从而获得接收比特序列。在一些实施例中,针对不同相位噪声的比特到符号映射表而可以是基于M阶第二类型调制的比特到符号映射表所确定伪N阶第一类型调制的比特到符号映射表,例如,图5A-1、图5A-2以及图5B-图5F中示出的伪螺旋比特到符号映射表。根据上述比特到符号映射表,可以根据所述伪N阶第一类型调制进行解调,以获得以N个第一比特为单位的比特序列,也可以根据M阶第二类型调制进行解调,以获得M个第二比特为单位的比特序列。例如,在一些实施例中,如果获得经过伪16螺旋调制后的符号,则可以根据伪16螺旋调制进行解调,以获得包含4个比特的比特序列。
基于上述示例,当接收到符号
Figure PCTCN2022070808-appb-000012
可以根据伪16螺旋调制所对应的比特到符号映射表对该符号进行解调,并得到比特序列0001,即真实发送的比特序列。
下面,参照图17来描述根据本公开一个实施例,与发送设备700对应的发送方法。图17是根据本公开的一个实施例的调制方法1700的流程图。发送方法1700可由发送设备执行。由于调制方法1700的步骤与上文图7的发送设备700的操作对应,因此在这里为了简单起见,省略对相同内容的详细描述。
如图17所示,在步骤S1701中,根据关于相位噪声的信息确定调制与编码策略(MCS)索引。然后,在步骤S1702中,发送关于MCS索引的信息。
例如,在步骤S1701中,可以根据关于相位噪声的信息从多个MCS表中确定一个MCS表,并从所确定的MCS表中确定MCS索引。
根据本公开的一些实施例,如上所述,这里的所确定的MCS表可以包括能够抗相位噪声的调制方式。例如,所确定的MCS表可以包括如上所述的伪N阶第一类型调制的调制方式,诸如伪N阶螺旋调制方式。例如,所确定的MCS表可以是根据图8A-图8E、图9A-图9E和图10A-图10C中示出的MCS表的相对应的方法形成的,这里不再详述。
确定了MCS表后,然后可以在步骤S1701中进一步根据关于相位噪声的信息从所确定的MCS表中确定MCS索引。如上所述,关于相位噪声的信息可以包括:关于相位噪声本身的信息、关于相位噪声的方差大小的信息、或者其它能够表征相位噪声的任何信息,这里不再详述。例如,在一些实施 例中,关于相位噪声的信息可以指示是低相位噪声、中相位噪声还是高相位噪声。
在另一些实施例中,可选地,发送方法1700还可以包括接收关于MCS表标识的信息,然后在步骤S1701中根据所接收的关于MCS表标识的信息确定MCS表,并从所确定的MCS表中确定MCS索引。
例如,如上所示,关于MCS表标识的信息可以是I flag,用于指示是否需要使用包含抗相位噪声调制方式的MCS表。例如,发送设备先接收I flag,然后根据接收到的I flag从多个MCS表中确定要使用的MCS表,并从所确定的MCS表中确定相应的MCS索引。如上所述,I flag可通过RRC、MAC CE、UCI等信令进行传输,这里不再详述。如上所述,这里的多个MCS表可以包括上述如图8A-图8E或图9A-图9E或图10A-图10C中示出的新MCS表,并且还可以包括现有5G NR标准中MCS表,这些MCS表可以被预先存储在发送设备和接收设备的至少一个中,这里不再详述。
在又一些实施例中,在步骤S1701中,可以根据关于相位噪声的信息自行确定MCS表及MCS索引。例如,可以根据相位噪声或相位噪声方差确定是否需要包含抗相位噪声调制方式的MCS表。例如,若相位噪声(或相位噪声方差)小,可选择现有5G NR标准中QAM的MCS表中一个并确定MCS索引;若相位噪声(或相位噪声方差)大,则选择包含伪螺旋调制方式的MCS表中的一个并确定MCS索引。
在一些实施例中,可使用除了关于相位噪声的信息以外的其他信道测量结果从所确定的MCS表中确定MCS索引。例如,可以根据诸如参考信号接收功率(RSRP)、参考信号接收质量(RSRQ)等,从所确定的MCS表中确定对应的MCS索引。
待确定了MCS索引后,如步骤S1702所示,然后可以发送关于MCS索引的信息。例如,可以发送关于从所确定的MCS表中确定的MCS索引的信息。
根据本公开的一些实施例,发送方法1700还可以包括发送关于MCS表标识的信息。其中,MCS表标识指示所确定的MCS表是否包括能够抗相位噪声的调制。例如,在一些实施例中,可以发送关于所确定的MCS表的MCS表标识的信息,该MCS表标识可以指示要使用的MCS表是否包括能够抗相位噪声的调制。如上所述,关于MCS表标识的信息可通过RRC、MAC CE、 DCI等信令进行传输,这里不再详述。
根据本公开另一实施例,发送方法1700还可以包括发送关于解调方式标识的信息,用于指示接收设备的解调方式。例如,可以指示接收设备使用与发送设备用于调制的比特到符号映射表相同的比特到符号映射表进行解调;可替代地,可以指示接收设备使用与发送设备用于调制的比特到符号映射表不同的比特到符号映射表进行解调。
例如,如上所述,可以发送关于解调方式标识I decode的信息,用于指示接收设备的解调方式,例如是否采用能够对抗相位噪声的解调方式,这里不再详述。关于解调方式标识I decode的信息可以通过RRC、MAC CE、DCI等发送给其它设备。相应地,响应于接收到的I decode,接收设备可以根据I decode的指示选择相应的解调方式。在一些实施例中,可以根据I decode的不同取值来指示接收设备的解调方式。在这种情况下,发送设备和接收设备可以分别根据不同的调制方式进行调制和解调,从而降低了对接收设备的要求,并且提高了兼容性。
根据本公开另一实施例,发送方法1700还可以包括接收关于接收设备支持的调制方式的信息。在步骤S1702中,还可根据所述关于接收设备支持的调制方式的信息,确定适用于接收设备的MCS索引。例如,关于所述接收设备支持的调制方式的信息指示可包括接收设备支持的M阶第二类型调制方式和伪N阶第一类型调制中的至少一个。
下面,参照图18来描述根据本公开一个实施例,与接收设备1100对应的接收方法。图18是根据本公开的一个实施例的接收方法1800的流程图。接收方法1800可由接收设备执行。由于解调方法1800的步骤与图11的接收设备1100的操作对应,因此在这里为了简单起见,省略对相同内容的详细描述。
如图18所示,在步骤S1801中,接收关于MCS索引的信息。然后,在步骤S1802中,根据接收到的关于MCS索引的信息来确定对应的MCS表以进行解调,其中,MCS表包括能够抗相位噪声的调制。
例如,在步骤S1802中,可以根据接收到的关于MCS索引的信息来确定对应的MCS表以进行解调,其中,MCS表包括能够抗相位噪声的调制。例如,可以根据接收到的关于MCS索引的信息,从预先存储的多个MCS表中确定要使用的MCS表,并确定所要使用的调制阶数(Q m)和目标码率(R), 从而进行解调。在一些实施例中,预先存储的多个MCS表可以包括能够抗相位噪声的调制方式的MCS表,例如,上面图8A-图8E、图9A-图9E和图10A-图10C中示出的MCS表,这里不再详述。当根据接收到的关于MCS索引的信息所确定的MCS表为包括能够抗相位噪声的调制方式的MCS表时,例如,所确定的MCS表包括能够抗相位噪声的伪N阶第一类型调制方式,在一些实施例中,在步骤S1802中可以使用该伪N阶第一类型调制方式,诸如伪N阶螺旋调制,进行解调。在一些实施例中,在步骤S1802中,所确定的MCS表还可以包括与所述能够抗相位噪声的调制不同的第二类型调制,例如,QAM。
根据本公开的另一实施例,接收方法1800还可以包括接收关于解调方式标识的信息,并根据该关于解调方式标识的信息进行解调。在一些实施例中,解调方式标识指示接收设备是否使用与发送设备用于调制的比特到符号映射表相同的比特到符号映射表进行解调。例如,解调方式标识可以指示接收设备使用与发送设备用于调制的比特到符号映射表相同的比特到符号映射表进行解调;可替代地,也可以指示接收设备使用与发送设备用于调制的比特到符号映射表不同的比特到符号映射表进行解调。
此外,根据本公开的另一实施例,接收方法1800还可包括向发送设备发送关于所述接收设备支持的调制方式的信息。从而发送设备可根据关于接收设备支持的调制方式的信息,确定是否使用上述伪N阶第一类型调制。例如,关于所述接收设备支持的调制方式的信息指示可包括接收设备支持的M阶第二类型调制方式和伪N阶第一类型调制中的至少一个。
下面,参照图19来描述根据本公开另一实施例,与发送设备1200对应的发送方法。图19是根据本公开的另一实施例的发送方法1900的流程图。由于发送方法1900的步骤与上文图12的发送设备1200的操作对应,因此在这里为了简单起见,省略对相同内容的详细描述。
如图19所示,在步骤S1901中根据关于相位噪声的信息确定关于指示螺旋因子的调制参数的信息。然后在步骤S1902中发送关于所确定的关于调制参数的信息。从而接收设备可根据关于调制参数的信息来确定调制方式以便于对接收的数据进行解调。
当需要根据幅度加权参数α和相位加权参数β确定伪N阶螺旋调制的2^N个星座点时,根据本公开的一个示例,所述调制参数还可指示幅度加权参数α 和相位加权参数β中的至少一个。根据本公开的另一示例,所述调制参数还指示M和N中的至少一个。
此外,根据本公开的另一示例,关于的调制参数的信息可直接包括关于所述螺旋因子的信息。此外,与螺旋因子类似地,在关于的调制参数的信息还指示幅度加权参数α、相位加权参数β、伪第一类型调制的阶数N、第二类型调制的阶数M等中的一个或多个参数的情况下,关于的调制参数的信息可直接包括该一个或多个参数的信息。
例如,可通过RRC信令、MAC CE、DCI或UCI来显式地通知关于的调制参数的信息中的各个参数。更进一步地,可通过新设置的RRC信令、MAC CE、DCI或UCI来显式地通知关于的调制参数的信息中的各个参数。可替换地,可通过传统的方式来通知关于的调制参数的信息中的一部分参数,并且可通过新设置的RRC信令、MAC CE、DCI或UCI来显式地通知关于的调制参数的信息中的其他参数。
此外,可以预先设置关于的调制参数的信息中的各个参数的候选值集合,并且可通过RRC信令、MAC CE、DCI或UCI来指示预先设置的候选值集合中的索引,从而指示各个参数的值。可替换地,也可不预先设置参数的候选值集合,而是直接将参数进行量化,并显式地通知。
此外,根据本公开的另一示例,关于的调制参数的信息包括关于调制参数表格索引的信息。从而在需要向接收设备发送多个调制参数的情况下,可减少信令开支。
此外,根据本公开的另一实施例,图19所示的发送方法1900还可包括接收关于接收设备支持的调制方式的信息。在步骤S1902中,还可根据所述关于接收设备支持的调制方式的信息,确定是否使用所述伪N阶第一类型调制。例如,关于所述接收设备支持的调制方式的信息指示可包括接收设备支持的M阶第二类型调制方式和伪N阶第一类型调制中的至少一个。
此外,根据本公开的另一实施例,图19所示的发送方法1900还可包括发送关于解调方式标识I decode的信息,用于指示接收设备的解调方式,例如是否采用能够对抗相位噪声的解调方式。关于解调方式标识I decode的信息可以通过RRC、MAC CE、DCI等发送给其它设备。相应地,响应于接收到的I decode,接收设备可以根据I decode的指示选择相应的解调方式。在一些实施例中,可以根据I decode的不同取值来指示接收设备的解调方式。在这种情况下,发送设备 和接收设备可以分别根据不同的比特到符号映射表进行调制和解调,从而降低了对接收设备的要求,并且提高了兼容性。
下面,参照图20来描述根据本公开另一实施例,与接收设备1300对应的接收方法。图20是根据本公开的另一实施例的接收方法2000的流程图。由于接收方法2000的步骤与上文图13的接收设备1300的操作对应,因此在这里为了简单起见,省略对相同内容的详细描述。
如图20所示,在步骤S2001中,接收关于指示螺旋因子的调制参数的信息。然后在步骤S2002中,根据接收到的调制参数确定伪N阶第一类型调制,其中伪N阶第一类型调制的2^N个第一符号与M阶第二类型调制的2^M个第二符号中的一部分第二符号对应,M和N为正整数。
例如,在步骤S2002中,可根据关于调制参数的信息确定螺旋因子,并且基于以上结合公式(1)-(3)描述的方法,根据螺旋因子确定N阶螺旋星座点。在根据本公开的示例中,在步骤S2002中,可以每次根据所接收到关于调制参数的信息指示的螺旋因子来计算N阶螺旋星座点。可替换地,接收方法2000还可包括预先存储螺旋因子与N阶螺旋星座点的对应关系。从而,在步骤S2002中可根据预先存储的螺旋因子与N阶螺旋星座点的对应关系,获得与所接收到关于调制参数的信息指示的螺旋因子对应的N阶螺旋星座点。
然后,在步骤S2002中可使用现有的M阶第二类型调制的星座图中的一部分星座点来模拟所确定的N阶螺旋调制的星座图。例如,如上所述,在步骤S2002中可根据幅度加权参数α和相位加权参数β确定伪N阶螺旋调制的2^N个星座点(即,N阶螺旋调制-M阶QAM)。在根据本公开的示例中,在步骤S2002中可以每次根据所接收到关于调制参数的信息指示的幅度加权参数α和相位加权参数β中的至少一个来从M阶第二类型调制的星座点中的选择伪N阶螺旋星座点。可替换地,方法2000可包括预先存储幅度加权参数α和相位加权参数β中的至少一个与伪N阶螺旋星座点的对应关系。从而,在步骤S2002中可根据预先存储的幅度加权参数α和相位加权参数β中的至少一个与伪N阶螺旋星座点的对应关系,获得与所接收到关于调制参数的信息对应的伪N阶螺旋星座点。
可替换地,在步骤S2002中可根据欧式距离等其他条件,从现有的M阶第二类型调制的星座图中的一部分星座点来模拟所确定的N阶螺旋调制的星座图。
当需要根据幅度加权参数α和相位加权参数β确定伪N阶螺旋调制的2^N个星座点时,根据本公开的一个示例,所述调制参数还可指示幅度加权参数α和相位加权参数β中的至少一个。如上所述,α和β的值需满足α+β=1。因此,当调制参数指示幅度加权参数α和相位加权参数β中的一个时,在步骤S2002中可根据调制参数所指示幅度加权参数α和相位加权参数β中的一个获得调制参数指示幅度加权参数α和相位加权参数β中的另一个。
此外,根据本公开的一个示例,伪第一类型调制的阶数N和/或第二类型调制的阶数M可以是预先确定的。例如,伪第一类型调制的阶数N和/或第二类型调制的阶数M可以是静态或者半静态的。例如,可以预先确定第二类型调制的阶数M为1024。又例如,可以预先确定第二类型调制的阶数N为16或64。
可替换地,根据本公开的另一示例,所述调制参数还指示M和N中的至少一个。在步骤S2002中可根据所接收的关于调制参数的信息来确定伪N阶第一类型调制。
如上所述,根据本公开的一个示例,关于的调制参数的信息可直接包括关于所述螺旋因子的信息,并且在步骤S2002中可根据关于所述螺旋因子的信息确定伪N阶第一类型调制。此外,与螺旋因子类似地,在关于的调制参数的信息还指示幅度加权参数α、相位加权参数β、伪第一类型调制的阶数N、第二类型调制的阶数M等中的一个或多个参数的情况下,关于的调制参数的信息可直接包括该一个或多个参数的信息。
此外,可以预先设置关于的调制参数的信息中的各个参数的候选值集合,并且可通过RRC信令、MAC CE、DCI或UCI来指示预先设置的候选值集合中的索引,从而指示各个参数的值。例如,可根据常见的相位噪声或相位噪声方差,设置螺旋因子f s的候选值集合{f s1,f s2,…f sL},其中L可以是2的n次方。从而可以通过n个比特指示候选值集合中的特定f s值。可替换地,也可不预先设置参数的候选值集合,而是直接将参数进行量化,并显式地通知。
此外,根据本公开的另一示例,关于的调制参数的信息包括关于调制参数表格索引的信息,在步骤S2002中可根据所述关于调制参数表格索引的信息,在调制参数表格中确定螺旋因子,并且根据所确定的螺旋因子确定伪N阶第一类型调制。从而在接收设备需要多个调制参数的情况下,可减少信令开支。
例如,可预先设置与不同的第二类型调制的调制阶数N对应的调制参数表格。在调制参数表格的每个条目中可设置与该条目索引对应的螺旋因子fs、幅度加权参数α、相位加权参数β、第二类型调制的阶数M等中的一个或多个参数的值。可选择地,可对于不同的相位噪声或相位噪声方差,设置不同的参数值。以上已结合图14A和图14B对此进行详细描述,故在此不再赘述。
此外,根据本公开的另一实施例,接收方法2000还可包括向发送设备发送关于所述接收设备支持的调制方式的信息。从而发送设备可根据关于接收设备支持的调制方式的信息,确定是否使用上述伪N阶第一类型调制。例如,关于所述接收设备支持的调制方式的信息指示可包括接收设备支持的M阶第二类型调制方式和伪N阶第一类型调制中的至少一个。
此外,根据本公开的另一实施例,接收方法2000还可包括接收关于解调方式标识的信息,并根据该解调方式标识的信息进行解调,其中解调方式标识可以指示接收设备使用与发送设备用于调制的比特到符号映射表相同的比特到符号映射表进行解调,也可以指示接收设备使用与发送设备用于调制的比特到符号映射表不同的比特到符号映射表进行解调。
<硬件结构>
另外,上述实施方式的说明中使用的框图示出了以功能为单位的块。这些功能块(结构单元)通过硬件和/或软件的任意组合来实现。此外,各功能块的实现手段并不特别限定。即,各功能块可以通过在物理上和/或逻辑上相结合的一个装置来实现,也可以将在物理上和/或逻辑上相分离的两个以上装置直接地和/或间接地(例如通过有线和/或无线)连接从而通过上述多个装置来实现。
例如,本公开的一个实施例的电子设备可以作为执行本公开的信息发送方法的处理的计算机来发挥功能。图21是根据本公开的实施例的所涉及的设备2100(例如,上述发送设备和接收设备)的硬件结构的示意图。上述的设备2100(第一网络元件)可以作为在物理上包括处理器2110、内存2120、存储器2130、通信装置2140、输入装置2150、输出装置2160、总线2170等的计算机装置来构成。
另外,在以下的说明中,“装置”这样的文字也可替换为电路、设备、单元等。电子设备的硬件结构可以包括一个或多个图中所示的各装置,也可以不包括部分装置。
例如,处理器2110仅图示出一个,但也可以为多个处理器。此外,可以通过一个处理器来执行处理,也可以通过一个以上的处理器同时、依次、或采用其它方法来执行处理。另外,处理器2110可以通过一个以上的芯片来安装。
设备2100的各功能例如通过如下方式实现:通过将规定的软件(程序)读入到处理器2110、内存2120等硬件上,从而使处理器2110进行运算,对由通信装置2140进行的通信进行控制,并对内存2120和存储器2130中的数据的读出和/或写入进行控制。
处理器2110例如使操作系统进行工作从而对计算机整体进行控制。处理器2110可以由包括与周边装置的接口、控制装置、运算装置、寄存器等的中央处理器(CPU,Central Processing Unit)构成。例如,上述的控制单元等可以通过处理器2110实现。
此外,处理器2110将程序(程序代码)、软件模块、数据等从存储器2130和/或通信装置2140读出到内存2120,并根据它们执行各种处理。作为程序,可以采用使计算机执行在上述实施方式中说明的动作中的至少一部分的程序。例如,第一网络元件的处理单元可以通过保存在内存2120中并通过处理器2110来工作的控制程序来实现,对于其它功能块,也可以同样地来实现。
内存2120是计算机可读取记录介质,例如可以由只读存储器(ROM,Read Only Memory)、可编程只读存储器(EPROM,Erasable Programmable ROM)、电可编程只读存储器(EEPROM,Electrically EPROM)、随机存取存储器(RAM,Random Access Memory)、其它适当的存储介质中的至少一个来构成。内存2120也可以称为寄存器、高速缓存、主存储器(主存储装置)等。内存2120可以保存用于实施本公开的一实施方式所涉及的方法的可执行程序(程序代码)、软件模块等。
存储器2130是计算机可读取记录介质,例如可以由软磁盘(flexible disk)、软(注册商标)盘(floppy disk)、磁光盘(例如,只读光盘(CD-ROM(Compact Disc ROM)等)、数字通用光盘、蓝光(Blu-ray,注册商标)光盘)、可移动磁盘、硬盘驱动器、智能卡、闪存设备(例如,卡、棒(stick)、密钥驱动 器(key driver))、磁条、数据库、服务器、其它适当的存储介质中的至少一个来构成。存储器2130也可以称为辅助存储装置。
通信装置2140是用于通过有线和/或无线网络进行计算机间的通信的硬件(发送接收装置),例如也称为网络设备、网络控制器、网卡、通信模块等。通信装置2140为了实现例如频分双工(FDD,Frequency Division Duplex)和/或时分双工(TDD,Time Division Duplex),可以包括高频开关、双工器、滤波器、频率合成器等。例如,上述的发送单元、接收单元等可以通过通信装置2140来实现。
输入装置2150是接受来自外部的输入的输入设备(例如,键盘、鼠标、麦克风、开关、按钮、传感器等)。输出装置2160是实施向外部的输出的输出设备(例如,显示器、扬声器、发光二极管(LED,Light Emitting Diode)灯等)。另外,输入装置2150和输出装置2160也可以为一体的结构(例如触控面板)。
此外,处理器2110、内存2120等各装置通过用于对信息进行通信的总线2170连接。总线2170可以由单一的总线构成,也可以由装置间不同的总线构成。
此外,电子设备可以包括微处理器、数字信号处理器(DSP,Digital Signal Processor)、专用集成电路(ASIC,Application Specific Integrated Circuit)、可编程逻辑器件(PLD,Programmable Logic Device)、现场可编程门阵列(FPGA,Field Programmable Gate Array)等硬件,可以通过该硬件来实现各功能块的部分或全部。例如,处理器2110可以通过这些硬件中的至少一个来安装。
(变形例)
另外,关于本说明书中说明的用语和/或对本说明书进行理解所需的用语,可以与具有相同或类似含义的用语进行互换。例如,信道和/或符号也可以为信号(信令)。此外,信号也可以为消息。参考信号也可以简称为RS(Reference Signal),根据所适用的标准,也可以称为导频(Pilot)、导频信号等。此外,分量载波(CC,Component Carrier)也可以称为小区、频率载波、载波频率等。
此外,本说明书中说明的信息、参数等可以用绝对值来表示,也可以用与规定值的相对值来表示,还可以用对应的其它信息来表示。例如,无线资 源可以通过规定的索引来指示。进一步地,使用这些参数的公式等也可以与本说明书中明确公开的不同。
在本说明书中用于参数等的名称在任何方面都并非限定性的。例如,各种各样的信道(物理上行链路控制信道(PUCCH,Physical Uplink Control Channel)、物理下行链路控制信道(PDCCH,Physical Downlink Control Channel)等)和信息单元可以通过任何适当的名称来识别,因此为这些各种各样的信道和信息单元所分配的各种各样的名称在任何方面都并非限定性的。
本说明书中说明的信息、信号等可以使用各种各样不同技术中的任意一种来表示。例如,在上述的全部说明中可能提及的数据、命令、指令、信息、信号、比特、符号、芯片等可以通过电压、电流、电磁波、磁场或磁性粒子、光场或光子、或者它们的任意组合来表示。
此外,信息、信号等可以从上层向下层、和/或从下层向上层输出。信息、信号等可以经由多个网络节点进行输入或输出。
输入或输出的信息、信号等可以保存在特定的场所(例如内存),也可以通过管理表进行管理。输入或输出的信息、信号等可以被覆盖、更新或补充。输出的信息、信号等可以被删除。输入的信息、信号等可以被发往其它装置。
信息的通知并不限于本说明书中说明的方式/实施方式,也可以通过其它方法进行。例如,信息的通知可以通过物理层信令(例如,下行链路控制信息(DCI,Downlink Control Information)、上行链路控制信息(UCI,Uplink Control Information))、上层信令(例如,无线资源控制(RRC,Radio Resource Control)信令、广播信息(主信息块(MIB,Master Information Block)、系统信息块(SIB,System Information Block)等)、媒体存取控制(MAC,Medium Access Control)信令)、其它信号或者它们的组合来实施。
另外,物理层信令也可以称为L1/L2(第1层/第2层)控制信息(L1/L2控制信号)、L1控制信息(L1控制信号)等。此外,RRC信令也可以称为RRC消息,例如可以为RRC连接建立(RRC Connection Setup)消息、RRC连接重设定(RRC Connection Reconfiguration)消息等。此外,MAC信令例如可以通过MAC控制单元(MAC CE(Control Element))来通知。
此外,规定信息的通知(例如,“为X”的通知)并不限于显式地进行,也可以隐式地(例如,通过不进行该规定信息的通知,或者通过其它信息的通知)进行。
关于判定,可以通过由1比特表示的值(0或1)来进行,也可以通过由真(true)或假(false)表示的真假值(布尔值)来进行,还可以通过数值的比较(例如与规定值的比较)来进行。
软件无论被称为软件、固件、中间件、微代码、硬件描述语言,还是以其它名称来称呼,都应宽泛地解释为是指命令、命令集、代码、代码段、程序代码、程序、子程序、软件模块、应用程序、软件应用程序、软件包、例程、子例程、对象、可执行文件、执行线程、步骤、功能等。
此外,软件、命令、信息等可以经由传输介质被发送或接收。例如,当使用有线技术(同轴电缆、光缆、双绞线、数字用户线路(DSL,Digital Subscriber Line)等)和/或无线技术(红外线、微波等)从网站、服务器、或其它远程资源发送软件时,这些有线技术和/或无线技术包括在传输介质的定义内。
本说明书中使用的“系统”和“网络”这样的用语可以互换使用。
在本说明书中,“基站(BS,Base Station)”、“无线基站”、“eNB”、“gNB”、“小区”、“扇区”、“小区组”、“载波”以及“分量载波”这样的用语可以互换使用。基站有时也以固定台(fixed station)、NodeB、eNodeB(eNB)、接入点(access point)、发送点、接收点、毫微微小区、小小区等用语来称呼。
基站可以容纳一个或多个(例如三个)小区(也称为扇区)。当基站容纳多个小区时,基站的整个覆盖区域可以划分为多个更小的区域,每个更小的区域也可以通过基站子系统(例如,室内用小型基站(射频拉远头(RRH,Remote Radio Head)))来提供通信服务。“小区”或“扇区”这样的用语是指在该覆盖中进行通信服务的基站和/或基站子系统的覆盖区域的一部分或整体。
在本说明书中,“移动台(MS,Mobile Station)”、“用户终端(user terminal)”、“用户装置(UE,User Equipment)”以及“终端”这样的用语可以互换使用。移动台有时也被本领域技术人员以用户台、移动单元、用户单元、无线单元、远程单元、移动设备、无线设备、无线通信设备、远程设备、移动用户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或者若干其它适当的用语来称呼。
此外,本说明书中的无线基站也可以用用户终端来替换。例如,对于将无线基站和用户终端间的通信替换为多个用户终端间(D2D,Device-to-Device)的通信的结构,也可以应用本公开的各方式/实施方式。此时,可以将上述的 电子设备所具有的功能当作用户终端所具有的功能。此外,“上行”和“下行”等文字也可以替换为“侧”。例如,上行信道也可以替换为侧信道。
同样,本说明书中的用户终端也可以用无线基站来替换。此时,可以将上述的用户终端所具有的功能当作第一通信设备或第二通信设备所具有的功能。
在本说明书中,设为通过基站进行的特定动作根据情况有时也通过其上级节点(upper node)来进行。显然,在具有基站的由一个或多个网络节点(network nodes)构成的网络中,为了与终端间的通信而进行的各种各样的动作可以通过基站、除基站之外的一个以上的网络节点(可以考虑例如移动管理实体(MME,Mobility Management Entity)、服务网关(S-GW,Serving-Gateway)等,但不限于此)、或者它们的组合来进行。
本说明书中说明的各方式/实施方式可以单独使用,也可以组合使用,还可以在执行过程中进行切换来使用。此外,本说明书中说明的各方式/实施方式的处理步骤、序列、流程图等只要没有矛盾,就可以更换顺序。例如,关于本说明书中说明的方法,以示例性的顺序给出了各种各样的步骤单元,而并不限定于给出的特定顺序。
本说明书中说明的各方式/实施方式可以应用于利用长期演进(LTE,Long Term Evolution)、高级长期演进(LTE-A,LTE-Advanced)、超越长期演进(LTE-B,LTE-Beyond)、超级第3代移动通信系统(SUPER 3G)、高级国际移动通信(IMT-Advanced)、第4代移动通信系统(4G,4th generation mobile communication system)、第5代移动通信系统(5G,5th generation mobile communication system)、未来无线接入(FRA,Future Radio Access)、新无线接入技术(New-RAT,Radio Access Technology)、新无线(NR,New Radio)、新无线接入(NX,New radio access)、新一代无线接入(FX,Future generation radio access)、全球移动通信系统(GSM(注册商标),Global System for Mobile communications)、码分多址接入3000(CDMA3000)、超级移动宽带(UMB,Ultra Mobile Broadband)、IEEE 920.11(Wi-Fi(注册商标))、IEEE 920.16(WiMAX(注册商标))、IEEE 920.20、超宽带(UWB,Ultra-WideBand)、蓝牙(Bluetooth(注册商标))、其它适当的无线通信方法的系统和/或基于它们而扩展的下一代系统。
本说明书中使用的“根据”这样的记载,只要未在其它段落中明确记载,则并不意味着“仅根据”。换言之,“根据”这样的记载是指“仅根据”和“至少根据”这两者。
本说明书中使用的对使用“第一”、“第二”等名称的单元的任何参照,均非全面限定这些单元的数量或顺序。这些名称可以作为区别两个以上单元的便利方法而在本说明书中使用。因此,第一单元和第二单元的参照并不意味着仅可采用两个单元或者第一单元必须以若干形式占先于第二单元。
本说明书中使用的“判断(确定)(determining)”这样的用语有时包含多种多样的动作。例如,关于“判断(确定)”,可以将计算(calculating)、推算(computing)、处理(processing)、推导(deriving)、调查(investigating)、搜索(looking up)(例如表、数据库、或其它数据结构中的搜索)、确认(ascertaining)等视为是进行“判断(确定)”。此外,关于“判断(确定)”,也可以将接收(receiving)(例如接收信息)、发送(transmitting)(例如发送信息)、输入(input)、输出(output)、存取(accessing)(例如存取内存中的数据)等视为是进行“判断(确定)”。此外,关于“判断(确定)”,还可以将解决(resolving)、选择(selecting)、选定(choosing)、建立(establishing)、比较(comparing)等视为是进行“判断(确定)”。也就是说,关于“判断(确定)”,可以将若干动作视为是进行“判断(确定)”。
本说明书中使用的“连接的(connected)”、“结合的(coupled)”这样的用语或者它们的任何变形是指两个或两个以上单元间的直接的或间接的任何连接或结合,可以包括以下情况:在相互“连接”或“结合”的两个单元间,存在一个或一个以上的中间单元。单元间的结合或连接可以是物理上的,也可以是逻辑上的,或者还可以是两者的组合。例如,“连接”也可以替换为“接入”。在本说明书中使用时,可以认为两个单元是通过使用一个或一个以上的电线、线缆、和/或印刷电气连接,以及作为若干非限定性且非穷尽性的示例,通过使用具有射频区域、微波区域、和/或光(可见光及不可见光这两者)区域的波长的电磁能等,被相互“连接”或“结合”。
在本说明书或权利要求书中使用“包括(including)”、“包含(comprising)”、以及它们的变形时,这些用语与用语“具备”同样是开放式的。进一步地,在本说明书或权利要求书中使用的用语“或(or)”并非是异或。
以上对本公开进行了详细说明,但对于本领域技术人员而言,显然,本 公开并非限定于本说明书中说明的实施方式。本公开在不脱离由权利要求书的记载所确定的本公开的宗旨和范围的前提下,可以作为修改和变更方式来实施。因此,本说明书的记载是以示例说明为目的,对本公开而言并非具有任何限制性的意义。

Claims (10)

  1. 一种接收设备,包括:
    接收单元,被配置为接收关于指示螺旋因子的调制参数的信息;
    控制单元,被配置为根据所述调制参数确定伪N阶第一类型调制,其中
    伪N阶第一类型调制的2^N个第一符号与M阶第二类型调制的2^M个第二符号中的一部分第二符号对应,M和N为正整数。
  2. 如权利要求1所述的接收设备,其中
    所述调制参数还指示幅度加权参数和相位加权参数中的至少一个。
  3. 如权利要求1或2所述的接收设备,其中
    所述调制参数还指示M和N中的至少一个。
  4. 如权利要求1所述的接收设备,其中
    关于调制参数的信息直接包括关于所述螺旋因子的信息,
    所述控制单元根据关于所述螺旋因子的信息确定伪N阶第一类型调制。
  5. 如权利要求1所述的接收设备,其中
    关于调制参数的信息包括关于调制参数表格索引的信息,
    所述控制单元根据所述关于调制参数表格索引的信息,在调制参数表格中确定螺旋因子,并且根据所确定的螺旋因子确定伪N阶第一类型调制。
  6. 如权利要求1所述的接收设备,还包括:
    发送单元,被配置为向发送设备发送关于所述接收设备支持的调制方式的信息。
  7. 如权利要求6所述的接收设备,其中
    关于所述接收设备支持的调制方式的信息指示所述接收设备支持的M阶第二类型调制方式和伪N阶第一类型调制中的至少一个。
  8. 一种发送设备,包括:
    控制单元,配置为根据关于相位噪声的信息确定关于指示螺旋因子的调制参数的信息;以及
    发送单元,配置为发送关于所确定的关于调制参数的信息。
  9. 如权利要求8所述的发送设备,还包括:
    接收单元,被配置为接收关于接收设备支持的调制方式的信息,其中
    所述控制单元还被配置为,根据所述关于接收设备支持的调制方式的信息,确定是否使用所述伪N阶第一类型调制。
  10. 一种接收方法,包括:
    接收关于指示螺旋因子的调制参数的信息;
    根据所述调制参数确定伪N阶第一类型调制,其中
    伪N阶第一类型调制的2^N个第一符号与M阶第二类型调制的2^M个第二符号中的一部分第二符号对应,M和N为正整数。
PCT/CN2022/070808 2022-01-07 2022-01-07 发送设备、接收设备和接收方法 WO2023130379A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/070808 WO2023130379A1 (zh) 2022-01-07 2022-01-07 发送设备、接收设备和接收方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/070808 WO2023130379A1 (zh) 2022-01-07 2022-01-07 发送设备、接收设备和接收方法

Publications (1)

Publication Number Publication Date
WO2023130379A1 true WO2023130379A1 (zh) 2023-07-13

Family

ID=87072697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070808 WO2023130379A1 (zh) 2022-01-07 2022-01-07 发送设备、接收设备和接收方法

Country Status (1)

Country Link
WO (1) WO2023130379A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109067695A (zh) * 2018-10-12 2018-12-21 苏州大学张家港工业技术研究院 基于级联卡尔曼滤波器减少噪声干扰的方法及系统
CN109905342A (zh) * 2019-04-02 2019-06-18 山东大学 一种抗相位噪声干扰的螺旋调制星座图设计方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109067695A (zh) * 2018-10-12 2018-12-21 苏州大学张家港工业技术研究院 基于级联卡尔曼滤波器减少噪声干扰的方法及系统
CN109905342A (zh) * 2019-04-02 2019-06-18 山东大学 一种抗相位噪声干扰的螺旋调制星座图设计方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KWAK BYUNG-JAE, SONG NAH-OAK, PARK BUMSOO, KWON DONG SEUNG: "Spiral QAM: A Novel Modulation Scheme Robust in the Presence of Phase Noise", VEHICULAR TECHNOLOGY CONFERENCE, 2008. VTC 2008-FALL. IEEE 68TH, IEEE, PISCATAWAY, NJ, USA, 1 September 2008 (2008-09-01) - 24 September 2008 (2008-09-24), Piscataway, NJ, USA , pages 1 - 5, XP093077960, ISBN: 978-1-4244-1721-6, DOI: 10.1109/VETECF.2008.221 *
MA YUANYUAN; GAO MINGYI; ZHANG JUNFENG; YE YANG; REN HONGLIANG; YAN YONGHU: "Noise-tolerant spiral 16-QAM system based on cascaded Kalman filters", 2018 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), IEEE, 26 October 2018 (2018-10-26), pages 1 - 3, XP033486845, DOI: 10.1109/ACP.2018.8595882 *

Similar Documents

Publication Publication Date Title
US11764928B2 (en) Reference signal configuration method, apparatus, and system
US11018920B2 (en) User terminal and wireless communication method
JP2020191623A (ja) 端末及び基地局
US11277222B2 (en) Data transmission method and communications device
US20210119836A1 (en) Data scrambling method and related device
JP2020191622A (ja) 無線通信システムにおける端末及び基地局
CN111277294B (zh) 天线选择方法及相关产品
WO2018202063A1 (zh) 干扰协调信息交互方法、减轻交叉链路干扰的方法和基站
US11012101B2 (en) Data transmission method, apparatus and storage medium
US11595883B2 (en) Wireless communication methods and corresponding base stations and user terminals
US11362879B2 (en) Constellation rotation method and base station
WO2018201910A1 (zh) 波束信息反馈方法及用户装置
WO2018083863A1 (ja) ユーザ装置
US20120182897A1 (en) Method and apparatus for network entry in heterogeneous network
CN110073621A (zh) 用户终端、在其处的反馈方法、基站和在其处的方法
WO2023130379A1 (zh) 发送设备、接收设备和接收方法
WO2023130378A1 (zh) 发送设备和接收设备
WO2023130377A1 (zh) 发送设备、接收设备和调制方法
US11050602B2 (en) Methods and communication apparatuses for bit-to-symbol mapping
WO2020227866A1 (zh) 终端以及发送方法
WO2023283885A1 (zh) 电子设备和调制方法
CN112425226B (zh) 通信方法及相应的用户终端、基站
CN111918395A (zh) 一种基于窄带物联网的同步信号传输方法及装置
WO2019052441A1 (zh) 一种用于生成扩展符号的方法及装置
WO2022268114A1 (zh) 一种调制和编码方案mcs表格确定方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22917851

Country of ref document: EP

Kind code of ref document: A1