WO2022075554A1 - 가상현실 기반의 눈 건강 측정 장치, 방법 및 그 시스템 - Google Patents

가상현실 기반의 눈 건강 측정 장치, 방법 및 그 시스템 Download PDF

Info

Publication number
WO2022075554A1
WO2022075554A1 PCT/KR2021/008271 KR2021008271W WO2022075554A1 WO 2022075554 A1 WO2022075554 A1 WO 2022075554A1 KR 2021008271 W KR2021008271 W KR 2021008271W WO 2022075554 A1 WO2022075554 A1 WO 2022075554A1
Authority
WO
WIPO (PCT)
Prior art keywords
eye health
eye
measurement
unit
virtual reality
Prior art date
Application number
PCT/KR2021/008271
Other languages
English (en)
French (fr)
Inventor
이태휘
Original Assignee
주식회사 엠투에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200129225A external-priority patent/KR102412649B1/ko
Priority claimed from KR1020200129232A external-priority patent/KR102219659B1/ko
Application filed by 주식회사 엠투에스 filed Critical 주식회사 엠투에스
Priority to EP21877809.0A priority Critical patent/EP4226841A1/en
Publication of WO2022075554A1 publication Critical patent/WO2022075554A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/02Subjective types, i.e. testing apparatus requiring the active assistance of the patient
    • A61B3/028Subjective types, i.e. testing apparatus requiring the active assistance of the patient for testing visual acuity; for determination of refraction, e.g. phoropters
    • A61B3/032Devices for presenting test symbols or characters, e.g. test chart projectors
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/20ICT specially adapted for the handling or processing of patient-related medical or healthcare data for electronic clinical trials or questionnaires
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H15/00ICT specially adapted for medical reports, e.g. generation or transmission thereof
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/60ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to nutrition control, e.g. diets
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/1604Head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/165Wearable interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5007Control means thereof computer controlled
    • A61H2201/501Control means thereof computer controlled connected to external computer devices or networks
    • A61H2201/5012Control means thereof computer controlled connected to external computer devices or networks using the internet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5023Interfaces to the user
    • A61H2201/5043Displays
    • A61H2201/5046Touch screens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H5/00Exercisers for the eyes

Definitions

  • the present invention relates to a virtual reality-based eye health measurement device, method, and system. More particularly, it relates to a virtual reality-based eye health measurement device, method, and system for performing an eye health measurement process using virtual reality, and providing prescription content and eye health solution service according to the result.
  • abnormal vision symptoms such as nearsightedness, farsightedness, and/or astigmatism may be exhibited due to deterioration of eye health.
  • the abnormal signal related to the eye health state may include not only the vision abnormal signal but also the pupil abnormality, the eye movement abnormality, and the like.
  • HMD Head Mounted Display
  • the measurement performer in the conventional eye disease measurement method, in common, the measurement performer (doctor or optometrist) manually measures the eye condition of the measurement target using expensive measurement equipment.
  • the measurement result for the measurement target is not objective, takes a long time, and there is a problem in that excessive measurement costs occur due to the personnel cost of the measurement performer.
  • the measurement equipment for measuring vision among eye diseases is improved from the method using the conventional vision chart, the person performing the measurement again analyzes the measurement information of the measurement target obtained through the measurement equipment to determine the type of eye disease. Therefore, there is a problem in that it is difficult to quickly determine the eye disease based on the measurement information of the subject to be measured.
  • AR augmented reality
  • MR virtual reality
  • the present invention has been devised to solve the problems described above, and a virtual reality-based eye health measurement device that maintains the cleanliness of a head mounted display used for eye health measurement and provides a functional operation to assist convenient management , a method and a system thereof are provided.
  • the present invention determines a measurement target (ie, subject) customized eye health measurement method based on a survey process related to eye health, and eye health for the measurement target based on the determined eye health measurement method
  • a measurement target ie, subject
  • An object of the present invention is to provide a virtual reality-based eye health measurement device, method, and system for performing a measurement service.
  • Another object of the present invention is to implement a virtual reality-based eye health measurement apparatus, method, and system for providing a graphic image of an eye health state measurement result obtained for the measurement target.
  • the present invention provides an eye health measurement result of the measurement target obtained based on virtual reality by using a computing device (eg, a mobile type computing device and/or a desktop type computing device, etc.) for the measurement target's eye health.
  • a computing device eg, a mobile type computing device and/or a desktop type computing device, etc.
  • the purpose is to implement a virtual reality-based eye health measurement device, method, and system provided as a base.
  • the present invention provides a virtual reality-based eye health measurement device that provides an eye health solution service that assists the eye health management optimized for the measurement target from a diversified perspective based on the eye health state measurement result provided as described above.
  • the purpose is to implement the method and the system.
  • a virtual reality-based eye health measurement method is a method for a processor of an eye health meter to perform virtual reality-based eye health measurement in conjunction with a head-mounted display, the method comprising: providing an eye health state survey interface; determining an eye health measurement method based on the provided survey interface; performing eye health measurement using the determined eye health measurement method; displaying a result according to the measured eye health condition; and providing prescription contents based on a result according to the measurement of the eye health condition.
  • the virtual reality-based eye health measurement method is a method in which a processor of an eye health meter interlocks with a head mounted display to perform virtual reality-based eye health measurement, and is a virtual reality-based eye health measurement method. measuring the eye health state of the subject to be measured; controlling to display the eye health state information of the subject to be measured, which is a result according to the executed eye health state measurement; determining an eye healing image that is virtual reality content to be provided to the measurement target based on the generated eye health state information; and controlling to output the determined eye healing image to the measurement subject.
  • a virtual reality-based eye health measurement device includes: an eye health measurement device that provides a virtual reality-based eye health measurement service; and a head-mounted display for outputting the virtual reality image
  • the eye health measurer includes: a body forming a body of the eye health measurer; a sensor unit configured to detect an inflow or outflow of the head mounted display to the head mounted display receiving unit disposed on the body; a disinfecting unit for disinfecting the head mounted display introduced into the receiving unit; and controlling the sensor unit to obtain sensing information of the protection unit including at least one of position, area, direction, and angle information for the face contact protection unit of the head mounted display introduced into the receiving unit, and the obtained protection and a processor for tilting the disinfection unit toward the face contact protection unit based on the sub-sensing information.
  • a virtual reality-based eye health measurement apparatus, method, and system perform a functional operation (in an embodiment, a sterilization function, etc.) for maintaining the cleanliness of a head mounted display used for eye health measurement By providing it, there is an effect that it is possible to safely maintain the clean state of the head mounted display used for the eye health measurement service without individually checking the contamination state of the head mounted display or manually performing a separate sterilization process every time.
  • a functional operation in an embodiment, a sterilization function, etc.
  • the virtual reality-based eye health measurement device, method, and system according to an embodiment of the present invention provide a functional operation (in the embodiment, an automatic charging function) that assists convenient management of a head-mounted display used for eye health measurement. etc.), there is an effect that the eye health condition measurement environment can be easily and conveniently managed.
  • the virtual reality-based eye health measurement apparatus, method, and system provide a method for measuring eye health customized to a measurement target (ie, subject) based on a survey process related to eye health
  • a measurement target ie, subject
  • the eye health measurement service for the subject to be measured based on the determined eye health measurement method consistent and reliable base data for analyzing the eye health state of the subject can be obtained through a systematic measurement method, and , it has the effect of deriving reliable analysis results based on this.
  • the virtual reality-based eye health measurement apparatus, method, and system determine the current eye health state of the subject to be measured based on the result of the eye health state survey analysis, and based on this, By selecting and providing the necessary eye health measurement method, a customized eye health measurement process optimized for each subject can be carried out, thereby reducing the cost or effort required for eye health measurement, and consequently, eye health measurement Service efficiency can be improved.
  • the virtual reality-based eye health measurement apparatus, method, and system provide a graphical image of the eye health state measurement result to provide a more intuitive recognition of the eye health state measurement result.
  • the virtual reality-based eye health measurement apparatus, method, and system include the measurement result of the eye health state of the measurement subject obtained based on virtual reality to the measurement subject's eye health measurement computing device (for example, by providing based on a mobile-type computing device and/or a desktop-type computing device, etc.), it is possible to easily track, observe and care for eye health in daily life, and through this, the cost required for eye health management It has the effect of reducing cost and effort.
  • the virtual reality-based eye health measurement apparatus, method, and system according to an embodiment of the present invention provide customized eye health management optimized for a subject to be measured based on the eye health state measurement result from a diversified perspective.
  • a solution service it is possible to conveniently manage and care for eye health in various aspects, and this has the effect of inducing the subject to be measured more actively participating in eye health care in their daily life.
  • FIG. 1 is a conceptual diagram of a virtual reality-based eye health measurement system according to an embodiment of the present invention.
  • FIG. 2 is an example of a state showing an eye health measuring device according to an embodiment of the present invention.
  • FIG. 3 is an internal block diagram of an eye health meter according to an embodiment of the present invention.
  • FIG. 6 is an example of an eye health measuring device including a driving unit according to an embodiment of the present invention.
  • FIG. 7 is an example of a view for explaining a charging unit according to an embodiment of the present invention.
  • FIG. 8 is an exploded perspective view of a head mounted display according to an embodiment of the present invention.
  • FIG. 9 is an internal block diagram of a head mounted display according to an embodiment of the present invention.
  • FIG. 10 is an example of a view for explaining the operation principle of the eye health measuring device according to the embodiment of the present invention.
  • FIG 11 is an internal block diagram of an eye health platform management server according to an embodiment of the present invention.
  • FIG. 12 is a flowchart illustrating a method for measuring eye health based on virtual reality according to an embodiment of the present invention.
  • 13A and 13B are examples of an eye health state survey interface according to an embodiment of the present invention.
  • 14A and 14B are examples of displaying eye health state survey information according to an embodiment of the present invention.
  • 15 and 16 are examples of diagrams for explaining stereoscopic vision measurement content according to an embodiment of the present invention.
  • 17 is an example of a diagram for explaining a method of implementing a displacement indicator according to an embodiment of the present invention.
  • 19A and 19B are examples of displaying eye health measurement results according to an embodiment of the present invention.
  • 20 to 23 are examples of drawings for explaining an eye healing image according to an embodiment of the present invention.
  • 24 is an internal block diagram of a mobile type computing device according to an embodiment of the present invention.
  • 25 is a flowchart illustrating a method for measuring eye health based on virtual reality according to an embodiment of the present invention.
  • 26 is an example of a state in which an eye health solution service is provided in a mobile type computing device according to an embodiment of the present invention.
  • FIG. 27 is a conceptual diagram illustrating a method of providing an eye health solution service in a mobile type computing device according to an embodiment of the present invention.
  • 28A, 28B, and 28C are examples of diagrams for explaining measurement report contents according to an embodiment of the present invention.
  • 29 is an example of a diagram for explaining eye movement index content according to an embodiment of the present invention.
  • 30A and 30B are examples of diagrams for explaining simple eye measurement content according to an embodiment of the present invention.
  • 31A and 31B are examples of diagrams for explaining simple eye exercise contents according to an embodiment of the present invention.
  • FIG. 32 is an example of a diagram for explaining eye health-related knowledge content according to an embodiment of the present invention.
  • 33A and 33B are examples of diagrams for explaining ophthalmic organ information content according to an embodiment of the present invention.
  • FIG. 1 is a conceptual diagram of a virtual reality-based eye health measurement system according to an embodiment of the present invention.
  • a virtual reality-based eye health measurement system (hereinafter, eye health measurement system) according to an embodiment of the present invention includes an eye health measurement device (eye health meter 100 and head mounted display 200) , the eye health platform management server 300 and the eye health measurement computing device 600 may be included.
  • the eye health meter 100 , the head mounted display 200 , the eye health platform management server 300 , and the eye health measurement computing device 600 interwork with each other to perform an eye health measurement process based on virtual reality. It is possible to implement a virtual reality-based eye health measurement service (hereinafter, eye health measurement service) that provides prescription contents and eye health solution service according to the result.
  • eye health measurement service a virtual reality-based eye health measurement service that provides prescription contents and eye health solution service according to the result.
  • the eye health meter 100 , the head mounted display 200 , the eye health platform management server 300 and the eye health measurement computing device 600 of FIG. 1 may be connected based on a network.
  • the network has a connection structure capable of exchanging information with each other, such as the eye health meter 100, the head mounted display 200, the eye health platform management server 300, and the eye health measurement computing device 600, etc.
  • a network includes a 3rd Generation Partnership Project (3GPP) network, a Long Term Evolution (LTE) network, a World Interoperability for Microwave Access (WIMAX) network, the Internet, a Local Area Network (LAN), and a Wireless LAN (Wireless Local Area Network), WAN (Wide Area Network), PAN (Personal Area Network), Bluetooth (Bluetooth) network, satellite broadcasting network, analog broadcasting network, Digital Multimedia Broadcasting (DMB) network, etc. are included, but are not limited thereto. does not
  • FIG. 2 is an example of a state showing an eye health measuring device according to an embodiment of the present invention.
  • an apparatus for measuring eye health may include an eye health meter 100 and a head mounted display 200 .
  • the eye health measuring device including the eye health meter 100 and the head mounted display 200 is based on the virtual reality image output from the head mounted display 200, It is possible to provide an eye health measurement service that identifies the eye health condition.
  • the eye health meter 100 is a device capable of measuring the eye health state of a subject based on a virtual reality image in conjunction with the head mounted display 200 .
  • FIG. 3 is an internal block diagram of the eye health meter 100 according to an embodiment of the present invention.
  • the eye health meter 100 includes a body 110 , a disinfection unit 120 , a charging unit 130 , a sensor unit 140 , and a display unit. 150 and an input unit 160 may be included.
  • the eye health meter 100 can be implemented with more or fewer components than that. there is.
  • the components will be described in turn.
  • the body 110 of the eye health meter 100 forms an appearance as the body of the eye health meter 100 , and various units necessary for driving the eye health meter 100 inside and outside are provided.
  • a main body part 111 on which a display unit 150 for outputting a predetermined graphic image is disposed may be formed on the upper side.
  • the main body unit 111 may be implemented in the shape of a square box having a size that can accommodate the display unit 150 .
  • the base portion 112 for supporting the main body portion 111 as above from the ground may be disposed on the lower side.
  • the main body part 111 separates the base part 112 and the main body part 111 from the base part 112 and the main body part 111 to form a predetermined cavity area between the base part 112 and the main body part 111 at the same time. It may be supported from the ground through the support part 113 that connects and supports the main body part 111 from the base part 112 .
  • the support part 113 includes a first support part 113-1 that connects and supports one side (eg, the left end) of the main body part 111 and the base part 112, and the main body It may include a second support part 113-2 that connects and supports the part 111 and the other side (eg, the right end) of the base part 112 .
  • the base part 112 as above may be implemented in a rectangular plate shape having the same or larger size with respect to the lower surface of the main body part 111, and the first support part 113-1 is the main body part.
  • the part 111 may be implemented in a bar shape having a length corresponding to one edge (eg, a left edge) of the lower surface of the part 111
  • the second support part 113-2 is the other edge (eg, the left edge) of the lower surface of the main body part 111 .
  • it may be implemented in a bar shape having a length corresponding to the right corner).
  • a head mounted display receiving part formed surrounded by the lower surface of the main body part 111 as above, the inner surface of the support part 113 and the upper surface of the base part 112 . (114: hereinafter, accommodating part) may be disposed.
  • the receiving part 114 is implemented in a hollow (penetrating) shape with one side open, so as to provide a space for the head mounted display 200 of the eye health measurement device to flow in or out. there is.
  • the accommodating part 114 stores the head mounted display 200 introduced into the accommodating part 114 , and at the same time, a space in which sterilization and/or charging functions for the head mounted display 200 are implemented. can provide
  • FIG 4 and 5 are examples of drawings for explaining the disinfection unit 120 according to an embodiment of the present invention.
  • the eye health meter 100 includes a disinfection unit 120 that performs a sterilization and disinfection function for the head mounted display 200 introduced into the receiving unit 114 . can do.
  • the disinfection unit 120 may perform a function of sterilizing and disinfecting the face contact protection unit 261 of the housing 260 in the head mounted display 200 introduced into the receiving unit 114 . .
  • the disinfection unit 120 includes at least one ultraviolet lamp (UV LAMP) and / or It may be implemented with at least one or more LED lamps (LED LAMP).
  • UV LAMP ultraviolet lamp
  • LED LAMP LED lamps
  • the disinfection unit 120 according to the control of the eye health meter 100, a lamp group including at least one or more lamps, the face contact protection unit of the head mounted display 200 introduced into the receiving unit 114. It can be tilted to face 261.
  • the disinfection unit 120 may perform an irradiation operation based on the tilted lamps to face the face contact protection unit 261 of the head mounted display 200 .
  • the disinfection unit 120 may perform sterilization of the face contact protection unit 261 of the head mounted display 200 stored in the receiving unit 114 of the eye health meter 100 .
  • the eye health meter 100 is based on the sensor unit 140 capable of sensing the position of the face contact protection unit 261 of the head mounted display 200 , the face contact protection unit 261 . ) of the location, area, inflow direction and/or angle information can be obtained.
  • the eye health measurement device 100 based on the location, area, inflow direction and/or angle information of the face contact protection unit 261 obtained as above, performs an investigation on the face contact protection unit 261 at least one lamp group (eg, a set of a plurality of lamps in the third disinfection unit 120 and the second disinfection unit 120 ) may be set.
  • at least one lamp group eg, a set of a plurality of lamps in the third disinfection unit 120 and the second disinfection unit 120 .
  • the eye health meter 100 may control to emit light for sterilization by operating a set lamp group.
  • such a disinfecting unit 120 may be disposed on the upper surface of the receiving unit 114 of the eye health meter 100 .
  • the disinfection unit 120 includes the first disinfection unit 121 and the second support unit 113-2 disposed inside the first support unit 113-1 forming the receiving unit 114 . It may include a second disinfection unit 122 disposed inside the and/or a third disinfection unit 123 disposed on the lower surface of the main body unit 111 .
  • the direction of at least one or more lamps disposed on the unit 122 and/or the third disinfection unit 123 may be adjusted.
  • FIG. 6 is an example of an eye health measuring device including a driving unit according to an embodiment of the present invention.
  • the eye health meter 100 may further include a driving unit 125 that can assist the tilting operation of the lamp disposed in the disinfection unit 120 described above. .
  • the driving unit 125 is formed between the above-described base portion 112 and the support portion 113, and performs an up-and-down movement to space the base portion 112 and the support portion 113 apart or join the piston. It can be implemented in the form
  • the driving unit 125 is disposed between one side of the first support part 113-1 and the base part 112, and is spaced apart or It is disposed between the other side of the first driving part 125-1 and the second support part 113-2 and the base part 112 that enables bonding, the second support part 113-2 and the base part 112. It may include a second driving unit 125-2 that enables separation or bonding between the other sides.
  • the first driving unit 125-1 and/or the second driving unit 125-2 may perform a vertical movement (piston operation) according to the control of the eye health meter 100 .
  • the first support unit 113-1 connected to the first driving unit 125-1 also vertically moves.
  • One side of the main body part 111 supported by the first support part 113-1 may also be chained up and down according to the vertical movement of the first driving part 125-1. .
  • the vertical movement of the second support part 113-2 may be performed according to the vertical movement of the second driving part 125-2, and the main body part supported by the second support part 113-2 may be performed.
  • the other side of (111) can also be performed a chain up-and-down movement.
  • the other side may be spaced apart from or joined to the base part 112 .
  • the eye health meter 100 may assist the tilting operation of the lamp disposed in the disinfection unit 120 described above through the control of the driving unit 125 operating as described above.
  • the eye health meter 100 performs a tilting operation on at least one lamp in the disinfecting unit 120 to face the face contact protection unit 261 of the head mounted display 200 on the receiving unit 114 .
  • the face contact protection unit 261 of the head mounted display 200 that is introduced into the receiving unit 114 with a random position, area, direction and/or angle. It may be difficult to implement a high irradiation rate for
  • the eye health meter 100 implements a tilting operation with respect to the inner surface of the support part 113 on which the disinfection part 120 is disposed and the lower surface of the main body part 111, so that a wider range
  • the lamps of the disinfection unit 120 may be tilted in an angle, position and/or direction.
  • the eye health meter 100 is configured such that at least one or more lamps of the disinfection unit 120 face the face contact protection unit 261 of the head mounted display 200 on the receiving unit 114 .
  • a predetermined irradiation angle can be calculated.
  • the eye health meter 100 may tilt at least one or more lamps of the disinfecting unit 120 to realize the calculated irradiation angle.
  • the eye health meter 100 controls the driving unit 125 to tilt the support unit 113 and the main body unit 111 . can be performed.
  • the eye health meter 100 includes a motion height h1 for the first driving unit 125-1 and a motion height h2 for the second driving unit 125-2 based on the irradiation angle. ) can be determined.
  • the eye health meter 100 causes the driving unit 125 to perform a vertical movement according to the movement height determined as above, so that the support unit 113 and the main body unit 111 can be tilted. there is.
  • the disinfection unit 120 in the other direction
  • the first driving unit 125- One side of the first support part 113-1 and the main body part 111 corresponding to 1), the second support part 113-2 and the main body part 111 corresponding to the second driving part 125-2 can be positioned higher than the other side.
  • the eye health meter 100 may implement a tilting operation such that the support part 113 and the main body part 111 are inclined in the other direction through this.
  • the eye health meter 100 can be positioned so that the lamps of the disinfection unit 120 more accurately face the face contact protection unit 261 on the receiving unit 114, and through this, the performance of irradiation for sterilization can improve
  • FIG 7 is an example of a view for explaining the charging unit 130 according to an embodiment of the present invention.
  • the eye health meter 100 may include a charging unit 130 that provides a charging function for the head mounted display 200 introduced into the receiving unit 114 .
  • the charging unit 130 applies a predetermined power to the battery 291 of the head mounted display 200 seated in the receiving unit 114 to provide a charging function for the corresponding head mounted display 200 . can be done
  • the eye health meter 100 may provide a wireless charging and/or a wired charging function for the head mounted display 200 .
  • the eye health meter 100 when the eye health meter 100 detects that the head mounted display 200 is seated in the receiving unit 114 , it controls the charging unit 130 to automatically perform a wireless charging function for the head mounted display 200 . can be run with
  • the charging unit 130 as described above may be disposed anywhere as long as it is a position capable of performing a charging operation for the head mounted display 200 disposed in the receiving unit 114 , but a target to be charged (embodiment) In the head-mounted display 200), it will be the most preferred embodiment to be formed on the upper surface of the base portion 112, which is advantageous for wireless charging, whose performance is improved as it comes into close contact.
  • the eye health measuring device 100 may include a sensor unit 140 that detects sensing information required for a functional operation of the eye health measuring device based on various sensing units.
  • the sensor unit 140 includes a user sensing unit 141 that detects the approach of a user (eg, a subject or a measurer), and the head mounted display 200 into the receiving unit 114 to detect the inflow. It may include a head mounted display sensing unit 142 (hereinafter referred to as a head sensing unit).
  • the user sensing unit 141 may obtain the user proximity information by determining whether the user approaches the eye health meter 100 within a predetermined distance or less.
  • the eye health meter 100 is located at a location where the user is close to the eye health meter 100 within a predetermined distance or less, based on the user proximity information obtained based on the user sensing unit 141 as described above. If it is determined that there is, the eye health measurement service may be automatically executed.
  • the eye health measuring device 100 may output a graphic image related to an eye health measuring service through the display unit 150 when the user approaches the eye health measuring device 100 by a predetermined distance or less.
  • the eye health meter 100 when the user approaches the eye health meter 100 within a predetermined distance or less, the eye health meter 100 provides audio data inducing use of the eye health measurement service using the eye health meter 100 . You can also print
  • the user sensing unit 141 as described above may be implemented as a proximity sensor, a distance sensor, and/or an image sensor that detects the approach of a specific object.
  • the head sensing unit 142 may determine whether the head mounted display 200 is accommodated in the eye health meter 100 to obtain the head mounted display 200 accommodation information (hereinafter, head accommodation information).
  • the head sensing unit 142 may include a proximity sensor, a distance sensor, and/or an image sensor.
  • the head sensing unit 142 may determine whether the head mounted display 200 is in a state in which the eye health meter 100 is placed on the receiving unit 114 or in a state in which it is leaked through sensing. there is.
  • the eye health meter 100 determines that the head mounted display 200 has been introduced into the receiving unit 114 based on the head accommodation information acquired through the head sensing unit 142 , the head The position of the face contact protection unit 261 of the mounted display 200 may be sensed and tracked.
  • the eye health measuring device 100 performs a tilting operation based on the above-described disinfection unit 120 and/or the driving unit 125 based on the sensed position information of the face contact protection unit 261 . can make it
  • the eye health meter 100 controls the disinfection unit 120 tilted to face the face contact protection unit 261 side, so that irradiation based on the UV lamp and/or the LED lamp can be performed. And, through this, it is possible to implement a sterilization and disinfection function for the face contact protection unit 261 .
  • the eye health meter 100 determines that the head mounted display 200 has been introduced into the receiving unit 114 based on the head accommodation information obtained through the head sensing unit 142 .
  • an automatic charging function for the head mounted display 200 may be performed by controlling the above-described charging unit 130 .
  • the sensor unit 140 may be disposed anywhere as long as it is easy to sense the head mounted display 200 flowing into or out of the eye health meter 100 , but the head mounted display 200 is directly It may be the most preferred embodiment to be disposed on the receiving portion 114, which is an area to be seated.
  • the eye health measurement device 100 may include a display unit 150 that outputs various graphic images related to an eye health measurement service.
  • the display unit 150 may output a user interface related to an eye health measurement service, an eye health measurement result, and/or a graphic image related to control of the head mounted display 200 .
  • the eye health meter 100 may control the display unit 150 to output sterilization/disinfection information for the face contact protection unit 261 of the head mounted display 200 .
  • the sterilization/disinfection information according to the embodiment may be information calculated according to a predetermined standard by which the face contact protection unit 261 of the head mounted display 200 is sterilized by the disinfection unit 120 .
  • the eye health meter 100 generates a graphic image based on sterilization/disinfection information that increases the sterilization progress rate whenever a predetermined time slice elapses, based on the lamp radiation time of the disinfection unit 120 . generated and outputted through the display unit 150 .
  • the display unit 150 may further include a sound output unit to provide audio data related to the output graphic image together.
  • the display unit 150 includes a liquid crystal display (LCD), a thin film transistor-liquid crystal display (TFT LCD), an organic light-emitting diode (OLED), and a flexible display. It may include at least one of a flexible display and an e-ink display.
  • LCD liquid crystal display
  • TFT LCD thin film transistor-liquid crystal display
  • OLED organic light-emitting diode
  • the eye health measurement device 100 may include an input unit 160 for detecting a user input related to an eye health measurement service.
  • the input unit 160 may detect a user input for an eye health measurement service execution button, a measurement category selection button, and/or a subject information input interface.
  • the above-described display unit 150 and the input unit 160 may be combined to be implemented as a touch screen 161 .
  • the display unit 150 of the eye health meter 100 may provide an input/output interface for detecting a user's touch input by further disposing a touch input sensor on the display panel for outputting a graphic image.
  • the eye health meter 100 includes an interface unit 171 , a communication unit 172 , a database unit 173 , a power supply unit 174 , and a processor 175 and It may further include the same built-in units.
  • the interface unit 171 may be a data path that enables data communication between the eye health meter 100 and an external device (eg, the head mounted display 200 in the embodiment).
  • the interface unit 171 may be connected to an external device by wire through various ports and/or cables, and may communicate data with an external device through a short-range wireless communication module such as Bluetooth or Wi-Fi.
  • a short-range wireless communication module such as Bluetooth or Wi-Fi.
  • Such an interface unit 171 a wired / wireless headset port (port), an external charger port (port), a wired / wireless data port (port), a memory card (memory card) port, for connecting a device equipped with an identification module It may include at least one or more of a port, an audio I/O (Input/Output) port, a video I/O (Input/Output) port, and/or an earphone port. .
  • the communication unit 172 may transmit/receive various data related to an eye health measurement service to and from an external device (eg, the head mounted display 200 in the embodiment).
  • an external device eg, the head mounted display 200 in the embodiment.
  • the communication unit 172 may perform the above data transmission/reception based on the wireless network.
  • Such a communication unit 172 the technical standards or communication methods for mobile communication (eg, Global System for Mobile communication (GSM), Code Division Multi Access (CDMA), High Speed Downlink Packet Access (HSDPA), HSUPA (High Speed Uplink Packet Access), Long Term Evolution (LTE), Long Term Evolution-Advanced (LTE-A), etc. can transmit and receive wireless signals with at least one of a base station, an external terminal, and an arbitrary server on a mobile communication network.
  • GSM Global System for Mobile communication
  • CDMA Code Division Multi Access
  • HSDPA High Speed Downlink Packet Access
  • HSUPA High Speed Uplink Packet Access
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • the communication unit 172 can also transmit and receive wireless signals.
  • WLAN Wireless LAN
  • Wi-Fi Wireless-Fidelity
  • Wi-Fi Wireless Fidelity
  • DLNA Digital Living Network Alliance
  • WiBro Wireless Broadband
  • WiMAX Worldwide Interoperability for Microwave Access
  • the communication unit 172 may transmit/receive a wireless signal using a short-range wireless communication method.
  • Bluetooth BluetoothTM
  • RFID Radio Frequency Identification
  • infrared communication Infrared Data Association; IrDA
  • UWB Ultra Wideband
  • ZigBee Ultra Wideband
  • NFC Near Field Communication
  • Wi- Short-distance communication may be supported by using at least one of Wireless-Fidelity (Fi), Wi-Fi Direct, and Wireless Universal Serial Bus (USB) technologies.
  • the database unit 173 may store and manage various applications, applications, commands and/or data for implementing the eye health measurement service.
  • the database unit 173 may include a program area and a data area.
  • the program area according to the embodiment may be linked between an operating system (OS) for booting the eye health meter 100 and functional elements, and the data area is for use of the eye health meter 100 . Data generated accordingly may be stored.
  • OS operating system
  • the database unit 173 may be various storage devices such as ROM, RAM, EPROM, flash drive, hard drive, etc., and a web that performs the storage function of the database unit 173 on the Internet. It may be storage (web storage).
  • the power supply unit 174 may receive external power and/or internal power under the control of the processor 175 to supply power required for operation to each component.
  • the power supply unit 174 may include at least one of a power storage unit, a connection port, a power supply control unit, and a charging monitoring unit.
  • the processor 175 may control and drive the overall operation of each unit described above.
  • the processor 175 may control the overall operation of each unit for the eye health measurement service.
  • one or more processors 175 are connected through the interface unit 171 to perform various functions for the eye health meter 100 and to process data stored in the database unit 173. may run or execute software programs and/or sets of instructions.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • controllers controllers
  • It may be implemented using at least one of micro-controllers, microprocessors, and other electrical units for performing functions.
  • the head mounted display 200 uses the optical unit and the display unit disposed in the head mounted display 200 after the subject wears a helmet or glasses as if the subject's eye health. It is a device that can measure the state quickly and accurately.
  • the head mounted display 200 acquires and outputs a virtual reality image (VR: Virtual Reality) related to eye health measurement from the eye health meter 100, and responds to the output virtual reality image.
  • VR Virtual Reality
  • the subject's eye response or/and subject's input may be generated as measurement data.
  • the head mounted display 200 may process the generated measurement data directly or by transmitting it to the eye health meter 100 , and the transmitted measurement data may be used to derive the eye health state measurement result. That is, the eye health state measurement result may be obtained based on the measurement data.
  • the head mounted display 200 is fixed to a predetermined equipment (in the embodiment, the eye health meter 100 ) for measuring the eye health state of a subject when measuring the eye health state, does not receive measurement, and moves freely or You can have it measured in a comfortable position.
  • a predetermined equipment in the embodiment, the eye health meter 100
  • the head mounted display 200 of the present invention implements the measurement of the subject's eye health in the form of a virtual reality (VR) device, so that there is no need for a separate analog measuring device or expensive equipment (eg, field of view measuring device, etc.) Based on the image, it is possible to measure the eye health state of the subject.
  • VR virtual reality
  • the head mounted display 200 of the present invention can extract objective measurement data by allowing the subject's eye health condition to be progressed in a normalized automatic measurement form, and through this, an accurate eye health condition can be determined. .
  • the head mounted display 200 as an example is implemented as a wearable computer or takes the form of a wearable computer (also referred to as a wearable computing device).
  • the wearable computer may take the form of or include a head-mountable display (HMD).
  • HMD head-mountable display
  • This head mounted display 200 can be any device that can be worn on the head and can place the display in front of one or both eyes of the wearer.
  • HMDs may take various forms, such as helmets or eyeglasses.
  • FIG 8 is an exploded perspective view of the head mounted display 200 according to an embodiment of the present invention.
  • the head mounted display 200 includes a main body 210 , a display unit 220 that are sequentially accommodated on a rear surface of the main body 210 , an optometry unit 230 , and optical It may include a unit 240 , an optical holder 250 , a housing 260 , an optical interference prevention unit 270 , and a fixing band 280 .
  • the components shown in FIG. 8 are not essential components of the head mounted display 200 , and thus may be omitted according to embodiments.
  • the rear side of the main body 210 has an opening and indicates the direction in which the subject's face is in contact, and the front side of the main body 210 refers to the subject's gaze direction.
  • the main body 210 is formed of a solid structure of plastic and/or metal, or is made of a similar material such that wiring and components are interconnected to be internally routed through the head mounted display 200 . It may be formed as a hollow structure.
  • Reference numeral 215 shown in the drawing denotes an input unit 215 .
  • the input unit 215 may turn on/off the head mounted display 200 or detect an input related to eye health measurement.
  • the input unit 215 is a user's (subject or measurer) input for communicating between the head mounted display 200 and an external system, or changing and selecting a measurement type when the user measures eye health. input can be detected.
  • it may further include an LED light in the form of an alarm to externally recognize a state in which a measurement is in progress or a state in which the measurement is completed.
  • the head mounted display 200 may further include an external input unit that is connected to the head mounted display 200 by wire/wireless, and this external input unit provides the measurer's intention according to the progress of eye health measurement. It may be a device that senses the derived input.
  • This external input unit records the input time and input value by the measurer and transmits the recorded input value to the head mounted display 200 or the eye health meter 100, and the transmitted input value is included in the measurement data.
  • the fixing band 280 is shown as two fixing band portions, but this is not fixed.
  • the fixing band 280 may be implemented in the form of a helmet to fix the main body 210 to the subject's face, or three or more bands to be fixed while wrapping the subject's head.
  • the display unit 220 includes a liquid crystal display (LCD), a thin film transistor-liquid crystal display (TFT LCD), an organic light-emitting diode (OLED), a flexible It may include at least one of a display (flexible display) and an electronic ink display (e-ink display).
  • LCD liquid crystal display
  • TFT LCD thin film transistor-liquid crystal display
  • OLED organic light-emitting diode
  • a flexible It may include at least one of a display (flexible display) and an electronic ink display (e-ink display).
  • the display unit 220 may finally display a graphic image on a three-dimensional display (3D display) in order to measure eye health.
  • the display unit 220 may display a virtual reality image (VR image) among a three-dimensional display (3D display), and use it to measure eye health.
  • VR image virtual reality image
  • 3D display three-dimensional display
  • the panel of the display unit 220 when the panel of the display unit 220 is provided as a single display panel, separate images corresponding to the left and right eyes of the subject can be implemented, respectively.
  • the display panel may be divided into at least two or more.
  • the optometry unit 230 includes a plurality of sensors, a plurality of cameras, a controller of the head mounted display 200, and a circuit module capable of communicating with an external system so as to measure various eye health conditions of the subject. may include
  • the optometry unit 230 may provide an eye tracking function for tracking the eyes of a subject who is to be measured. To this end, cameras capable of tracking the pupil movement of the subject may be mounted in the optometry unit 230 .
  • the optometry unit 230 tracks the eye of the subject that changes according to the VR image, and performs eye health measurement such as visual field measurement, dioptric angle measurement, extraocular muscle measurement, stereoscopic vision measurement, or Linkcaster measurement. Measurement data can be obtained.
  • the eye image of the subject photographed by the optometry unit 230 may be included in the measurement data and transmitted to the eye health meter 100 , and the transmitted measurement data may be the basis of the measurement result.
  • the light irradiation means and photographing means necessary for field of view measurement, strabismus measurement, extraocular muscle measurement, stereoscopic vision measurement, or Ringcaster measurement performed to measure eye health can be implemented in the form of a sensor module or a camera module.
  • the optometry unit 230 may further include sensors capable of irradiating and receiving light to the subject's left and right eyes to measure the eye health condition to obtain refractive index measurement information for the subject's eyes.
  • the optical unit 240 is located between the optometry unit 230 and the housing 260 to provide the most suitable optical unit 240 corresponding to the type of measurement of the subject's eye health condition.
  • the optical unit 240 may selectively exchange and fasten an optical lens for measuring the refractive index of the lens when the measurement of the subject's eye health is the optometry.
  • the optical unit 240 may be an optical lens capable of precisely viewing the pupil movement by the camera when the subject's ophthalmic measurement is a pupil movement measurement such as extraocular muscle measurement.
  • the optical unit 240 may be an optical lens having a structure in which a plurality of lenses having polarization characteristics are stacked.
  • the optical unit 240 is fixed to the optical holder 250 , and the optical units 240 required depending on the type of eye health measurement may be replaced in a manner that is detachable from the optical holder 250 .
  • the housing 260 is inserted in the direction of the opening of the main body 210, the display unit 220, the optometry unit 230, the optical unit 240, the optical holder 250 or / and the main body ( 210) while maintaining optical alignment and fixing the back.
  • a space is provided between both eyes of the subject and the display for measuring eye health.
  • the inside of the housing 260 may include a left eye area and a right eye area independently separated by the optical interference prevention unit 270 .
  • the inner surface of the housing 260 may be coated with a material having a low light reflection and a high light absorptivity for measuring eye health.
  • the housing 260 may have a face contact protection unit 261 disposed on the opening side of the housing 260 .
  • the face contact protection unit 261 is formed in a portion where the head mounted display 200 and the subject's facial skin contact (that is, the area on the opening side of the housing 260), the head mounted display 200 ) and the subject's face can perform fixation and buffering action.
  • such a face contact protection unit 261 is a wavelength (light ) can be accommodated, and sterilization can be implemented through this.
  • the face contact protection part 261 is a part in contact with the subject's facial skin, it is preferable to be formed of a material having high buffering power, and it is preferable to be cleanly protected from predetermined contamination.
  • the optical interference prevention unit 270 may function to separate the left eye region and the right eye region of the head mounted display 200 in order to measure the subject's eye health condition.
  • people have similar positions and shapes of both eyes (two eyes), but since each eye functions independently, the eye health condition is also similar, but exhibits somewhat different symptoms. Accordingly, there are measurements in which independent eye health status measurements need to be performed for each of the left and right eyes.
  • the measurement result may be adversely affected.
  • the head mounted display 200 may include the optical interference prevention unit 270 to block light generated from each of the left eye area and the right eye area so as not to invade each other's area.
  • the optical interference prevention unit 270 may include a light blocking unit 271 that separates the head mounted display 200 into a left eye area and a right eye area, and blocks light propagating from each area to an adjacent area.
  • the light interference prevention unit 270 is generated in the area between the light blocking unit 271 and the subject's left and right eyes (between the forehead area) when the subject wears the head mounted display 200 It may include a contact light blocking unit 272 for preventing optical interference, and a first fixing unit 273 and a second fixing unit 273 for supporting/fixing the optical interference preventing unit 270 to the glabellar area and the bridge of the nose of the subject. 2 may further include a fixing part 274 .
  • the light blocking part 271 has a shape corresponding to the shape from the glabellar area to the pharynx of the user, not simply supported by the wearer's nose, so that when the head mounted display 200 is worn, the left eye area and the right eye area By physically separating the regions, it is possible to block the light from escaping between them.
  • the light blocking portion 271 and the contact light blocking portion 272 are preferably formed of a material having low light reflection and high light absorption.
  • the contact light blocking portion 272 is a portion in contact with the subject's facial skin, it is preferable to be formed of a material having a high buffering power.
  • the head mounted display 200 optically separates the left eye area and the right eye area in the area for measuring eye health, thereby preventing measurement errors due to optical interference that may occur during measurement.
  • FIG 9 is an internal block diagram of the head mounted display 200 according to an embodiment of the present invention.
  • the head mounted display 200 includes a battery 291 , a communication unit 292 , a sensing unit 293 , a storage unit 294 , and a camera. It may include a module 295 , an input unit 215 , a display unit 220 , and a control unit 296 .
  • the head mounted display 200 may be implemented with more components or fewer components.
  • the components will be described in turn.
  • the controller 296 generally controls the overall operation of the head mounted display 200 .
  • the communication unit 292 it is possible to control the communication unit 292 to transmit/receive various signals or process input data.
  • an image output unit and/or a sound output unit that may be disposed in the display unit 220 may be controlled and provided to a subject or a measurer.
  • the head mounted display 200 extracts the measurement data of the subject's eyes, performs comparison and direct calculation based on the eye health state data stored in the storage unit 294, and then You can also judge your eye health.
  • the battery 291 receives external power and internal power under the control of the controller 296 to supply power required for operation of each component.
  • the battery 291 may include a battery, a connection port, a power supply control unit, and a charge monitoring unit.
  • the camera module 295 processes an image frame such as a still image or a moving picture captured by the image sensor in a video call mode or a shooting mode.
  • the processed image frame may be stored in the storage unit 294 or transmitted to an external system through the communication unit 292 .
  • At least two or more camera modules 295 may be provided according to the type or measurement environment of the subject's eye health condition.
  • a camera may be used for monitoring the pupil, and in the case of tracking the eye movement of the subject, a camera capable of performing imaging along the trajectory of the eye movement may be used.
  • the communication unit 292 enables wired/wireless communication with the eye health meter 100 which is an external system.
  • the external system may be a concept including another head mounted display 200 .
  • the communication unit 292 may include a mobile communication module, a wireless Internet module, a short-range communication module, and a location information module.
  • the sensing unit 293 may include a gyro sensor, an acceleration sensor, and/or a proximity sensor that senses the surrounding environment.
  • the head-mounted display 200 of the present invention may include at least two or more optical sensors that generate and receive light irradiated to the subject's eyes to measure eye health.
  • the storage unit 294 may store an application for processing and control of the control unit 296 and may perform a function for temporary storage of input/output data.
  • FIG. 10 is an example of a view for explaining the operation principle of the eye health measuring device according to the embodiment of the present invention.
  • the eye health measuring device 100 of the eye health measuring device detects the proximity of a subject whose eye health condition is to be measured based on the user sensing unit 141 of the sensor unit 140 . can do.
  • the eye health measuring device 100 may automatically execute an eye health measuring service when detecting that the subject approaches the subject by a predetermined distance or less.
  • the eye health measurement device 100 outputs a graphic image indicating that the eye health measurement service is executed through the display unit 150 or outputs predetermined audio data as a sound output of the display unit 150 according to an embodiment.
  • the output may be performed in conjunction with an external audio device connected to the unit and/or the interface unit 171 .
  • the eye health measuring device 100 includes the head mounted display 200 stored in the receiving unit 114 by the user (in the embodiment, the subject and/or the measurer) in order to proceed with the eye health measuring service. leak can be detected.
  • the eye health meter 100 may detect the leakage of the head mounted display 200 in the receiving unit 114 based on the head sensing unit 142 of the sensor unit 140 .
  • the eye health meter 100 performs the head mounted display 200 and the head mounted display ( 200) can be detected through the head sensing unit 142 of the sensing unit.
  • the eye health meter 100 determines the position of the face contact protection unit 261 of the introduced head mounted display 200 . It can be sensed and tracked.
  • the eye health meter 100 is based on the head sensing unit 142 , and the head mounted display 200 is introduced with a random position, area, direction and/or angle into the receiving unit 114 .
  • position, area, inflow direction, and/or angle information (hereinafter, protection unit sensing information) of the face contact protection unit 261 may be obtained.
  • the eye health meter 100 may control the disinfection unit 120 based on the acquired sensing information of the protection unit to set the light irradiation direction of at least one lamp group in the disinfection unit 120 .
  • the eye health meter 100 may determine a lamp group including at least one lamp among a plurality of lamps in the disinfection unit 120 based on the sensing information of the protection unit.
  • the eye health meter 100 may determine a lamp group including at least one or more lamps disposed on an area facing the face contact protection unit 261 based on sensing information of the protection unit.
  • the eye health meter 100 may perform a predetermined tilting operation for the determined lamp group.
  • the eye health meter 100 may tilt each of the lamp groups by a predetermined angle to face the face contact protection unit 261 .
  • the eye health meter 100 optimizes the irradiation angle of the lamp emitting ultraviolet and/or LED for sterilization and disinfection in the direction toward the face contact protection unit 261 of the head mounted display 200 .
  • the accuracy and effectiveness of the sterilization treatment for the face contact protection unit 261 of the head mounted display 200 seated in the receiving unit 114 are improved. can do it
  • the eye health meter 100 performs only a tilting operation with respect to the disinfection unit 120.
  • the irradiation rate for the face contact protection unit 261 does not meet a predetermined standard, the disinfection unit 120
  • the lamps of the disinfection unit 120 can be tilted in a wider range of angles, positions and/or directions. there is.
  • the eye health meter 100 controls the driving unit 125 to control the support unit 113 when the irradiation angle is not satisfied only by tilting the disinfection unit 120 (ie, the lamp) itself. and a tilting operation with respect to the main body part 111 may be implemented.
  • the eye health meter 100 includes a motion height h1 for the first driving unit 125-1 and a motion height h1 for the second driving unit 125-2 based on the irradiation angle ( h2) can be determined.
  • the eye health meter 100 causes the driving unit 125 to perform a vertical movement according to the movement height determined as above, so that the support unit 113 and the main body unit 111 can be tilted. there is.
  • the disinfection unit 120 in the other direction
  • the first driving unit 125- One side of the first support part 113-1 and the main body part 111 corresponding to 1), the second support part 113-2 and the main body part 111 corresponding to the second driving part 125-2 can be positioned higher than the other side.
  • the eye health measurement device 100 may implement a tilting operation such that the support part 113 and the main body part 111 are inclined in the other direction.
  • the eye health meter 100 can position the lamps of the disinfection unit 120 to more accurately face the face contact protection unit 261 on the receiving unit 114, and through this, light for sterilization The radiation performance can be improved.
  • the eye health meter 100 may generate sterilization information, which is information calculated according to a predetermined standard, of the degree of sterilization of the face contact protection unit 261 based on the disinfection unit 120 . there is.
  • the eye health meter 100 may control the display unit 150 to output the generated sterilization/disinfection information and provide it to the user.
  • the eye health meter 100 generates a graphic image based on sterilization/disinfection information that increases the sterilization progress rate whenever a predetermined time slice elapses, based on the lamp radiation time of the disinfection unit 120 . generated and outputted through the display unit 150 .
  • the eye health meter 100 may control the charging unit 130 to charge the head mounted display 200 .
  • the eye health meter 100 when the eye health meter 100 detects that the head mounted display 200 is seated in the receiving unit 114 , it controls the charging unit 130 to perform a wireless charging function for the head mounted display 200 . can be run automatically.
  • the eye health meter 100 may acquire charging information (eg, charging rate (%) and/or charging elapsed time information, etc.) calculated as the charging progresses.
  • charging information eg, charging rate (%) and/or charging elapsed time information, etc.
  • the eye health meter 100 may output the obtained charging information as a graphic image through the display unit 150 .
  • the eye health meter 100 may output the elapsed charging time for the head mounted display 200 and the charging amount and charging rate information charged during the corresponding time through the display unit 150 as a graphic image. there is.
  • the eye health measuring device provides a functional operation (in the embodiment, a sterilization function, etc.) for maintaining the cleanliness of the head mounted display used for eye health measurement, thereby providing a head mounted display. It is possible to safely maintain the cleanliness of the head mounted display used in the eye health measurement service without manually checking the contamination status of the device every time or performing separate sterilization treatment manually.
  • the eye health measurement device provides a functional operation (in the embodiment, an automatic charging function, etc.) that assists convenient management of a head mounted display used for eye health measurement, thereby providing an eye health state
  • a functional operation in the embodiment, an automatic charging function, etc.
  • the measurement environment can be easily and conveniently managed.
  • the eye health platform management server 300 may perform a series of processes for providing an eye health measurement service.
  • the eye health platform management server 300 receives data necessary to drive the eye health state measurement process in an external device such as the eye health meter 100 and/or the head mounted display 200, By exchanging with the external device, an eye health measurement service may be provided.
  • the eye health platform management server 300 measures eye health in an external device (eg, the eye health meter 100, the head mounted display 200 and/or a mobile type computing device, etc.) It can provide an environment in which a process can operate.
  • an external device eg, the eye health meter 100, the head mounted display 200 and/or a mobile type computing device, etc.
  • the eye health platform management server 300 may provide an eye health condition survey process that performs a predetermined question and answer for determining the eye health condition of the subject.
  • the eye health platform management server 300 may determine an eye health measurement method optimized for the subject based on the eye health state survey process.
  • the eye health platform management server 300 may provide a virtual reality-based eye health measurement process based on the determined eye health measurement method.
  • the eye health platform management server 300 may provide result information according to eye health measurement based on various routes.
  • the eye health platform management server 300 may store and manage various data related to the eye health measurement service.
  • FIG 11 is an internal block diagram of the eye health platform management server 300 according to an embodiment of the present invention.
  • the eye health platform management server 300 includes a service providing server 310 , a survey management server 320 , an eye health measurement server 330 , and a prescription content providing server 340 . ) and a database server 350 .
  • each of the components may be implemented as a device separate from the eye health platform management server 300 , or may be implemented by being included in the eye health platform management server 300 .
  • each component is described as being included in the eye health platform management server 300 and implemented, but is not limited thereto.
  • the eye health state measurement process is performed in an external device (eg, the eye health meter 100, the head mounted display 200, and/or a mobile type computing device, etc.)
  • an external device eg, the eye health meter 100, the head mounted display 200, and/or a mobile type computing device, etc.
  • the service providing server 310 may provide an environment in which the eye health state measurement process that provides the eye health measurement service can be executed in an external device.
  • the service providing server 310 may include an application program, data and/or commands for implementing the eye health condition measurement process.
  • the survey management server 320 may provide an eye health state survey process for performing a predetermined question and answer for determining the eye health state of the subject.
  • the survey management server 320 may provide an eye health state survey interface capable of performing an eye health state survey process.
  • the survey management server 320 may provide predetermined query items related to eye health conditions based on the provided survey interface.
  • the survey management server 320 may obtain a response of a user (in an embodiment, a subject or a measurer) to the provided query item, based on a user input based on the survey interface.
  • the eye health measurement server 330 may provide at least one or more eye health state measurement processes.
  • the eye health measurement server 330 is configured to measure optometry, visual field measurement, astigmatism measurement, macular degeneration measurement, color blindness measurement, stereoscopic vision measurement, diplopia measurement, contrast sensitivity measurement, extraocular muscle measurement and/or body acuity measurement, etc. It is possible to manage and provide an eye health condition measurement process that implements
  • the prescription content providing server 340 may provide prescription content (in the embodiment, an eye healing image and/or recommended nutritional information, etc.) according to the measurement result of the eye health condition.
  • the prescription content according to the embodiment may be content data provided for the purpose of improving the eye health state of the subject based on the measurement result of the eye health state.
  • the database server 350 may store and manage various applications, applications, commands and/or data for implementing the eye health measurement service.
  • the database server 350 may provide eye health status query information, score information for each query item in the query, eye health status survey information, and eye health measurement method information (in the embodiment, stereoscopic vision measurement content information) and/or visual field measurement content information), eye health state information, and/or prescription content information, etc. may be stored and managed.
  • the eye health platform management server 300 including the above components includes at least one service providing server 310 , a survey management server 320 , an eye health measurement server 330 , and a prescription content providing server 340 . ) and/or the database server 350 , and may include processors for data processing and memories for storing instructions for providing an eye health measurement service.
  • the eye health platform management server 300 provides an environment in which the eye health state measurement process can operate in an external device, provides the eye health state survey process, and performs the provided eye health state survey process. Determines the optimal eye health measurement method for the subject based on the basis, provides a virtual reality-based eye health measurement process based on the determined eye health measurement method, provides result information according to eye health measurement, and measures eye health
  • an external device eg, the eye health meter 100 and/or Alternatively, various embodiments may also be possible, such as performing in the head mounted display 200, etc.
  • the eye health measurement system may be implemented based on at least a part of the above-described eye health meter 100 , the head mounted display 200 , and the eye health platform management server 300 .
  • the eye health measuring system may be implemented based on the eye health measuring device, that is, the eye health measuring device 100 and the head mounted display 200 .
  • the eye health measuring device 100 the eye health measuring device 100 and the head mounted display 200 .
  • the eye health measurement system is based on the eye health measurement device 100 for implementing an eye health measurement service and a head mounted display 200 for implementing a virtual reality environment related to the eye health measurement service.
  • the eye health measurement system may be implemented based on the head mounted display 200 and the eye health platform management server 300 . (2nd system mode)
  • the eye health measurement system provides an environment in which the eye health measurement service can operate in the head mounted display 200 based on the eye health platform management server 300 , and receives the operation environment provided An eye health measurement service may be provided based on the head mounted display 200 .
  • the eye health measurement system may be implemented based on the eye health meter 100 and a web server. (3rd system mode)
  • the eye health measurement system may provide an online eye health measurement service by interworking the eye health meter 100 and an external web server.
  • the virtual reality-based eye health measurement system may be implemented in any of the above-described three system modes.
  • the eye health meter 100 and the head mounted display The description will be based on the first system mode implemented based on 200 (ie, the eye health measuring device).
  • the processor 175 of the eye health meter 100 performs eye health measurement based on virtual reality in conjunction with the head mounted display 200 . to be described in detail.
  • FIG. 12 is a flowchart illustrating a method for measuring eye health based on virtual reality according to an embodiment of the present invention.
  • the processor 175 of the eye health meter 100 may provide an eye health state survey interface. (S101)
  • 13A and 13B are examples of an eye health state survey interface according to an embodiment of the present invention.
  • an eye health state survey interface (hereinafter, a survey interface) according to an embodiment may be an interface that performs a predetermined question and answer process for determining a subject's eye health state.
  • the processor 175 may provide a survey interface based on the display unit 150 as shown in FIG. 13A .
  • the processor 175 may execute a question-and-answer process for identifying the eye health state of the subject based on the survey interface provided through the display unit 150 .
  • the processor 175 may provide a survey interface based on the display unit 220 of the head mounted display 200 in conjunction with the head mounted display 200, as shown in FIG. 13 (b). there is.
  • the processor 175 may execute a question-and-answer process for identifying the eye health state of the subject based on the survey interface provided through the display unit 220 .
  • the processor 175 may output a predetermined query based on the survey interface.
  • the processor 175 may obtain an input of a user (ie, a subject) based on the output query.
  • the processor 175 may output a multiple-choice questionnaire related to eye health based on the survey interface and provide it to the subject.
  • the processor 175 may obtain an input of a subject for selecting a response (eg, a predetermined number) to the provided multiple-choice question.
  • the processor 175 may acquire the above user input by a method such as a touch input to the display unit 150 or a gesture input based on the display unit 220 .
  • the processor 175 may divide the provided query into predetermined sections and implement them.
  • the processor 175 may classify the query into sections such as gender, age, life pattern, recent subjective symptoms, chronic disease and/or eye care habits.
  • the processor 175 may implement a query including at least one query item for each section divided as described above.
  • the processor 175 may include a gender selection query item in the gender section of the query, include an age input query item in the age section, and include long-term driving, stress, frequent and many electronic items in the life pattern section. It can include questions such as device use, overtime work and/or outdoor activity, and in the recent subjective symptoms section, dyslexia, redness, dry eyes, foreign body feeling, irritation, burning, dullness, pain, astigmatism, headache , crooked appearance, difficulty seeing objects, blurred vision, double vision, floating black dots, and/or eye twitching.
  • Amblyopia, strabismus, glaucoma, retinal abnormality, optic nerve abnormality, macular degeneration, color blindness, astigmatism, cataract, dry eye syndrome and/or presbyopia, etc. This may include questions such as taking, eating good food for rice fields, visiting an ophthalmologist in the last year and/or wearing glasses.
  • the processor 175 performs a preliminary investigation on the subject's eye health condition based on the survey interface, thereby obtaining consistent and reliable base data for analyzing the subject's eye health condition through a systematic measurement method. It is possible to derive reliable analysis results based on this.
  • the processor 175 may determine the eye health measurement method based on the survey interface provided as above. (S103)
  • the processor 175 may determine a type of eye health measurement content (hereinafter, an eye health measurement method) customized to the subject based on the subject's input based on the survey interface.
  • an eye health measurement method a type of eye health measurement content
  • the eye health measurement content according to the embodiment is content that provides a process for measuring the eye health state according to a predetermined parameter (eg, stereopsis, visual acuity, macular degeneration or extraocular muscle, etc.), and in the embodiment, various viewpoints ( parameter), in order to measure the eye health state, at least one or more eye health measurement contents may be built on an eye health measurement service.
  • a predetermined parameter eg, stereopsis, visual acuity, macular degeneration or extraocular muscle, etc.
  • various viewpoints parameter
  • eye health measurement content may be implemented based on virtual reality.
  • the eye health measurement content includes virtual reality-based optometry, visual field measurement, astigmatism measurement, macular degeneration measurement, color blindness measurement, stereoscopic vision measurement, diplopia measurement, contrast sensitivity measurement, extraocular muscle measurement or body acuity measurement content, etc. can be implemented.
  • the processor 175 may determine an eye health measurement method optimized for the subject from among various types of eye health measurement content as described above, based on the subject's input based on the above-described survey interface.
  • the processor 175 may determine the eye health state of the subject based on the subject's input based on the survey interface.
  • the processor 175 may calculate an eye health score for the subject based on the subject's input.
  • the processor 175 may calculate the eye health score for the subject by classifying them for each eye health measurement content.
  • the processor 175 may acquire response information according to a target input for each query item of a query provided through the survey interface.
  • the processor 175 may give a score for each eye health measurement content based on the obtained response.
  • the processor 175 gives a score of '+30' to the optometry content among the eye health measurement methods if the subject's response information includes 'obfuscated' in the case of the question item of the recent subjective symptoms section. And, a score of '+20' may be given to astigmatism and extraocular muscle measurement content, and a score of '+10' may be given to visual field measurement content.
  • the processor 175 gives a score of '+30' to the optometry content among the eye health measurement methods if the subject's response information in the query item of the recent subjective symptoms section includes 'has redness', A score of '+30' is given to pupil measurement content, and a score of '+10' can be given to contrast sensitivity measurement content.
  • the processor 175 adds '+30 to the optometry content and the macular degeneration measurement content among the eye health measurement methods. ' can be awarded.
  • the processor 175 may calculate an eye health score for each eye health measurement content for the subject based on the score for each eye health measurement content given as above based on the subject's survey response.
  • the processor 175 may calculate an eye health score for the first eye health measurement content by performing pattern analysis based on the given points constituting the score for the first eye health measurement content.
  • the processor 175 may set the first eye health score within a preset 'good' range when there is no given score of '+10 or more' among the given scores constituting the first eye health measurement content score. You can set the eye health score for the eye health measurement content.
  • the processor 175 is configured to provide '+10 points or more and less than +25 points' among the awarded points constituting the first eye health measurement content score, and '+25 points or more' When there is no score, the eye health score for the first eye health measurement content may be set as an eye health score within a preset 'normal' range.
  • the processor 175 is configured to, when there is one or more awarded points that are '+25 points or more' among the awarded points constituting the first eye health measurement content score,
  • the eye health score for the first eye health measurement content may be set as the eye health score.
  • the processor 175 may predict a suspected disease for the subject based on the eye health score for each eye health measurement content calculated as above.
  • the processor 175 may determine that the subject is a suspected disease, such as decreased visual acuity, glaucoma, cataract and/or macular degeneration. can be predicted.
  • the processor 175 may determine an eye health measurement method to be performed on the subject based on the predicted suspected disease.
  • the processor 175 may determine, according to the predicted suspected disease, at least one or more eye health measurement contents as an eye health measurement method to be applied to the subject.
  • the processor 175 may determine the optometry content as an eye health measurement method to be applied to the subject.
  • the processor 175 may determine the macular degeneration measurement content as an eye health measurement method to be applied to the subject.
  • the processor 175 may determine perimetry, astigmatism, and pupil measurement contents as an eye health measurement method to be applied to the subject.
  • 14A and 14B are examples of displaying eye health state survey information according to an embodiment of the present invention.
  • the processor 175 may generate eye health state survey information based on the information obtained as above based on the subject's input to the survey interface.
  • the processor 175 may display and output the generated eye health condition survey information and provide it to a user (in an embodiment, a subject and/or a measurer, etc.).
  • the eye health condition survey information is information obtained by pre-investigating the eye health condition of the subject based on the subject's input to the survey interface, and in the embodiment, the eye health score for each eye health measurement content related to the subject According to the pattern analysis result information (eg, good, normal or bad, etc.), suspicious symptom information and/or determined eye health measurement method information, etc. may be included.
  • the pattern analysis result information eg, good, normal or bad, etc.
  • the processor 175 may output eye health state survey information for the subject using the display unit 150 as shown in FIG. 14A .
  • the processor 175 may output eye health state survey information for the subject based on the display unit 220 in conjunction with the head mounted display 200 as shown in FIG. 14(b) . there is.
  • the processor 175 identifies the current eye health state of the subject based on the survey analysis result, and selects and provides an eye health measurement method necessary for the subject based on this, thereby providing customized eye health optimized for each subject.
  • the measurement process can be performed, thereby reducing the cost or effort required for eye health measurement, and as a result, the efficiency of the eye health measurement service can be improved.
  • the processor 175 may execute eye health measurement based on the eye health measurement method determined as described above. (S105)
  • the processor 175 may determine at least one or more eye health measurement methods to be performed on a subject from among a plurality of eye health measurement methods, and measure eye health status based on the determined at least one or more eye health measurement methods can be performed.
  • the stereoscopic vision measurement content is set as the first eye health measurement method among the plurality of eye health measurement methods, and the eye health measurement is performed by setting the optometry content as the second eye health measurement method
  • various eye health measurement contents eg, field measurement, astigmatism measurement, macular degeneration measurement, color blindness measurement, diplopia measurement, contrast sensitivity measurement, extraocular muscle measurement and/or body acuity
  • eye health measurement contents eg, field measurement, astigmatism measurement, macular degeneration measurement, color blindness measurement, diplopia measurement, contrast sensitivity measurement, extraocular muscle measurement and/or body acuity
  • the processor 175 may measure the eye health state of the subject based on the determined first eye health measurement method.
  • the processor 175 may set the stereoscopic vision measurement content as the first eye health measurement method, and may measure the eye health state of the subject based on this.
  • the stereoscopic vision measurement content according to the embodiment may be content for measuring whether an accurate depth (depth) can be recognized using disparity between both eyes.
  • the processor 175 may execute an eye health measurement based on the stereoscopic vision measurement content.
  • the processor 175 may display at least three targets based on the virtual reality image in conjunction with the head mounted display 200 based on the executed stereoscopic vision measurement content.
  • the processor 175 may display four targets arranged in a line on the virtual reality image.
  • the processor 175 includes a stereoscopic vision measurement interface (a first eye health state measurement interface) capable of selecting a displacement target, which is a target different in depth (depth) from other targets, from among the plurality of displayed targets.
  • a stereoscopic vision measurement interface a first eye health state measurement interface
  • the processor 175 may display a plurality of targets including one displacement target on the virtual reality image, and may provide a stereoscopic vision measurement interface for selecting a displacement target from among the displayed plurality of targets. .
  • the processor 175 may adjust the position and/or size of the first target to be displayed as the displacement target in order to implement the displacement target having a depth different from that of other targets on the virtual reality image. .
  • 15 and 16 are examples of diagrams for explaining stereoscopic vision measurement content according to an embodiment of the present invention.
  • the processor 175 generally outputs a virtual reality image in conjunction with the head mounted display 200 , the left eye of the subject wearing the head mounted display 200 .
  • the virtual reality image may be output based on the first display area 10 corresponding to the area and the second display area 20 corresponding to the right eye area of the subject.
  • the processor 175 is configured to implement the depth (depth) of the first target 1 set as the displacement target among the plurality of targets in the virtual reality image differently from the other targets.
  • the processor 175 may output the 1-1 target and the 1-2 target in different colors to be distinguished from other targets on the corresponding display area.
  • the processor 175 may display the 1-1 targets and the 1-2 targets in a red color, and display the other targets in a black color to output them.
  • the positions between the first-first target 1-1 displayed on the first display area 10 and the first-second target 1-2 displayed on the second display area 20 are mutually The difference is that with respect to the 1-1 target (1-1) and the 1-2 target (1-2) that share the same 3D coordinate value (ie, the 3D coordinate value of the first target 1), Display coordinate values for the 1-1 target (1-1) in the first display area 10 and display coordinate values for the 1-2 target (1-2) in the second display area 20 This could mean that they are different.
  • the processor 175 determines the display position of each of the 1-1 target 1-1 and the 1-2 target 1-2 of the subject wearing the head mounted display 200 . It can be set according to a predetermined distance (ie, depth) to be implemented between the eyeball and the first target 1 .
  • the position of the object recognized by the person's left eye and the corresponding It can be based on the principle that the position of the object recognized by the person's right eye is recognized differently (ie, parallax occurs), so that the person can recognize the depth (ie, perspective) of the object.
  • the processor 175 considering that the positions of the left and right eyes are variable depending on the subject, a first lens that the optical unit 240 of the head mounted display 200 may include in order to standardize this and A second lens may be used to replace the subject's left and right eyes.
  • the description is based on an embodiment in which the left eye and the right eye of the subject are replaced with the first lens and the second lens, respectively, but the present invention is not limited thereto.
  • the processor 175 includes the distance between the first and second lenses of the head mounted display 200 (hereinafter, binocular distance), the first lens and the second lens, and the second lens that the subject looks at. According to the distance between the 1 targets 1 , the viewing angle at which the subject recognizes the first target 1 , that is, the stereoscopic viewing angle may be determined.
  • the processor 175 performs a first stereoscopic view for recognizing the first target 1 at a first distance, which is a different distance from the other targets, from the first lens, and a first stereoscopic view for recognizing a second target at a first distance from the second lens.
  • a second stereoscopic view for recognizing the first target 1 may be determined.
  • the stereoscopic perspective according to the distance is preset and stored in the memory, and the processor 175 may determine the stereoscopic perspective according to the distance change for each stereoscopic perspective previously stored in the memory.
  • the processor 175 may set the positions of the 1-1 target 1-1 and the 1-2 target target 1-2 based on the determined stereoscopic view.
  • the processor 175 may derive a first position on the second display area 20 at which the first stereoscopic view determined as above can be realized.
  • the processor 175 may set the derived first position to the position of the 1-2 th target 1-2 that is the first target 1 displayed on the second display area 20 .
  • the processor 175 may derive a second position capable of implementing the second stereoscopic view determined as above on the first display area 10 , and use the derived second position as the second position.
  • the position of the 1-1 target 1-1 that is the first target 1 displayed on the 1 display area 10 may be set.
  • the processor 175 is configured to position the 1-2 th target 1-2 so as to implement the first stereoscopic view corresponding to the left eye on the region recognized by the left eye (the second display region 20 ). may be adjusted, and the position of the 1-1 target 1-1 may be adjusted to realize a second stereoscopic view corresponding to the right eye on the area recognized by the right eye (the first display area 10 ).
  • the processor 175 is configured to display the first display area 10 and the 2 The first target 1 may be displayed on the display area 20 .
  • the processor 175 converts the first target 1 displayed by combining the 1-1 target 1-1 and the 1-2 target 1-2 with the corresponding 1-1 target. Based on the disparity effect based on the position difference between the (1-1) and the 1-2 first targets (1-2), the displacement target may be displayed at a first distance (depth) that is different from other targets. .
  • the processor 175 is configured to implement a displacement target having a depth different from that of other targets (ie, the first target 1 ) on the virtual reality image through the first display area 10 .
  • a displacement target having a depth different from that of other targets (ie, the first target 1 ) on the virtual reality image through the first display area 10 .
  • the processor 175 may determine 3D coordinates of targets to be displayed in a 3D virtual space in which a virtual reality image is displayed for stereoscopic measurement.
  • the processor 175 may randomly determine one of the plurality of targets as the displacement target so that stereoscopic vision can be confirmed.
  • the processor 175 may randomly determine one of the first to fourth targets as the displacement target.
  • the processor 175 may determine the y-axis coordinate of the displacement target differently from the y-axis coordinates of the other targets in the 3D virtual space.
  • the y-axis means depth and means the direction in which the subject looks at the three-dimensional virtual space, so that the y-axis coordinates are set differently can be understood as meaning that the aforementioned distance has changed.
  • the remaining targets may be displayed at the same depth in virtual space by matching the y-axis coordinates, and only the displacement targets may be displayed at different depths by changing the y-axis coordinates.
  • the processor 175 changes only the x-axis coordinates of the targets and the z-axis coordinates match It can be displayed so that the indicators are arranged in a line.
  • the processor 175 determines each of the three-dimensional coordinates of the targets in the virtual space for stereoscopic vision measurement and then displays each of the targets in the first display area 10 and the second display area 20 according to the 3D coordinates. It is possible to determine the display coordinates of the targets.
  • first display area 10 and the second display area 20 are two-dimensional planes, only the x-axis and z-axis coordinates can be changed.
  • 17 is an example of a diagram for explaining a method of implementing a displacement indicator according to an embodiment of the present invention.
  • the processor 175 may calculate stereoscopic views of the left eye and the right eye for displaying in the three-dimensional coordinates. .
  • the stereoscopic view is, as can be seen with reference to FIG. 17 , the distance between the first lens corresponding to the left eye and the second lens corresponding to the right eye, the distance between the display area and the lens, and the three-dimensional coordinates of the displacement target. can be determined based on
  • the processor 175 calculates the two-dimensional display coordinates (eg, the x-axis coordinates and the z-axis coordinates) of the first display area 10 for displaying the displacement indicator in the three-dimensional coordinates based on the calculated stereoscopic view. may be determined, and two-dimensional display coordinates (eg, x-axis coordinates and z-axis coordinates) of the second display area 20 may be determined.
  • the depth (y-axis coordinate) of the table may be determined.
  • the processor 175 may obtain the x-axis and z-axis coordinates of the first display area 10 and the second display area 20 so that the remaining targets can be displayed in the three-dimensional coordinates in the same manner. All other marks may have the same depth.
  • the processor 175 generates a predetermined parallax when looking at the 1-2 th target displayed at the first position and the 1-1 th target displayed at the second position from each of the first lens and the second lens. and may implement a predetermined depth (distance) effect corresponding to the generated parallax.
  • the processor 175 implements the position values set for each of the 1-1 target 1-1 and the 1-2 target 1-2, a step-by-step depth (distance) to implement. can be adjusted accordingly.
  • the processor 175 performs the disparity for realizing the displacement target (the first target 1) that is close by 3000 sec at a distance of 4 m, the first display area
  • the 1-1 target (1-1) of (10) is moved 29 mm to the right from the reference point of the other targets, and the 1-2 target (1-2) of the second display area 20 is moved to the left by 29 mm position can be moved.
  • the processor 175 may also adjust the size of the first target 1 as the depth of the first target 1 to be displayed as the displacement target changes.
  • the processor 175 may change the size of the first target 1 in inverse proportion to the depth (depth) of the first target 1 .
  • the processor 175 may output a plurality of targets including the displacement target implemented as above as a virtual reality image, and a stereoscopic effect for selecting the displacement target from among the plurality of output targets.
  • a measurement interface may be provided.
  • the processor 175 may sequentially reduce the difference in depth between the displacement target and the remaining targets according to the subject's selection input and perform stereoscopic measurement step by step.
  • the processor 175 sets a second depth difference smaller than the first depth difference between the first displacement target and the remaining targets and a second target among the targets. It can be determined by the differential displacement table. As described above, the second displacement target may be randomly determined.
  • the processor 175 may determine the 3D virtual coordinates of the second displacement target and the 3D virtual coordinates of the other targets to have a second depth difference from the other targets.
  • the processor 175 is configured to display the three-dimensional virtual coordinates for each target based on the three-dimensional virtual coordinates of the targets, the distance between the first lens and the second lens, and the distance between the display area and the lens, in order to display the determined 3D virtual coordinates. Visualization can be calculated.
  • the processor 175 may calculate two-dimensional display coordinates for displaying the targets in the first display area 10 and the second display area 20 according to the calculated stereoscopic view.
  • the processor 175 may display the targets on the 2D display coordinates calculated in each of the first display area 10 and the second display area 20 , respectively, and display the targets on the predetermined 3D virtual coordinates. there is.
  • the processor 175 causes the displacement target to be selected according to the subject's input, and if the displacement target is matched, the depth difference is further reduced and then the next stereoscopic measurement is repeated, that is, the depth that the subject can recognize. Stereoscopic vision can be accurately detected.
  • the processor 175 may acquire a stereoscopic vision measurement result score based on the subject's input to the provided stereoscopic vision measurement interface.
  • the processor 175 may calculate a correct answer rate for correctly selecting a displacement target based on the subject's input to the stereoscopic vision measurement interface, and obtain a stereoscopic view measurement result score in proportion to the calculated correct answer rate can do.
  • the processor 175 adjusts the position and/or size of the target displayed in the virtual reality image to change the depth of the target, and performs a stereoscopic vision measurement process based on this, such as with polarized glasses. It can be easily implemented by digitizing the principle of stereoscopic vision measurement based on analog equipment.
  • the processor 175 may measure the eye health state of the subject based on the second eye health measurement method determined based on the survey interface.
  • the processor 175 may set the optometry content as the second eye health measurement method, and may measure the eye health state of the subject based on this.
  • the optometry content according to the embodiment may be content for measuring visual acuity and focus ability.
  • the processor 175 may perform an eye health measurement based on the optometry content.
  • the processor 175 may display an optometry table based on a virtual reality image in conjunction with the head mounted display 200 based on the executed optometry content.
  • the visual acuity table according to the embodiment is a table used to measure visual acuity, and may be a table in which various characters or pictures (symbols), etc. enlarged or reduced according to a predetermined standard, are printed.
  • the processor 175 may display an eye chart located at a predetermined depth (depth) based on the virtual reality image.
  • the processor 175 is an optometry interface capable of selecting, based on the displayed optometry table, a target symbol, which is a predetermined symbol that the subject is required to select from among a plurality of symbols in the optometry table. (a second eye health condition measurement interface) may be provided.
  • the processor 175 may determine a target symbol automatically randomly selected by a measurer or the processor 175 from among at least one or more symbols included in the displayed eye chart.
  • the processor 175 may notify the subject of the determined target preference.
  • the measurer who measures the eye health state may determine one randomly selected one among the signs in the eye chart displayed on the virtual reality image as the target sign.
  • the processor 175 may acquire information on the target symbol randomly determined by the measurer as described above.
  • the processor 175 may acquire information on the target symbol selected by the measurer based on the input unit 160 .
  • the processor 175 may output audio data for the corresponding target preference and provide it to the subject based on the obtained target preference information.
  • the processor 175 may output audio data for the corresponding target symbol providing the voice data of '3' and provide it to the subject.
  • the processor 175 may itself automatically select a target symbol randomly from among the symbols in the optometry table.
  • the processor 175 may output audio data for the automatically selected target symbol as described above and provide it to the subject.
  • the processor 175 may output audio data for the corresponding target symbol providing voice data of '3' and provide it to the subject. .
  • the processor 175 may display a graphic image for the automatically selected target symbol on a perceptible depth of the subject (eg, based on the naked eye numerical value according to the subject's previous optometry, etc.) , it is possible to inform the target of the corresponding target symbol.
  • the processor 175 when the target symbol is determined to be '3' by its own process, generates a graphic image (here, a graphic image indicating the number 3) indicating the target symbol to a predetermined value in the virtual reality image. It may be provided to the subject by displaying it on the depth (in the embodiment, the depth perceptible by the subject).
  • the processor 175 may obtain an optometry result score based on the subject's input to the optometry interface provided as described above.
  • the processor 175 may obtain a response of the subject to the target preference determined as above, based on the optometry interface.
  • the processor 175 may generate a symbol having a shape corresponding to the target symbol to which the audio data is provided, at least one or more symbols (eg, letters or symbols) in an optometry table displayed on a predetermined depth of the virtual reality image. An input of a subject selected from among may be obtained based on the optometry interface.
  • the processor 175 may obtain a response to the corresponding target preference based on the obtained target's input.
  • the processor 175 may generate a symbol having a shape corresponding to the target symbol displayed on a predetermined first depth (in the embodiment, a depth clearly recognizable by the subject) in the virtual reality image, the virtual reality image.
  • Obtaining, based on the optometry interface, a subject's input selecting from at least one or more symbols in the optometry table displayed on a second predetermined depth (in an embodiment, a predetermined depth set for testing optometry) of the real image can do.
  • the processor 175 may acquire a response to the corresponding target symbol based on the input of the subject obtained as described above.
  • the processor 175 may randomly determine a target preference as described above and repeat a series of processes of obtaining a response of the subject to the determined target preference.
  • the processor 175 based on the user (in the embodiment, the measurer) setting and/or the automated process, the visual acuity table output as a virtual reality image is displayed in a step-by-step depth ( depth) can be changed and displayed.
  • the processor 175 may obtain a response to the target preference based on the optometry table displayed on the first depth in the first step measurement.
  • the processor 175 outputs an optometry table on a second depth located more distant than the first depth in the second step measurement can do.
  • the processor 175 may perform a process of obtaining a response to the target preference based on the optometry table displayed on the second depth.
  • the processor 175 may output an optometry table on the first depth of field even in the second measurement step.
  • the processor 175 may obtain a response to the second preference in the second step that is different from the target preference in the first step based on the optometry table displayed again on the first depth as above.
  • the processor 175 outputs the optometry table as a virtual reality image and performs step-by-step optometry while adjusting the depth of the output optometry table, so that when using a physical optometry table, there are limitations to bear. conditions (e.g., having an optometry equipment, variability of the distance between the subject and the optometry table, limited number of symbols in the optometry table, size and/or location, etc.) can be overcome, and the subject's visual acuity can be measured.
  • conditions e.g., having an optometry equipment, variability of the distance between the subject and the optometry table, limited number of symbols in the optometry table, size and/or location, etc.
  • the processor 175 may calculate an optometry result score based on the responses obtained by performing the above multiple times.
  • the processor 175 may calculate an optometry result score of the subject in proportion to a correct rate at which the target symbol is correctly selected, based on the subject's input based on the optometry interface.
  • the eye chart in the method of displaying the eye chart through an image and providing it to the subject, when the resolution of the device (in the embodiment, the head mounted display 200) for displaying the eye chart is low, the eye chart is not displayed. Due to the inability to display clearly, a situation may arise in which the result of the optometry is determined under the influence of factors unrelated to the subject's visual acuity.
  • the processor 175 may set the minimum size of the displayed eye chart according to the resolution of the head mounted display 200 that outputs the virtual reality image.
  • the processor 175 may set the minimum size of the output optometry table in inverse proportion to the resolution of the head mounted display 200 that is linked thereto.
  • the processor 175 may set a smaller minimum size of the optometry table output based on the corresponding head mounted display 200, and vice versa. can do.
  • the processor 175 may adjust the depth of the optometry table in the virtual reality image within a range that does not exceed the set minimum size.
  • the processor 175 is configured to display the optometry table at the first depth and then at the second depth having a greater depth than the first depth (ie, located at a greater distance).
  • the depth of the second depth may be determined within a range in which the optometry table does not become smaller than a minimum size set for the optometry table.
  • the processor 175 in the case of an optometry table displayed in a minimum size, converts the form of symbols (eg, characters and/or pictures (signs), etc.) in the corresponding optometry table into a picture (symbol) format. can be converted and provided.
  • symbols eg, characters and/or pictures (signs), etc.
  • the processor 175 may change the character symbol in the eye chart displayed in the minimum size into a predetermined pictogram (sign) symbol and provide it.
  • the processor 175 displays the symbols in the optometry table only in the form of a picture (sign) that is less affected by the resolution compared to the text, and outputs the corresponding virtual reality image in a situation in which the eye chart of the minimum size is displayed. Influence by the resolution of the head mounted display 200 can be minimized.
  • 19A and 19B are examples of displaying eye health measurement results according to an embodiment of the present invention.
  • the processor 175 may display a result according to the eye health measurement (in the embodiment, stereoscopic vision measurement and/or optometry) performed as above. . (S107)
  • the processor 175 may provide, as a result, eye health state information for the subject, based on at least one or more executed eye health state measurement.
  • the eye health state information is information that provides analysis results on the subject's eye health state estimated based on the eye health measurement service, and results for each eye health state measurement performed on the subject in the embodiment Score (eg, stereoscopic vision measurement result score and/or optometry result score, etc.), an integrated score calculated by synthesizing the result score and the eye health score obtained based on the survey interface (eg, the age and/or age of the subject) Alternatively, a result score corrected by reflecting an eye health score for an eye care habit, etc.) and/or information on a predicted suspected disease derived based on a user input to the survey interface may be included.
  • Score eg, stereoscopic vision measurement result score and/or optometry result score, etc.
  • an integrated score calculated by synthesizing the result score and the eye health score obtained based on the survey interface (eg, the age and/or age of the subject)
  • the processor 175 is configured to respond to a subject's input to an eye health state measurement interface (in an embodiment, a stereoscopic vision measurement interface and/or an optometry interface, etc.) and a survey interface provided in the eye health state measurement process. Based on this, it is possible to obtain eye health state information for the subject.
  • an eye health state measurement interface in an embodiment, a stereoscopic vision measurement interface and/or an optometry interface, etc.
  • the processor 175 may provide result information analyzed more precisely based on the plurality of eye health state information.
  • the processor 175 performs an analysis based on a plurality of eye health state information obtained by measuring eye health state performed a plurality of times, such as glaucoma, which is difficult to accurately grasp only with a one-time measurement of eye health state. It is possible to more accurately predict a disease (ie, a disease that needs to be identified over a long period of time).
  • the processor 175 may further improve the performance of the eye health measurement service.
  • the processor 175 may output the eye health state information obtained as described above based on the display unit 150 as shown in FIG. 19A .
  • the processor 175 may output eye health state information for the subject through the display unit 220 in conjunction with the head mounted display 200 as shown in FIG. 19B .
  • the processor 175 may store and manage the acquired eye health state information into a database for each subject.
  • the processor 175 may digitize and conveniently manage the result data of the eye health state measurement.
  • the processor 175 may provide prescription content according to the measurement result of the eye health state. (S109)
  • the prescription content according to the embodiment may be content data provided for the purpose of improving the eye health state of the subject based on the eye health state measurement result (ie, eye health state information).
  • the prescription content may include eye healing images and/or recommended nutritional information.
  • the processor 175 may provide an eye healing image according to the subject's eye health state information.
  • the provided eye healing image may be implemented as an ultra-high-quality image (eg, 4K image, etc.) in order to minimize eye fatigue and maximize the healing effect.
  • an ultra-high-quality image eg, 4K image, etc.
  • the processor 175 may include, based on the eye health state information of the subject, when it is determined that the subject needs inner and/or extraocular muscle movement, a second agent capable of assisting the inner and/or extraocular muscle movement 1 It can provide an eye healing image.
  • the first eye healing image may be an image capable of assisting inner and/or extraocular muscle movement based on virtual reality.
  • 20 to 23 are examples of drawings for explaining an eye healing image according to an embodiment of the present invention.
  • the processor 175 may display an object implemented with at least two different depths based on the first eye healing image.
  • the processor 175 may change and display the depth and location of at least two displayed objects according to a predetermined criterion (eg, a preset pattern, etc.). That is, in the embodiment, the processor 175 may cause the object to freely move in a three-dimensional space, so that the subject sees the moving object, so that the subject moves the eyeballs, thereby inducing internal and extraocular muscle movements of the subject.
  • a predetermined criterion eg, a preset pattern, etc.
  • the processor 175 may apply or cancel the blur processing for each object according to a predetermined criterion (eg, a preset period, etc.).
  • a predetermined criterion eg, a preset period, etc.
  • the processor 175 may cause each object to be blurred by periodically applying a blur process or clear by releasing the blur process.
  • the processor 175 is configured according to a predetermined pattern. , set to be displayed clearly by canceling the blur processing on any one of the at least two or more objects displayed in the first eye healing image, and output to change the depth and position of the first object for which the blur is released , it is possible to induce the subject who watches the first eye healing image to stare while tracking the first object.
  • the processor 175 may cancel the blur processing on the arbitrarily determined first object among the plurality of objects in the first eye healing image to clearly display it.
  • the processor 175 may cause the first object to be clearly displayed to be displayed while changing the depth according to a predetermined pattern.
  • the processor 175 may display a first object clearly displayed as a first object 3-1 with a depth displayed as a near-view - a first object 3-2 displayed with a mid-view as a far-sighted view.
  • the first object 3-3 to be changed according to a predetermined pattern may be output.
  • the processor 175 may change and output a position at which the first object is displayed along with a change in depth of the first object according to a predetermined setting (eg, a preset position pattern, etc.).
  • a predetermined setting eg, a preset position pattern, etc.
  • the processor 175 may convert the above-described first object into any one of the objects other than the first object according to a predetermined criterion.
  • the processor 175 selects any one of a plurality of objects in a first eye healing image displaying objects implemented with at least two different depths as a first object and operates it, then performs a predetermined time slice Any one of the objects other than the first object may be reselected as the first object periodically every (eg, 1 minute, etc.) and may be operated.
  • the processor 175 selects the first object among the first object, the second object, and the third object in the first eye healing image as the first object to operate the above-described first eye healing image process.
  • the processor 175 may select any one of the second object and the third object as the first object to operate the first eye healing image process.
  • the processor 175 may apply blur processing to objects other than the first object to display them in a blurry manner.
  • the processor 175 may prevent a change from occurring in the depth or position of the remaining objects.
  • the processor 175 outputs the first object that is clearly displayed after the blur processing is released according to a predetermined criterion by changing the depth and position, and applies the blur processing to the rest of the objects except for the first object.
  • the processor 175 By applying it to display blurred and at the same time not changing the depth and position, it is possible to further enhance the concentration on the first object, thereby improving the effect of inner and/or extraocular muscle movement on the subject. .
  • the processor 175 may further display at least one or more background objects in addition to the plurality of objects in the eye healing image.
  • the background object according to the embodiment may mean other objects displayed through the eye healing image in addition to the plurality of objects that perform the above-described functional operation in the eye healing image.
  • the processor 175 may display at least one or more background objects on an arbitrary position and depth in the eye healing image.
  • the processor 175 may include a first background object 4-1 displayed in the near field within the virtual reality-based eye healing image, a second background object 4-2 displayed in the midfield, and a distant view displayed in the near field.
  • the third background object 4 - 3 may be output together with at least two or more objects.
  • the processor 175 may apply or cancel the blur processing to the background object displayed as above in the same way according to whether or not the blur processing is applied to the object corresponding to the corresponding background object.
  • the processor 175 may detect at least one or more background objects having the same depth (depth) as any object in the eye healing image.
  • the processor 175 may equally apply the blur processing applied to the arbitrary object to the detected background object.
  • the processor 175 may equally apply the blur processing to at least one or more background objects having the same depth as the corresponding object.
  • the processor 175 may also cancel the blur processing for at least one or more background objects having the same depth as the corresponding object.
  • the processor 175 causes the background object in the vicinity of the first object that is clearly displayed among the plurality of objects in the eye healing image to be displayed clearly like the first object, and the rest is displayed blurry. Background objects in the vicinity of the object can be dimmed like the rest of the object.
  • the processor 175 can more smoothly track the first object displayed clearly when the subject performs eye movement through the eye healing image, and the virtual reality space provided by the eye healing image It can help to more easily recognize the depth implemented in the image.
  • the processor 175 makes it easy and convenient to perform the internal and/or extraocular muscle movements of the subject based on the virtual reality image (the first eye healing image), so that only the eye activities in daily life It is possible to effectively implement eye care that is difficult to perform.
  • the processor 175 may provide recommended nutritional information according to the subject's eye health state information.
  • the processor 175 may provide customized recommended nutritional information determined to be ingested to the subject according to the subject's eye health state information.
  • the processor 175 may acquire nutrient information determined to be necessary for the subject based on the subject's eye health state information.
  • the processor 175 may determine that the subject needs lutein and/or zeaxanthin nutrients based on the subject's eye health status information.
  • the processor 175 may obtain information about a nutrient containing a nutrient determined to be necessary for the subject by interworking with an external server (eg, a web server, etc.).
  • an external server eg, a web server, etc.
  • the processor 175 may obtain nutritional information including lutein and/or zeaxanthin nutrients determined to be necessary for the subject in conjunction with the web server.
  • the processor 175 may obtain information about a vendor (eg, sales site information, etc.) that sells a corresponding nutritional supplement by interworking with an external server (eg, a web server, etc.).
  • a vendor eg, sales site information, etc.
  • an external server eg, a web server, etc.
  • the processor 175 may generate and provide optimized recommended nutritional information to a subject based on the acquired nutrient information, nutrient information, and/or vendor information.
  • the processor 175 effectively assists in performing continuous eye health management in a reasonable manner based on the measurement result of the eye health state by providing the subject customized recommended nutritional information based on the subject's eye health state information.
  • the eye health measurement system provides a customized eye health measurement method for a subject (ie, subject) who wants to measure eye health based on a survey process related to eye health.
  • a subject ie, subject
  • the eye health measurement system provides a customized eye health measurement method for a subject (ie, subject) who wants to measure eye health based on a survey process related to eye health.
  • the eye health measurement system identifies the current eye health state of the subject to be measured based on the result of the eye health survey analysis, and based on this, selects and provides an eye health measurement method necessary for the subject to be measured By doing so, a customized eye health measurement process optimized for each individual subject can be performed, thereby reducing the cost or effort required for eye health measurement, and consequently improving the efficiency of the eye health measurement service.
  • the eye health measurement system provides the result of the eye health state measurement as a graphic image, so that the eye health state measurement result can be recognized more intuitively.
  • the eye health measurement computing device 600 (hereinafter referred to as computing device) provides an eye health solution service that assists customized eye health management optimized for the measurement target based on the eye health state measurement result from a diversified perspective. You can run any eye care application that you can implement.
  • such computing device 600 may include various types of computing device 600 (eg, mobile type or desktop type) on which an eye care application is installed.
  • Mobile type computing device 400: Mobile type computing device
  • 24 is an internal block diagram of a mobile type computing device 400 according to an embodiment of the present invention.
  • the mobile type computing device 400 may be a mobile device such as a smart phone or a tablet PC on which an eye care application 411 is installed.
  • the mobile type computing device 400 may include a smart phone, a mobile phone, a digital broadcasting terminal, personal digital assistants (PDA), a portable multimedia player (PMP), a tablet PC, and the like. there is.
  • PDA personal digital assistants
  • PMP portable multimedia player
  • a mobile type computing device 400 includes a memory 410 , a processor assembly 420 , a communication module 430 , an interface module 440 , an input system 450 , It may include a sensor system 460 and a display system 470 . These components may be configured to be included within the housing of the mobile type computing device 400 .
  • the memory 410 stores an eye care application 411
  • the eye care application 411 stores any one or more of various applications, data, and commands for providing an environment in which an eye health measurement service can be implemented. can be saved
  • the memory 410 may include eye health measurement method information (in an embodiment, stereoscopic vision measurement content information and/or visual field measurement content information, etc.) and/or eye health state information.
  • eye health measurement method information in an embodiment, stereoscopic vision measurement content information and/or visual field measurement content information, etc.
  • eye health state information in an embodiment, eye health state information
  • the memory 410 may store commands and data that may be used to create an eye health measurement service environment.
  • the memory 410 may include at least one or more non-transitory computer-readable storage media and a temporary computer-readable storage medium.
  • the memory 410 may be various storage devices such as ROM, EPROM, flash drive, hard drive, and the like, and web storage that performs a storage function of the memory 410 on the Internet (web storage) may include
  • the processor assembly 420 may include at least one processor capable of executing instructions of the eye care application 411 stored in the memory 410 to perform various tasks for implementing an eye health measurement service environment. .
  • the processor assembly 420 may control overall operations of components through the eye care application 411 of the memory 410 to provide an eye health measurement service.
  • the processor assembly 420 may include a central processing unit (CPU) and/or a graphics processor unit (GPU).
  • the processor assembly 420 is, ASICs (application specific integrated circuits), DSPs (digital signal processors), DSPDs (digital signal processing devices), PLDs (programmable logic devices), FPGAs (field programmable gate arrays), controllers (controllers) ), micro-controllers, microprocessors, and other electrical units for performing other functions.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • controllers controllers
  • micro-controllers microprocessors, and other electrical units for performing other functions.
  • the communication module 430 may include one or more devices for communicating with other computing devices (eg, the eye health meter 100 and/or the eye health platform management server 300 , etc.).
  • the communication module 430 may communicate through a wireless network.
  • the communication module 430 may communicate with a computing device storing a content source for implementing an eye health measurement service environment, and may communicate with various user input components such as a controller that has received a user input.
  • the communication module 430 may transmit and receive various data related to an eye health measurement service with the eye health meter 100 , the eye health platform management server 300 , and/or other computing device 600 .
  • This communication module 430 the technical standards or communication methods for mobile communication (eg, Long Term Evolution (LTE), Long Term Evolution-Advanced (LTE-A), 5G NR (New Radio), WIFI)
  • data may be wirelessly transmitted/received with at least one of a base station, an external terminal, and an arbitrary server on a mobile communication network constructed through a communication device capable of performing a short-range communication method.
  • the sensor system 460 may include various sensors such as an image sensor 461 , a position sensor (IMU) 463 , an audio sensor 465 , a distance sensor, a proximity sensor, and a contact sensor.
  • IMU position sensor
  • audio sensor 465 a distance sensor
  • proximity sensor a proximity sensor
  • contact sensor a contact sensor
  • the image sensor 461 may capture images and/or images of the physical space around the mobile type computing device 400 .
  • the image sensor 461 may capture and acquire an image related to an eye health measurement service (eg, an eye shot image).
  • an eye health measurement service e.g, an eye shot image
  • the image sensor 461 may be disposed on the front or / and rear side of the mobile type computing device 400 to obtain an image by photographing the disposed direction side, and face the outside of the mobile type computing device 400 . Physical space can be photographed through the placed camera.
  • the image sensor 461 may include an image sensor device and an image processing module. Specifically, the image sensor 461 may process a still image or a moving image obtained by an image sensor device (eg, CMOS or CCD).
  • an image sensor device eg, CMOS or CCD
  • the image sensor 461 may process a still image or a moving image obtained through the image sensor device using an image processing module to extract necessary information, and transmit the extracted information to the processor.
  • the image sensor 461 may be a camera assembly including at least one camera.
  • the camera assembly may include a general camera that captures a visible light band, and may further include a special camera such as an infrared camera or a stereo camera.
  • the IMU 463 may detect at least one of motion and acceleration of the mobile type computing device 400 .
  • it may consist of a combination of various position sensors such as an accelerometer, a gyroscope, and a magnetometer.
  • the location communication module 430 such as GPS of the communication module 430 , spatial information about the physical space around the mobile type computing device 400 may be recognized.
  • the IMU 463 may detect information for detecting and tracking the user's gaze direction and head movement based on the detected position and direction.
  • the eye care application 411 may use such an IMU 463 and image sensor 461 to determine the location and orientation of a user within the physical space or to recognize a feature or object within the physical space. .
  • the audio sensor 465 may recognize a sound around the mobile type computing device 400 .
  • the audio sensor 465 may include a microphone capable of detecting a voice input of a user of the mobile type computing device 400 .
  • the audio sensor 465 may receive voice data required for an eye health measurement service from a user.
  • the interface module 440 may communicatively connect the mobile type computing device 400 with one or more other devices. Specifically, the interface module 440 may include wired and/or wireless communication devices that are compatible with one or more different communication protocols.
  • the mobile type computing device 400 may be connected to various input/output devices through the interface module 440 .
  • the interface module 440 may be connected to an audio output device such as a headset port or a speaker to output audio.
  • the audio output device is connected through the interface module 440 , an embodiment in which the audio output device is installed inside the mobile type computing device 400 may also be included.
  • Such an interface module 440 a wired / wireless headset port (port), an external charger port (port), a wired / wireless data port (port), a memory card (memory card) port, for connecting a device equipped with an identification module Ports, audio Input/Output (I/O) ports, video I/O (Input/Output) ports, earphone ports, power amplifiers, RF circuits, transceivers and other communication circuits It may be configured to include at least one of.
  • the input system 450 may detect a user's input (eg, a gesture, voice command, actuation of a button, or other type of input) related to the eye health measurement service.
  • a user's input eg, a gesture, voice command, actuation of a button, or other type of input
  • the input system 450 may include a button, a touch sensor, and an image sensor 461 that receives user motion input.
  • the input system 450 may be connected to an external controller through the interface module 440 to receive a user's input.
  • the display system 470 may output various information related to the eye health measurement service as graphic images.
  • Such displays include a liquid crystal display (LCD), a thin film transistor-liquid crystal display (TFT LCD), an organic light-emitting diode (OLED), and a flexible display.
  • LCD liquid crystal display
  • TFT LCD thin film transistor-liquid crystal display
  • OLED organic light-emitting diode
  • a three-dimensional display (3D display) may include at least one of an electronic ink display (e-ink display).
  • the components may be disposed within the housing of this mobile type computing device 400 , and the user interface may include a touch sensor 473 on a display 471 configured to receive user touch input.
  • the display system 470 may include a display 471 that outputs an image and a touch sensor 473 that senses a user's touch input.
  • the display 471 may be implemented as a touch screen by forming a layer structure with the touch sensor 473 or being integrally formed therewith.
  • a touch screen may function as a user input unit providing an input interface between the mobile type computing device 400 and the user, and may provide an output interface between the mobile type computing device 400 and the user.
  • the desktop type computing device 500 is an eye health measurement service based on wired/wireless communication, such as a fixed desktop PC, a laptop computer, a personal computer such as an ultrabook, etc. on which an eye care application is installed. It may further include a device installed with a program for executing the.
  • the desktop type computing device 500 may include a user interface system to receive a user input (eg, a touch input, a mouse input, a keyboard input, a gesture input, a motion input using a guide tool, etc.).
  • a user input eg, a touch input, a mouse input, a keyboard input, a gesture input, a motion input using a guide tool, etc.
  • the desktop type computing device 500 is connected to at least one device such as a mouse, a keyboard, a gesture input controller, an image sensor (eg, a camera), and an audio sensor using various communication protocols to connect the user interface system to the user input can be obtained.
  • a device such as a mouse, a keyboard, a gesture input controller, an image sensor (eg, a camera), and an audio sensor using various communication protocols to connect the user interface system to the user input can be obtained.
  • the desktop type computing device 500 may be connected to an external output device through a user interface system, for example, a display device, an audio output device, and the like.
  • a user interface system for example, a display device, an audio output device, and the like.
  • the desktop type computing device 500 may include a memory, a processor assembly, a communication module, a user interface system, and an input system. These components may be configured to be included within the housing of the desktop type computing device 500 .
  • the description of the components of the desktop type computing device 500 will be replaced with the description of the components of the mobile type computing device 400 .
  • the components shown in FIG. 7 are not essential for implementing the computing device 600 , so the computing device 600 described herein has more than the components listed above. Or, it may have fewer components.
  • some of the above-described various functional operations performed in the computing device 600 may be performed by the eye health meter 100 and/or the eye health platform management server 300 , etc. Various embodiments may be possible.
  • the computing device 600 will be described with reference to the mobile type computing device 400 for effective description, but the present invention is not limited thereto.
  • the virtual reality-based eye health measurement system includes the above-described eye health meter 100 , the head mounted display 200 , the eye health platform management server 300 , and the mobile type computing device 400 . It may be implemented based on at least a part.
  • the eye health measuring system may be implemented based on the eye health measuring device, that is, the eye health measuring device 100 and the head mounted display 200 .
  • the eye health measuring device 100 the eye health measuring device 100 and the head mounted display 200 .
  • the eye health measurement system is based on the eye health measurement device 100 for implementing an eye health measurement service and a head mounted display 200 for implementing a virtual reality environment related to the eye health measurement service.
  • the eye health measurement system may be implemented based on the head mounted display 200 and the eye health platform management server 300 . (2nd system mode)
  • the eye health measurement system provides an environment in which the eye health measurement service can operate in the head mounted display 200 based on the eye health platform management server 300 , and receives the operation environment provided An eye health measurement service may be provided based on the head mounted display 200 .
  • the eye health measurement system may be implemented based on the eye health meter 100 and a web server. (3rd system mode)
  • the eye health measurement system may provide an online eye health measurement service by interworking the eye health meter 100 and an external web server.
  • the eye health measurement system may be implemented based on the eye health measurement device, that is, the eye health meter 100 , the head mounted display 200 , and the mobile type computing device 400 . (4th system mode)
  • the eye health measurement system includes an eye health meter 100 implementing an eye health state measurement service, a head mounted display 200 implementing a virtual reality environment related to an eye health state measurement service, and an eye health state Based on the mobile type computing device 400 that provides the measurement result as a graphic image, an eye health state measurement service may be provided.
  • the virtual reality-based eye health measurement system may be implemented in any of the above-described four system modes.
  • the eye health meter 100 and the head mounted display The description will be based on the fourth system mode implemented based on 200 (ie, the eye health measuring device) and the mobile type computing device 400 .
  • the processor 175 of the eye health meter 100 interworks with the head mounted display 200 and the mobile type computing device 400 to provide a virtual reality-based eye health measurement service.
  • the method will be described in detail with reference to the accompanying drawings.
  • 25 is a flowchart illustrating a method for measuring eye health based on virtual reality according to an embodiment of the present invention.
  • the processor 175 of the eye health meter 100 may measure eye health status based on virtual reality. (S201)
  • the processor 175 may provide a plurality of eye health measurement methods based on an eye health measurement service.
  • the processor 175 may be configured to measure optometry, visual field measurement, astigmatism measurement, macular degeneration measurement, color blindness measurement, stereoscopic vision measurement, diplopia measurement, contrast sensitivity measurement, extraocular muscle measurement, and/or body acuity measurement based on a virtual reality image. It is possible to provide a method for measuring eye health including the like.
  • the processor 175 may determine at least one or more eye health measuring methods from among a plurality of provided eye health measuring methods.
  • the processor 175 may determine at least one or more eye health measurement methods to be performed for the subject based on a result of a preliminary eye health state survey for the subject.
  • the processor 175 may determine at least one or more eye health measurement methods to be performed with respect to a corresponding subject based on a user (in an embodiment, a subject and/or a measurer) input.
  • the processor 175 that has determined at least one or more eye health measurement methods to be performed on the subject may execute the eye health state measurement process based on the determined at least one or more eye health measurement methods.
  • the stereoscopic vision measurement content is set as the first eye health measurement method among the plurality of eye health measurement methods, and the eye health measurement is performed by setting the optometry content as the second eye health measurement method
  • various eye health measurement contents eg, field measurement, astigmatism measurement, macular degeneration measurement, color blindness measurement, diplopia measurement, contrast sensitivity measurement, extraocular muscle measurement and/or body acuity
  • eye health measurement contents eg, field measurement, astigmatism measurement, macular degeneration measurement, color blindness measurement, diplopia measurement, contrast sensitivity measurement, extraocular muscle measurement and/or body acuity
  • the processor 175 may measure the eye health state of the subject based on the determined first eye health measurement method.
  • the processor 175 may set the stereoscopic vision measurement content as the first eye health measurement method, and may measure the eye health state of the subject based on this.
  • the stereoscopic vision measurement content according to the embodiment may be content for measuring whether an accurate depth (depth) can be recognized using disparity between both eyes.
  • the processor 175 may perform eye health measurement based on the stereoscopic vision measurement content.
  • the processor 175 may display at least three targets based on the virtual reality image in conjunction with the head mounted display 200 based on the executed stereoscopic vision measurement content.
  • the processor 175 may display four targets arranged in a line on the virtual reality image.
  • the processor 175 includes a stereoscopic vision measurement interface (a first eye health state measurement interface) capable of selecting a displacement target, which is a target different in depth (depth) from other targets, from among the plurality of displayed targets.
  • a stereoscopic vision measurement interface a first eye health state measurement interface
  • the processor 175 may display a plurality of targets including one displacement target on the virtual reality image, and may provide a stereoscopic vision measurement interface for selecting a displacement target from among the displayed plurality of targets. .
  • the processor 175 may adjust the position and/or size of the first target to be displayed as the displacement target in order to implement the displacement target having a depth different from that of other targets on the virtual reality image. .
  • the detailed description of the processor 175 executing eye health measurement based on the above stereopsis measurement content is replaced with the description of the stereoscopic vision measurement content described in the above-described virtual reality-based eye health measurement method do it with
  • the processor 175 may measure the eye health state of the subject based on the second eye health measurement method determined based on the survey interface.
  • the processor 175 may set the optometry content as the second eye health measurement method, and may measure the eye health state of the subject based on this.
  • the optometry content according to the embodiment may be content for measuring visual acuity and focus ability.
  • the detailed description of the processor 175 executing eye health measurement based on the above optometry content will be replaced with the description of the optometry content described in the above-described virtual reality-based eye health measurement method .
  • the processor 175 may provide a result according to the eye health measurement (in the embodiment, stereoscopic vision measurement and/or optometry) performed as described above. there is. (S203)
  • the processor 175 may provide eye health state information, which is result information on at least one or more of the executed eye health state measurements.
  • the eye health state information is information that provides analysis results on the subject's eye health state estimated based on the eye health measurement service, and results for each eye health state measurement performed on the subject in the embodiment Score (for example, a stereoscopic vision measurement result score and/or an optometry result score, etc.), an integrated score calculated based on at least one resultant score (eg, based on a stereoscopic vision measurement result score and an optometry result score, etc.) calculated average score, etc.) and/or predicted suspected disease information (eg, macular degeneration, astigmatism, glaucoma, etc.) obtained based on the results of eye health measurement.
  • Score for example, a stereoscopic vision measurement result score and/or an optometry result score, etc.
  • an integrated score calculated based on at least one resultant score (eg, based on a stereoscopic vision measurement result score and an optometry result score, etc.) calculated average score, etc.) and/or predicted suspected disease information (eg, macular degeneration
  • the processor 175 based on the subject's input to an eye health measurement interface (in an embodiment, a stereoscopic vision measurement interface and/or an optometry interface, etc.) provided in the eye health state measurement process, It is possible to obtain eye health status information for the subject.
  • an eye health measurement interface in an embodiment, a stereoscopic vision measurement interface and/or an optometry interface, etc.
  • the processor 175 may provide result information analyzed more precisely based on the plurality of eye health state information.
  • the processor 175 performs an analysis based on a plurality of eye health state information obtained by measuring eye health state performed a plurality of times, such as glaucoma, which is difficult to accurately grasp only with a one-time measurement of eye health state. It is possible to more accurately predict a disease (ie, a disease that needs to be identified over a long period of time).
  • the processor 175 may further improve the performance of the eye health measurement service.
  • the processor 175 may output the eye health state information obtained as described above based on the display unit 150 as shown in FIG. 19A .
  • the processor 175 may output eye health state information for the subject through the display unit 220 in conjunction with the head mounted display 200 as shown in FIG. 19B .
  • the processor 175 may store and manage the acquired eye health state information into a database for each subject.
  • the processor 175 may digitize and conveniently manage the result data of the eye health state measurement.
  • the processor 175 may transmit and provide the eye health state measurement result data, ie, eye health state information, obtained as above to the eye care application 411 of the mobile type computing device 400 .
  • the processor 175 may transmit the eye health state information to the eye care application 411 of the mobile type computing device 400 , and based on the received functional operation of the eye care application 411 . Accordingly, the corresponding eye health state information and various contents information based on the eye health state information can be implemented and provided in various ways.
  • 26 is an example of a state in which an eye health solution service is provided in the mobile type computing device 400 according to an embodiment of the present invention.
  • the processor 175 interworks with the eye care application 411 of the mobile type computing device 400 that has received the eye health state measurement result, and the corresponding eye health state measurement result can provide eye health solution services based on (S205)
  • the eye health solution service is based on the eye care application 411 of the mobile type computing device 400, and is optimized for the measurement target based on the eye health state measurement result obtained as described above. It may be a service that provides various service contents for customized eye health management from a diversified perspective.
  • the eye health solution service may include a measurement report service, an eye care service, an eye health knowledge service, and/or an expert consultation service.
  • 27 is a conceptual diagram for explaining a method of providing an eye health solution service in the mobile type computing device 400 according to an embodiment of the present invention.
  • the eye care application 411 of the mobile type computing device 400 that receives the eye health state information from the processor 175 of the eye health meter 100 may run the eye health solution service process. . (S301)
  • the eye care application 411 may run an eye health solution service process based on a subject's input to the application.
  • the eye care application 411 may provide a measurement report service based on the driven eye health solution service.
  • the measurement report service shows the result of eye health measurement performed on the subject (in the embodiment, eye health state information) as a graphic image to easily and intuitively grasp the eye health state indicator of the subject. It could be a service.
  • the eye care application 411 may provide the above measurement report service based on the measurement report content and/or the eye movement index content.
  • 28A, 28B, and 28C are examples of diagrams for explaining measurement report contents according to an embodiment of the present invention.
  • the eye care application 411 may provide a measurement report service based on measurement report content.
  • the measurement report content according to the embodiment may be content that outputs and provides eye health state information and detailed result information based on eye health state information as a graphic image.
  • the detailed result information according to the embodiment may include a comment of a measurer on the eye health state information and/or a graph of changes in the eye health state information according to multiple times of eye health state measurement.
  • the eye care application 411 may obtain eye health status information and detailed result information for each of the eye health measurement methods executed at least once.
  • the eye care application 411 may generate a measurement report content that provides a graphic image of the acquired eye health state information and detailed result information.
  • the eye care application 411 is a result score for each eye health measurement method (eg, a stereoscopic vision measurement result score and/or an optometry result score, etc.), an integrated score calculated based on at least one result score (eg, , stereoscopic vision measurement result score, average score calculated based on optometry result score, etc.)
  • Measurement report content can be created by graphic imaging.
  • the eye care application 411 may generate a measurement report content by graphically imaging a comment for each eye health measurement method (eg, a result summary comment of a measurer) and/or an eye health state change trend graph.
  • the eye care application 411 may provide a measurement report service by outputting the measurement report content generated as described above.
  • the eye care application 411 generates and provides measurement report content based on the obtained eye health state information, so that the subject can easily and intuitively recognize the measurement result of his or her eye health state.
  • 29 is an example of a diagram for explaining eye movement index content according to an embodiment of the present invention.
  • the eye care application 411 may provide a measurement report service based on the eye movement index content.
  • the eye movement index content according to the embodiment may be content that measures an eye movement amount of a subject based on an eye care service to be described later, and generates and provides eye movement information based on this.
  • the eye care application 411 provides, based on the eye movement index content, an eye movement index graph, daily eye momentum score information, and/or eye movement item score information, etc. for the subject as eye movement information.
  • the eye care application 411 may calculate a progress rate with respect to at least one or more simple eye exercise contents executed for a subject among at least one or more simple eye exercise contents provided based on an eye care service to be described later.
  • the eye care application 411 may calculate a progress rate for each of the simple eye exercise contents based on a time required for each of the at least one or more simple eye exercise contents to be executed.
  • the eye care application 411 may acquire an eye movement amount for the subject based on the calculated progress rate.
  • the eye care application 411 may cause the amount of eye movement for the subject to be determined in proportion to the calculated progress rate.
  • the eye care application 411 may determine whether progress has been completed (achieved) for each simple eye exercise content based on the progress rate calculated as described above.
  • the eye care application 411 may determine that the first simple eye exercise content has progressed.
  • the eye care application 411 may generate and provide eye movement index content based on the calculated eye movement amount and/or progress completion (achievement).
  • the eye care application 411 may generate an eye movement index graph according to whether the simple eye movement content progress is completed.
  • the eye care application 411 may calculate an eye movement index score by adding 10 points each time one simple eye movement content is completed among a plurality of simple eye movement contents.
  • the eye care application 411 may generate an eye movement index graph based on the eye movement index score calculated as above.
  • the eye care application 411 may generate and provide eye movement index content based on the generated eye movement index graph.
  • the eye care application 411 may implement the motivating effect for encouraging the eye movement by providing the eye movement index content provided by visualizing the subject's eye movement status as a graphic image.
  • the eye care application 411 may provide an eye care service based on the driven eye health solution service.
  • the eye care service is a mobile type computing device 400 in which the eye care application 411 is installed, to perform eye care by conveniently measuring the eye health state and performing eye movements anytime, anywhere. It may be a service that makes it possible.
  • the eye care application 411 may provide an eye care service based on simple eye measurement content and/or simple eye exercise content.
  • 30A and 30B are examples of diagrams for explaining simple eye measurement content according to an embodiment of the present invention.
  • the eye care application 411 may provide an eye care service based on simple eye measurement content.
  • the simple eye measurement content according to the embodiment may be content that provides an environment in which the eye health state can be easily measured anytime, anywhere, based on the eye care application 411 of the mobile type computing device 400 .
  • the eye care application 411 provides a light version of the eye health measurement method process that can easily measure the eye health state using the mobile type computing device 400 based on the simple eye measurement content.
  • the eye care application 411 may provide a light version of the optometry process and/or the color blindness measurement process based on a two-dimensional graphic image.
  • the eye care application 411 provides simple eye measurement content that can easily and lightly measure eye health without time or space restrictions, so that the subject can perform self-diagnosis to determine eye health in a more professional and professional manner. It can be conveniently performed using a systematic method, and through this, the reliability of self-diagnosis can be improved.
  • 31A and 31B are examples of diagrams for explaining simple eye exercise contents according to an embodiment of the present invention.
  • the eye care application 411 may provide an eye care service based on simple eye exercise content.
  • the simple eye exercise content according to the embodiment may be content that provides an environment for easily performing eye exercise anytime, anywhere, based on the eye care application 411 of the mobile type computing device 400 .
  • the eye care application 411 may provide at least one or more simple eye exercise processes based on the simple eye exercise content.
  • the simple eye exercise process may be a process of providing a graphic image for inducing an eye activity of a subject for the purpose of improving eye health.
  • the simple eye movement process may include a star drawing motion process and/or a circle drawing motion process based on eye movement.
  • the eye care application 411 may execute one of at least one or more simple eye movement processes based on a subject's input.
  • the eye care application 411 may provide a simple eye movement process selected and executed based on the subject's input based on the two-dimensional graphic image.
  • the eye care application 411 may implement a simple eye movement that induces the subject's eye activity based on the two-dimensional graphic image.
  • the eye care application 411 may measure the subject's eye movement according to the execution of the simple eye movement process, based on the above-described eye movement index content, and generate and provide eye movement information based on this. there is.
  • the eye care application 411 provides simple eye exercise content that can easily perform eye exercise anytime, anywhere, so that it is convenient without a separate device or effort for performing the eye exercise without time or space restrictions. This can lead to more active and active participation in eye movements by reducing the cost for eye care.
  • the eye care application 411 may provide an eye health knowledge service based on the driven eye health solution service. (S307)
  • the eye health knowledge service may be a service that provides a process for conveniently accessing various information related to eye health.
  • the eye care application 411 may provide an eye health knowledge service based on eye health related knowledge content and/or ophthalmic organ information content.
  • FIG. 32 is an example of a diagram for explaining eye health-related knowledge content according to an embodiment of the present invention.
  • the eye care application 411 may provide an eye health knowledge service based on eye health related knowledge content.
  • the eye health-related knowledge content may be content that provides a community service that provides various knowledge related to eye health (eg, a method for escaping dry eye syndrome and/or a method for protecting the eye from blue light). .
  • 33A and 33B are examples of diagrams for explaining ophthalmic organ information content according to an embodiment of the present invention.
  • the eye care application 411 may provide an eye health knowledge service based on ophthalmic organ information content.
  • the ophthalmic institution information content refers to various information (eg, ophthalmic institution location) related to an ophthalmic institution (for example, an ophthalmic hospital and/or an institution that provides an eye health measurement service based on an eye health measurement device, etc.) information, contact information, introduction information, information on the nearest ophthalmic institution, and/or information on a customized ophthalmic hospital as a result of eye health measurement).
  • an ophthalmic institution for example, an ophthalmic hospital and/or an institution that provides an eye health measurement service based on an eye health measurement device, etc.
  • contact information for example, an ophthalmic hospital and/or an institution that provides an eye health measurement service based on an eye health measurement device, etc.
  • introduction information information on the nearest ophthalmic institution
  • information on a customized ophthalmic hospital as a result of eye health measurement
  • the eye care application 411 is based on the eye health knowledge service including the above content (in the embodiment, eye health related knowledge content and/or ophthalmic organ information content), so that the subject can learn about eye health and You can easily obtain and utilize various types of related information.
  • the eye care application 411 can effectively reduce the cost of searching for information for the subject's eye health care.
  • the eye care application 411 may provide an expert consultation service based on the driven eye health solution service. (S309)
  • the expert consultation service may be a service providing a communication function with an eye expert (eg, an ophthalmologist and/or a professor).
  • an eye expert eg, an ophthalmologist and/or a professor.
  • the eye care application 411 may provide an expert consultation service based on expert consultation content.
  • the expert consultation content according to the embodiment may be content that provides an environment capable of implementing communication with an eye expert (eg, an ophthalmologist and/or a professor).
  • an eye expert eg, an ophthalmologist and/or a professor.
  • the expert consultation content may provide a real-time chatting consultation interface with an eye specialist, a mail consultation interface and/or a visit reservation consultation interface, and the like.
  • the eye care application 411 enables communication with the eye specialist using the eye care application 411 installed on the subject's mobile type computing device 400, thereby performing communication with the eye specialist. It is possible to simplify the necessary procedure and at the same time minimize the time or cost required, thereby enabling rapid and accurate eye health care.
  • the eye health measurement system uses the eye health measurement result of the measurement target obtained based on virtual reality to the measurement target's eye health measurement computing device (eg, a mobile type computing device) and/or desktop-type computing device, etc.), it is possible to easily track, observe, and care for eye health in daily life, thereby reducing the cost or effort required for eye health care. there is.
  • the measurement target's eye health measurement computing device eg, a mobile type computing device
  • desktop-type computing device e.g., desktop-type computing device, etc.
  • the eye health measurement system provides an eye health solution service that supports customized eye health management optimized for measurement subjects based on the eye health state measurement result from a diversified perspective, thereby improving eye health. It can be conveniently managed and cared for in various aspects, and through this, it can induce the subject to be measured more actively in eye health care in their daily life.
  • the embodiments according to the present invention described above may be implemented in the form of program instructions that can be executed through various computer components and recorded in a computer-readable recording medium.
  • the computer-readable recording medium may include program instructions, data files, data structures, etc. alone or in combination.
  • the program instructions recorded on the computer-readable recording medium may be specially designed and configured for the present invention or may be known and used by those skilled in the computer software field.
  • Examples of the computer-readable recording medium include hard disks, magnetic media such as floppy disks and magnetic tapes, optical recording media such as CD-ROMs and DVDs, and magneto-optical media such as floppy disks. medium), and hardware devices specially configured to store and execute program instructions, such as ROM, RAM, flash memory, and the like.
  • Examples of program instructions include not only machine language codes such as those generated by a compiler, but also high-level language codes that can be executed by a computer using an interpreter or the like.
  • a hardware device may be converted into one or more software modules to perform processing in accordance with the present invention, and vice versa.
  • the present invention has industrial applicability because it is a system including a head-mounted display for displaying VR and a method for measuring eye health using the same.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Ophthalmology & Optometry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Nutrition Science (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Pathology (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

실시예에 따른 가상현실 기반의 눈 건강 측정방법은, 눈 건강 측정기의 프로세서가 헤드 마운티드 디스플레이와 연동하여 가상현실 기반의 눈 건강 측정을 수행하는 방법으로서, 눈 건강상태 서베이 인터페이스를 제공하는 단계; 상기 제공된 서베이 인터페이스에 기초하여 눈 건강 측정방법을 결정하는 단계; 상기 결정된 눈 건강 측정방법으로 눈 건강상태 측정을 실행하는 단계; 상기 실행된 눈 건강상태 측정에 따른 결과를 표시하는 단계; 및 상기 눈 건강상태 측정에 따른 결과에 기초하여 처방 콘텐츠를 제공하는 단계를 포함한다.

Description

가상현실 기반의 눈 건강 측정 장치, 방법 및 그 시스템
본 발명은 가상현실 기반의 눈 건강 측정 장치, 방법 및 그 시스템에 관한 것이다. 보다 상세하게는, 가상현실을 이용하여 눈 건강 측정 프로세스를 수행하고, 그 결과에 따른 처방 콘텐츠와 눈 건강 솔루션 서비스를 제공하는 가상현실 기반의 눈 건강 측정 장치, 방법 및 그 시스템에 관한 것이다.
현대의 사람들은 개인적, 환경적 및 습관에 따라서 눈 건강상태와 관련된 이상신호를 나타내게 된다.
예를 들면, 눈 건강상태가 저하됨에 따른 근시(Nearsightedness), 원시(Farsightedness) 및/또는 난시(Astigmatism) 등의 이상시력 증상을 보이는 경우가 있다. 눈 건강상태와 관련된 이상신호는, 시력이상 신호뿐만 아니라 동공이상, 안구 움직임 이상 등을 모두 포함할 수 있다.
이러한 눈 건강상태를 파악하기 위해서는 다양한 파라미터(예컨대, 입체시, 사시, 양안시, 복시, 동공 및/또는 시야 등)에 대한 측정이 요구되며, 최근 들어서는 각종 기술의 발전에 힘입어 헤드 마운티드 디스플레이(HMD: Head Mounted Display) 장치를 이용해 눈 건강상태를 측정하는 기술의 도입이 활발히 진행되고 있다.
자세히, 최근에는 헤드 마운티드 디스플레이에 기반한 가상현실(VR: Virtual Reality) 영상에 기초하여, 측정 대상자의 눈 건강상태를 파악하는 것이 점차 확산되는 추세이다.
그러나 종래의 본 기술 분야에서는, 위와 같은 헤드 마운티드 디스플레이가 다수의 측정 대상자의 안면에 밀착되어 사용됨으로 인하여, 각종 세균이나 오염물질(예컨대, 화장품 등)에 감염되는 경우가 빈번히 발생하고 있다.
또한, 종래의 안구질환 측정 방식에서는, 공통적으로 측정 수행자(의사 또는 안경사)가 고가의 측정장비를 이용하여 측정 대상자의 눈 상태를 측정하는 방식으로 수작업 진행된다.
따라서, 측정 수행자에 따라서 측정 대상자에 대한 측정결과가 객관적이지 못하며, 시간소요가 오래 걸리고 측정 수행자의 인건비로 인해 과다한 측정비용이 발생하는 문제가 있다.
또한, 안구질환 중 입체시 측정을 수행하기 위해서는, 편광안경이나 편광필터 등의 전문 장비가 필요하고, 입체시를 측정하는데 최적화된 특수시표가 더 필요한 등, 입체시 측정 환경을 마련하는데 소요되는 시간이나 비용이 상당한 실정이다.
또한, 안구질환 중 시력측정을 하는 측정장비는, 종래의 시력 도표를 이용한 방식에서 개선된 것이 사실이지만, 측정장비를 통해 획득한 측정 대상자의 측정정보를 다시 측정 수행자가 분석하여 안구질환의 종류를 결정하기 때문에, 측정 대상자의 측정정보를 토대로 안구질환 신속하게 결정하기 어려운 문제가 있다.
또한, 측정장비로 측정 대상자의 안구질환을 측정하는 경우에는, 측정 대상자가 측정장비에 마련된 고정 위치에서 측정이 완료될 때까지 움직이지 말아야 한다는 불편함이 있다. 즉, 측정 대상자의 안구질환 측정 위치가 측정장비에 의존하기 때문에 경직된 상태에서 안구질환을 측정해야 하는 등 측정 대상자의 측정 환경이 좋지 못한 문제가 있다.
이와 같은 추세에 힘입어 최근의 각종 산업 분야에서는, 머리에 착용하는 디스플레이 장치인 헤드 마운티드 디스플레이(HMD: Head Mounted Display)에 기반하여 해당하는 산업 분야와 관련된 각종 증강현실(AR) 또는 가상현실(MR) 데이터들을 생성하여 관리하고 있으며, 필요 시 유/무선 네트워크(network)에 기반하여 생성된 데이터를 교환하는 커뮤니케이션을 수행하고 있다.
본 발명은, 상술된 바와 같은 문제점들을 해결하기 위하여 안출된 것으로서, 눈 건강 측정에 사용되는 헤드 마운티드 디스플레이의 청결함을 유지하고 편리한 관리를 보조하는 기능 동작을 제공하는 가상현실 기반의 눈 건강 측정 장치, 방법 및 그 시스템을 제공하는데 그 목적이 있다.
또한, 본 발명은, 눈 건강과 관련된 서베이(survey) 프로세스를 기반으로 측정 대상자(즉, 피측정자) 맞춤형 눈 건강 측정방법을 결정하고, 결정된 눈 건강 측정방법을 기초로 상기 측정 대상자에 대한 눈 건강 측정 서비스를 수행하는 가상현실 기반의 눈 건강 측정 장치, 방법 및 그 시스템을 제공하는데 그 목적이 있다.
또한, 본 발명은, 상기 측정 대상자에 대하여 획득된 눈 건강상태 측정 결과를 그래픽 이미지화하여 제공하는 가상현실 기반의 눈 건강 측정 장치, 방법 및 그 시스템을 구현하는데 그 목적이 있다.
또한, 본 발명은, 가상현실에 기초하여 획득되는 측정 대상자의 눈 건강상태 측정 결과를 상기 측정 대상자의 눈 건강 측정 컴퓨팅 디바이스(예컨대, 모바일 타입의 컴퓨팅 디바이스 및/또는 데스크탑 타입의 컴퓨팅 디바이스 등)를 기반으로 제공하는 가상현실 기반의 눈 건강 측정 장치, 방법 및 그 시스템을 구현하는데 그 목적이 있다.
또한, 본 발명은, 위와 같이 제공되는 눈 건강상태 측정 결과를 기반으로 상기 측정 대상자에게 최적화된 맞춤형 눈 건강 관리를 다각화된 관점에서 보조하는 눈 건강 솔루션 서비스를 제공하는 가상현실 기반의 눈 건강 측정 장치, 방법 및 그 시스템을 구현하는데 그 목적이 있다.
실시예에 따른 가상현실 기반의 눈 건강 측정방법은, 눈 건강 측정기의 프로세서가 헤드 마운티드 디스플레이와 연동하여 가상현실 기반의 눈 건강 측정을 수행하는 방법으로서, 눈 건강상태 서베이 인터페이스를 제공하는 단계; 상기 제공된 서베이 인터페이스에 기초하여 눈 건강 측정방법을 결정하는 단계; 상기 결정된 눈 건강 측정방법으로 눈 건강상태 측정을 실행하는 단계; 상기 실행된 눈 건강상태 측정에 따른 결과를 표시하는 단계; 및 상기 눈 건강상태 측정에 따른 결과에 기초하여 처방 콘텐츠를 제공하는 단계를 포함한다.
다른 측면에서 실시예에 따른 가상현실 기반의 눈 건강 측정방법은, 눈 건강 측정기의 프로세서가 헤드 마운티드 디스플레이와 연동하여 가상현실 기반의 눈 건강 측정을 수행하는 방법으로서, 가상현실 기반 눈 건강 측정방법으로 측정 대상자의 눈 건강상태 측정을 실행하는 단계; 상기 실행된 눈 건강상태 측정에 따른 결과인 상기 측정 대상자의 눈 건강 상태정보를 표시하도록 제어하는 단계; 상기 생성된 눈 건상상태 정보를 기초로 상기 측정 대상자에게 제공할 가상현실 컨텐츠인 눈 힐링영상을 결정하는 단계; 및 상기 결정된 눈 힐링영상을 상기 측정 대상자에게 출력하도록 제어하는 단계를 포함한다.
또한, 실시예에 따른 가상현실 기반의 눈 건강 측정장치는, 가상현실 기반의 눈 건강상태 측정 서비스를 제공하는 눈 건강 측정기; 및 상기 가상현실 영상을 출력하는 헤드 마운티드 디스플레이를 포함하고, 상기 눈 건강 측정기는, 상기 눈 건강 측정기의 몸체를 형성하는 바디(body); 상기 바디에 배치된 헤드 마운티드 디스플레이 수용부에 대한 상기 헤드 마운티드 디스플레이의 유입 또는 유출을 감지하는 센서부; 상기 수용부에 유입된 상기 헤드 마운티드 디스플레이를 소독하는 소독부; 및 상기 수용부에 유입된 상기 헤드 마운티드 디스플레이의 안면접촉보호부에 대한 위치, 면적, 방향 및 각도 정보 중 적어도 하나 이상을 포함하는 보호부 센싱정보를 획득하도록 상기 센서부를 제어하고, 상기 획득된 보호부 센싱정보를 기초로 상기 소독부가 상기 안면접촉보호부를 향하도록 틸팅(tilting)시키는 프로세서를 포함한다.
본 발명의 실시예에 따른 가상현실 기반의 눈 건강 측정 장치, 방법 및 그 시스템은, 눈 건강 측정에 사용되는 헤드 마운티드 디스플레이의 청결함을 유지하는 기능 동작(실시예에서, 살균 소독 기능 등)을 제공함으로써, 헤드 마운티드 디스플레이의 오염 상태를 매번 일일이 확인하거나 별도의 살균 처리를 수동으로 수행하지 않고도, 눈 건강 측정 서비스에 사용되는 헤드 마운티드 디스플레이의 청결 상태를 안전하게 유지할 수 있는 효과가 있다.
또한, 본 발명의 실시예에 따른 가상현실 기반의 눈 건강 측정 장치, 방법 및 그 시스템은, 눈 건강 측정에 사용되는 헤드 마운티드 디스플레이에 대한 편리한 관리를 보조하는 기능 동작(실시예에서, 자동 충전 기능 등)을 제공함으로써, 눈 건강상태 측정 환경을 쉽고 간편하게 관리할 수 있는 효과가 있다.
또한, 본 발명의 실시예에 따른 가상현실 기반의 눈 건강 측정 장치, 방법 및 그 시스템은, 눈 건강과 관련된 서베이(survey) 프로세스를 기반으로 측정 대상자(즉, 피측정자) 맞춤형 눈 건강 측정방법을 결정하고, 결정된 눈 건강 측정방법을 기초로 상기 측정 대상자에 대한 눈 건강 측정 서비스를 수행함으로써, 대상자의 눈 건강상태를 분석할 수 있는 일관적이고 신뢰성 있는 기반 데이터를 체계적인 계측 방법을 통하여 획득할 수 있고, 이를 바탕으로 신뢰도 높은 분석 결과를 도출할 수 있는 효과가 있다.
또한, 본 발명의 실시예에 따른 가상현실 기반의 눈 건강 측정 장치, 방법 및 그 시스템은, 눈 건강상태 서베이 분석 결과를 기초로 측정 대상자의 현재 눈 건강상태를 파악하고, 이를 토대로 해당 측정 대상자에게 필요한 눈 건강 측정방법을 선정해 제공함으로써, 대상자 개개인 별로 최적화된 맞춤형의 눈 건강 측정 프로세스를 진행할 수 있고, 이를 통해 눈 건강상태 측정에 소요되는 비용이나 노력을 절감할 수 있으며, 결과적으로 눈 건강 측정 서비스의 효율을 향상시킬 수 있다.
또한, 본 발명의 실시예에 따른 가상현실 기반의 눈 건강 측정 장치, 방법 및 그 시스템은, 눈 건강상태 측정 결과를 그래픽 이미지로 구현하여 제공함으로써, 눈 건강상태 측정 결과를 보다 직관적으로 인식하게 할 수 있다.
또한, 본 발명의 실시예에 따른 가상현실 기반의 눈 건강 측정 장치, 방법 및 그 시스템은, 가상현실에 기초하여 획득되는 측정 대상자의 눈 건강상태 측정 결과를 상기 측정 대상자의 눈 건강 측정 컴퓨팅 디바이스(예컨대, 모바일 타입의 컴퓨팅 디바이스 및/또는 데스크탑 타입의 컴퓨팅 디바이스 등)를 기반으로 제공함으로써, 생활 속에서 손 쉽게 눈 건강상태를 추적, 관찰 및 케어할 수 있고, 이를 통해 눈 건강 관리를 위해 소요되는 비용이나 노력을 절감할 수 있는 효과가 있다.
또한, 본 발명의 실시예에 따른 가상현실 기반의 눈 건강 측정 장치, 방법 및 그 시스템은, 눈 건강상태 측정 결과를 기반으로 측정 대상자에게 최적화된 맞춤형 눈 건강 관리를 다각화된 관점에서 보조하는 눈 건강 솔루션 서비스를 제공함으로써, 눈 건강을 다양한 측면에서 편리하게 관리 및 케어하게 할 수 있고, 이를 통해 측정 대상자가 일상 생활 속에서도 눈 건강 관리에 보다 적극적으로 참여하도록 유도할 수 있는 효과가 있다.
도 1은 본 발명의 실시예에 따른 가상현실 기반의 눈 건강 측정 시스템의 개념도이다.
도 2는 본 발명의 실시예에 따른 눈 건강 측정장치를 도시한 모습의 일례이다.
도 3은 본 발명의 실시예에 따른 눈 건강 측정기의 내부 블록도이다.
도 4 및 5는 본 발명의 실시예에 따른 소독부를 설명하기 위한 도면의 일례들이다.
도 6은 본 발명의 실시예에 따른 구동부를 포함한 눈 건강 측정장치를 도시한 모습의 일례이다.
도 7은 본 발명의 실시예에 따른 충전부를 설명하기 위한 도면의 일례이다.
도 8은 본 발명의 실시예에 따른 헤드 마운티드 디스플레이의 분해사시도이다.
도 9는 본 발명의 실시예에 따른 헤드 마운티드 디스플레이의 내부블록도이다.
도 10은 본 발명의 실시예에 따른 눈 건강 측정장치의 동작 원리를 설명하기 위한 도면의 일례이다.
도 11은 본 발명의 실시예에 따른 눈 건강 플랫폼 관리서버의 내부 블록도이다.
도 12는 본 발명의 실시예에 따른 가상현실 기반의 눈 건강 측정방법을 설명하기 위한 흐름도이다.
도 13a 및 도 13b는 본 발명의 실시예에 따른 눈 건강상태 서베이 인터페이스를 나타내는 모습의 일례들이다.
도 14a 및 도 14b는 본 발명의 실시예에 따른 눈 건강상태 조사정보를 표시하는 모습의 일례들이다.
도 15 및 도 16은 본 발명의 실시예에 따른 입체시 측정 콘텐츠를 설명하기 위한 도면의 일례들이다.
도 17은 본 발명의 실시예에 따른 변위시표를 구현하는 방법을 설명하기 위한 도면의 일례이다.
도 18은 본 발명의 실시예에 따른 시력측정 콘텐츠를 설명하기 위한 도면의 일례이다.
도 19a 및 도 19b는 본 발명의 실시예에 따른 눈 건강상태 측정 결과를 표시하는 모습의 일례들이다.
도 20 내지 도 23은 본 발명의 실시예에 따른 눈 힐링영상을 설명하기 위한 도면의 일례들이다.
도 24는 본 발명의 실시예에 따른 모바일 타입의 컴퓨팅 디바이스의 내부 블록도이다.
도 25는 본 발명의 실시예에 따른 가상현실 기반의 눈 건강 측정방법을 설명하기 위한 흐름도이다.
도 26은 본 발명의 실시예에 따른 모바일 타입 컴퓨팅 디바이스에서 눈 건강 솔루션 서비스가 제공되는 모습의 일례이다.
도 27은 본 발명의 실시예에 따른 모바일 타입 컴퓨팅 디바이스에서 눈 건강 솔루션 서비스를 제공하는 방법을 설명하기 위한 개념도이다.
도 28a, 도 28b 및 도 28c는 본 발명의 실시예에 따른 측정 리포트 콘텐츠를 설명하기 위한 도면의 일례이다.
도 29는 본 발명의 실시예에 따른 눈 운동지수 콘텐츠를 설명하기 위한 도면의 일례이다.
도 30a 및 도 30b는 본 발명의 실시예에 따른 간편 눈 측정 콘텐츠를 설명하기 위한 도면의 일례이다.
도 31a 및 도 31b는 본 발명의 실시예에 따른 간편 눈 운동 콘텐츠를 설명하기 위한 도면의 일례이다.
도 32는 본 발명의 실시예에 따른 눈 건강관련 지식 콘텐츠를 설명하기 위한 도면의 일례이다.
도 33a 및 도 33b는 본 발명의 실시예에 따른 안과 기관정보 콘텐츠를 설명하기 위한 도면의 일례이다.
도 34는 본 발명의 실시예에 따른 전문가 상담 콘텐츠를 설명하기 위한 도면의 일례이다.
도 1은 본 발명의 실시예에 따른 가상현실 기반의 눈 건강 측정 시스템의 개념도이다.
도 1을 참조하면, 본 발명의 실시예에 따른 가상현실 기반의 눈 건강 측정 시스템(이하, 눈 건강 측정 시스템)은, 눈 건강 측정장치(눈 건강 측정기(100) 및 헤드 마운티드 디스플레이(200)), 눈 건강 플랫폼 관리서버(300) 및 눈 건강 측정 컴퓨팅 디바이스(600)를 포함할 수 있다.
실시예에서, 눈 건강 측정기(100), 헤드 마운티드 디스플레이(200), 눈 건강 플랫폼 관리서버(300) 및 눈 건강 측정 컴퓨팅 디바이스(600)는, 상호 연동하여 가상현실을 기초로 눈 건강 측정 프로세스를 수행하고, 그 결과에 따른 처방 콘텐츠와 눈 건강 솔루션 서비스를 제공하는 가상현실 기반의 눈 건강 측정 서비스(이하, 눈 건강 측정 서비스)를 구현할 수 있다.
한편, 도 1의 눈 건강 측정기(100), 헤드 마운티드 디스플레이(200), 눈 건강 플랫폼 관리서버(300) 및 눈 건강 측정 컴퓨팅 디바이스(600)는, 네트워크를 기반으로 연결될 수 있다.
여기서, 네트워크는, 눈 건강 측정기(100), 헤드 마운티드 디스플레이(200), 눈 건강 플랫폼 관리서버(300) 및 눈 건강 측정 컴퓨팅 디바이스(600) 등과 같은 각각의 노드 상호 간에 정보 교환이 가능한 연결 구조를 의미하는 것으로, 이러한 네트워크의 일 예에는 3GPP(3rd Generation Partnership Project) 네트워크, LTE(Long Term Evolution) 네트워크, WIMAX(World Interoperability for Microwave Access) 네트워크, 인터넷(Internet), LAN(Local Area Network), Wireless LAN(Wireless Local Area Network), WAN(Wide Area Network), PAN(Personal Area Network), 블루투스(Bluetooth) 네트워크, 위성 방송 네트워크, 아날로그 방송 네트워크, DMB(Digital Multimedia Broadcasting) 네트워크 등이 포함되나 이에 한정되지는 않는다.
이하, 첨부된 도면을 참조하여 눈 건강 측정 시스템을 구현하는 눈 건강 측정기(100), 헤드 마운티드 디스플레이(200), 눈 건강 플랫폼 관리서버(300) 및 눈 건강 측정 컴퓨팅 디바이스(600) 각각에 대하여 그 구성 및 동작 방식을 상세히 설명한다.
- 1) 눈 건강 측정장치
도 2는 본 발명의 실시예에 따른 눈 건강 측정장치를 도시한 모습의 일례이다.
도 2를 참조하면, 본 발명의 실시예에 따른 눈 건강 측정장치는, 눈 건강 측정기(100) 및 헤드 마운티드 디스플레이(200)를 포함할 수 있다.
실시예에서, 눈 건강 측정기(100) 및 헤드 마운티드 디스플레이(200)를 포함하는 눈 건강 측정장치는, 헤드 마운티드 디스플레이(200)로부터 출력되는 가상현실 영상을 기반으로, 측정 대상자(이하, 대상자)의 눈 건강상태를 파악하는 눈 건강 측정 서비스를 제공할 수 있다.
이하에서는, 첨부된 도면을 참조하여 상술된 바와 같은 눈 건강 측정장치가 포함하는 눈 건강 측정기(100) 및 헤드 마운티드 디스플레이(200)에 대해 상세히 설명한다.
<눈 건강 측정기(100: Eye-health measuring instrument)>
본 발명의 실시예에 따른 눈 건강 측정기(100)는, 헤드 마운티드 디스플레이(200)와 연동하여 가상현실 영상을 기반으로 대상자의 눈 건강상태를 측정할 수 있는 장치이다.
도 3은 본 발명의 실시예에 따른 눈 건강 측정기(100)의 내부 블록도이다.
도 2 및 도 3에 도시된 바와 같이, 본 발명의 실시예에 따른 눈 건강 측정기(100)는, 바디(110), 소독부(120), 충전부(130), 센서부(140), 디스플레이부(150) 및 입력부(160)를 포함할 수 있다.
다만, 도 2 및 도 3에 도시된 구성요소들은, 눈 건강 측정기(100)에 필수적인 것이 아니어서, 그보다 많은 구성요소들을 갖거나 그 보다 적은 구성요소들로 눈 건강 측정기(100)가 구현될 수 있다. 이하, 구성요소들에 대해 차례로 살펴본다.
실시예에서, 눈 건강 측정기(100)의 바디(110: Body)는, 눈 건강 측정기(100)의 몸체로서 외관을 형성하며, 내외부에 눈 건강 측정기(100)의 구동에 필요한 각종 유닛을 구비할 수 있다.
이러한 바디(110)에는, 소정의 그래픽 이미지를 출력하는 디스플레이부(150)가 배치되는 메인바디부(111)가 상부측에 형성될 수 있다.
실시예에서, 메인바디부(111)는, 디스플레이부(150)를 수용 가능한 크기의 사각박스 형상으로 구현될 수 있다.
또한, 실시예에 따른 바디(110)에는, 위와 같은 메인바디부(111)를 지면으로부터 지지하는 베이스부(112)가 하부측에 배치될 수 있다.
이때, 메인바디부(111)는, 베이스부(112)와 메인바디부(111) 사이의 소정의 공동영역을 형성하도록, 상기 베이스부(112)와 메인바디부(111)를 이격시킴과 동시에 상기 베이스부(112)로부터 상기 메인바디부(111)를 연결하며 지지하는 지지부(113)를 통하여 지면으로부터 지지될 수 있다.
여기서, 실시예에 따른 지지부(113)는, 메인바디부(111)와 베이스부(112)의 일측(예컨대, 좌측 끝단)을 연결하며 지지하는 제1 지지부(113-1)와, 상기 메인바디부(111)와 베이스부(112)의 타측(예컨대, 우측 끝단)을 연결하며 지지하는 제2 지지부(113-2)를 포함할 수 있다.
실시예에서, 위와 같은 베이스부(112)는 메인바디부(111)의 하부면에 대하여 동일하거나 큰 크기를 가지는 장방형 판상의 형상으로 구현될 수 있으며, 제1 지지부(113-1)는 메인바디부(111) 하부면의 일측 모서리(예컨대, 좌측 모서리)에 대응되는 길이를 가지는 막대 형상으로 구현될 수 있고, 제2 지지부(113-2)는 메인바디부(111) 하부면의 타측 모서리(예컨대, 우측 모서리)에 대응되는 길이를 가지는 막대 형상으로 구현될 수 있다.
또한, 실시예에서 바디(110)에는, 위와 같은 메인바디부(111)의 하부면과, 지지부(113)의 내측면 그리고 베이스부(112)의 상부면으로 둘러쌓여 형성되는 헤드 마운티드 디스플레이 수용부(114: 이하, 수용부)가 배치될 수 있다.
자세히, 실시예에서 수용부(114)는, 일측이 개방된 공동형(관통형) 형상으로 구현되어, 눈 건강 측정장치의 헤드 마운티드 디스플레이(200)가 유입 또는 유출될 수 있는 공간을 제공할 수 있다.
또한, 이러한 수용부(114)는, 수용부(114)로 유입된 헤드 마운티드 디스플레이(200)를 보관함과 동시에, 상기 헤드 마운티드 디스플레이(200)에 대한 살균 소독 및/또는 충전 기능 동작이 구현되는 공간을 제공할 수 있다.
도 4 및 5는 본 발명의 실시예에 따른 소독부(120)를 설명하기 위한 도면의 일례들이다.
한편, 도 4 및 5를 참조하면, 실시예에서 눈 건강 측정기(100)는, 수용부(114)로 유입된 헤드 마운티드 디스플레이(200)에 대한 살균 소독 기능을 수행하는 소독부(120)를 포함할 수 있다.
자세히, 실시예에서 소독부(120)는, 수용부(114)로 유입된 헤드 마운티드 디스플레이(200) 내 하우징(260)의 안면접촉보호부(261)를 살균 소독하는 기능 동작을 수행할 수 있다.
보다 상세히, 소독부(120)는, 살균 소독의 대상이 되는 물체(실시예에서, 헤드 마운티드 디스플레이(200))에 대한 살균 소독을 수행할 수 있는 적어도 하나 이상의 자외선 램프(UV LAMP) 및/또는 적어도 하나 이상의 엘이디 램프(LED LAMP)로 구현될 수 있다.
또한, 소독부(120)는, 눈 건강 측정기(100)의 제어에 따라서, 적어도 하나 이상의 램프들을 포함하는 램프 그룹을, 수용부(114)에 유입된 헤드 마운티드 디스플레이(200)의 안면접촉보호부(261)를 향하도록 틸팅(tilting)시킬 수 있다.
또한, 실시예에서 소독부(120)는, 헤드 마운티드 디스플레이(200)의 안면접촉보호부(261)를 향하도록 틸팅된 램프들에 기반한 조사 동작을 실행할 수 있다.
그리하여 소독부(120)는, 눈 건강 측정기(100)의 수용부(114)에 보관되고 있는 헤드 마운티드 디스플레이(200)의 안면접촉보호부(261)에 대한 살균 소독을 수행할 수 있다.
자세히, 실시예에서 눈 건강 측정기(100)는, 헤드 마운티드 디스플레이(200)의 안면접촉보호부(261)의 위치를 센싱할 수 있는 센서부(140)를 기반으로, 상기 안면접촉보호부(261)의 위치, 면적, 유입 방향 및/또는 각도 정보를 획득할 수 있다.
또한, 눈 건강 측정기(100)는, 위와 같이 획득된 안면접촉보호부(261)의 위치, 면적, 유입 방향 및/또는 각도 정보에 기초하여, 상기 안면접촉보호부(261)에 대한 조사를 수행하는 적어도 하나 이상의 램프 그룹(예컨대, 제3 소독부(120) 및 제2 소독부(120) 내 복수의 램프 집합 등)을 설정할 수 있다.
그리고 눈 건강 측정기(100)는, 설정된 램프 그룹을 동작시켜 살균 소독을 위한 빛을 방사하도록 제어할 수 있다.
실시예에서, 이와 같은 소독부(120)는, 눈 건강 측정기(100)의 수용부(114)의 상측면 상에 배치될 수 있다.
즉, 실시예에서 소독부(120)는, 수용부(114)를 형성하는 제1 지지부(113-1)의 내측에 배치되는 제1 소독부(121)와, 제2 지지부(113-2)의 내측에 배치되는 제2 소독부(122) 및/또는 메인바디부(111)의 하부면 상에 배치되는 제3 소독부(123)를 포함할 수 있다.
또한, 소독부(120)는, 수용부(114)의 헤드 마운티드 디스플레이(200)의 안면접촉보호부(261)를 향해 조사를 수행할 수 있도록, 상기 제1 소독부(121), 제2 소독부(122) 및/또는 제3 소독부(123)에 배치된 적어도 하나 이상의 램프의 방향을 조정할 수 있다.
도 6은 본 발명의 실시예에 따른 구동부를 포함한 눈 건강 측정장치를 도시한 모습의 일례이다.
한편, 도 6을 참조하면, 실시예에 따라서 눈 건강 측정기(100)는, 상술된 소독부(120)에 배치된 램프에 대한 틸팅 동작을 보조할 수 있는 구동부(125)를 더 포함할 수 있다.
자세히, 실시예에서 구동부(125)는, 상술된 베이스부(112)와 지지부(113) 사이에 형성되어, 상기 베이스부(112)와 지지부(113)를 이격 또는 접합시키는 상하운동을 수행하는 피스톤 형태로 구현될 수 있다.
보다 상세히, 구동부(125)는, 제1 지지부(113-1)와 베이스부(112)의 일측 사이에 배치되어, 상기 제1 지지부(113-1)와 베이스부(112)의 일측 간의 이격 또는 접합을 가능케 하는 제1 구동부(125-1) 및, 제2 지지부(113-2)와 베이스부(112)의 타측 사이에 배치되어, 상기 제2 지지부(113-2)와 베이스부(112)의 타측 간의 이격 또는 접합을 가능케 하는 제2 구동부(125-2)를 포함할 수 있다.
또한, 실시예에서 상기 제1 구동부(125-1) 및/또는 제2 구동부(125-2)는, 눈 건강 측정기(100)의 제어에 따라서 상하운동(피스톤 동작)을 수행할 수 있다.
구체적으로, 눈 건강 측정기(100)의 제어에 따른 제1 구동부(125-1)의 상하운동에 따라서, 상기 제1 구동부(125-1)에 연결된 제1 지지부(113-1) 또한 상하운동이 수행될 수 있고, 상기 제1 지지부(113-1)가 지지하는 메인바디부(111)의 일측 또한 연쇄적으로 상기 제1 구동부(125-1)의 상하운동에 따른 상하운동이 수행될 수 있다.
동일한 방식으로, 제2 구동부(125-2)의 상하운동에 따라서 제2 지지부(113-2)에 대한 상하운동이 수행될 수 있고, 상기 제2 지지부(113-2)가 지지하는 메인바디부(111)의 타측 또한 연쇄적인 상하운동이 수행될 수 있다.
즉, 제1 구동부(125-1) 및/또는 제2 구동부(125-2)의 상하운동에 따라서 베이스부(112) 상측에 배치된 지지부(113)와 메인바디부(111)의 일측 및/또는 타측이 상기 베이스부(112)로부터 이격되거나 접합될 수 있다.
다시 돌아와서, 즉 실시예에서 눈 건강 측정기(100)는, 위와 같이 동작하는 구동부(125)에 대한 제어를 통하여, 상술된 소독부(120)에 배치된 램프에 대한 틸팅 동작을 보조할 수 있다.
자세히, 눈 건강 측정기(100)는, 수용부(114) 상의 헤드 마운티드 디스플레이(200)의 안면접촉보호부(261)를 향하도록 소독부(120) 내 적어도 하나 이상의 램프에 대한 틸팅 동작을 수행할 수 있다.
다만, 고정된 위치에서의 상기 램프에 대한 틸팅 동작만으로는, 수용부(114)에 무작위한 위치, 면적, 방향 및/또는 각도를 가지고 유입되는 헤드 마운티드 디스플레이(200)의 안면접촉보호부(261)에 대한 높을 조사율을 구현하기에 어려움이 있을 수 있다.
그리하여 본 발명의 실시예에서 눈 건강 측정기(100)는, 소독부(120)가 배치된 지지부(113)의 내측면과 메인바디부(111)의 하부면에 대한 틸팅 동작을 구현하여, 보다 광범위한 각도, 위치 및/또는 방향으로 소독부(120)의 램프들이 틸팅되게 할 수 있다.
자세히, 실시예에서 눈 건강 측정기(100)는, 소독부(120)의 적어도 하나 이상의 램프들이, 수용부(114) 상의 헤드 마운티드 디스플레이(200)의 안면접촉보호부(261) 측을 향하도록 하는 소정의 조사 각도를 산출할 수 있다.
또한, 눈 건강 측정기(100)는, 산출된 조사 각도가 구현되도록 상기 소독부(120)의 적어도 하나 이상의 램프 자체를 틸팅할 수 있다.
이때, 상기 램프 자체에 대한 틸팅만으로 상기 조사 각도가 불충족되는 경우, 눈 건강 측정기(100)는, 상기 구동부(125)를 제어하여 상기 지지부(113) 및 메인바디부(111)에 대한 틸팅 동작을 수행할 수 있다.
자세히, 실시예에서 눈 건강 측정기(100)는, 상기 조사 각도에 기반하여 제1 구동부(125-1)에 대한 운동 높이(h1)와, 제2 구동부(125-2)에 대한 운동 높이(h2)를 결정할 수 있다.
또한, 눈 건강 측정기(100)는, 위와 같이 결정된 운동 높이에 따라서 상기 구동부(125)가 상하운동을 수행하게 하여, 상기 지지부(113) 및 메인바디부(111)에 대한 틸팅 동작을 수행할 수 있다.
예를 들면, 눈 건강 측정기(100)는, 안면접촉보호부(261)가 제2 구동부(125-2)가 위치하는 타측 방향을 향하도록 유입된 경우, 상기 타측 방향에서 소독부(120)의 조사 동작이 보다 원활하게 구현되도록, 제1 구동부(125-1)의 운동 높이(h1)를 제2 구동부(125-2)의 운동 높이(h2)보다 크게 설정하여, 상기 제1 구동부(125-1)에 대응되는 제1 지지부(113-1)와 메인바디부(111)의 일측이, 상기 제2 구동부(125-2)에 대응되는 제2 지지부(113-2)와 메인바디부(111)의 타측보다 더 높이 위치하게 할 수 있다.
즉, 눈 건강 측정기(100)는, 이를 통해 상기 지지부(113) 및 메인바디부(111)가 상기 타측 방향으로 기울어지도록 하는 틸팅 동작을 구현할 수 있다.
그리하여 눈 건강 측정기(100)는, 소독부(120)의 램프들이 수용부(114) 상의 안면접촉보호부(261) 측을 보다 정확하게 향하도록 위치시킬 수 있고, 이를 통해 살균 소독을 위한 조사의 성능을 향상시킬 수 있다.
도 7은 본 발명의 실시예에 따른 충전부(130)를 설명하기 위한 도면의 일례이다.
또한, 도 7을 참조하면, 실시예에서 눈 건강 측정기(100)는, 수용부(114)로 유입된 헤드 마운티드 디스플레이(200)에 대한 충전 기능을 제공하는 충전부(130)를 포함할 수 있다.
자세히, 실시예에서 충전부(130)는, 수용부(114)에 안착된 헤드 마운티드 디스플레이(200)의 배터리(291)에 소정의 전원을 인가하여, 해당 헤드 마운티드 디스플레이(200)에 대한 충전 기능을 수행할 수 있다.
이때, 눈 건강 측정기(100)는, 헤드 마운티드 디스플레이(200)에 대한 무선 충전 및/또는 유선 충전 기능을 제공할 수 있다.
보다 상세히, 눈 건강 측정기(100)는, 헤드 마운티드 디스플레이(200)가 수용부(114)에 안착됨을 감지하면, 충전부(130)를 제어하여 상기 헤드 마운티드 디스플레이(200)에 대한 무선 충전 기능을 자동으로 실행할 수 있다.
실시예에서, 위와 같은 충전부(130)는, 수용부(114)에 배치된 헤드 마운티드 디스플레이(200)에 대한 충전 동작을 수행할 수 있는 위치라면 어디에도 배치될 수 있으나, 충전하고자 하는 대상(실시예에서, 헤드 마운티드 디스플레이(200))과 밀접하게 접촉할수록 그 성능이 향상되는 무선 충전에 유리한 베이스부(112) 상부면 상에 형성됨이 가장 바람직한 실시예일 것이다.
또한, 실시예에서 눈 건강 측정기(100)는, 각종 센싱 유닛에 기반하여 눈 건강 측정장치의 기능 동작에 필요한 센싱 정보를 감지하는 센서부(140)를 포함할 수 있다.
자세히, 실시예에서 센서부(140)는, 사용자(예컨대, 대상자 또는 측정자)의 접근을 감지하는 사용자 센싱유닛(141)과, 수용부(114)로 헤드 마운티드 디스플레이(200)가 유입됨을 감지하는 헤드 마운티드 디스플레이 센싱유닛(142: 이하, 헤드 센싱유닛)을 포함할 수 있다.
보다 상세히, 사용자 센싱유닛(141)은, 눈 건강 측정기(100)에 사용자가 소정의 거리 이하로 가까이 접근하는지를 판단하여 사용자 근접정보를 획득할 수 있다.
이때, 실시예에서 눈 건강 측정기(100)는, 위와 같이 사용자 센싱유닛(141)을 기초로 획득된 사용자 근접정보에 기반하여, 사용자가 소정의 거리 이하로 눈 건강 측정기(100)에 근접한 위치에 존재한다고 판단되면, 눈 건강 측정 서비스가 자동으로 실행되게 할 수 있다.
실시예로, 눈 건강 측정기(100)는, 사용자가 소정의 거리 이하로 눈 건강 측정기(100)에 근접한 경우, 눈 건강 측정 서비스와 관련된 그래픽 이미지를 디스플레이부(150)를 통해 출력할 수 있다.
또한, 실시예에서 눈 건강 측정기(100)는, 사용자가 소정의 거리 이하로 눈 건강 측정기(100)에 근접하면, 눈 건강 측정기(100)를 이용한 눈 건강 측정 서비스의 사용을 유도하는 오디오 데이터를 출력할 수도 있다.
실시예에서, 위와 같은 사용자 센싱유닛(141)은, 특정 오브젝트의 접근을 감지하는 근접센서, 거릿센서 및/또는 이미지센서 등으로 구현될 수 있다.
또한, 헤드 센싱유닛(142)은, 헤드 마운티드 디스플레이(200)가 눈 건강 측정기(100)에 수용되었는지를 판단하여 헤드 마운티드 디스플레이(200) 수용정보(이하, 헤드 수용정보)를 획득할 수 있다.
실시예에서, 이러한 헤드 센싱유닛(142)은, 근접센서, 거리센서 및/또는 이미지센서 등을 포함할 수 있다.
자세히, 실시예에서 헤드 센싱유닛(142)은, 눈 건강 측정기(100) 수용부(114) 상에 헤드 마운티드 디스플레이(200)가 유입된 상태인지, 또는 유출된 상태인지를 센싱을 통해 판단할 수 있다.
또한, 실시예에서 눈 건강 측정기(100)는, 헤드 센싱유닛(142)을 통해 획득된 상기 헤드 수용정보를 기초로 헤드 마운티드 디스플레이(200)가 수용부(114)에 유입되었다고 판단되면, 상기 헤드 마운티드 디스플레이(200)의 안면접촉보호부(261)의 위치를 센싱 및 추적할 수 있다.
이때, 실시예에서 눈 건강 측정기(100)는, 상기 센싱된 안면접촉보호부(261)의 위치 정보에 기반하여, 상술된 소독부(120) 및/또는 구동부(125)에 기반한 틸팅 동작이 수행되게 할 수 있다.
또한, 실시예에서 눈 건강 측정기(100)는, 상기 안면접촉보호부(261) 측을 향하도록 틸팅된 소독부(120)를 제어하여 유브이 램프 및/또는 엘이디 램프에 기초한 조사가 수행되게 할 수 있고, 이를 통해 상기 안면접촉보호부(261)에 대한 살균 소독 기능이 구현되게 할 수 있다.
또한, 실시예에서 눈 건강 측정기(100)는, 측정기는, 헤드 센싱유닛(142)을 통해 획득된 상기 헤드 수용정보를 기초로 헤드 마운티드 디스플레이(200)가 수용부(114)에 유입되었다고 판단되면, 상술된 충전부(130)를 제어하여 상기 헤드 마운티드 디스플레이(200)에 대한 자동 충전 기능이 수행되게 할 수 있다.
실시예에서, 이러한 센서부(140)는, 눈 건강 측정기(100)에 유입 또는 유출되는 헤드 마운티드 디스플레이(200)를 센싱하기 용이한 위치라면 어디에도 배치될 수 있으나, 헤드 마운티드 디스플레이(200)가 직접적으로 안착되는 영역인 수용부(114) 상에 배치됨이 가장 바람직한 실시예일 수 있다.
한편, 실시예에서 눈 건강 측정기(100)는, 눈 건강 측정 서비스와 관련된 각종 그래픽 이미지를 출력하는 디스플레이부(150)를 포함할 수 있다.
자세히, 실시예에서 디스플레이부(150)는, 눈 건강 측정 서비스와 관련된 사용자 인터페이스, 눈 건강상태 측정 결과 및/또는 헤드 마운티드 디스플레이(200) 컨트롤을 위한 관련 그래픽 이미지 등을 출력할 수 있다.
실시예로, 눈 건강 측정기(100)는, 디스플레이부(150)를 제어하여 헤드 마운티드 디스플레이(200)의 안면접촉보호부(261)에 대한 살균 소독정보를 출력할 수 있다.
여기서, 실시예에 따른 살균 소독정보란, 소독부(120)에 의하여 헤드 마운티드 디스플레이(200)의 안면접촉보호부(261)가 살균된 정도를 소정의 기준에 따라서 산정한 정보일 수 있다.
예를 들면, 눈 건강 측정기(100)는, 소독부(120)의 램프 방사 시간에 기준하여, 소정의 타임 슬라이스가 경과될 때마다 살균 소독 진행률을 증가시키는 살균 소독정보를 기반으로, 그래픽 이미지를 생성하여 상기 디스플레이부(150)를 통해 출력할 수 있다.
또한, 실시예에 따라서 디스플레이부(150)는, 음향출력부를 더 포함하여 상기 출력되는 그래픽 이미지와 관련된 오디오 데이터를 함께 제공할 수도 있다.
이러한 디스플레이부(150)는, 액정 디스플레이(liquid crystal display, LCD), 박막 트랜지스터 액정 디스플레이(thin film transistor-liquid crystal display, TFT LCD), 유기 발광 다이오드(organic light-emitting diode, OLED), 플렉서블 디스플레이(flexible display), 전자잉크 디스플레이(e-ink display) 중에서 적어도 하나를 포함할 수 있다.
또한, 실시예에서 눈 건강 측정기(100)는, 눈 건강 측정 서비스와 관련된 사용자 입력을 감지하는 입력부(160)를 포함할 수 있다.
예를 들면, 상기 입력부(160)는, 눈 건강 측정 서비스 실행버튼, 측정 카테고리 선택버튼 및/또는 대상자 정보 입력 인터페이스 등에 대한 사용자 입력을 감지할 수 있다.
또한, 실시예에 따라서 상술된 디스플레이부(150)와 입력부(160)가 결합되어 터치 스크린(161)으로 구현될 수 있다.
즉, 눈 건강 측정기(100)의 디스플레이부(150)는, 그래픽 이미지를 출력하는 표시패널 상에 터치 입력센서를 더 배치하여, 사용자의 터치 입력을 감지하는 입출력 인터페이스를 제공할 수 있다.
또한, 도 2를 더 참조하면, 본 발명의 실시예에서 눈 건강 측정기(100)는, 인터페이스부(171), 통신부(172), 데이터베이스부(173), 전원부(174) 및 프로세서(175)와 같은 내장유닛들을 더 포함할 수 있다.
자세히, 실시예에서 인터페이스부(171)는, 눈 건강 측정기(100)와 외부의 장치(실시예에서, 헤드 마운티드 디스플레이(200) 등) 간의 데이터 통신을 가능하게 하는 데이터 통로일 수 있다.
실시예로, 인터페이스부(171)는, 각종 포트 및/또는 케이블을 통해 외부 장치와 유선으로 연결될 수 있으며, 블루투스나 와이파이 등과 같은 근거리 무선 통신 모듈을 통해 외부장치와 데이터 통신할 수도 있다.
이러한 인터페이스부(171)는, 유/무선 헤드셋 포트(port), 외부 충전기 포트(port), 유/무선 데이터 포트(port), 메모리 카드(memory card) 포트, 식별 모듈이 구비된 장치를 연결하는 포트(port), 오디오 I/O(Input/Output) 포트(port), 비디오 I/O(Input/Output) 포트(port) 및/또는 이어폰 포트(port) 등 중 적어도 하나 이상을 포함할 수 있다.
또한, 실시예에서 통신부(172)는, 눈 건강 측정 서비스와 관련된 각종 데이터를 외부 장치(실시예에서, 헤드 마운티드 디스플레이(200) 등)와 송수신할 수 있다.
이때, 통신부(172)는, 무선 네트워크에 기반하여 위와 같은 데이터 송수신을 수행할 수 있다.
이러한 통신부(172)는, 이동통신을 위한 기술표준들 또는 통신방식(예를 들어, GSM(Global System for Mobile communication), CDMA(Code Division Multi Access), HSDPA(High Speed Downlink Packet Access), HSUPA(High Speed Uplink Packet Access), LTE(Long Term Evolution), LTE-A(Long Term Evolution-Advanced) 등에 따라 구축된 이동 통신망 상에서 기지국, 외부의 단말, 임의의 서버 중 적어도 하나와 무선 신호를 송수신할 수 있다.
또한, 통신부(172)는, WLAN(Wireless LAN), Wi-Fi(Wireless-Fidelity), Wi-Fi(Wireless Fidelity) Direct, DLNA(Digital Living Network Alliance), WiBro(Wireless Broadband), WiMAX(World Interoperability for Microwave Access) 등의 무선 통신방식으로도 무선 신호를 송수신할 수 있다.
또한, 통신부(172)는, 근거리 무선 통신방식으로 무선 신호를 송수신할 수 있다. 예를 들어, 통신부(172)는, 블루투스(Bluetooth™), RFID(Radio Frequency Identification), 적외선 통신(Infrared Data Association; IrDA), UWB(Ultra Wideband), ZigBee, NFC(Near Field Communication), Wi-Fi(Wireless-Fidelity), Wi-Fi Direct, Wireless USB(Wireless Universal Serial Bus) 기술 중 적어도 하나를 이용하여 근거리 통신을 지원할 수 있다.
또한, 실시예에서 데이터베이스부(173)는, 눈 건강 측정 서비스를 구현하기 위한 각종 응용 프로그램, 애플리케이션, 명령어 및/또는 데이터 등을 저장하고 관리할 수 있다.
실시예에서, 이러한 데이터베이스부(173)는, 프로그램 영역과 데이터 영역을 포함할 수 있다.
여기서, 실시예에 따른 프로그램 영역은, 눈 건강 측정기(100)를 부팅하는 운영체제(OS: Operating System) 및 기능요소들 사이에 연계될 수 있으며, 데이터 영역은, 눈 건강 측정기(100)의 사용에 따라 발생하는 데이터가 저장될 수 있다.
또한, 실시예에서 데이터베이스부(173)는, ROM, RAM, EPROM, 플래시 드라이브, 하드 드라이브 등과 같은 다양한 저장기기일 수 있고, 인터넷(internet)상에서 상기 데이터베이스부(173)의 저장 기능을 수행하는 웹 스토리지(web storage)일 수도 있다.
또한, 실시예에서 전원부(174)는, 프로세서(175)의 컨트롤에 의하여 외부의 전원 및/또는 내부의 전원을 인가받아 각 구성요소들에게 동작에 필요한 전원을 공급할 수 있다.
예를 들어, 전원부(174)는, 전원저장부, 연결포트, 전원공급 제어부 및 충전 모니터링부 중 적어도 어느 하나 이상을 포함할 수 있다.
또한, 실시예에서 프로세서(175)는, 전술한 각 유닛의 전반적인 동작을 제어하고 구동할 수 있다.
즉, 프로세서(175)는, 눈 건강 측정 서비스를 위한 각 유닛의 전반적인 동작을 컨트롤할 수 있다.
또한, 실시예에 따라서, 하나 이상의 프로세서(175)가 인터페이스부(171)를 통해 연결되어, 눈 건강 측정기(100)에 대한 다양한 기능들을 수행하고 데이터를 처리하기 위해 데이터베이스부(173)에 저장된 다양한 소프트웨어 프로그램들 및/또는 명령어들의 세트들을 구동하거나 실행할 수 있다.
이러한 프로세서(175)는, ASICs (application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 제어기(controllers), 마이크로 컨트롤러(micro-controllers), 마이크로 프로세스(microprocessors), 기타 기능 수행을 위한 전기적 유닛 중 적어도 하나를 이용하여 구현될 수 있다.
<헤드 마운티드 디스플레이(200: Head Mounted Display)>
다음으로, 실시예에 따른 헤드 마운티드 디스플레이(200)는, 대상자가 헬멧이나 안경을 착용하듯 착용한 후, 헤드 마운티드 디스플레이(200) 내에 배치된 광학유닛과 디스플레이유닛을 이용하여 해당하는 대상자의 눈 건강상태를 신속하고 정확하게 측정할 수 있는 장치이다.
자세히, 실시예에 따른 헤드 마운티드 디스플레이(200)는, 눈 건강 측정기(100)로부터 눈 건강상태 측정과 관련된 가상현실 영상(VR: Virtual Reality)을 획득하여 출력하고, 출력되는 가상현실 영상에 반응한 대상자의 눈의 반응 또는/및 대상자의 입력을 측정 데이터로 생성할 수 있다.
그리고 헤드 마운티드 디스플레이(200)는, 생성한 측정 데이터를 직접 또는 눈 건강 측정기(100)로 송신하여 처리할 수 있고, 송신된 측정 데이터는 눈 건강상태 측정 결과를 도출하는데 이용될 수 있다. 즉, 눈 건강상태 측정 결과는, 측정 데이터를 기초로 획득될 수 있다.
이러한 헤드 마운티드 디스플레이(200)는, 눈 건강상태를 측정할 시 대상자의 눈 건강상태 측정을 위한 소정의 장비(실시예에서, 눈 건강 측정기(100))에 고정되어 측정을 받지 않고, 자유롭게 움직이거나 편안한 위치에서 측정하게 할 수 있다.
또한, 본 발명의 헤드 마운티드 디스플레이(200)는, 대상자의 눈 건강상태 측정을 가상현실(VR) 기기 형태로 구현함으로써, 별도의 아날로그 측정기기나 고가의 장비(예컨대, 시야측정기 등)가 없어도 가상현실 영상에 기초하여 대상자의 눈 건강상태를 측정할 수 있다.
또한, 본 발명의 헤드 마운티드 디스플레이(200)는, 대상자의 눈 건강상태를 정규화된 자동 측정 형태로 진행할 수 있도록 함으로써, 객관적인 측정 자료를 추출할 수 있고, 이를 통하여 정확한 눈 건강상태를 판단할 수 있다.
일례로서의 헤드 마운티드 디스플레이(200)는, 웨어러블 컴퓨터로 구현되거나 또는 웨어러블 컴퓨터(또한 웨어러블 컴퓨팅 디바이스(wearable computing device)로 지칭되는)의 형태를 취한다. 예시적 실시예에서 웨어러블 컴퓨터는 헤드 마운터블 디스플레이(head-mountable display, HMD)의 형태를 취하거나 또는 HMD를 포함할 수 있다. 이러한 헤드 마운티드 디스플레이(200)는, 머리에 착용될 수 있고 착용자의 한쪽 또는 양쪽 눈들의 앞에 디스플레이를 둘 수 있는 임의의 디바이스일 수 있다. HMD는 헬멧 또는 안경(eyeglasses)과 같은 다양한 형태들을 취할 수 있다.
도 8은 본 발명의 실시예에 따른 헤드 마운티드 디스플레이(200)의 분해사시도이다.
도 8을 참조하면, 실시예에 따른 헤드 마운티드 디스플레이(200)는, 메인바디(210)와, 메인바디(210)의 후면에 순차적으로 수납되는 디스플레이유닛(220), 검안유닛(230), 광학유닛(240), 광학홀더(250), 하우징(260), 광간섭 방지유닛(270) 및 고정밴드(280)를 포함할 수 있다.
다만, 도 8에 도시된 구성들은, 헤드 마운티드 디스플레이(200)의 필수 구성요소는 아니여서, 실시예에 따라서 생략되는 구성이 있을 수 있다. 여기서, 메인바디(210) 후면은 개구부가 형성되며 대상자의 얼굴이 접촉되는 방향을 가리키고, 메인바디(210)의 전면은 대상자의 시선방향을 의미한다.
먼저, 메인바디(210)는, 플라스틱 및/또는 금속의 단단한 구조(solid structure)로 형성되거나, 또는 배선 및 컴포넌트가 헤드 마운티드 디스플레이(200)를 통해 내부적으로 라우팅되기 위해 상호 연결되도록 유사한 물질의 속이 빈 구조(hollow structure)로 형성될 수 있다.
도면에서 도시한 215는 입력유닛(215)이다. 입력유닛(215)는 헤드 마운티드 디스플레이(200)를 (on)/오프(off)하거나, 눈 건강상태 측정 관련 입력을 감지할 수 있다.
자세히, 입력유닛(215)는, 헤드 마운티드 디스플레이(200)와 외부시스템 사이의 통신을 진행하도록 하는 사용자(대상자 또는 측정자)의 입력이나, 사용자가 눈 건강상태를 측정할 때 측정 종류의 변경 및 선택하는 입력 등을 감지할 수 있다.
또한, 경우에 따라서는 측정이 진행되고 있는 상태 또는 측정이 완료된 상태를 외부에서 인식할 수 있도록 알람 형태의 LED 조명을 더 포함할 수 있다.
이와 별도로, 헤드 마운티드 디스플레이(200)는, 유/무선으로 헤드 마운티드 디스플레이(200)와 연결되는 외부 입력유닛을 더 포함할 수 있으며, 이러한 외부 입력유닛은 눈 건강상태 측정 진행에 따라 측정자의 의사를 도출하는 입력을 감지하는 장치일 수 있다.
이러한 외부 입력유닛은, 측정자가 입력한 시점과 입력한 값을 기록하여 헤드 마운티드 디스플레이(200)나 눈 건강 측정기(100) 등으로 기록된 입력값을 송신하며, 송신된 입력값은 측정 데이터에 포함될 수 있다.
다음으로, 고정밴드(280)는, 두 개의 고정밴드부로 도시하였지만, 이것은 고정된 것이 아니다.
또한, 실시예에 따라서 고정밴드(280)는, 메인바디(210)를 대상자의 얼굴에 고정할 수 있도록 헬멧 형태, 또는 대상자의 머리를 감싸면서 고정할 수 있도록 3개 이상의 밴드들 형태로 구현될 수 있다.
다음으로, 디스플레이유닛(220)는 액정 디스플레이(liquid crystal display, LCD), 박막 트랜지스터 액정 디스플레이(thin film transistor-liquid crystal display, TFT LCD), 유기 발광 다이오드(organic light-emitting diode, OLED), 플렉서블 디스플레이(flexible display), 전자잉크 디스플레이(e-ink display) 중에서 적어도 하나를 포함할 수 있다.
이러한 디스플레이유닛(220)는, 눈 건강상태 측정을 수행하기 위해, 최종적으로 3차원 디스플레이(3D display)로 그래픽 이미지를 디스플레이 할 수 있다.
예를 들어, 디스플레이유닛(220)는, 3차원 디스플레이(3D display) 중 가상현실 이미지(VR image)를 디스플레이하여, 이를 눈 건강상태 측정에 이용할 수 있다.
또한, 디스플레이유닛(220)의 패널이 단일 표시패널로 제공될 경우, 대상자의 좌안과 우안에 각각 대응되는 분리 영상들을 구현할 수 있다. 경우에 따라서 적어도 2개 이상으로 분리된 표시패널로 구성될 수 있다.
다음으로, 검안유닛(230)은, 대상자의 다양한 눈 건강상태를 측정할 수 있도록 복수개의 센서, 복수개의 카메라, 헤드 마운티드 디스플레이(200)의 제어부 및 외부 시스템과의 통신을 할 수 있는 회로모듈 등을 포함할 수 있다.
이러한 검안유닛(230)은, 시력측정을 받는 대상자의 눈을 추적하는 시선추적(eye tracking) 기능을 제공할 수 있다. 이를 위해, 검안유닛(230) 내에는 대상자의 동공 움직임을 추적할 수 있는 카메라들이 실장될 수 있다.
또한, 검안유닛(230)은, VR 이미지에 따라 변화하는 대상자의 시선을 추적하여 시야측정, 사시각측정, 외안근측정, 입체시측정 또는 링카스터측정 등의 눈 건강상태 측정을 수행에 기초가 되는 측정 데이터를 획득할 수 있다.
자세히, 검안유닛(230)이 촬영한 대상자의 안구 영상은, 측정 데이터에 포함되어 눈 건강 측정기(100)로 송신될 수 있으며, 송신된 측정 데이터는 측정 결과의 기초가 될 수 있다.
즉, 눈 건강상태를 측정하기 위해 시행하는 시야측정, 사시각측정, 외안근측정, 입체시측정 또는 링카스터측정 등에 필요한 광조사 수단, 촬영 수단 등을 센서 모듈이나 카메라 모듈 형태로 구현할 수 있다.
또한, 검안유닛(230)은, 눈 건강상태 측정을 위해 대상자의 좌안과 우안에 광을 조사하고 이를 수광하여 대상자의 눈에 대한 굴절률 측정 정보를 획득할 수 있는 센서들 등이 더 포함될 수도 있다.
다음으로, 광학유닛(240)은, 검안유닛(230)과 하우징(260) 사이에 위치하여 대상자의 눈 건강상태 측정 종류에 대응되는 가장 적합한 광학유닛(240)을 제공할 수 있다.
예를 들어, 광학유닛(240)은, 대상자의 눈 건강상태 측정이 시력측정인 경우 수정체의 굴절률 측정을 위한 광학렌즈를 선택적으로 교환 체결할 수 있다.
또한, 예시에서 광학유닛(240)은, 대상자의 안과 측정이 외안근측정 등 동공의 움직임 측정일 경우, 카메라에 의해 동공 움직임을 정밀하게 볼 수 있는 광학렌즈일 수 있다.
또한, 예시적으로 광학유닛(240)은, 편광 특성이 있는 다수의 렌즈들이 적층된 구조의 광학렌즈일 수 있다.
이러한 광학유닛(240)은, 광학홀더(250)에 고정되는데, 눈 건강상태 측정 종류에 따라 필요한 광학유닛(240)들은 광학홀더(250)에 탈부착되는 방식으로 교체될 수 있다.
다음으로, 하우징(260)은, 메인바디(210)의 개구부 방향으로 삽입되어, 디스플레이유닛(220), 검안유닛(230), 광학유닛(240), 광학홀더(250) 또는/및 메인바디(210) 등을 광학적 얼라인을 유지시키면서 고정하는 기능을 한다.
또한, 대상자가 헤드 마운티드 디스플레이(200)를 착용할 경우, 눈 건강상태 측정을 진행할 수 있는 디스플레이와 대상자의 양안 사이의 공간을 제공한다.
따라서, 하우징(260) 내측은, 광간섭 방지유닛(270)에 의해 독립적으로 분리된 좌안 영역과 우안 영역을 포함할 수 있다.
또한, 하우징(260)의 내부면은, 눈 건강상태 측정을 위해 광반사가 낮고 광흡수율이 높은 재료가 코팅될 수 있다.
또한, 실시예에서 하우징(260)은, 하우징(260)의 개구부측에 안면접촉보호부(261)를 배치할 수 있다.
자세히, 실시예에서 안면접촉보호부(261)는, 헤드 마운티드 디스플레이(200)와 대상자의 얼굴 피부가 접촉하는 부분(즉, 하우징(260)의 개구부측 영역)에 형성되어, 헤드 마운티드 디스플레이(200)와 대상자의 안면 간의 고정 및 완충 작용을 수행할 수 있다.
실시예에서, 이러한 안면접촉보호부(261)는, 눈 건강 측정기(100)의 소독부(120)에 배치된 자외선 램프(UV LAMP) 및/또는 엘이디 램프(LED LAMP)로부터 방사되는 파장(빛)을 수용할 수 있고, 이를 통해 살균 소독 처리가 구현될 수 있다.
이와 같은 안면접촉보호부(261)는, 대상자의 얼굴 피부와 접촉되는 부분이므로, 완충력이 높은 재질로 형성되는 것이 바람직하며, 소정의 오염으로부터 청결하게 보호됨이 바람직하다.
다음으로, 광간섭 방지유닛(270)은, 대상자의 눈 건강상태 측정을 위하여 헤드 마운티드 디스플레이(200)를 좌안 영역과 우안 영역을 분리하는 기능을 할 수 있다. 일반적으로 사람들은 비슷한 위치와 형태의 양안(두 개의 눈)을 가지고 있으나, 각각의 눈은 독립적으로 기능하기 때문에 눈 건강상태 역시 비슷하지만 일정 정도 다른 증상을 보인다. 따라서, 각각의 좌안과 우안에 대해 독립적인 눈 건강상태 측정이 수행되어야 할 필요가 있는 측정들이 있다.
그런데 이때 좌안에 대한 눈 건강상태 측정을 하는 과정에서 사용되는 광이 인접한 우안에 영향을 주거나 그 반대가 되는 경우, 정확하고 정밀한 눈 건강상태 측정을 진행할 수 없다.
예를 들어, 우안을 가리고 좌안만 측정하는 경우와, 반대의 경우 일 영역에서 출력되는 광이 타 영역으로 간섭한다면, 측정 결과에 악영향을 줄 수 있다.
따라서, 실시예에 따른 헤드 마운티드 디스플레이(200)는, 광간섭 방지유닛(270)을 포함하여, 좌안 영역과 우안 영역 각각에서 발생되는 광을 서로의 영역으로 침범하지 않도록 차단할 수 있다.
이러한 광간섭 방지유닛(270)은, 헤드 마운티드 디스플레이(200)를 좌안 영역과 우안 영역으로 분리하고, 각 영역에서 인접한 영역으로 진행하는 광을 차단시키는 광차단부(271)를 포함할 수 있다.
좀 더 광차단율을 높이기 위해 광간섭 방지유닛(270)은, 대상자가 헤드 마운티드 디스플레이(200)를 착용했을 때, 광차단부(271)와 대상자의 좌안과 우안 사이의 영역(미간 영역)에서 발생하는 광간섭을 방지하기 위한 접촉 광차단부(272)를 포함할 수 있고, 광간섭 방지유닛(270)이 대상자의 미간 영역과 콧등 영역에 지지/고정되도록 하는 제1 고정부(273)와 제2 고정부(274)를 더 포함할 수 있다.
따라서, 광차단부(271)는 단순히 착용자의 코에 지지되는 형태가 아닌, 사용자의 미간영역부터 인중까지의 형태에 대응되는 형상을 가져, 헤드 마운티드 디스플레이(200)를 착용하였을 때 좌안영역과 우안영역을 물리적으로 분리함으로써, 양 사이의 광이 유출되는 것을 차단할 수 있다.
또한, 광차단부(271)와 접촉 광차단부(272)는, 광반사가 적고 광흡수율이 높은 물질로 형성하는 것이 바람직하다.
또한, 접촉 광차단부(272)는, 대상자의 얼굴 피부와 접촉되는 부분이기 때문에 완충력이 높은 재질로 형성하는 것이 바람직하다.
이러한 헤드 마운티드 디스플레이(200)는, 눈 건강상태를 측정하는 영역에서 좌안 영역과 우안 영역을 광학적으로 분리함으로써, 측정 진행 시 발생될 수 있는 광간섭에 의한 측정 오류를 방지할 수 있다.
도 9는 본 발명의 실시예에 따른 헤드 마운티드 디스플레이(200)의 내부블록도이다.
또한, 도 9를 참조하면, 기능적인 측면에서 보았을 때 실시예에 따른 헤드 마운티드 디스플레이(200)는, 배터리(291), 통신유닛(292), 센싱부(293), 저장부(294), 카메라모듈(295), 입력유닛(215), 디스플레이유닛(220) 및 제어부(296)를 포함할 수 있다.
다만, 도 9에 도시된 구성요소들 또한 필수적인 것이 아니어서, 그보다 많은 구성요소들을 갖거나 그 보다 적은 구성요소들로 헤드 마운티드 디스플레이(200)가 구현될 수 있다. 이하, 구성요소들에 대해 차례로 살펴본다.
먼저, 제어부(296: controller)는, 통상적으로 헤드 마운티드 디스플레이(200)의 전반적인 동작을 제어한다. 예를 들어, 통신유닛(292)를 제어하여 각종 신호를 송수신하거나 입력된 데이터를 처리할 수 있다.
또한, 디스플레이유닛(220) 내에 배치될 수 있는 영상출력부 및/또는 음향출력부를 제어하여 대상자 또는 측정자에게 제공할 수 있다.
실시예에 따라서 헤드 마운티드 디스플레이(200)는, 대상자의 눈을 측정한 측정 데이터를 추출하고, 저장부(294)에 저장된 눈 건강상태 자료를 기반으로 비교 및 직접 연산 작업을 수행한 후, 대상자의 눈 건강상태를 판단할 수도 있다.
또한, 배터리(291)는, 제어부(296)의 제어에 의해 외부의 전원, 내부의 전원을 인가받아 각 구성요소들의 동작에 필요한 전원을 공급한다.
예를 들어, 배터리(291)는, 배터리, 연결포트, 전원공급 제어부 및 충전 모니터링부를 포함할 수 있다.
또한, 카메라모듈(295)은, 화상 통화모드 또는 촬영 모드에서 이미지 센서에 의해 촬영된 정지영상 또는 동영상 등의 이미지 프레임을 처리한다. 처리된 이미지 프레임은 저장부(294)에 저장되거나 통신유닛(292)를 통하여 외부 시스템으로 전송될 수 있다.
이러한 카메라모듈(295)은, 대상자의 눈 건강상태 측정 종류 또는 측정 환경에 따라 적어도 2개 이상 구비될 수 있다.
예를 들어, 대상자의 시력측정을 하는 경우, 동공을 모니터링 하는 용도로 카메라가 사용될 수 있고, 대상자의 안구 운동을 추적하는 경우에는 안구 움직임 궤적을 따라 촬영을 수행할 수 있는 카메라가 사용될 수 있다.
또한, 통신유닛(292)는, 외부 시스템인 눈 건강 측정기(100)와의 유무선 통신을 가능하게 한다. 여기서 외부 시스템은 다른 헤드 마운티드 디스플레이(200)를 포함하는 개념일 수 있다.
이러한 통신유닛(292)는, 이동통신 모듈, 무선 인터넷 모듈, 근거리 통신 모듈 및 위치정보 모듈 등을 포함할 수 있다.
또한, 센싱부(293)는, 주변환경을 감지하는 자이로 센서, 가속 센서 및/또는 근접 센서 등을 포함할 수 있다.
특히, 본 발명의 헤드 마운티드 디스플레이(200)에서는 눈 건강상태 측정을 위해 대상자의 눈에 조사하는 광을 발생하고, 수광하는 광학센서들을 적어도 2개 이상 포함할 수 있다.
또한, 저장부(294)는, 제어부(296)의 처리 및 제어를 위한 애플리케이션이 저장될 수도 있고, 입/출력되는 데이터들의 임시 저장을 위한 기능을 수행할 수도 있다.
- 눈 건강 측정장치 동작 방법
이하, 본 발명의 실시예에 따른 눈 건강 측정장치의 동작 방법을 도 9를 참조하여 상세히 설명한다.
도 10은 본 발명의 실시예에 따른 눈 건강 측정장치의 동작 원리를 설명하기 위한 도면의 일례이다.
도 10을 참조하면, 실시예에서 눈 건강 측정장치의 눈 건강 측정기(100)는, 센서부(140)의 사용자 센싱유닛(141)에 기반하여 눈 건강상태를 측정하고자 하는 대상자가 근접함을 감지할 수 있다.
또한, 눈 건강 측정기(100)는, 대상자가 소정의 거리 이하로 근접함을 감지한 경우, 눈 건강 측정 서비스를 자동으로 실행할 수 있다.
이때, 눈 건강 측정기(100)는, 실시예에 따라서 눈 건강 측정 서비스가 실행됨을 알리는 그래픽 이미지를 디스플레이부(150)를 통해 출력하거나, 또는 소정의 오디오 데이터를 상기 디스플레이부(150)의 음향출력부 및/또는 인터페이스부(171)에 연결된 외부 오디오 장치와 연동하여 출력할 수 있다.
또한, 실시예에서 눈 건강 측정기(100)는, 눈 건강 측정 서비스를 진행하기 위하여 사용자(실시예에서, 대상자 및/또는 측정자)에 의해 수용부(114)에 보관 중이던 헤드 마운티드 디스플레이(200)가 유출됨을 감지할 수 있다.
자세히, 눈 건강 측정기(100)는, 센서부(140)의 헤드 센싱유닛(142)을 기반으로 상기 수용부(114) 내 헤드 마운티드 디스플레이(200)의 유출을 감지할 수 있다.
이후, 눈 건강 측정기(100)는, 상기 헤드 마운티드 디스플레이(200)와 눈 건강 측정기(100)에 기반한 눈 건강상태 측정 프로세스가 완료됨으로 인하여, 상기 수용부(114)로 다시 유입되는 헤드 마운티드 디스플레이(200)를, 상기 센싱부의 헤드 센싱유닛(142)을 통하여 감지할 수 있다.
이때, 실시예에서 눈 건강 측정기(100)는, 수용부(114)로 헤드 마운티드 디스플레이(200)가 유입된 경우, 상기 유입된 헤드 마운티드 디스플레이(200)의 안면접촉보호부(261)의 위치를 센싱 및 추적할 수 있다.
자세히, 실시예에서 눈 건강 측정기(100)는, 헤드 센싱유닛(142)에 기초하여, 수용부(114)에 무작위한 위치, 면적, 방향 및/또는 각도를 가지고 유입되는 헤드 마운티드 디스플레이(200)의 안면접촉보호부(261)에 대한 위치, 면적, 유입 방향 및/또는 각도 정보(이하, 보호부 센싱정보)를 획득할 수 있다.
또한, 눈 건강 측정기(100)는, 획득된 보호부 센싱정보를 기반으로 소독부(120)를 제어하여, 상기 소독부(120) 내 적어도 하나 이상의 램프 그룹의 빛 조사 방향을 설정할 수 있다.
구체적으로, 실시예에서 눈 건강 측정기(100)는, 상기 보호부 센싱정보에 기초하여, 상기 소독부(120) 내 복수의 램프 중 적어도 하나 이상의 램프를 포함하는 램프 그룹을 결정할 수 있다.
예를 들어, 눈 건강 측정기(100)는, 보호부 센싱정보를 기초로 안면접촉보호부(261)와 마주하는 영역 상에 배치된 적어도 하나 이상의 램프들을 포함하는 램프 그룹을 결정할 수 있다.
또한, 실시에에서 눈 건강 측정기(100)는, 결정된 램프 그룹에 대한 소정의 틸팅 동작을 수행할 수 있다.
실시예로, 눈 건강 측정기(100)는, 상기 램프 그룹 각각을 상기 안면접촉보호부(261) 측을 향하도록 소정의 각도만큼 틸팅시킬 수 있다.
즉, 실시예에서 눈 건강 측정기(100)는, 살균 소독을 위한 자외선 및/또는 엘이디를 방사하는 램프의 조사 각도를, 헤드 마운티드 디스플레이(200)의 안면접촉보호부(261)를 향하는 방향에 최적화되도록 조정하여, 랜덤한 위치, 면적, 방향 및/또는 각도를 가지고 수용부(114)에 안착된 헤드 마운티드 디스플레이(200)의 안면접촉보호부(261)에 대한 살균 소독 처리의 정확성과 효용성을 증진시킬 수 있다.
이때, 실시예에 따라서 눈 건강 측정기(100)는, 소독부(120)에 대한 틸팅 동작만으로는 상기 안면접촉보호부(261)에 대한 조사율이 소정의 기준을 불충하는 경우, 소독부(120)가 배치된 지지부(113)의 내측면과 메인바디부(111)의 하부면에 대한 틸팅 동작을 구현하여, 보다 광범위한 각도, 위치 및/또는 방향으로 소독부(120)의 램프들이 틸팅되게 할 수 있다.
자세히, 실시예에서 눈 건강 측정기(100)는, 상기 소독부(120)(즉, 램프) 자체에 대한 틸팅만으로 상기 조사 각도가 불충족되는 경우, 구동부(125)를 제어하여 상기 지지부(113) 및 메인바디부(111)에 대한 틸팅 동작이 구현되게 할 수 있다.
보다 상세히, 실시예에서 눈 건강 측정기(100)는, 상기 조사 각도에 기반하여 제1 구동부(125-1)에 대한 운동 높이(h1)와, 제2 구동부(125-2)에 대한 운동 높이(h2)를 결정할 수 있다.
또한, 눈 건강 측정기(100)는, 위와 같이 결정된 운동 높이에 따라서 상기 구동부(125)가 상하운동을 수행하게 하여, 상기 지지부(113) 및 메인바디부(111)에 대한 틸팅 동작을 수행할 수 있다.
예를 들면, 눈 건강 측정기(100)는, 안면접촉보호부(261)가 제2 구동부(125-2)가 위치하는 타측 방향을 향하도록 유입된 경우, 상기 타측 방향에서 소독부(120)의 조사 동작이 보다 원활하게 구현되도록, 제1 구동부(125-1)의 운동 높이(h1)를 제2 구동부(125-2)의 운동 높이(h2)보다 크게 설정하여, 상기 제1 구동부(125-1)에 대응되는 제1 지지부(113-1)와 메인바디부(111)의 일측이, 상기 제2 구동부(125-2)에 대응되는 제2 지지부(113-2)와 메인바디부(111)의 타측보다 더 높이 위치하게 할 수 있다.
즉, 눈 건강 측정기(100)는, 상기 지지부(113) 및 메인바디부(111)가 상기 타측 방향으로 기울어지도록 하는 틸팅 동작을 구현할 수 있다.
이를 통해, 눈 건강 측정기(100)는, 소독부(120)의 램프들이 수용부(114) 상의 안면접촉보호부(261) 측을 보다 정확하게 향하도록 위치시킬 수 있고, 이를 통해 살균 소독을 위한 빛 방사 성능을 향상시킬 수 있다.
또한, 실시에에서 눈 건강 측정기(100)는, 소독부(120)에 기반하여 상기 안면접촉보호부(261)가 살균된 정도를 소정의 기준에 따라서 산정한 정보인 살균 소독정보를 생성할 수 있다.
그리고 눈 건강 측정기(100)는, 생성된 살균 소독정보를 디스플레이부(150)를 제어하여 출력해 사용자에게 제공할 수 있다.
예를 들면, 눈 건강 측정기(100)는, 소독부(120)의 램프 방사 시간에 기준하여, 소정의 타임 슬라이스가 경과될 때마다 살균 소독 진행률을 증가시키는 살균 소독정보를 기반으로, 그래픽 이미지를 생성하여 상기 디스플레이부(150)를 통해 출력할 수 있다.
한편, 실시예에서 눈 건강 측정기(100)는, 수용부(114)로 헤드 마운티드 디스플레이(200)가 유입된 경우, 충전부(130)를 제어하여 상기 헤드 마운티드 디스플레이(200)를 충전시킬 수 있다.
자세히, 실시예로 눈 건강 측정기(100)는, 헤드 마운티드 디스플레이(200)가 수용부(114)에 안착됨을 감지하면, 충전부(130)를 제어하여 상기 헤드 마운티드 디스플레이(200)에 대한 무선 충전 기능을 자동으로 실행할 수 있다.
또한, 실시예에서 눈 건강 측정기(100)는, 상기 충전이 진행됨에 따라서 산출되는 충전 정보(예컨대, 충전률(%) 및/또는 충전경과시간 정보 등)를 획득할 수 있다.
그리고 눈 건강 측정기(100)는, 획득된 충전 정보를 그래픽 이미지화하여 디스플레이부(150)를 통해 출력할 수 있다.
예를 들어, 눈 건강 측정기(100)는, 헤드 마운티드 디스플레이(200)에 대하여 진행된 충전경과시간과, 해당 시간동안 충전된 충전량 및 충전률 정보를 그래픽 이미지로 디스플레이부(150)를 통해 출력할 수 있다.
이와 같이, 본 발명의 실시예에 따른 눈 건강 측정장치는, 눈 건강 측정에 사용되는 헤드 마운티드 디스플레이의 청결함을 유지하는 기능 동작(실시예에서, 살균 소독 기능 등)을 제공함으로써, 헤드 마운티드 디스플레이의 오염 상태를 매번 일일이 확인하거나 별도의 살균 처리를 수동으로 수행하지 않고도, 눈 건강 측정 서비스에 사용되는 헤드 마운티드 디스플레이의 청결 상태를 안전하게 유지할 수 있다.
또한, 본 발명의 실시예에 따른 눈 건강 측정장치는, 눈 건강 측정에 사용되는 헤드 마운티드 디스플레이에 대한 편리한 관리를 보조하는 기능 동작(실시예에서, 자동 충전 기능 등)을 제공함으로써, 눈 건강상태 측정 환경을 쉽고 간편하게 관리하도록 할 수 있다.
- 2) 눈 건강 플랫폼 관리서버(300: Eye health platform management server)
본 발명의 실시예에 따른 눈 건강 플랫폼 관리서버(300)는, 눈 건강 측정 서비스를 제공하기 위한 일련의 프로세스를 수행할 수 있다.
자세히, 실시예에서 눈 건강 플랫폼 관리서버(300)는, 눈 건강 측정기(100) 및/또는 헤드 마운티드 디스플레이(200) 등과 같은 외부의 장치에서 눈 건강상태 측정 프로세스가 구동되게 하기 위해 필요한 데이터를, 상기 외부의 장치와 교환함으로써 눈 건강 측정 서비스를 제공할 수 있다.
보다 상세히, 실시예에서 눈 건강 플랫폼 관리서버(300)는, 외부의 장치(예컨대, 눈 건강 측정기(100), 헤드 마운티드 디스플레이(200) 및/또는 모바일 타입의 컴퓨팅 디바이스 등)에서 눈 건강상태 측정 프로세스가 동작할 수 있는 환경을 제공할 수 있다.
또한, 눈 건강 플랫폼 관리서버(300)는, 대상자의 눈 건강상태를 판단하기 위한 소정의 질의응답을 수행하는 눈 건강상태 서베이(survey) 프로세스를 제공할 수 있다.
또한, 눈 건강 플랫폼 관리서버(300)는, 눈 건강상태 서베이 프로세스에 기반하여 해당하는 대상자에게 최적화된 눈 건강 측정방법을 결정할 수 있다.
그리고 눈 건강 플랫폼 관리서버(300)는, 결정된 눈 건강 측정방법에 기초한 가상현실 기반의 눈 건강상태 측정 프로세스를 제공할 수 있다.
또한, 눈 건강 플랫폼 관리서버(300)는, 눈 건강상태 측정에 따른 결과 정보를 다양한 루트에 기반하여 제공할 수 있다.
또한, 눈 건강 플랫폼 관리서버(300)는, 눈 건강 측정 서비스와 관련된 각종 데이터를 저장 및 관리할 수 있다.
도 11은 본 발명의 실시예에 따른 눈 건강 플랫폼 관리서버(300)의 내부 블록도이다.
보다 상세히, 도 11을 참조하면, 실시예에서 눈 건강 플랫폼 관리서버(300)는, 서비스 제공서버(310), 서베이 관리서버(320), 눈 건강 측정서버(330), 처방 콘텐츠 제공서버(340) 및 데이터베이스 서버(350)를 포함할 수 있다.
이때, 실시예에 따라서 상기 각 구성요소는, 눈 건강 플랫폼 관리서버(300)와는 별도의 장치로서 구현될 수도 있고, 눈 건강 플랫폼 관리서버(300)에 포함되어 구현될 수도 있다. 이하, 각 구성요소가 눈 건강 플랫폼 관리서버(300)에 포함되어 구현되는 것으로 설명하나 이에 한정되는 것은 아니다.
자세히, 실시예에서 서비스 제공서버(310)는, 외부의 장치(예컨대, 눈 건강 측정기(100), 헤드 마운티드 디스플레이(200) 및/또는 모바일 타입의 컴퓨팅 디바이스 등)에서 눈 건강상태 측정 프로세스가 동작할 수 있는 환경을 제공할 수 있다.
즉, 서비스 제공서버(310)는, 눈 건강 측정 서비스를 제공하는 눈 건강상태 측정 프로세스가, 외부의 장치에서 실행될 수 있는 환경을 제공할 수 있다.
이를 위해, 서비스 제공서버(310)는, 눈 건강상태 측정 프로세스를 구현하기 위한 응용 프로그램, 데이터 및/또는 명령어 등을 포함할 수 있다.
또한, 실시예에서 서베이 관리서버(320)는, 대상자의 눈 건강상태를 판단하기 위한 소정의 질의응답을 수행하는 눈 건강상태 서베이(survey) 프로세스를 제공할 수 있다.
실시예에서, 서베이 관리서버(320)는, 눈 건강상태 서베이 프로세스를 수행할 수 있는 눈 건강상태 서베이 인터페이스를 제공할 수 있다.
또한, 서베이 관리서버(320)는, 제공된 서베이 인터페이스에 기반하여 눈 건강상태와 관련된 소정의 질의항목을 제공할 수 있다.
그리고 서베이 관리서버(320)는, 제공된 질의항목에 대한 사용자(실시예에서, 대상자 또는 측정자)의 응답을, 서베이 인터페이스에 기반한 사용자 입력에 기초하여 획득할 수 있다.
또한, 실시예에서 눈 건강 측정서버(330)는, 적어도 하나 이상의 눈 건강상태 측정 프로세스를 제공할 수 있다.
자세히, 실시예에서 눈 건강 측정서버(330)는, 시력측정, 시야측정, 난시측정, 황반변성 측정, 색맹측정, 입체시 측정, 복시측정, 대비감도 측정, 외안근 측정 및/또는 동체시력 측정 등을 구현하는 눈 건강상태 측정 프로세스를 관리 및 제공할 수 있다.
또한, 실시예에서 처방 콘텐츠 제공서버(340)는, 눈 건강상태 측정 결과에 따른 처방 콘텐츠(실시예에서, 눈 힐링영상 및/또는 추천 영양제 정보 등)를 제공할 수 있다.
여기서, 실시예에 따른 처방 콘텐츠란, 눈 건강상태 측정 결과에 기초하여 대상자의 눈 건강상태 호전을 목적으로 제공되는 콘텐츠 데이터일 수 있다.
또한, 실시예에서 데이터베이스 서버(350)는, 눈 건강 측정 서비스를 구현하기 위한 각종 응용 프로그램, 애플리케이션, 명령어 및/또는 데이터 등을 저장하고 관리할 수 있다.
실시예로, 데이터베이스 서버(350)는, 눈 건강상태 질의문 정보, 상기 질의문 내 질의항목 별 부여점수 정보, 눈 건강상태 조사정보, 눈 건강 측정방법 정보(실시예에서, 입체시 측정 콘텐츠 정보 및/또는 시야측정 콘텐츠 정보 등), 눈 건강 상태정보 및/또는 처방 콘텐츠 정보 등을 저장 및 관리할 수 있다.
한편, 위와 같은 구성요소들을 포함하는 눈 건강 플랫폼 관리서버(300)는, 적어도 하나 이상의 서비스 제공서버(310), 서베이 관리서버(320), 눈 건강 측정서버(330), 처방 콘텐츠 제공서버(340) 및/또는 데이터베이스 서버(350)로 구성될 수 있으며, 데이터 처리를 위한 프로세서들과, 눈 건강 측정 서비스 제공을 위한 명령어들을 저장하는 메모리들을 포함할 수 있다.
또한, 이상의 설명에서는, 눈 건강 플랫폼 관리서버(300)가 외부의 장치에서 눈 건강상태 측정 프로세스가 동작할 수 있는 환경을 제공하고, 눈 건강상태 서베이 프로세스를 제공하며, 제공된 눈 건강상태 서베이 프로세스를 기초로 해당 대상자에게 최적화된 눈 건강 측정방법을 결정하고, 결정된 눈 건강 측정방법에 기초한 가상현실 기반의 눈 건강상태 측정 프로세스를 제공하며, 눈 건강상태 측정에 따른 결과 정보를 제공하고, 눈 건강 측정 서비스와 관련된 각종 데이터를 저장 및 관리할 수 있다고 설명하였으나, 실시예에 따라서 눈 건강 플랫폼 관리서버(300)가 수행하는 기능 동작의 적어도 일부를 외부의 장치(예컨대, 눈 건강 측정기(100) 및/또는 헤드 마운티드 디스플레이(200) 등)에서 수행할 수도 있는 등 다양한 실시예 또한 가능할 수 있다.
- 가상현실 기반의 눈 건강 측정방법
이하, 첨부된 도면을 참조하여 본 발명의 실시예에 따른 눈 건강 측정 시스템이 가상현실 기반의 눈 건강 측정을 수행하는 방법에 대하여 상세히 설명한다.
본 발명의 실시예에 따른 눈 건강 측정 시스템은, 상술된 눈 건강 측정기(100), 헤드 마운티드 디스플레이(200) 및 눈 건강 플랫폼 관리서버(300) 중 적어도 일부에 기반하여 구현될 수 있다.
자세히, 실시예예서 눈 건강 측정 시스템은, 눈 건강 측정장치 즉, 눈 건강 측정기(100) 및 헤드 마운티드 디스플레이(200)에 기반하여 구현될 수 있다. (제1 시스템 모드)
자세히, 실시예에서 눈 건강 측정 시스템은, 눈 건강 측정 서비스를 구현하는 눈 건강 측정기(100)와, 눈 건강 측정 서비스와 관련된 가상현실 환경을 구현하는 헤드 마운티드 디스플레이(200)에 기반하여, 눈 건강 측정 서비스를 제공할 수 있다.
다른 실시예에서, 눈 건강 측정 시스템은, 헤드 마운티드 디스플레이(200) 및 눈 건강 플랫폼 관리서버(300)에 기반하여 구현될 수 있다. (제2 시스템 모드)
자세히, 다른 실시예에서 눈 건강 측정 시스템은, 눈 건강 플랫폼 관리서버(300)를 기초로 헤드 마운티드 디스플레이(200)에서 눈 건강 측정 서비스가 동작할 수 있는 환경을 제공하고, 이러한 동작 환경을 제공받은 헤드 마운티드 디스플레이(200)에 기반하여 눈 건강 측정 서비스를 제공할 수 있다.
또 다른 실시예에서, 눈 건강 측정 시스템은, 눈 건강 측정기(100) 및 웹 서버(Web server)에 기반하여 구현될 수 있다. (제3 시스템 모드)
자세히, 또 다른 실시예에서 눈 건강 측정 시스템은, 눈 건강 측정기(100)와 외부의 웹 서버를 상호 연동하여, 온라인(online) 상에서 눈 건강 측정 서비스를 제공할 수 있다.
본 발명의 실시예에 따른 가상현실 기반의 눈 건강 측정 시스템은, 상술된 3가지의 시스템 모드 중 어느 모드로도 구현될 수 있으나, 이하에서는 효과적인 설명을 위하여 눈 건강 측정기(100) 및 헤드 마운티드 디스플레이(200)(즉, 눈 건강 측정장치)에 기반하여 구현되는 제1 시스템 모드에 기준하여 설명하기로 한다.
이하, 본 발명의 실시예에 따른 눈 건강 측정기(100)의 프로세서(175)가 헤드 마운티드 디스플레이(200)와 연동하여, 가상현실을 기반으로 눈 건강상태 측정을 수행하는 방법을 첨부된 도면을 참조하여 상세히 설명한다.
도 12는 본 발명의 실시예에 따른 가상현실 기반의 눈 건강 측정방법을 설명하기 위한 흐름도이다.
도 12를 참조하면, 본 발명의 실시예에 따른 눈 건강 측정기(100)의 프로세서(175)는, 눈 건강상태 서베이(survey) 인터페이스를 제공할 수 있다. (S101)
도 13a 및 도 13b는 본 발명의 실시예에 따른 눈 건강상태 서베이 인터페이스를 나타내는 모습의 일례들이다.
도 13a 및 도 13b를 참조하면, 실시예에 따른 눈 건강상태 서베이 인터페이스(이하, 서베이 인터페이스)란, 대상자의 눈 건강상태를 판단하기 위한 소정의 질의응답 프로세스를 수행하는 인터페이스일 수 있다.
실시예에서, 프로세서(175)는, 도 13의 (a)와 같이 디스플레이부(150)에 기반하여 서베이 인터페이스를 제공할 수 있다.
그리고 프로세서(175)는, 디스플레이부(150)를 통해 제공되는 서베이 인터페이스에 기초하여, 대상자의 눈 건강상태를 파악하기 위한 질의응답 프로세스를 실행할 수 있다.
또한, 실시예에서 프로세서(175)는, 헤드 마운티드 디스플레이(200)와 연동하여, 도 13의 (b)와 같이 헤드 마운티드 디스플레이(200)의 디스플레이유닛(220)을 기초로 서베이 인터페이스를 제공할 수 있다.
그리고 프로세서(175)는, 디스플레이유닛(220)을 통해 제공되는 서베이 인터페이스에 기반하여 대상자의 눈 건강상태를 파악하기 위한 질의응답 프로세스를 실행할 수 있다.
보다 상세히, 실시예에서 프로세서(175)는, 서베이 인터페이스를 기초로 소정의 질의문을 출력할 수 있다.
또한, 프로세서(175)는, 출력된 질의문에 기반한 사용자(즉, 대상자)의 입력을 획득할 수 있다.
예를 들면, 프로세서(175)는, 눈 건강과 관련된 객관식 질의문을 서베이 인터페이스에 기반하여 출력해 대상자에게 제공할 수 있다.
그리고 프로세서(175)는, 제공된 객관식 질의문에 대한 응답(예컨대, 소정의 번호)을 선택하는 대상자의 입력을 획득할 수 있다.
이때, 실시예에 따라서 프로세서(175)는, 위와 같은 사용자 입력을 디스플레이부(150)에 대한 터치 입력 또는 디스플레이유닛(220)에 기반한 제스처 입력 등의 방식으로 획득할 수 있다.
이때, 실시예에서 프로세서(175)는, 제공되는 질의문을 소정의 섹션(section)으로 구분하여 구현할 수 있다.
실시예로, 프로세서(175)는, 질의문을 성별, 나이, 생활패턴, 최근 자각증상, 지병 및/또는 눈 관리습관 섹션 등으로 구분할 수 있다.
또한, 실시예에서 프로세서(175)는, 위와 같이 구분된 각 섹션 별 적어도 하나 이상의 질의항목을 포함하여 질의문을 구현할 수 있다.
예를 들면, 프로세서(175)는, 질의문의 성별 섹션에 성별 선택 질의항목을 포함할 수 있고, 나이 섹션에 나이 입력 질의항목을 포함할 수 있으며, 생활패턴 섹션에 장기운전, 스트레스, 잦고 많은 전자기기 사용, 야근 및/또는 야외활동 여부 등의 질의항목을 포함할 수 있고, 최근 자각증상 섹션에 난독(Dyslexia), 충혈, 눈의 건조함, 이물감, 자극감, 작열감, 침침함, 통증, 난시, 두통, 휘어져 보임, 사물이 잘 안보임, 시야가 좁아짐, 사물이 둘로 보임, 부유하는 검은 점이 보임 및/또는 눈 떨림 여부 등의 질의항목을 포함할 수 있으며, 지병 섹션에 당뇨, 고혈압 및/또는 안과질환(약시, 사시, 녹내장, 망막 이상, 시신경 이상, 황반변성, 색맹, 난시, 백내장, 안구건조증 및/또는 노안 등) 여부 등의 질의항목을 포함할 수 있고, 눈 관리습관 섹션에 눈에 좋은 약 복용, 논에 좋은 음식 섭취, 최근 1년 안과 방문 및/또는 안경 착용 여부 등의 질의항목을 포함할 수 있다.
이와 같이, 프로세서(175)는, 서베이 인터페이스를 기반으로 대상자의 눈 건강상태에 대한 사전 조사를 수행함으로써, 대상자의 눈 건강상태를 분석하기 위한 일관적이고 신뢰성 있는 기반 데이터를 체계적인 계측 방법을 통하여 획득할 수 있고, 이를 바탕으로 신뢰도 높은 분석 결과를 도출할 수 있다.
또한, 실시예에서 프로세서(175)는, 위와 같이 제공된 서베이 인터페이스에 기반하여 눈 건강 측정방법을 결정할 수 있다. (S103)
자세히, 실시예에서 프로세서(175)는, 서베이 인터페이스에 기반한 대상자의 입력에 기초하여, 해당 대상자 맞춤형의 눈 건강 측정 콘텐츠의 종류(이하, 눈 건강 측정방법)를 결정할 수 있다.
여기서, 실시예에 따른 눈 건강 측정 콘텐츠란, 소정의 파라미터(예컨대, 입체시, 시력, 황반변성 또는 외안근 등)에 따른 눈 건강상태를 측정하는 프로세스를 제공하는 콘텐츠로서, 실시예에서는 다양한 관점(파라미터)에서 눈 건강상태를 측정하기 위하여 적어도 하나 이상의 눈 건강 측정 콘텐츠가 눈 건강 측정 서비스 상에 기구축되어 있을 수 있다.
또한, 실시예에서 이러한 눈 건강 측정 콘텐츠는, 가상현실에 기반하여 구현될 수 있다.
실시예로, 눈 건강 측정 콘텐츠는, 가상현실에 기초한 시력측정, 시야측정, 난시측정, 황반변성 측정, 색맹측정, 입체시 측정, 복시측정, 대비감도 측정, 외안근 측정 또는 동체시력 측정 콘텐츠 등으로 구현될 수 있다.
실시예에서, 프로세서(175)는, 상술된 서베이 인터페이스에 기반한 대상자의 입력에 기초하여, 위와 같이 다양한 종류의 눈 건강 측정 콘텐츠 중, 해당 대상자에게 최적화된 눈 건강 측정방법을 결정할 수 있다.
자세히, 실시예에서 프로세서(175)는, 서베이 인터페이스에 기반한 대상자의 입력을 기초로 대상자의 눈 건강상태를 판단할 수 있다.
구체적으로, 프로세서(175)는, 상기 대상자의 입력에 기반하여 해당 대상자에 대한 눈 건강점수를 산출할 수 있다.
이때, 실시예에서 프로세서(175)는, 대상자에 대한 눈 건강점수를 눈 건강 측정 콘텐츠 별로 구분하여 산출할 수 있다.
실시예로, 프로세서(175)는, 서베이 인터페이스를 통해 제공된 질의문의 질의항목 별 대상자 입력에 의한 응답 정보를 획득할 수 있다.
그리고 프로세서(175)는, 획득된 응답에 기초하여, 눈 건강 측정 콘텐츠 별 점수를 부여할 수 있다.
예를 들면, 프로세서(175)는, 최근 자각증상 섹션의 질의항목의 경우, 대상자의 응답 정보가 ‘난독 있음’을 포함하면, 눈 건강 측정방법 중 시력측정 콘텐츠에 ‘+30’의 점수를 부여하고, 난시 및 외안근 측정 콘텐츠에 ‘+20’의 점수를 부여하며, 시야측정 콘텐츠에 ‘+10’의 점수를 부여할 수 있다.
다른 예시로, 프로세서(175)는, 최근 자각증상 섹션의 질의항목에서 대상자의 응답 정보가 ‘충혈 있음’을 포함하면, 눈 건강 측정방법 중 시력측정 콘텐츠에 ‘+30’의 점수를 부여하고, 동공측정 콘텐츠에 ‘+30’의 점수를 부여하며, 대비감도 측정 콘텐츠에 ‘+10’의 점수를 부여할 수 있다.
또 다른 예시에서, 프로세서(175)는, 최근 자각증상 섹션의 질의항목에서 대상자의 응답 정보가 ‘휘어져 보임 있음’을 포함하면, 눈 건강 측정방법 중 시력측정 콘텐츠와 황반변성 측정 콘텐츠에 ‘+30’의 점수를 부여할 수 있다.
또한, 실시예에서 프로세서(175)는, 대상자의 서베이 응답에 기반하여 위와 같이 부여되는 눈 건강 측정 콘텐츠 별 점수를 기반으로, 해당 대상자에 대한 눈 건강 측정 콘텐츠 별 눈 건강점수를 산출할 수 있다.
예를 들어, 프로세서(175)는, 제1 눈 건강 측정 콘텐츠에 대한 점수를 구성하는 부여점수를 기반으로 패턴 분석을 수행하여, 제1 눈 건강 측정 콘텐츠에 대한 눈 건강점수를 산출할 수 있다.
예컨대, 프로세서(175)는, 제1 눈 건강 측정 콘텐츠 점수를 구성하는 부여점수 중, ‘+10점 이상’인 부여점수가 하나도 없을 경우, 기설정된 ‘좋음’ 범위 이내의 눈 건강점수로 제1 눈 건강 측정 콘텐츠에 대한 눈 건강점수를 설정할 수 있다.
다른 예시로, 프로세서(175)는, 제1 눈 건강 측정 콘텐츠 점수를 구성하는 부여점수 중, ‘+10점 이상 및 +25점 미만’의 부여점수가 존재하고, ‘+25점 이상’의 부여점수가 하나도 없을 경우, 기설정된 ‘보통’ 범위 이내의 눈 건강점수로 제1 눈 건강 측정 콘텐츠에 대한 눈 건강점수를 설정할 수 있다.
또 다른 예시에서, 프로세서(175)는, 제1 눈 건강 측정 콘텐츠 점수를 구성하는 부여점수 중, ‘+25점 이상’인 부여점수가 1개 이상 존재하는 경우, 기설정된 ‘나쁨’ 범위 이내의 눈 건강점수로 제1 눈 건강 측정 콘텐츠에 대한 눈 건강점수를 설정할 수 있다.
또한, 실시예에서 프로세서(175)는, 위와 같이 산출된 눈 건강 측정 콘텐츠 별 눈 건강점수를 기반으로, 대상자에 대한 의심질환을 예측할 수 있다.
예를 들면, 프로세서(175)는, 시력측정, 시야측정 및 황반변성 측정 콘텐츠에 대한 눈 건강점수가 나쁨 범위 내에 있는 경우, 해당 대상자에 대한 의심질환으로 시력저하, 녹내장, 백내장 및/또는 황반변성을 예측할 수 있다.
그리고 실시예에서 프로세서(175)는, 예측된 의심질환에 기초하여 해당 대상자에게 수행할 눈 건강 측정방법을 결정할 수 있다.
자세히, 실시예에서 프로세서(175)는, 예측된 의심질환에 따라서, 적어도 하나 이상의 눈 건강 측정 콘텐츠를 해당 대상자에게 적용할 눈 건강 측정방법으로 결정할 수 있다.
예를 들어, 프로세서(175)는, 의심질환이 시력저하를 포함하는 경우, 시력측정 콘텐츠를 대상자에게 적용할 눈 건강 측정방법으로 결정할 수 있다.
다른 예를 들면, 프로세서(175)는, 의심질환이 황반변성을 포함하는 경우, 황반변성 측정 콘텐츠를 대상자에게 적용할 눈 건강 측정방법으로 결정할 수 있다.
또 다른 예시에서, 프로세서(175)는, 의심질환이 녹내장을 포함하는 경우, 시야측정, 난시측정 및 동공측정 콘텐츠를 대상자에게 적용할 눈 건강 측정방법으로 결정할 수 있다.
도 14a 및 도 14b는 본 발명의 실시예에 따른 눈 건강상태 조사정보를 표시하는 모습의 일례들이다.
이때, 도 14a 및 도 14b를 참조하면, 실시예에서 프로세서(175)는, 서베이 인터페이스에 대한 대상자의 입력에 기초하여 위와 같이 획득된 정보들을 기반으로 눈 건강상태 조사정보를 생성할 수 있다.
그리고 프로세서(175)는, 생성된 눈 건강상태 조사정보를 디스플레이 출력하여 사용자(실시예에서, 대상자 및/또는 측정자 등)에게 제공할 수 있다.
여기서, 실시예에 따른 눈 건강상태 조사정보는, 서베이 인터페이스에 대한 대상자의 입력을 기초로 해당 대상자의 눈 건강상태를 사전 조사한 정보로서, 실시예에서 해당 대상자와 관련된 눈 건강 측정 콘텐츠 별 눈 건강점수에 따른 패턴 분석 결과정보(예컨대, 좋음, 보통 또는 나쁨 등), 의심증상 정보 및/또는 결정된 눈 건강 측정방법 정보 등을 포함할 수 있다.
실시예에서, 프로세서(175)는, 도 14의 (a)와 같이, 디스플레이부(150)를 이용하여 대상자에 대한 눈 건강상태 조사정보를 출력할 수 있다.
또한, 실시예에서 프로세서(175)는, 도 14의 (b)와 같이, 헤드 마운티드 디스플레이(200)와 연동하여, 디스플레이유닛(220)에 기초해 대상자에 대한 눈 건강상태 조사정보를 출력할 수 있다.
이와 같이, 프로세서(175)는, 서베이 분석 결과를 기초로 대상자의 현재 눈 건강상태를 파악하고, 이를 토대로 해당 대상자에게 필요한 눈 건강 측정방법을 선정해 제공함으로써, 대상자 개개인 별로 최적화된 맞춤형의 눈 건강 측정 프로세스를 진행할 수 있고, 이를 통해 눈 건강상태 측정에 소요되는 비용이나 노력을 절감할 수 있으며, 결과적으로 눈 건강 측정 서비스의 효율성을 향상시킬 수 있다.
또한, 실시예에서 프로세서(175)는, 위와 같이 결정된 눈 건강 측정방법에 기반한 눈 건강상태 측정을 실행할 수 있다. (S105)
자세히, 실시예에서 프로세서(175)는, 복수의 눈 건강 측정방법 중, 대상자에 대하여 수행할 적어도 하나 이상의 눈 건강 측정방법을 결정할 수 있고, 결정된 적어도 하나 이상의 눈 건강 측정방법에 기반한 눈 건강상태 측정을 수행할 수 있다.
이하의 실시예에서는, 효과적인 설명을 위하여 복수의 눈 건강 측정방법 중 제1 눈 건강 측정방법으로 입체시 측정 콘텐츠를 설정하고, 제2 눈 건강 측정방법으로 시력측정 콘텐츠를 설정하여 눈 건강 측정을 실행하는 것으로 설명하나, 이는 일 실시예일 뿐, 실시예에 따라서 다양한 눈 건강 측정 콘텐츠(예컨대, 시야측정, 난시측정, 황반변성 측정, 색맹측정, 복시측정, 대비감도 측정, 외안근 측정 및/또는 동체시력 측정 등)에 기반한 적어도 일 회 이상의 눈 건강상태 측정이 수행될 수 있다.
실시예로, 프로세서(175)는, 결정된 제1 눈 건강 측정방법에 기반하여 대상자에 대한 눈 건강상태 측정을 실행할 수 있다.
자세히, 실시예에서 프로세서(175)는, 제1 눈 건강 측정방법으로 입체시 측정 콘텐츠를 설정할 수 있고, 이를 기초로 대상자에 대한 눈 건강상태 측정을 수행할 수 있다.
여기서, 실시예에 따른 입체시 측정 콘텐츠는, 양안의 시차를 이용하여 정확한 심도(깊이)를 인식할 수 있는지를 측정하는 콘텐츠일 수 있다.
보다 상세히, 실시예에서 프로세서(175)는, 입체시 측정 콘텐츠에 기반한 눈 건강 측정을 실행할 수 있다.
그리고 프로세서(175)는, 실행된 입체시 측정 콘텐츠를 기초로, 헤드 마운티드 디스플레이(200)와 연동하여, 가상현실 영상에 기반한 적어도 셋 이상의 시표를 표시할 수 있다.
예를 들어, 프로세서(175)는, 가상현실 영상 상에 일렬로 나열된 4개의 시표를 표시할 수 있다.
또한, 실시예에서 프로세서(175)는, 표시된 복수의 시표 중, 심도(깊이)가 타 시표들과 다른 시표인 변위시표를 선택할 수 있는 입체시 측정 인터페이스(제1 눈 건강상태 측정 인터페이스)를 제공할 수 있다.
자세히, 프로세서(175)는, 하나의 변위시표를 포함하는 복수의 시표를 가상현실 영상 상에 표시할 수 있고, 표시된 복수의 시표 중 변위시표를 선택하는 입체시 측정 인터페이스를 제공할 수 있다.
이때, 실시예에서 프로세서(175)는, 타 시표들과 다른 심도를 가지는 변위시표를 가상현실 영상 상에서 구현하기 위하여, 변위시표로 표시하고자 하는 제1 시표의 위치 및/또는 크기를 조정할 수 있다.
도 15 및 도 16은 본 발명의 실시예에 따른 입체시 측정 콘텐츠를 설명하기 위한 도면의 일례들이다.
도 15 및 도 16을 참조하면, 실시예에서 프로세서(175)는, 일반적으로 헤드 마운티드 디스플레이(200)와 연동하여 가상현실 영상을 출력하는 경우, 해당 헤드 마운티드 디스플레이(200)를 착용한 대상자의 좌안영역에 대응되는 제1 표시영역(10)과, 해당 대상자의 우안영역에 대응되는 제2 표시영역(20)에 기반하여, 상기 가상현실 영상을 출력할 수 있다.
이때, 실시예에서 프로세서(175)는, 상기 가상현실 영상 내 복수의 시표 중, 변위시표로 설정된 제1 시표(1)에 대한 심도(깊이)를 나머지 타 시표들과 다르게 구현하려는 경우, 상기 제1 표시영역(10)을 통해 출력되는 제1 시표(1-1: 이하, 제1-1 시표)와, 상기 제2 표시영역(20)을 통해 출력되는 제1 시표(1-2: 이하, 제1-2 시표) 간의 위치를 서로 다르게 설정하여 출력할 수 있다.
이때, 프로세서(175)는, 상기 제1-1 시표와 상기 제1-2 시표를 타 시표들과 구분되는 상이한 색상으로 해당하는 표시영역 상에 출력할 수 있다. 예를 들면, 프로세서(175)는, 상기 제1-1 시표와 상기 제1-2 시표를 빨강 색상으로 표시하고 나머지 타 시표들은 검정 색상으로 표시하여 출력할 수 있다.
여기서, 제1 표시영역(10) 상에 표시되는 제1-1 시표(1-1)와, 제2 표시영역(20) 상에 표시되는 제1-2 시표(1-2) 간의 위치가 서로 다르다는 것은, 동일한 3차원 좌표 값(즉, 제1 시표(1)의 3차원 좌표 값)을 공유하는 제1-1시표(1-1)와 제1-2 시표(1-2)에 대하여, 제1 표시영역(10)에서의 제1-1 시표(1-1)에 대한 표시좌표 값과, 제2 표시영역(20)에서의 제1-2 시표(1-2)에 대한 표시좌표 값이 서로 다르다는 것을 의미할 수 있다.
자세히, 실시예에서 프로세서(175)는, 상기 제1-1 시표(1-1)와 제1-2 시표(1-2) 각각의 표시 위치를, 헤드 마운티드 디스플레이(200)를 착용한 대상자의 안구와 상기 제1 시표(1) 간에 구현하려는 소정의 거리(즉, 심도)에 따라서 설정할 수 있다.
이는, 사람의 안구(즉, 좌안 및 우안)와, 소정의 이격된 거리에 위치하는 오브젝트(실시예에서, 시표) 사이의 거리에 따라서, 해당 사람의 좌안에서 인지되는 상기 오브젝트의 위치와, 해당 사람의 우안에서 인지되는 상기 오브젝트의 위치가 서로 다르게 인식(즉, 시차가 발생)됨으로써, 상기 사람이 상기 오브젝트에 대한 심도(즉, 원근감)를 인지할 수 있다는 원리에 기반할 수 있다.
실시예에 따라서, 프로세서(175)는, 대상자에 따라서 좌안과 우안의 위치가 가변적임을 감안하여, 이를 표준화하기 위해 헤드 마운티드 디스플레이(200)의 광학유닛(240)이 포함할 수 있는 제1 렌즈와 제2 렌즈로 대상자의 좌안 및 우안을 대체할 수도 있다.
이하의 설명에서는, 대상자의 좌안과 우안을 각각 제1 렌즈 및 제2 렌즈로 대체한 실시예에 기준하여 설명하나 이에 한정되는 것은 아니다.
자세히, 실시예에 따른 프로세서(175)는, 헤드 마운티드 디스플레이(200)의 제1 렌즈 및 제2 렌즈 간의 거리(이하, 양안거리)와, 상기 제1 렌즈 및 제2 렌즈와 대상자가 주시하는 제1 시표(1) 간의 거리에 따라서, 대상자가 제1 시표(1)를 인식하는 시야각 즉, 입체시각도를 결정할 수 있다.
보다 상세히, 프로세서(175)는, 제1 렌즈에서부터, 타 시표들과는 상이한 거리인 제1 거리에 있는 제1 시표(1)를 인식하는 제1 입체시각도, 제2 렌즈에서부터 제1 거리에 있는 제1 시표(1)를 인식하는 제2 입체시각도를 결정할 수 있다.
이러한 거리에 따른 입체시각도는 기 설정되어 메모리에 저장되고, 프로세서(175)는, 상기 메모리에 기 저장된 입체시각도 별 거리변화에 따라서 입체시각도를 결정할 수 있다.
또한, 실시예에서 프로세서(175)는, 결정된 입체시각도에 기반하여, 제1-1 시표(1-1) 및 제1-2 시표(1-2)의 위치를 설정할 수 있다.
구체적으로, 프로세서(175)는, 제2 표시영역(20) 상에서, 위와 같이 결정된 제1 입체시각도를 구현할 수 있는 제1 위치를 도출할 수 있다.
그리고 프로세서(175)는, 도출된 제1 위치를, 제2 표시영역(20) 상에 표시되는 제1 시표(1)인 제1-2 시표(1-2)의 위치로 설정할 수 있다.
동일한 방식으로, 실시예에서 프로세서(175)는, 제1 표시영역(10) 상에서, 위와 같이 결정된 제2 입체시각도를 구현할 수 있는 제2 위치를 도출할 수 있고, 도출된 제2 위치를 제1 표시영역(10) 상에 표시되는 제1 시표(1)인 제1-1 시표(1-1)의 위치로 설정할 수 있다.
즉, 실시예에서 프로세서(175)는, 좌안이 인식하는 영역(제2 표시영역(20)) 상에서 좌안에 대응되는 제1 입체시각도를 구현하도록 제1-2 시표(1-2)의 위치를 조정할 수 있고, 우안이 인식하는 영역(제1 표시영역(10)) 상에서 우안에 대응되는 제2 입체시각도를 구현하도록 제1-1 시표(1-1)의 위치를 조정할 수 있다.
또한, 실시예에서 프로세서(175)는, 위와 같이 설정된 제1-1 시표(1-1) 및 제1-2 시표(1-2)의 위치에 기반하여, 제1 표시영역(10) 및 제2 표시영역(20) 상에 제1 시표(1)를 표시할 수 있다.
그리하여 실시예에서 프로세서(175)는, 제1-1 시표(1-1) 및 제1-2 시표(1-2)가 결합됨으로써 표시되는 제1 시표(1)를, 해당 제1-1 시표(1-1) 및 제1-2 시표(1-2)의 위치 차이에 기반한 시차 효과에 기반하여, 타 시표들과는 다른 거리인 제1 거리(심도) 상에 존재하는 변위시표로 표시할 수 있다.
즉, 실시예에서 프로세서(175)는, 타 시표들과 다른 심도를 가지는 변위시표(즉, 제1 시표(1))를 가상현실 영상 상에서 구현하기 위하여, 제1 표시영역(10)을 통해 출력되는 가상현실 영상의 제1-1 시표(1-1)와, 제2 표시영역(20)을 통해 출력되는 가상현실 영상의 제1-2 시표(1-2)의 위치를 서로 다르게 설정하여 출력할 수 있다.
다른 측면에서 설명하면, 프로세서(175)는, 입체시 측정을 위해 가상현실 영상이 표시되는 3차원 가상공간 상에서 표시될 시표들의 3차원 좌표를 결정할 수 있다.
이때, 프로세서(175)는, 입체시를 확인할 수 있도록 복수의 시표들 중 하나를 변위시표로 랜덤하게 결정할 수 있다.
예를 들어, 프로세서(175)는, 좌측부터 제1 내지 제4 시표를 일렬로 나열하여 표시할 때, 제1 시표 내지 제4 시표 중 하나를 변위시표로 랜덤하게 결정할 수 있다.
그리고 프로세서(175)는, 3차원 가상공간에서 변위시표의 y축 좌표를 나머지 시표들의 y축 좌표와 다르게 결정할 수 있다. 여기서, y축은 깊이를 의미하며 대상자가 3차원 가상공간을 바라보는 방향을 의미하므로, y축 좌표가 달리 설정되었다는 것은 전술한 거리가 달라졌다는 의미로 이해할 수 있다.
즉, 나머지 시표들은 y축 좌표를 일치시켜 가상공간 상에서 동일한 깊이로 표시하고, 변위시표만 y축 좌표를 달리하여 다른 깊이로 표시할 수 있다.
그리고 시표들의 x축 좌표 또는/및 z축 좌표를 서로 다르게 하여 동일한 깊이에서 서로 다른 위치로 표시할 수 있으며, 실시예에서 프로세서(175)는, 시표들의 x축 좌표만 달리하고 z축 좌표는 일치시켜 일렬로 시표들이 나열되도록 표시할 수 있다.
프로세서(175)는, 입체시 측정을 위하여 가상공간 상에서 시표들의 3차원 좌표들을 모두 결정한 후 3차원 좌표에 따라서 시표들이 표시되도록 제1 표시영역(10)과 제2 표시영역(20)에서의 각 시표들의 표시좌표를 결정할 수 있다.
이때, 상기 제1 표시영역(10)과 제2 표시영역(20)은 2차원 평면이기 때문에 x축과 z축 좌표만 변경할 수 있으므로, 깊이를 달리하여 시표를 표시하기 위해서는 좌안과 우안의 시차를 이용해야 한다.
도 17은 본 발명의 실시예에 따른 변위시표를 구현하는 방법을 설명하기 위한 도면의 일례이다.
자세히, 도 17을 참조하면, 프로세서(175)는, 변위시표의 3차원 좌표를 x1, y1, z1이라 할 때, 상기 3차원 좌표에 표시하기 위한 좌안과 우안의 입체시각도를 산출할 수 있다.
여기서, 상기 입체시각도는, 도 17을 참조하면 알 수 있듯이, 좌안에 대응하는 제1 렌즈와 우안에 대응하는 제2 렌즈 사이의 거리, 표시영역과 렌즈 사이의 거리 그리고 변위시표의 3차원 좌표에 기초하여 결정될 수 있다.
그리고 프로세서(175)는, 산출된 입체시각도에 기초하여 3차원 좌표에 변위시표를 표시하기 위한 제1 표시영역(10)의 2차원 표시좌표(예컨대, x축 좌표 및 z축 좌표)를 결정할 수 있고, 제2 표시영역(20)의 2차원 표시좌표(예컨대, x축 좌표 및 z축 좌표)를 결정할 수 있다.
즉, 제1 표시영역(10)에서의 x축, z축 좌표와 제2 표시영역(20)에서의 x축, z축 좌표를 서로 다르게 함으로써, 좌안과 우안의 시차가 발생하게 되어, 변위시표의 깊이(y축 좌표)가 결정될 수 있다.
프로세서(175)는, 동일한 방식으로 나머지 시표들을 3차원 좌표에 표시할 수 있도록 제1 표시영역(10)과, 제2 표시영역(20)의 x축, z축 좌표를 구할 수 있으며, 이때, 나머지 시표들의 깊이는 모두 동일할 수 있다.
이를 통해, 프로세서(175)는, 제1 렌즈 및 제2 렌즈 각각으로부터 제1 위치에 표시된 제1-2시표와 제2 위치에 표시된 제1-1시표를 주시할 시, 소정의 시차를 발생시킬 수 있고, 발생된 시차에 대응하는 소정의 심도(거리) 효과를 구현할 수 있다.
또한, 실시예에서 프로세서(175)는, 제1-1 시표(1-1) 및 제1-2 시표(1-2) 각각에 대하여 설정되는 위치 값을, 구현하고자 하는 단계적인 심도(거리)에 따라서 조정할 수 있다.
예를 들어, 도 17을 더 참조하면, 프로세서(175)는, 4m 거리에서 3000초각 만큼 가까이 있는 변위시표(제1 시표(1))를 구현하기 위한 시차를 구현하기 위하여, 제1 표시영역(10)의 제1-1 시표(1-1)를, 타 시표들의 기준점으로부터 오른쪽으로 29mm 위치 이동시키고, 제2 표시영역(20)의 제1-2 시표(1-2)를 왼쪽으로 29mm 위치 이동시킬 수 있다.
이때, 실시예에서 프로세서(175)는, 변위시표로 표시하고자 하는 제1 시표(1)에 대한 심도가 변화함에 따라서, 제1 시표(1)의 크기도 조정할 수 있다.
실시예로, 프로세서(175)는, 제1 시표(1)의 심도(깊이)에 반비례하여 제1 시표(1)의 크기를 변경할 수 있다.
다시 돌아와서, 실시예에서 프로세서(175)는, 위와 같이 구현되는 변위시표를 포함하는 복수의 시표를 가상현실 영상으로 출력할 수 있고, 출력된 복수의 시표 중 상기 변위시표를 선택하게 하는 입체시 측정 인터페이스를 제공할 수 있다.
그리고 프로세서(175)는, 대상자의 선택입력에 따라서 변위시표와 나머지 시표 사이의 깊이차이를 순차적으로 감소시키며 단계별로 입체시 측정를 수행할 수 있다.
자세히, 프로세서(175)는, 대상자가 1차 변위시표를 선택하여 맞추면, 1차 변위시표와 나머지 시표 사이의 제1 깊이차 보다 작은 제2 깊이차와 시표들 중 하나의 시표를 제2 차 변위시표로 결정할 수 있다. 앞서 설명한 대로, 제2 차 변위시표는 랜덤하게 결정될 수 있다.
그리고 프로세서(175)는, 다른 시표들과 제2 깊이차를 갖도록 제2 차 변위시표의 3차원 가상좌표 및 다른 시표들의 3차원 가상좌표를 결정할 수 있다.
그리고 프로세서(175)는, 결정된 3차원 가상좌표로 표시하기 위하여, 상기 시표들의 3차원 가상좌표, 제1 렌즈와 제2 렌즈 사이의 거리 및 표시영역과 렌즈 사이의 거리에 기초하여 각 시표별 입체시각도를 산출할 수 있다.
다음으로, 프로세서(175)는, 산출된 입체시각도에 따라서 제1 표시영역(10)과 제2 표시영역(20)에서의 시표를 표시하기 위한 2차원 표시좌표를 산출할 수 있다.
그리고 프로세서(175)는, 제1 표시영역(10)과 제2 표시영역(20) 각각에 산출된 2차원 표시좌표에 시표를 각각 표시하여, 기 결정된 3차원 가상좌표 상에 시표들을 표시할 수 있다.
다음으로, 프로세서(175)는, 대상자의 입력에 따라 변위시표를 선택하게 하고, 변위시표를 맞추면 깊이차를 더 감소시킨 후 다음 입체시 측정을 반복하여, 대상자가 인식할 수 있는 깊이 즉 입체시를 정밀하게 검출할 수 있다.
또한, 프로세서(175)는, 제공된 입체시 측정 인터페이스에 대한 대상자의 입력을 기초로, 입체시 측정 결과점수를 획득할 수 있다.
실시예에서, 프로세서(175)는, 입체시 측정 인터페이스에 대한 대상자의 입력에 기반하여, 변위시표를 정확하게 선택하는 정답률을 산출할 수 있고, 산출된 정답률에 비례하여 입체시 측정 결과점수를 획득할 수 있다.
이와 같이, 프로세서(175)는, 가상현실 영상으로 표시되는 시표에 대한 위치 및/또는 크기를 조정하여 해당 시표의 심도에 변화를 주고, 이를 기초로 입체시 측정 프로세스를 수행함으로써, 편광안경과 같은 아날로그 기기에 기반한 입체시 측정의 원리를 디지털화하여 손 쉽게 구현할 수 있다.
한편, 실시예에서 프로세서(175)는, 서베이 인터페이스를 기초로 결정된 제2 눈 건강 측정방법에 기반하여 대상자에 대한 눈 건강상태 측정을 실행할 수 있다.
자세히, 실시예에서 프로세서(175)는, 제2 눈 건강 측정방법으로 시력측정 콘텐츠를 설정할 수 있고, 이를 기초로 대상자에 대한 눈 건강상태 측정을 수행할 수 있다.
여기서, 실시예에 따른 시력측정 콘텐츠는, 시력 및 초점 능력을 측정하는 콘텐츠일 수 있다.
보다 상세히, 실시예에서 프로세서(175)는, 시력측정 콘텐츠에 기반한 눈 건강 측정을 실행할 수 있다.
도 18은 본 발명의 실시예에 따른 시력측정 콘텐츠를 설명하기 위한 도면의 일례이다.
또한, 도 18을 참조하면, 실시예에서 프로세서(175)는, 실행된 시력측정 콘텐츠를 기초로, 헤드 마운티드 디스플레이(200)와 연동하여, 가상현실 영상에 기반한 시력 측정표를 표시할 수 있다.
여기서, 실시예에 따른 시력 측정표란, 시력을 측정하는 데에 사용되는 표로서, 정해진 기준에 따라 확대 또는 축소한 여러 가지 문자나 그림(부호) 따위가 인쇄되어 있는 표일 수 있다.
자세히, 실시예에서 프로세서(175)는, 가상현실 영상에 기초하여 소정의 심도(깊이) 상에 위치하는 시력 측정표를 표시할 수 있다.
또한 실시예에서 프로세서(175)는, 표시된 시력 측정표에 기반하여, 대상자가 해당 시력 측정표 내 복수의 기호들 중 선택하도록 요구되는 소정의 기호인 타겟(target) 기호를 선택할 수 있는 시력측정 인터페이스(제2 눈 건강상태 측정 인터페이스)를 제공할 수 있다.
보다 상세히, 실시예에서 프로세서(175)는, 표시된 시력 측정표가 포함하는 적어도 하나 이상의 기호 중, 측정자 또는 프로세서(175)에 의하여 자동으로 무작위 선택되는 타겟 기호를 결정할 수 있다.
또한, 프로세서(175)는, 결정된 타겟 기호를 대상자에게 알림할 수 있다.
실시예에서, 눈 건강상태 측정을 진행하는 측정자는, 가상현실 영상에 표시되는 시력 측정표 내 기호들 중, 무작위로 선정되는 어느 하나를 타겟 기호로 결정할 수 있다.
이때, 프로세서(175)는, 위와 같이 측정자에 의하여 무작위로 결정된 타겟 기호에 대한 정보를 획득할 수 있다.
실시예에서, 프로세서(175)는, 입력부(160)에 기반하여 측정자에 의해 선정된 타겟 기호에 대한 정보를 획득할 수 있다.
또한, 실시예에서 프로세서(175)는, 위와 같이 획득된 타겟 기호 정보에 기초하여, 해당 타겟 기호에 대한 오디오 데이터를 출력해 대상자에게 제공할 수 있다.
예를 들면, 프로세서(175)는, 타겟 기호로 ‘3’이 결정된 경우, ‘삼’이라는 음성 데이터를 제공하는 해당 타겟 기호에 대한 오디오 데이터를 출력하여 대상자에게 제공할 수 있다.
다른 실시예에서, 프로세서(175)는, 자체적으로 시력 측정표 내 기호들 중 타겟 기호를 무작위로 자동 선택할 수 있다.
또한, 프로세서(175)는, 위와 같이 자동 선택된 타겟 기호에 대한 오디오 데이터를 출력하여 대상자에게 제공할 수 있다.
예를 들면, 프로세서(175)는, 자체적인 프로세스에 의하여 타겟 기호가 ‘3’으로 결정된 경우, ‘삼’이라는 음성 데이터를 제공하는 해당 타겟 기호에 대한 오디오 데이터를 출력하여 대상자에게 제공할 수 있다.
또는, 다른 실시예에서 프로세서(175)는, 자동 선택된 타겟 기호에 대한 그래픽 이미지를, 해당하는 대상자가 인지 가능한 심도(예컨대, 해당 대상자의 이전 시력측정에 따른 나안시력 수치 기반 등) 상에 표시함으로써, 해당 타겟 기호를 대상자에게 알릴 수 있다.
예를 들면, 프로세서(175)는, 자체적인 프로세스에 의하여 타겟 기호가 ‘3’으로 결정된 경우, 해당 타겟 기호를 나타내는 그래픽 이미지(여기서, 숫자 3을 나타내는 그래픽 이미지)를, 가상현실 영상 내의 소정의 심도(실시예에서, 해당하는 대상자가 인지 가능한 심도) 상에 표시하여 해당 대상자에게 제공할 수 있다.
계속해서, 실시예에서 프로세서(175)는, 상술된 바와 같이 제공된 시력측정 인터페이스에 대한 대상자의 입력에 기초하여, 시력측정 결과점수를 획득할 수 있다.
자세히, 실시예에서 프로세서(175)는, 시력측정 인터페이스에 기반하여, 위와 같이 결정된 타겟 기호에 대한 대상자의 응답을 획득할 수 있다.
실시예로, 프로세서(175)는, 오디오 데이터가 제공된 타겟 기호에 대응되는 형상을 가지는 기호를, 가상현실 영상의 소정의 심도 상에 표시된 시력 측정표 내 적어도 하나 이상의 기호(예컨대, 문자 또는 부호) 중에서 선택하는 대상자의 입력을, 시력측정 인터페이스에 기반하여 획득할 수 있다.
그리고 프로세서(175)는, 획득된 대상자의 입력을 기초로 해당하는 타겟 기호에 대한 응답을 획득할 수 있다.
다른 실시예에서, 프로세서(175)는, 가상현실 영상 내 소정의 제1 심도(실시예에서, 해당 대상자가 명확하게 인지 가능한 심도) 상에 표시된 타겟 기호에 대응되는 형상을 가지는 기호를, 해당 가상현실 영상의 소정의 제2 심도(실시예에서, 시력측정을 테스트하기 위하여 설정된 소정의 심도) 상에 표시된 시력 측정표 내 적어도 하나 이상의 기호 중에서 선택하는 대상자의 입력을, 시력측정 인터페이스에 기반하여 획득할 수 있다.
그리고 프로세서(175)는, 위와 같이 획득된 대상자의 입력을 기초로 해당하는 타겟 기호에 대한 응답을 획득할 수 있다.
또한, 실시예에서 프로세서(175)는, 상술된 바와 같이 무작위로 타겟 기호를 결정하고, 결정된 타겟 기호에 대한 대상자의 응답을 획득하는 일련의 과정을 반복 수행할 수 있다.
이때, 실시예에서 프로세서(175)는, 사용자(실시예에서, 측정자) 설정 및/또는 자동화된 프로세스에 기반하여, 가상현실 영상으로 출력되는 시력 측정표가 시력측정이 진행됨에 따라서 단계적으로 심도(깊이)가 변화하며 표시되게 할 수 있다.
실시예로, 프로세서(175)는, 시력측정 콘텐츠 실행 시, 제1 단계 측정에서 제1 심도 상에 표시되는 시력 측정표를 기초로 타겟 기호에 대한 응답을 획득할 수 있다.
이후, 프로세서(175)는, 제1 단계 측정에서 대상자가 타겟 기호에 대응되는 기호를 올바르게 선택한 경우, 제2 단계 측정에서 제1 심도보다 더 원경에 위치하는 제2 심도 상에 시력 측정표를 출력할 수 있다.
그리고 프로세서(175)는, 제2 심도 상에 표시된 시력 측정표를 기초로 타겟 기호에 대한 응답을 획득하는 과정을 수행할 수 있다.
또한, 프로세서(175)는, 위와 같은 과정을 소정의 제 n(n=1, 2, 3, … ) 단계까지 반복 수행할 수 있다.
반면, 실시예에서 프로세서(175)는, 제1 단계 측정에서 대상자가 타겟 기호에 대응되는 기호를 미선택한 경우, 제2 단계 측정에서도 제1 심도 상에 시력 측정표를 출력할 수 있다.
그리고 프로세서(175)는, 위와 같이 제1 심도 상에 다시 표시된 시력 측정표를 기초로, 제1 단계에서의 타겟 기호와는 다른 제2 단계에서의 제2 기호에 대한 응답을 획득할 수 있다.
또한, 프로세서(175)는, 위와 같은 과정을 소정의 제 n(n=1, 2, 3, … ) 단계까지 반복 수행할 수 있다.
이와 같이, 프로세서(175)는, 가상현실 영상으로 시력 측정표를 출력하고, 출력된 시력 측정표의 심도를 조정해가며 단계적인 시력측정을 진행함으로써, 물리적인 시력 측정표를 이용하는 경우 감수해야 하는 제약조건(예를 들면, 시력 측정표 장비 구비, 대상자와 시력 측정표 간의 거리의 가변 가능성, 시력 측정표 내 제한적인 기호 개수, 크기 및/또는 위치 등)을 극복할 수 있고, 보다 편리하게 대상자의 시력을 측정할 수 있다.
또한, 실시예에서 프로세서(175)는, 위와 같이 복수 회 수행되어 획득된 응답들에 기초하여, 시력측정 결과점수를 산출할 수 있다.
실시예에서, 프로세서(175)는, 시력측정 인터페이스에 기반한 대상자의 입력을 기반으로, 타겟 기호가 정확하게 선택되는 정답률에 비례하여 해당 대상자의 시력측정 결과점수를 산출할 수 있다.
다만, 일반적으로 영상을 통해 시력 측정표를 표시하여 대상자에게 제공하는 방식에서는, 해당 시력 측정표를 표시하는 기기(실시예에서, 헤드 마운티드 디스플레이(200))의 해상도가 낮을 경우, 시력 측정표가 선명하게 표시되지 못함으로 인하여 대상자의 시력과는 무관한 요인의 영향을 받아 시력측정 결과가 결정되는 상황이 발생할 수 있다.
그리하여, 본 발명의 실시예에서 프로세서(175)는, 가상현실 영상을 출력하는 헤드 마운티드 디스플레이(200)의 해상도에 따라서, 표시되는 시력 측정표의 최소 크기를 설정할 수 있다.
실시예로, 프로세서(175)는, 연동되는 헤드 마운티드 디스플레이(200)의 해상도에 반비례하여, 출력되는 시력 측정표의 최소 크기를 설정할 수 있다.
즉, 실시예에서 프로세서(175)는, 헤드 마운티드 디스플레이(200)의 해상도가 높을수록, 해당 헤드 마운티드 디스플레이(200)에 기반하여 출력되는 시력 측정표의 최소 크기를 작게 설정할 수 있고, 그 역도 성립하게 할 수 있다.
또한, 실시예에서 프로세서(175)는, 설정된 최소 크기를 초과하지 않는 범위 내에서, 해당 가상현실 영상 내 시력 측정표의 심도를 조정할 수 있다.
예를 들면, 프로세서(175)는, 소정의 크기를 가지는 시력 측정표를 제1 심도에서 표시한 이후, 제1 심도보다 큰 깊이를 가지는(즉, 더 먼 거리에 위치하는) 제2 심도에 상기 시력 측정표를 표시하는 경우, 상기 시력 측정표가 해당 시력 측정표에 대해 설정된 최소 크기보다 작아지지 않는 범위 내에서 제2 심도의 깊이를 결정할 수 있다.
더하여, 실시예에서 프로세서(175)는, 최소 크기로 표시되는 시력 측정표인 경우, 해당 시력 측정표 내 기호들의 형태(예컨대, 문자 및/또는 그림(부호) 등)를 그림(부호) 형식으로 변환하여 제공할 수 있다.
예를 들어, 프로세서(175)는, 최소 크기로 표시된 시력 측정표 내 문자 기호를, 소정의 그림(부호) 기호로 변경하여 제공할 수 있다.
이와 같이, 프로세서(175)는, 문자에 비하여 해상도의 영향을 적게 받는 그림(부호) 형태만으로 시력 측정표 내 기호들을 표시하여, 최소 크기의 시력 측정표를 표시하는 상황에서 해당 가상현실 영상을 출력하는 헤드 마운티드 디스플레이(200)의 해상도에 의한 영향력을 최소화할 수 있다.
도 19a 및 도 19b는 본 발명의 실시예에 따른 눈 건강상태 측정 결과를 표시하는 모습의 일례들이다.
또한, 도 19a 및 도 19b를 참조하면, 실시예에서 프로세서(175)는, 위와 같이 실행된 눈 건강상태 측정(실시예에서, 입체시 측정 및/또는 시력측정)에 따른 결과를 표시할 수 있다. (S107)
즉, 실시예에서 프로세서(175)는, 실행된 적어도 하나 이상의 눈 건강상태 측정에 기반하여, 대상자에 대한 눈 건강 상태정보를 결과로 제공할 수 있다.
여기서, 실시예에 따른 눈 건강 상태정보란, 눈 건강 측정 서비스를 기반으로 추정되는 대상자의 눈 건강상태에 대한 분석결과를 제공하는 정보로서, 실시예에서 대상자에 대하여 실행된 눈 건강상태 측정 별 결과점수(실시예로, 입체시 측정 결과점수 및/또는 시력측정 결과점수 등), 상기 결과점수와 서베이 인터페이스에 기반하여 획득된 눈 건강점수를 종합하여 산출되는 통합점수(예컨대, 대상자의 나이 및/또는 눈 관리습관 등에 대한 눈 건강점수를 반영하여 보정된 결과점수 등) 및/또는 서베이 인터페이스에 대한 사용자 입력을 기초로 도출된 예측 의심질환 정보 등을 포함할 수 있다.
자세히, 실시예에서 프로세서(175)는, 눈 건강상태 측정 과정에서 제공되는 눈 건강상태 측정 인터페이스(실시예에서, 입체시 측정 인터페이스 및/또는 시력측정 인터페이스 등) 및 서베이 인터페이스에 대한 대상자의 입력에 기초하여, 해당 대상자에 대한 눈 건강 상태정보를 획득할 수 있다.
이때, 프로세서(175)는, 대상자에 따라서 복수 회의 눈 건강상태 측정 데이터가 존재하는 경우, 복수의 눈 건강 상태정보에 기초하여 보다 정밀하게 분석된 결과 정보를 제공할 수 있다.
예를 들면, 프로세서(175)는, 복수 회 진행된 눈 건강상태 측정에 의하여 획득된 복수의 눈 건강 상태정보에 기반한 분석을 수행하여, 눈 건강상태에 대한 일회성의 측정만으로는 정확하게 파악하기 어려운 녹내장과 같은 질환(즉, 장기간에 걸쳐서 상태를 파악해야하는 질환 등)을 보다 정확하게 예측할 수 있다.
이를 통해, 프로세서(175)는, 눈 건강 측정 서비스의 성능을 보다 향상시킬 수 있다.
또한, 실시예에서 프로세서(175)는, 위와 같이 획득된 눈 건강 상태정보를, 도 19의 (a)와 같이, 디스플레이부(150)에 기반하여 출력할 수 있다.
또한, 프로세서(175)는, 대상자에 대한 눈 건강 상태정보를, 도 19의 (b)와 같이, 헤드 마운티드 디스플레이(200)와 연동하여 디스플레이유닛(220)을 통해 출력할 수 있다.
또한, 실시예에서 프로세서(175)는, 획득된 눈 건강 상태정보를 대상자 별로 데이터베이스화하여 저장 및 관리할 수 있다.
이를 통해, 프로세서(175)는, 눈 건강상태 측정의 결과 데이터들을 디지털화하여 편리하게 관리할 수 있다.
또한, 실시예에서 프로세서(175)는, 눈 건강상태 측정 결과에 따른 처방 콘텐츠를 제공할 수 있다. (S109)
여기서, 실시예에 따른 처방 콘텐츠란, 눈 건강상태 측정 결과(즉, 눈 건강 상태정보)에 기초하여, 대상자의 눈 건강상태 호전을 목적으로 제공되는 콘텐츠 데이터일 수 있다.
실시예에서, 처방 콘텐츠는, 눈 힐링영상 및/또는 추천 영양제 정보 등을 포함할 수 있다.
자세히, 실시예에서 프로세서(175)는, 대상자의 눈 건강 상태정보에 따른 눈 힐리영상을 제공할 수 있다.
이때, 제공되는 눈 힐링영상은, 눈의 피로를 최소화하고 힐링 효과의 극대화를 위하여, 초고화질의 영상(예컨대, 4K 영상 등)으로 구현될 수 있다.
실시예로, 프로세서(175)는, 대상자의 눈 건강 상태정보를 기초로, 해당 대상자에게 내안근 및/또는 외안근 운동이 필요하다고 판단된 경우, 내안근 및/또는 외안근 운동을 보조할 수 있는 제1 눈 힐링영상을 제공할 수 있다.
즉, 실시예에서 제1 눈 힐링영상이란, 가상현실에 기반하여 내안근 및/또는 외안근 운동을 보조할 수 있는 영상일 수 있다.
도 20 내지 도 23은 본 발명의 실시예에 따른 눈 힐링영상을 설명하기 위한 도면의 일례들이다.
자세히, 도 20 내지 23을 참조하면, 실시예에서 프로세서(175)는, 제1 눈 힐링영상에 기반하여 적어도 둘 이상의 서로 다른 심도로 구현되는 객체를 표시할 수 있다.
이때, 실시예에서 프로세서(175)는, 표시된 적어도 둘 이상의 객체에 대한 심도와 위치를 소정의 기준(예컨대, 기설정된 패턴 등)에 따라서 변화시키며 표시할 수 있다. 즉, 실시예에서 프로세서(175)는, 객체를 3차원 공간상에서 자유롭게 움직이도록 하여, 대상자가 움직이는 객체를 보도록 따라서 안구운동을 하게하여, 대상자의 내안근 및 외안근 운동을 유도할 수 있다.
더하여, 실시예에서 프로세서(175)는, 소정의 기준(예컨대, 기설정된 주기 등)에 따라서, 각 객체 별 블러 처리를 적용 또는 해제할 수 있다.
예를 들면, 프로세서(175)는, 각 객체가 주기적으로 블러 처리가 적용되어 흐릿해지거나 또는 블러 처리가 해제되어 선명해지도록 할 수 있다.
이때, 일반적으로 내안근 및/또는 외안근 운동을 위해서는 심도가 변화하는 소정의 물체를 추적하며 응시하도록 하는 것이 바람직함을 고려하여, 본 발명의 실시예에서 프로세서(175)는, 소정의 패턴에 따라서, 제1 눈 힐링영상에 표시되는 적어도 둘 이상의 객체 중 어느 하나의 제1 객체에 블러 처리를 해제하여 선명하게 표시되도록 설정하고, 상기 블러 해제된 제1 객체에 대한 심도와 위치가 변화하도록 출력하여, 제1 눈 힐링영상을 시청하는 대상자가 제1 객체를 추적하며 응시하게 유도할 수 있다.
보다 상세히, 실시예에서 프로세서(175)는, 제1 눈 힐링영상 내 복수의 객체 중 임의로 결정된 제1 객체에 블러 처리를 해제하여 선명하게 표시할 수 있다.
또한, 프로세서(175)는, 선명하게 표시되는 제1 객체가 소정의 패턴에 따라서 심도가 변화하며 표시되게 할 수 있다.
예시적으로, 프로세서(175)는, 선명하게 표시되는 제1 객체가, 심도가 근경으로 표시되는 제1 객체(3-1)-중경으로 표시되는 제1 객체(3-2)-원경으로 표시되는 제1 객체(3-3)로 소정에 패턴에 따라 변화하며 출력되게 할 수 있다.
이때, 실시예에서 프로세서(175)는, 제1 객체에 대한 심도 변화와 함께, 제1 객체가 표시되는 위치 또한 소정의 설정(예컨대, 기설정된 위치 패턴 등)에 따라서 변화시키며 출력할 수 있다.
또한, 실시예에서 프로세서(175)는, 소정의 기준에 따라서, 상술된 제1 객체를 상기 제1 객체를 제외한 나머지 객체 중 어느 하나로 변환할 수 있다.
실시예로, 프로세서(175)는, 적어도 둘 이상의 서로 다른 심도로 구현되는 객체를 표시하는 제1 눈 힐링영상 내 복수의 객체 중 어느 하나를 제1 객체로 선정하여 동작한 이후, 소정의 타임 슬라이스(예컨대, 1분 등)마다 주기적으로 상기 제1 객체를 제외한 나머지 객체 중 어느 하나를 제1 객체로 재선정하여 동작시킬 수 있다.
예를 들어, 프로세서(175)는, 제1 눈 힐링영상 내 제1 오브젝트, 제2 오브젝트 및 제3 오브젝트 중, 제1 오브젝트를 제1 객체로 선정하여 상술된 제1 눈 힐링영상 프로세스를 동작할 수 있다.
그리고 프로세서(175)는, 소정의 타임 슬라이스가 경과하면, 제2 오브젝트 및 제3 오브젝트 중 어느 하나를 제1 객체로 선정하여 제1 눈 힐링영상 프로세스를 동작할 수 있다.
여기서, 실시예에 따른 프로세서(175)는, 상기 제1 객체를 제외한 나머지 객체들에는 블러 처리를 적용하여 흐릿하게 표시할 수 있다.
또한, 프로세서(175)는, 상기 나머지 객체들의 심도나 위치에는 변화가 발생하기 않게 할 수 있다.
즉, 실시예에서 프로세서(175)는, 소정의 기준에 따라서 블러 처리가 해제되며 선명하게 표시되는 제1 객체는 심도와 위치에 변화를 주며 출력하고, 제1 객체를 제외한 나머지 객체에는 블러 처리를 적용하여 흐릿하게 표시함과 동시에 심도와 위치에 변화를 주지 않음으로써, 제1 객체에 대한 집중도를 보다 증진시킬 수 있고, 이를 통해 대상자에 대한 내안근 및/또는 외안근 운동의 효과를 향상시킬 수 있다.
또한, 도 23을 더 참조하면, 실시예에서 프로세서(175)는, 눈 힐링영상 내 복수의 객체에 더하여, 적어도 하나 이상의 배경 오브젝트를 더 표시할 수 있다.
여기서, 실시예에 따른 배경 오브젝트란, 눈 힐링영상 내에서 상술된 기능 동작을 수행하는 복수의 객체 이외에 상기 눈 힐링영상을 통해 표시되는 나머지 객체를 의미할 수 있다.
자세히, 실시예에서 프로세서(175)는, 적어도 하나 이상의 배경 오브젝트를 눈 힐링영상 내 임의의 위치와 심도 상에 표시할 수 있다.
예를 들면, 프로세서(175)는, 가상현실에 기반한 눈 힐링영상 내 근경에 표시되는 제1 배경 오브젝트(4-1), 중경에 표시되는 제2 배경 오브젝트(4-2) 그리고 원경에 표시되는 제3 배경 오브젝트(4-3)를 적어도 둘 이상의 객체와 함께 출력할 수 있다.
이떄, 실시예에서 프로세서(175)는, 위와 같이 표시되는 배경 오브젝트를 해당하는 배경 오브젝트에 대응되는 객체에 적용된 블러 처리 유무에 따라서 동일하게 블러 처리를 적용 또는 해제할 수 있다.
상세히, 실시예에서 프로세서(175)는, 눈 힐링영상 내 임의의 객체와 동일한 심도(깊이)를 가지는 적어도 하나 이상의 배경 오브젝트를 검출할 수 있다.
또한, 프로세서(175)는, 검출된 배경 오브젝트에 대하여, 상기 임의의 객체에 적용된 블러 처리를 동일하게 적용할 수 있다.
실시예에서, 프로세서(175)는, 임의의 객체에 블러 처리가 적용된 경우, 해당 객체와 동일한 심도를 가지는 적어도 하나 이상의 배경 오브젝트에도 동일하게 블러 처리를 적용할 수 있다.
반대의 경우도 마찬가지로, 프로세서(175)는, 임의의 객체에 블러 처리가 해제된 경우, 해당 객체와 동일한 심도를 가지는 적어도 하나 이상의 배경 오브젝트에도 동일하게 블러 처리를 해제할 수 있다.
즉, 실시예에서 프로세서(175)는, 눈 힐링영상 내 복수의 객체 중에서 선명하게 표시되는 제1 객체의 주변에 있는 배경 오브젝트는, 제1 객체와 같이 선명하게 표시되도록 하고, 나머지 흐릿하게 표시되는 객체의 주변에 있는 배경 오브젝트는, 나머지 객체와 같이 흐릿하게 표시되게 할 수 있다.
이를 통해, 프로세서(175)는, 대상자가 눈 힐링영상을 통한 안구 운동을 수행할 시, 선명하게 표시되는 제1 객체를 보다 원활하게 추적하게 할 수 있고, 해당 눈 힐링영상이 제공하는 가상현실 공간 상에서 구현되는 심도를 보다 쉽게 인식하도록 보조할 수 있다.
또한, 이와 같이 실시예에서 프로세서(175)는, 가상현실 영상(제1 눈 힐링영상)을 기반으로 대상자의 내안근 및/또는 외안근 운동을 쉽고 편리하게 수행하도록 하여, 일상생활에서의 안구 활동만으로는 수행되기 어려운 안구 케어가 효과적으로 구현되게 할 수 있다.
또한, 실시예에서 프로세서(175)는, 대상자의 눈 건강 상태정보에 따른 추천 영양제 정보를 제공할 수 있다.
자세히, 실시예에서 프로세서(175)는, 대상자의 눈 건강 상태정보에 따라서 해당 대상자에게 섭취가 필요하다고 판단되는 맞춤형 추천 영양제 정보를 제공할 수 있다.
실시예로, 프로세서(175)는, 대상자의 눈 건강 상태정보에 기반하여 해당 대상자에게 필요하다고 판단되는 영양소 정보를 획득할 수 있다.
예를 들면, 프로세서(175)는, 대상자의 눈 건강 상태정보에 기반하여 해당 대상자에게 루테인 및/또는 지아잔틴 영양소가 필요하다고 판단할 수 있다.
또한, 실시예에서 프로세서(175)는, 외부의 서버(예컨대, 웹 서버 등)와 연동하여, 해당 대상자에게 필요하다고 판단되는 영양소를 포함하는 영양제에 대한 정보를 획득할 수 있다.
예를 들어, 프로세서(175)는, 웹 서버와 연동하여 해당 대상자에게 필요하다고 판단된 루테인 및/또는 지아잔틴 영양소를 포함하는 영양제 정보를 획득할 수 있다.
또한, 실시예에서 프로세서(175)는, 외부의 서버(예컨대, 웹 서버 등)와 연동하여, 해당하는 영양제를 판매하는 판매처 정보(예컨대, 판매 사이트 정보 등)를 획득할 수 있다.
또한, 실시예에서 프로세서(175)는, 획득된 영양소 정보, 영양제 정보 및/또는 판매처 정보에 기반하여, 대상자에게 최적화된 추천 영양제 정보를 생성 및 제공할 수 있다.
즉, 실시예에서 프로세서(175)는, 대상자의 눈 건강 상태정보를 기반으로 해당 대상자 맞춤형 추천 영양제 정보를 제공함으로써, 눈 건강상태 측정 결과에 기반한 합리적인 방식의 지속적인 눈 건강 관리가 수행되게 효과적으로 보조할 수 있다.
이상과 같이, 본 발명의 실시예에 따른 눈 건강 측정 시스템은, 눈 건강과 관련된 서베이(survey) 프로세스를 기반으로 눈 건강을 측정하고자 하는 대상자(즉, 피측정자)에 대한 맞춤형 눈 건강 측정방법을 결정하고, 결정된 눈 건강 측정방법을 기초로 상기 측정 대상자에 대한 눈 건강 측정 서비스를 수행함으로써, 대상자의 눈 건강상태를 분석할 수 있는 일관적이고 신뢰성 있는 기반 데이터를 체계적인 계측 방법을 통하여 획득할 수 있고, 이를 바탕으로 신뢰도 높은 분석 결과를 도출할 수 있다.
또한, 본 발명의 실시예에 따른 눈 건강 측정 시스템은, 눈 건강상태 서베이 분석 결과를 기초로 측정 대상자의 현재 눈 건강상태를 파악하고, 이를 토대로 해당 측정 대상자에게 필요한 눈 건강 측정방법을 선정해 제공함으로써, 대상자 개개인 별로 최적화된 맞춤형의 눈 건강 측정 프로세스를 진행할 수 있고, 이를 통해 눈 건강상태 측정에 소요되는 비용이나 노력을 절감할 수 있으며, 결과적으로 눈 건강 측정 서비스의 효율을 향상시킬 수 있다.
또한, 본 발명의 실시예에 따른 눈 건강 측정 시스템은, 눈 건강상태 측정 결과를 그래픽 이미지로 구현하여 제공함으로써, 눈 건강상태 측정 결과를 보다 직관적으로 인식하게 할 수 있다.
- 3) 눈 건강 측정 컴퓨팅 디바이스(600: Computing Device)
본 발명의 실시예에서 눈 건강 측정 컴퓨팅 디바이스(600: 이하, 컴퓨팅 디바이스)는, 눈 건강상태 측정 결과에 기반하여 측정 대상자에게 최적화된 맞춤형 눈 건강 관리를 다각화된 관점에서 보조하는 눈 건강 솔루션 서비스를 구현할 수 있는 눈 관리 애플리케이션을 실행할 수 있다.
실시예에서, 이와 같은 컴퓨팅 디바이스(600)는, 눈 관리 애플리케이션이 설치된 다양한 타입(예컨대, 모바일 타입 또는 데스크탑 타입)의 컴퓨팅 디바이스(600)를 포함할 수 있다.
1. 모바일 타입 컴퓨팅 디바이스(400: Mobile type computing device)
도 24는 본 발명의 실시예에 따른 모바일 타입의 컴퓨팅 디바이스(400)의 내부 블록도이다.
도 24를 참조하면, 본 발명의 실시예에서 모바일 타입 컴퓨팅 디바이스(400)는, 눈 관리 애플리케이션(411)이 설치된 스마트 폰이나 테블릿 PC와 같은 모바일 장치일 수 있다.
예를 들어, 모바일 타입 컴퓨팅 디바이스(400)는, 스마트 폰(smart phone), 휴대폰, 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 태블릿 PC(tablet PC) 등이 포함될 수 있다.
도 7을 더 참조하면, 예시적인 구현에 따른 모바일 타입 컴퓨팅 디바이스(400)는, 메모리(410), 프로세서 어셈블리(420), 통신 모듈(430), 인터페이스 모듈(440), 입력 시스템(450), 센서 시스템(460) 및 디스플레이 시스템(470)을 포함할 수 있다. 이러한 구성요소들은 모바일 타입 컴퓨팅 디바이스(400)의 하우징 내에 포함되도록 구성될 수 있다.
자세히, 메모리(410)에는, 눈 관리 애플리케이션(411)이 저장되며, 눈 관리 애플리케이션(411)에는 눈 건강 측정 서비스를 구현할 수 있는 환경을 제공하기 위한 각종 응용 프로그램, 데이터 및 명령어 중 어느 하나 이상을 저장할 수 있다.
예를 들면, 메모리(410)는, 눈 건강 측정방법 정보(실시예에서, 입체시 측정 콘텐츠 정보 및/또는 시야측정 콘텐츠 정보 등) 및/또는 눈 건강 상태정보 등을 포함할 수 있다.
즉, 메모리(410)는 눈 건강 측정 서비스 환경을 생성하기 위해 사용될 수 있는 명령 및 데이터를 저장할 수 있다.
또한, 메모리(410)는, 적어도 하나 이상의 비일시적 컴퓨터 판독 가능 저장매체와, 일시적 컴퓨터 판독 가능 저장매체를 포함할 수 있다. 예를 들어, 메모리(410)는, ROM, EPROM, 플래시 드라이브, 하드 드라이브 등과 같은 다양한 저장기기일 수 있고, 인터넷(internet)상에서 상기 메모리(410)의 저장 기능을 수행하는 웹 스토리지(web storage)를 포함할 수 있다.
프로세서 어셈블리(420)는, 눈 건강 측정 서비스 환경을 구현하기 위한 다양한 작업을 수행하기 위해, 메모리(410)에 저장된 눈 관리 애플리케이션(411)의 명령들을 실행할 수 있는 적어도 하나 이상의 프로세서를 포함할 수 있다.
실시예에서 프로세서 어셈블리(420)는, 눈 건강 측정 서비스를 제공하기 위하여 메모리(410)의 눈 관리 애플리케이션(411)을 통해 구성요소의 전반적인 동작을 컨트롤할 수 있다.
이러한 프로세서 어셈블리(420)는, 중앙처리장치(CPU) 및/또는 그래픽 프로세서 장치(GPU)를 포함할 수 있다. 또한, 프로세서 어셈블리(420)는, ASICs (application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 제어기(controllers), 마이크로 컨트롤러(micro-controllers), 마이크로 프로세스(microprocessors), 기타 기능 수행을 위한 전기적 유닛 중 적어도 하나를 포함하여 구현될 수 있다.
통신 모듈(430)은, 다른 컴퓨팅 장치(예컨대, 눈 건강 측정기(100) 및/또는 눈 건강 플랫폼 관리서버(300) 등)와 통신하기 위한 하나 이상의 장치를 포함할 수 있다. 이러한 통신 모듈(430)은, 무선 네트워크를 통해 통신할 수 있다.
자세히, 통신 모듈(430)은, 눈 건강 측정 서비스 환경을 구현하기 위한 컨텐츠 소스를 저장한 컴퓨팅 장치와 통신할 수 있으며, 사용자 입력을 받은 컨트롤러와 같은 다양한 사용자 입력 컴포넌트와 통신할 수 있다.
실시예에서 통신 모듈(430)은, 눈 건강 측정 서비스와 관련된 각종 데이터를 눈 건강 측정기(100), 눈 건강 플랫폼 관리서버(300) 및/또는 다른 컴퓨팅 디바이스(600)와 송수신할 수 있다.
이러한 통신 모듈(430)은, 이동통신을 위한 기술표준들 또는 통신방식(예를 들어, LTE(Long Term Evolution), LTE-A(Long Term Evolution-Advanced),5G NR(New Radio), WIFI) 또는 근거리 통신방식 등을 수행할 수 있는 통신장치를 통해 구축된 이동 통신망 상에서 기지국, 외부의 단말, 임의의 서버 중 적어도 하나와 무선으로 데이터를 송수신할 수 있다.
센서 시스템(460)은, 이미지 센서(461), 위치 센서(IMU, 463), 오디오 센서(465), 거리 센서, 근접 센서, 접촉 센서 등 다양한 센서를 포함할 수 있다.
이미지 센서(461)는, 모바일 타입 컴퓨팅 디바이스(400) 주위의 물리적 공간에 대한 이미지 및/또는 영상을 캡처할 수 있다.
실시예에서 이미지 센서(461)는, 눈 건강 측정 서비스에 관련된 영상(실시예로, 안구 촬영영상 등)을 촬영하여 획득할 수 있다.
또한, 이미지 센서(461)는, 모바일 타입 컴퓨팅 디바이스(400)의 전면 또는/및 후면에 배치되어 배치된 방향측을 촬영하여 영상을 획득할 수 있으며, 모바일 타입 컴퓨팅 디바이스(400)의 외부를 향해 배치된 카메라를 통해 물리적 공간을 촬영할 수 있다.
이러한 이미지 센서(461)는, 이미지 센서장치와 영상 처리 모듈을 포함할 수 있다. 자세히, 이미지 센서(461)는, 이미지 센서장치(예를 들면, CMOS 또는 CCD)에 의해 얻어지는 정지영상 또는 동영상을 처리할 수 있다.
또한, 이미지 센서(461)는, 영상 처리 모듈을 이용하여 이미지 센서장치를 통해 획득된 정지영상 또는 동영상을 가공해 필요한 정보를 추출하고, 추출된 정보를 프로세서에 전달할 수 있다.
이러한 이미지 센서(461)는, 적어도 하나 이상의 카메라를 포함하는 카메라 어셈블리일 수 있다. 카메라 어셈블리는, 가시광선 대역을 촬영하는 일반 카메라를 포함할 수 있으며, 적외선 카메라, 스테레오 카메라 등의 특수 카메라를 더 포함할 수 있다.
IMU(463)는 모바일 타입 컴퓨팅 디바이스(400)의 움직임 및 가속도 중 적어도 하나 이상을 감지할 수 있다. 예를 들어, 가속도계, 자이로스코프, 자력계와 같은 다양한 위치 센서의 조합으로 이루어질 수 있다. 또한, 통신 모듈(430)의 GPS와 같은 위치 통신 모듈(430)과 연동하여, 모바일 타입 컴퓨팅 디바이스(400) 주변의 물리적 공간에 대한 공간 정보를 인식할 수 있다.
또한, IMU(463)는, 검출된 위치 및 방향을 기초로 사용자의 시선 방향 및 머리 움직임을 검출 및 추적하는 정보를 검출할 수 있다.
또한, 일부 구현들에서, 눈 관리 애플리케이션(411)은 이러한 IMU(463) 및 이미지 센서(461)를 사용하여 물리적 공간 내의 사용자의 위치 및 방향을 결정하거나 물리적 공간 내의 특징 또는 객체를 인식할 수 있다.
오디오 센서(465)는, 모바일 타입 컴퓨팅 디바이스(400) 주변의 소리를 인식할 수 있다.
자세히, 오디오 센서(465)는, 모바일 타입 컴퓨팅 디바이스(400) 사용자의 음성 입력을 감지할 수 있는 마이크로폰을 포함할 수 있다.
실시예에서 오디오 센서(465)는, 눈 건강 측정 서비스를 위해 필요한 음성 데이터를 사용자로부터 입력 받을 수 있다.
인터페이스 모듈(440)은, 모바일 타입 컴퓨팅 디바이스(400)를 하나 이상의 다른 장치와 통신 가능하게 연결할 수 있다. 자세히, 인터페이스 모듈(440)은, 하나 이상의 상이한 통신 프로토콜과 호환되는 유선 및/또는 무선 통신 장치를 포함할 수 있다.
이러한 인터페이스 모듈(440)을 통해 모바일 타입 컴퓨팅 디바이스(400)는, 여러 입출력 장치들과 연결될 수 있다.
예를 들어, 인터페이스 모듈(440)은, 헤드셋 포트나 스피커와 같은 오디오 출력장치와 연결되어, 오디오를 출력할 수 있다.
예시적으로 오디오 출력장치가 인터페이스 모듈(440)을 통해 연결되는 것으로 설명하였으나, 모바일 타입 컴퓨팅 디바이스(400) 내부에 설치되는 실시예도 포함될 수 있다.
이러한 인터페이스 모듈(440)은, 유/무선 헤드셋 포트(port), 외부 충전기 포트(port), 유/무선 데이터 포트(port), 메모리 카드(memory card) 포트, 식별 모듈이 구비된 장치를 연결하는 포트(port), 오디오 I/O(Input/Output) 포트(port), 비디오 I/O(Input/Output) 포트(port), 이어폰 포트(port), 전력 증폭기, RF 회로, 송수신기 및 기타 통신 회로 중 적어도 하나를 포함하여 구성될 수 있다.
입력 시스템(450)은 눈 건강 측정 서비스와 관련된 사용자의 입력(예를 들어, 제스처, 음성 명령, 버튼의 작동 또는 다른 유형의 입력)을 감지할 수 있다.
자세히, 입력 시스템(450)은 버튼, 터치 센서 및 사용자 모션 입력을 수신하는 이미지 센서(461)를 포함할 수 있다.
또한, 입력 시스템(450)은, 인터페이스 모듈(440)을 통해 외부 컨트롤러와 연결되어, 사용자의 입력을 수신할 수 있다.
디스플레이 시스템(470)은, 눈 건강 측정 서비스와 관련된 다양한 정보를 그래픽 이미지로 출력할 수 있다.
이러한 디스플레이는, 액정 디스플레이(liquid crystal display, LCD), 박막 트랜지스터 액정 디스플레이(thin film transistor-liquid crystal display, TFT LCD), 유기 발광 다이오드(organic light-emitting diode, OLED), 플렉서블 디스플레이(flexible display), 3차원 디스플레이(3D display), 전자잉크 디스플레이(e-ink display) 중에서 적어도 하나를 포함할 수 있다.
이러한 모바일 타입 컴퓨팅 디바이스(400)의 하우징 내에는 상기 구성요소들이 배치될 수 있으며, 사용자 인터페이스는 사용자 터치 입력을 수신하도록 구성된 디스플레이(471) 상에 터치 센서(473)를 포함할 수 있다.
자세히, 디스플레이 시스템(470)은, 이미지를 출력하는 디스플레이(471)와, 사용자의 터치 입력을 감지하는 터치 센서(473)를 포함할 수 있다.
예시적으로 디스플레이(471)는 터치 센서(473)와 상호 레이어 구조를 이루거나 일체형으로 형성됨으로써, 터치 스크린으로 구현될 수 있다. 이러한 터치 스크린은, 모바일 타입 컴퓨팅 디바이스(400)와 사용자 사이의 입력 인터페이스를 제공하는 사용자 입력부로써 기능함과 동시에, 모바일 타입 컴퓨팅 디바이스(400)와 사용자 사이의 출력 인터페이스를 제공할 수 있다.
2. 데스크탑 타입 컴퓨팅 디바이스(500: Desktop type computing device)
데스크탑 타입 컴퓨팅 디바이스(500)의 상기 구성요소에 대한 설명 중 중복되는 내용은 모바일 타입 컴퓨팅 디바이스(400)의 구성요소에 대한 설명으로 대체하기로 하며, 이하에서는 모바일 타입 컴퓨팅 디바이스(400)와의 차이점을 중심으로 설명한다.
다른 예시에서 데스크탑 타입 컴퓨팅 디바이스(500)는, 눈 관리 애플리케이션이 설치된 고정형 데스크탑 PC, 노트북 컴퓨터(laptop computer), 울트라북(ultrabook)과 같은 퍼스널 컴퓨터 등과 같이 유/무선 통신을 기반으로 눈 건강 측정 서비스를 실행하기 위한 프로그램이 설치된 장치를 더 포함할 수 있다.
또한, 데스크탑 타입 컴퓨팅 디바이스(500)는, 유저 인터페이스 시스템을 포함하여, 사용자 입력(예컨대, 터치 입력, 마우스 입력, 키보드 입력, 제스처 입력, 가이드 도구를 이용한 모션 입력 등)을 수신할 수 있다.
예시적으로, 데스크탑 타입 컴퓨팅 디바이스(500)는, 유저 인터페이스 시스템을 다양한 통신 프로토콜로 마우스, 키보드, 제스처 입력 컨트롤러, 이미지 센서(예컨대, 카메라) 및 오디오 센서 등 적어도 하나의 장치와 연결되어, 사용자 입력을 획득할 수 있다.
또한, 데스크탑 타입 컴퓨팅 디바이스(500)는, 유저 인터페이스 시스템을 통해 외부 출력 장치와 연결될 수 있으며, 예컨대, 디스플레이 장치, 오디오 출력 장치 등에 연결될 수 있다.
또한, 예시적인 구현에 따른 데스크탑 타입 컴퓨팅 디바이스(500)는, 메모리, 프로세서 어셈블리, 통신 모듈, 유저 인터페이스 시스템 및 입력 시스템을 포함할 수 있다. 이러한 구성요소들은 데스크탑 타입 컴퓨팅 디바이스(500)의 하우징 내에 포함되도록 구성될 수 있다.
데스크탑 타입 컴퓨팅 디바이스(500)의 상기 구성요소에 대한 설명은 모바일 타입 컴퓨팅 디바이스(400)의 구성요소에 대한 설명으로 대체하기로 한다.
다만, 본 발명의 실시예에서 도 7에 도시된 구성요소들은, 컴퓨팅 디바이스(600)를 구현하는데 있어 필수적인 것은 아니어서, 본 명세서 상에서 설명되는 컴퓨팅 디바이스(600)는 위에서 열거된 구성요소들 보다 많거나, 또는 적은 구성요소들을 가질 수 있다.
또한, 본 발명의 실시예에서 따라서, 컴퓨팅 디바이스(600)에서 수행되는 상술된 각종 기능동작의 일부는, 눈 건강 측정기(100) 및/또는 눈 건강 플랫폼 관리서버(300) 등에서 수행될 수도 있는 등 다양한 실시예가 가능할 수 있다.
또한, 이하의 실시예에서는, 효과적인 설명을 위하여 컴퓨팅 디바이스(600)를 모바일 타입 컴퓨팅 디바이스(400)에 기준하여 설명하나 이에 제한되는 것은 아니다.
- 가상현실 기반의 눈 건강 측정 서비스 제공방법
이하, 첨부된 도면을 참조하여 본 발명의 실시예에 따른 눈 건강 측정 시스템이 가상현실을 이용하여 눈 건강 측정 서비스를 제공하는 방법에 대해 상세히 설명한다.
이때, 상술된 설명과 중복되는 내용은 요약되거나 생략될 수 있다.
본 발명의 실시예에 따른 가상현실 기반의 눈 건강 측정 시스템은, 상술된 눈 건강 측정기(100), 헤드 마운티드 디스플레이(200), 눈 건강 플랫폼 관리서버(300) 및 모바일 타입 컴퓨팅 디바이스(400) 중 적어도 일부에 기반하여 구현될 수 있다.
자세히, 실시예예서 눈 건강 측정 시스템은, 눈 건강 측정장치 즉, 눈 건강 측정기(100) 및 헤드 마운티드 디스플레이(200)에 기반하여 구현될 수 있다. (제1 시스템 모드)
자세히, 실시예에서 눈 건강 측정 시스템은, 눈 건강 측정 서비스를 구현하는 눈 건강 측정기(100)와, 눈 건강 측정 서비스와 관련된 가상현실 환경을 구현하는 헤드 마운티드 디스플레이(200)에 기반하여, 눈 건강 측정 서비스를 제공할 수 있다.
다른 실시예에서, 눈 건강 측정 시스템은, 헤드 마운티드 디스플레이(200) 및 눈 건강 플랫폼 관리서버(300)에 기반하여 구현될 수 있다. (제2 시스템 모드)
자세히, 다른 실시예에서 눈 건강 측정 시스템은, 눈 건강 플랫폼 관리서버(300)를 기초로 헤드 마운티드 디스플레이(200)에서 눈 건강 측정 서비스가 동작할 수 있는 환경을 제공하고, 이러한 동작 환경을 제공받은 헤드 마운티드 디스플레이(200)에 기반하여 눈 건강 측정 서비스를 제공할 수 있다.
또 다른 실시예에서, 눈 건강 측정 시스템은, 눈 건강 측정기(100) 및 웹 서버(Web server)에 기반하여 구현될 수 있다. (제3 시스템 모드)
자세히, 또 다른 실시예에서 눈 건강 측정 시스템은, 눈 건강 측정기(100)와 외부의 웹 서버를 상호 연동하여, 온라인(online) 상에서 눈 건강 측정 서비스를 제공할 수 있다.
또 다른 실시예에서, 눈 건강 측정 시스템은, 눈 건강 측정장치 즉, 눈 건강 측정기(100) 및 헤드 마운티드 디스플레이(200)와 모바일 타입 컴퓨팅 디바이스(400)에 기반하여 구현될 수 있다. (제4 시스템 모드)
즉, 실시예에서 눈 건강 측정 시스템은, 눈 건강상태 측정 서비스를 구현하는 눈 건강 측정기(100)와, 눈 건강상태 측정 서비스와 관련된 가상현실 환경을 구현하는 헤드 마운티드 디스플레이(200) 및 눈 건강상태 측정 결과를 그래픽 이미지로 제공하는 모바일 타입 컴퓨팅 디바이스(400)에 기반하여, 눈 건강상태 측정 서비스를 제공할 수 있다.
본 발명의 실시예에 따른 가상현실 기반의 눈 건강 측정 시스템은, 상술된 4가지의 시스템 모드 중 어느 모드로도 구현될 수 있으나, 이하에서는 효과적인 설명을 위하여 눈 건강 측정기(100) 및 헤드 마운티드 디스플레이(200)(즉, 눈 건강 측정장치)와 모바일 타입 컴퓨팅 디바이스(400)에 기반하여 구현되는 제4 시스템 모드에 기준하여 설명하기로 한다.
이하, 본 발명의 실시예에 따른 눈 건강 측정기(100)의 프로세서(175)가 헤드 마운티드 디스플레이(200) 및 모바일 타입 컴퓨팅 디바이스(400)와 연동하여, 가상현실 기반의 눈 건강 측정 서비스를 제공하는 방법을 첨부된 도면을 참조하여 상세히 설명한다.
도 25는 본 발명의 실시예에 따른 가상현실 기반의 눈 건강 측정방법을 설명하기 위한 흐름도이다.
도 25를 참조하면, 본 발명의 실시예에 따른 눈 건강 측정기(100)의 프로세서(175)는, 가상현실에 기반한 눈 건강상태 측정을 실행할 수 있다. (S201)
자세히, 실시예에서 프로세서(175)는, 눈 건강 측정 서비스에 기반하여 복수의 눈 건강 측정방법을 제공할 수 있다.
실시예로, 프로세서(175)는, 가상현실 영상에 기초한 시력측정, 시야측정, 난시측정, 황반변성 측정, 색맹측정, 입체시 측정, 복시측정, 대비감도 측정, 외안근 측정 및/또는 동체시력 측정 등을 포함하는 눈 건강 측정방법을 제공할 수 있다.
또한, 실시예에서 프로세서(175)는, 제공되는 복수의 눈 건강 측정방법 중, 적어도 하나 이상의 눈 건강 측정방법을 결정할 수 있다.
실시예로, 프로세서(175)는, 대상자에 대한 사전 눈 건강상태 서베이 결과를 기반으로 해당 대상자에 대하여 수행할 적어도 하나 이상의 눈 건강 측정방법 결정할 수 있다.
또한, 실시예에서 프로세서(175)는, 사용자(실시예에서, 대상자 및/또는 측정자) 입력에 기초하여 해당하는 대상자에 대하여 수행할 적어도 하나 이상의 눈 건강 측정방법을 결정할 수도 있다.
위와 같이, 대상자에 대하여 수행할 적어도 하나 이상의 눈 건강 측정방법을 결정한 프로세서(175)는, 결정된 적어도 하나 이상의 눈 건강 측정방법을 기반으로 눈 건강상태 측정 프로세스를 실행할 수 있다.
이하의 실시예에서는, 효과적인 설명을 위하여 복수의 눈 건강 측정방법 중 제1 눈 건강 측정방법으로 입체시 측정 콘텐츠를 설정하고, 제2 눈 건강 측정방법으로 시력측정 콘텐츠를 설정하여 눈 건강 측정을 실행하는 것으로 설명하나, 이는 일 실시예일 뿐, 실시예에 따라서 다양한 눈 건강 측정 콘텐츠(예컨대, 시야측정, 난시측정, 황반변성 측정, 색맹측정, 복시측정, 대비감도 측정, 외안근 측정 및/또는 동체시력 측정 등)에 기반한 적어도 일 회 이상의 눈 건강상태 측정이 수행될 수 있다.
보다 상세히, 실시예에서 프로세서(175)는, 결정된 제1 눈 건강 측정방법에 기반하여 대상자에 대한 눈 건강상태 측정을 실행할 수 있다.
자세히, 실시예에서 프로세서(175)는, 제1 눈 건강 측정방법으로 입체시 측정 콘텐츠를 설정할 수 있고, 이를 기초로 대상자에 대한 눈 건강상태 측정을 수행할 수 있다.
여기서, 실시예에 따른 입체시 측정 콘텐츠는, 양안의 시차를 이용하여 정확한 심도(깊이)를 인식할 수 있는지를 측정하는 콘텐츠일 수 있다.
즉, 실시예에서 프로세서(175)는, 입체시 측정 콘텐츠에 기반한 눈 건강 측정을 실행할 수 있다.
그리고 프로세서(175)는, 실행된 입체시 측정 콘텐츠를 기초로, 헤드 마운티드 디스플레이(200)와 연동하여, 가상현실 영상에 기반한 적어도 셋 이상의 시표를 표시할 수 있다.
예를 들어, 프로세서(175)는, 가상현실 영상 상에 일렬로 나열된 4개의 시표를 표시할 수 있다.
또한, 실시예에서 프로세서(175)는, 표시된 복수의 시표 중, 심도(깊이)가 타 시표들과 다른 시표인 변위시표를 선택할 수 있는 입체시 측정 인터페이스(제1 눈 건강상태 측정 인터페이스)를 제공할 수 있다.
자세히, 프로세서(175)는, 하나의 변위시표를 포함하는 복수의 시표를 가상현실 영상 상에 표시할 수 있고, 표시된 복수의 시표 중 변위시표를 선택하는 입체시 측정 인터페이스를 제공할 수 있다.
이때, 실시예에서 프로세서(175)는, 타 시표들과 다른 심도를 가지는 변위시표를 가상현실 영상 상에서 구현하기 위하여, 변위시표로 표시하고자 하는 제1 시표의 위치 및/또는 크기를 조정할 수 있다.
실시예에서, 프로세서(175)가 위와 같은 입체시 측정 콘텐츠에 기반한 눈 건강 측정을 실행하는 상세한 설명은, 상술된 가상현실 기반의 눈 건강 측정방법에 기술된 입체시 측정 콘텐츠에 대한 설명으로 대체하기로 한다.
한편, 실시예에서 프로세서(175)는, 서베이 인터페이스를 기초로 결정된 제2 눈 건강 측정방법에 기반하여 대상자에 대한 눈 건강상태 측정을 실행할 수 있다.
자세히, 실시예에서 프로세서(175)는, 제2 눈 건강 측정방법으로 시력측정 콘텐츠를 설정할 수 있고, 이를 기초로 대상자에 대한 눈 건강상태 측정을 수행할 수 있다.
여기서, 실시예에 따른 시력측정 콘텐츠는, 시력 및 초점 능력을 측정하는 콘텐츠일 수 있다.
실시예에서, 프로세서(175)가 위와 같은 시력측정 콘텐츠에 기반한 눈 건강 측정을 실행하는 구체적인 설명은, 상술된 가상현실 기반의 눈 건강 측정방법에 기술된 시력측정 콘텐츠에 대한 설명으로 대체하기로 한다.
또한, 도 19a 및 도 19b를 더 참조하면, 실시예에서 프로세서(175)는, 위와 같이 실행된 눈 건강상태 측정(실시예에서, 입체시 측정 및/또는 시력측정)에 따른 결과를 제공할 수 있다. (S203)
즉, 실시예에서 프로세서(175)는, 실행된 적어도 하나 이상의 눈 건강상태 측정에 대한 결과 정보인 눈 건강 상태정보를 제공할 수 있다.
여기서, 실시예에 따른 눈 건강 상태정보란, 눈 건강 측정 서비스를 기반으로 추정되는 대상자의 눈 건강상태에 대한 분석결과를 제공하는 정보로서, 실시예에서 대상자에 대하여 실행된 눈 건강상태 측정 별 결과점수(실시예로, 입체시 측정 결과점수 및/또는 시력측정 결과점수 등), 적어도 하나 이상의 결과점수를 기반으로 산출되는 통합점수(에컨대, 입체시 측정 결과점수와 시력측정 결과점수에 기반하여 산출된 평균점수 등) 및/또는 눈 건강 측정 결과를 기초로 획득된 예측 의심질환 정보(예컨대, 황반변성, 난시, 녹내장 등) 등을 포함할 수 있다.
자세히, 실시예에서 프로세서(175)는, 눈 건강상태 측정 과정에서 제공되는 눈 건강상태 측정 인터페이스(실시예에서, 입체시 측정 인터페이스 및/또는 시력측정 인터페이스 등)에 대한 대상자의 입력에 기초하여, 해당 대상자에 대한 눈 건강 상태정보를 획득할 수 있다.
이때, 프로세서(175)는, 대상자에 따라서 복수 회의 눈 건강상태 측정 데이터가 존재하는 경우, 복수의 눈 건강 상태정보에 기초하여 보다 정밀하게 분석된 결과 정보를 제공할 수 있다.
예를 들면, 프로세서(175)는, 복수 회 진행된 눈 건강상태 측정에 의하여 획득된 복수의 눈 건강 상태정보에 기반한 분석을 수행하여, 눈 건강상태에 대한 일회성의 측정만으로는 정확하게 파악하기 어려운 녹내장과 같은 질환(즉, 장기간에 걸쳐서 상태를 파악해야하는 질환 등)을 보다 정확하게 예측할 수 있다.
이를 통해, 프로세서(175)는, 눈 건강 측정 서비스의 성능을 보다 향상시킬 수 있다.
또한, 실시예에서 프로세서(175)는, 위와 같이 획득된 눈 건강 상태정보를, 도 19의 (a)와 같이, 디스플레이부(150)에 기반하여 출력할 수 있다.
또한, 프로세서(175)는, 대상자에 대한 눈 건강 상태정보를, 도 19의 (b)와 같이, 헤드 마운티드 디스플레이(200)와 연동하여 디스플레이유닛(220)을 통해 출력할 수 있다.
또한, 실시예에서 프로세서(175)는, 획득된 눈 건강 상태정보를 대상자 별로 데이터베이스화하여 저장 및 관리할 수 있다.
이를 통해, 프로세서(175)는, 눈 건강상태 측정의 결과 데이터들을 디지털화하여 편리하게 관리할 수 있다.
더하여, 실시예에서 프로세서(175)는, 위와 같이 획득된 눈 건강상태 측정 결과 데이터 즉, 눈 건강 상태정보를 모바일 타입 컴퓨팅 디바이스(400)의 눈 관리 애플리케이션(411)으로 송신하여 제공할 수 있다.
자세히, 실시예에서 프로세서(175)는, 눈 건강 상태정보를 모바일 타입 컴퓨팅 디바이스(400)의 눈 관리 애플리케이션(411)으로 송신할 수 있고, 이를 수신한 눈 관리 애플리케이션(411)의 기능 동작에 기초하여 해당하는 눈 건강 상태정보 및 눈 건강 상태정보에 기반한 각종 콘텐츠 정보를 다양한 방식으로 구현하여 제공할 수 있다.
도 26은 본 발명의 실시예에 따른 모바일 타입 컴퓨팅 디바이스(400)에서 눈 건강 솔루션 서비스가 제공되는 모습의 일례이다.
보다 상세히, 도 26을 참조하면, 실시예에서 프로세서(175)는, 눈 건강상태 측정 결과를 수신한 모바일 타입 컴퓨팅 디바이스(400)의 눈 관리 애플리케이션(411)과 연동하여, 해당 눈 건강상태 측정 결과에 기반한 눈 건강 솔루션 서비스를 제공할 수 있다. (S205)
여기서, 실시예에 따른 눈 건강 솔루션 서비스란, 모바일 타입 컴퓨팅 디바이스(400)의 눈 관리 애플리케이션(411)에 기반하여, 상술된 바와 같이 획득되는 눈 건강상태 측정 결과를 기초로, 측정 대상자에게 최적화된 맞춤형 눈 건강 관리를 위한 각종 서비스 콘텐츠를 다각화된 관점에서 제공하는 서비스일 수 있다.
실시예에서, 이러한 눈 건강 솔루션 서비스는, 측정 리포트 서비스, 아이케어(Eye care) 서비스, 눈 건강지식 서비스, 및/또는 전문가 상담 서비스 등을 포함할 수 있다.
도 27은 본 발명의 실시예에 따른 모바일 타입 컴퓨팅 디바이스(400)에서 눈 건강 솔루션 서비스를 제공하는 방법을 설명하기 위한 개념도이다.
이하, 도 27을 참조하여 프로세서(175)로부터 눈 건강 상태정보를 수신하는 모바일 타입 컴퓨팅 디바이스(400)의 눈 관리 애플리케이션(411)이 눈 건강 솔루션 서비스를 제공하는 방법을 상세히 설명한다.
자세히, 실시예에서 눈 건강 측정기(100)의 프로세서(175)로부터 눈 건강 상태정보를 수신하는 모바일 타입 컴퓨팅 디바이스(400)의 눈 관리 애플리케이션(411)은, 눈 건강 솔루션 서비스 프로세스를 구동할 수 있다. (S301)
실시예에서, 눈 관리 애플리케이션(411)은, 해당 애플리케이션에 대한 대상자의 입력에 기초하여 눈 건강 솔루션 서비스 프로세스를 구동할 수 있다.
또한, 실시예에서 눈 관리 애플리케이션(411)은, 구동된 눈 건강 솔루션 서비스를 기반으로 측정 리포트 서비스를 제공할 수 있다. (S303)
여기서, 실시예에 따른 측정 리포트 서비스란, 대상자에 대하여 실행된 눈 건강 측정 결과(실시예에서, 눈 건강 상태정보)를 그래픽 이미지로 보여주어 해당 대상자의 눈 건강상태 지표를 쉽고 직관적으로 파악하게 하는 서비스일 수 있다.
실시예에서, 눈 관리 애플리케이션(411)은, 측정 리포트 콘텐츠 및/또는 눈 운동지수 콘텐츠를 기초로 위와 같은 측정 리포트 서비스를 제공할 수 있다.
도 28a, 도 28b 및 도 28c는 본 발명의 실시예에 따른 측정 리포트 콘텐츠를 설명하기 위한 도면의 일례이다.
자세히, 도 28a, 도 28b 및 도 28c를 참조하면, 실시예에서 눈 관리 애플리케이션(411)은, 측정 리포트 콘텐츠에 기반하여 측정 리포트 서비스를 제공할 수 있다.
여기서, 실시예에 따른 측정 리포트 콘텐츠란, 눈 건강 상태정보 및 눈 건강 상태정보에 기반한 상세 결과정보를 그래픽 이미지로 출력하여 제공하는 콘텐츠일 수 있다.
이때, 실시예에 따른 상세 결과정보는, 눈 건강 상태정보에 대한 측정자의 코멘트 및/또는 복수 회의 눈 건강상태 측정에 따른 눈 건강 상태정보의 변화추이 그래프 등을 포함할 수 있다.
보다 상세히, 실시예에서 눈 관리 애플리케이션(411)은, 적어도 일 회 이상 실행된 눈 건강 측정방법 각각에 대한 눈 건강 상태정보 및 상세 결과정보를 획득할 수 있다.
그리고 눈 관리 애플리케이션(411)은, 획득된 눈 건강 상태정보 및 상세 결과정보를 그래픽 이미지화 하여 제공하는 측정 리포트 콘텐츠를 생성할 수 있다.
구체적으로, 눈 관리 애플리케이션(411)은, 눈 건강 측정방법 별 결과점수(예컨대, 입체시 측정 결과점수 및/또는 시력측정 결과점수 등), 적어도 하나 이상의 결과점수를 기반으로 산출되는 통합점수(예컨대, 입체시 측정 결과점수와 시력측정 결과점수에 기반하여 산출된 평균점수 등) 및/또는 눈 건강 측정 결과를 기초로 획득된 예측 의심질환 정보(예컨대, 황반변성, 난시 및/또는 녹내장 등)를 그래픽 이미지화하여 측정 리포트 콘텐츠를 생성할 수 있다.
더하여, 눈 관리 애플리케이션(411)은, 눈 건강 측정방법 별 코멘트(예컨대, 측정자의 결과 요약 코멘트 등) 및/또는 눈 건강 상태 변화추이 그래프 등을 그래픽 이미지화하여 측정 리포트 콘텐츠를 생성할 수 있다.
또한, 눈 관리 애플리케이션(411)은, 위와 같이 생성된 측정 리포트 콘텐츠를 출력하여 측정 리포트 서비스를 제공할 수 있다.
이와 같이, 눈 관리 애플리케이션(411)은, 획득된 눈 건강 상태정보를 기반으로 측정 리포트 콘텐츠를 생성해 제공함으로써, 대상자가 자신의 눈 건강상태 측정 결과를 쉽고 직관적으로 인지하게 할 수 있다.
도 29는 본 발명의 실시예에 따른 눈 운동지수 콘텐츠를 설명하기 위한 도면의 일례이다.
또한, 도 29를 참조하면, 실시예에서 눈 관리 애플리케이션(411)은, 눈 운동지수 콘텐츠에 기반하여 측정 리포트 서비스를 제공할 수 있다.
여기서, 실시예에 따른 눈 운동지수 콘텐츠란, 후술되는 아이케어 서비스에 기초한 대상자의 눈 운동량을 측정하고, 이를 기초로 눈 운동량 정보를 생성하여 제공하는 콘텐츠일 수 있다.
실시예에서, 눈 관리 애플리케이션(411)은, 눈 운동지수 콘텐츠에 기반하여, 대상자에 대한 눈 운동지수 그래프, 일 눈 운동량 점수정보 및/또는 눈 운동 항목별 점수정보 등을 눈 운동량 정보로 제공할 수 있다.
자세히, 눈 관리 애플리케이션(411)은, 후술되는 아이케어 서비스에 기반하여 제공되는 적어도 하나 이상의 간편 눈 운동 콘텐츠 중, 대상자에 대하여 실행된 적어도 하나 이상의 간편 눈 운동 콘텐츠에 대한 진행률을 산출할 수 있다.
예를 들면, 눈 관리 애플리케이션(411)은, 적어도 하나 이상의 간편 눈 운동 콘텐츠 각각이 실행된 소요시간에 기초하여, 각각의 간편 눈 운동 콘텐츠에 대한 진행률을 산출할 수 있다.
또한, 실시예에서 눈 관리 애플리케이션(411)은, 산출된 진행률에 기반하여 해당 대상자에 대한 눈 운동량을 획득할 수 있다.
예를 들어, 눈 관리 애플리케이션(411)은, 산출된 진행률에 비례하여 대상자에 대한 눈 운동량이 결정되게 할 수 있다.
그리고 눈 관리 애플리케이션(411)은, 위와 같이 산출된 진행률에 기반하여 각각의 간편 눈 운동 콘텐츠에 대한 진행완료(달성) 여부를 판단할 수 있다.
예를 들면, 눈 관리 애플리케이션(411)은, 제1 간편 눈 운동 콘텐츠의 진행률이 소정의 기준(예컨대, 100%)을 충족하는 경우, 제1 간편 눈 운동 콘텐츠가 진행완료된 것으로 판단할 수 있다.
또한, 실시예에서 눈 관리 애플리케이션(411)은, 산출된 눈 운동량 및/또는 진행완료(달성) 여부에 기초하여 눈 운동지수 콘텐츠를 생성 및 제공할 수 있다.
예시적으로, 눈 관리 애플리케이션(411)은, 간편 눈 운동 콘텐츠 진행완료 여부에 따른 눈 운동지수 그래프를 생성할 수 있다.
예컨대, 눈 관리 애플리케이션(411)은, 복수의 간편 눈 운동 콘텐츠 중, 하나의 간편 눈 운동 콘텐츠가 진행완료 될 때마다 10점씩 가산하여 눈 운동지수 점수를 산출할 수 있다.
그리고 예시에서 눈 관리 애플리케이션(411)은, 위와 같이 산출된 눈 운동지수 점수를 기초로 눈 운동지수 그래프를 생성할 수 있다.
또한, 예시에서 눈 관리 애플리케이션(411)은, 생성된 눈 운동지수 그래프에 기반하여 눈 운동지수 콘텐츠를 생성 및 제공할 수 있다.
이와 같이, 눈 관리 애플리케이션(411)은, 대상자의 눈 운동 현황을 그래픽 이미지화하여 제공하는 눈 운동지수 콘텐츠를 제공함으로써, 눈 운동을 장려하기 위한 동기부여의 효과를 구현할 수 있다.
한편, 실시예에서 눈 관리 애플리케이션(411)은, 구동된 눈 건강 솔루션 서비스를 기반으로 아이케어(Eye care) 서비스를 제공할 수 있다. (S305)
여기서, 실시예에 따른 아이케어 서비스란, 눈 관리 애플리케이션(411)이 설치된 모바일 타입 컴퓨팅 디바이스(400)를 이용하여, 언제 어디서든 간편하게 눈 건강상태를 측정하고 눈 운동을 수행하는 아이케어를 수행할 수 있도록 하는 서비스일 수 있다.
자세히, 실시예에서 눈 관리 애플리케이션(411)은, 간편 눈 측정 콘텐츠 및/또는 간편 눈 운동 콘텐츠에 기초하여 아이케어 서비스를 제공할 수 있다.
도 30a 및 도 30b는 본 발명의 실시예에 따른 간편 눈 측정 콘텐츠를 설명하기 위한 도면의 일례이다.
도 30a 및 도 30b를 참조하면, 실시예에서 눈 관리 애플리케이션(411)은, 간편 눈 측정 콘텐츠에 기반하여 아이케어 서비스를 제공할 수 있다.
여기서, 실시예에 따른 간편 눈 측정 콘텐츠란, 모바일 타입 컴퓨팅 디바이스(400)의 눈 관리 애플리케이션(411)에 기반하여, 언제 어디서든 간편하게 눈 건강상태 측정이 가능한 환경을 제공하는 콘텐츠일 수 있다.
자세히, 실시예에서 눈 관리 애플리케이션(411)은, 간편 눈 측정 콘텐츠를 기초로 모바일 타입 컴퓨팅 디바이스(400)를 이용하여 간편하게 눈 건강상태를 측정할 수 있는 라이트 버전의 눈 건강 측정방법 프로세스를 제공할 수 있다.
예를 들면, 눈 관리 애플리케이션(411)은, 2차원 그래픽 영상에 기초한 라이트 버전의 시력측정 프로세스 및/또는 색맹측정 프로세스 등을 제공할 수 있다.
이와 같이, 눈 관리 애플리케이션(411)은, 시간이나 공간의 제약없이 쉽고 가볍게 눈 건강상태를 측정할 수 있는 간편 눈 측정 콘텐츠를 제공하여, 대상자가 눈 건강상태를 파악하기 위한 자가진단을 보다 전문적이고 체계적인 방식을 이용하여 편리하게 수행하도록 할 수 있고, 이를 통해 자가진단의 신뢰성을 향상시킬 수 있다.
도 31a 및 도 31b는 본 발명의 실시예에 따른 간편 눈 운동 콘텐츠를 설명하기 위한 도면의 일례이다.
또한, 도 31a 및 도 31b를 참조하면, 눈 관리 애플리케이션(411)은, 간편 눈 운동 콘텐츠에 기반하여 아이케어 서비스를 제공할 수 있다.
여기서, 실시예에 따른 간편 눈 운동 콘텐츠란, 모바일 타입 컴퓨팅 디바이스(400)의 눈 관리 애플리케이션(411)에 기반하여, 언제 어디서든 간편하게 눈 운동을 수행할 수 있는 환경을 제공하는 콘텐츠일 수 있다.
자세히, 실시예에서 눈 관리 애플리케이션(411)은, 간편 눈 운동 콘텐츠에 기반하여 적어도 하나 이상의 간편 눈 운동 프로세스를 제공할 수 있다.
여기서, 간편 눈 운동 프로세스란, 눈 건강상태의 호전을 목적으로 대상자의 안구 활동을 유도하는 그래픽 영상을 제공하는 프로세스일 수 있다.
예를 들면, 간편 눈 운동 프로세스는, 안구의 움직임에 기반한 별 그리기 운동 프로세스 및/또는 원 그리기 운동 프로세스 등을 포함할 수 있다.
보다 상세히, 실시예에서 눈 관리 애플리케이션(411)은, 대상자의 입력에 기반하여 적어도 하나 이상의 간편 눈 운동 프로세스 중 하나를 실행할 수 있다.
또한, 눈 관리 애플리케이션(411)은, 대상자의 입력을 기초로 선택되어 실행된 간편 눈 운동 프로세스를 2차원 그래픽 영상에 기초하여 제공할 수 있다.
즉, 실시예에서 눈 관리 애플리케이션(411)은, 2차원의 그래픽 영상을 기초로 대상자의 안구 활동을 유도하는 간편 눈 운동을 구현할 수 있다.
이후, 실시예에서 눈 관리 애플리케이션(411)은, 상술된 눈 운동지수 콘텐츠를 기반으로, 간편 눈 운동 프로세스의 실행에 따른 대상자의 눈 운동량을 측정하고, 이에 기초한 눈 운동량 정보를 생성하여 제공할 수 있다.
이와 같이, 눈 관리 애플리케이션(411)은, 언제 어디서든 간단하게 눈 운동을 수행할 수 있는 간편 눈 운동 콘텐츠를 제공함으로써, 눈 운동을 수행하기 위한 별도의 장치나 노력 없이도 시간이나 공간의 제약없이 편리하게 눈 운동을 수행하게 할 수 있고, 이로 인해 안구 케어를 위한 비용을 절감하여 눈 운동에 보다 능동적이고 적극적으로 참여하도록 유도할 수 있다.
다른 한편, 실시예에서 눈 관리 애플리케이션(411)은, 구동된 눈 건강 솔루션 서비스를 기반으로 눈 건강지식 서비스를 제공할 수 있다. (S307)
여기서, 실시예에 따른 눈 건강지식 서비스란, 눈 건강과 관련된 각종 정보에 편리하게 접근할 수 있는 프로세스를 제공하는 서비스일 수 있다.
실시예에서, 눈 관리 애플리케이션(411)은, 눈 건강관련 지식 콘텐츠 및/또는 안과 기관정보 콘텐츠에 기초하여 눈 건강지식 서비스를 제공할 수 있다.
도 32는 본 발명의 실시예에 따른 눈 건강관련 지식 콘텐츠를 설명하기 위한 도면의 일례이다.
도 32를 참조하면, 눈 관리 애플리케이션(411)은, 눈 건강관련 지식 콘텐츠에 기반하여 눈 건강지식 서비스를 제공할 수 있다.
여기서, 실시예에 따른 눈 건강관련 지식 콘텐츠란, 눈 건강과 관련된 각종 지식(예컨대, 안구건조증 탈출 방법 및/또는 블루라이트로부터 안구를 지키는 방법 등)을 제공하는 커뮤니티 서비스를 제공하는 콘텐츠일 수 있다.
도 33a 및 도 33b는 본 발명의 실시예에 따른 안과 기관정보 콘텐츠를 설명하기 위한 도면의 일례이다.
또한, 도 33a 및 도 33b를 참조하면, 실시예에서 눈 관리 애플리케이션(411)은, 안과 기관정보 콘텐츠에 기반하여 눈 건강지식 서비스를 제공할 수 있다.
여기서, 실시예에 따른 안과 기관정보 콘텐츠란, 안과 기관(실시예로, 안과 병원 및/또는 눈 건강 측정장치에 기반한 눈 건강 측정 서비스를 제공하는 기관 등)과 관련된 각종 정보(예컨대, 안과 기관 위치정보, 연락처 정보, 소개정보, 가장 가까운 안과기관 정보 및/또는 눈 건강 측정 결과 맞춤형 안과병원 정보 등)를 제공하는 콘텐츠일 수 있다.
즉, 실시예에서 눈 관리 애플리케이션(411)은, 위와 같은 콘텐츠(실시예에서, 눈 건강관련 지식 콘텐츠 및/또는 안과 기관정보 콘텐츠)를 포함하는 눈 건강지식 서비스에 기반하여, 대상자가 눈 건강과 관련된 각종 정보를 손 쉽게 획득하고 활용하게 할 수 있다.
이를 통해, 눈 관리 애플리케이션(411)은, 대상자의 눈 건강 케어를 위한 정보 탐색에 소요되는 비용을 효과적으로 절감시킬 수 있다.
또 다른 한편, 실시예에서 눈 관리 애플리케이션(411)은, 구동된 눈 건강 솔루션 서비스를 기반으로 전문가 상담 서비스를 제공할 수 있다. (S309)
여기서, 실시예에 따른 전문가 상담 서비스란, 눈 전문가(예컨대, 안과 의사 및/또는 교수 등)와의 커뮤니케이션 기능을 제공하는 서비스일 수 있다.
도 34는 본 발명의 실시예에 따른 전문가 상담 콘텐츠를 설명하기 위한 도면의 일례이다.
도 34를 참조하면, 실시예에서 눈 관리 애플리케이션(411)은, 전문가 상담 콘텐츠에 기초하여 전문가 상담 서비스를 제공할 수 있다.
여기서, 실시예에 따른 전문가 상담 콘텐츠란, 눈 전문가(예컨대, 안과 의사 및/또는 교수 등)와의 커뮤니케이션을 구현할 수 있는 환경을 제공하는 콘텐츠일 수 있다.
실시예에서, 전문가 상담 콘텐츠는, 눈 전문가와의 실시간 채팅상담 인터페이스, 메일상담 인터페이스 및/또는 방문예약 상담 인터페이스 등을 제공할 수 있다.
이와 같이, 눈 관리 애플리케이션(411)은, 대상자의 모바일 타입 컴퓨팅 디바이스(400)에 설치된 눈 관리 애플리케이션(411)을 이용하여 눈 전문가와의 커뮤니케이션이 가능하게 함으로써, 눈 전문가와의 커뮤니케이션을 수행하기 위해 필요한 절차를 간소화함과 동시에 요구되는 시간이나 비용을 최소화할 수 있고, 이를 통해 신속 정확한 눈 건강 케어가 가능하게 할 수 있다.
이상과 같이, 본 발명의 실시예에 따른 눈 건강 측정 시스템은, 가상현실에 기초하여 획득되는 측정 대상자의 눈 건강상태 측정 결과를 상기 측정 대상자의 눈 건강 측정 컴퓨팅 디바이스(예컨대, 모바일 타입의 컴퓨팅 디바이스 및/또는 데스크탑 타입의 컴퓨팅 디바이스 등)를 기반으로 제공함으로써, 생활 속에서 손 쉽게 눈 건강상태를 추적, 관찰 및 케어할 수 있고, 이를 통해 눈 건강 관리를 위해 소요되는 비용이나 노력을 절감할 수 있다.
또한, 본 발명의 실시예에 따른 눈 건강 측정 시스템은, 눈 건강상태 측정 결과를 기반으로 측정 대상자에게 최적화된 맞춤형 눈 건강 관리를 다각화된 관점에서 보조하는 눈 건강 솔루션 서비스를 제공함으로써, 눈 건강을 다양한 측면에서 편리하게 관리 및 케어하게 할 수 있고, 이를 통해 측정 대상자가 일상 생활 속에서도 눈 건강 관리에 보다 적극적으로 참여하도록 유도할 수 있다.
이상, 설명된 본 발명에 따른 실시예는 다양한 컴퓨터 구성요소를 통하여 실행될 수 있는 프로그램 명령어의 형태로 구현되어 컴퓨터 판독 가능한 기록 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능한 기록 매체는 프로그램 명령어, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 컴퓨터 판독 가능한 기록 매체에 기록되는 프로그램 명령어는 본 발명을 위하여 특별히 설계되고 구성된 것이거나 컴퓨터 소프트웨어 분야의 당업자에게 공지되어 사용 가능한 것일 수 있다. 컴퓨터 판독 가능한 기록 매체의 예에는, 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM 및 DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical medium), 및 ROM, RAM, 플래시 메모리 등과 같은, 프로그램 명령어를 저장하고 실행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령어의 예에는, 컴파일러에 의하여 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용하여 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드도 포함된다. 하드웨어 장치는 본 발명에 따른 처리를 수행하기 위하여 하나 이상의 소프트웨어 모듈로 변경될 수 있으며, 그 역도 마찬가지이다.
본 발명은, VR을 디스플레이하는 헤드 마운티드 디스플레이를 포함하는 시스템 및 이를 이용한 눈 건강 측정방법이므로, 산업상 이용가능성이 있다.

Claims (20)

  1. 눈 건강 측정기의 프로세서가 헤드 마운티드 디스플레이와 연동하여 가상현실 기반의 눈 건강 측정을 수행하는 방법으로서,
    눈 건강상태 서베이 인터페이스를 제공하는 단계;
    상기 제공된 서베이 인터페이스에 기초하여 눈 건강 측정방법을 결정하는 단계;
    상기 결정된 눈 건강 측정방법으로 눈 건강상태 측정을 실행하는 단계;
    상기 실행된 눈 건강상태 측정에 따른 결과를 표시하는 단계; 및
    상기 눈 건강상태 측정에 따른 결과에 기초하여 처방 콘텐츠를 제공하는 단계를 포함하는
    가상현실 기반의 눈 건강 측정방법.
  2. 제 1 항에 있어서,
    상기 눈 건강 측정방법을 결정하는 단계는, 상기 서베이 인터페이스에 대한 상기 측정 대상자의 입력을 기초로 복수의 눈 건강 측정 콘텐츠 중 적어도 하나 이상을 출력하여 상기 측정 대상자의 눈 건강을 측정하는 눈 건강 측정방법을 결정하는 단계를 포함하고,
    상기 눈 건강 측정 콘텐츠는, 소정의 파라미터에 따른 상기 측정 대상자에 대한 눈 건강상태 측정 프로세스를 제공하는 콘텐츠인
    가상현실 기반의 눈 건강 측정방법.
  3. 제 2 항에 있어서,
    상기 눈 건강 측정방법을 결정하는 단계는,
    상기 서베이 인터페이스에 대한 상기 측정 대상자의 입력을 기초로 상기 눈 건강 측정 콘텐츠 별 눈 건강점수를 산출하는 단계와, 상기 산출된 눈 건강점수에 기반하여 의심질환을 예측하는 단계와, 상기 예측된 의심질환에 기초하여 상기 눈 건강 측정방법을 결정하는 단계를 더 포함하는
    가상현실 기반의 눈 건강 측정방법.
  4. 제 1 항에 있어서,
    상기 눈 건강 측정방법을 결정하는 단계는, 입체시 측정 콘텐츠를 상기 눈 건강 측정방법으로 결정하는 단계를 포함하고,
    상기 눈 건강상태 측정을 실행하는 단계는, 상기 입체시 측정 콘텐츠를 기반으로 적어도 셋 이상의 시표를 가상현실 영상에 표시하는 단계와, 상기 적어도 셋 이상의 시표 중 어느 하나를 타 시표들과는 다른 심도를 가지는 변위시표로 결정하고 각각의 시표들을 표시하는 단계와, 상기 변위시표를 선택하는 입체시 측정 인터페이스를 제공하는 단계와, 상기 제공된 입체시 측정 인터페이스에 대한 상기 측정 대상자의 입력을 기초로 입체시 측정 결과를 획득하는 단계를 포함하는
    가상현실 기반의 눈 건강 측정방법.
  5. 제 4 항에 있어서,
    상기 변위시표로 표시하는 단계는, 상기 적어도 셋 이상의 시표 중 하나를 변위시표인 제 1 시표로 결정하는 단계와, 상기 측정 대상자의 좌안영역에 대응되는 제 1 표시영역에 상기 제 1 시표를 나타내는 제 1-1시표와, 상기 측정 대상자의 우안영역에 대응되는 제 2 표시영역에 상기 제 1 시표를 나타내는 제 1-2시표의 출력 위치를 상기 심도에 기초한 입체시각도를 산출하여 산출된 입체시각도에 따라서 결정하는 단계와, 상기 결정된 출력 위치에 상기 제 1-1 시표와 상기 제 1-2 시표를 각각 상기 제 1 표시영역 및 제 2 표시영역에 표시하여 상기 변위시표를 표시하는 단계를 포함하는
    가상현실 기반의 눈 건강 측정방법.
  6. 제 1 항에 있어서,
    상기 눈 건강 측정방법을 결정하는 단계는, 시력측정 콘텐츠를 상기 눈 건강 측정방법으로 결정하는 단계를 포함하고,
    상기 눈 건강상태 측정을 실행하는 단계는, 상기 시력측정 콘텐츠를 기반으로 소정의 시력 측정표를 가상현실 영상에 표시하는 단계와, 상기 표시된 시력 측정표 내 복수의 기호 중 타겟 기호를 선택하는 시력측정 인터페이스를 제공하는 단계와, 상기 제공된 시력측정 인터페이스에 대한 상기 측정 대상자의 입력을 기초로 시력측정 결과를 획득하는 단계를 포함하는
    가상현실 기반의 눈 건강 측정방법.
  7. 제 1 항에 있어서,
    상기 처방 콘텐츠를 제공하는 단계는, 외안근 또는 내안근 운동을 보조하는 제 1 눈 힐링영상을 제공하는 단계를 포함하고,
    상기 제 1 눈 힐링영상을 제공하는 단계는, 적어도 둘 이상의 서로 다른 심도로 구현되는 객체를 가상현실 영상에 표시하는 단계와, 상기 표시된 객체 중 어느 하나를 제 1 객체로 선정하는 단계와, 상기 선정된 제 1 객체에 이외의 나머지 객체에 블러 처리를 수행하는 단계와, 상기 선정된 제 1 객체의 위치 및 심도를 기설정된 기준에 기초하여 변경하며 출력하는 단계와, 소정의 기준에 따라서 상기 제 1 객체를 상기 나머지 객체 중 어느 하나로 변환하는 단계를 포함하는
    가상현실 기반의 눈 건강 측정방법.
  8. 눈 건강 측정기의 프로세서가 헤드 마운티드 디스플레이와 연동하여 가상현실 기반의 눈 건강 측정을 수행하는 방법으로서,
    가상현실 기반 눈 건강 측정방법으로 측정 대상자의 눈 건강상태 측정을 실행하는 단계;
    상기 실행된 눈 건강상태 측정에 따른 결과인 상기 측정 대상자의 눈 건강 상태정보를 표시하도록 제어하는 단계;
    상기 생성된 눈 건상상태 정보를 기초로 상기 측정 대상자에게 제공할 가상현실 컨텐츠인 눈 힐링영상을 결정하는 단계; 및
    상기 결정된 눈 힐링영상을 상기 측정 대상자에게 출력하도록 제어하는 단계를 포함하는
    가상현실 기반의 눈 건강 측정방법.
  9. 제 7 항에 있어서,
    상기 결정된 눈 힐링영상을 상기 측정 대상자에게 제공하는 단계는, 복수의 가상객체를 심도 및 선명도 중 적어도 하나를 달리하여 출력하도록 제어하는 단계를 포함하는
    가상현실 기반의 눈 건강 측정방법.
  10. 제 9 항에 있어서,
    상기 결정된 제 1 눈 힐링영상을 상기 측정 대상자에게 제공하는 단계는, 제 1 가상객체 및 제 2 가상객체를 표시하는 단계와, 상기 제 1 가상객체를 주시하도록 안내하는 단계와, 상기 제 1 가상객체의 심도와 위치를 소정의 기준에 따라 변화시키며 표시하도록 제어하는 단계를 포함하는
    가상현실 기반의 눈 건강 측정방법.
  11. 제 9 항에 있어서,
    상기 제 1 가상객체의 심도와 위치를 소정의 기준에 따라 변화시키며 표시하면서 상기 측정 대상자의 안구의 변화를 감지하도록 제어하는 단계를 더 포함하는
    가상현실 기반의 눈 건강 측정방법.
  12. 제 9 항에 있어서,
    상기 제 1 가상객체 및 제 2 가상객체를 표시하는 단계는, 상기 제 1 가상객체를 상기 제 2 가상객체보다 상대적으로 높은 선명도로 표시하도록 제어하는 단계를 포함하는
    가상현실 기반의 눈 건강 측정방법.
  13. 제 12 항에 있어서,
    상기 제 1 가상객체 및 제 2 가상객체를 표시하는 단계는, 상기 제 2 가상객체를 상기 제 1 가상객체보다 상대적으로 높은 선명도로 표시하도록 가상객체의 선명도를 변경하는 단계와, 상기 제 2 가상객체를 주시하도록 안내하는 단계를 포함하는
    가상현실 기반의 눈 건강 측정방법.
  14. 가상현실 기반의 눈 건강상태 측정 서비스를 제공하는 눈 건강 측정기; 및
    상기 가상현실 영상을 출력하는 헤드 마운티드 디스플레이를 포함하고,
    상기 눈 건강 측정기는,
    상기 눈 건강 측정기의 몸체를 형성하는 바디(body);
    상기 바디에 배치된 헤드 마운티드 디스플레이 수용부에 대한 상기 헤드 마운티드 디스플레이의 유입 또는 유출을 감지하는 센서부;
    상기 수용부에 유입된 상기 헤드 마운티드 디스플레이를 소독하는 소독부; 및
    상기 수용부에 유입된 상기 헤드 마운티드 디스플레이의 안면접촉보호부에 대한 위치, 면적, 방향 및 각도 정보 중 적어도 하나 이상을 포함하는 보호부 센싱정보를 획득하도록 상기 센서부를 제어하고, 상기 획득된 보호부 센싱정보를 기초로 상기 소독부가 상기 안면접촉보호부를 향하도록 틸팅(tilting)시키는 프로세서를 포함하는
    가상현실 기반의 눈 건강 측정장치.
  15. 제 14 항에 있어서,
    상기 눈 건강 측정기는,
    상기 수용부에 유입된 상기 헤드 마운티드 디스플레이를 충전시키는 충전부;를 더 포함하는
    가상현실 기반의 눈 건강 측정장치.
  16. 제 14 항에 있어서,
    상기 눈 건강 측정기는,
    상기 소독부의 틸팅 동작을 보조하는 구동부;를 더 포함하고,
    상기 구동부는, 상기 수용부의 일측면에 배치된 제 1 구동부와, 상기 수용부의 타측면에 배치된 제 2 구동부를 포함하며,
    상기 프로세서는,
    상기 제 1 구동부 및 상기 제 2 구동부 중 적어도 하나에 대한 상하운동을 제어하여, 상기 수용부의 일측면에 배치된 제 1 소독부와, 상기 수용부의 타측면에 배치된 제 2 소독부와, 상기 수용부의 상부면에 배치된 제 3 소독부 중 적어도 일부를 틸팅시키는
    가상현실 기반의 눈 건강 측정장치.
  17. 제 14 항에 있어서,
    상기 센서부는,
    상기 눈 건강 측정기에 사용자가 소정의 거리 이하로 근접하였는지 판단하는 사용자 센싱유닛을 포함하고,
    상기 프로세서는,
    상기 사용자 센싱유닛으로부터 획득된 사용자 근접정보를 기초로 상기 눈 건강상태 측정 서비스를 자동으로 실행시키는
    가상현실 기반의 눈 건강 측정장치.
  18. 제 14 항에 있어서,
    상기 소독부는,
    자외선 램프(UV LAMP) 및 엘이디 램프(LED LAMP) 중 적어도 하나 이상의 램프를 포함하고,
    상기 프로세서는,
    상기 안면접촉보호부를 향하도록 틸팅된 상기 소독부의 상기 램프를 제어하여 상기 안면접촉보호부 측으로 빛을 조사하는
    가상현실 기반의 눈 건강 측정장치.
  19. 제 14 항에 있어서,
    상기 프로세서는,
    상기 소독부에 의하여 상기 안면접촉보호부가 살균된 정도를 소정의 기준에 따라서 산정한 정보인 살균 소독정보를 생성하는
    가상현실 기반의 눈 건강 측정장치.
  20. 제 19 항에 있어서,
    상기 눈 건강 측정기는,
    상기 눈 건강상태 측정 서비스에 대한 그래픽 이미지를 출력하는 디스플레이부;를 더 포함하고,
    상기 프로세서는,
    상기 살균 소독정보를 상기 디스플레이부를 제어하여 출력하는
    가상현실 기반의 눈 건강 측정장치.
PCT/KR2021/008271 2020-10-07 2021-06-30 가상현실 기반의 눈 건강 측정 장치, 방법 및 그 시스템 WO2022075554A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21877809.0A EP4226841A1 (en) 2020-10-07 2021-06-30 Device and method for virtual-reality-based eye health measurement, and system therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0129225 2020-10-07
KR10-2020-0129232 2020-10-07
KR1020200129225A KR102412649B1 (ko) 2020-10-07 2020-10-07 가상현실 기반의 눈 건강 측정장치
KR1020200129232A KR102219659B1 (ko) 2020-10-07 2020-10-07 가상현실 기반의 눈 건강 측정방법 및 그 시스템

Publications (1)

Publication Number Publication Date
WO2022075554A1 true WO2022075554A1 (ko) 2022-04-14

Family

ID=81126146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/008271 WO2022075554A1 (ko) 2020-10-07 2021-06-30 가상현실 기반의 눈 건강 측정 장치, 방법 및 그 시스템

Country Status (2)

Country Link
EP (1) EP4226841A1 (ko)
WO (1) WO2022075554A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3352210B2 (ja) * 1994-03-10 2002-12-03 オリンパス光学工業株式会社 頭部装着型映像表示装置
KR20160115603A (ko) * 2015-03-27 2016-10-06 엘지전자 주식회사 전자 디바이스 및 그 제어방법
KR20170092075A (ko) * 2016-02-02 2017-08-10 윤덕하 지능적 영상 비교 기능이 있는 좌변기 살균기
KR20170137726A (ko) * 2015-03-16 2017-12-13 매직 립, 인코포레이티드 건강 질환 진단과 치료를 위한 방법 및 시스템
KR101984995B1 (ko) * 2018-07-20 2019-05-31 주식회사 아이피아 인공지능 시야분석 방법 및 장치
KR102219659B1 (ko) * 2020-10-07 2021-02-25 주식회사 엠투에스 가상현실 기반의 눈 건강 측정방법 및 그 시스템

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3352210B2 (ja) * 1994-03-10 2002-12-03 オリンパス光学工業株式会社 頭部装着型映像表示装置
KR20170137726A (ko) * 2015-03-16 2017-12-13 매직 립, 인코포레이티드 건강 질환 진단과 치료를 위한 방법 및 시스템
KR20160115603A (ko) * 2015-03-27 2016-10-06 엘지전자 주식회사 전자 디바이스 및 그 제어방법
KR20170092075A (ko) * 2016-02-02 2017-08-10 윤덕하 지능적 영상 비교 기능이 있는 좌변기 살균기
KR101984995B1 (ko) * 2018-07-20 2019-05-31 주식회사 아이피아 인공지능 시야분석 방법 및 장치
KR102219659B1 (ko) * 2020-10-07 2021-02-25 주식회사 엠투에스 가상현실 기반의 눈 건강 측정방법 및 그 시스템

Also Published As

Publication number Publication date
EP4226841A1 (en) 2023-08-16

Similar Documents

Publication Publication Date Title
WO2015142071A1 (en) Wearable device and method of operating the same
WO2018080149A2 (ko) 생체신호연동 가상현실 인지재활 시스템
WO2016080804A1 (en) Apparatus for measuring bioelectrical signals
WO2018147643A2 (ko) 흉부측정기, 척추 측만증 교정시스템, 원격척추 진단시스템 및 웨어러블 측정기
WO2019054621A1 (ko) 헤드 마운트 디스플레이 장치
WO2016144058A1 (en) Wearable electronic device and method for controlling the same
EP3220815A1 (en) Apparatus for measuring bioelectrical signals
WO2016175607A1 (ko) 휴대 장치 및 휴대 장치의 콘텐트 화면 변경방법
WO2016190517A1 (en) Medical image display apparatus and method of providing user interface
WO2016028056A1 (en) Wearable biometric information measurement device
WO2020050497A1 (ko) 가상현실 기반의 시야검사 방법 및 시스템
WO2015147383A1 (en) Mobile terminal and method of controlling the same
WO2020230952A1 (ko) 통증 모니터링 장치 및 방법
WO2016204496A1 (en) System and method of providing information of peripheral device
WO2022039521A1 (en) Method for determining whether medication has been administered and server using same
WO2018056755A1 (en) Mobile communication terminals, their directional input units, and methods thereof
WO2012060586A2 (ko) 수술 로봇 시스템 및 그 복강경 조작 방법 및 체감형 수술용 영상 처리 장치 및 방법
WO2020050496A1 (ko) 검안용 헤드 마운티드 디스플레이 장치 및 이를 이용한 안과검사방법
KR20180113449A (ko) 헤드 마운트 디스플레이 장치
WO2024096204A1 (ko) 디지털 기반의 근골격계 재활 치료 제공 방법 및 시스템
WO2019203554A1 (en) Electronic device and method of controlling electronic device
WO2016006920A1 (ko) 웨어러블 디바이스를 이용한 정보처리 시스템 및 방법
WO2019240564A1 (ko) 생체 데이터 획득용 탈착식 기능모듈 및 이를 포함하는 헤드 마운트 디스플레이 장치
WO2019240540A1 (ko) 정확도가 향상된 눈의 조절력 측정 및 훈련의 방법, 시스템 및 컴퓨터 프로그램
WO2022075554A1 (ko) 가상현실 기반의 눈 건강 측정 장치, 방법 및 그 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021877809

Country of ref document: EP

Effective date: 20230508