WO2022075437A1 - 樹脂組成物 - Google Patents

樹脂組成物 Download PDF

Info

Publication number
WO2022075437A1
WO2022075437A1 PCT/JP2021/037282 JP2021037282W WO2022075437A1 WO 2022075437 A1 WO2022075437 A1 WO 2022075437A1 JP 2021037282 W JP2021037282 W JP 2021037282W WO 2022075437 A1 WO2022075437 A1 WO 2022075437A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
modified silicone
resin
group
composition according
Prior art date
Application number
PCT/JP2021/037282
Other languages
English (en)
French (fr)
Inventor
知也 森川
裕章 西村
佑太 中山
高士 堂本
智子 白石
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2022555579A priority Critical patent/JPWO2022075437A1/ja
Publication of WO2022075437A1 publication Critical patent/WO2022075437A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/61Coating or impregnation
    • C04B41/62Coating or impregnation with organic materials
    • C04B41/64Compounds having one or more carbon-to-metal of carbon-to-silicon linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/10Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular

Definitions

  • the present invention relates to a resin composition, particularly a resin composition used in a surface protection method for concrete pieces.
  • Concrete pieces may come off from the concrete structure due to neutralization by carbon dioxide, salt damage due to penetration of chloride ions, and other deterioration over time.
  • a method of covering the surface of concrete with a resin composition or a fiber sheet is known.
  • Patent Document 1 for the purpose of improving the workability of such a surface protection method, a primer layer is formed on the surface side of the concrete skeleton, and then an elastic resin layer is formed on the primer layer.
  • the reinforcing layer is formed of a predetermined isocyanurate compound, a predetermined isocyanate prepolymer, and a predetermined diamine compound.
  • isocyanate compounds are being designated as deleterious substances and poisons, and polyurea and polyurethane made from isocyanate compounds have problems in terms of toxicity. Therefore, a resin composition that does not use an isocyanurate compound is required as a resin composition used in the surface protection method.
  • urethane which has been conventionally used as an intermediate coating layer in the surface protection method, has low strength, and epoxy has low followability, which is a problem as a surface protection material.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a resin composition capable of forming a coating film having low harmfulness and excellent strength and extensibility.
  • the present invention is as follows.
  • a resin composition containing a modified silicone resin and a filler When the resin composition is cured at 23 ° C. and a relative humidity of 50% for 7 days, it is measured according to JIS K 6251. The maximum stress is 5.0 N / mm 2 or more, The breaking strain is 100% or more, Elastic modulus is 2.0 MPa or more, Resin composition.
  • the modified silicone resin contains a linear polymer A having two or more reactive silyl groups at both ends.
  • the content of the linear polymer A is 10 to 90% by mass with respect to the total amount of the modified silicone resin.
  • the modified silicone resin contains a linear polymer B having one reactive silyl group at each end.
  • the content of the linear polymer B is 10 to 90% by mass with respect to the total amount of the modified silicone resin.
  • [5] The content of the modified silicone resin is 20 to 99% by mass with respect to the total amount of the resin composition.
  • the average particle size of the filler is 400 nm or less.
  • the content of the filler is 1.0 to 15% by mass with respect to the total amount of the resin composition.
  • the filler contains one or more selected from the group consisting of silica, alumina, calcium carbonate, and resin particles.
  • [9] Used for surface protection method for concrete pieces The resin composition according to any one of [1] to [8].
  • the present embodiment will be described in detail, but the present invention is not limited thereto, and various modifications can be made without departing from the gist thereof. Is.
  • the resin composition of the present embodiment is a resin composition containing a modified silicone resin and a filler, and is a cured product obtained by curing the resin composition at 23 ° C. and a relative humidity of 50% for 7 days.
  • the maximum stress measured in accordance with JIS K 6251 is 5.0 N / mm 2 or more, the breaking strain is 100% or more, and the elastic modulus is 2.0 MPa or more.
  • Maximum stress When the resin composition is cured at 23 ° C. and a relative humidity of 50% for 7 days, the maximum stress measured in accordance with JIS K 6251 (hereinafter, simply referred to as "maximum stress") is 5. It is 0.0 N / mm 2 or more, preferably 6.0 to 25 N / mm 2 , more preferably 7.0 to 20 N / mm 2 , and even more preferably 7.5 to 18 N / mm 2 . Even more preferably, it is 10 to 18 N / mm 2 .
  • break strain When the resin composition is cured at 23 ° C. and a relative humidity of 50% for 7 days, the fracture strain measured in accordance with JIS K 6251 (hereinafter, simply referred to as “break strain”) is 100. % Or more, preferably 120% to 600%, more preferably 140% to 550%, still more preferably 160% to 500%, and even more preferably 180% to 500%.
  • the elastic modulus measured in accordance with JIS K 6251 is 2. It is 0.0 MPa or more, preferably 3.0 to 35 MPa, more preferably 4.0 to 30 MPa, still more preferably 5.0 to 25 MPa, and even more preferably 6.0 to 20 MPa.
  • the strength and extensibility of the obtained coating film are the effects exerted in combination by the maximum stress, breaking strain, and elastic modulus, and all of the maximum stress, breaking strain, and elastic modulus are equal to or higher than the above lower limit values. As a result, the strength and extensibility of the obtained coating film are further improved. More specifically, if the breaking strain is inferior even if the maximum stress or elastic modulus is equal to or higher than the above lower limit, the cured product (coating film) is easily broken and cracked in the punching test described in the example. The result is that the followability is not exhibited even in the followability test. Further, even when the breaking strain is equal to or more than the above lower limit value and the maximum stress and elastic modulus are inferior, the cured product (coating film) is easily broken in the punching test.
  • the maximum stress, breaking strain and elastic modulus can be adjusted by the type and content of the modified silicone resin and filler. More specifically, by using a modified silicone resin having a high crosslink density, the maximum stress and elastic modulus tend to be further improved, and by using a modified silicone resin having a low crosslink density and a more flexible skeleton, the maximum stress and elastic modulus tend to be further improved. Break strain tends to improve. In this embodiment, the maximum stress, breaking strain and elastic modulus may be adjusted by using two or more kinds of modified silicone resins as described later.
  • Maximum stress, breaking strain and elastic modulus can be measured according to JIS K6251.
  • the thickness of the No. 3 dumbbell is 1 mm
  • the tensile speed is 100 mm / min.
  • Elongation stress Elongation stress measured by compression mode in accordance with JIS K 6394 under the conditions of a parallel plate with a gap of 1.5 mm, strain of 0.5%, temperature of 40 ° C., and angular frequency of 0.1 rad / s (hereinafter referred to as “yield elongation stress”) is preferably 25 Pa or more, more preferably 30 to 800 Pa, still more preferably 35 to 700 Pa, and even more preferably 40 to 600 Pa.
  • the composition of the present embodiment can be applied to a place where dripping is likely to occur due to gravity, such as a wall or a ceiling.
  • the condition of an angular frequency of 0.1 rad / s corresponds to, for example, the speed at which dripping starts to occur when the ceiling is coated, and the yield elongation stress measured under the above conditions is 25 Pa or more, so that the liquid is liquid. You can prevent the occurrence of anyone. Therefore, in addition to further improving handleability, it is possible to obtain a uniform coating film in which variations in strength and extensibility are suppressed by suppressing dripping.
  • the modified silicone resin in the present embodiment means a polymer having a reactive silyl group, and includes a polymer to which a reactive silyl group is added to a polymer as a main chain.
  • the modified silicone resin may be used alone or in combination of two or more.
  • the polymer to which the reactive silyl group is added is not particularly limited, but is, for example, a polyether polymer such as polyoxyethylene, polyoxypropylene, and polyoxybutylene; and a fat such as polyisobutylene and polybutadiene.
  • a polyether polymer such as polyoxyethylene, polyoxypropylene, and polyoxybutylene
  • a fat such as polyisobutylene and polybutadiene.
  • a polyether polymer is preferable.
  • polyether polymers polyoxyalkylene is more preferable.
  • polyoxypropylene is more preferred.
  • the skeleton of the polymer may be linear or branched, but linear is preferable.
  • the reactive silyl group is not particularly limited, and examples thereof include an addition reactive silyl group, a condensation reactive silyl group, and a hydrolyzable silyl group. More specifically, the silicon atom includes a hydrogen atom, a hydroxyl group, an alkoxy group, a halogen atom, an acyloxy group, an alkenyloxy group, an amide group, an oxime group, a ketoximate group, an amide group, an acid amide group, a mercapto group, and an aminooxy group. Examples thereof include a group to which a reactive group such as the above is bonded.
  • the reactive silyl group is not particularly limited, and examples thereof include those represented by the following formula (1). -(SiOX b R 2-b ) n -SiX a R 3-a ... (1)
  • R independently represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an aralkyl group having 7 to 20 carbon atoms, and X independently represents each of them.
  • B indicates an integer of 0 to 2
  • n indicates an integer of 0 to 10.
  • the reactive silyl group are not particularly limited, but for example, a trimethoxysilyl group, a dimethoxymethylsilyl group, a dimethylmethoxysilyl group, a triethoxysilyl group, a diethoxymethylsilyl group, a dimethylethoxysilyl group, and a dimethoxyphenyl.
  • Alkoxysilyl groups such as silyl group, diphenylmethoxysilyl group, diethoxyphenylsilyl group, diphenylethoxysilyl group; dialkylsilicone, alkylalkoxysilicone, dialkoxysilicone, diphenylsilicone, alkoxyphenyl with these alkoxysilyl groups bonded to the ends.
  • Examples thereof include polymerizable reactive silyl groups such as silicone.
  • the reactive silyl groups a dimethoxymethylsilyl group is preferable.
  • the bonding position of the reactive silyl group in the polymer is not particularly limited, but may be, for example, the terminal, side chain, terminal and side chain of the polymer which is the main chain.
  • a modified silicone resin having a reactive silyl group at the end of the polymer which is the main chain is preferable.
  • the mode of binding the reactive silyl group to the terminal of the polymer is not particularly limited, and depending on the method of modifying the terminal of the polymer with the reactive silyl group, the reactive silyl group (-SiX a ) can be used by any linker L.
  • R 3-a ) can be attached to the end of the polymer.
  • the linker L can be a portion connecting the silicon atom of the reactive silyl group represented by the formula (1) from the atom at the end of the repeating unit of the polymer.
  • the atom at the end of the repeating unit is an oxygen atom at one end and a carbon atom at the other end.
  • the polymer is an acrylic polymer and an initiator is added to the end of the polymer, the initiator portion thereof is assumed to be contained in the linker L.
  • Such a linker L is not particularly limited, and examples thereof include a linking group which may have a urethane bond, a urea bond, an ester bond, an amide bond, an ether bond, and a siloxane bond.
  • Examples of such a linking group include groups represented by the following formulas (a) to (i). (In the formula, R 1 is a group bonded to the terminal of the polymer and represents a single bond, a hydrocarbon group having 1 to 10 carbon atoms, and R 2 is a group bonded to a reactive silyl group, respectively.
  • Z independently indicates a urethane bond, a urea bond, an ester bond, an amide bond, an ether bond, and a siloxane bond
  • R3 is an R3.
  • the formulas (a) to (c) are linear linkers, the formulas (d) to (f) are bifurcated linkers, and the formulas (g) to (i) are trifurcated linkers.
  • the linking group is not limited to the above, and a linear, 2- to 5-branched linking group can be used.
  • the total number of carbon atoms of the linking group is preferably 1 to 30, more preferably 1 to 20, and even more preferably 1 to 10.
  • R 1 also binds to a reactive silyl group.
  • the number of reactive silyl groups attached to one end of the polymer is preferably 1-5.
  • the modified silicone resin includes a modified silicone resin having two or more reactive silyl groups at both ends (hereinafter, also referred to as “linear polymer A”) and one reactive silyl group at both ends. It is preferable to have a modified silicone resin (hereinafter, also referred to as “linear polymer B”) or a combination thereof.
  • linear polymer A a modified silicone resin having two or more silicon atoms to which an alkoxy group is bonded is preferable at both ends.
  • the maximum stress and elastic modulus tend to be further improved by improving the crosslink density of the cured product, and the strength of the obtained coating film tends to be further improved.
  • the viscosity of the linear polymer A at 25 ° C. is preferably 100 to 7000 mPas, more preferably 500 to 5000 mPas, and even more preferably 1000 to 3000 mPas. Generally, the smaller the molecular weight, the smaller the viscosity tends to be. However, when the viscosity is within the above range, the maximum stress and elastic modulus are further improved by improving the crosslink density of the cured product, and the strength of the obtained coating film is further increased. It tends to improve.
  • the viscosity in this embodiment can be measured by a conventional method using a Brookfield viscometer (B-type rotational viscometer). The viscosity in this embodiment is measured under the conditions of 25 ° C. and a rotation speed of 10 rpm.
  • the linear polymer A preferably uses a linking group having a siloxane bond as the linker.
  • a modified silicone resin By using such a modified silicone resin, the maximum stress and elastic modulus tend to be further improved by improving the crosslink density of the cured product, and the strength of the obtained coating film tends to be further improved.
  • the linear polymer A may or may not have a flexible group such as a urethane bond.
  • having a flexible group such as a urethane bond tends to further improve the breaking strain of the cured product and further improve the extensibility of the obtained coating film, and does not have a flexible group such as a urethane bond.
  • isocyanate which is a raw material for forming urethane bonds, is less likely to be mixed into the resin composition, so that a safer resin composition can be obtained.
  • the content of the modified silicone resin having two or more reactive silyl groups at both ends is preferably 10 to 90% by mass, more preferably, with respect to the total amount of the modified silicone resin. Is 20 to 85% by mass, more preferably 30 to 85% by mass.
  • the content of the modified silicone resin having two or more reactive silyl groups at both ends is within the above range, the maximum stress and elastic modulus are further improved, and the strength of the obtained coating film tends to be further improved. ..
  • linear polymer B a modified silicone resin having one silicon atom bonded to an alkoxy group at both ends is preferable. Since such a linear polymer B has a relatively low crosslink density, the breaking strain of the cured product tends to be further improved, and the extensibility of the obtained coating film tends to be further improved.
  • the linear polymer B may have a flexible group such as a urethane bond.
  • the viscosity of the linear polymer B at 25 ° C. is preferably 7500 to 40,000 mPas, more preferably 10,000 to 45,000 mPas, and even more preferably 20,000 to 50,000 mPas.
  • the larger the molecular weight the higher the viscosity tends to be.
  • the breaking strain is further improved by lowering the crosslink density of the cured product, and the extensibility of the obtained coating film is further improved. There is a tendency.
  • the content of the modified silicone resin having one reactive silyl group at both ends is preferably 10 to 90% by mass, more preferably, with respect to the total amount of the modified silicone resin. Is 15 to 80% by mass, more preferably 15 to 70% by mass.
  • the breaking strain of the cured product is further improved, and the extensibility of the obtained coating film tends to be further improved. be.
  • the content of the modified silicone resin is preferably 20 to 99% by mass, more preferably 25 to 99% by mass, and further preferably 30 to 99% by mass with respect to the total amount of the resin composition.
  • the content of the modified silicone resin is within the above range, the maximum stress, breaking strain, and elastic modulus are further improved, and the strength and extensibility of the obtained coating film tend to be further improved.
  • the filler is not particularly limited, and examples thereof include an inorganic filler and an organic filler.
  • the filler may be used alone or in combination of two or more.
  • the inorganic filler is not particularly limited, and is, for example, silica; oxides such as alumina, titanium oxide and magnesium oxide; carbonates such as calcium carbonate and magnesium carbonate; hydroxides such as aluminum hydroxide and magnesium hydroxide; Examples include inorganic fibers such as glass fibers.
  • the organic filler is not particularly limited, and examples thereof include resin particles such as acrylic beads; and organic fibers such as cellulose fibers and synthetic resin fibers.
  • the yield elongation stress tends to be further improved and dripping tends to be suppressed.
  • the average particle size of the filler is preferably 400 nm or less, more preferably 1 to 200 nm, still more preferably 1 to 100 nm, and even more preferably 1 to 50 nm.
  • the average particle size refers to the volume-based primary particle size.
  • the primary particle size can be measured by the laser diffraction / scattering method.
  • the content of the filler is preferably 1.0 to 15% by mass, more preferably 1.5 to 10% by mass, still more preferably 2.0 to 8.% by mass, based on the total amount of the resin composition. It is 0% by mass.
  • the content of the filler is within the above range, the yield elongation stress is further improved and dripping tends to be suppressed.
  • the resin composition of the present embodiment may contain other components in addition to the modified silicone resin and the filler.
  • the other components are not particularly limited, and examples thereof include silicone resins other than the above-mentioned modified silicone, silane coupling agents, curing catalysts, organic pigments, inorganic pigments, ultraviolet absorbers, and light stabilizers.
  • the silicone resin is not particularly limited, and examples thereof include polydimethylsiloxane, polymethylphenylsiloxane, polydiphenylsiloxane, and copolymers or modified products thereof.
  • modified product include those in which a part of the methyl group and the phenyl group are alkyl-modified, aralkyl-modified, fluoroalkyl-modified, polyether-modified, amino-modified, acrylic-modified, epoxy-modified and the like.
  • the content of the silicone resin is preferably 45 to 75% by mass, more preferably 50 to 70% by mass, and further preferably 55 to 55% by mass with respect to the total amount of the resin composition. It is 65% by mass.
  • the silane coupling agent is not particularly limited, but is an aminosilane system such as 3-aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane.
  • Epoxysilane compounds such as ⁇ -glycidoxypropyltrimethoxysilane
  • Vinylsilane compounds such as ⁇ - (meth) acryloxypropyltrimethoxysilane
  • N- ⁇ - (N-vinylbenzylaminoethyl) - ⁇ - Cationic silane compounds such as aminopropyltrimethoxysilane hydrochloride
  • phenylsilane compounds can be mentioned.
  • the silane coupling agent can function as a curing agent.
  • the content of the silane coupling agent is preferably 0.1 to 7.5% by mass, more preferably 0.5 to 5% by mass, based on the total amount of the resin composition. It is 0.0% by mass, more preferably 1.0 to 3.0% by mass.
  • the curing catalyst is not particularly limited as long as it catalyzes the reaction of the reactive silyl group, and examples thereof include tin-based catalysts, titanium-based catalysts, aluminum-based catalysts, zinc-based catalysts, iron-based catalysts, and phosphorus-based catalysts. Can be mentioned.
  • UVA ultraviolet absorber
  • UVA is not particularly limited, and examples thereof include benzotriazole-based compounds, hydroxyphenyltriazine-based compounds, and polymers containing benzotriazole and benzophenone.
  • the light stabilizer is not particularly limited, and examples thereof include N-OR type hindered amine compounds, N-R type hindered amine compounds, and NH type hindered amine compounds.
  • R indicates a hydrocarbon group
  • the N-OR type and the N-R type mean that the OR group and the R group are bonded to the nitrogen atom of the piperidyl skeleton.
  • the NH type means a hydrogen atom bonded to a nitrogen atom of a piperidine skeleton.
  • the resin composition of the present embodiment can be suitably used for reinforcing, repairing, or adhering an adherend, and is particularly preferably used for a surface protection method for concrete pieces.
  • the surface protection method in the present embodiment includes a peeling prevention method for the purpose of preventing concrete from peeling, a protection method for the purpose of blocking deterioration factors such as salt, oxygen, moisture, and light.
  • the composition of this embodiment can be preferably used in any of the construction methods. Among these, the resin composition of the present embodiment capable of forming a coating film having excellent strength and extensibility can be suitably used by the peeling prevention method.
  • the resin composition of the present embodiment is preferably used as an intermediate coating layer in the surface protection method for concrete pieces.
  • the intermediate coating layer is a layer responsible for the mechanical properties of the covering material in the surface protection method for concrete pieces, and is generally formed on a primer layer formed on the surface of a concrete skeleton.
  • the resin composition of the present embodiment has an excellent balance between strength and elongation, good results can be shown in a punching test and a crack followability test, and a more reliable peeling prevention treatment can be realized.
  • the surface protection method for concrete pieces of the present embodiment includes a step of forming an intermediate coating layer on the surface of a concrete skeleton or the surface of another layer formed on the surface of the concrete skeleton by using the above resin composition. Further, in the concrete piece surface protection method of the present embodiment, a primer layer may be formed as another layer on the surface of the concrete skeleton, if necessary, and a top coat layer may be formed on the surface of the intermediate coat layer. Further may be formed.
  • the resin contained in the primer layer is not particularly limited, and examples thereof include acrylic resin, olefin resin, vinyl acetate resin, urethane resin, epoxy resin, aminated epoxy resin, urea resin, silicone resin, and modified resins thereof. Can be mentioned.
  • the resin composition of the present embodiment has excellent adhesiveness to the concrete skeleton, it can be suitably used for a surface protection method that does not form a primer layer.
  • the weather resistance tends to be further improved by forming the topcoat layer.
  • the resin contained in the topcoat layer is not particularly limited, and is, for example, a fluororesin, an acrylic resin, an acrylic silicone resin, an acrylic urethane resin, a urethane resin, an olefin resin, a vinyl acetate resin, an ethylene vinyl acetate copolymer resin, and a silicone resin. And these modified resins.
  • the method for forming each layer is not particularly limited, and examples thereof include a method in which the resin composition forming each layer is applied and then dried at room temperature or using a drying facility. Further, when laminating the layers, the next layer is formed after the underlying layer has dried.
  • the drying time varies depending on the coating environment conditions and the like, but can be, for example, one day or more.
  • Modified Silicone Resin A (manufactured by Asahi Kasei Wacker Silicone Co., Ltd., product name: XB502, 25 ° C. viscosity: 2000 mPas, modified silicone resin having two or more silicon atoms bonded with methoxy groups at both ends, polyoxypropylene structure as a polyether polymer 80 parts by weight (having a dimethoxymethylsilyl group as a reactive silyl group), modified silicone resin B (manufactured by Asahi Kasei Wacker Silicone Co., Ltd., product name: E30, 25 ° C. viscosity: 30,000 mPas, silicon atoms bonded to methoxy groups at both ends.
  • a modified silicone resin having one in each, having a polyoxypropylene structure as a polyether polymer, and having a dimethoxymethylsilyl group as a reactive silyl group, and silica (manufactured by Asahi Kasei Wacker Silicone Co., Ltd., product name: H18). , Average particle size: 10 nm) 6 parts by weight was added, and the mixture was stirred for 5 minutes. Further, 2 parts by weight of 3-aminopropyltrimethoxysilane was added, and the mixture was stirred for 5 minutes to prepare a resin composition.
  • Example 2 A resin composition was prepared by the same operation as in Example 1 except that the amount of the modified silicone resin A used was 50 parts by weight and the amount of the modified silicone resin B used was 50 parts by weight.
  • Example 3 A resin composition was prepared by the same operation as in Example 1 except that the amount of silica used was 3 parts by weight.
  • Example 1 The resin composition was prepared by the same operation as in Example 1 except that the amount of the modified silicone resin A used was 100 parts by weight and the modified silicone resin B was not used.
  • Example 2 A resin composition was prepared by the same operation as in Example 1 except that the amount of the modified silicone resin A used was 20 parts by weight and the amount of the modified silicone resin B used was 80 parts by weight.
  • test substrate having the shape shown in FIG. 2A is prepared in accordance with JSCE K 511, and the resin composition prepared as described above is applied to the surface of the test substrate in an amount of 1.0 [kg]. / M 2 ] was applied. Then, it was allowed to stand at 23 ° C. and a relative humidity of 50% for 7 days to cure the resin composition to prepare a coating film.
  • the test substrate had a cylindrical hole with a diameter of 10 mm and a depth of 55 mm on the side opposite to the coating film forming surface.
  • the punch-out test was conducted in accordance with JSCE K533. Specifically, as shown in FIG. 2B, when the columnar core portion surrounded by the holes is loaded from the non-coated surface to the coated surface, and the displacement reaches 10 mm. Loading was temporarily suspended. At this time, the change with time of the load (kN) applied when loading at 5 mm / min was monitored, and the peeling range when the displacement amount reached 10 mm was marked. This was repeated every 10 mm of displacement, and loading was performed until the coating film broke.
  • the loading was performed at 1 mm / min until the remaining part of the core portion was destroyed, and 5 mm / min after the remaining portion of the core portion was destroyed.
  • FIG. 3 shows the change over time in the load (kN) of the punching test.
  • Table 2 shows the average value of the measured maximum load and maximum displacement.
  • Table 2 and FIG. 3 in Comparative Example 1 in which the maximum stress and elastic modulus are relatively high and the fracture strain is low, and in Comparative Example 2 in which the fracture strain is relatively high and the maximum stress and elastic modulus are low, the punching test is performed. It was found that the cured product (coating film) was easily broken. On the other hand, in Examples 1 and 2, the maximum load and the maximum displacement are much improved as compared with Comparative Examples 1 and 2 because the maximum stress, elastic modulus, and breaking strain are equal to or higher than the predetermined values. I understood.
  • a test substrate having the shape shown in FIG. 4A is prepared in accordance with JSCE K 511, and the resin composition prepared as described above is applied to the surface of the test substrate in an amount of 1.5 [kg]. / M 2 ] was applied. Then, it was allowed to stand at 23 ° C. and a relative humidity of 50% for 7 days to cure the resin composition to prepare a coating film.
  • the test substrate had a cut surface at the center, and the coating film was formed so as to cross the cut surface.
  • the crack followability test was performed in accordance with JSCE-K532. Specifically, as shown in FIG. 4B, the test substrate was pulled in the long axis direction by a load cell (capacity 2 kN), and the test was conducted until the coating film broke. Then, the displacement when the coating film was broken was measured.
  • a test substrate was prepared in accordance with JSCE K511, and the test substrate was held so that the surface direction of the test substrate was parallel to the ground. Then, the resin composition prepared as described above was applied to the side (lower surface) facing the surface of the test substrate. In that state, the mixture was allowed to stand at 23 ° C. and a relative humidity of 50% for 24 hours, and it was confirmed whether or not dripping occurred.
  • the present invention has industrial applicability as a resin composition used for a surface protection method for concrete pieces or other reinforcement, repair, or adhesion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

変成シリコーン樹脂と充填剤とを含む樹脂組成物であって、前記樹脂組成物を23℃、相対湿度50%で、7日間硬化させたときの硬化物において、JIS K 6251に準拠して測定される、最大応力が、5.0N/mm2以上であり、破断歪が、100%以上であり、弾性率が、2.0MPa以上である、樹脂組成物。

Description

樹脂組成物
 本発明は、樹脂組成物、特にはコンクリート片の表面保護工法に使用される樹脂組成物に関する。
 二酸化炭素による中性化や塩化物イオンの浸透による塩害やその他の経時劣化が進行することなどにより、コンクリート構造物からコンクリート片が剥落することがある。このようなコンクリート片の剥落を防止するために、コンクリートの表面を樹脂組成物や繊維シートで覆う工法が知られている。
 例えば、特許文献1には、このような表面保護工法の作業性を向上させることを目的として、コンクリート躯体の表面側にプライマー層を形成した後、該プライマー層上に弾性樹脂層を形成し、次いで、該弾性樹脂層上に補強層を形成するコンクリート片の剥落防止工法において、補強層として、所定のイソシアヌレート化合物、所定のイソシアネートプレポリマー、及び所定のジアミン化合物により形成することが開示されている。
特開2020-090566号公報
 しかしながら、イソシアヌレート化合物は劇物や毒物の指定がされつつあり、イソシアヌレート化合物を原料とするポリウレアやポリウレタンは、有毒性の点から問題がある。そのため、表面保護工法に使用する樹脂組成物としてイソシアヌレート化合物を用いない樹脂組成物が求められている。
 また、表面保護工法の中塗層として従来用いられてきたウレタンは強度が低く、またエポキシは追従性が低いなど、表面保護材料として課題がある。
 本発明は上記問題点に鑑みてなされたものであり、有害性が低く、かつ、強度及び伸び性に優れる塗膜を形成できる樹脂組成物を提供することを目的とする。
 すなわち、本発明は以下のとおりである。
〔1〕
 変成シリコーン樹脂と充填剤とを含む樹脂組成物であって、
 前記樹脂組成物を23℃、相対湿度50%で、7日間硬化させたときの硬化物において、JIS K 6251に準拠して測定される、
 最大応力が、5.0N/mm2以上であり、
 破断歪が、100%以上であり、
 弾性率が、2.0MPa以上である、
 樹脂組成物。
〔2〕
 平行平板を用いて、ギャップ1.5mm、歪0.5%、温度40℃、角周波数0.1rad/sの条件で、JIS K 6394に準拠して圧縮モードにより測定される伸長応力が、25Pa以上である、
 〔1〕に記載の樹脂組成物。
〔3〕
 前記変成シリコーン樹脂が、反応性シリル基を両末端にそれぞれ2以上有する直鎖重合体Aを含み、
 該直鎖重合体Aの含有量が、前記変成シリコーン樹脂の総量に対して、10~90質量%である、
 〔1〕又は〔2〕に記載の樹脂組成物。
〔4〕
 前記変成シリコーン樹脂が、反応性シリル基を両末端にそれぞれ1つ有する直鎖重合体Bを含み、
 該直鎖重合体Bの含有量が、前記変成シリコーン樹脂の総量に対して、10~90質量%である、
 〔1〕~〔3〕のいずれか一項に記載の樹脂組成物。
〔5〕
 前記変成シリコーン樹脂の含有量が、前記樹脂組成物の総量に対して、20~99質量%である、
 〔1〕~〔4〕のいずれか一項に記載の樹脂組成物。
〔6〕
 前記充填剤の平均粒径が、400nm以下である、
 〔1〕~〔5〕のいずれか一項に記載の樹脂組成物。
〔7〕
 前記充填剤の含有量が、前記樹脂組成物の総量に対して、1.0~15質量%である、
 〔1〕~〔6〕のいずれか一項に記載の樹脂組成物。
〔8〕
 前記充填剤が、シリカ、アルミナ、炭酸カルシウム、樹脂粒子からなる群より選ばれる一種以上を含み、
 〔1〕~〔7〕のいずれか一項に記載の樹脂組成物。
〔9〕
 コンクリート片の表面保護工法に使用される、
 〔1〕~〔8〕のいずれか一項に記載の樹脂組成物。
〔10〕
 コンクリート躯体の表面、又は、該表面に形成された他の層の表面に、〔1〕~〔9〕のいずれか一項に記載の樹脂組成物を用いて、中塗層を形成する工程を有する、
 コンクリート片の表面保護工法。
 本発明によれば、有害性が低く、かつ、強度及び伸び性に優れる塗膜を形成できる樹脂組成物を提供できる。
実施例における引張特性を示す図である。 押し抜き試験の概略を示す図である。 実施例における押し抜き試験の結果を示す図である。 ひび割れ追従性試験の概略を示す図である。
 以下、本発明の実施の形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。
〔樹脂組成物〕
 本実施形態の樹脂組成物は、変成シリコーン樹脂と充填剤とを含む樹脂組成物であって、該樹脂組成物を23℃、相対湿度50%で、7日間硬化させたときの硬化物において、JIS K 6251に準拠して測定される、最大応力が、5.0N/mm2以上であり、破断歪が、100%以上であり、弾性率が、2.0MPa以上であるものである。
(最大応力)
 樹脂組成物を23℃、相対湿度50%で、7日間硬化させたときの硬化物において、JIS K 6251に準拠して測定される最大応力(以下、単に「最大応力」という。)は、5.0N/mm2以上であり、好ましくは6.0~25N/mm2であり、より好ましくは7.0~20N/mm2であり、さらに好ましくは7.5~18N/mm2であり、よりさらに好ましくは10~18N/mm2である。
(破断歪)
 樹脂組成物を23℃、相対湿度50%で、7日間硬化させたときの硬化物において、JIS K 6251に準拠して測定される破断歪(以下、単に「破断歪」という。)は、100%以上であり、好ましくは120%~600%であり、より好ましくは140%~550%であり、さらに好ましくは160%~500%であり、よりさらに好ましくは180%~500%である。
(弾性率)
 樹脂組成物を23℃、相対湿度50%で、7日間硬化させたときの硬化物において、JIS K 6251に準拠して測定される弾性率(以下、単に「弾性率」という。)は、2.0MPa以上であり、好ましくは3.0~35MPaであり、より好ましくは4.0~30MPaであり、さらに好ましくは5.0~25MPaであり、よりさらに好ましくは6.0~20MPaである。
 得られる塗膜の強度及び伸び性は、最大応力、破断歪、及び弾性率によって複合的に発揮される効果であり、最大応力、破断歪、及び弾性率のすべてが上記下限値以上であることにより、得られる塗膜の強度及び伸び性がより向上する。より具体的には、最大応力や弾性率が上記下限値以上であっても破断歪が劣れば、実施例に記載の押し抜き試験において硬化物(塗膜)は容易に破断するし、ひび割れ追従性試験においても追従性が発揮されない結果となる。また、破断歪が上記下限値以上であり最大応力や弾性率が劣る場合においても、押し抜き試験において硬化物(塗膜)は容易に破断する。
 最大応力、破断歪及び弾性率は、変成シリコーン樹脂及び充填剤の種類や含有量により、調整できる。より具体的には、架橋密度が高くなる変成シリコーン樹脂を用いることで、最大応力や弾性率はより向上する傾向にあり、架橋密度が低くより柔軟な骨格を有する変成シリコーン樹脂を用いることで、破断歪はより向上する傾向にある。本実施形態においては、後述するように変成シリコーン樹脂を2種以上用いることで、最大応力、破断歪及び弾性率を調整してもよい。
 最大応力、破断歪及び弾性率は、JIS K 6251に準拠して測定できる。なお、最大応力、破断歪及び弾性率の測定においては、3号ダンベルの厚みを1mmとし、また、引張速度は100mm/minとする。
(伸長応力)
 平行平板を用いて、ギャップ1.5mm、歪0.5%、温度40℃、角周波数0.1rad/sの条件で、JIS K 6394に準拠して圧縮モードにより測定される伸長応力(以下、単に「降伏伸長応力」という。)は、好ましくは25Pa以上であり、より好ましくは30~800Paであり、さらに好ましくは35~700Paであり、よりさらに好ましくは40~600Paである。
 本実施形態の組成物は壁や天井など、重力により液だれが生じやすい場所にも塗工され得る。角周波数0.1rad/sの条件は、例えば天井に塗工した際に液だれが生じ始める速度に相当するものであり、上記条件により測定される降伏伸長応力が25Pa以上であることにより、液だれの発生を防止できる。そのため、取り扱い性がより向上するほか、液だれが抑制されることで強度や伸び性のばらつきが抑えられた均一な塗膜を得ることができる。
(変成シリコーン樹脂)
 本実施形態における変成シリコーン樹脂とは、反応性シリル基を有する重合体をいい、主鎖となる重合体に対して反応性シリル基が付加されたものが含まれる。変成シリコーン樹脂は1種単独で用いても、2種以上を併用してもよい。
 反応性シリル基が付加される重合体としては、特に制限されないが、例えば、ポリオキシエチレン、ポリオキシプロピレン、及びポリオキシブチレン等のポリエーテル系重合体;ポリイソプレン、ポリイソブチレン、ポリブタジエン等の脂肪族炭化水素系重合体;ポリ(メタ)アクリル酸、及びポリ(メタ)アクリレート等のアクリル系重合体;ポリエステル系重合体が挙げられる。
 このなかでも、ポリエーテル系重合体が好ましい。ポリエーテル系重合体の中では、ポリオキシアルキレンがより好ましい。ポリオキシアルキレンの中では、ポリオキシプロピレンがより好ましい。このような重合体を主鎖として用いることにより、主鎖の柔軟性が高いため、破断歪及び弾性率がより向上し、得られる塗膜の伸び性がより向上する傾向にある。
 なお、重合体の骨格は、直鎖状であっても、分岐状であってもよいが、直鎖状が好ましい。このような変成シリコーン樹脂を用いることにより、過剰に架橋密度が向上することが抑制され、破断歪及び弾性率がより向上するため、得られる塗膜の伸び性がより向上する傾向にある。
 反応性シリル基としては、特に制限されないが、例えば、付加反応性シリル基、縮合反応性シリル基、加水分解性シリル基が挙げられる。より具体的には、ケイ素原子に、水素原子、水酸基、アルコキシ基、ハロゲン原子、アシルオキシ基、アルケニルオキシ基、アミド基、オキシム基、ケトキシメート基、アミド基、酸アミド基、メルカプト基、アミノオキシ基等の反応性基が結合した基が挙げられる。
 このような反応性シリル基としては、特に制限されないが、例えば、下記式(1)で表されるものが挙げられる。
 -(SiOX2-b-SiX3-a   ・・・ (1)
(式中、Rは、各々独立して、炭素数1~20のアルキル基、炭素数6~20のアリール基、又は炭素数7~20のアラルキル基を示し、Xは、各々独立して、水素原子、水酸基、アルコキシ基、ハロゲン原子、アシルオキシ基、アルケニルオキシ基、アミド基、オキシム基、ケトキシメート基、アミド基、酸アミド基、メルカプト基、又はアミノオキシ基を示し、aは、1~3の整数を示し、bは0~2の整数を示し、nは0~10の整数を示す。)
 反応性シリル基の具体例としては、特に制限されないが、例えば、トリメトキシシリル基、ジメトキシメチルシリル基、ジメチルメトキシシリル基、トリエトキシシリル基、ジエトキシメチルシリル基、ジメチルエトキシシリル基、ジメトキシフェニルシリル基、ジフェニルメトキシシリル基、ジエトキシフェニルシリル基、ジフェニルエトキシシリル基等のアルコキシシリル基;これらアルコキシシリル基が末端に結合した、ジアルキルシリコーン、アルキルアルコキシシリコーン、ジアルコキシシリコーン、ジフェニルシリコーン、アルコキシフェニルシリコーンなどの高分子化反応性シリル基が挙げられる。反応性シリル基の中では、ジメトキシメチルシリル基が好ましい。
 また、重合体における反応性シリル基の結合位置は、特に制限されないが、例えば、主鎖である重合体の末端、側鎖、あるいは末端及び側鎖とすることができる。このなかでも、主鎖である重合体の末端に反応性シリル基を有する変成シリコーン樹脂が好ましい。このような変成シリコーン樹脂を用いることにより、架橋点同士の距離や架橋点数をより制御しやすくなり、最大応力、破断歪、及び弾性率をより好適に調整できるため、得られる塗膜の強度及び伸び性をより向上できる。
 重合体の末端への反応性シリル基の結合態様は、特に制限されず、重合体の末端を反応性シリル基により変成する方法に応じて、任意のリンカーLによって反応性シリル基(-SiX3-a)は重合体の末端へ結合できる。ここで、リンカーLは、重合体の繰り返し単位の末端の原子から、式(1)で表される反応性シリル基のケイ素原子をつなぐ部分とすることができる。例えば、重合体がポリオキシエチレンである場合、繰り返し単位の末端の原子は、一方の末端は酸素原子となり他方の末端は炭素原子となる。また、重合体がアクリル系重合体であり重合体の末端に開始剤が付加している場合には、その開始剤部分はリンカーLに含まれるものとする。
 このようなリンカーLとしては、特に制限されないが、例えば、ウレタン結合、ウレア結合、エステル結合、アミド結合、エーテル結合、シロキサン結合を有してもよい連結基が挙げられる。このような連結基としては、例えば、下記式(a)~(i)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000001
(式中、Rは、重合体の末端に結合する基であり、単結合、炭素数1~10の炭化水素基を示し、Rは、反応性シリル基に結合する基であり、各々独立して、単結合、炭素数1~10の炭化水素基を示し、Zは、各々独立して、ウレタン結合、ウレア結合、エステル結合、アミド結合、エーテル結合、シロキサン結合を示し、Rは、各々独立して、炭素数1~10の炭化水素基を示す。)
 なお、式(a)~(c)は、直鎖リンカーであり、式(d)~(f)は、2分岐リンカーであり、式(g)~(i)は、3分岐リンカーである。但し、連結基としては、上記に制限されず、直鎖、2~5分岐の連結基を用いることができる。また、連結基全体の炭素数は好ましくは1~30であり、より好ましくは1~20であり、さらに好ましくは1~10である。式(a)においては、Rは、反応性シリル基にも結合する。
 重合体の一つの末端に結合する反応性シリル基の数は、好ましくは1~5である。このなかでも、変成シリコーン樹脂としては、反応性シリル基を両末端にそれぞれ2以上有する変成シリコーン樹脂(以下、「直鎖重合体A」ともいう)、反応性シリル基を両末端にそれぞれ1つ有する変成シリコーン樹脂(以下、「直鎖重合体B」ともいう)、あるいはこれらを併用することが好ましい。このように反応性シリル基の数が異なる変成シリコーン樹脂を組み合わせて用いることにより、最大応力、破断歪、及び弾性率をより好適に調整でき、得られる塗膜の強度及び伸び性をより向上できる。
 直鎖重合体Aとしては、アルコキシ基が結合したケイ素原子を両末端にそれぞれ2以上有する変成シリコーン樹脂が好ましい。このような直鎖重合体Aを用いることにより、硬化物の架橋密度の向上により最大応力及び弾性率がより向上し、得られる塗膜の強度がより向上する傾向にある。
 直鎖重合体Aの25℃における粘度は、好ましくは100~7000mPasであり、より好ましくは500~5000mPasであり、さらに好ましくは1000~3000mPasである。一般に、分子量が小さいほど粘度が小さい傾向にあるが、粘度が上記範囲内であることにより、硬化物の架橋密度の向上により最大応力及び弾性率がより向上し、得られる塗膜の強度がより向上する傾向にある。なお、本実施形態における粘度は、ブルックフィールド粘度計(B型回転粘度計)を用いて常法により測定できる。本実施形態における粘度は、25℃、回転数10rpmの条件下で測定する。
 直鎖重合体Aは、リンカーとしてはシロキサン結合を有する連結基を用いることが好ましい。このような変成シリコーン樹脂を用いることにより、硬化物の架橋密度の向上により最大応力及び弾性率がより向上し、得られる塗膜の強度がより向上する傾向にある。また、直鎖重合体Aは、ウレタン結合等の柔軟性基を有しても、有していなくてもよい。例えば、ウレタン結合等の柔軟性基を有することにより、硬化物の破断歪がより向上し、得られる塗膜の伸び性がより向上する傾向にあり、ウレタン結合等の柔軟性基を有しないことにより、ウレタン結合を形成する際の原料となるイソシアネートが樹脂組成物に混入し難くなるため、より安全な樹脂組成物を得ることができる。
 直鎖重合体Aのような、反応性シリル基を両末端にそれぞれ2以上有する変成シリコーン樹脂の含有量は、変成シリコーン樹脂の総量に対して、好ましくは10~90質量%であり、より好ましくは20~85質量%であり、さらに好ましくは30~85質量%である。反応性シリル基を両末端にそれぞれ2以上有する変成シリコーン樹脂の含有量が上記範囲内であることにより、最大応力及び弾性率がより向上し、得られる塗膜の強度がより向上する傾向にある。
 また、直鎖重合体Bとしては、アルコキシ基が結合したケイ素原子を両末端にそれぞれ1つ有する変成シリコーン樹脂が好ましい。このような直鎖重合体Bは架橋密度が比較的低いため、硬化物の破断歪がより向上し、得られる塗膜の伸び性がより向上する傾向にある。
 直鎖重合体Bは、ウレタン結合等の柔軟性基を有してもよい。このような変成シリコーン樹脂を用いることにより、硬化物の破断歪がより向上し、得られる塗膜の伸び性がより向上する傾向にある。
 直鎖重合体Bの25℃における粘度は、好ましくは7500~40000mPasであり、より好ましくは10000~45000mPasであり、さらに好ましくは20000~50000mPasである。一般に、分子量が大きいほど粘度が大きい傾向にあるが、粘度が上記範囲内であることにより、硬化物の架橋密度の低下により破断歪がより向上し、得られる塗膜の伸び性がより向上する傾向にある。
 直鎖重合体Bのような、反応性シリル基を両末端にそれぞれ1つ有する変成シリコーン樹脂の含有量は、変成シリコーン樹脂の総量に対して、好ましくは10~90質量%であり、より好ましくは15~80質量%であり、さらに好ましくは15~70質量%である。反応性シリル基を両末端にそれぞれ1つ有する変成シリコーン樹脂の含有量が上記範囲内であることにより、硬化物の破断歪がより向上し、得られる塗膜の伸び性がより向上する傾向にある。
 変成シリコーン樹脂の含有量は、樹脂組成物の総量に対して、好ましくは20~99質量%であり、より好ましくは25~99質量%であり、さらに好ましくは30~99質量%である。変成シリコーン樹脂の含有量が上記範囲内であることにより、最大応力、破断歪、及び弾性率がより向上し、得られる塗膜の強度及び伸び性がより向上する傾向にある。
(充填剤)
 充填剤としては、特に制限されないが、例えば、無機充填剤や有機充填剤が挙げられる。充填剤は、1種単独で用いてもよいし、2種以上を併用してもよい。
 無機充填剤としては、特に制限されないが、例えば、シリカ;アルミナ、酸化チタン、酸化マグネシウムなどの酸化物;炭酸カルシウム、炭酸マグネシウムなどの炭酸塩;水酸化アルミニウム、水酸化マグネシウムなどの水酸化物;ガラス繊維などの無機繊維が挙げられる。
 また、有機充填剤としては、特に制限されないが、例えば、アクリルビーズなどの樹脂粒子;セルロース繊維、合成樹脂繊維などの有機繊維が挙げられる。
 このなかでも、シリカ、アルミナ、炭酸カルシウム、及び樹脂粒子からなる群より選ばれる一つ以上を用いることが好ましい。このような充填剤を用いることにより、降伏伸長応力がより向上し、液だれが抑制される傾向にある。
 充填剤の平均粒径は、好ましくは400nm以下であり、より好ましくは1~200nmであり、さらに好ましくは1~100nmであり、よりさらに好ましくは1~50nmである。平均粒径が上記範囲内であることにより、降伏伸長応力がより向上し、液だれが抑制される傾向にある。なお、本実施形態において、平均粒径は体積基準の一次粒子径のことを言う。一次粒子径はレーザー回折散乱法により測定できる。
 充填剤の含有量は、樹脂組成物の総量に対して、好ましくは1.0~15質量%であり、より好ましくは1.5~10質量%であり、さらに好ましくは2.0~8.0質量%である。充填剤の含有量が上記範囲内であることにより、降伏伸長応力がより向上し、液だれが抑制される傾向にある。
(その他の成分)
 本実施形態の樹脂組成物は、変成シリコーン樹脂及び充填剤以外に、他の成分を含んでいてもよい。他の成分としては、特に制限されないが、例えば、上記変成シリコーン以外のシリコーン樹脂、シランカップリング剤、硬化触媒、有機顔料、無機顔料、紫外線吸収剤、及び光安定剤などが挙げられる。
 シリコーン樹脂としては、特に制限されないが、例えば、ポリジメチルシロキサン、ポリメチルフェニルシロキサン、ポリジフェニルシロキサン、あるいはこれらの共重合体、または変性体が挙げられる。なお、変性体としては、メチル基、フェニル基の一部が、アルキル変性、アラルキル変性、フルオロアルキル変性、ポリエーテル変性、アミノ変性、アクリル変性、エポキシ変性などされたものが挙げられる。
 シリコーン樹脂を含む場合には、シリコーン樹脂の含有量は、樹脂組成物の総量に対して、好ましくは45~75質量%であり、より好ましくは50~70質量%であり、さらに好ましくは55~65質量%である。
 シランカップリング剤としては、特に制限されないが、例えば、3-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシランなどのアミノシラン系化合物;γ-グリシドキシプロピルトリメトキシシランなどのエポキシシラン系化合物;γ-(メタ)アクリロキシプロピルトリメトキシシランなどのビニルシラン系化合物;N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン塩酸塩などのカチオニックシラン系化合物;フェニルシラン系化合物が挙げられる。
 シランカップリング剤は硬化剤として機能し得る。シランカップリング剤を含む場合には、シランカップリング剤の含有量は、樹脂組成物の総量に対して、好ましくは0.1~7.5質量%であり、より好ましくは0.5~5.0質量%であり、さらに好ましくは1.0~3.0質量%である。
 硬化触媒としては、反応性シリル基の反応を触媒するものであれば特に制限されないが、例えば、スズ系触媒、チタン系触媒、アルミ系触媒、亜鉛系触媒、鉄系触媒、リン系触媒などが挙げられる。
 紫外線吸収剤(UVA)としては、特に制限されないが、例えば、ベンゾトリアゾール系化合物、ヒドロキシフェニルトリアジン系化合物、ベンゾトリアゾールやベンゾフェノンを含む高分子が挙げられる。
 光安定剤(HALS)としては、特に制限されないが、例えば、N-OR型ヒンダードアミン系化合物、N-R型ヒンダードアミン系化合物、N-H型ヒンダードアミン系化合物などが挙げられる。ここでRは炭化水素基を示し、N-OR型、N-R型とは、ピペリジル骨格の窒素原子にOR基、R基が結合したものを意味する。また、N-H型とは、ピペリジル骨格の窒素原子に水素原子が結合したものを意味する。
〔用途〕
 本実施形態の樹脂組成物は、被着体の補強、補修、あるいは接着などに好適に用いることができ、特にはコンクリート片の表面保護工法に用いることが好ましい。なお、本実施形態における表面保護工法には、コンクリートの剥落防止を目的として行われる剥落防止工法、塩分、酸素、水分、又は光などの劣化因子を遮断する目的として行われる保護工法などが含まれ、いずれの工法においても本実施形態の組成物は好適に用いることができる。このなかでも、強度及び伸び性に優れる塗膜を形成可能な本実施形態の樹脂組成物は、剥落防止工法により好適に用いることができる。
 特には、本実施形態の樹脂組成物は、コンクリート片の表面保護工法における中塗層として用いることが好ましい。中塗層とは、コンクリート片の表面保護工法における被覆材の機械特性を担う層であり、一般には、コンクリート躯体の表面に形成されたプライマー層の上に形成される。このような用途に用いることにより、イソシアネートなどの有毒物を用いることなくコンクリートの補強や補修を行うことができる。
 また、本実施形態の樹脂組成物は強度と伸びのバランスに優れるため、押し抜き試験やひび割れ追従性試験においても良好な結果を示すことができ、より信頼性の高い剥落防止処理を実現できる。
〔コンクリート片の表面保護工法〕
 本実施形態のコンクリート片の表面保護工法は、コンクリート躯体の表面、又は、該表面に形成された他の層の表面に、上記樹脂組成物を用いて、中塗層を形成する工程を有する。また、本実施形態のコンクリート片の表面保護工法は、必要に応じて、コンクリート躯体の表面に他の層としてプライマー層を形成してもよいし、また、中塗層の表面に上塗層をさらに形成してもよい。
 プライマー層を形成することにより、コンクリート躯体と中塗層の接着性がより向上する傾向にある。プライマー層に含まれる樹脂としては、特に制限されないが、例えば、アクリル樹脂、オレフィン樹脂、酢酸ビニル樹脂、ウレタン樹脂、エポキシ樹脂、アミン化エポキシ樹脂、ウレア樹脂、シリコーン樹脂、およびこれらの変性樹脂などが挙げられる。
 なお、本実施形態の樹脂組成物は、コンクリート躯体に対する接着性にも優れるため、プライマー層を形成しない表面保護工法にも好適に用いることができる。
 また、上塗層を形成することにより、耐候性がより向上する傾向にある。上塗層に含まれる樹脂としては、特に制限されないが、例えば、フッ素樹脂、アクリル樹脂、アクリルシリコーン樹脂、アクリルウレタン樹脂、ウレタン樹脂、オレフィン樹脂、酢酸ビニル樹脂、エチレン酢酸ビニル共重合樹脂、シリコーン樹脂およびこれらの変性樹脂が挙げられる。
 各層の形成方法は、特に制限されないが、例えば、各層を形成する樹脂組成物を塗工した後、常温でまたは乾燥設備を用いて乾燥させる方法が挙げられる。また、層を積層する際には、下地となる層が乾燥してから次の層を形成する。乾燥時間は、塗装環境条件などによって異なるが、例えば1日以上とすることができる。
 以下、本発明を実施例及び比較例を用いてより具体的に説明する。本発明は、以下の実施例によって何ら限定されるものではない。
〔実施例1〕
 変成シリコーン樹脂A(旭化成ワッカーシリコーン社製、品名:XB502、25℃粘度:2000mPas、メトキシ基が結合したケイ素原子を両末端にそれぞれ2以上有する変成シリコーン樹脂、ポリエーテル系重合体としてポリオキシプロピレン構造を有する、反応性シリル基としてジメトキシメチルシリル基を有する)80重量部、変成シリコーン樹脂B(旭化成ワッカーシリコーン社製、品名:E30、25℃粘度:30000mPas、メトキシ基が結合したケイ素原子を両末端にそれぞれ1つ有する変成シリコーン樹脂、ポリエーテル系重合体としてポリオキシプロピレン構造を有する、反応性シリル基としてジメトキシメチルシリル基を有する)20重量部、及びシリカ(旭化成ワッカーシリコーン社製、品名:H18、平均粒径:10nm)6重量部を加えて、5分間撹拌した。さらに、3-アミノプロピルトリメトキシシラン2重量部を添加し、5分間撹拌し、樹脂組成物を調製した。
〔実施例2〕
 変成シリコーン樹脂Aの使用量を50重量部、変成シリコーン樹脂Bの使用量を50重量部としたこと以外は実施例1と同様の操作により、樹脂組成物を調製した。
〔実施例3〕
 シリカの使用量を3重量部としたこと以外は実施例1と同様の操作により、樹脂組成物を調製した。
〔比較例1〕
 変成シリコーン樹脂Aの使用量を100重量部とし、変成シリコーン樹脂Bを用いなかったこと以外は実施例1と同様の操作により、樹脂組成物を調製した。
〔比較例2〕
 変成シリコーン樹脂Aの使用量を20重量部、変成シリコーン樹脂Bの使用量を80重量部としたこと以外は実施例1と同様の操作により、樹脂組成物を調製した。
〔比較例3〕
 シリカを用いなかったこと以外は実施例1と同様の操作により、樹脂組成物を調製した。
〔最大応力、破断歪及び弾性率の測定〕
 上記のようにして得られた樹脂組成物を厚み1mmのシート状に成形し、23℃、相対湿度50%環境下で7日間静置させシート状の硬化物を得た。これを3号ダンベル形状に打抜き、後述する、最大応力、破断歪及び弾性率の測定に用いた。そして、JIS K 6251に準拠して最大応力、破断歪及び弾性率を測定した。なお、上記測定においては、3号ダンベルの厚みを1mmとし、また、引張速度は100mm/minとした。その結果を以下に示す。また、図1に引張試験結果を示す。
Figure JPOXMLDOC01-appb-T000002
〔押し抜き試験〕
 JSCE K 511に準拠して、図2(a)に示す形状の試験用基板を作製し、その試験用基板の表面に上記のようにして調製した樹脂組成物を塗工量1.0[kg/m]で塗工した。そして、23℃、相対湿度50%で、7日間静置し、樹脂組成物を硬化させて塗膜を作製した。なお、試験用基板は、塗膜作製面と反対側に、直径10mm、深さ55mmの円筒状の削孔を有するものとした。
 押し抜き試験は、JSCE K 533に準拠して行った。具体的には、図2(b)に示すように、削孔に囲まれる円柱状のコア部を塗膜非作製面から塗膜作製面方向へ載荷し、変位量が10mmに到達した時点で載荷を一時中断した。この際、5mm/minで載荷する際にかけた荷重(kN)の経時変化をモニタリングし、また、変位量が10mmに到達したときの剥離範囲をマーキングした。これを変位量10mmごとに繰り返し、塗膜が破断するまで載荷を行った。
 なお、載荷は、コア部の残存部が破壊されるまでは1mm/minで行い、コア部の残存部が破壊されてからは5mm/minで行った。
 図3に押し抜き試験の荷重(kN)の経時変化を示す。また、同じ押し抜き試験を3回行い、表2に、測定された最大荷重と最大変位の平均値を示す。表2及び図3に示されるように、最大応力や弾性率が比較的高く破断歪みが低い比較例1や、破断歪が比較的高く最大応力や弾性率が低い比較例2では、押し抜き試験において硬化物(塗膜)は容易破断することが分かった。これに対して、実施例1及び2においては、最大応力、弾性率、破断歪が所定値以上であることにより、最大荷重及び最大変位が比較例1~2と比べてはるかに良化することが分かった。
Figure JPOXMLDOC01-appb-T000003
〔ひび割れ追従性試験〕
 JSCE K 511に準拠して、図4(a)に示す形状の試験用基板を作製し、その試験用基板の表面に上記のようにして調製した樹脂組成物を塗工量1.5[kg/m]で塗工した。そして、23℃、相対湿度50%で、7日間静置し、樹脂組成物を硬化させて塗膜を作製した。なお、試験用基板は、中心に切断面を有し、塗膜は、その切断面を横断するように形成した。
 ひび割れ追従性試験は、JSCE-K 532に準拠して行った。具体的には、図4(b)に示すように、試験用基板をロードセル(容量2kN)で長軸方向に引っ張り、塗膜が破断するまで試験を行った。そして、塗膜が破断したときの変位を測定した。
 このひび割れ追従性試験を3回行い、表3に、測定された変位の平均値を示す。表3に示されるように、最大応力や弾性率が比較的高く破断歪みが低い比較例1では、ひび割れ追従性試験において硬化物(塗膜)は容易破断することが分かった。これに対して、実施例1及び2においては、最大応力、弾性率、破断歪が所定値以上であることにより、変位が比較例1と比べてはるかに良化することが分かった。
Figure JPOXMLDOC01-appb-T000004
〔液だれ評価〕
 まず、動的粘弾性測定装置(TA Instruments社製、装置名:RSA-G2)を用いて、ギャップ1.5mm、歪0.5%、温度40℃、角周波数0.1rad/sの条件で、JIS K 6394に準拠して圧縮モードにより降伏伸長応力を測定した。
 次いで、JSCE K 511に準拠して試験用基板を作製し、その試験用基板の面方向が地面と平行になるように試験用基板を保持した。そして、試験用基板の表面と対向する側(下面)に、上記のようにして調製した樹脂組成物を塗工した。その状態で、23℃、相対湿度50%で、24時間静置して、液だれが発生するか否かを確認した。
 その結果を表4に示す。なお、液だれが発生しないものを〇と評価し、液だれが発生したものを×と評価した。表4に示すように、液だれの発生は降伏伸長応力とよく相関することが分かった。
Figure JPOXMLDOC01-appb-T000005
 本発明は、コンクリート片の表面保護工法、あるいはその他の補強、補修、あるいは接着などに用いる樹脂組成物として、産業上の利用可能性を有する。
 

Claims (10)

  1.  変成シリコーン樹脂と充填剤とを含む樹脂組成物であって、
     前記樹脂組成物を23℃、相対湿度50%で、7日間硬化させたときの硬化物において、JIS K 6251に準拠して測定される、
     最大応力が、5.0N/mm2以上であり、
     破断歪が、100%以上であり、
     弾性率が、2.0MPa以上である、
     樹脂組成物。
  2.  平行平板を用いて、ギャップ1.5mm、歪0.5%、温度40℃、角周波数0.1rad/sの条件で、JIS K 6394に準拠して圧縮モードにより測定される伸長応力が、25Pa以上である、
     請求項1に記載の樹脂組成物。
  3.  前記変成シリコーン樹脂が、反応性シリル基を両末端にそれぞれ2以上有する直鎖重合体Aを含み、
     該直鎖重合体Aの含有量が、前記変成シリコーン樹脂の総量に対して、10~90質量%である、
     請求項1又は2に記載の樹脂組成物。
  4.  前記変成シリコーン樹脂が、反応性シリル基を両末端にそれぞれ1つ有する直鎖重合体Bを含み、
     該直鎖重合体Bの含有量が、前記変成シリコーン樹脂の総量に対して、10~90質量%である、
     請求項1~3のいずれか一項に記載の樹脂組成物。
  5.  前記変成シリコーン樹脂の含有量が、前記樹脂組成物の総量に対して、20~99質量%である、
     請求項1~4のいずれか一項に記載の樹脂組成物。
  6.  前記充填剤の平均粒径が、400nm以下である、
     請求項1~5のいずれか一項に記載の樹脂組成物。
  7.  前記充填剤の含有量が、前記樹脂組成物の総量に対して、1.0~15質量%である、
     請求項1~6のいずれか一項に記載の樹脂組成物。
  8.  前記充填剤が、シリカ、アルミナ、炭酸カルシウム、樹脂粒子からなる群より選ばれる一種以上を含み、
     請求項1~7のいずれか一項に記載の樹脂組成物。
  9.  コンクリート片の表面保護工法に使用される、
     請求項1~8のいずれか一項に記載の樹脂組成物。
  10.  コンクリート躯体の表面、又は、該表面に形成された他の層の表面に、請求項1~9のいずれか一項に記載の樹脂組成物を用いて、中塗層を形成する工程を有する、
     コンクリート片の表面保護工法。
PCT/JP2021/037282 2020-10-09 2021-10-08 樹脂組成物 WO2022075437A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022555579A JPWO2022075437A1 (ja) 2020-10-09 2021-10-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020171352 2020-10-09
JP2020-171352 2020-10-09

Publications (1)

Publication Number Publication Date
WO2022075437A1 true WO2022075437A1 (ja) 2022-04-14

Family

ID=81126518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037282 WO2022075437A1 (ja) 2020-10-09 2021-10-08 樹脂組成物

Country Status (2)

Country Link
JP (1) JPWO2022075437A1 (ja)
WO (1) WO2022075437A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105956A (ja) * 2001-09-27 2003-04-09 Sekisui Chem Co Ltd フローリング材の直貼り施工方法及び接着剤
JP2009275157A (ja) * 2008-05-16 2009-11-26 Konishi Co Ltd 硬化性樹脂組成物
JP2013508493A (ja) * 2009-10-26 2013-03-07 ダウ コーニング コーポレーション オルガノシロキサン組成物
JP2016172442A (ja) * 2015-03-17 2016-09-29 株式会社カネカ 防水構造および防水構造の形成方法
JP2018168692A (ja) * 2017-03-29 2018-11-01 積水フーラー株式会社 床構造体及びその施工方法
JP2018188595A (ja) * 2017-05-11 2018-11-29 Agc株式会社 硬化性組成物およびその製造方法、ならびに硬化物およびシーリング材
WO2019216358A1 (ja) * 2018-05-08 2019-11-14 積水フーラー株式会社 合成樹脂組成物、耐火材料、シーリング材、接着剤及び目地構造
WO2020165288A1 (en) * 2019-02-13 2020-08-20 Sika Technology Ag Thermally conductive curable composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105956A (ja) * 2001-09-27 2003-04-09 Sekisui Chem Co Ltd フローリング材の直貼り施工方法及び接着剤
JP2009275157A (ja) * 2008-05-16 2009-11-26 Konishi Co Ltd 硬化性樹脂組成物
JP2013508493A (ja) * 2009-10-26 2013-03-07 ダウ コーニング コーポレーション オルガノシロキサン組成物
JP2016172442A (ja) * 2015-03-17 2016-09-29 株式会社カネカ 防水構造および防水構造の形成方法
JP2018168692A (ja) * 2017-03-29 2018-11-01 積水フーラー株式会社 床構造体及びその施工方法
JP2018188595A (ja) * 2017-05-11 2018-11-29 Agc株式会社 硬化性組成物およびその製造方法、ならびに硬化物およびシーリング材
WO2019216358A1 (ja) * 2018-05-08 2019-11-14 積水フーラー株式会社 合成樹脂組成物、耐火材料、シーリング材、接着剤及び目地構造
WO2020165288A1 (en) * 2019-02-13 2020-08-20 Sika Technology Ag Thermally conductive curable composition

Also Published As

Publication number Publication date
JPWO2022075437A1 (ja) 2022-04-14

Similar Documents

Publication Publication Date Title
CN101443381B (zh) 具有改善的回弹性能的烷氧基硅烷交联的聚合物
US7723405B2 (en) Self-healing coating system
US20100197855A1 (en) Two-component curable polymer materials
US20050288415A1 (en) Highly elastomeric and paintable silicone compositions
JP6320223B2 (ja) コンクリート片剥落防止構造及びこの剥落防止工法及びこれらに使用する脂環式ポリアミン
US20110166285A1 (en) Sealing mass that can be cross-linked using water
WO2001083629A1 (fr) Procede de collage d'une partie a coller
JP7410043B2 (ja) 縮合硬化性組成物
JP2012511607A (ja) アルコキシシラン末端ポリマー含有ポリマー混合物
JP2020528955A (ja) 湿気硬化性組成物
WO2002072724A1 (fr) Produit adhesif pour l'industrie automobile
WO2022075437A1 (ja) 樹脂組成物
CN109312111A (zh) 高模量可固化组合物
JP2022120355A (ja) 樹脂組成物
JP5793491B2 (ja) 硬化性組成物
CN113692430B (zh) 底漆组合物
JP5138186B2 (ja) 被塗装性に優れた硬化性シーリング材又は硬化性パテ組成物
AU2016383097A1 (en) Liquid composition for a waterproofing membrane
ES2890407T3 (es) Composiciones curables por condensación
JP2023046902A (ja) 表面保護用組成物、表面保護用組成物セットおよび表面保護工法
JP2020029470A (ja) 二液混合型硬化性樹脂組成物
JP6206025B2 (ja) 木質床材用1液型常温湿気硬化性接着剤組成物
JP6914665B2 (ja) コンクリート表面被覆部材用シリコーンゴム組成物、それを用いたコンクリート表面被覆部材及びコンクリート表面被覆方法
JP5383088B2 (ja) 硬化性樹脂組成物
CN113966360A (zh) 包含甲硅烷基化聚合物的组合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877736

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022555579

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877736

Country of ref document: EP

Kind code of ref document: A1