WO2022075232A1 - 樹脂組成物、及びその成形体 - Google Patents

樹脂組成物、及びその成形体 Download PDF

Info

Publication number
WO2022075232A1
WO2022075232A1 PCT/JP2021/036493 JP2021036493W WO2022075232A1 WO 2022075232 A1 WO2022075232 A1 WO 2022075232A1 JP 2021036493 W JP2021036493 W JP 2021036493W WO 2022075232 A1 WO2022075232 A1 WO 2022075232A1
Authority
WO
WIPO (PCT)
Prior art keywords
poly
resin
hydroxybutyrate
weight
resin composition
Prior art date
Application number
PCT/JP2021/036493
Other languages
English (en)
French (fr)
Inventor
佳明 松岡
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2022555448A priority Critical patent/JPWO2022075232A1/ja
Publication of WO2022075232A1 publication Critical patent/WO2022075232A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones

Definitions

  • the present invention relates to a resin composition containing a poly (3-hydroxyalkanoate) resin and a molded product thereof.
  • microplastics which are disintegrated and micronized by ultraviolet rays, adsorb harmful compounds in the ocean, and when marine organisms ingest them, harmful substances are taken into the food chain.
  • biodegradable plastics are expected for marine pollution caused by such plastics, but according to a report compiled by the United Nations Environmental Plan in 2015, the temperature of biodegradable plastics such as polylactic acid is high. It has been pointed out that it cannot be a countermeasure for marine pollution because it cannot be expected to decompose in a short period of time in the low actual ocean.
  • Microbial-produced poly (3-hydroxy alkanoate) -based resin is a material that can undergo biodegradation even in seawater, and is attracting attention as a material that solves the above problems.
  • a peculiar odor may remain in the poly (3-hydroxy alkanoate) resin, which limits its use.
  • Patent Document 1 describes a biodegradable plastic obtained by adding a deodorant such as hydrophobic zeolite to a biodegradable plastic such as 3-hydroxybutyrate and 3-hydroxyvariate.
  • Patent Document 1 Although the odors of 3-hydroxybutyrate and 3-hydroxyvariate can be suppressed to some extent, the effect is not sufficient and there is room for improvement. Further, after producing a molded product using the deodorant (ABSCENTS-3000 provided by Union Showa Co., Ltd.) described in the examples of Patent Document 1, the molded product was recycled and pulverized to attempt to produce a new molded product. In some cases, it was found that the physical properties of the resin deteriorated and it became difficult to obtain a molded product of the same quality.
  • the deodorant ABSCENTS-3000 provided by Union Showa Co., Ltd.
  • the present invention contains 100 parts by weight of the poly (3-hydroxyalkanoate) resin (A) and 0.1 to 10 parts by weight of the porous particles (B), and the porous particles (B) are fine.
  • the present invention relates to a resin composition having a pore size of 0.7 to 1.5 nm.
  • the average particle size of the porous particles (B) is 0.1 to 10 ⁇ m.
  • the porous particles (B) are hydrophobic zeolites.
  • the poly (3-hydroxyalkanoate) -based resin (A) is a poly (3-hydroxybutyrate) -based resin.
  • the poly (3-hydroxybutyrate) resin is poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyvalerate), poly (3-hydroxybutyrate-. Co-3-hydroxyhexanoate), poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate), poly (3-hydroxybutyrate-co-4-hydroxybutyrate) Rate), poly (3-hydroxybutyrate-co-3-hydroxyoctanoate), and poly (3-hydroxybutyrate-co-3-hydroxydecanoate) at least one selected from the group.
  • the present invention also relates to a molded product of the resin composition.
  • the molded body is molded by injection molding, extrusion blow molding, or injection blow molding.
  • the present invention it is possible to provide a resin composition in which the odor peculiar to a poly (3-hydroxyalkanoate) resin is suppressed and the recyclability is good, and a molded product thereof. Since the resin composition and its molded product have good recyclability, even if they are melted again to produce a new resin composition or molded product, the deterioration of their physical properties is suppressed.
  • the resin composition and molded product according to the present invention can be applied to a wide range of applications such as foods, pharmaceuticals, and cosmetics, which are sensitive to odors.
  • the resin composition according to the present embodiment contains a poly (3-hydroxyalkanoate) -based resin (A) and specific porous particles (B) as essential components.
  • the poly (3-hydroxy alkanoate) resin may be referred to as P3HA.
  • the poly (3-hydroxy alkanoate) resin is a biodegradable aliphatic polyester, preferably an aliphatic polyester containing no aromatic ring.
  • the poly (3-hydroxy alkanoate) resin may not have a double bond.
  • the poly (3-hydroxy alkanoate) resin contains a 3-hydroxy alkanoate unit represented by the following general formula (1) as an essential repeating unit.
  • R is an alkyl group represented by C n H 2n + 1
  • n is an integer of 1 or more and 15 or less.
  • the poly (3-hydroxy alkanoate) -based resin contains the 3-hydroxy alkanoate unit represented by the general formula (1) in an amount of 50 mol% or more of all the repeating units (100 mol%) constituting the resin. It is preferable, and it is more preferable to contain 70 mol% or more.
  • the poly (3-hydroxyalkanoate) -based resin is preferably a resin containing a 3-hydroxybutyrate (3HB) unit as an essential repeating unit, that is, a poly (3-hydroxybutyrate) -based resin.
  • a poly (3-hydroxybutyrate) -based resin examples include poly (3-hydroxybutyrate) (P3HB), poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (P3HB3HV), and poly (3HB3HV).
  • P3HA produced by microorganisms is usually P3HA composed of only D-form (R-form) hydroxyalkanoate units.
  • P3HB, P3HB3HH, P3HB3HV, P3HB3HV3HH, and P3HB4HB are preferable, and P3HB, P3HB3HH, P3HB3HV, and P3HB4HB are more preferable because industrial production is easy.
  • the monomer composition ratio thereof is the total repeating unit (100 mol%) constituting P3HA from the viewpoint of the balance between flexibility and strength.
  • the ratio of 3HB units is preferably 80 mol% or more and 99 mol% or less, and more preferably 85 mol% or more and 97 mol% or less.
  • the ratio of 3HB units is 80 mol% or more, the rigidity of P3HA is improved, and the crystallinity does not become too low, so that purification tends to be easy.
  • the ratio of 3HB units is 99 mol% or less, the flexibility of P3HA tends to be improved.
  • the monomer composition ratio of P3HA can be measured by gas chromatography or the like (see, for example, International Publication No. 2014-02038).
  • the microorganism that produces microorganism-produced P3HA is not particularly limited as long as it is a microorganism that has the ability to produce P3HA.
  • a P3HB-producing bacterium Bacillus megaterium, which was discovered in 1925, is the first, and in addition, Cupriavidus necator (former classification: Alcaligenes europhos, Ralstonia eutropha). Natural microorganisms such as Alcaligenes latus are known, and P3HB is accumulated in the cells of these microorganisms.
  • Examples of the bacterium that produces a copolymer of 3-hydroxybutyrate and other hydroxyalkanoates include Aeromonas caviae, which is a P3HB3HV and P3HB3HH-producing bacterium, and Alcaligenes, which is a P3HB4HB-producing bacterium. ) Etc. are known.
  • Aeromonas caviae which is a P3HB3HV and P3HB3HH-producing bacterium
  • Alcaligenes which is a P3HB4HB-producing bacterium.
  • Etc. are known.
  • P3HB3HH in order to increase the productivity of P3HB3HH, Alcaligenes utrophas AC32 strain (Alcaligenes europhorus AC32, FERM BP-6038) (T. Fukui, Y. Doi, J. Bateli) into which a gene of the P3HA synthase group was introduced was introduced.
  • microbial cells in which P3HB3HH is accumulated in the cells by culturing these microorganisms under appropriate conditions are used.
  • a recombinant microorganism into which various P3HA synthesis-related genes have been introduced may be used according to the P3HA to be produced, or the culture conditions including the type of substrate may be optimized.
  • the molecular weight of P3HA may be any as long as it exhibits substantially sufficient physical properties for the intended use, and is not particularly limited, but its weight average molecular weight may be 50,000 or more and 3,000,000 or less. Preferred, 100,000 or more and 1,000,000 or less are more preferable, and 200,000 or more and 700,000 or less are further preferable.
  • the weight average molecular weight By setting the weight average molecular weight to 50,000 or more, the mechanical strength of the molded product tends to be further improved.
  • the weight average molecular weight to 3,000,000 or less, the processability tends to be further improved and the molding tends to be easier.
  • GPC gel permeation chromatography
  • a polystyrene gel Showa Denko's "Shodex K-804"
  • Chromatography is used as the mobile phase, and it can be determined as the molecular weight when converted to polystyrene.
  • the calibration curve is prepared using polystyrene having a weight average molecular weight of 31,400, 197,000, 668,000, and 1,920,000.
  • an appropriate column for measuring the molecular weight may be used as the column in the GPC.
  • P3HA can be used alone or in combination of two or more.
  • the content of P3HA in the resin composition according to the present embodiment is not particularly limited, but is preferably 20% by weight or more, more preferably 30% by weight or more, further preferably 40% by weight or more, and even more preferably 60% by weight. The above is even more preferable, and 70% by weight or more is particularly preferable. By setting the content of P3HA to 20% by weight or more, the biodegradability of the resin composition or the molded product tends to be further improved.
  • the upper limit of the content of P3HA is not particularly limited, but is preferably 100% by weight or less, more preferably 99% by weight or less, still more preferably 98% by weight or less.
  • the resin composition according to this embodiment may contain a resin other than P3HA (hereinafter, may be referred to as "another resin").
  • the other resin is not particularly limited as long as it does not significantly reduce compatibility, molding processability, and mechanical properties when molding the resin composition according to the present embodiment, but the resin composition is a feature of P3HA. When used in applications that require biodegradability, it is preferably a biodegradable resin.
  • Examples of the other resin include an aliphatic polyester having a structure in which an aliphatic diol and an aliphatic dicarboxylic acid are polycondensed, and an aliphatic aromatic polyester having both an aliphatic compound and an aromatic compound as monomers. Be done.
  • Examples of the former are polyethylene succinate, polybutylene succinate (PBS), polyhexamethylene succinate, polyethylene adipate, polybutylene adipate, polyhexamethylene adipate, polybutylene succinate adipate (PBSA), polyethylene sebacate, poly. Butylene sebacate and the like can be mentioned.
  • PBAT poly (butylene adipate-co-butylene terephthalate)
  • PBST poly (butylene sebacate-co-butylene terephthalate)
  • PBST poly (butylene azelate-co-butylene terephthalate)
  • PBST poly (butylene succinate-).
  • the content of the other resin in the resin composition according to the present embodiment is not particularly limited, but is preferably 250 parts by weight or less, more preferably 100 parts by weight or less, and 50 parts by weight, based on 100 parts by weight of P3HA. It is more preferably parts by weight or less, and particularly preferably 20 parts by weight or less. Further, it may be 10 parts by weight or less, or 5 parts by weight or less.
  • the lower limit of the content of the other resin is not particularly limited and may be 0 parts by weight.
  • porous particles (B) The porous particles contained in the resin composition according to the present embodiment have porous properties, thereby adsorbing odor-causing substances and having deodorizing performance.
  • the porous particles may be composed of an organic material, an inorganic material, or an organic-inorganic hybrid material.
  • organic material examples include polymer-based porous particles, such as nylon particles, polyamide particles, acrylic particles, polymethyl methacrylate particles, polystyrene particles, silicon particles, cyclic silicon particles, urethane particles, polyethylene particles, and phosphorus.
  • polymer-based porous particles such as nylon particles, polyamide particles, acrylic particles, polymethyl methacrylate particles, polystyrene particles, silicon particles, cyclic silicon particles, urethane particles, polyethylene particles, and phosphorus.
  • Lipid particles and the like are exemplified. These particles may or may not be crosslinked, but crosslinked particles are preferable because the particles are less likely to be broken by shearing during molding.
  • inorganic materials include activated charcoal, activated clay, acidic clay, natural zeolite, hydrophobic zeolite, hydrophilic zeolite, silica gel, bentonite, smectite, mica, talc, pyroferrite, vermiculite, green mudstone, kaolinite and serpentine. , Silica gel, titanium oxide, a mixture of magnesium oxide and silicon dioxide, a composite of magnesium oxide and silicon dioxide, and the like.
  • porous particles it is selected from the group consisting of hydrophobic zeolite, hydrophilic zeolite, and silica gel because it has excellent deodorizing property against odor peculiar to poly (3-hydroxyalkanoate) resin. More than a seed can be preferably used. Further, hydrophobic zeolite is more preferable from the viewpoint of compatibility with P3HA.
  • Zeolites are inorganic compounds mainly composed of SiO 2 and Al 2 O 3 coordinated to a tetrahedron.
  • the hydrophobic zeolite refers to a zeolite containing a large amount of SiO 2 among the zeolites and having a molar ratio value of SiO 2 / Al 2 O 3 of 35 or more.
  • the present inventor has found that among the porous particles, the porous particles having a pore diameter of 0.7 nm or more and 1.5 nm or less are extremely deodorant of the odor peculiar to the poly (3-hydroxyalkanoate) resin. It was found that it is excellent and does not easily inhibit the recyclability of the poly (3-hydroxyalkanoate) resin.
  • the pore diameter is less than 0.7 nm or more than 1.5 nm, the deodorizing effect per unit amount of the porous particles is lowered, and it is necessary to increase the addition amount of the porous particles in order to obtain the desired deodorizing effect. Occurs.
  • the porous particles tend to promote the decomposition of the poly (3-hydroxyalkanoate) -based resin, and the physical properties of the resin composition or the molded product tend to deteriorate due to recycling.
  • the pore diameter of the porous particles is preferably 0.7 nm or more and 1.2 nm or less, more preferably 0.7 nm or more and 1.0 nm or less, and particularly preferably 0.8 nm or more and 1.0 nm or less.
  • the pore diameter of the porous particles is a value measured by a constant volume gas adsorption method.
  • the adsorbed gas used in the constant capacity gas adsorption method include nitrogen, carbon dioxide, methane, hydrogen and the like.
  • the particle size of the porous particles is not particularly limited, but the average particle size is preferably 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the average particle size is preferably 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the average particle size is more preferably 0.3 ⁇ m or more and 8 ⁇ m or less, and further preferably 0.5 ⁇ m or more and 6 ⁇ m or less.
  • the average particle size of the porous particles is a value observed by a scanning electron microscope (SEM), and 100 or more particles that do not overlap with other particles are selected, and the lengths of the major axis and the minor axis of each particle are selected.
  • SEM scanning electron microscope
  • the additive average can be calculated as the particle size of each particle, and the additive average of the particle size can be calculated as the average particle size.
  • the blending amount of the porous particles is 0.1 part by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the poly (3-hydroxyalkanoate) resin (A). If the blending amount of the porous particles is less than 0.1 parts by weight, the deodorizing effect due to the blending of the porous particles cannot be sufficiently obtained. On the other hand, when the compounding amount exceeds 10 parts by weight, the poly (3-hydroxyalkanoate) resin is easily decomposed by the porous particles, and the physical properties of the resin composition or the molded product tend to be deteriorated by recycling.
  • the blending amount of the porous particles is preferably 0.5 parts by weight or more and 8 parts by weight or less, more preferably 1.0 part by weight or more and 7 parts by weight or less, and 2.0 parts by weight or more and 6 parts by weight or less. More preferred.
  • the resin composition according to the present embodiment may contain additives as long as the effects of the invention are not impaired.
  • Additives include, for example, crystal nucleating agents, lubricants, plasticizers, antistatic agents, flame retardants, conductive agents, heat insulating agents, cross-linking agents, antioxidants, UV absorbers, colorants, inorganic fillers, organic fillers. , Anti-hydrolysis agents and the like can be used depending on the purpose. In particular, an additive having biodegradability is preferable.
  • crystal nucleating agent examples include pentaerythritol, orotic acid, aspartame, cyanuric acid, glycine, zinc phenylphosphonate, and boron nitride. Of these, pentaerythritol is preferable because it has a particularly excellent effect of promoting crystallization of the poly (3-hydroxyalkanoate) resin.
  • the amount of the crystal nucleating agent used is not particularly limited, but is preferably 0.1 to 5 parts by weight, preferably 0.5 to 3 parts by weight, based on 100 parts by weight of the total poly (3-hydroxyalkanoate) resin. More preferably, 0.7 to 1.5 parts by weight is even more preferable. Further, one kind of crystal nucleating agent may be used, or two or more kinds of crystal nucleating agents may be used, and the usage ratio can be appropriately adjusted according to the purpose.
  • the lubricant examples include behenic acid amide, oleic acid amide, erucic acid amide, stearic acid amide, palmitic acid amide, N-stearyl behenic acid amide, N-stearyl erucic acid amide, ethylene bisstearic acid amide, and ethylene bisoleic acid.
  • examples thereof include amides, ethylene bis-erucic acid amides, ethylene bislauric acid amides, ethylene biscapric acid amides, p-phenylene bisstearic acid amides, and polycondensates of ethylenediamine, stearic acid and sebacic acid.
  • behenic acid amide or erucic acid amide is preferable because the lubricant effect on the poly (3-hydroxyalkanoate) resin is particularly excellent.
  • the amount of the lubricant used is not particularly limited, but is preferably 0.01 to 5 parts by weight, more preferably 0.05 to 3 parts by weight, based on 100 parts by weight of the total poly (3-hydroxyalkanoate) resin. , 0.1 to 1.5 parts by weight is more preferable. Further, one kind of lubricant may be used, or two or more kinds of lubricants may be used, and the usage ratio can be appropriately adjusted according to the purpose.
  • plasticizer examples include glycerin ester compounds, citric acid ester compounds, sebacic acid ester compounds, adipic acid ester compounds, polyether ester compounds, benzoic acid ester compounds, phthalic acid ester compounds, and isosols.
  • examples thereof include a bid ester compound, a polycaprolactone compound, and a dibasic acid ester compound.
  • glycerin ester compounds, citric acid ester compounds, sebacic acid ester compounds, and dibasic acid ester compounds are preferable because they have a particularly excellent plasticizing effect on poly (3-hydroxyalkanoate) resins. ..
  • the glycerin ester compound include glycerin diacet monolaurate and the like.
  • Examples of the citric acid ester compound include tributyl acetyl citrate and the like.
  • Examples of the sebacic acid ester compound include dibutyl sebacate and the like.
  • Examples of the dibasic acid ester compound include benzylmethyldiethylene glycol adipate and the like.
  • the amount of the plasticizer used is not particularly limited, but is preferably 1 to 20 parts by weight, more preferably 2 to 15 parts by weight, and 3 to 3 to 100 parts by weight, based on 100 parts by weight of the total poly (3-hydroxyalkanoate) resin. 10 parts by weight is more preferable.
  • one type of plasticizer may be used, or two or more types of plasticizer may be used, and the usage ratio can be appropriately adjusted according to the purpose.
  • the resin composition according to the present embodiment can be easily produced by a known melt kneader as long as it is an apparatus capable of heating and kneading to a temperature equal to or higher than the melting point of the poly (3-hydroxyalkanoate) resin (A).
  • the poly (3-hydroxyalkanoate) resin (A), the porous particles (B), and if necessary, other components are melt-kneaded by an extruder, a roll mill, a Banbury mixer, or the like to form pellets, and molded.
  • a masterbatch with a high concentration of porous particles (B) is prepared in advance, and this is melt-kneaded with a poly (3-hydroxyalkanoate resin (A) at a desired ratio and subjected to molding). Methods, etc. can be used.
  • the poly (3-hydroxy alkanoate) -based resin (A) and the porous particles (B) may be added to the kneader at the same time, or the poly (3-hydroxy alkanoate) -based resin (A) is melted first. Later, the porous particles (B) may be added.
  • the resin composition according to the present embodiment can be molded by various molding methods such as extrusion molding, injection molding, calendar molding, injection blow molding, and extrusion blow molding.
  • the resin composition according to the present embodiment can be manufactured by injection molding, extrusion blow molding, or injection blow molding.
  • the molded product according to the present embodiment can be manufactured by a known blow molding method or injection molding method after obtaining pellets, if necessary.
  • a specific description will be given.
  • a poly (3-hydroxyalkanoate) resin (A), porous particles (B), and other components are added as necessary, and melt-kneaded using an extruder, a kneader, a Banbury mixer, a roll, or the like.
  • the resin composition is extruded into a strand shape and then cut to obtain pellets having a particle shape such as a columnar shape, an elliptical columnar shape, a spherical shape, a cubic shape, or a rectangular parallelepiped shape. It is desirable that the produced pellets are sufficiently dried at 40 to 80 ° C. to remove water, and then subjected to blow molding or injection molding.
  • the temperature at which the melt-kneading is carried out cannot be unconditionally specified because it depends on the melting point, melt viscosity, etc. of the resin used, but the resin temperature at the die outlet of the melt-kneaded product is preferably 135 to 200 ° C. 140 to 190 ° C. is more preferable, 145 to 180 ° C. is further preferable, and 150 to 170 ° C. is particularly preferable. If the resin temperature of the melt-kneaded product is less than 135 ° C, the poly (3-hydroxy alkanoate) resin may be unmelted, and if it exceeds 200 ° C, the poly (3-hydroxy alkanoate) resin may be unmelted. May be thermally decomposed.
  • blow molding or injection molding by subjecting the produced pellets to blow molding or injection molding, a blow molded body or an injection molded body can be molded.
  • Blow molding is a molding method that can manufacture a molded body having a hollow portion such as a bottle by blowing air into the plasticized resin material. Extrusion blow molding, multi-layer extrusion blow molding, injection blow molding, stretch blow molding and the like can be used.
  • injection molding a heat-melted resin composition is injected into a mold, the resin composition is cooled and solidified in the mold, the mold is opened, and the molded body is released to form a molded body. How to get it.
  • a gas assist molding method in addition to the injection molding method generally adopted when molding a thermoplastic resin, a gas assist molding method, an injection compression molding method, an injection blow molding (including one-step method and two-step method), etc. Injection molding method can be adopted. Further, an in-mold molding method, a gas press molding method, a two-color molding method, a sandwich molding method, PUSH-PULL, SCORIM and the like can also be adopted.
  • the injection molding method that can be used is not limited to the above method.
  • the molded body according to the present embodiment is not particularly limited, and examples thereof include films, sheets, tubes, plates, rods, packaging materials (for example, bags), containers (for example, bottle containers), parts, and the like.
  • the molded product is preferably a packaging material or a container from the viewpoint of measures against marine pollution.
  • Examples 2 to 3 Comparative Examples 1 to 5
  • Pellets and bottles were prepared according to the description of Example 1 except that the type and / or the amount of the zeolite was changed according to the formulation shown in Table 2.
  • the obtained bottles were evaluated for odor and recyclability in the same manner as in Example 1, and the results are shown in Table 2.
  • Comparative Example 1 The bottles obtained in Examples 1 to 3 had suppressed odor and good recyclability.
  • Comparative Example 1 the same porous particles as in Examples 1 to 3 were used, but the amount of the porous particles was large, and the recyclability was insufficient.
  • Comparative Example 2 did not contain porous particles, and Comparative Examples 3 to 4 contained the same type of porous particles as those described in Patent Document 1, but all had an odor. ..
  • Comparative Example 5 contains more porous particles of the same type as those described in Patent Document 1 as compared with Comparative Examples 3 and 4. Although the odor was suppressed, the recyclability was insufficient.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

前記樹脂組成物は、ポリ(3-ヒドロキシアルカノエート)系樹脂(A)100重量部、及び多孔性粒子(B)0.1~10重量部を含有し、前記多孔性粒子(B)の細孔径が0.7~1.5nmである。好ましくは、前記多孔性粒子(B)の平均粒子径が0.1~10μmである。好ましくは、前記多孔性粒子(B)が、疎水性ゼオライトである。

Description

樹脂組成物、及びその成形体
 本発明は、ポリ(3-ヒドロキシアルカノエート)系樹脂を含む樹脂組成物、及びその成形体に関する。
 近年、廃棄プラスチックが引き起こす環境問題がクローズアップされ、特に海洋投棄や河川などを経由して海に流入したプラスチックが、地球規模で多量に海洋を漂流していることが分かってきている。この様なプラスチックは長期間にわたり形状を保つため、海洋生物を拘束、捕獲する、いわゆるゴーストフィッシングや、海洋生物が摂取した場合は消化器内に留まり摂食障害を引き起こすなど、生態系への影響が指摘されている。
 更には、プラスチックが紫外線などで崩壊・微粒子化したマイクロプラスチックが海洋中の有害な化合物を吸着し、これを海洋生物が摂取することで有害物が食物連鎖に取り込まれる問題も指摘されている。
 このようなプラスチックによる海洋汚染に対し、生分解性プラスチックの使用が期待されるが、国連環境計画が2015年に取り纏めた報告書では、ポリ乳酸などのコンポストで生分解可能なプラスチックは、温度が低い実海洋中では短期間での分解が期待できないために、海洋汚染の対策にはなりえないと指摘されている。
 微生物産生のポリ(3-ヒドロキシアルカノエート)系樹脂は海水中でも生分解が進行しうる材料であり、上記課題を解決する素材として注目されている。しかし、ポリ(3-ヒドロキシアルカノエート)系樹脂には特有の臭気が残存している場合があり、それによって用途が制限されるという課題があった。
 特許文献1では、3-ヒドロキシブチレートと3-ヒドロキシバリレート等の生分解性プラスチックに対し、疎水性ゼオライト等の脱臭剤を添加してなる生分解性プラスチックが記載されている。
特開平7-310005号公報
 特許文献1に記載された方法によると、3-ヒドロキシブチレートと3-ヒドロキシバリレートの臭気をある程度抑制することができるものの、その効果は十分ではなく、改善の余地があった。
 更に、特許文献1の実施例に記載の脱臭剤(ユニオン昭和社提供のABSCENTS-3000)を用いて成形体を作製した後、これをリサイクルして粉砕し、新たな成形体を作製しようとした場合に、樹脂の物性が低下して同じ品質の成形体を得ることが困難になることが判明した。
 本発明は、上記現状に鑑み、ポリ(3-ヒドロキシアルカノエート)系樹脂に特有の臭気が抑制され、かつリサイクル性が良好な樹脂組成物、及びその成形体を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、ポリ(3-ヒドロキシアルカノエート)系樹脂に特定の多孔性粒子を特定量配合することで、上記課題を解決できることを見出し、本発明を完成するに至った。
 即ち、本発明は、ポリ(3-ヒドロキシアルカノエート)系樹脂(A)100重量部、及び多孔性粒子(B)0.1~10重量部を含有し、前記多孔性粒子(B)の細孔径が0.7~1.5nmである、樹脂組成物に関する。
 好ましくは、前記多孔性粒子(B)の平均粒子径が0.1~10μmである。
 好ましくは、前記多孔性粒子(B)が、疎水性ゼオライトである。
 好ましくは、前記ポリ(3-ヒドロキシアルカノエート)系樹脂(A)が、ポリ(3-ヒドロキシブチレート)系樹脂である。
 好ましくは、前記ポリ(3-ヒドロキシブチレート)系樹脂が、ポリ(3-ヒドロキシブチレート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバレレート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバレレート-コ-3-ヒドロキシヘキサノエート)、ポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタノエート)、及びポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシデカノエート)からなる群より選択される少なくとも1種である。
 また本発明は、前記樹脂組成物の成形体に関する。
 好ましくは、前記成形体は、射出成形、押出ブロー成形、又は射出ブロー成形によって成形されたものである。
 本発明によれば、ポリ(3-ヒドロキシアルカノエート)系樹脂に特有の臭気が抑制され、かつリサイクル性が良好な樹脂組成物、及びその成形体を提供することができる。前記樹脂組成物及びその成形体はリサイクル性が良好であるため、これらを再度溶融し、新たな樹脂組成物又は成形体を作製しても、その物性の低下が抑制されている。本発明に係る樹脂組成物及び成形体は、臭気に敏感な、食品や医薬品、化粧品等の幅広い用途に応用することが可能である。
 以下に、本発明の実施形態について説明するが、本発明は以下の実施形態に限定されるものでない。
 本実施形態に係る樹脂組成物は、必須成分として、ポリ(3-ヒドロキシアルカノエート)系樹脂(A)と特定の多孔性粒子(B)を含むものである。以下では、ポリ(3-ヒドロキシアルカノエート)系樹脂を、P3HAという場合がある。
 [ポリ(3-ヒドロキシアルカノエート)系樹脂(A)]
 ポリ(3-ヒドロキシアルカノエート)系樹脂は、生分解性を有する脂肪族ポリエステルであり、好ましくは芳香環を含まない脂肪族ポリエステルである。前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、二重結合を有しないものであっても良い。
 当該ポリ(3-ヒドロキシアルカノエート)系樹脂は、下記一般式(1)で示される3-ヒドロキシアルカノエート単位を必須の繰り返し単位として含むものである。
[-CHR-CH-CO-O-]  (1)
 一般式(1)中、RはC2n+1で表されるアルキル基で、nは1以上15以下の整数である。
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、前記一般式(1)で示される3-ヒドロキシアルカノエート単位を、当該樹脂を構成する全繰り返し単位(100モル%)のうち50モル%以上含むことが好ましく、70モル%以上含むことがより好ましい。
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、3-ヒドロキシブチレート(3HB)単位を必須の繰り返し単位として含む樹脂、即ちポリ(3-ヒドロキシブチレート)系樹脂であることが好ましい。
 前記ポリ(3-ヒドロキシブチレート)系樹脂としては、例えば、ポリ(3-ヒドロキシブチレート)(P3HB)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバレレート)(P3HB3HV)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)(P3HB3HH)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバレレート-コ-3-ヒドロキシヘキサノエート)(P3HB3HV3HH)、ポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)(P3HB4HB)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタノエート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシデカノエート)等が挙げられる。
 なお、微生物により産生されるP3HA(微生物産生P3HA)は、通常、D体(R体)のヒドロキシアルカノエート単位のみから構成されるP3HAである。微生物産生P3HAの中でも、工業的生産が容易である点から、P3HB、P3HB3HH、P3HB3HV、P3HB3HV3HH、P3HB4HBが好ましく、P3HB、P3HB3HH、P3HB3HV、P3HB4HBがより好ましい。
 P3HA(特に、微生物産生P3HA)が3-ヒドロキシブチレート(3HB)単位を含むものである場合、そのモノマー組成比は、柔軟性と強度のバランスの観点から、P3HAを構成する全繰り返し単位(100モル%)のうち、3HB単位の割合が80モル%以上、99モル%以下であることが好ましく、85モル%以上、97モル%以下がより好ましい。3HB単位の割合が80モル%以上であることにより、P3HAの剛性が向上し、また、結晶化度が低くなり過ぎず精製が容易になる傾向がある。一方、3HB単位の割合が99モル%以下であることにより、P3HAの柔軟性が向上する傾向がある。なお、P3HAのモノマー組成比は、ガスクロマトグラフィー等によって測定することができる(例えば、国際公開第2014/020838号参照)。
 微生物産生P3HAを生産する微生物としては、P3HAの生産能を有する微生物であれば特に限定されない。例えば、P3HB生産菌としては、1925年に発見されたBacillus megateriumが最初で、他にもカプリアビダス・ネケイター(Cupriavidus necator)(旧分類:アルカリゲネス・ユートロファス(Alcaligenes eutrophus、ラルストニア・ユートロフア(Ralstonia eutropha))、アルカリゲネス・ラタス(Alcaligenes latus)などの天然微生物が知られており、これらの微生物ではP3HBが菌体内に蓄積される。
 また、3-ヒドロキシブチレートとその他のヒドロキシアルカノエートとの共重合体の生産菌としては、P3HB3HVおよびP3HB3HH生産菌であるアエロモナス・キヤビエ(Aeromonas caviae)、P3HB4HB生産菌であるアルカリゲネス・ユートロファス(Alcaligenes eutrophus)などが知られている。特に、P3HB3HHに関し、P3HB3HHの生産性を上げるために、P3HA合成酵素群の遺伝子を導入したアルカリゲネス・ユートロファス AC32株(Alcaligenes eutrophus AC32, FERM BP-6038)(T.Fukui,Y.Doi,J.Bateriol.,179,p4821-4830(1997))などがより好ましく、これらの微生物を適切な条件で培養して菌体内にP3HB3HHを蓄積させた微生物菌体が用いられる。また上記以外にも、生産したいP3HAに合わせて、各種P3HA合成関連遺伝子を導入した遺伝子組換え微生物を用いても良いし、基質の種類を含む培養条件の最適化をすればよい。
 P3HAの分子量は、目的とする用途で実質的に十分な物性を示すものであればよく、特に限定されないが、その重量平均分子量は、50,000以上、3,000,000以下であることが好ましく、100,000以上、1,000,000以下がより好ましく、200,000以上、700,000以下がさらに好ましい。重量平均分子量を50,000以上とすることにより、成形体の力学的強度がより向上する傾向がある。一方、重量平均分子量を3,000,000以下とすることにより、加工性がより向上し、成形がより容易となる傾向がある。
 前記重量平均分子量の測定方法は、ゲル浸透クロマトグラフィー(GPC)(昭和電工社製「Shodex GPC-101」)を用い、カラムにポリスチレンゲル(昭和電工社製「Shodex K-804」)を用い、クロロホルムを移動相とし、ポリスチレン換算した場合の分子量として求めることができる。この際、検量線は重量平均分子量31,400、197,000、668,000、1,920,000のポリスチレンを使用して作成する。当該GPCにおけるカラムとしては、前記分子量を測定するのに適切なカラムを使用すればよい。
 P3HAは、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。
 本実施形態に係る樹脂組成物中のP3HAの含有量は、特に限定されないが、20重量%以上であることが好ましく、30重量%以上がより好ましく、40重量%以上がさらに好ましく、60重量%以上がより更に好ましく、70重量%以上が特に好ましい。P3HAの含有量を20重量%以上とすることにより、樹脂組成物又は成形体の生分解性が一層良好となる傾向がある。P3HAの含有量の上限は特に限定されないが、100重量%以下であることが好ましく、99重量%以下がより好ましく、98重量%以下がさらに好ましい。
 [他の樹脂]
 本実施形態に係る樹脂組成物は、P3HA以外の樹脂(以下では「他の樹脂」と称する場合がある)を含有してもよい。他の樹脂としては、本実施形態に係る樹脂組成物を成形する際に相溶性や成形加工性、機械特性を著しく低下させるものでなければ特に限定されないが、樹脂組成物がP3HAの特徴である生分解性が要求される用途に用いられる場合には、生分解性樹脂であることが好ましい。
 前記他の樹脂としては、例えば、脂肪族ジオール及び脂肪族ジカルボン酸が重縮合した構造からなる脂肪族ポリエステルや、脂肪族化合物と芳香族化合物の両方をモノマーとする脂肪族芳香族ポリエステル等が挙げられる。前者の例としては、ポリエチレンサクシネート、ポリブチレンサクシネート(PBS)、ポリヘキサメチレンサクシネート、ポリエチレンアジペート、ポリブチレンアジペート、ポリヘキサメチレンアジペート、ポリブチレンサクシネートアジペート(PBSA)、ポリエチレンセバケート、ポリブチレンセバケート等が挙げられる。後者の例としては、ポリ(ブチレンアジペート-co-ブチレンテレフタレート)(PBAT)、ポリ(ブチレンセバケート-co-ブチレンテレフタレート)、ポリ(ブチレンアゼレート-co-ブチレンテレフタレート)、ポリ(ブチレンサクシネート-co-ブチレンテレフタレート)(PBST)等が挙げられる。なお、他の樹脂は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 本実施形態に係る樹脂組成物中の前記他の樹脂の含有量は、特に限定されないが、P3HA100重量部に対して、250重量部以下であることが好ましく、100重量部以下がより好ましく、50重量部以下がさらに好ましく、20重量部以下が特に好ましい。また、10重量部以下であってもよいし、5重量部以下であってもよい。前記他の樹脂の含有量の下限は特に限定されず、0重量部であってもよい。
 [多孔性粒子(B)]
 本実施形態に係る樹脂組成物が含有する多孔性粒子は、多孔性を有するものであって、これにより臭気の原因物質を吸着し、脱臭性能を有するものである。当該多孔性粒子は、有機材料から構成されるものであっても良いし、無機材料から構成されるものであっても良いし、有機無機ハイブリッド材料から構成されるものであっても良い。
 前記有機材料の例としては、高分子系多孔質粒子が挙げられ、ナイロン粒子、ポリアミド粒子、アクリル粒子、ポリメタクリル酸メチル粒子、ポリスチレン粒子、シリコン粒子、環状シリコン粒子、ウレタン粒子、ポリエチレン粒子、リン脂質粒子等が例示される。これらの粒子は架橋されていても良いし、架橋されていなくても良いが、架橋されているものが、成形中にせん断によって粒子が破壊されにくくなるため好ましい。
 前記無機材料の例としては、活性炭、活性白土、酸性白土、天然ゼオライト、疎水性ゼオライト、親水性ゼオライト、シリカゲル、ベントナイト、スメクタイト、マイカ、タルク、パイロフェライト、バーミキュライト、緑泥石、カオリナイトおよび蛇紋石、シリカ、酸化チタン、酸化マグネシウムと二酸化ケイ素の混合物、酸化マグネシウムと二酸化ケイ素の複合体などが挙げられる。
 前記多孔性粒子の中でも、特にポリ(3-ヒドロキシアルカノエート)系樹脂に特有の臭気に対する脱臭性が優れている点で、疎水性ゼオライト、親水性ゼオライト、及びシリカゲルからなる群より選択される1種以上を好ましく用いることができる。また、P3HAとの相溶性の観点から、疎水性ゼオライトが更に好ましい。
 ゼオライトは、主に四面体に配位したSiOとAlから構成される無機化合物である。前記疎水性ゼオライトとは、ゼオライトの中でも、SiOが多く含まれているもので、SiO/Alのモル比の値が35以上のゼオライトのことを指す。
 本発明者は、前記多孔性粒子の中でも、特に細孔径が0.7nm以上1.5nm以下である多孔性粒子が、ポリ(3-ヒドロキシアルカノエート)系樹脂に特有の臭気の脱臭性に極めて優れており、しかも、ポリ(3-ヒドロキシアルカノエート)系樹脂のリサイクル性を阻害しにくいことを見出した。前記細孔径が0.7nmを下回ったり、1.5nmを超えたりすると、多孔性粒子の単位量当たりの脱臭効果が低下し、所望の脱臭効果を得るために多孔性粒子の添加量を増やす必要が生じる。その結果、多孔性粒子がポリ(3-ヒドロキシアルカノエート)系樹脂の分解を促進しやすくなり、リサイクルによって樹脂組成物又は成形体の物性が低下しやすくなる。
 前記多孔性粒子の細孔径は、0.7nm以上1.2nm以下であることが好ましく、0.7nm以上1.0nm以下がより好ましく、0.8nm以上1.0nm以下が特に好ましい。
 前記多孔性粒子の細孔径は、定容量式ガス吸着法により測定した値である。前記定容量式ガス吸着法に使用する吸着ガスとしては窒素、二酸化炭素、メタン、水素等が挙げられる。
 前記多孔性粒子の粒子径は特に限定されないが、平均粒子径は0.1μm以上10μm以下であることが好ましい。平均粒子径を0.1μm以上とすることにより、ポリ(3-ヒドロキシアルカノエート)系樹脂中の多孔性粒子の分散性が向上し、脱臭効果が向上する傾向がある。一方、平均粒子径を10μm以下とすることにより、成形体の機械強度が向上する傾向がある。前記平均粒子径は、0.3μm以上8μm以下がより好ましく、0.5μm以上6μm以下がさらに好ましい。
 前記多孔性粒子の平均粒子径は、走査型電子顕微鏡(SEM)により観察した値であり、他の粒子に重なっていない粒子を100個以上選択して、各粒子の長軸と短軸の長さを測定してその相加平均を各粒子の粒子径とし、その粒子径の相加平均を平均粒子径として算出できる。
 前記多孔性粒子の配合量は、ポリ(3-ヒドロキシアルカノエート)系樹脂(A)100重量部に対し、0.1重量部以上10重量部以下である。多孔性粒子の配合量が0.1重量部未満であると、多孔性粒子の配合による脱臭効果を十分に得ることができない。一方、前記配合量が10重量部を超えると、多孔性粒子によってポリ(3-ヒドロキシアルカノエート)系樹脂が分解しやすくなり、リサイクルによって樹脂組成物又は成形体の物性が低下する傾向が生じる。前記多孔性粒子の配合量は、0.5重量部以上8重量部以下であることが好ましく、1.0重量部以上7重量部以下がより好ましく、2.0重量部以上6重量部以下がさらに好ましい。
 (添加剤)
 本実施形態に係る樹脂組成物は、発明の効果を阻害しない範囲において、添加剤を含有してもよい。添加剤としては、例えば、結晶核剤、滑剤、可塑剤、帯電防止剤、難燃剤、導電剤、断熱剤、架橋剤、酸化防止剤、紫外線吸収剤、着色剤、無機充填剤、有機充填剤、加水分解抑制剤等を目的に応じて使用できる。特に生分解性を有する添加剤が好ましい。
 結晶核剤としては、例えば、ペンタエリスリトール、オロチン酸、アスパルテーム、シアヌル酸、グリシン、フェニルホスホン酸亜鉛、窒化ホウ素等が挙げられる。中でも、ポリ(3-ヒドロキシアルカノエート)系樹脂の結晶化を促進する効果が特に優れている点で、ペンタエリスリトールが好ましい。結晶核剤の使用量は、特に限定されないが、ポリ(3-ヒドロキシアルカノエート)系樹脂の合計100重量部に対して、0.1~5重量部が好ましく、0.5~3重量部がより好ましく、0.7~1.5重量部がさらに好ましい。また、結晶核剤は、1種を使用してよいし、2種以上使用してもよく、目的に応じて、使用比率を適宜調整することができる。
 滑剤としては、例えば、ベヘン酸アミド、オレイン酸アミド、エルカ酸アミド、ステアリン酸アミド、パルミチン酸アミド、N-ステアリルベヘン酸アミド、N-ステアリルエルカ酸アミド、エチレンビスステアリン酸アミド、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、エチレンビスラウリル酸アミド、エチレンビスカプリン酸アミド、p-フェニレンビスステアリン酸アミド、エチレンジアミンとステアリン酸とセバシン酸の重縮合物等が挙げられる。中でも、ポリ(3-ヒドロキシアルカノエート)系樹脂への滑剤効果が特に優れている点で、ベヘン酸アミド又はエルカ酸アミドが好ましい。滑剤の使用量は、特に限定されないが、ポリ(3-ヒドロキシアルカノエート)系樹脂の合計100重量部に対して、0.01~5重量部が好ましく、0.05~3重量部がより好ましく、0.1~1.5重量部がさらに好ましい。また、滑剤は、1種を使用してもよいし、2種以上使用してもよく、目的に応じて、使用比率を適宜調整することができる。
 可塑剤としては、例えば、グリセリンエステル系化合物、クエン酸エステル系化合物、セバシン酸エステル系化合物、アジピン酸エステル系化合物、ポリエーテルエステル系化合物、安息香酸エステル系化合物、フタル酸エステル系化合物、イソソルバイドエステル系化合物、ポリカプロラクトン系化合物、二塩基酸エステル系化合物等が挙げられる。中でも、ポリ(3-ヒドロキシアルカノエート)系樹脂への可塑化効果が特に優れている点で、グリセリンエステル系化合物、クエン酸エステル系化合物、セバシン酸エステル系化合物、二塩基酸エステル系化合物が好ましい。グリセリンエステル系化合物としては、例えば、グリセリンジアセトモノラウレート等が挙げられる。クエン酸エステル系化合物としては、例えば、アセチルクエン酸トリブチル等が挙げられる。セバシン酸エステル系化合物としては、例えば、セバシン酸ジブチル等が挙げられる。二塩基酸エステル系化合物としては、例えば、ベンジルメチルジエチレングリコールアジペート等が挙げられる。可塑剤の使用量は、特に限定されないが、ポリ(3-ヒドロキシアルカノエート)系樹脂の合計100重量部に対して、1~20重量部が好ましく、2~15重量部がより好ましく、3~10重量部がさらに好ましい。また、可塑剤は、1種を使用してもよいし、2種以上使用してもよく、目的に応じて、使用比率を適宜調整することができる。
 [樹脂組成物]
 本実施形態に係る樹脂組成物は、ポリ(3-ヒドロキシアルカノエート)系樹脂(A)の融点以上にまで加熱し混練できる装置であれば公知の溶融混練機によって容易に製造できる。例えば、ポリ(3-ヒドロキシアルカノエート)系樹脂(A)、多孔性粒子(B)、及び必要に応じて他の成分を押出機、ロールミル、バンバリーミキサーなどにより溶融混練してペレット状とし、成形に供する方法や、多孔性粒子(B)の高濃度のマスターバッチを予め調製しておき、これをポリ(3-ヒドロキシアルカノエート系樹脂(A)に所望の割合で溶融混練して成形に供する方法、などが利用できる。
 ポリ(3-ヒドロキシアルカノエート)系樹脂(A)と多孔性粒子(B)は混練機に同時に添加してもよいし、先にポリ(3-ヒドロキシアルカノエート)系樹脂(A)を溶融した後に、多孔性粒子(B)を添加しても良い。
 [成形体]
 本実施形態に係る樹脂組成物は、押出成形、射出成形、カレンダー成形、射出ブロー成形、押出ブロー成形など種々の成形方法によって成形体を作製することができる。
 本実施形態に係る樹脂組成物は、特に、射出成形、押出ブロー成形、又は射出ブロー成形によって成形体を作製することができる。
 (ブロー成形体又は射出成形体の製造方法)
 本実施形態に係る成形体は、必要によりペレットを得た後、公知のブロー成形法又は射出成形法によって製造することができる。以下、具体的に説明する。
 まず、ポリ(3-ヒドロキシアルカノエート)系樹脂(A)、多孔性粒子(B)、必要に応じて他の成分を添加し、押出機、ニーダー、バンバリーミキサー、ロールなどを用いて溶融混練して樹脂組成物を作製し、それをストランド状に押し出してからカットして、円柱状、楕円柱状、球状、立方体状、直方体状などの粒子形状のペレットを得る。作製されたペレットは、40~80℃で十分に乾燥させて水分を除去した後、ブロー成形又は射出成形に付することが望ましい。
 前記溶融混練を実施する際の温度は、使用する樹脂の融点、溶融粘度等によるため一概には規定できないが、溶融混練物のダイス出口での樹脂温度が135~200℃であることが好ましく、140~190℃がより好ましく、145~180℃がさらに好ましく、150~170℃が特に好ましい。溶融混練物の樹脂温度が135℃未満であると、ポリ(3-ヒドロキシアルカノエート)系樹脂が未溶融となる場合があり、200℃を超えると、ポリ(3-ヒドロキシアルカノエート)系樹脂が熱分解する場合がある。
 次いで、作製されたペレットをブロー成形又は射出成形に付することによって、ブロー成形体又は射出成形体を成形することができる。
 ブロー成形は、可塑化された樹脂材料内部に空気を吹き込むことで、ボトルなど、中空部を有する成形体を製造し得る成形法である。押出ブロー成形、多層押出ブロー成形、射出ブロー成形、延伸ブロー成形等、いずれも使用することができる。
 射出成形は、加熱溶融させた樹脂組成物を金型内に射出注入し、金型内で樹脂組成物を冷却固化させた後、金型を開き、成形体を離型することにより成形体を得る方法である。射出成形法としては、熱可塑性樹脂を成形する場合に一般的に採用される射出成形法の他、ガスアシスト成形法、射出圧縮成形法、射出ブロー成形(ワンステップ法、ツーステップ法含む)等の射出成形法を採用することができる。また、インモールド成形法、ガスプレス成形法、2色成形法、サンドイッチ成形法、PUSH-PULL、SCORIM等を採用することもできる。ただし、使用可能な射出成形法は、以上の方法に限定されるものではない。
 本実施形態に係る成形体としては、特に限定されないが、例えば、フィルム、シート、チューブ、板、棒、包装材料(例えば、袋)、容器(例えば、ボトル容器)、部品等が挙げられる。前記成形体は、海洋汚染の対策の観点から、好ましくは、包装材料または容器である。
 以下、実施例により本発明を具体的に説明するが、本発明は、これらの実施例によりその技術的範囲を限定されるものではない。
 (使用原料)
 実施例及び比較例で用いた原料を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 
 〔実施例1〕
 (PHBHブレンドの作製)
 100重量部=10kgとした。株式会社カワタ製75Lスーパーミキサーを用いて、PHBH 10kg、PETL 100g、EA50g、BA50g、ゼオライトAを100g投入し、300rpmにて3分間攪拌し、PHBHブレンドを得た。
 (コンパウンド化)
 東芝機械製TEM26SS(L/D=60)を用い、バレル温度を150℃、スクリュ回転数を100rpmに設定した。スクリュ根本より、PHBHブレンドを10kg/hrにてフィードし、45℃の温水で満たした水槽に通してストランドを固化し、ペレタイザーで裁断することにより、ペレットを得た。
 (射出成形体の取得)
 東洋機械金属製射出成形機Si-100Vを用い、ノズル/T1/T2/T3/T4=155/145/135/125/115℃、射出速度20mm/sec、金型温度35℃に設定し、前記ペレットから、直径5cm、高さ10cm、厚さ1mmのボトルを得た。成形直後にボトルにフタを閉め密閉した。
 (臭気の評価)
 密栓したボトルを48時間23℃で静置した後、40℃のオーブンに24時間入れ、フタを空け、5人に臭気を嗅いでもらい下記基準に基づき判定した。結果を表2に示す。
××:5人中5人が明らかに臭気を検知でき、不快感がある程度の臭気
×:5人中5人が明らかに臭気を検知できる程度の臭気
△:5人中5人がどうにか検知できる程度の臭気
〇:5人中、臭気を検知できる人と検知できない人がおり、臭気が検知できても、気にならない程度の臭気
◎:5人中だれも検知できない程度の臭気
 (リサイクル性の評価)
 得られたボトルを粉砕し、得られた粉砕品を、前記ペレットと20:80の比率(粉砕品:ペレット、重量基準)でブレンドし、前述した「射出成形体の取得」と同じ方法にてボトルを得るプロセスを2回実施した。成形条件を変更せずに、粉砕前のボトルと同等のボトルが得られるか否かを下記基準に基づき評価した。結果を表2に示す。
〇:成形条件を変更せずに同等のボトルが得られる
×:成形条件を変更しなければ、同等のボトルが得られない。流動性が高すぎて、バリが発生する。
 〔実施例2~3、比較例1~5〕
 表2に記載の配合に沿ってゼオライトの種類及び/又は配合量を変更した以外は、実施例1の記載に沿ってペレットおよびボトルを作製した。
 得られたボトルについて、実施例1と同様に臭気とリサイクル性を評価し、その結果を表2に示した。
Figure JPOXMLDOC01-appb-T000002
 
 表2より以下のことが分かる。実施例1~3で得られたボトルは、臭気が抑制され、リサイクル性も良好であった。
 一方、比較例1は、実施例1~3と同じ多孔性粒子を使用したが、その配合量が多かったもので、リサイクル性が不十分となった。比較例2は多孔性粒子を配合しなかったもの、比較例3~4は、特許文献1に記載されたものと同じ種類の多孔性粒子を配合したものであるが、いずれも臭気があった。比較例5は、特許文献1に記載されたものと同じ種類の多孔性粒子を比較例3~4よりも多く配合したものである。臭気は抑制されたものの、リサイクル性が不十分となった。
 

Claims (7)

  1.  ポリ(3-ヒドロキシアルカノエート)系樹脂(A)100重量部、及び
     多孔性粒子(B)0.1~10重量部を含有し、
     前記多孔性粒子(B)の細孔径が0.7~1.5nmである、樹脂組成物。
  2.  前記多孔性粒子(B)の平均粒子径が0.1~10μmである、請求項1記載の樹脂組成物。
  3.  前記多孔性粒子(B)が、疎水性ゼオライトである、請求項1又は2に記載の樹脂組成物。
  4.  前記ポリ(3-ヒドロキシアルカノエート)系樹脂(A)が、ポリ(3-ヒドロキシブチレート)系樹脂である、請求項1~3のいずれか1項に記載の樹脂組成物。
  5.  前記ポリ(3-ヒドロキシブチレート)系樹脂が、ポリ(3-ヒドロキシブチレート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバレレート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバレレート-コ-3-ヒドロキシヘキサノエート)、ポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタノエート)、及びポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシデカノエート)からなる群より選択される少なくとも1種である、請求項4に記載の樹脂組成物。
  6.  請求項1~5のいずれか1項に記載の樹脂組成物の成形体。
  7.  射出成形、押出ブロー成形、又は射出ブロー成形によって成形された、請求項6に記載の成形体。
     
PCT/JP2021/036493 2020-10-07 2021-10-01 樹脂組成物、及びその成形体 WO2022075232A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022555448A JPWO2022075232A1 (ja) 2020-10-07 2021-10-01

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-169991 2020-10-07
JP2020169991 2020-10-07

Publications (1)

Publication Number Publication Date
WO2022075232A1 true WO2022075232A1 (ja) 2022-04-14

Family

ID=81126886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036493 WO2022075232A1 (ja) 2020-10-07 2021-10-01 樹脂組成物、及びその成形体

Country Status (2)

Country Link
JP (1) JPWO2022075232A1 (ja)
WO (1) WO2022075232A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024063042A1 (ja) * 2022-09-21 2024-03-28 積水化成品工業株式会社 樹脂粒子及びその用途

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310005A (ja) * 1994-05-16 1995-11-28 Goyo Paper Working Co Ltd 無臭生分解性プラスチック

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310005A (ja) * 1994-05-16 1995-11-28 Goyo Paper Working Co Ltd 無臭生分解性プラスチック

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MIURA, MASAMICHI; TSUJIUCHI, TAKAFUMI; MORISHITA, SATORU; FUKAZAWA, TOYOAKI: "On the synthetic Zeolite (Zeolam)", SCIENTIFIC REPORT OF TOYO SODA MANUFACTURING COMPANY, LTD.KEIICHI, vol. 21, no. 2, 1 January 1977 (1977-01-01), pages 89 (45) - 106 (62), XP009535624, ISSN: 0041-0144 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024063042A1 (ja) * 2022-09-21 2024-03-28 積水化成品工業株式会社 樹脂粒子及びその用途

Also Published As

Publication number Publication date
JPWO2022075232A1 (ja) 2022-04-14

Similar Documents

Publication Publication Date Title
US5763513A (en) L-lactic acid polymer composition, molded product and film
US7619025B2 (en) Biodegradable polymeric nanocomposite compositions particularly for packaging
JPWO2011132456A1 (ja) ポリアミド化合物
JP6866722B2 (ja) 樹脂組成物及びそれを用いて成形された樹脂成形品
JP2014156539A (ja) ポリエステル樹脂組成物、該樹脂組成物を成形してなるフィルム、及び該フィルムを成形してなる袋
US6462105B1 (en) Aliphatic polyester composition for masterbatch and process for producing aliphatic polyester film with the composition
US20100076099A1 (en) Biodegradable polymeric nanocomposite compositions particularly for packaging
WO2022075232A1 (ja) 樹脂組成物、及びその成形体
JP2005329557A (ja) 多層フィルム
JP6102315B2 (ja) ポリエステル樹脂組成物及び該ポリエステル樹脂組成物を成形してなるフィルム
JP2003082140A (ja) 生分解性を有する多孔性フィルム及びその製造方法
JP3430125B2 (ja) マスターバッチ用脂肪族ポリエステル組成物及び該組成物を用いる脂肪族ポリエステルフィルムの製造方法
WO2022065182A1 (ja) 射出成形用樹脂組成物および射出成形体
JP7057135B2 (ja) ポリエステル樹脂組成物
JP7011647B2 (ja) 生分解性ポリエステルフィルムの製造方法
JP4232416B2 (ja) 中空成形品の製造方法
US20230312916A1 (en) Blow-molded or injection-molded article
JP6102314B2 (ja) ポリエステル樹脂組成物及び該ポリエステル樹脂組成物を成形してなるフィルム
JP7218650B2 (ja) ポリエステル系樹脂組成物及び成形品
JP2022102160A (ja) 無機材料膜を有する成形体
US10836900B2 (en) Method for producing aliphatic polyester resin composition
JP7467454B2 (ja) 成形体およびその利用
JP7090523B2 (ja) 樹脂組成物及び成形体
WO2023100673A1 (ja) 樹脂チューブ
JP2694801B2 (ja) 改善された機械的特性及び生分解性を有する樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877531

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022555448

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877531

Country of ref document: EP

Kind code of ref document: A1