WO2022075347A1 - オクタヒドロチエノキノリン化合物の製造方法及びその製造中間体 - Google Patents

オクタヒドロチエノキノリン化合物の製造方法及びその製造中間体 Download PDF

Info

Publication number
WO2022075347A1
WO2022075347A1 PCT/JP2021/036912 JP2021036912W WO2022075347A1 WO 2022075347 A1 WO2022075347 A1 WO 2022075347A1 JP 2021036912 W JP2021036912 W JP 2021036912W WO 2022075347 A1 WO2022075347 A1 WO 2022075347A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound represented
formula
compound
producing
equation
Prior art date
Application number
PCT/JP2021/036912
Other languages
English (en)
French (fr)
Inventor
弘孝 寺西
潔 河西
康徳 上野
明仁 平林
俊洋 西村
正子 吉田
紀彦 菊池
律 鈴木
眞 小林
孝幸 相内
政幸 西村
Original Assignee
キッセイ薬品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キッセイ薬品工業株式会社 filed Critical キッセイ薬品工業株式会社
Priority to JP2022555521A priority Critical patent/JPWO2022075347A1/ja
Priority to CN202180068464.4A priority patent/CN116348470A/zh
Publication of WO2022075347A1 publication Critical patent/WO2022075347A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/10Spiro-condensed systems
    • C07D491/113Spiro-condensed systems with two or more oxygen atoms as ring hetero atoms in the oxygen-containing ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems

Definitions

  • the present invention relates to a method for producing an optically active octahydrothienoquinoline compound having a dopamine D2 receptor agonistic action, and an optically active compound useful as a production intermediate and a method for producing the same.
  • Equation (P) Since the compound represented by (hereinafter referred to as compound ( P)) or a pharmacologically acceptable salt thereof has an excellent dopamine D2 receptor agonist action, for example, Parkinson's disease, Restless Legs syndrome Alternatively, it has been reported to be useful as a therapeutic or prophylactic agent for hyperprolactinaemia and the like (see, for example, Patent Documents 1 and 2).
  • Patent Documents 1 to 3 Methods for producing compound (P) have been reported in Patent Documents 1 to 3.
  • compound (IV) is optically resolved by producing compound (IV) using compound (II) as a starting material, performing reduction, and performing direct optical resolution using chiral column chromatography. It is described that it can be separated into an active substance, and that the obtained optically active compound (V) can be used to produce a compound (XIII) corresponding to the compound (P) of the present invention (Scheme 1). And 2).
  • R 1 , R 2 , R 10 , R 11 , X 1 and X 2 are synonymous with the definitions described in Patent Document 3).
  • Patent Documents 1 to 3 The method for producing compound (P) described in Patent Documents 1 to 3 requires complicated operations such as purification by column chromatography in addition to direct optical resolution of compound (V) using chiral column chromatography. There has been a problem in industrially producing compound (P) or a pharmacologically acceptable salt thereof due to the large number of steps. It is an object of the present invention to provide a novel production method and a novel production intermediate suitable for industrial production of compound (P) or a pharmacologically acceptable salt thereof.
  • TA is an optically active tartaric acid derivative, preferably L-tartaric acid), isolated as a compound (optically active tartarate, preferably L-tartaric acid) and isolated as the formula (AA).
  • the compound represented by the formula (P) suitable for industrial production that does not require complicated operations such as chiral column purification and column purification or its pharmacologically acceptable.
  • Equation (AA) A method for producing a compound represented by [TA is an optically active tartaric acid derivative in the formula], wherein the method comprises the following steps: Step 1: Equation (2): Compound represented by, methylamine and formula (3) :. By reacting with the compound represented by [in the formula, X 1 is a leaving group and R 1 is a C 1-6 alkyl group].
  • Equation (4) A step of producing the compound represented by [in the formula, R 1 is as defined above]; Step 2: By reducing the compound represented by the above formula (4) with a reducing agent in the presence of an acid, the formula (5): A step of producing the compound represented by [in the formula, R 1 is as defined above]; Step 3: By reacting the compound represented by the above formula (5) with n-propylamine in the presence of a base, the formula (6): Step 4: Produce the compound represented by the above formula (AA) by reacting the compound represented by the above formula (6) with an optically active tartaric acid derivative. Process.
  • Equation (AA) A compound represented by [TA is an optically active tartaric acid derivative in the formula].
  • Equation (6A) The compound represented by.
  • Equation (P) A method for producing a compound represented by the above or a pharmacologically acceptable salt thereof, wherein the method is: Equation (AA): A production method characterized by using a compound represented by [TA is an optically active tartaric acid derivative in the formula].
  • Equation (P) A method for producing a compound represented by the above or a pharmacologically acceptable salt thereof, wherein the method is: Equation (6A): A production method characterized by using a compound represented by.
  • Equation (P) A method for producing a compound represented by the above or a pharmacologically acceptable salt thereof, wherein the method comprises the following steps: Step 5: Formula (AA): By reacting the compound represented by [TA is an optically active tartaric acid derivative] with a base in the formula, Equation (6B): Step 9: Formula (10):: A step of producing a compound represented by the above formula (P) by reacting the compound represented by the above formula (P) with sulfur and malononitrile, and isolating the compound in a solid state.
  • Equation (P) A method for producing a compound represented by the above or a pharmacologically acceptable salt thereof, wherein the method comprises the following steps: Step 5: Formula (6A): By reacting the compound represented by with a base with Equation (6B): Step 9: Formula (10):: A step of producing a compound represented by the above formula (P) by reacting the compound represented by the above formula (P) with sulfur and malononitrile, and isolating the compound in a solid state.
  • Step 6 The compound represented by the above formula (6B) and Equation (7): R 2 -OC (O) -X 2 (7)
  • X 2 is a chlorine atom or a bromine atom
  • R 2 is an unsubstituted or phenyl group substituted with 1 to 3 groups independently selected from the group consisting of halogen atoms and nitro groups.
  • Equation (8) The production method according to the above [11] or [12], further comprising the step of producing the compound represented by [in the formula, R 2 is as defined above].
  • Step 7 By reacting the compound represented by the above formula (8) with N, N-dimethylethylenediamine.
  • Equation (9) The production method according to the above [13], further comprising a step of producing the compound represented by. [15]
  • Step 8 By hydrolyzing the compound represented by the formula (9), the formula (10): The production method according to the above [14], further comprising a step of producing the compound represented by.
  • Step 9P The production method according to the above [15], further comprising a step 9P: a step of purifying the compound represented by the formula (P) by recrystallization, if necessary.
  • Step 10 Further comprising the step of converting the compound represented by the formula (P) into a pharmacologically acceptable salt of the compound represented by the formula (P); 16] The manufacturing method according to the description.
  • a compound represented by the formula (P) suitable for industrial production or a pharmacologically acceptable compound thereof, which does not require complicated operations such as chiral column purification and column purification, is acceptable.
  • a novel method for producing a salt and an intermediate for producing the same can be provided.
  • optically active tartaric acid derivative examples include di- (p-tortaric acid) -L-tartaric acid, dibenzoyl-L-tartaric acid, L-tartaric acid and the like. It is preferably L-tartaric acid.
  • C 1-6 alkyl group means a linear or branched alkyl group having 1 to 6 carbon atoms, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and the like.
  • Examples of the "leaving group” include C 1-6 alkylsulfonyloxy, arylsulfonyloxy, halogen atoms and the like. It is preferably a halogen atom.
  • the "halogen atom” represents a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • C 1-6 alkyl sulfonyl oxy means a group represented by C 1-6 alkyl-SO 2 -O-, and examples thereof include methanesulfonyl oxy.
  • Arylsulfonyloxy is a group represented by phenyl-SO 2 -O-, wherein the phenyl is unsubstituted or a group selected from the group consisting of C 1-6 alkyl, halogen atom and nitro group. It means a phenyl group substituted with, and examples thereof include toluenesulfonyloxy and benzenesulfonyloxy.
  • Phenyl group substituted with 1 to 3 groups independently selected from the group consisting of halogen atom and nitro group means 1 to 3 groups independently selected from halogen atom or nitro group. It means a phenyl group substituted with, and examples thereof include a p-chlorophenyl group and a p-nitrophenyl group. The following abbreviations are used herein. n- means normal and tert- means tertiary. Me means methyl and Pr means propyl. TMPMgCl ⁇ LiCl means 2,2,6,6-tetramethylpiperidinyl magnesium chloride lithium chloride complex.
  • the compounds represented by the formulas (5) and (6) include a mixture of up to eight diastereomers based on the asymmetric carbon atoms at positions 3, 4a and 8a on the decahydroquinoline ring. means.
  • the compounds represented by the formulas (5) and (6) include, for example, the compounds represented by the following formulas (5B) and (6B), respectively. [In the formula, R 1 is as defined above]
  • the present invention when an asymmetric carbon atom is present in R 1 , the present invention presents the present invention as a compound having an asymmetric carbon atom in an R arrangement, a compound having an S arrangement, and a compound thereof. Includes any combination of compounds.
  • the compounds represented by the formulas (AA) and (6A) also include solvates with solvents such as hydrate and ethanol, respectively.
  • the compound represented by the formula (P) or a pharmacologically acceptable salt thereof also includes a solvate with a pharmaceutically acceptable solvent such as hydrate and ethanol.
  • X 1 is a leaving group
  • R 1 is a C 1-6 alkyl group
  • TA is an optically active tartaric acid derivative.
  • Step 1 Compound (4) is obtained by dehydrating and condensing 1,4-cyclohexanedione monoethylene ketal (2), methylamine and compound (3) in an inert solvent.
  • This reaction is preferably azeotropically dehydrated using a Dean-Stark apparatus or the like.
  • the inert solvent include hydrocarbon solvents such as toluene and xylene, and carboxylic acid ester solvents such as isopropyl acetate.
  • the methylamine used is preferably a methanol solution.
  • the amount of methylamine is usually about 2 to about 4 equivalents relative to compound (2).
  • the amount of compound (3) is usually about 1 to about 2 equivalents relative to compound (2).
  • the reaction temperature is usually from -10 ° C to reflux temperature.
  • reaction time varies depending on the raw material used, the solvent, the reaction temperature, etc., but is usually 1 to 24 hours.
  • Examples of compound (3) include ethyl 2-[[[(4-methylphenyl) sulfonyl] oxy] methyl] -2-propenoate, ethyl 2-[[(methylsulfonyl) oxy] methyl] -2-propenoate, and ethyl 2.
  • -(Bromomethyl) -2-propenoate, ethyl 2- (chloromethyl) -2-propenoate and the like can be mentioned.
  • Step 2 The compound (5) containing the compound (5B) is obtained by reducing the compound (4) in an inert solvent in the presence of an acid with a reducing agent such as sodium cyanoborohydride or sodium borohydride. Be done.
  • the amount of reducing agent is usually about 1 to about 2 equivalents relative to compound (4).
  • the inert solvent include tetrahydrofuran, methanol, ethanol, ethyl acetate, 1,4-dioxane and a mixed solvent thereof.
  • the acid include hydrogen chloride, sulfuric acid, methanesulfonic acid, trifluoroacetic acid, acetic acid, formic acid and the like.
  • the amount of acid is usually about 1-2 equivalents relative to compound (4).
  • the reaction temperature is usually -50 ° C to 50 ° C, preferably -10 ° C to 30 ° C.
  • the reaction time varies depending on the raw material used, the solvent, the reaction temperature, etc., but is usually 10 minutes to 12
  • Step 3 The compound (6) containing the compound (6B) is obtained by reacting the compound (5) containing the compound (5B) with n-propylamine in the presence of a base in an inert solvent.
  • the inert solvent used in this reaction include ether solvents such as tetrahydrofuran, diisopropyl ether, tert-butyl methyl ether, cyclopentyl methyl ether and 1,2-dimethoxyethane, hydrocarbon solvents such as toluene and xylene, and them.
  • Examples include the mixed solvent of.
  • the amount of n-propylamine is usually about 1 to about 6 equivalents relative to compound (5).
  • Examples of the base include alkali metal alkoxides such as sodium methoxide.
  • the amount of base is usually about 0.2 to about 0.5 equivalent with respect to compound (5).
  • the reaction temperature is usually 0 ° C to 100 ° C, preferably 0 ° C to 30 ° C.
  • the reaction time varies depending on the raw material used, the solvent, the reaction temperature, etc., but is usually 1 to 24 hours. In this step, epilation of the 3-position on the decahydroquinoline ring can also be performed.
  • compound (6B) may be isolated and purified before performing the next step, but after normal post-treatment, it should be isolated as a mixture of compound (6) containing compound (6B). It can also be used in the next step without it.
  • the compound (6B) can be optically resolved from the compound (6) containing the compound (6B) by forming a salt with an optically active tartaric acid derivative by a conventional method.
  • the optically active compound (AA) can be obtained by reacting the compound (6) containing the compound (6B) with an optically active tartaric acid derivative such as L-tartaric acid in an inert solvent to form a salt. ..
  • the compound (6) containing the compound (6B) is reacted with the optically active tartrate derivative in an inert solvent to form the optically active compound (AA), and then the reaction mixture is prepared.
  • the compound (AA) can be isolated in a solid state by cooling to 25 ° C.
  • the equivalent of the optically active tartaric acid derivative is about 1.0 equivalent with respect to compound (6).
  • the inert solvent may be any solvent that does not interfere with salt formation, for example, alcoholic solvents such as methanol, ethanol, 1-propanol and 2-propanol, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like.
  • An amide-based solvent, water, and a mixed solvent thereof and the like can be used.
  • the reaction temperature is usually from 0 ° C to a reflux temperature, preferably 20 ° C to 65 ° C, and more preferably 55 ° C to 65 ° C.
  • the poor solvent include ether solvents such as methyl ether, cyclopentylmethyl ether, 1,2-dimethoxyethane and diethoxymethane, ketone solvents such as acetone and methyl ethyl ketone, and carboxylic acid ester solvents such as ethyl acetate and isopropyl acetate.
  • a nitrile solvent such as acetonitrile, a hydrocarbon solvent such as hexane, heptane, and toluene, or a mixed solvent thereof and the like can be used.
  • the cooling temperature is usually 0 ° C. to room temperature, and the cooling time is usually 1 hour to 24 hours, although it varies depending on the solvent used and the cooling temperature.
  • the optically active tartaric acid derivative includes, for example, di- (p-tor oil) -L-tartaric acid, dibenzoyl-L-tartaric acid, L-tartaric acid and the like. Preferred is L-tartaric acid.
  • the compound (AA) obtained in step 4 can also be purified by recrystallization, if necessary.
  • the recrystallization solvent include the inert solvent and the poor solvent of the step 4.
  • TA in the formula has the same meaning as above, X 2 is a chlorine atom or a bromine atom, and R 2 is an unsubstituted or 1 to 3 group independently selected from the group consisting of a halogen atom and a nitro group.
  • a phenyl group substituted with a group
  • Step 5 Compound (6B) is obtained by reacting compound (AA) with a base in a mixed solvent of water and an inert solvent.
  • the inert solvent include hydrocarbon solvents such as toluene and xylene, carboxylic acid ester solvents such as ethyl acetate, isopropyl acetate and butyl acetate, diisopropyl ether, tert-butyl methyl ether, cyclopentyl methyl ether, 1 and 2.
  • -Ethers-based solvents such as dimethoxyethane and diethoxymethane, and mixed solvents thereof and the like can be mentioned.
  • Bases include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, and alkaline soil such as calcium carbonate.
  • alkali metal hydrogen carbonates such as metal carbonates, sodium hydrogen carbonate and potassium hydrogen carbonate.
  • the amount of the base used can be in the range of 0.5 to 5 equivalents with respect to compound (AA), preferably in the range of 1 to 3 equivalents, and more preferably in the range of 1 to 2 equivalents.
  • the reaction temperature is usually 0 ° C to 40 ° C, preferably in the range of 0 to 30 ° C.
  • compound (6B) may be isolated and purified before the next step, but it can also be used in the next step without purification after the usual post-treatment.
  • the arylcarbamate compound (8) is obtained by reacting the compound (6B) with the aryl halogitate compound (7) in the presence of a base in an inert solvent.
  • the inert solvent include hydrocarbon solvents such as toluene and xylene, ether solvents such as tetrahydrofuran, diisopropyl ether, tert-butyl methyl ether, cyclopentyl methyl ether and 1,2-dimethoxyethane, and mixed solvents thereof and the like. Can be mentioned.
  • Examples of the aryl chloroformate compound (7) include 4-nitrophenyl chloroformate, 2-chlorophenyl chloroformate, phenyl chloroformate and the like.
  • the amount of aryl halogitate compound (7) is usually about 1 to about 5 equivalents relative to compound (6B).
  • Examples of the base include sodium hexamethyldisilazide, lithium hexamethyldisilazide, isopropylmagnesium bromide, TMPMgCl / LiCl and the like.
  • the amount of base is usually about 1 to about 5 equivalents relative to compound (6B).
  • the reaction temperature is usually ⁇ 78 ° C to 50 ° C, preferably -40 ° C to 20 ° C.
  • the reaction time varies depending on the raw material used, the solvent, the reaction temperature, etc., but is usually 15 minutes to 24 hours.
  • Step 7 The arylcarbamate compound (8) is reacted with N, N-dimethylethylenediamine or a salt thereof in an inert solvent in the presence or absence of a base to obtain the acylurea compound (9).
  • the inert solvent include alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol and 2-butanol, tetrahydrofuran, diisopropyl ether, tert-butylmethyl ether, cyclopentylmethyl ether and 1,2-dimethoxy.
  • examples thereof include ether solvents such as ethane and mixed solvents thereof.
  • the amount of N, N-dimethylethylenediamine is usually about 1 to about 5 equivalents relative to compound (8).
  • the base include inorganic bases such as potassium carbonate and organic amines such as triethylamine, N, N-diisopropylethylamine, pyridine, N-methylmorpholine and N, N-dimethylaniline. Among these bases, triethylamine or N, N-diisopropylethylamine is preferably used.
  • the amount of base is usually 0 to about 10 equivalents relative to compound (8).
  • the reaction temperature is usually 0 ° C to 150 ° C, preferably 0 ° C to 60 ° C.
  • the reaction time varies depending on the raw material used, the solvent, the reaction temperature, etc., but is usually 15 minutes to 24 hours.
  • the 6-oxodecahydroquinoline compound (10) is obtained by acid hydrolysis of the acylurea compound (9) in an inert solvent.
  • the inert solvent include alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol and 2-butanol, tetrahydrofuran, dimethoxyethane, 1,4-dioxane, water and a mixed solvent thereof and the like.
  • the acid include sulfuric acid, hydrochloric acid, phosphoric acid, acetic acid, methanesulfonic acid, benzenesulfonic acid and the like. Of these acids, hydrochloric acid is preferably used.
  • the amount of acid is usually about 5 to about 15 equivalents relative to compound (9).
  • the reaction temperature is usually -10 ° C to 100 ° C, preferably 0 ° C to 40 ° C.
  • the reaction time varies depending on the raw material used, the solvent, the reaction temperature, etc., but is usually 10 minutes to 24 hours.
  • compound (10) may be isolated and purified before the next step, but it may also be used in the next step without purification after the usual post-treatment.
  • the octahydrothienoquinoline compound (P) is obtained by reacting the 6-oxodecahydroquinoline compound (10) with sulfur and malononitrile in the presence or absence of a base in an inert solvent.
  • the inert solvent include 2-propanol, ethanol, methanol and the like.
  • the amount of sulfur is usually about 1-2 equivalents relative to compound (10).
  • the amount of malononitrile is usually about 1 to about 3 equivalents relative to compound (10).
  • the base include organic amines such as morpholine, piperidine and triethylamine.
  • the amount of base is usually 0 to about 3 equivalents relative to compound (10).
  • the reaction temperature is usually 0 ° C.
  • the obtained compound (P) can be isolated by solidifying by a conventional method. For example, after completion of the reaction, the reaction mixture is cooled and a poor solvent is added, so that the compound (P) can be isolated in a solid state.
  • the compound (P) is obtained by washing the obtained solid with a mixture of an inert solvent and a poor solvent. Examples of the poor solvent include hydrocarbon solvents such as hexane and heptane, water and the like.
  • the cooling temperature is usually 0 ° C. to room temperature, and the cooling time is usually 1 hour to 24 hours, although it varies depending on the solvent used and the cooling temperature.
  • Step 9P the compound (P) obtained in step 9 can also be purified by performing recrystallization.
  • the good solvent for recrystallization include the inert solvent of the step 9, but other examples include a ketone solvent such as acetone and methyl ethyl ketone.
  • the poor solvent for recrystallization include the poor solvent in step 9.
  • Compound (P) is pharmacologically acceptable by reacting with a mineral acid or an organic acid in an inert solvent, as required by conventional methods or the methods described in WO 2012/1264649.
  • Such salts include acid addition salts with mineral acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, and phosphoric acid, formic acid, acetic acid, trifluoroacetic acid, methanesulfonic acid, benzenesulfonic acid, and p-.
  • Acid addition salts with organic acids such as toluenesulfonic acid, propionic acid, citric acid, succinic acid, tartrate acid, fumaric acid, butyric acid, oxalic acid, malonic acid, maleic acid, lactic acid, malic acid, carbonic acid, glutamic acid, aspartic acid, etc. Can be mentioned.
  • the pharmacologically acceptable salt of compound (P) obtained in step 10 can also be purified by performing recrystallization.
  • the recrystallized solvent include an acetone-water mixed solvent, a methanol-water mixed solvent, an ethanol-water mixed solvent and the like.
  • 1 1 H-NMR was measured by Fourier transform type NMR.
  • the chemical purity of Examples was calculated from the peak areas of Examples 4 and 5 by gas chromatography and Examples 10 and 11 by liquid chromatography.
  • the optical purity of the examples was tested by liquid chromatography and calculated from the peak area of each.
  • Example 1 1'-Methyl-2', 3', 4', 5', 7', 8'-Hexahydro-1'H-spiro [1,3-dioxolane-2,6'-quinoline] -3'-carboxylic acid Ethyl (Compound (4-1)) To a mixture of ethyl 2- (bromomethyl) acrylate (81.6 g) and toluene (660 g) is added dropwise a mixture of 40% methylamine-methanol solution (89.4 g) and toluene (156 g) at 1-20 ° C. , Stirred at 2-8 ° C for 1 hour.
  • 1,4-Cyclohexanedione monoethylene ketal (60.0 g) and toluene (24 g) were sequentially added to the reaction mixture at 2-4 ° C, and azeotropically dehydrated at about 110 ° C for 9 hours.
  • the reaction mixture was cooled to 30 ° C. or lower and then allowed to stand overnight.
  • Water (140 g) was added to the reaction mixture and the aqueous layer was removed.
  • the organic layer was washed with water (140 g) and then concentrated under reduced pressure at 50 ° C. After cooling the residue to 30 ° C. or lower, methanol (30 g) was added to obtain a methanol solution of the title compound (168 g, yield 100%, and the next step was performed).
  • Example 2 1'-Methyl Octahydro-1'H-Spiro [1,3-dioxolane-2,6'-quinoline] -3'-Ethyl carboxylate (Compound (5-1)) 1'-Methyl-2', 3', 4', 5', 7', 8'-hexahydro-1'H-spiro [1,3-dioxolane-2,6'-quinolin] obtained in Example 1 Tetrahydrofuran (300 g) and methanol (62 g) are added to a methanol solution of ethyl -3'-carboxylate, and methanesulfonic acid (38.8 g) and tetrahydrofuran (8.4 g) are sequentially added dropwise at 1 to 7 ° C, and ice-cooled.
  • Compound (5-1) 1'-Methyl-2', 3', 4', 5', 7', 8'-hexahydro-1'H-spir
  • Example 3 1'-Methyl-N-Propyl Octahydro-1'H-Spiro [1,3-Dioxolane-2,6'-Quinoline] -3'-Carboxamide (Compound (6)) In a toluene solution of 1'-methyloctahydro-1'H-spiro [1,3-dioxolan-2,6'-quinoline] -3'-ethyl carboxylate obtained in Example 2, 1 at 22-25 ° C.
  • Isopropyl acetate (210 g) was added to the aqueous layer and extracted. The organic layers were combined, allowed to stand overnight, and then concentrated under reduced pressure at 50 ° C.
  • 1-Propanol (190 g) was added to the residue, and the mixture was concentrated under reduced pressure at 60 ° C.
  • 1-Propanol 60 g was added to the residue, the insoluble material was filtered and washed with 1-propanol (99 g) to give a 1-propanol solution of the title compound (251 g, 100% yield). The process was performed).
  • Example 4 (3'R, 4'aR, 8'aR) -1'-Methyl-N-propyloctahydro-1'H-spiro [1,3-dioxolane-2,6'-quinoline] -3'-carboxamide L -Tartrate (crude compound (6A)) In a 1-propanol solution of 1'-methyl-N-propyloctahydro-1'H-spiro [1,3-dioxolane-2,6'-quinoline] -3'-carboxamide obtained in Example 3, 1- After adding propanol (30 g), the mixture was heated to 60 ° C.
  • L-tartaric acid (28.8 g) was added at 61-64 ° C and stirred at the same temperature for 5 minutes, then L-tartaric acid (28.8 g) was further added at 59-60 ° C and stirred at 59-61 ° C for 30 minutes.
  • Acetone (100 g) was added dropwise to the reaction mixture at 56-59 ° C, and then the mixture was cooled to 45 ° C over 20 minutes. The reaction mixture was then cooled to 25 ° C over 100 minutes and then acetone (490 g) was added dropwise at 24-25 ° C. Further, the reaction mixture was stirred at 24 to 25 ° C. for 1 hour and then allowed to stand overnight.
  • Example 5 (3'R, 4'aR, 8'aR) -1'-Methyl-N-propyloctahydro-1'H-spiro [1,3-dioxolane-2,6'-quinoline] -3'-carboxamide L -Tartrate (compound (6A)) (3'R, 4'aR, 8'aR) -1'-methyl-N-propyloctahydro-1'H-spiro [1,3-dioxolane-2,6'-quinoline] obtained in Example 4 Methanol (48 g) was added to -3'-carboxamide L-tartrate (20.0 g), and the mixture was heated to 60 ° C. After stirring at 60-62 ° C.
  • Example 6 (3'R, 4'aR, 8'aR) -1'-Methyl-N-propyloctahydro-1'H-spiro [1,3-dioxolane-2,6'-quinoline] -3'-carboxamide
  • Compound (6B) (3'R, 4'aR, 8'aR) -1'-Methyl-N-propyloctahydro-1'H-spiro [1,3-dioxolane-2,6'-quinoline] -3'-carboxamide
  • Example 7 N- ⁇ [(3'R, 4'aR, 8'aR) -1'-methyloctahydro-1'H-spiro [1,3-dioxolane-2,6'-quinoline] -3'-yl] Phenyl carbonyl ⁇ -N-propylcarbamate (Compound (8-1)) (3'R, 4'aR, 8'aR) -1'-methyl-N-propyloctahydro-1'H-spiro [1,3-dioxolane-2,6'-quinoline] obtained in Example 6 A solution of -3'-carboxamide in tetrahydrofuran-toluene (815 g, containing 76.3 g as compound (6B)) at -13 to -10 ° C in an inert gas atmosphere, and a solution of TMPMgCl / LiCl in tetrahydrofuran / toluene (17.5 as TMPMgCl).
  • Example 8 1- ⁇ [(3'R, 4'aR, 8'aR) -1'-methyloctahydro-1'H-spiro [1,3-dioxolane-2,6'-quinoline] -3'-yl] Carbonyl ⁇ -3- [2- (dimethylamino) ethyl] -1-propylurea (Compound (9)) N- ⁇ [(3'R, 4'aR, 8'aR) -1'-methyloctahydro-1'H-spiro [1,3-dioxolane-2,6'-quinoline] obtained in Example 7] 2-Propanol (248 g) was added to a 2-propanol solution of -3'-yl] carbonyl ⁇ -phenyl propylcarbamate.
  • N, N-dimethylethylenediamine (87.4 g) was added to this mixture at 57-60 ° C, and the mixture was stirred at 55-57 ° C for 4 hours. After cooling the reaction mixture to room temperature, the reaction mixture was used as it was in the next step with a yield of 100%.
  • Example 9 1- ⁇ [(3R, 4aR, 8aR) -1-methyl-6-oxodecahydroquinoline-3-yl] carbonyl ⁇ -3- [2- (dimethylamino) ethyl] -1-propylurea (compound (10) ))) Reaction mixture of Example 8 (1- ⁇ [(3'R, 4'aR, 8'aR) -1'-methyloctahydro-1'H-spiro [1,3-dioxolan-2,6'-quinoline] ] -3'-Il] carbonyl ⁇ -3- [2- (dimethylamino) ethyl] -1-propylurea) at 20-39 ° C, 2 mol / L hydrochloric acid (1100 mL), 50-59 The mixture was stirred at ° C.
  • Example 10 1- ⁇ [(4aR, 6R, 8aR) -2-amino-3-cyano-8-methyl-4,4a, 5,6,7,8,8a, 9-octahydrothieno [3,2-g]] Quinoline-6-yl] carbonyl ⁇ -3- [2- (dimethylamino) ethyl] -1-propylurea (crude compound (P)) 1- ⁇ [(3R, 4aR, 8aR) -1-methyl-6-oxodecahydroquinoline-3-yl] carbonyl ⁇ -3- [2- (dimethylamino) ethyl] -1- obtained in Example 9 To a 2-propanol solution of propylurea (25.1 g, containing 4.77 g as compound (10)), sulfur (438 mg), malononitrile (919 mg) and 2-propanol (6.37 g) are sequentially added at room temperature, and at 50 ° C.
  • Example 11 1- ⁇ [(4aR, 6R, 8aR) -2-amino-3-cyano-8-methyl-4,4a, 5,6,7,8,8a, 9-octahydrothieno [3,2-g]] Quinoline-6-yl] carbonyl ⁇ -3- [2- (dimethylamino) ethyl] -1-propylurea (Compound (P)) 1- ⁇ [(4aR, 6R, 8aR) -2-amino-3-cyano-8-methyl-4,4a, 5,6,7,8,8a, 9-octahydrothieno [3,2-g]] Quinoline-6-yl] carbonyl ⁇ -3- [2- (dimethylamino) ethyl] -1-propylurea (4.00 g, optical purity 98.6% ee, chemical purity 98.4%) with acetone (22 g) at room temperature In addition, the mixture was stirred at 50 ° C until dissolved.
  • a compound (P) useful as a therapeutic or prophylactic agent for Parkinson's disease, restless legs syndrome or hyperprolactinemia, or a pharmacologically acceptable salt thereof can be subjected to complicated operations such as chiral column purification and column purification. It can be manufactured industrially without the need.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

ドパミンD2受容体アゴニストとして有用な化合物(P)またはその薬理学的に許容される塩の工業的製造に適した新規な製造方法及び新規な製造中間体を提供することである。 本発明は1,4-シクロヘキサンジオンモノエチレンケタール(2)から製造中間体として化合物(AA)等を経由して化合物(P)またはその薬理学的に許容される塩を製造する方法を提供する〔式中、TAは光学活性な酒石酸誘導体であり、好ましくは、L-酒石酸である。〕。

Description

オクタヒドロチエノキノリン化合物の製造方法及びその製造中間体
 本発明は、ドパミンD受容体アゴニスト作用を有する光学活性なオクタヒドロチエノキノリン化合物の製造方法、及び製造中間体として有用な光学活性な化合物及びその製造方法に関する。
 式(P):
Figure JPOXMLDOC01-appb-C000016
で表される化合物(以下、化合物(P)と称する)またはその薬理学的に許容される塩は、優れたドパミンD受容体アゴニスト作用を有することから、例えば、パーキンソン病、レストレスレッグス症候群または高プロラクチン血症等の治療または予防薬として有用であると報告されている(例えば、特許文献1、2参照)。
 化合物(P)の製造方法が、特許文献1~3で報告されている。例えば、特許文献3には、化合物(II)を出発原料として、化合物(IV)を製造し、還元を行い、キラルカラムクロマトグラフィーを用いた直接光学分割を実施することにより、化合物(V)は光学活性体に分離できること、そして、得られた光学活性な化合物(V)を用いて、本発明の化合物(P)に相当する化合物(XIII)を製造することができることが記載されている(スキーム1及び2参照)。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
(式中、R、R2、R10、R11、X及びXは特許文献3記載の定義と同義である)
国際公開第2012/124649号パンフレット 特開2014-74013号明細書 特開2014-88362号明細書
 特許文献1~3に記載の化合物(P)の製造方法は、キラルカラムクロマトグラフィーを用いて化合物(V)を直接光学分割することに加えて、カラムクロマトグラフィーによる精製といった煩雑な操作を必要とする工程が多数あるなど化合物(P)またはその薬理学的に許容される塩を工業的に製造するには課題があった。
 本発明は、化合物(P)またはその薬理学的に許容される塩の工業的製造に適した新規な製造方法及び新規な製造中間体を提供することを目的とする。
 本発明者らは、上記課題を解決すべく、その製造方法について鋭意研究を重ねた結果、化合物(2)を出発原料として、後述の化合物(6B)を含む化合物(6)を製造した後、式(AA):
Figure JPOXMLDOC01-appb-C000019
(式中、TAは、光学活性な酒石酸誘導体、好ましくは、L-酒石酸である)で表される化合物(光学活性な酒石酸塩、好ましくは、L-酒石酸塩)として単離し、式(AA)で表される化合物を製造中間体とすることで、キラルカラム精製やカラム精製といった煩雑な操作を必要としない工業的製造に適した式(P)で表される化合物またはその薬理学的に許容される塩の製造方法を見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の[1]~[17]等に関する。
 [1]式(AA):
Figure JPOXMLDOC01-appb-C000020
〔式中、TAは光学活性な酒石酸誘導体である〕で表される化合物の製造方法であって、該方法が以下の工程を含む製造方法:
 工程1:式(2):
Figure JPOXMLDOC01-appb-C000021
で表される化合物と、メチルアミン及び式(3):
Figure JPOXMLDOC01-appb-C000022
〔式中、Xは脱離基であり、RはC1-6アルキル基である〕で表される化合物とを反応させることにより、
式(4):
Figure JPOXMLDOC01-appb-C000023
〔式中、Rは前記定義の通りである〕で表される化合物を製造する工程;
 工程2:前記式(4)で表される化合物を、酸の存在下、還元剤を用いて還元することにより、式(5):
Figure JPOXMLDOC01-appb-C000024
〔式中、Rは前記定義の通りである〕で表される化合物を製造する工程;
 工程3:前記式(5)で表される化合物を、塩基の存在下、n-プロピルアミンと反応させることにより、式(6):
Figure JPOXMLDOC01-appb-C000025
で表される化合物を製造する工程;及び
 工程4:前記式(6)で表される化合物を、光学活性な酒石酸誘導体と反応させることにより、前記式(AA)で表される化合物を製造する工程。
 [2]工程4P:前記式(AA)で表される化合物を、再結晶により精製する工程;をさらに含む、前記[1]記載の製造方法。
 [3]前記式(AA)で表される化合物が、式(6A):
Figure JPOXMLDOC01-appb-C000026
で表される化合物であり、前記光学活性な酒石酸誘導体がL-酒石酸である、前記[1]または[2]記載の製造方法。
 [4]X1がハロゲン原子である、前記[1]~[3]の何れかに記載の製造方法。
 [5]前記工程2における酸がメタンスルホン酸であり、還元剤が水素化ホウ素ナトリウムである、前記[1]~[4]の何れかに記載の製造方法。
 [6]前記工程3における塩基がナトリウムメトキシドである、前記[1]~[5]の何れかに記載の製造方法。
 [7]式(AA):
Figure JPOXMLDOC01-appb-C000027
〔式中、TAは光学活性な酒石酸誘導体である〕で表される化合物。
  [8]式(6A):
Figure JPOXMLDOC01-appb-C000028
で表される化合物。
 [9]式(P):
Figure JPOXMLDOC01-appb-C000029
で表される化合物またはその薬理学的に許容される塩の製造方法であって、該方法が、
式(AA):
Figure JPOXMLDOC01-appb-C000030
〔式中、TAは光学活性な酒石酸誘導体である〕で表される化合物を用いることを特徴とする製造方法。
 [10]式(P):
Figure JPOXMLDOC01-appb-C000031
で表される化合物またはその薬理学的に許容される塩の製造方法であって、該方法が、
式(6A):
Figure JPOXMLDOC01-appb-C000032
で表される化合物を用いることを特徴とする製造方法。
 [11]式(P): 
Figure JPOXMLDOC01-appb-C000033
で表される化合物またはその薬理学的に許容される塩の製造方法であって、該方法が以下の工程を含む製造方法:
 工程5:式(AA):
Figure JPOXMLDOC01-appb-C000034
〔式中、TAは光学活性な酒石酸誘導体である〕で表される化合物と、塩基とを反応させることにより、
 式(6B):
Figure JPOXMLDOC01-appb-C000035
で表される化合物を製造する工程;及び
 工程9:式(10):
Figure JPOXMLDOC01-appb-C000036
で表される化合物と、硫黄及びマロノニトリルとを反応させることにより、前記式(P)で表される化合物を製造し、固体状態で単離する工程。
 [12]式(P): 
Figure JPOXMLDOC01-appb-C000037
で表される化合物またはその薬理学的に許容される塩の製造方法であって、該方法が以下の工程を含む製造方法:
 工程5:式(6A):
Figure JPOXMLDOC01-appb-C000038
で表される化合物と、塩基とを反応させることにより、
 式(6B):
Figure JPOXMLDOC01-appb-C000039
で表される化合物を製造する工程;及び
 工程9:式(10):
Figure JPOXMLDOC01-appb-C000040
で表される化合物と、硫黄及びマロノニトリルとを反応させることにより、前記式(P)で表される化合物を製造し、固体状態で単離する工程。
 [13]工程6:前記式(6B)で表される化合物と、
式(7):
R2-OC(O)-X2 (7)
〔式中、Xは塩素原子または臭素原子であり、Rは非置換、またはハロゲン原子及びニトロ基からなる群から独立して選択される1~3個の基で置換されるフェニル基である〕で表される化合物とを反応させることにより、
式(8):
Figure JPOXMLDOC01-appb-C000041
〔式中、Rは前記定義の通りである〕で表される化合物を製造する工程;をさらに含む、前記[11]または[12]記載の製造方法。
 [14]工程7:前記式(8)で表される化合物と、N,N-ジメチルエチレンジアミンとを反応させることにより、
式(9):
Figure JPOXMLDOC01-appb-C000042
で表される化合物を製造する工程;をさらに含む、前記[13]記載の製造方法。
 [15]工程8:前記式(9)で表される化合物を加水分解することにより、式(10):
Figure JPOXMLDOC01-appb-C000043
で表される化合物を製造する工程;をさらに含む、前記[14]記載の製造方法。
 [16]工程9P:必要により、前記式(P)で表される化合物を、再結晶により精製する工程;をさらに含む、前記[15]記載の製造方法。
 [17]工程10:必要により、前記式(P)で表される化合物を、式(P)で表される化合物の薬理学的に許容される塩に変換する工程;をさらに含む、前記[16]記載の製造方法。
 本発明の製造方法によれば、キラルカラム精製やカラム精製といった煩雑な操作を必要とすることがなく、工業的製造に適した式(P)で表される化合物またはその薬理学的に許容される塩の新規な製造方法及びその製造中間体を提供することができる。
 本明細書において、下記の用語は、特に断らない限り、以下の意味を有する。
 「光学活性な酒石酸誘導体」とは、ジ-(p-トルオイル)-L-酒石酸、ジベンゾイル-L-酒石酸またはL-酒石酸等が挙げられる。好ましくはL-酒石酸である。
 「C1-6アルキル基」とは、直鎖または分岐鎖状の炭素数1~6のアルキル基を意味し、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、2-メチルブチル基、1,2-ジメチルプロピル基、ヘキシル基、イソヘキシル基などが挙げられる。
 「脱離基」とは、C1-6アルキルスルホニルオキシ、アリールスルホニルオキシまたはハロゲン原子等が挙げられる。好ましくは、ハロゲン原子である。
 「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子またはヨウ素原子を表す。
 「C1-6アルキルスルホニルオキシ」とは、C1-6アルキル-SO2-O-で表される基を意味し、例えば、メタンスルホニルオキシなどが挙げられる。
 「アリールスルホニルオキシ」とは、フェニル-SO2-O-で表される基であり、該フェニルは、無置換、またはC1-6アルキル、ハロゲン原子及びニトロ基からなる群から選択される基で置換されるフェニル基を意味し、例えば、トルエンスルホニルオキシ、ベンゼンスルホニルオキシなどが挙げられる。
 「ハロゲン原子及びニトロ基からなる群から独立して選択される1~3個の基で置換されるフェニル基」とは、ハロゲン原子またはニトロ基から独立して選択される1~3個の基で置換されるフェニル基を意味し、例えば、p-クロロフェニル基、p-ニトロフェニル基などが挙げられる。
 本明細書においては、下記略号を使用する。
 n-はノルマル、tert-はターシャリーを意味する。
 Meはメチル、Prはプロピルを意味する。
 TMPMgCl・LiClは2,2,6,6-テトラメチルピペリジニルマグネシウムクロリド リチウム クロリド錯体を意味する。
 式(AA)、(5)、(5B)、(6)、(6A)、(6B)、(8)、(9)及び(10)で表される化合物における環原子の位置番号は以下のように付される。
Figure JPOXMLDOC01-appb-C000044
 式(P)で表される化合物における環原子の位置番号は以下のように付される。
Figure JPOXMLDOC01-appb-C000045
 式(5)及び(6)で表される化合物には、デカヒドロキノリン環上の3位、4a位及び8a位の不斉炭素原子に基づく最大8つのジアステレオマーの混合物が含まれることを意味する。
 式(5)及び(6)で表される化合物には、例えば、それぞれ、下記式(5B)及び(6B)で表される化合物が含まれる。
Figure JPOXMLDOC01-appb-C000046
〔式中、Rは前記定義の通りである〕
 式(4)及び(5)で表される化合物において、R中に、不斉炭素原子が存在する場合、本発明は不斉炭素原子がR配置の化合物、S配置の化合物、及びそれらの任意の組み合せの化合物のいずれも包含する。
 式(AA)及び式(6A)で表される化合物には、それぞれ、水和物やエタノール等の溶媒との溶媒和物も含まれる。
 式(P)で表される化合物またはその薬理学的に許容される塩には、水和物やエタノール等の医薬品として許容される溶媒との溶媒和物も含まれる。
 本発明の製造方法について以下に説明する。
 各工程の原料や試薬の化合物が市販されている場合には、市販品をそのまま用いることができる。
 式(P)で表される化合物またはその薬理学的に許容される塩は、下記スキーム3及びスキーム4に示される工程により製造することができる。
Figure JPOXMLDOC01-appb-C000047
(式中、Xは脱離基であり、RはC1-6アルキル基であり、TAは光学活性な酒石酸誘導体である)
(工程1)
 1,4-シクロヘキサンジオンモノエチレンケタール(2)、メチルアミン及び化合物(3)を、不活性溶媒中、脱水縮合させることにより化合物(4)が得られる。
 本反応はディーン・スターク装置等を用いて共沸脱水するのが好ましい。
 不活性溶媒としては、例えば、トルエン、キシレン等の炭化水素系溶媒、酢酸イソプロピル等のカルボン酸エステル系溶媒などが挙げられる。
 使用するメチルアミンはメタノール溶液が好適である。メチルアミンの量は通常、化合物(2)に対して約2~約4当量である。
 化合物(3)の量は通常、化合物(2)に対して約1~約2当量である。
 反応温度は通常、-10 ℃~還流温度である。
 反応時間は使用する原料物質や溶媒、反応温度等により異なるが、通常、1時間~24時間である。
 化合物(3)としては、エチル2-[[[(4-メチルフェニル)スルホニル]オキシ]メチル]-2-プロペノエート、エチル2-[[(メチルスルホニル)オキシ]メチル]-2-プロペノエート、エチル 2-(ブロモメチル)-2-プロペノエート、エチル 2-(クロロメチル)-2-プロペノエート等が挙げられる。
(工程2)
 化合物(4)を、不活性溶媒中、酸の存在下、シアノ水素化ホウ素ナトリウム、水素化ホウ素ナトリウム等の還元剤を用いて還元させることにより、化合物(5B)を含む化合物(5)が得られる。
 還元剤の量は通常、化合物(4)に対して約1~約2当量である。
 不活性溶媒としては、例えば、テトラヒドロフラン、メタノール、エタノール、酢酸エチル、1,4-ジオキサン及びそれらの混合溶媒などが挙げられる。
 酸としては、例えば、塩化水素、硫酸、メタンスルホン酸、トリフルオロ酢酸、酢酸、ギ酸などが挙げられる。
 酸の量は通常、化合物(4)に対して約1~約2当量である。
 反応温度は通常、-50 ℃~50 ℃であり、好適には-10 ℃~30 ℃である。
 反応時間は使用する原料物質や溶媒、反応温度等により異なるが、通常、10分~12時間である。
(工程3)
 化合物(5B)を含む化合物(5)を、不活性溶媒中、塩基の存在下、n-プロピルアミンと反応させることにより、化合物(6B)を含む化合物(6)が得られる。本反応に用いられる不活性溶媒としては、例えば、テトラヒドロフラン、ジイソプロピルエーテル、tert-ブチルメチルエーテル、シクロペンチルメチルエーテル、1,2-ジメトキシエタン等のエーテル系溶媒、トルエン、キシレン等の炭化水素系及びそれらの混合溶媒などが挙げられる。
 n-プロピルアミンの量は通常、化合物(5)に対して約1~約6当量である。
 塩基としては、例えば、ナトリウムメトキシド等のアルカリ金属アルコキシドが挙げられる。
 塩基の量は通常、化合物(5)に対して約0.2~約0.5当量である。
 反応温度は通常、0 ℃~100 ℃であり、好適には0 ℃~30 ℃である。
 反応時間は使用する原料物質や溶媒、反応温度等により異なるが、通常、1~24時間である。
 本工程において、デカヒドロキノリン環上の3位のエピ化を行うこともできる。
 反応終了後、化合物(6B)は、次の工程を行う前に単離・精製を行ってもよいが、通常の後処理後、化合物(6B)を含む化合物(6)の混合物のまま単離せずに次の工程でそれを使用することもできる。
(工程4)
 化合物(6B)は、常法により、光学活性な酒石酸誘導体と塩を形成させることにより、化合物(6B)を含む化合物(6)から光学分割することができる。
 例えば、化合物(6B)を含む化合物(6)を、不活性溶媒中、L-酒石酸等の光学活性な酒石酸誘導体と反応させて塩を形成することにより、光学活性な化合物(AA)が得られる。
 工程4の好ましい態様としては、化合物(6B)を含む化合物(6)を、不活性溶媒中、光学活性な酒石酸誘導体と反応させて、光学活性な化合物(AA)を形成した後、反応混合物を25 ℃に冷却し、貧溶媒を添加することにより、化合物(AA)を固体状態で単離することができる。得られた固体を不活性溶媒と貧溶媒の混合物で洗浄、減圧下乾燥することにより、化合物(AA)が得られる。
 光学活性な酒石酸誘導体の当量は、化合物(6)に対して、約1.0当量である。
 不活性溶媒としては、塩形成を妨害しない溶媒であればよく、例えば、メタノール、エタノール、1-プロパノール、2-プロパノ-ル等のアルコール系溶媒、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド系溶媒、水、及びそれらの混合溶媒等を使用することができる。
 反応温度は、通常、0 ℃から還流温度であるが、好ましくは20 ℃~65 ℃であり、より好ましくは55 ℃~65 ℃である。
 貧溶媒としては、メチルエーテル、シクロペンチルメチルエーテル、1,2-ジメトキシエタン、ジエトキシメタン等のエーテル系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、酢酸エチル、酢酸イソプロピル等のカルボン酸エステル系溶媒、アセトニトリル等のニトリル系溶媒、ヘキサン、へプタン、トルエン等の炭化水素系溶媒またはこれらの混合溶媒等を使用することができる。
 冷却温度は通常、0 ℃~室温であり、冷却時間は使用する溶媒や冷却温度等により異なるが、通常、1時間~24時間である。
 本発明の別の態様として、光学活性な酒石酸誘導体は、例えば、ジ-(p-トルオイル)-L-酒石酸、ジベンゾイル-L-酒石酸またはL-酒石酸等が挙げられる。好ましくは、L-酒石酸である。
(工程4P)
 工程4で得られた化合物(AA)は、必要に応じて、再結晶を行うことにより精製することもできる。再結晶溶媒としては、前記工程4の不活性溶媒と貧溶媒が挙げられる。
Figure JPOXMLDOC01-appb-C000048
(式中TAは前記と同じ意味であり、Xは塩素原子または臭素原子であり、Rは非置換、またはハロゲン原子及びニトロ基からなる群から独立して選択される1~3個の基で置換されるフェニル基である)
(工程5)
 化合物(AA)を水と不活性溶媒の混合溶媒中、塩基と反応させることにより、化合物(6B)が得られる。
 不活性溶媒としては、例えば、トルエン、キシレン等の炭化水素系溶媒、酢酸エチル、酢酸イソプロピル、酢酸ブチル等のカルボン酸エステル系溶媒、ジイソプロピルエーテル、tert-ブチルメチルエーテル、シクロペンチルメチルエーテル、1,2-ジメトキシエタン、ジエトキシメタン等のエーテル系溶媒、及びそれらの混合溶媒等が挙げられる。
 塩基としては、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物、水酸化カルシウムなどのアルカリ土類金属水酸化物、炭酸ナトリウム、炭酸カリウムなどのアルカリ金属炭酸塩、炭酸カルシウムなどのアルカリ土類金属炭酸塩、炭酸水素ナトリウム、炭酸水素カリウムなどのアルカリ金属炭酸水素塩等が挙げられる。
 塩基の使用量は、化合物(AA)に対して0.5~5当量の範囲で使用することができ、好ましくは1~3当量の範囲であり、より好ましくは1~2当量の範囲である。
 反応温度は、通常、0 ℃~40 ℃であり、好ましくは0~30 ℃の範囲である。
 反応終了後、化合物(6B)は、次の工程を行う前に単離・精製を行ってもよいが、通常の後処理後、精製せずに次の工程でそれを使用することもできる。
(工程6)
 化合物(6B)とハロギ酸アリール化合物(7)とを、不活性溶媒中、塩基の存在下に反応させることにより、アリールカルバメート化合物(8)が得られる。
 不活性溶媒としては、例えば、トルエン、キシレン等の炭化水素系溶媒、テトラヒドロフラン、ジイソプロピルエーテル、tert-ブチルメチルエーテル、シクロペンチルメチルエーテル、1,2-ジメトキシエタン等のエーテル系溶媒及びそれらの混合溶媒等が挙げられる。
 ハロギ酸アリール化合物(7)としては、クロロギ酸4-ニトロフェニル、クロロギ酸2-クロロフェニル、クロロギ酸フェニル等が挙げられる。
ハロギ酸アリール化合物(7)の量は通常、化合物(6B)に対して約1~約5当量である。
 塩基としては、ナトリウムヘキサメチルジシラジド、リチウムヘキサメチルジシラジド、イソプロピルマグネシウムブロミド、TMPMgCl・LiClなどが挙げられる。
 塩基の量は通常、化合物(6B)に対して約1~約5当量である。
 反応温度は通常、-78 ℃~50 ℃であり、好適には-40 ℃~20 ℃である。
 反応時間は使用する原料物質や溶媒、反応温度等により異なるが、通常、15分~24時間である。
(工程7)
 アリールカルバメート化合物(8)を、不活性溶媒中、塩基の存在下または非存在下、N,N-ジメチルエチレンジアミンまたはその塩と反応させることにより、アシルウレア化合物(9)が得られる。
 不活性溶媒としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノールなどのアルコール類、テトラヒドロフラン、ジイソプロピルエーテル、tert-ブチルメチルエーテル、シクロペンチルメチルエーテル、1,2-ジメトキシエタン等のエーテル系溶媒及びそれらの混合溶媒等が挙げられる。
 N,N-ジメチルエチレンジアミンの量は通常、化合物(8)に対して約1~約5当量である。
 塩基としては、例えば、炭酸カリウム等の無機塩基、トリエチルアミン、N,N-ジイソプロピルエチルアミン、ピリジン、N-メチルモルホリン、N,N-ジメチルアニリン等の有機アミンが挙げられる。これらの塩基の中では、トリエチルアミンまたはN,N-ジイソプロピルエチルアミンが好適に用いられる。
 塩基の量は通常、化合物(8)に対して0~約10当量である。
 反応温度は通常、0 ℃~150 ℃であり、好適には0 ℃~60 ℃である。
 反応時間は使用する原料物質や溶媒、反応温度等により異なるが、通常、15分~24時間である。
(工程8)
 アシルウレア化合物(9)を、不活性溶媒中、酸加水分解することにより、6-オキソデカヒドロキノリン化合物(10)が得られる。
 不活性溶媒としては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノールなどのアルコール類、テトラヒドロフラン、ジメトキシエタン、1,4-ジオキサン、水及びそれらの混合溶媒などが挙げられる。
 酸としては、例えば、硫酸、塩酸、リン酸、酢酸、メタンスルホン酸、ベンゼンスルホン酸などが挙げられる。これらの酸の中では、塩酸が好適に用いられる。
 酸の量は通常、化合物(9)に対して約5~約15当量である。
 反応温度は通常、-10 ℃~100 ℃であり、好適には0 ℃~40 ℃である。
 反応時間は使用する原料物質や溶媒、反応温度等により異なるが、通常、10分~24時間である。
 反応終了後、化合物(10)は、次の工程を行う前に単離・精製を行ってもよいが、通常の後処理後、精製せずに次の工程でそれを使用することもできる。
(工程9)
 不活性溶媒中、塩基の存在下または非存在下、6-オキソデカヒドロキノリン化合物(10)と硫黄とマロノニトリルとを反応させることにより、オクタヒドロチエノキノリン化合物(P)が得られる。
 不活性溶媒としては、例えば、2-プロパノール、エタノール、メタノール等が挙げられる。
 硫黄の量は通常、化合物(10)に対して約1~約2当量である。
 マロノニトリルの量は通常、化合物(10)に対して約1~約3当量である。
 塩基としては、モルホリン、ピペリジン、トリエチルアミン等の有機アミンが挙げられる。
 塩基の量は通常、化合物(10)に対して0~約3当量である。
 反応温度は通常、0℃~還流温度であり、反応時間は使用する原料物質や溶媒、反応温度等により異なるが、通常、15分~24時間である。
 得られた化合物(P)は、常法により、固化させることにより、単離することができる。例えば、反応終了後、反応混合物を冷却し、貧溶媒を添加することにより、化合物(P)を固体状態で単離することができる。得られた固体を不活性溶媒と貧溶媒の混合物で洗浄することにより、化合物(P)が得られる。
 貧溶媒としては、ヘキサン、へプタン等の炭化水素系溶媒、水等が挙げられる。
 冷却温度は通常、0 ℃~室温であり、冷却時間は使用する溶媒や冷却温度等により異なるが、通常、1時間~24時間である。
(工程9P)
 必要に応じて、工程9で得られた化合物(P)は、再結晶を行うことにより精製することもできる。再結晶の良溶媒としては、前記工程9の不活性溶媒が挙げられるが、この他にアセトン、メチルエチルケトン等のケトン系溶媒等が挙げられる。再結晶の貧溶媒としては、前記工程9の貧溶媒が挙げられる。
(工程10)
 化合物(P)は、必要に応じて、常法または国際公開第2012/124649号パンフレット記載の方法により、不活性溶媒中、鉱酸または有機酸と反応させることにより、その薬理学的に許容される塩とすることができる。このような塩としては、例えば、塩酸、臭化水素酸、硫酸、硝酸、リン酸などの鉱酸との酸付加塩、ギ酸、酢酸、トリフルオロ酢酸、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、プロピオン酸、クエン酸、コハク酸、酒石酸、フマル酸、酪酸、シュウ酸、マロン酸、マレイン酸、乳酸、リンゴ酸、炭酸、グルタミン酸、アスパラギン酸等の有機酸との酸付加塩を挙げることができる。
(工程10P)
 必要に応じて、工程10で得られた化合物(P)の薬理学的に許容される塩は、再結晶を行うことにより精製することもできる。再結晶溶媒としては、アセトン-水混合溶媒、メタノール-水混合溶媒、エタノール-水混合溶媒等が挙げられる。
 本発明の内容を以下の実施例でさらに詳細に説明する。
 本発明はこれらの内容に限定されるものではなく、また本発明の範囲を逸脱しない範囲で変更してもよい。
 H-NMRはフーリエ変換型NMRで測定した。
 実施例の化学純度は、実施例4及び5においてはガスクロマトグラフィーにより、実施例10及び11においては液体クロマトグラフィーにより、それぞれ試験を行い、各々のピーク面積より算出した。
 実施例の光学純度は、液体クロマトグラフィーにより試験を行い、各々のピーク面積より算出した。
実施例1
1'-メチル-2',3',4',5',7',8'-ヘキサヒドロ-1'H-スピロ[1,3-ジオキソラン-2,6'-キノリン]-3'-カルボン酸エチル(化合物(4-1))
 2-(ブロモメチル)アクリル酸エチル(81.6 g)及びトルエン(660 g)の混合物に、1~20 ℃で40%メチルアミン-メタノール溶液(89.4 g)及びトルエン(156 g)の混合物を滴下して、2~8 ℃で1時間撹拌した。反応混合物に2~4 ℃で1,4-シクロヘキサンジオンモノエチレンケタール(60.0 g)及びトルエン(24 g)を順次加え、約110 ℃で9時間共沸脱水した。反応混合物を30 ℃以下に冷却した後、一晩静置した。反応混合物に水(140 g)を加え、水層を除去した。有機層を水(140 g)で洗浄した後、50 ℃で減圧下濃縮した。残渣を30 ℃以下に冷却した後、メタノール(30 g)を加えて、表題化合物のメタノール溶液を得た(168 g、収率100%として次工程を行った)。
実施例2
1'-メチルオクタヒドロ-1'H-スピロ[1,3-ジオキソラン-2,6'-キノリン]-3'-カルボン酸エチル(化合物(5-1))
 実施例1で得た1'-メチル-2',3',4',5',7',8'-ヘキサヒドロ-1'H-スピロ[1,3-ジオキソラン-2,6'-キノリン]-3'-カルボン酸エチルのメタノール溶液にテトラヒドロフラン(300 g)及びメタノール(62 g)を加え、1~7 ℃でメタンスルホン酸(38.8 g)及びテトラヒドロフラン(8.4 g)を順次滴下し、氷冷下30分間撹拌した。次いで、1~10 ℃で水素化ホウ素ナトリウム(10.9 g)及び0.1M 水酸化ナトリウム水溶液(130 g)の混合液、及び水(12 g)を順次滴下し、5~16 ℃で2時間撹拌した。反応混合物に5~11 ℃で20%炭酸カリウム水溶液(240 g)を加え、11~14 ℃で30分間撹拌した。反応混合物を一晩静置した後、水層を除去した。有機層をトルエン(480 g)で希釈し、室温で30分間撹拌した後、水層を除去した。有機層を水(170 g)、16%塩水(170 g)で順次洗浄した後、50 ℃で減圧下濃縮した。残渣を30 ℃以下に冷却した後、トルエン(90 g)を加えて、表題化合物のトルエン溶液を得た(225 g、収率100%として次工程を行った)。
実施例3
1'-メチル-N-プロピルオクタヒドロ-1'H-スピロ[1,3-ジオキソラン-2,6'-キノリン]-3'-カルボキサミド(化合物(6))
 実施例2で得た1'-メチルオクタヒドロ-1'H-スピロ[1,3-ジオキソラン-2,6'-キノリン]-3'-カルボン酸エチルのトルエン溶液に、22~25 ℃で1-プロピルアミン(136 g)及びトルエン(30 g)を加え、次いで、2~5 ℃で28%ナトリウムメトキシドのメタノール溶液(37.1 g)及びテトラヒドロフラン(6.0 g)を順次滴下した。反応混合物を19~23 ℃で4時間撹拌した後、一晩静置した。反応混合物に17~20 ℃で酢酸(11.5 g)及び酢酸イソプロピル(6.0 g)を順次滴下した後、18~27 ℃で16%塩水(360 g)及び酢酸イソプロピル(350 g)を順次加え、水層を分離した。水層に酢酸イソプロピル(210 g)を加え、抽出した。有機層を合わせて、一晩静置した後、50 ℃で減圧下濃縮した。残渣に1-プロパノール(190 g)を加えて、60 ℃で減圧下濃縮した。残渣に1-プロパノール(60 g)を加えて、不溶物をろ過し、1-プロパノール(99 g)で洗い込み、表題化合物の1-プロパノール溶液を得た(251 g、収率100%として次工程を行った)。
実施例4
(3'R,4'aR,8'aR)-1'-メチル-N-プロピルオクタヒドロ-1'H-スピロ[1,3-ジオキソラン-2,6'-キノリン]-3'-カルボキサミド L-酒石酸塩(粗化合物(6A))
 実施例3で得た1'-メチル-N-プロピルオクタヒドロ-1'H-スピロ[1,3-ジオキソラン-2,6'-キノリン]-3'-カルボキサミドの1-プロパノール溶液に、1-プロパノール(30 g)を加えた後、60 ℃に加温した。61~64 ℃でL-酒石酸(28.8 g)を加え、同温で5分間撹拌した後、さらに59~60 ℃でL-酒石酸(28.8 g)を加え、59~61 ℃で30分間撹拌した。反応混合物に56~59 ℃でアセトン(100 g)を滴下した後、20分間かけて 45 ℃に冷却した。次いで、反応混合物を100分間かけて25 ℃まで冷却した後、24~25 ℃でアセトン(490 g)を滴下した。さらに反応混合物を24~25 ℃で1時間撹拌した後、一晩静置した。懸濁液を50 ℃に加温した後、49~52 ℃で30分間撹拌した。次いで、懸濁液を29 ℃に冷却した後、27~29 ℃で1.5時間撹拌した。懸濁液をろ過後、得られた固体を1-プロパノール(12 g)及びアセトン(36 g)の混合液で2回洗浄した後、外温70 ℃で減圧乾燥し、表題化合物(26.7 g)を得た(収率16%、光学純度98.3%ee、化学純度97.6%)。
実施例5
(3'R,4'aR,8'aR)-1'-メチル-N-プロピルオクタヒドロ-1'H-スピロ[1,3-ジオキソラン-2,6'-キノリン]-3'-カルボキサミド L-酒石酸塩(化合物(6A))
 実施例4で得た(3'R,4'aR,8'aR)-1'-メチル-N-プロピルオクタヒドロ-1'H-スピロ[1,3-ジオキソラン-2,6'-キノリン]-3'-カルボキサミド L-酒石酸塩(20.0 g)にメタノール(48 g)を加えた後、60 ℃に加温した。60~62 ℃で30分間撹拌した後、熱時ろ過し、不溶物をメタノール(16 g)で洗浄した。ろ液を26~30 ℃で1時間撹拌した後、22~26 ℃でアセトン(260 g)を加えた。懸濁液を50 ℃に加温した後、51~53 ℃で30分間撹拌した。さらに懸濁液を30分間かけて26 ℃まで冷却した後、同温で30分間撹拌し、一晩静置した。懸濁液を0~10 ℃に冷却した後、3~6 ℃で1時間撹拌した。懸濁液をろ過後、得られた固体をメタノール(14 g)及びアセトン(28 g)の混合液で2回洗浄した後、外温70 ℃で減圧乾燥し、表題化合物(15.8 g)を得た(収率79%、光学純度>99.8%ee、化学純度99.5%)。
H-NMR(CD3OD)δ ppm:0.91 (3H, t, J=7.4 Hz), 1.38-1.94 (9H, m), 1.95-2.12 (1H, m), 2.15-2.30 (1H, m), 2.70-2.80 (1H, m), 2.86 (3H, s), 2.90-3.00 (1H, m), 3.01-3.19 (3H, m), 3.48-3.57 (1H, m), 3.88-3.98 (4H, m), 4.43 (2H, s)
実施例6
(3'R,4'aR,8'aR)-1'-メチル-N-プロピルオクタヒドロ-1'H-スピロ[1,3-ジオキソラン-2,6'-キノリン]-3'-カルボキサミド(化合物(6B))
 (3'R,4'aR,8'aR)-1'-メチル-N-プロピルオクタヒドロ-1'H-スピロ[1,3-ジオキソラン-2,6'-キノリン]-3'-カルボキサミド L-酒石酸塩(130 g、光学純度97.3%ee、化学純度97.4%)、トルエン(1300 g)及び水(250 g)の混合物に、25~30 ℃で炭酸カリウム(130 g)及び水(39 g)を加えた。反応混合物の水層を除去した後、外温60 ℃で減圧下濃縮した。残渣を30 ℃以下に冷却した後、テトラヒドロフラン(770 g)及びトルエン(86 g)を加えて、表題化合物のテトラヒドロフラン-トルエン溶液(923 g、収率100%として次工程を行った)を得た。
実施例7
N-{[(3'R,4'aR,8'aR)-1'-メチルオクタヒドロ-1'H-スピロ[1,3-ジオキソラン-2,6'-キノリン]-3'-イル]カルボニル}-N-プロピルカルバミン酸フェニル(化合物(8-1))
 実施例6で得た(3'R,4'aR,8'aR)-1'-メチル-N-プロピルオクタヒドロ-1'H-スピロ[1,3-ジオキソラン-2,6'-キノリン]-3'-カルボキサミドのテトラヒドロフラン-トルエン溶液(815 g、化合物(6B)として76.3 g含有)を、不活性ガス雰囲気下、-13~-10 ℃でTMPMgCl・LiClのテトラヒドロフラン・トルエン溶液(TMPMgClとして17.5%, 471 g)を滴下し、-15~-10 ℃で20分間撹拌した。反応混合物に-15~-10 ℃でクロロギ酸フェニル(52.4 g)を加え、同温で30分間撹拌した。反応混合物に-15~16 ℃で20%塩化アンモニウム水溶液(840 g)を加え、室温に昇温した。反応混合物にtert-ブチルメチルエーテル(730 g)を加え、水層を分離した。有機層を水(660 g)で洗浄した後、外温50 ℃で減圧下濃縮した。残渣に2-プロパノール(1200 g)を加え、混合物の内容量が485 gになるまで、外温50 ℃で減圧下濃縮し、表題化合物の2-プロパノール溶液(収率88%、表題化合物93.9 g)を得た。
実施例8
1-{[(3'R,4'aR,8'aR)-1'-メチルオクタヒドロ-1'H-スピロ[1,3-ジオキソラン-2,6'-キノリン]-3'-イル]カルボニル}-3-[2-(ジメチルアミノ)エチル]-1-プロピル尿素(化合物(9))
 実施例7で得たN-{[(3'R,4'aR,8'aR)-1'-メチルオクタヒドロ-1'H-スピロ[1,3-ジオキソラン-2,6'-キノリン]-3'-イル]カルボニル}-N-プロピルカルバミン酸フェニルの2-プロパノール溶液に、2-プロパノール(248 g)を加えた。この混合物に57~60 ℃でN,N-ジメチルエチレンジアミン(87.4 g)を加え、55~57 ℃で4時間撹拌した。反応混合物を室温に冷却した後、収率100%としてそのまま次工程で使用した。
実施例9
1-{[(3R,4aR,8aR)-1-メチル-6-オキソデカヒドロキノリン-3-イル]カルボニル}-3-[2-(ジメチルアミノ)エチル]-1-プロピル尿素(化合物(10))
 実施例8の反応混合物(1-{[(3'R,4'aR,8'aR)-1'-メチルオクタヒドロ-1'H-スピロ[1,3-ジオキソラン-2,6'-キノリン]-3'-イル]カルボニル}-3-[2-(ジメチルアミノ)エチル]-1-プロピル尿素を含む)に20~39 ℃で2 mol/L塩酸(1100 mL)を加え、50~59 ℃で3時間撹拌した。反応混合物を室温まで冷却後、反応混合物にtert-ブチルメチルエーテル(630 g)を加え、有機層を分離した。水層にtert-ブチルメチルエーテル(630 g)を加え、洗浄した。水層に40%炭酸カリウム水溶液(850 g)を加えた後、トルエン(820 g)を加え、水層を分離した。有機層を混合物の内容量が146 gになるまで外温60 ℃で、減圧下濃縮した。残渣に2-プロパノール(1500 g)を加え、外温60 ℃で減圧下濃縮し、表題化合物の2-プロパノール溶液(278 g)(収率64%、表題化合物52.8 g)を得た。
実施例10
1-{[(4aR,6R,8aR)-2-アミノ-3-シアノ-8-メチル-4,4a,5,6,7,8,8a,9-オクタヒドロチエノ[3,2-g]キノリン-6-イル]カルボニル}-3-[2-(ジメチルアミノ)エチル]-1-プロピル尿素(粗化合物(P))
 実施例9で得た1-{[(3R,4aR,8aR)-1-メチル-6-オキソデカヒドロキノリン-3-イル]カルボニル}-3-[2-(ジメチルアミノ)エチル]-1-プロピル尿素の2-プロパノール溶液(25.1 g、化合物(10)として4.77 g含有)に、室温で硫黄(438 mg)、マロノニトリル(919 mg)及び2-プロパノール(6.37 g)を順次加え、50 ℃で2.5時間撹拌した。
 反応混合物を室温に冷却した後、一晩静置した。反応混合物を外温56 ℃に加熱し、固形物を溶解させた。反応混合物を22 ℃に冷却した後、22~23 ℃で1時間攪拌した。反応混合物に23~24 ℃で水(33 g)を滴下した後、24 ℃で2時間撹拌した。混合物に同温で水(33 g)を滴下した後、同温で1時間、氷冷下で1.5時間撹拌した。懸濁液をろ過後、得られた固形物を氷冷した2-プロパノール(2.5 g)と水(6.2 g)の混合物で4回洗浄した後、外温50 ℃以下で減圧下乾燥して表題化合物(4.09 g)を得た(収率70%、光学純度99.7%ee、化学純度97.6%)。
実施例11
1-{[(4aR,6R,8aR)-2-アミノ-3-シアノ-8-メチル-4,4a,5,6,7,8,8a,9-オクタヒドロチエノ[3,2-g]キノリン-6-イル]カルボニル}-3-[2-(ジメチルアミノ)エチル]-1-プロピル尿素(化合物(P))
 1-{[(4aR,6R,8aR)-2-アミノ-3-シアノ-8-メチル-4,4a,5,6,7,8,8a,9-オクタヒドロチエノ[3,2-g]キノリン-6-イル]カルボニル}-3-[2-(ジメチルアミノ)エチル]-1-プロピル尿素(4.00 g、光学純度98.6%ee、化学純度98.4%)に、室温でアセトン(22 g)を加え、50 ℃で溶解するまで撹拌した。
 混合物を20 ℃に冷却した後、水(28 g)を滴下した。混合物を20 ℃で1時間撹拌した後、同温で水(28 g)を滴下した。混合物を20 ℃で1時間、氷冷下で1時間撹拌した。懸濁液をろ過後、得られた固形物を氷冷したアセトン(3.2 g)と水(8.0 g)の混合物で洗浄した後、外温50 ℃で減圧下乾燥して表題化合物(3.70 g)を得た(収率93%、光学純度>99.8%ee、化学純度99.4%)。
 本発明により、パーキンソン病、レストレスレッグス症候群または高プロラクチン血症の治療または予防剤として有用な化合物(P)またはその薬理学的に許容される塩を、キラルカラム精製やカラム精製といった煩雑な操作を必要とすることがなく、工業的に製造することができる。
 

Claims (8)

  1.  式(6A):
    Figure JPOXMLDOC01-appb-C000001
    で表される化合物の製造方法であって、該方法が以下の工程を含む製造方法:
     工程1:式(2):
    Figure JPOXMLDOC01-appb-C000002
    で表される化合物と、メチルアミン及び式(3):
    Figure JPOXMLDOC01-appb-C000003
    〔式中、Xは脱離基であり、RはC1-6アルキル基である。〕で表される化合物とを反応させることにより、
    式(4):
    Figure JPOXMLDOC01-appb-C000004
    〔式中、Rは前記定義の通りである〕で表される化合物を製造する工程;
     工程2:前記式(4)で表される化合物を、酸の存在下、還元剤を用いて還元することにより、式(5):
    Figure JPOXMLDOC01-appb-C000005
    〔式中、Rは前記定義の通りである〕で表される化合物を製造する工程;
     工程3:前記式(5)で表される化合物を、塩基の存在下、n-プロピルアミンと反応させることにより、式(6):
    Figure JPOXMLDOC01-appb-C000006
    で表される化合物を製造する工程;及び
     工程4:前記式(6)で表される化合物を、L-酒石酸と反応させることにより、前記式(6A)で表される化合物を製造し、固体状態で単離する工程。
  2.  工程4P:前記式(6A)で表される化合物を、再結晶により精製する工程;をさらに含む、請求項1記載の製造方法。
  3.  Xがハロゲン原子である、請求項1又は2記載の製造方法。
  4.  前記工程2における酸がメタンスルホン酸であり、還元剤が水素化ホウ素ナトリウムである、請求項1~3の何れかに記載の製造方法。
  5.  前記工程3における塩基がナトリウムメトキシドである、請求項1~4の何れかに記載の製造方法。
  6.  式(6A):
    Figure JPOXMLDOC01-appb-C000007
    で表される化合物。
  7.  式(P):
    Figure JPOXMLDOC01-appb-C000008
    で表される化合物またはその薬理学的に許容される塩の製造方法であって、該方法が、
    式(6A):
    Figure JPOXMLDOC01-appb-C000009
    で表される化合物を用いることを特徴とする製造方法。
  8.  式(P):
    Figure JPOXMLDOC01-appb-C000010
    で表される化合物またはその薬理学的に許容される塩の製造方法であって、該方法が以下の工程を含む製造方法:
     工程5:式(6A):
    Figure JPOXMLDOC01-appb-C000011
    で表される化合物と、塩基とを反応させることにより、
    式(6B):
    Figure JPOXMLDOC01-appb-C000012
    で表される化合物を製造する工程; 
     工程6:前記式(6B)で表される化合物と、
    式(7):
     R2-OC(O)-X2 (7)
    〔式中、Xは塩素原子または臭素原子であり、Rは非置換、またはハロゲン原子及びニトロ基からなる群から独立して選択される1~3個の基で置換されるフェニル基である〕で表される化合物とを反応させることにより、
    式(8):
    Figure JPOXMLDOC01-appb-C000013
    〔式中、Rは前記定義の通りである〕で表される化合物を製造する工程; 
     工程7:前記式(8)で表される化合物と、N,N-ジメチルエチレンジアミンとを反応させることにより、
    式(9):
    Figure JPOXMLDOC01-appb-C000014
    で表される化合物を製造する工程; 
     工程8:前記式(9)で表される化合物を加水分解することにより、
    式(10):
    Figure JPOXMLDOC01-appb-C000015
    で表される化合物を製造する工程;
     工程9:前記式(10)で表される化合物と、硫黄及びマロノニトリルとを反応させることにより、前記式(P)で表される化合物を製造し、固体状態で単離する工程;
     工程9P:必要により、前記式(P)で表される化合物を、再結晶により精製する工程;及び
     工程10:更に必要により、前記式(P)で表される化合物を、式(P)で表される化合物の薬理学的に許容される塩に変換する工程。
PCT/JP2021/036912 2020-10-07 2021-10-06 オクタヒドロチエノキノリン化合物の製造方法及びその製造中間体 WO2022075347A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022555521A JPWO2022075347A1 (ja) 2020-10-07 2021-10-06
CN202180068464.4A CN116348470A (zh) 2020-10-07 2021-10-06 八氢噻吩并喹啉化合物的制造方法和其制造中间体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-170099 2020-10-07
JP2020170099 2020-10-07

Publications (1)

Publication Number Publication Date
WO2022075347A1 true WO2022075347A1 (ja) 2022-04-14

Family

ID=81125994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036912 WO2022075347A1 (ja) 2020-10-07 2021-10-06 オクタヒドロチエノキノリン化合物の製造方法及びその製造中間体

Country Status (4)

Country Link
JP (1) JPWO2022075347A1 (ja)
CN (1) CN116348470A (ja)
TW (1) TW202229290A (ja)
WO (1) WO2022075347A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124649A1 (ja) * 2011-03-14 2012-09-20 キッセイ薬品工業株式会社 新規なオクタヒドロチエノキノリン誘導体、それを含有する医薬組成物およびそれらの用途
JP2014074013A (ja) * 2012-09-12 2014-04-24 Kissei Pharmaceutical Co Ltd 新規なドパミンd2受容体アゴニスト
JP2014088362A (ja) * 2012-09-12 2014-05-15 Kissei Pharmaceutical Co Ltd オクタヒドロチエノキノリン誘導体の製造方法及びその製造中間体
WO2014092006A1 (ja) * 2012-12-10 2014-06-19 キッセイ薬品工業株式会社 新規なオクタヒドロピリドキナゾリン誘導体、それを含有する医薬組成物およびそれらの用途
WO2014112492A1 (ja) * 2013-01-17 2014-07-24 キッセイ薬品工業株式会社 新規なオクタヒドロキノリン誘導体、それを含有する医薬組成物およびそれらの用途
JP2014172873A (ja) * 2013-03-11 2014-09-22 Kissei Pharmaceutical Co Ltd 新規なオクタヒドロキノリン誘導体、それを含有する医薬組成物およびそれらの用途
JP2016011291A (ja) * 2014-06-04 2016-01-21 キッセイ薬品工業株式会社 新規なドパミンd2受容体アゴニスト
JP2016160206A (ja) * 2015-03-02 2016-09-05 キッセイ薬品工業株式会社 新規なウレイドカルボニルオクタヒドロキノリン誘導体、それを含有する医薬組成物およびそれらの用途

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124649A1 (ja) * 2011-03-14 2012-09-20 キッセイ薬品工業株式会社 新規なオクタヒドロチエノキノリン誘導体、それを含有する医薬組成物およびそれらの用途
JP2014074013A (ja) * 2012-09-12 2014-04-24 Kissei Pharmaceutical Co Ltd 新規なドパミンd2受容体アゴニスト
JP2014088362A (ja) * 2012-09-12 2014-05-15 Kissei Pharmaceutical Co Ltd オクタヒドロチエノキノリン誘導体の製造方法及びその製造中間体
WO2014092006A1 (ja) * 2012-12-10 2014-06-19 キッセイ薬品工業株式会社 新規なオクタヒドロピリドキナゾリン誘導体、それを含有する医薬組成物およびそれらの用途
WO2014112492A1 (ja) * 2013-01-17 2014-07-24 キッセイ薬品工業株式会社 新規なオクタヒドロキノリン誘導体、それを含有する医薬組成物およびそれらの用途
JP2014172873A (ja) * 2013-03-11 2014-09-22 Kissei Pharmaceutical Co Ltd 新規なオクタヒドロキノリン誘導体、それを含有する医薬組成物およびそれらの用途
JP2016011291A (ja) * 2014-06-04 2016-01-21 キッセイ薬品工業株式会社 新規なドパミンd2受容体アゴニスト
JP2016160206A (ja) * 2015-03-02 2016-09-05 キッセイ薬品工業株式会社 新規なウレイドカルボニルオクタヒドロキノリン誘導体、それを含有する医薬組成物およびそれらの用途

Also Published As

Publication number Publication date
CN116348470A (zh) 2023-06-27
JPWO2022075347A1 (ja) 2022-04-14
TW202229290A (zh) 2022-08-01

Similar Documents

Publication Publication Date Title
EP0520406B1 (en) Diastereomer salt of optically active quinolinemevalonic acid
US9000195B2 (en) Process for obtaining olopatadine and intermediates
US20080293965A1 (en) Process for the Dynamic Resolution of (Substituted) (R)- or (S)- Mandelic Acid
KR100669823B1 (ko) 2-(4-클로로벤조일아미노)-3-[2(1h)-퀴놀리논-4-일]프로피온산의 제조방법 및 그 중간체
JP5815702B2 (ja) アセナピンの新規な製造方法
RU2394026C2 (ru) Способ оптического разделения амлодипина
JP5585822B2 (ja) 光学活性ニペコチン酸誘導体の製造方法
WO2022075347A1 (ja) オクタヒドロチエノキノリン化合物の製造方法及びその製造中間体
US5204472A (en) Quinoline and isoquinoline intermediates
KR101063146B1 (ko) 피타바스타틴 중간체의 제조방법 및 이를 이용한 피타바스타틴 헤미 칼슘염의 제조방법
JP4783998B2 (ja) (3r,5s)−7−置換−3,5−ジヒドロキシヘプト−6−エン酸の製法
JP2641542B2 (ja) 非対称ジヒドロピリジン類の製造方法
JP2617960B2 (ja) 光学活性カルボン酸をつくる立体異性化方法
CN114478422B (zh) 一种普瑞巴林的中间体及其制备方法
JP3121656B2 (ja) 光学活性なグリシドール誘導体およびその製造方法
US20040102639A1 (en) Preparation of isocoumarin derivatives and intermediates for the synthesis thereof
KR960016525B1 (ko) 디히드로피리딘 화합물 또는 그 염류의 제조 방법
KR100413172B1 (ko) 퀴놀리논 유도체의 제조방법
KR101299720B1 (ko) 3-아미노-5-플루오로-4-디알콕시펜탄산 에스테르의 새로운제조방법
KR100424393B1 (ko) 옥시라세탐의 제조방법
WO2022186362A1 (ja) ピラゾール化合物の製造方法
KR101086177B1 (ko) 항균제인(-)-9-플루오르-2,3-디히드로-3(에스)-메틸-10-(4-메틸-1-피페라지닐)-7-옥소-7에이치-피리도[1,2,3-데]-1,4-벤즈옥사진-6-카르복실산의 새로운 제조 방법
EP1140841B1 (fr) Derives de 3-phenyl-2, 6-dioxopiperidin-3-yl propionamide et leur procede de preparation
JP2005247710A (ja) 光学活性シタロプラムの製造方法、その中間体およびその製造方法
KR20190037172A (ko) 의약품 합성용 중간체 화합물의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877646

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022555521

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877646

Country of ref document: EP

Kind code of ref document: A1