WO2022075108A1 - Thermal diffusion device - Google Patents

Thermal diffusion device Download PDF

Info

Publication number
WO2022075108A1
WO2022075108A1 PCT/JP2021/035365 JP2021035365W WO2022075108A1 WO 2022075108 A1 WO2022075108 A1 WO 2022075108A1 JP 2021035365 W JP2021035365 W JP 2021035365W WO 2022075108 A1 WO2022075108 A1 WO 2022075108A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous body
wall surface
flow path
wick
liquid flow
Prior art date
Application number
PCT/JP2021/035365
Other languages
French (fr)
Japanese (ja)
Inventor
竜宏 沼本
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202190000766.3U priority Critical patent/CN220454356U/en
Priority to JP2022519556A priority patent/JP7120494B1/en
Publication of WO2022075108A1 publication Critical patent/WO2022075108A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure

Definitions

  • the present invention relates to a heat diffusion device.
  • the vapor chamber has a structure in which a working medium and a wick that transports the working medium by capillary force are enclosed inside the housing.
  • the working medium absorbs heat from the heat generating element in the evaporation unit that absorbs heat from the heat generating element and evaporates in the vapor chamber, then moves in the vapor chamber, is cooled, and returns to the liquid phase.
  • the working medium that has returned to the liquid phase moves to the evaporation part on the heat generating element side again by the capillary force of the wick, and cools the heat generating element.
  • the vapor chamber operates independently without having external power, and can diffuse heat two-dimensionally at high speed by utilizing the latent heat of vaporization and the latent heat of condensation of the working medium.
  • the vapor chamber is also required to be thinner in order to support the thinner mobile terminals such as smartphones and tablets. In such a thin vapor chamber, it becomes difficult to secure mechanical strength and heat transfer efficiency.
  • the wick arranged inside the housing is to maintain the shape of the housing. It has been proposed to be used as a support for.
  • the first wick portion and the second wick portion are arranged at intervals in the left-right direction, and a liquid pool portion formed between the first wick portion and the second wick portion. Is filled with the working medium of the liquid phase.
  • the working medium of the liquid phase can be reliably returned to the evaporating part through the liquid pool part, so that the flow of the working medium of the liquid phase can be prevented from being stagnant. It is said that the decrease in heat transport efficiency can be suppressed.
  • the above problem is not limited to the vapor chamber, but is a problem common to heat diffusion devices capable of diffusing heat by the same configuration as the vapor chamber.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a heat diffusion device in which a decrease in thermal conductivity is suppressed and a maximum heat transport amount is large. It is also an object of the present invention to provide an electronic device provided with the heat diffusion device.
  • the heat diffusion device of the present invention has a housing having a first inner wall surface and a second inner wall surface facing each other in the thickness direction, an actuating medium enclosed in the internal space of the housing, and the internal space of the housing. Equipped with a placed wick.
  • the housing has an evaporation unit that evaporates the working medium.
  • the wick includes a plurality of wicks extending linearly from the evaporation portion and at least partially in contact with the inner wall surface of at least one of the first inner wall surface and the second inner wall surface.
  • a steam flow path is formed between at least one set of adjacent wick bodies. In the adjacent wick bodies, a first liquid flow path is formed in a space surrounded by at least a part of each of the wick bodies and a part of the housing.
  • a second liquid flow path is formed by providing a groove along the direction in which the wick body extends on at least one of the surfaces of the wick body in contact with the first inner wall surface or the second inner wall surface. Has been done.
  • the electronic device of the present invention includes the heat diffusion device of the present invention.
  • FIG. 1 is a perspective view schematically showing an example of a vapor chamber according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line II-II of the vapor chamber shown in FIG.
  • FIG. 3 is a cross-sectional view taken along the line III-III of the vapor chamber shown in FIG.
  • FIG. 4 is an enlarged cross-sectional view of the portion shown by IV in FIG.
  • FIG. 5 is a cross-sectional view schematically showing a first modification example of the position where the second liquid flow path is formed.
  • FIG. 6 is a cross-sectional view schematically showing a second modification example of the position where the second liquid flow path is formed.
  • FIG. 1 is a perspective view schematically showing an example of a vapor chamber according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line II-II of the vapor chamber shown in FIG.
  • FIG. 3 is a cross-sectional view taken along the
  • FIG. 7 is a cross-sectional view schematically showing a modified example of the cross-sectional shape of the second liquid flow path.
  • FIG. 8 is a cross-sectional view schematically showing an example of a vapor chamber according to a second embodiment of the present invention.
  • FIG. 9 is a cross-sectional view schematically showing an example of a vapor chamber according to a third embodiment of the present invention.
  • FIG. 10 is a cross-sectional view schematically showing an example of a vapor chamber according to a fourth embodiment of the present invention.
  • FIG. 11 is a cross-sectional view schematically showing an example of a vapor chamber according to a fifth embodiment of the present invention.
  • FIG. 12 is a cross-sectional view schematically showing an example of a vapor chamber according to a sixth embodiment of the present invention.
  • FIG. 13 is a plan view schematically showing an example of the vapor chamber according to the seventh embodiment of the present invention.
  • FIG. 14 is a plan view schematically showing an example of the vapor chamber according to the eighth embodiment of the present invention.
  • FIG. 15 is a plan view schematically showing an example of the vapor chamber according to the ninth embodiment of the present invention.
  • FIG. 16 is a plan view schematically showing an example of the vapor chamber according to the tenth embodiment of the present invention.
  • FIG. 17 is a plan view schematically showing an example of the vapor chamber according to the eleventh embodiment of the present invention.
  • FIG. 18 is a cross-sectional view schematically showing an example of a vapor chamber according to the eleventh embodiment of the present invention.
  • FIG. 19 is a cross-sectional view schematically showing an example of a vapor chamber according to a twelfth embodiment of the present invention.
  • FIG. 20 is a cross-sectional view schematically showing an example of a vapor chamber according to a thirteenth embodiment of the present invention.
  • FIG. 21 is a cross-sectional view schematically showing an example of a vapor chamber according to the 14th embodiment of the present invention.
  • FIG. 22 is a cross-sectional view schematically showing an example of the vapor chamber according to the fifteenth embodiment of the present invention.
  • FIG. 23 is a cross-sectional view schematically showing another example of the vapor chamber according to the fifteenth embodiment of the present invention.
  • FIG. 24 is a plan view schematically showing an example of the vapor chamber according to the 16th embodiment of the present invention.
  • FIG. 25 is a plan view schematically showing an example of the vapor chamber according to the 17th embodiment of the present invention.
  • FIG. 26 is a cross-sectional view schematically showing an example of a vapor chamber according to an eighteenth embodiment of the present invention.
  • FIG. 27 is an enlarged cross-sectional view of the portion shown by XXVII in FIG. 26.
  • the present invention is not limited to the following configuration, and can be appropriately modified and applied without changing the gist of the present invention. It should be noted that a combination of two or more of the individual desirable configurations of the present invention described below is also the present invention.
  • heat diffusion device of the present invention when each embodiment is not particularly distinguished, it is simply referred to as "heat diffusion device of the present invention".
  • a vapor chamber will be described as an example of an embodiment of the heat diffusion device of the present invention.
  • the heat diffusion device of the present invention can also be applied to a heat diffusion device such as a heat pipe.
  • FIG. 1 is a perspective view schematically showing an example of a vapor chamber according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line II-II of the vapor chamber shown in FIG.
  • FIG. 3 is a cross-sectional view taken along the line III-III of the vapor chamber shown in FIG.
  • the vapor chamber 1 shown in FIG. 1 includes a hollow housing 10 that is hermetically sealed. As shown in FIG. 3, the housing 10 has a first inner wall surface 11a and a second inner wall surface 12a facing each other in the thickness direction Z. As shown in FIGS. 2 and 3, the vapor chamber 1 further includes an actuating medium 20 enclosed in the internal space of the housing 10 and a wick 30 arranged in the internal space of the housing 10.
  • the housing 10 is provided with an evaporation unit EP that evaporates the enclosed working medium 20. Further, the housing 10 may be set with a condensation portion CP for condensing the evaporated working medium 20.
  • a heat source HS which is a heat generating element, is arranged on the outer wall surface of the housing 10. Examples of the heat source HS include electronic components of electronic devices, such as a central processing unit (CPU).
  • CPU central processing unit
  • the portion near the heat source HS and heated by the heat source HS corresponds to the evaporation portion EP.
  • the portion away from the evaporation portion EP corresponds to the condensation portion CP.
  • the evaporated working medium 20 can be condensed other than the condensed portion CP. In the present embodiment, a portion where the evaporated working medium 20 is particularly easy to condense is expressed as a condensing portion CP.
  • the vapor chamber 1 is planar as a whole. That is, the housing 10 is planar as a whole.
  • the "plane” includes a plate shape and a sheet shape, and the dimension in the width direction X (hereinafter referred to as "width") and the dimension in the length direction Y (hereinafter referred to as "length”) are in the thickness direction Z. It means a shape that is considerably larger than a dimension (hereinafter referred to as a thickness or a height), for example, a shape having a width and a length of 10 times or more, preferably 100 times or more the thickness.
  • the size of the vapor chamber 1, that is, the size of the housing 10 is not particularly limited.
  • the width and length of the vapor chamber 1 can be appropriately set according to the intended use.
  • the width and length of the vapor chamber 1 are, for example, 5 mm or more and 500 mm or less, 20 mm or more and 300 mm or less, or 50 mm or more and 200 mm or less, respectively.
  • the width and length of the vapor chamber 1 may be the same or different.
  • the housing 10 is composed of the first sheet 11 and the second sheet 12 facing each other to which the outer edges are joined.
  • the materials constituting the first sheet 11 and the second sheet 12 are not particularly limited as long as they have properties suitable for use as a vapor chamber, such as thermal conductivity, strength, flexibility, and flexibility.
  • the material constituting the first sheet 11 and the second sheet 12 is preferably a metal, for example, copper, nickel, aluminum, magnesium, titanium, iron, or an alloy containing them as a main component, and particularly preferably copper. Is.
  • the materials constituting the first sheet 11 and the second sheet 12 may be the same or different, but are preferably the same.
  • the first sheet 11 and the second sheet 12 are joined to each other at their outer edges.
  • the joining method is not particularly limited, but for example, laser welding, resistance welding, diffusion welding, brazing, TIG welding (tungsten-inert gas welding), ultrasonic welding, or resin encapsulation can be used, and is preferable. Can use laser welding, resistance welding or low welding.
  • the thicknesses of the first sheet 11 and the second sheet 12 are not particularly limited, but are preferably 10 ⁇ m or more and 200 ⁇ m or less, more preferably 30 ⁇ m or more and 100 ⁇ m or less, and further preferably 40 ⁇ m or more and 60 ⁇ m or less, respectively.
  • the thicknesses of the first sheet 11 and the second sheet 12 may be the same or different. Further, the thickness of each of the first sheet 11 and the second sheet 12 may be the same throughout, or a part thereof may be thin.
  • the shapes of the first sheet 11 and the second sheet 12 are not particularly limited.
  • the first sheet 11 has a flat plate shape having a constant thickness
  • the second sheet 12 has a shape in which the outer edge portion is thicker than the portion other than the outer edge portion.
  • the thickness of the entire vapor chamber 1 is not particularly limited, but is preferably 50 ⁇ m or more and 500 ⁇ m or less.
  • the working medium 20 is not particularly limited as long as it can cause a gas-liquid phase change in the environment inside the housing 10, and for example, water, alcohols, CFC substitutes, or the like can be used.
  • the working medium is an aqueous compound, preferably water.
  • the wick 30 includes a plurality of wick bodies 40 extending linearly from the evaporation unit EP.
  • the wick body 40 extends from the evaporation portion EP to the condensation portion CP. At least a part of the wick body 40 is in contact with at least one inner wall surface of the first inner wall surface 11a and the second inner wall surface 12a of the housing 10.
  • the wick body 40 supports the first inner wall surface 11a and the second inner wall surface 12a of the housing 10 from the inside.
  • the wick body 40 constituting the wick 30 is in contact with the first inner wall surface 11a and the second inner wall surface 12a.
  • the wick body 40 may be in contact with either the first inner wall surface 11a or the second inner wall surface 12a.
  • At least one set of adjacent wick bodies 40 includes a first porous body 41 and a second porous body 42, respectively. These porous bodies function as wicks that transport the working medium 20 by capillary force. Further, by using a porous body as a support of the housing 10, the weight of the vapor chamber 1 can be reduced.
  • the first porous body 41 and the second porous body 42 are composed of, for example, a metal porous body, a ceramic porous body, or a resin porous body.
  • the first porous body 41 and the second porous body 42 may be composed of a sintered body such as a metal porous sintered body or a ceramic porous sintered body, for example.
  • the first porous body 41 and the second porous body 42 are preferably composed of a porous sintered body of copper or nickel.
  • a steam flow path 50 through which the working medium 20 of the gas phase flows is formed between at least one set of adjacent wick bodies 40.
  • the first liquid flow path 51 is formed in a space surrounded by at least a part of each wick body 40 and a part of the housing 10.
  • the first liquid flow path 51 is formed in a space surrounded by a part of the first porous body 41, a part of the second porous body 42, and a part of the housing 10.
  • the first liquid flow path 51 is provided by providing a space between the first porous body 41 and the second porous body 42 along the direction in which the wick body 40 extends. It is formed.
  • the first liquid flow path 51 can be used as a liquid flow path through which the working medium 20 of the liquid phase flows.
  • the heat transport efficiency can be improved by, for example, arranging the liquid flow path and the vapor flow path alternately with the wick body 40 sandwiched between the first porous body 41 or the second porous body 42.
  • the width a of the vapor flow path 50 is larger than the width b of the first liquid flow path 51.
  • the width a of the steam flow path 50 is preferably 1000 ⁇ m or more and 3000 ⁇ m or less, and more preferably 1000 ⁇ m or more and 2000 ⁇ m or less.
  • the width b of the first liquid flow path 51 is preferably 50 ⁇ m or more and 500 ⁇ m or less.
  • the width of the widest portion is defined as the width of the steam flow path.
  • the width of the widest portion is defined as the width of the first liquid flow path.
  • FIG. 4 is an enlarged cross-sectional view of the portion shown by IV in FIG.
  • at least one of the surfaces of the wick body 40 in contact with the first inner wall surface 11a or the second inner wall surface 12a is provided with a groove portion along the direction in which the wick body 40 extends.
  • the second liquid flow path 52 is formed by the above.
  • the surface where the first porous body 41 is in contact with the first inner wall surface 11a, the surface where the first porous body 41 is in contact with the second inner wall surface 12a, and the second porous body 42 are the first.
  • the surface in contact with the inner wall surface 11a and the second porous body 42 are formed on at least one of the surfaces in contact with the second inner wall surface 12a. Specifically, a groove portion is formed on the surface of the first porous body 41 facing the second inner wall surface 12a and the surface of the second porous body 42 facing the second inner wall surface 12a along the direction in which the wick body 40 extends.
  • the second liquid flow path 52 is formed by the provision of the above. Similar to the first liquid flow path 51, the second liquid flow path 52 can be used as a liquid flow path through which the working medium 20 of the liquid phase flows.
  • the second liquid is on the surface of the wick body 40 in contact with the first inner wall surface 11a or the second inner wall surface 12a, for example, the surface of the first porous body 41 or the second porous body 42 facing the second inner wall surface 12a of the housing 10.
  • the flow path 52 By forming the flow path 52, it is possible to increase the number of liquid flow paths while maintaining the height of the steam flow path. Therefore, it is possible to suppress the decrease in thermal conductivity and increase the maximum heat transport amount. Further, by forming the flow path on the top surface or the bottom surface of the porous body, it becomes possible to smoothly flow the liquid to the heat source as compared with the case where the flow path is formed inside (central portion) of the porous body. ..
  • the method for forming the second liquid flow path 52 is not particularly limited, but for example, when the first porous body 41 and the second porous body are composed of the porous sintered body, for producing the porous sintered body. Examples thereof include a method of adjusting the viscosity of the paste and a method of pressing after applying the paste by printing such as screen printing.
  • the width e of the second liquid flow path 52 is smaller than either the width c 1 of the first porous body 41 or the width c 2 of the second porous body 42, and the height of the second liquid flow path 52 is high. It is preferable that the value f is smaller than either 1/2 of the height d 1 of the first porous body 41 and 1/2 of the height d 2 of the second porous body 42. That is, it is preferable that the relations of e ⁇ c 1 and e ⁇ c 2 and f ⁇ 1 / 2d 1 and f ⁇ 1 / 2d 2 are established.
  • the width of the widest portion is defined as the width of the second liquid flow path.
  • the width of the porous body is different in the thickness direction Z
  • the width of the widest portion is defined as the width of the porous body.
  • the height of the second liquid flow path is different in the width direction X
  • the height of the highest portion is defined as the height of the second liquid flow path.
  • the height of the porous body differs in the width direction X
  • the height of the highest portion is defined as the height of the porous body.
  • the width e of the second liquid flow path 52 is preferably smaller than either the width c 1 of the first porous body 41 or the width c 2 of the second porous body 42, but the width e of the first porous body 41 It may be the same as at least one of the width c 1 and the width c 2 of the second porous body 42.
  • the width c 1 of the first porous body 41 and the width c 2 of the second porous body 42 are preferably 50 ⁇ m or more and 300 ⁇ m or less, respectively. This makes it possible to obtain a high capillary force.
  • the width c 1 of the first porous body 41 may be the same as or different from the width c 2 of the second porous body 42.
  • the width c 1 of the first porous body 41 and the width c 2 of the second porous body 42 do not have to be constant in the thickness direction Z. Further, a porous body having a constant width in the thickness direction Z and a porous body having a non-constant width in the thickness direction Z may coexist.
  • the height d 1 of the first porous body 41 and the height d 2 of the second porous body 42 are preferably 20 ⁇ m or more and 300 ⁇ m or less, and more preferably 50 ⁇ m or more and 300 ⁇ m or less, respectively. Even when the height d 1 of the first porous body and the height d 2 of the second porous body 42 are set in the above range and the entire vapor chamber 1 is thinned, the first porous body 41 and the second porous body 41 and the second porous body 41 are described as described above. By arranging the porous body 42 in the housing 10, it is possible to secure the mechanical strength and the maximum heat transport amount.
  • the height d 1 of the first porous body 41 may be the same as or different from the height d 2 of the second porous body 42.
  • the second liquid flow path 52 is formed on both the surface of the first porous body 41 facing the second inner wall surface 12a and the surface of the second porous body 42 facing the second inner wall surface 12a.
  • the second liquid flow path 52 is formed only on one of the surface of the first porous body 41 facing the second inner wall surface 12a and the surface of the second porous body 42 facing the second inner wall surface 12a. It may have been done.
  • FIG. 5 is a cross-sectional view schematically showing a first modification example of the position where the second liquid flow path is formed.
  • the second liquid flow path 52 is formed on the surface of the first porous body 41 facing the first inner wall surface 11a and the surface of the second porous body 42 facing the first inner wall surface 11a. May be.
  • the second liquid flow path 52 is formed on both the surface of the first porous body 41 facing the first inner wall surface 11a and the surface of the second porous body 42 facing the first inner wall surface 11a.
  • the second liquid flow path 52 is formed only on one of the surface of the first porous body 41 facing the first inner wall surface 11a and the surface of the second porous body 42 facing the first inner wall surface 11a. It may have been done.
  • FIG. 6 is a cross-sectional view schematically showing a second modification example of the position where the second liquid flow path is formed.
  • the second liquid flow path 52 may be formed on the surface of the body 41 and the surface of the second porous body 42 facing the first inner wall surface 11a.
  • the second liquid flow path 52 is formed on all of the surface and the surface of the second porous body 42 facing the first inner wall surface 11a, but the second liquid flow path 52 is formed on at least one surface. Should be formed.
  • the second liquid flow path 52 formed on each surface may be the same or different.
  • the width e of the second liquid flow path 52 formed on each surface may be the same or different.
  • the height f of the second liquid flow path 52 formed on each surface may be the same or different.
  • the second liquid flow path 52 is formed on two or more of the surfaces of the second porous body 42 facing the first inner wall surface 11a, the second liquid flow path 52 formed on each surface.
  • the positions of may be the same or different.
  • the wick body 40 When the wick body 40 includes the first porous body 41 and the second porous body 42, the wick body 40 in which the second liquid flow path 52 is not formed may be included.
  • FIG. 7 is a cross-sectional view schematically showing a modified example of the cross-sectional shape of the second liquid flow path. As shown in FIG. 7, a second liquid flow path 52A having a curved cross-sectional shape may be formed.
  • the working medium 20 of the liquid phase located on the surfaces of the first porous body 41 and the second porous body 42 is heated and evaporated through the inner wall surface of the housing 10.
  • the pressure of the gas in the steam flow path 50 in the vicinity of the evaporation unit EP increases.
  • the working medium 20 of the gas phase moves in the steam flow path 50 toward the condensed portion CP side.
  • the gas phase working medium 20 that has reached the condensing portion CP is deprived of heat through the inner wall surface of the housing 10 and is condensed into droplets.
  • the working medium 20 of the gas phase can be condensed other than the condensed portion CP.
  • the droplets of the working medium 20 permeate into the pores of the first porous body 41 and the pores of the second porous body 42 by the capillary force.
  • a part of the working medium 20 of the liquid phase that has penetrated into the pores of the first porous body 41 and the pores of the second porous body 42 is inside the first liquid flow path 51 and the second liquid flow path. It flows into 52. Therefore, the liquid flow path is formed by the first porous body 41, the second porous body 42, the first liquid flow path 51, and the second liquid flow path 52.
  • the working medium 20 of the liquid phase in the pores of the first porous body 41, in the pores of the second porous body 42, in the first liquid flow path 51, and in the second liquid flow path 52 is an evaporation part due to the capillary force. Move to the EP side. Then, the working medium 20 of the liquid phase is supplied from the pores of the first porous body 41, the pores of the second porous body 42, the first liquid flow path 51, and the second liquid flow path 52 to the evaporation section EP. To. The working medium 20 of the liquid phase that has reached the evaporation unit EP evaporates again from the surfaces of the first porous body 41 and the second porous body 42 in the evaporation unit EP. As shown in FIG.
  • the evaporation unit EP may include the first liquid flow path 51 and the wick body 40, or the first liquid flow path 51 may not be included and only the wick body 40 may be contained, or the first liquid may be contained.
  • the flow path 51 and the wick body 40 may not be included.
  • the working medium 20 that has evaporated and becomes a gas phase moves to the condensed portion CP side again through the steam flow path 50.
  • the vapor chamber 1 can repeatedly transport the heat recovered on the evaporation unit EP side to the condensation unit CP side by repeatedly utilizing the gas-liquid phase change of the working medium 20.
  • the pore diameters of the first porous body 41 and the second porous body 42 are preferably 50 ⁇ m or less, respectively. By reducing the pore diameter, high capillary force can be obtained.
  • the pore diameters of the first porous body 41 and the second porous body 42 may be the same or different.
  • the shape of the hole is not particularly limited.
  • At least one set of adjacent wick bodies 40 may be connected to each other at the end portions on the evaporation portion EP side, and the first liquid flow paths 51 may communicate with each other. Further, even if the ends of at least one set of adjacent wick bodies 40 opposite to the evaporation portion EP and the ends on the condensing portion CP side are connected to each other and the first liquid flow paths 51 communicate with each other. good.
  • the density of the flow path in the evaporation part EP is higher than the density of the flow path in the portion away from the evaporation part EP, for example, the density of the flow path in the condensation part CP. Thereby, the maximum heat transport amount can be improved.
  • the first porous body and the second porous body may each have a constant width in the thickness direction, and the width in the thickness direction may be constant. It does not have to be constant.
  • the width of the end portion on the second inner wall surface side is narrower than the width of the end portion on the first inner wall surface side, respectively. You may. In this case, a portion having a constant width may be included.
  • the first porous body and the second porous body are each from the end portion on the first inner wall surface side to the end portion on the second inner wall surface side.
  • the width becomes continuously narrower toward.
  • FIG. 8 is a cross-sectional view schematically showing an example of a vapor chamber according to a second embodiment of the present invention.
  • the adjacent wick bodies 40 include the first porous body 41A and the second porous body 42A, respectively.
  • the width of the end portion on the second inner wall surface 12a side is narrower than the width of the end portion on the first inner wall surface 11a side.
  • the width of each of the first porous body 41A and the second porous body 42A is continuously narrowed from the end portion on the first inner wall surface 11a side toward the end portion on the second inner wall surface 12a side.
  • the cross-sectional shapes of the first porous body 41A and the second porous body 42A are trapezoidal, respectively.
  • the cross-sectional shapes of the first porous body 41A and the second porous body 42A are not particularly limited, and may be other shapes.
  • the first porous body 41A and the second porous body 42A have the above-mentioned cross-sectional shape, so that the pressure from the outside of the housing 10 can be dispersed. Further, since the internal space of the housing 10 can be easily maintained in the minimum area and the cross-sectional area of the vapor flow path and the liquid flow path can be secured to the maximum, the maximum heat transport amount and the heat diffusion capacity can be improved. Further, since the liquid flow path is formed in the acute-angled gap formed between the end portion on the second inner wall surface 12a side having a small area and the housing 10, the liquid phase is formed in the liquid flow path between the wick bodies 40. The working medium 20 can be easily drawn in, and the maximum heat transport capacity is improved. Alternatively, the exudation of the working medium 20 of the liquid phase into the vapor flow path is improved, and the heat diffusion capacity is improved.
  • the first porous body and the second porous body are each from the end portion on the first inner wall surface side to the end portion on the second inner wall surface side.
  • the width gradually narrows toward.
  • FIG. 9 is a cross-sectional view schematically showing an example of a vapor chamber according to a third embodiment of the present invention.
  • the adjacent wick bodies 40 include the first porous body 41B and the second porous body 42B, respectively.
  • the width of the end portion on the second inner wall surface 12a side is narrower than the width of the end portion on the first inner wall surface 11a side.
  • the widths of the first porous body 41B and the second porous body 42B are gradually narrowed from the end portion on the first inner wall surface 11a side toward the end portion on the second inner wall surface 12a side, respectively.
  • the cross-sectional shapes of the first porous body 41B and the second porous body 42B are arranged on the first inner wall surface 11a side and the second inner wall surface 12a side, respectively.
  • the cross-sectional shapes of the first porous body 41B and the second porous body 42B are not particularly limited, and may be other shapes.
  • the first porous body 41B and the second porous body 42B have the above-mentioned cross-sectional shape, so that the same effect as that of the vapor chamber 1A shown in FIG. 8 can be obtained.
  • the fourth embodiment of the present invention is a modification of the second embodiment and the third embodiment.
  • the ends of the first porous body and the second porous body on the inner wall surface side are connected to each other.
  • the contact area between the porous body and the first inner wall surface increases, and the adhesive strength increases, so that mechanical stress such as bending or vibration occurs. Can improve resistance to.
  • FIG. 10 is a cross-sectional view schematically showing an example of a vapor chamber according to a fourth embodiment of the present invention.
  • the adjacent wick bodies 40 include the first porous body 41C and the second porous body 42C, respectively.
  • the width of the end portion on the second inner wall surface 12a side is narrower than the width of the end portion on the first inner wall surface 11a side.
  • the cross-sectional shapes of the first porous body 41C and the second porous body 42C are not particularly limited.
  • first porous body 41C and the second porous body 42C on the first inner wall surface 11a side are connected to each other.
  • the first porous body and the second porous body are the end portion on the first inner wall surface side and the end portion on the second inner wall surface side, respectively. It has a portion wider than the end portion on the first inner wall surface side and the end portion on the second inner wall surface side.
  • FIG. 11 is a cross-sectional view schematically showing an example of a vapor chamber according to a fifth embodiment of the present invention.
  • the adjacent wick bodies 40 include the first porous body 41D and the second porous body 42D, respectively.
  • the first porous body 41D and the second porous body 42D are located between the end portion on the first inner wall surface 11a side and the end portion on the second inner wall surface 12a side, respectively, the end portion on the first inner wall surface 11a side and the second end. 2 It has a portion wider than the end portion on the inner wall surface 12a side.
  • the first porous body 41D and the second porous body 42D have the above-mentioned cross-sectional shape, so that the same effect as that of the vapor chamber 1A shown in FIG. 8 can be obtained.
  • the width of the end portion on the first inner wall surface 11a side may be the same as or different from the width of the end portion on the second inner wall surface 12a side.
  • the position where a portion wider than the end portion on the first inner wall surface 11a side and the end portion on the second inner wall surface 12a side exists is not particularly limited. Further, there may be two or more portions wider than the end portion on the first inner wall surface 11a side and the end portion on the second inner wall surface 12a side. In that case, the widths of the end portion on the first inner wall surface 11a side and the portion wider than the end portion on the second inner wall surface 12a side may be the same or different.
  • the cross-sectional shapes of the first porous body 41D and the second porous body 42D are not particularly limited.
  • the widths of the first porous body 41D and the second porous body 42D may be continuously changed or may be changed stepwise.
  • the first porous body and the second porous body are the end portion on the first inner wall surface side and the end portion on the second inner wall surface side, respectively. It has a portion narrower than the end portion on the first inner wall surface side and the end portion on the second inner wall surface side.
  • FIG. 12 is a cross-sectional view schematically showing an example of a vapor chamber according to a sixth embodiment of the present invention.
  • the adjacent wick bodies 40 include the first porous body 41E and the second porous body 42E, respectively.
  • the first porous body 41E and the second porous body 42E are located between the end portion on the first inner wall surface 11a side and the end portion on the second inner wall surface 12a side, respectively, the end portion on the first inner wall surface 11a side and the second end. 2 It has a portion narrower than the end portion on the inner wall surface 12a side.
  • the first porous body 41E and the second porous body 42E have the above-mentioned cross-sectional shape, so that the pressure from the outside of the housing 10 can be dispersed. Further, the liquid phase working medium 20 is easily absorbed in the wide portion, while the evaporation of the working medium 20 is easily promoted in the narrow portion. As a result, the maximum heat transport capacity is improved.
  • the width of the end portion on the first inner wall surface 11a side may be the same as or different from the width of the end portion on the second inner wall surface 12a side.
  • the position where the end portion on the first inner wall surface 11a side and the portion narrower than the end portion on the second inner wall surface 12a side are present is not particularly limited. Further, there may be two or more portions narrower than the end portion on the first inner wall surface 11a side and the end portion on the second inner wall surface 12a side. In that case, the widths of the end portion on the first inner wall surface 11a side and the portion narrower than the end portion on the second inner wall surface 12a side may be the same or different.
  • the cross-sectional shapes of the first porous body 41E and the second porous body 42E are not particularly limited.
  • the widths of the first porous body 41E and the second porous body 42E may be continuously changed or may be changed stepwise.
  • FIG. 13 is a plan view schematically showing an example of the vapor chamber according to the seventh embodiment of the present invention.
  • the ends opposite to the evaporation portion EP of the adjacent wick bodies 40 are connected to each other, for example, the ends on the condensing portion CP side are connected to each other.
  • the first liquid flow paths 51 do not communicate with each other.
  • the shape may be other than the first porous body 41 and the second porous body 42.
  • the housing has a plurality of evaporation parts.
  • FIG. 14 is a plan view schematically showing an example of the vapor chamber according to the eighth embodiment of the present invention.
  • a plurality of evaporation units EP1 and EP2 are set in the housing 10.
  • the density of the flow path in each of the evaporation parts EP1 and EP2 is higher than the density of the flow path in the portion away from each of the evaporation parts EP1 and EP2, for example, the density of the flow path in the condensation part CP. High is preferable.
  • the number, arrangement, and size of the evaporated parts are not particularly limited.
  • the shape may be other than the first porous body 41 and the second porous body 42.
  • the planar shape of the housing when viewed from the thickness direction is different from the first to eighth embodiments.
  • FIG. 15 is a plan view schematically showing an example of the vapor chamber according to the ninth embodiment of the present invention.
  • the planar shape of the housing 10A is L-shaped.
  • the plurality of wick bodies 40 extend along the planar shape of the housing 10A. Therefore, a vapor flow path and a liquid flow path are formed along the planar shape of the housing 10A.
  • adjacent wick bodies 40 include a first porous body 41 and a second porous body 42, respectively.
  • the shape may be other than the first porous body 41 and the second porous body 42.
  • the planar shape of the housing when viewed from the thickness direction is not particularly limited, and examples thereof include polygons such as triangles and rectangles, circles, ellipses, and combinations thereof. Further, the planar shape of the housing may be L-shaped, C-shaped (U-shaped), or the like. Further, a through hole may be provided inside the housing.
  • the planar shape of the housing may be a shape corresponding to the use of the vapor chamber, the shape of the place where the vapor chamber is incorporated, and other parts existing in the vicinity.
  • FIG. 16 is a plan view schematically showing an example of the vapor chamber according to the tenth embodiment of the present invention.
  • wick body 40 extending along an oblique direction with respect to the width direction X and the length direction Y.
  • the wick 30 may include a wick body 40 radially extending from the evaporation unit EP. As described in the first to sixth embodiments, the shape may be other than the first porous body 41 and the second porous body 42.
  • FIG. 17 is a plan view schematically showing an example of the vapor chamber according to the eleventh embodiment of the present invention.
  • FIG. 18 is a cross-sectional view schematically showing an example of a vapor chamber according to the eleventh embodiment of the present invention.
  • a plurality of columns 60 are arranged in the steam flow path 50.
  • the steam flow path 50 is divided between the columns 60.
  • the support column 60 supports the first inner wall surface 11a and the second inner wall surface 12a of the housing 10 from the inside.
  • the shape may be other than the first porous body 41A and the second porous body 42A.
  • the columns 60 are arranged in all the steam flow paths 50, but there may be a steam flow path 50 in which the columns 60 are not arranged.
  • the support column 60 is in contact with the first inner wall surface 11a and the second inner wall surface 12a.
  • the column 60 may be in contact with either the first inner wall surface 11a or the second inner wall surface 12a, or may not be in contact with the first inner wall surface 11a or the second inner wall surface 12a.
  • the material forming the support column 60 is not particularly limited, and examples thereof include resin, metal, ceramics, a mixture thereof, and a laminate. Further, the support column 60 may be integrated with the housing 10, and may be formed by, for example, etching the inner wall surface of the first sheet 11 or the second sheet 12.
  • the shape of the support column 60 is not particularly limited as long as it can support the housing 10, but examples of the shape of the cross section perpendicular to the height direction of the support column 60 include polygons such as rectangles, circles, and ellipses. Can be mentioned.
  • the height of the support column 60 is not particularly limited, and may be the same as or different from the height of the wick body 40.
  • the height of the columns 60 may be the same or different in one vapor chamber.
  • the height of the strut 60 in one area and the height of the strut 60 in another area may be different.
  • the width of the support column 60 is not particularly limited as long as it provides strength that can suppress deformation of the housing of the vapor chamber, but is a circle having a cross section perpendicular to the height direction of the end portion of the support column 60.
  • the equivalent diameter is, for example, 100 ⁇ m or more and 2000 ⁇ m or less, preferably 300 ⁇ m or more and 1000 ⁇ m or less.
  • the arrangement of the columns 60 is not particularly limited, but is preferably arranged evenly in a predetermined area, more preferably evenly over the entire area, for example, so that the distance between the columns 60 is constant. By arranging the columns 60 evenly, uniform strength can be ensured over the entire vapor chamber.
  • the twelfth embodiment of the present invention is a modification of the eleventh embodiment of the present invention.
  • the height of the columns is higher than the height of the wick body in the thickness direction.
  • FIG. 19 is a cross-sectional view schematically showing an example of a vapor chamber according to a twelfth embodiment of the present invention.
  • the height of the support column 60 is higher than the height of the first porous body 41A and the height of the second porous body 42A in the thickness direction Z. Higher than that.
  • a third liquid flow path extending along the direction in which the wick body extends is formed in the steam flow path.
  • FIG. 20 is a cross-sectional view schematically showing an example of a vapor chamber according to a thirteenth embodiment of the present invention.
  • the shape may be other than the first porous body 41 and the second porous body 42.
  • the width g of the third liquid flow path 53 is smaller than the width b of the first liquid flow path 51.
  • the third liquid flow path 53 can be used as the liquid flow path.
  • the height of the third liquid flow path 53 is lower than the height of the first liquid flow path 51.
  • the third liquid flow path 53 may be provided on both the first inner wall surface 11a and the second inner wall surface 12a, and may be provided on only one of the first inner wall surface 11a and the second inner wall surface 12a. May be good.
  • the third liquid flow path 53 may be formed by a portion protruding from the first inner wall surface 11a and the second inner wall surface 12a, for example, a columnar portion, or a recess in the first inner wall surface 11a and the second inner wall surface 12a. , For example, it may be formed by a groove or the like.
  • the width g of the third liquid flow path 53 is preferably 10 ⁇ m or more and 500 ⁇ m or less.
  • the height of the third liquid flow path 53 is preferably 10 ⁇ m or more and 100 ⁇ m or less.
  • the shape of the housing is different.
  • FIG. 21 is a cross-sectional view schematically showing an example of a vapor chamber according to the 14th embodiment of the present invention.
  • the housing 10B is composed of the facing first sheet 11B and the second sheet 12B to which the outer edge portions are joined.
  • the first sheet 11B has a flat plate shape having a constant thickness
  • the second sheet 12B has a shape in which the thickness is constant and the portion other than the outer edge portion is convex outward with respect to the outer edge portion.
  • the shape may be other than the first porous body 41A and the second porous body 42A.
  • a dent is formed on the outer edge of the housing. Therefore, the dent can be used when mounting the vapor chamber. Further, other parts and the like can be arranged in the recess of the outer edge portion.
  • the vapor chamber according to the fifteenth embodiment of the present invention further includes at least one of the wicks arranged along the first inner wall surface and the wicks arranged along the second inner wall surface.
  • FIG. 22 is a cross-sectional view schematically showing an example of the vapor chamber according to the fifteenth embodiment of the present invention.
  • the wick 71 is arranged along the first inner wall surface 11a, and the wick 72 is arranged along the second inner wall surface 12a. ..
  • the shape may be other than the first porous body 41 and the second porous body 42.
  • FIG. 23 is a cross-sectional view schematically showing another example of the vapor chamber according to the fifteenth embodiment of the present invention.
  • the wick 71 is not arranged along the first inner wall surface 11a, but the wick 72 is arranged along the second inner wall surface 12a.
  • the wick 72 may not be arranged along the second inner wall surface 12a, and the wick 71 may be arranged along the first inner wall surface 11a.
  • the wicks 71 and 72 are not particularly limited as long as they have a capillary structure in which the working medium can be moved by a capillary force.
  • the wick's capillary structure may be a known structure used in conventional vapor chambers.
  • Examples of the capillary structure include microstructures having irregularities such as pores, grooves, and protrusions, such as a porous structure, a fiber structure, a groove structure, and a mesh structure.
  • the materials of the wicks 71 and 72 are not particularly limited, and for example, a metal porous film formed by etching or metal processing, a mesh, a non-woven fabric, a sintered body, a porous body, or the like is used.
  • the mesh used as the material of the wick may be composed of, for example, a metal mesh, a resin mesh, or a surface-coated mesh thereof, and is preferably composed of a copper mesh, a stainless (SUS) mesh, or a polyester mesh. ..
  • the sintered body used as the material of the wick may be composed of, for example, a metal porous sintered body and a ceramic porous sintered body, and is preferably composed of a copper or nickel porous sintered body. ..
  • the porous body used as the material of the wick may be, for example, a porous body made of a metal porous body, a ceramic porous body, a resin porous body, or the like.
  • the size and shape of the wicks 71 and 72 are not particularly limited, but for example, it is preferable to have a size and shape that can be continuously installed from the evaporation part to the condensation part inside the housing 10.
  • the thicknesses of the wicks 71 and 72 are not particularly limited, but are, for example, 2 ⁇ m or more and 200 ⁇ m or less, preferably 5 ⁇ m or more and 100 ⁇ m or less, and more preferably 10 ⁇ m or more and 40 ⁇ m or less.
  • the thicknesses of the wicks 71 and 72 may be partially different.
  • the thickness of the wick 71 may be the same as or different from the thickness of the wick 72.
  • FIG. 24 is a plan view schematically showing an example of the vapor chamber according to the 16th embodiment of the present invention.
  • the wick 30 is arranged only on the outer peripheral portion of the housing 10.
  • the shape may be other than the first porous body 41 and the second porous body 42.
  • FIG. 25 is a plan view schematically showing an example of the vapor chamber according to the 17th embodiment of the present invention.
  • the wick 30 is arranged only in the central portion of the housing 10.
  • the shape may be other than the first porous body 41 and the second porous body 42.
  • a support is arranged in the housing along the direction in which the wick body extends, and at least one set of adjacent wick bodies each includes a porous body supported by the support.
  • FIG. 26 is a cross-sectional view schematically showing an example of a vapor chamber according to the eighteenth embodiment of the present invention.
  • FIG. 27 is an enlarged cross-sectional view of the portion shown by XXVII in FIG. 26.
  • the vapor chamber 1R shown in FIG. 26 further includes a support 80 arranged in the housing 10 along the direction in which the wick body 40 extends.
  • a support 80 arranged in the housing 10 along the direction in which the wick body 40 extends.
  • two rows of supports (first support 81 and second support 82) are arranged so as to be parallel to each other along the direction in which the wick body 40 extends.
  • Three or more rows of supports may be arranged so as to be parallel to each other along the direction in which the body 40 extends.
  • At least one set of adjacent wick bodies 40 each includes a porous body 43 supported by a support 80.
  • the first liquid flow path 51 is formed in a space surrounded by a part of the porous body 43, a part of the housing 10, and a part of the support 80. Specifically, the first liquid flow path 51 is formed by providing a space between the first support 81 and the second support 82 along the direction in which the wick body 40 extends.
  • the second liquid flow path 52 is formed on at least one surface of the surface in which the porous body 43 is in contact with the first inner wall surface 11a or the second inner wall surface 12a. Specifically, the second liquid flow path 52 is formed by providing a groove portion along the direction in which the wick body 40 extends on the surface of the porous body 43 facing the second inner wall surface 12a.
  • the support 80 is arranged on the first inner wall surface 11a, and the second liquid flow path 52 is formed on the surface of the porous body 43 facing the second inner wall surface 12a.
  • the support 80 may be arranged on the wall surface 12a, and the second liquid flow path 52 may be formed on the surface of the porous body 43 facing the first inner wall surface 11a. Alternatively, these may be mixed.
  • the porous body 43 is composed of, for example, a metal porous body, a ceramic porous body, or a resin porous body.
  • the porous body 43 may be composed of, for example, a sintered body such as a metal porous sintered body or a ceramic porous sintered body.
  • the porous body 43 is preferably composed of a porous sintered body of copper or nickel.
  • the material forming the support 80 is not particularly limited, and examples thereof include resins, metals, ceramics, mixtures thereof, and laminates. Further, the support 80 may be integrated with the housing 10, and may be formed, for example, by etching the inner wall surface of the first sheet 11 or the second sheet 12.
  • the shape of the support 80 is not particularly limited, and may be composed of, for example, rail-shaped columns arranged along the direction in which the wick body 40 extends, at intervals along the direction in which the wick body 40 extends. It may be composed of a plurality of columns to be arranged.
  • the heat diffusion device of the present invention can be mounted on an electronic device for the purpose of heat dissipation. Therefore, an electronic device provided with the heat diffusion device of the present invention is also one of the present inventions. Examples of the electronic device of the present invention include smartphones, tablet terminals, notebook computers, game devices, wearable devices and the like. As described above, the heat diffusion device of the present invention operates independently without the need for external power, and can diffuse heat in two dimensions at high speed by utilizing the latent heat of vaporization and the latent heat of condensation of the working medium. Therefore, the electronic device provided with the heat diffusion device of the present invention can effectively realize heat dissipation in the limited space inside the electronic device.
  • the heat diffusion device of the present invention can be used for a wide range of applications in the field of portable information terminals and the like. For example, it can be used to lower the temperature of a heat source such as a CPU and extend the usage time of an electronic device, and can be used for smartphones, tablets, notebook PCs, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

A vapor chamber (1), which is one embodiment of this thermal diffusion device, is provided with a casing (10), a working medium (20), and a wick (30). The wick (30) includes a plurality of wick bodies (40) extending linearly from an evaporation unit (EP), at least some of the plurality of wick bodies (40) being in contact with at least one inner wall surface from among a first inner wall surface (11a) and a second inner wall surface (12a). An evaporation flow path (50) is formed between at least one set of adjacent wick bodies (40). In the adjacent wick bodies (40), a first liquid flow path (51) is formed in a space bounded by at least part of each of the wick bodies (40) and part of the casing (10). In at least one surface from among the surfaces where the wick bodies (40) are in contact with the first inner wall surface (11a) or the second inner wall surface (12a), a groove part is provided along the direction in which the wick bodies (40) extend, whereby a second liquid flow path (52) is formed.

Description

熱拡散デバイスHeat diffusion device
 本発明は、熱拡散デバイスに関する。 The present invention relates to a heat diffusion device.
 近年、素子の高集積化および高性能化による発熱量が増加している。また、製品の小型化が進むことで、発熱密度が増加するため、放熱対策が重要となっている。この状況はスマートフォンおよびタブレットなどのモバイル端末の分野において特に顕著である。熱対策部材としては、グラファイトシートなどが用いられることが多いが、その熱輸送量は十分ではないため、様々な熱対策部材の使用が検討されている。中でも、非常に効果的に熱を拡散させることが可能である熱拡散デバイスとして、面状のヒートパイプであるベーパーチャンバーの使用の検討が進んでいる。 In recent years, the amount of heat generated has increased due to the high integration and high performance of devices. In addition, as the miniaturization of products progresses, the heat generation density increases, so heat dissipation measures are important. This situation is especially noticeable in the field of mobile terminals such as smartphones and tablets. As the heat countermeasure member, a graphite sheet or the like is often used, but since the heat transport amount is not sufficient, the use of various heat countermeasure members is being considered. Above all, the use of a vapor chamber, which is a planar heat pipe, is being studied as a heat diffusion device capable of diffusing heat very effectively.
 ベーパーチャンバーは、筐体の内部に、作動媒体と、毛細管力によって作動媒体を輸送するウィックとが封入された構造を有する。上記作動媒体は、発熱素子からの熱を吸収する蒸発部において発熱素子からの熱を吸収してベーパーチャンバー内で蒸発した後、ベーパーチャンバー内を移動し、冷却されて液相に戻る。液相に戻った作動媒体は、ウィックの毛細管力によって再び発熱素子側の蒸発部に移動し、発熱素子を冷却する。これを繰り返すことにより、ベーパーチャンバーは外部動力を有することなく自立的に作動し、作動媒体の蒸発潜熱および凝縮潜熱を利用して、二次元的に高速で熱を拡散することができる。 The vapor chamber has a structure in which a working medium and a wick that transports the working medium by capillary force are enclosed inside the housing. The working medium absorbs heat from the heat generating element in the evaporation unit that absorbs heat from the heat generating element and evaporates in the vapor chamber, then moves in the vapor chamber, is cooled, and returns to the liquid phase. The working medium that has returned to the liquid phase moves to the evaporation part on the heat generating element side again by the capillary force of the wick, and cools the heat generating element. By repeating this, the vapor chamber operates independently without having external power, and can diffuse heat two-dimensionally at high speed by utilizing the latent heat of vaporization and the latent heat of condensation of the working medium.
 スマートフォンおよびタブレットなどのモバイル端末の薄型化に対応するため、ベーパーチャンバーにも薄型化が求められている。このような薄型のベーパーチャンバーでは、機械的強度および熱輸送効率の確保が難しくなる。 The vapor chamber is also required to be thinner in order to support the thinner mobile terminals such as smartphones and tablets. In such a thin vapor chamber, it becomes difficult to secure mechanical strength and heat transfer efficiency.
 そこで、特許文献1および2に記載されているように、ベーパーチャンバーを構成する筐体の機械的強度を確保するために、筐体の内部に配置されるウィックを、筐体の形状を保つための支持体として利用することが提案されている。 Therefore, as described in Patent Documents 1 and 2, in order to secure the mechanical strength of the housing constituting the vapor chamber, the wick arranged inside the housing is to maintain the shape of the housing. It has been proposed to be used as a support for.
 特許文献1に記載されたヒートパイプでは、第1ウィック部および第2ウィック部が左右方向に間隔を空けて配置され、第1ウィック部と第2ウィック部との間に形成された液溜まり部に、液相の作動媒体が満たされている。特許文献1によれば、上記構成により、液相の作動媒体を、液溜まり部を通じて蒸発部に確実に還流させることができるため、液相の作動媒体の流れが滞ってしまうのを防止し、熱輸送効率の低下を抑えることができるとされている。 In the heat pipe described in Patent Document 1, the first wick portion and the second wick portion are arranged at intervals in the left-right direction, and a liquid pool portion formed between the first wick portion and the second wick portion. Is filled with the working medium of the liquid phase. According to Patent Document 1, according to the above configuration, the working medium of the liquid phase can be reliably returned to the evaporating part through the liquid pool part, so that the flow of the working medium of the liquid phase can be prevented from being stagnant. It is said that the decrease in heat transport efficiency can be suppressed.
 特許文献2に記載されたベーパーチャンバーでは、筐体の対向する一対の内壁面、上記一対の内壁面に接触しないウィックの側面、および、上記ウィックの側面と隙間をあけて形成された対向面によって囲まれた空間に、凝縮した作動流体の液溜まり流路が形成されている。特許文献2によれば、ウィックと液溜まり流路を組み合わせることによって、ウィックに常に液体が供給される状態を作ることができるため、液体流路の全体としての液体の圧力損失を低減し、その結果、ベーパーチャンバーの最大熱輸送量を大きくすることができるとされている。 In the vapor chamber described in Patent Document 2, a pair of inner wall surfaces facing each other of the housing, a side surface of the wick that does not contact the pair of inner wall surfaces, and a facing surface formed with a gap from the side surface of the wick. In the enclosed space, a liquid pool flow path of condensed working fluid is formed. According to Patent Document 2, by combining the wick and the liquid pool flow path, it is possible to create a state in which the liquid is always supplied to the wick, so that the pressure loss of the liquid as a whole of the liquid flow path can be reduced, and the pressure loss of the liquid can be reduced. As a result, it is said that the maximum heat transport amount of the vapor chamber can be increased.
特開2018-185110号公報Japanese Unexamined Patent Publication No. 2018-185110 特許第6442594号公報Japanese Patent No. 6442594
 特許文献1および2に記載されているように、ウィックとウィックとの間に液体流路が形成されていると、液相の作動媒体の流れが滞ることを防止することができる。しかしながら、ベーパーチャンバーの最大熱輸送量を大きくするために液体流路を大きくすると、ベーパーチャンバーの熱伝導率が低下するおそれがある。 As described in Patent Documents 1 and 2, if a liquid flow path is formed between the wicks, it is possible to prevent the flow of the working medium of the liquid phase from being stagnant. However, if the liquid flow path is increased in order to increase the maximum heat transport amount of the vapor chamber, the thermal conductivity of the vapor chamber may decrease.
 なお、上記の問題は、ベーパーチャンバーに限らず、ベーパーチャンバーと同様の構成によって熱を拡散させることが可能な熱拡散デバイスに共通する問題である。 The above problem is not limited to the vapor chamber, but is a problem common to heat diffusion devices capable of diffusing heat by the same configuration as the vapor chamber.
 本発明は、上記の問題を解決するためになされたものであり、熱伝導率の低下が抑えられ、かつ、最大熱輸送量が大きい熱拡散デバイスを提供することを目的とする。本発明はまた、上記熱拡散デバイスを備える電子機器を提供することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a heat diffusion device in which a decrease in thermal conductivity is suppressed and a maximum heat transport amount is large. It is also an object of the present invention to provide an electronic device provided with the heat diffusion device.
 本発明の熱拡散デバイスは、厚さ方向に対向する第1内壁面および第2内壁面を有する筐体と、上記筐体の内部空間に封入された作動媒体と、上記筐体の内部空間に配置されたウィックと、を備える。上記筐体は、上記作動媒体を蒸発させる蒸発部を有する。上記ウィックは、上記蒸発部から線状に延びて、少なくとも一部が上記第1内壁面および上記第2内壁面のうちの少なくとも一方の内壁面に接する複数のウィック体を含む。少なくとも1組の隣り合う上記ウィック体の間には、蒸気流路が形成されている。上記隣り合うウィック体において、少なくとも各々の上記ウィック体の一部と上記筐体の一部とに囲まれた空間に第1液体流路が形成されている。上記ウィック体が上記第1内壁面または上記第2内壁面に接する面のうちの少なくとも1つの面には、上記ウィック体が延びる方向に沿って溝部が設けられることにより第2液体流路が形成されている。 The heat diffusion device of the present invention has a housing having a first inner wall surface and a second inner wall surface facing each other in the thickness direction, an actuating medium enclosed in the internal space of the housing, and the internal space of the housing. Equipped with a placed wick. The housing has an evaporation unit that evaporates the working medium. The wick includes a plurality of wicks extending linearly from the evaporation portion and at least partially in contact with the inner wall surface of at least one of the first inner wall surface and the second inner wall surface. A steam flow path is formed between at least one set of adjacent wick bodies. In the adjacent wick bodies, a first liquid flow path is formed in a space surrounded by at least a part of each of the wick bodies and a part of the housing. A second liquid flow path is formed by providing a groove along the direction in which the wick body extends on at least one of the surfaces of the wick body in contact with the first inner wall surface or the second inner wall surface. Has been done.
 本発明の電子機器は、本発明の熱拡散デバイスを備える。 The electronic device of the present invention includes the heat diffusion device of the present invention.
 本発明によれば、熱伝導率の低下が抑えられ、かつ、最大熱輸送量が大きい熱拡散デバイスを提供することができる。 According to the present invention, it is possible to provide a heat diffusion device in which a decrease in thermal conductivity is suppressed and a maximum heat transport amount is large.
図1は、本発明の第1実施形態に係るベーパーチャンバーの一例を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing an example of a vapor chamber according to the first embodiment of the present invention. 図2は、図1に示すベーパーチャンバーのII-II線に沿った断面図である。FIG. 2 is a cross-sectional view taken along the line II-II of the vapor chamber shown in FIG. 図3は、図1に示すベーパーチャンバーのIII-III線に沿った断面図である。FIG. 3 is a cross-sectional view taken along the line III-III of the vapor chamber shown in FIG. 図4は、図3においてIVで示す部分を拡大した断面図である。FIG. 4 is an enlarged cross-sectional view of the portion shown by IV in FIG. 図5は、第2液体流路が形成されている位置の第1変形例を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing a first modification example of the position where the second liquid flow path is formed. 図6は、第2液体流路が形成されている位置の第2変形例を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing a second modification example of the position where the second liquid flow path is formed. 図7は、第2液体流路の断面形状の変形例を模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing a modified example of the cross-sectional shape of the second liquid flow path. 図8は、本発明の第2実施形態に係るベーパーチャンバーの一例を模式的に示す断面図である。FIG. 8 is a cross-sectional view schematically showing an example of a vapor chamber according to a second embodiment of the present invention. 図9は、本発明の第3実施形態に係るベーパーチャンバーの一例を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing an example of a vapor chamber according to a third embodiment of the present invention. 図10は、本発明の第4実施形態に係るベーパーチャンバーの一例を模式的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing an example of a vapor chamber according to a fourth embodiment of the present invention. 図11は、本発明の第5実施形態に係るベーパーチャンバーの一例を模式的に示す断面図である。FIG. 11 is a cross-sectional view schematically showing an example of a vapor chamber according to a fifth embodiment of the present invention. 図12は、本発明の第6実施形態に係るベーパーチャンバーの一例を模式的に示す断面図である。FIG. 12 is a cross-sectional view schematically showing an example of a vapor chamber according to a sixth embodiment of the present invention. 図13は、本発明の第7実施形態に係るベーパーチャンバーの一例を模式的に示す平面図である。FIG. 13 is a plan view schematically showing an example of the vapor chamber according to the seventh embodiment of the present invention. 図14は、本発明の第8実施形態に係るベーパーチャンバーの一例を模式的に示す平面図である。FIG. 14 is a plan view schematically showing an example of the vapor chamber according to the eighth embodiment of the present invention. 図15は、本発明の第9実施形態に係るベーパーチャンバーの一例を模式的に示す平面図である。FIG. 15 is a plan view schematically showing an example of the vapor chamber according to the ninth embodiment of the present invention. 図16は、本発明の第10実施形態に係るベーパーチャンバーの一例を模式的に示す平面図である。FIG. 16 is a plan view schematically showing an example of the vapor chamber according to the tenth embodiment of the present invention. 図17は、本発明の第11実施形態に係るベーパーチャンバーの一例を模式的に示す平面図である。FIG. 17 is a plan view schematically showing an example of the vapor chamber according to the eleventh embodiment of the present invention. 図18は、本発明の第11実施形態に係るベーパーチャンバーの一例を模式的に示す断面図である。FIG. 18 is a cross-sectional view schematically showing an example of a vapor chamber according to the eleventh embodiment of the present invention. 図19は、本発明の第12実施形態に係るベーパーチャンバーの一例を模式的に示す断面図である。FIG. 19 is a cross-sectional view schematically showing an example of a vapor chamber according to a twelfth embodiment of the present invention. 図20は、本発明の第13実施形態に係るベーパーチャンバーの一例を模式的に示す断面図である。FIG. 20 is a cross-sectional view schematically showing an example of a vapor chamber according to a thirteenth embodiment of the present invention. 図21は、本発明の第14実施形態に係るベーパーチャンバーの一例を模式的に示す断面図である。FIG. 21 is a cross-sectional view schematically showing an example of a vapor chamber according to the 14th embodiment of the present invention. 図22は、本発明の第15実施形態に係るベーパーチャンバーの一例を模式的に示す断面図である。FIG. 22 is a cross-sectional view schematically showing an example of the vapor chamber according to the fifteenth embodiment of the present invention. 図23は、本発明の第15実施形態に係るベーパーチャンバーの別の一例を模式的に示す断面図である。FIG. 23 is a cross-sectional view schematically showing another example of the vapor chamber according to the fifteenth embodiment of the present invention. 図24は、本発明の第16実施形態に係るベーパーチャンバーの一例を模式的に示す平面図である。FIG. 24 is a plan view schematically showing an example of the vapor chamber according to the 16th embodiment of the present invention. 図25は、本発明の第17実施形態に係るベーパーチャンバーの一例を模式的に示す平面図である。FIG. 25 is a plan view schematically showing an example of the vapor chamber according to the 17th embodiment of the present invention. 図26は、本発明の第18実施形態に係るベーパーチャンバーの一例を模式的に示す断面図である。FIG. 26 is a cross-sectional view schematically showing an example of a vapor chamber according to an eighteenth embodiment of the present invention. 図27は、図26においてXXVIIで示す部分を拡大した断面図である。FIG. 27 is an enlarged cross-sectional view of the portion shown by XXVII in FIG. 26.
 以下、本発明の熱拡散デバイスについて説明する。
 しかしながら、本発明は、以下の構成に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。なお、以下において記載する本発明の個々の望ましい構成を2つ以上組み合わせたものもまた本発明である。
Hereinafter, the heat diffusion device of the present invention will be described.
However, the present invention is not limited to the following configuration, and can be appropriately modified and applied without changing the gist of the present invention. It should be noted that a combination of two or more of the individual desirable configurations of the present invention described below is also the present invention.
 以下に示す各実施形態は例示であり、異なる実施形態で示した構成の部分的な置換又は組み合わせが可能であることは言うまでもない。第2実施形態以降では、第1実施形態と共通の事項についての記述は省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については、実施形態毎には逐次言及しない。 It goes without saying that each embodiment shown below is an example, and partial replacement or combination of the configurations shown in different embodiments is possible. In the second and subsequent embodiments, the description of the matters common to the first embodiment will be omitted, and only the differences will be described. In particular, the same action and effect due to the same configuration will not be mentioned sequentially for each embodiment.
 以下の説明において、各実施形態を特に区別しない場合、単に「本発明の熱拡散デバイス」という。 In the following description, when each embodiment is not particularly distinguished, it is simply referred to as "heat diffusion device of the present invention".
 以下では、本発明の熱拡散デバイスの一実施形態として、ベーパーチャンバーを例にとって説明する。本発明の熱拡散デバイスは、ヒートパイプなどの熱拡散デバイスにも適用可能である。 Hereinafter, a vapor chamber will be described as an example of an embodiment of the heat diffusion device of the present invention. The heat diffusion device of the present invention can also be applied to a heat diffusion device such as a heat pipe.
 以下に示す図面は模式的なものであり、その寸法や縦横比の縮尺などは実際の製品とは異なる場合がある。 The drawings shown below are schematic, and their dimensions and aspect ratio scale may differ from the actual product.
[第1実施形態]
 図1は、本発明の第1実施形態に係るベーパーチャンバーの一例を模式的に示す斜視図である。図2は、図1に示すベーパーチャンバーのII-II線に沿った断面図である。図3は、図1に示すベーパーチャンバーのIII-III線に沿った断面図である。
[First Embodiment]
FIG. 1 is a perspective view schematically showing an example of a vapor chamber according to the first embodiment of the present invention. FIG. 2 is a cross-sectional view taken along the line II-II of the vapor chamber shown in FIG. FIG. 3 is a cross-sectional view taken along the line III-III of the vapor chamber shown in FIG.
 図1に示すベーパーチャンバー1は、気密状態に密閉された中空の筐体10を備える。筐体10は、図3に示すように、厚さ方向Zに対向する第1内壁面11aおよび第2内壁面12aを有する。図2および図3に示すように、ベーパーチャンバー1は、さらに、筐体10の内部空間に封入された作動媒体20と、筐体10の内部空間に配置されたウィック30と、を備える。 The vapor chamber 1 shown in FIG. 1 includes a hollow housing 10 that is hermetically sealed. As shown in FIG. 3, the housing 10 has a first inner wall surface 11a and a second inner wall surface 12a facing each other in the thickness direction Z. As shown in FIGS. 2 and 3, the vapor chamber 1 further includes an actuating medium 20 enclosed in the internal space of the housing 10 and a wick 30 arranged in the internal space of the housing 10.
 筐体10には、図2に示すように、封入した作動媒体20を蒸発させる蒸発部(evaporation portion)EPが設定されている。筐体10には、さらに、蒸発した作動媒体20を凝縮させる凝縮部(condensation portion)CPが設定されていてもよい。図1に示すように、筐体10の外壁面には、発熱素子である熱源(heat source)HSが配置される。熱源HSとしては、電子機器の電子部品、例えば中央処理装置(CPU)等が挙げられる。筐体10の内部空間のうち、熱源HSの近傍であって熱源HSによって加熱される部分が、蒸発部EPに相当する。一方、蒸発部EPから離れた部分が、凝縮部CPに相当する。また、蒸発した作動媒体20は凝縮部CP以外でも凝縮され得る。本実施形態では、蒸発した作動媒体20を特に凝縮させやすい部分を凝縮部CPとして表現する。 As shown in FIG. 2, the housing 10 is provided with an evaporation unit EP that evaporates the enclosed working medium 20. Further, the housing 10 may be set with a condensation portion CP for condensing the evaporated working medium 20. As shown in FIG. 1, a heat source HS, which is a heat generating element, is arranged on the outer wall surface of the housing 10. Examples of the heat source HS include electronic components of electronic devices, such as a central processing unit (CPU). In the internal space of the housing 10, the portion near the heat source HS and heated by the heat source HS corresponds to the evaporation portion EP. On the other hand, the portion away from the evaporation portion EP corresponds to the condensation portion CP. Further, the evaporated working medium 20 can be condensed other than the condensed portion CP. In the present embodiment, a portion where the evaporated working medium 20 is particularly easy to condense is expressed as a condensing portion CP.
 ベーパーチャンバー1は、全体として面状である。すなわち、筐体10は、全体として面状である。ここで、「面状」とは、板状およびシート状を包含し、幅方向Xの寸法(以下、幅という)および長さ方向Yの寸法(以下、長さという)が厚さ方向Zの寸法(以下、厚さまたは高さという)に対して相当に大きい形状、例えば幅および長さが、厚さの10倍以上、好ましくは100倍以上である形状を意味する。 The vapor chamber 1 is planar as a whole. That is, the housing 10 is planar as a whole. Here, the "plane" includes a plate shape and a sheet shape, and the dimension in the width direction X (hereinafter referred to as "width") and the dimension in the length direction Y (hereinafter referred to as "length") are in the thickness direction Z. It means a shape that is considerably larger than a dimension (hereinafter referred to as a thickness or a height), for example, a shape having a width and a length of 10 times or more, preferably 100 times or more the thickness.
 ベーパーチャンバー1の大きさ、すなわち、筐体10の大きさは、特に限定されない。ベーパーチャンバー1の幅および長さは、用途に応じて適宜設定することができる。ベーパーチャンバー1の幅および長さは、各々、例えば、5mm以上500mm以下、20mm以上300mm以下または50mm以上200mm以下である。ベーパーチャンバー1の幅および長さは、同じであっても、異なっていてもよい。 The size of the vapor chamber 1, that is, the size of the housing 10 is not particularly limited. The width and length of the vapor chamber 1 can be appropriately set according to the intended use. The width and length of the vapor chamber 1 are, for example, 5 mm or more and 500 mm or less, 20 mm or more and 300 mm or less, or 50 mm or more and 200 mm or less, respectively. The width and length of the vapor chamber 1 may be the same or different.
 筐体10は、外縁部が接合された対向する第1シート11および第2シート12から構成されることが好ましい。第1シート11および第2シート12を構成する材料は、ベーパーチャンバーとして用いるのに適した特性、例えば熱伝導性、強度、柔軟性、可撓性等を有するものであれば、特に限定されない。第1シート11および第2シート12を構成する材料は、好ましくは金属であり、例えば銅、ニッケル、アルミニウム、マグネシウム、チタン、鉄、またはそれらを主成分とする合金等であり、特に好ましくは銅である。第1シート11および第2シート12を構成する材料は、同じであっても、異なっていてもよいが、好ましくは同じである。 It is preferable that the housing 10 is composed of the first sheet 11 and the second sheet 12 facing each other to which the outer edges are joined. The materials constituting the first sheet 11 and the second sheet 12 are not particularly limited as long as they have properties suitable for use as a vapor chamber, such as thermal conductivity, strength, flexibility, and flexibility. The material constituting the first sheet 11 and the second sheet 12 is preferably a metal, for example, copper, nickel, aluminum, magnesium, titanium, iron, or an alloy containing them as a main component, and particularly preferably copper. Is. The materials constituting the first sheet 11 and the second sheet 12 may be the same or different, but are preferably the same.
 第1シート11および第2シート12は、これらの外縁部において互いに接合されている。かかる接合の方法は、特に限定されないが、例えば、レーザー溶接、抵抗溶接、拡散接合、ロウ接、TIG溶接(タングステン-不活性ガス溶接)、超音波接合または樹脂封止を用いることができ、好ましくはレーザー溶接、抵抗溶接またはロウ接を用いることができる。 The first sheet 11 and the second sheet 12 are joined to each other at their outer edges. The joining method is not particularly limited, but for example, laser welding, resistance welding, diffusion welding, brazing, TIG welding (tungsten-inert gas welding), ultrasonic welding, or resin encapsulation can be used, and is preferable. Can use laser welding, resistance welding or low welding.
 第1シート11および第2シート12の厚さは、特に限定されないが、各々、好ましくは10μm以上200μm以下、より好ましくは30μm以上100μm以下、さらに好ましくは40μm以上60μm以下である。第1シート11および第2シート12の厚さは、同じであっても、異なっていてもよい。また、第1シート11および第2シート12の各シートの厚さは、全体にわたって同じであってもよく、一部が薄くてもよい。 The thicknesses of the first sheet 11 and the second sheet 12 are not particularly limited, but are preferably 10 μm or more and 200 μm or less, more preferably 30 μm or more and 100 μm or less, and further preferably 40 μm or more and 60 μm or less, respectively. The thicknesses of the first sheet 11 and the second sheet 12 may be the same or different. Further, the thickness of each of the first sheet 11 and the second sheet 12 may be the same throughout, or a part thereof may be thin.
 第1シート11および第2シート12の形状は、特に限定されない。例えば、図3に示す例では、第1シート11は、厚みが一定の平板形状であり、第2シート12は、外縁部が外縁部以外の部分よりも厚い形状である。 The shapes of the first sheet 11 and the second sheet 12 are not particularly limited. For example, in the example shown in FIG. 3, the first sheet 11 has a flat plate shape having a constant thickness, and the second sheet 12 has a shape in which the outer edge portion is thicker than the portion other than the outer edge portion.
 ベーパーチャンバー1全体の厚さは、特に限定されないが、好ましくは50μm以上500μm以下である。 The thickness of the entire vapor chamber 1 is not particularly limited, but is preferably 50 μm or more and 500 μm or less.
 作動媒体20は、筐体10内の環境下において気-液の相変化を生じ得るものであれば特に限定されず、例えば、水、アルコール類、代替フロン等を用いることができる。例えば、作動媒体は水性化合物であり、好ましくは水である。 The working medium 20 is not particularly limited as long as it can cause a gas-liquid phase change in the environment inside the housing 10, and for example, water, alcohols, CFC substitutes, or the like can be used. For example, the working medium is an aqueous compound, preferably water.
 ウィック30は、蒸発部EPから線状に延びる複数のウィック体40を含む。例えば、ウィック体40は、蒸発部EPから凝縮部CPまで延びる。ウィック体40の少なくとも一部は、筐体10の第1内壁面11aおよび第2内壁面12aのうちの少なくとも一方の内壁面に接している。本実施形態では、ウィック体40は、筐体10の第1内壁面11aおよび第2内壁面12aを内側から支持している。複数のウィック体40を含むウィック30を筐体10の内部空間に配置することにより、筐体10の機械的強度を確保しつつ、筐体10外部からの衝撃を吸収することができる。 The wick 30 includes a plurality of wick bodies 40 extending linearly from the evaporation unit EP. For example, the wick body 40 extends from the evaporation portion EP to the condensation portion CP. At least a part of the wick body 40 is in contact with at least one inner wall surface of the first inner wall surface 11a and the second inner wall surface 12a of the housing 10. In the present embodiment, the wick body 40 supports the first inner wall surface 11a and the second inner wall surface 12a of the housing 10 from the inside. By arranging the wick 30 including the plurality of wick bodies 40 in the internal space of the housing 10, it is possible to absorb the impact from the outside of the housing 10 while ensuring the mechanical strength of the housing 10.
 図3に示す例では、ウィック30を構成するウィック体40は、第1内壁面11aおよび第2内壁面12aに接している。ウィック体40は、第1内壁面11aおよび第2内壁面12aのいずれか一方に接していてもよい。 In the example shown in FIG. 3, the wick body 40 constituting the wick 30 is in contact with the first inner wall surface 11a and the second inner wall surface 12a. The wick body 40 may be in contact with either the first inner wall surface 11a or the second inner wall surface 12a.
 本実施形態では、少なくとも1組の隣り合うウィック体40は、各々、第1多孔体41および第2多孔体42を含む。これらの多孔体は、毛細管力によって作動媒体20を輸送するウィックとして機能する。さらに、筐体10の支持体として多孔体を利用することにより、ベーパーチャンバー1の軽量化を図ることができる。 In this embodiment, at least one set of adjacent wick bodies 40 includes a first porous body 41 and a second porous body 42, respectively. These porous bodies function as wicks that transport the working medium 20 by capillary force. Further, by using a porous body as a support of the housing 10, the weight of the vapor chamber 1 can be reduced.
 第1多孔体41および第2多孔体42は、例えば、金属多孔体、セラミックス多孔体または樹脂多孔体から構成される。第1多孔体41および第2多孔体42は、例えば、金属多孔質焼結体、セラミックス多孔質焼結体等の焼結体から構成されてもよい。第1多孔体41および第2多孔体42は、銅またはニッケルの多孔質焼結体から構成されることが好ましい。 The first porous body 41 and the second porous body 42 are composed of, for example, a metal porous body, a ceramic porous body, or a resin porous body. The first porous body 41 and the second porous body 42 may be composed of a sintered body such as a metal porous sintered body or a ceramic porous sintered body, for example. The first porous body 41 and the second porous body 42 are preferably composed of a porous sintered body of copper or nickel.
 少なくとも1組の隣り合うウィック体40の間には、気相の作動媒体20が流通する蒸気流路50が形成されている。 A steam flow path 50 through which the working medium 20 of the gas phase flows is formed between at least one set of adjacent wick bodies 40.
 一方、少なくとも各々のウィック体40の一部と筐体10の一部とに囲まれた空間には、第1液体流路51が形成されている。本実施形態では、第1液体流路51は、第1多孔体41の一部と第2多孔体42の一部と筐体10の一部とに囲まれた空間に形成されている。具体的には、各々のウィック体40において、第1多孔体41と第2多孔体42との間に、ウィック体40が延びる方向に沿って間隔が設けられることにより第1液体流路51が形成されている。第1液体流路51は、液相の作動媒体20が流通する液体流路として利用することができる。ウィック体40を挟んで、例えば、第1多孔体41または第2多孔体42を挟んで液体流路と蒸気流路とを交互に配置することにより、熱輸送効率を向上させることができる。 On the other hand, the first liquid flow path 51 is formed in a space surrounded by at least a part of each wick body 40 and a part of the housing 10. In the present embodiment, the first liquid flow path 51 is formed in a space surrounded by a part of the first porous body 41, a part of the second porous body 42, and a part of the housing 10. Specifically, in each wick body 40, the first liquid flow path 51 is provided by providing a space between the first porous body 41 and the second porous body 42 along the direction in which the wick body 40 extends. It is formed. The first liquid flow path 51 can be used as a liquid flow path through which the working medium 20 of the liquid phase flows. The heat transport efficiency can be improved by, for example, arranging the liquid flow path and the vapor flow path alternately with the wick body 40 sandwiched between the first porous body 41 or the second porous body 42.
 図3に示すように、蒸気流路50の幅aは、第1液体流路51の幅bよりも大きい。蒸気流路50の幅aは、1000μm以上3000μm以下であることが好ましく、1000μm以上2000μm以下であることがより好ましい。第1液体流路51の幅bは、50μm以上500μm以下であることが好ましい。なお、上記断面において、厚さ方向Zで蒸気流路の幅が異なる場合には、最も広い部分の幅を蒸気流路の幅と定義する。同様に、厚さ方向Zで第1液体流路の幅が異なる場合には、最も広い部分の幅を第1液体流路の幅と定義する。 As shown in FIG. 3, the width a of the vapor flow path 50 is larger than the width b of the first liquid flow path 51. The width a of the steam flow path 50 is preferably 1000 μm or more and 3000 μm or less, and more preferably 1000 μm or more and 2000 μm or less. The width b of the first liquid flow path 51 is preferably 50 μm or more and 500 μm or less. In the above cross section, when the width of the steam flow path is different in the thickness direction Z, the width of the widest portion is defined as the width of the steam flow path. Similarly, when the width of the first liquid flow path is different in the thickness direction Z, the width of the widest portion is defined as the width of the first liquid flow path.
 図4は、図3においてIVで示す部分を拡大した断面図である。
 図3および図4に示すように、ウィック体40が第1内壁面11aまたは第2内壁面12aに接する面のうちの少なくとも1つの面には、ウィック体40が延びる方向に沿って溝部が設けられることにより第2液体流路52が形成されている。本実施形態では、第2液体流路52は、第1多孔体41が第1内壁面11aに接する面、第1多孔体41が第2内壁面12aに接する面、第2多孔体42が第1内壁面11aに接する面、および、第2多孔体42が第2内壁面12aに接する面のうちの少なくとも1つの面に形成されている。具体的には、第2内壁面12aに対向する第1多孔体41の面、および、第2内壁面12aに対向する第2多孔体42の面に、ウィック体40が延びる方向に沿って溝部が設けられることにより第2液体流路52が形成されている。第1液体流路51と同様、第2液体流路52は、液相の作動媒体20が流通する液体流路として利用することができる。
FIG. 4 is an enlarged cross-sectional view of the portion shown by IV in FIG.
As shown in FIGS. 3 and 4, at least one of the surfaces of the wick body 40 in contact with the first inner wall surface 11a or the second inner wall surface 12a is provided with a groove portion along the direction in which the wick body 40 extends. The second liquid flow path 52 is formed by the above. In the present embodiment, in the second liquid flow path 52, the surface where the first porous body 41 is in contact with the first inner wall surface 11a, the surface where the first porous body 41 is in contact with the second inner wall surface 12a, and the second porous body 42 are the first. 1 The surface in contact with the inner wall surface 11a and the second porous body 42 are formed on at least one of the surfaces in contact with the second inner wall surface 12a. Specifically, a groove portion is formed on the surface of the first porous body 41 facing the second inner wall surface 12a and the surface of the second porous body 42 facing the second inner wall surface 12a along the direction in which the wick body 40 extends. The second liquid flow path 52 is formed by the provision of the above. Similar to the first liquid flow path 51, the second liquid flow path 52 can be used as a liquid flow path through which the working medium 20 of the liquid phase flows.
 ウィック体40が第1内壁面11aまたは第2内壁面12aに接する面、例えば、筐体10の第2内壁面12aに対向する第1多孔体41または第2多孔体42の面に第2液体流路52を形成することにより、蒸気流路の高さを維持しつつ、液体流路を増やすことができる。そのため、熱伝導率の低下を抑えることができるとともに、最大熱輸送量を大きくすることができる。また、多孔体の天面または底面に流路を形成することによって、多孔体の内部(中央部)に流路を形成したときより、熱源への液の流れをスムーズに行うことが可能となる。 The second liquid is on the surface of the wick body 40 in contact with the first inner wall surface 11a or the second inner wall surface 12a, for example, the surface of the first porous body 41 or the second porous body 42 facing the second inner wall surface 12a of the housing 10. By forming the flow path 52, it is possible to increase the number of liquid flow paths while maintaining the height of the steam flow path. Therefore, it is possible to suppress the decrease in thermal conductivity and increase the maximum heat transport amount. Further, by forming the flow path on the top surface or the bottom surface of the porous body, it becomes possible to smoothly flow the liquid to the heat source as compared with the case where the flow path is formed inside (central portion) of the porous body. ..
 第2液体流路52を形成する方法は特に限定されないが、例えば、第1多孔体41および第2多孔体が多孔質焼結体から構成される場合、多孔質焼結体を作製するためのペーストの粘度を調整する方法や、スクリーン印刷などの印刷によりペーストを塗布した後にプレスする方法等が挙げられる。 The method for forming the second liquid flow path 52 is not particularly limited, but for example, when the first porous body 41 and the second porous body are composed of the porous sintered body, for producing the porous sintered body. Examples thereof include a method of adjusting the viscosity of the paste and a method of pressing after applying the paste by printing such as screen printing.
 図4において、第2液体流路52の幅eは、第1多孔体41の幅cおよび第2多孔体42の幅cのいずれよりも小さく、かつ、第2液体流路52の高さfは、第1多孔体41の高さdの1/2および第2多孔体42の高さdの1/2のいずれよりも小さいことが好ましい。すなわち、e<cおよびe<c、かつ、f<1/2dおよびf<1/2dの関係が成り立つことが好ましい。なお、上記断面において、厚さ方向Zで第2液体流路の幅が異なる場合には、最も広い部分の幅を第2液体流路の幅と定義する。同様に、厚さ方向Zで多孔体の幅が異なる場合には、最も広い部分の幅を多孔体の幅と定義する。また、上記断面において、幅方向Xで第2液体流路の高さが異なる場合には、最も高い部分の高さを第2液体流路の高さと定義する。同様に、幅方向Xで多孔体の高さが異なる場合には、最も高い部分の高さを多孔体の高さと定義する。 In FIG. 4, the width e of the second liquid flow path 52 is smaller than either the width c 1 of the first porous body 41 or the width c 2 of the second porous body 42, and the height of the second liquid flow path 52 is high. It is preferable that the value f is smaller than either 1/2 of the height d 1 of the first porous body 41 and 1/2 of the height d 2 of the second porous body 42. That is, it is preferable that the relations of e <c 1 and e <c 2 and f <1 / 2d 1 and f <1 / 2d 2 are established. In the above cross section, when the width of the second liquid flow path is different in the thickness direction Z, the width of the widest portion is defined as the width of the second liquid flow path. Similarly, when the width of the porous body is different in the thickness direction Z, the width of the widest portion is defined as the width of the porous body. Further, in the above cross section, when the height of the second liquid flow path is different in the width direction X, the height of the highest portion is defined as the height of the second liquid flow path. Similarly, when the height of the porous body differs in the width direction X, the height of the highest portion is defined as the height of the porous body.
 上記のとおり、第2液体流路52の幅eは、第1多孔体41の幅cおよび第2多孔体42の幅cのいずれよりも小さいことが好ましいが、第1多孔体41の幅cおよび第2多孔体42の幅cの少なくとも一方と同じであってもよい。 As described above, the width e of the second liquid flow path 52 is preferably smaller than either the width c 1 of the first porous body 41 or the width c 2 of the second porous body 42, but the width e of the first porous body 41 It may be the same as at least one of the width c 1 and the width c 2 of the second porous body 42.
 第1多孔体41の幅cおよび第2多孔体42の幅cは、各々、50μm以上300μm以下であることが好ましい。これにより、高い毛細管力を得ることができる。第1多孔体41の幅cは、第2多孔体42の幅cと同じでもよく、異なっていてもよい。第2実施形態以降で説明するように、第1多孔体41の幅cおよび第2多孔体42の幅cは、厚さ方向Zで一定でなくてもよい。また、厚さ方向Zで幅が一定である多孔体と、厚さ方向Zで幅が一定でない多孔体とが混在してもよい。 The width c 1 of the first porous body 41 and the width c 2 of the second porous body 42 are preferably 50 μm or more and 300 μm or less, respectively. This makes it possible to obtain a high capillary force. The width c 1 of the first porous body 41 may be the same as or different from the width c 2 of the second porous body 42. As will be described in the second and subsequent embodiments, the width c 1 of the first porous body 41 and the width c 2 of the second porous body 42 do not have to be constant in the thickness direction Z. Further, a porous body having a constant width in the thickness direction Z and a porous body having a non-constant width in the thickness direction Z may coexist.
 第1多孔体41の高さdおよび第2多孔体42の高さdは、各々、20μm以上300μm以下であることが好ましく、50μm以上300μm以下であることがより好ましい。第1多孔体の高さdおよび第2多孔体42の高さdを上記範囲とし、ベーパーチャンバー1全体を薄くした場合であっても、上記のように第1多孔体41および第2多孔体42を筐体10内に配置することにより、機械的強度および最大熱輸送量を確保することができる。第1多孔体41の高さdは、第2多孔体42の高さdと同じでもよく、異なっていてもよい。 The height d 1 of the first porous body 41 and the height d 2 of the second porous body 42 are preferably 20 μm or more and 300 μm or less, and more preferably 50 μm or more and 300 μm or less, respectively. Even when the height d 1 of the first porous body and the height d 2 of the second porous body 42 are set in the above range and the entire vapor chamber 1 is thinned, the first porous body 41 and the second porous body 41 and the second porous body 41 are described as described above. By arranging the porous body 42 in the housing 10, it is possible to secure the mechanical strength and the maximum heat transport amount. The height d 1 of the first porous body 41 may be the same as or different from the height d 2 of the second porous body 42.
 図4では、第2内壁面12aに対向する第1多孔体41の面、および、第2内壁面12aに対向する第2多孔体42の面の両方に第2液体流路52が形成されているが、第2内壁面12aに対向する第1多孔体41の面、および、第2内壁面12aに対向する第2多孔体42の面のいずれか一方のみに第2液体流路52が形成されていてもよい。 In FIG. 4, the second liquid flow path 52 is formed on both the surface of the first porous body 41 facing the second inner wall surface 12a and the surface of the second porous body 42 facing the second inner wall surface 12a. However, the second liquid flow path 52 is formed only on one of the surface of the first porous body 41 facing the second inner wall surface 12a and the surface of the second porous body 42 facing the second inner wall surface 12a. It may have been done.
 図5は、第2液体流路が形成されている位置の第1変形例を模式的に示す断面図である。
 図5に示すように、第1内壁面11aに対向する第1多孔体41の面、および、第1内壁面11aに対向する第2多孔体42の面に第2液体流路52が形成されていてもよい。
FIG. 5 is a cross-sectional view schematically showing a first modification example of the position where the second liquid flow path is formed.
As shown in FIG. 5, the second liquid flow path 52 is formed on the surface of the first porous body 41 facing the first inner wall surface 11a and the surface of the second porous body 42 facing the first inner wall surface 11a. May be.
 図5では、第1内壁面11aに対向する第1多孔体41の面、および、第1内壁面11aに対向する第2多孔体42の面の両方に第2液体流路52が形成されているが、第1内壁面11aに対向する第1多孔体41の面、および、第1内壁面11aに対向する第2多孔体42の面のいずれか一方のみに第2液体流路52が形成されていてもよい。 In FIG. 5, the second liquid flow path 52 is formed on both the surface of the first porous body 41 facing the first inner wall surface 11a and the surface of the second porous body 42 facing the first inner wall surface 11a. However, the second liquid flow path 52 is formed only on one of the surface of the first porous body 41 facing the first inner wall surface 11a and the surface of the second porous body 42 facing the first inner wall surface 11a. It may have been done.
 図6は、第2液体流路が形成されている位置の第2変形例を模式的に示す断面図である。
 図6に示すように、第2内壁面12aに対向する第1多孔体41の面、第2内壁面12aに対向する第2多孔体42の面、第1内壁面11aに対向する第1多孔体41の面、および、第1内壁面11aに対向する第2多孔体42の面に第2液体流路52が形成されていてもよい。
FIG. 6 is a cross-sectional view schematically showing a second modification example of the position where the second liquid flow path is formed.
As shown in FIG. 6, the surface of the first porous body 41 facing the second inner wall surface 12a, the surface of the second porous body 42 facing the second inner wall surface 12a, and the first porous body facing the first inner wall surface 11a. The second liquid flow path 52 may be formed on the surface of the body 41 and the surface of the second porous body 42 facing the first inner wall surface 11a.
 図6では、第2内壁面12aに対向する第1多孔体41の面、第2内壁面12aに対向する第2多孔体42の面、第1内壁面11aに対向する第1多孔体41の面、および、第1内壁面11aに対向する第2多孔体42の面のうち、全ての面に第2液体流路52が形成されているが、少なくとも1つの面に第2液体流路52が形成されていればよい。 In FIG. 6, the surface of the first porous body 41 facing the second inner wall surface 12a, the surface of the second porous body 42 facing the second inner wall surface 12a, and the first porous body 41 facing the first inner wall surface 11a. The second liquid flow path 52 is formed on all of the surface and the surface of the second porous body 42 facing the first inner wall surface 11a, but the second liquid flow path 52 is formed on at least one surface. Should be formed.
 第2内壁面12aに対向する第1多孔体41の面、第2内壁面12aに対向する第2多孔体42の面、第1内壁面11aに対向する第1多孔体41の面、および、第1内壁面11aに対向する第2多孔体42の面のうち、2つ以上の面に第2液体流路52が形成されている場合、各面に形成されている第2液体流路52の断面形状は、それぞれ同じでもよく、異なっていてもよい。また、各面に形成されている第2液体流路52の幅eは、それぞれ同じでもよく、異なっていてもよい。同様に、各面に形成されている第2液体流路52の高さfは、それぞれ同じでもよく、異なっていてもよい。 The surface of the first porous body 41 facing the second inner wall surface 12a, the surface of the second porous body 42 facing the second inner wall surface 12a, the surface of the first porous body 41 facing the first inner wall surface 11a, and When the second liquid flow path 52 is formed on two or more of the surfaces of the second porous body 42 facing the first inner wall surface 11a, the second liquid flow path 52 formed on each surface. The cross-sectional shapes of the above may be the same or different. Further, the width e of the second liquid flow path 52 formed on each surface may be the same or different. Similarly, the height f of the second liquid flow path 52 formed on each surface may be the same or different.
 第2内壁面12aに対向する第1多孔体41の面、第2内壁面12aに対向する第2多孔体42の面、第1内壁面11aに対向する第1多孔体41の面、および、第1内壁面11aに対向する第2多孔体42の面のうち、2つ以上の面に第2液体流路52が形成されている場合、各面に形成されている第2液体流路52の位置は、それぞれ同じでもよく、異なっていてもよい。 The surface of the first porous body 41 facing the second inner wall surface 12a, the surface of the second porous body 42 facing the second inner wall surface 12a, the surface of the first porous body 41 facing the first inner wall surface 11a, and When the second liquid flow path 52 is formed on two or more of the surfaces of the second porous body 42 facing the first inner wall surface 11a, the second liquid flow path 52 formed on each surface. The positions of may be the same or different.
 ウィック体40が第1多孔体41および第2多孔体42を含む場合、第2液体流路52が形成されていないウィック体40が含まれていてもよい。 When the wick body 40 includes the first porous body 41 and the second porous body 42, the wick body 40 in which the second liquid flow path 52 is not formed may be included.
 図4~図6では、断面形状が四角形である第2液体流路52の例を示しているが、第2液体流路52の断面形状は特に限定されない。 4 to 6 show an example of the second liquid flow path 52 having a quadrangular cross-sectional shape, but the cross-sectional shape of the second liquid flow path 52 is not particularly limited.
 図7は、第2液体流路の断面形状の変形例を模式的に示す断面図である。
 図7に示すように、断面形状が曲線を含む第2液体流路52Aが形成されていてもよい。
FIG. 7 is a cross-sectional view schematically showing a modified example of the cross-sectional shape of the second liquid flow path.
As shown in FIG. 7, a second liquid flow path 52A having a curved cross-sectional shape may be formed.
 次に、以上のように構成されたベーパーチャンバー1の作用について説明する。 Next, the operation of the vapor chamber 1 configured as described above will be described.
 蒸発部EPでは、第1多孔体41および第2多孔体42の表面に位置する液相の作動媒体20が、筐体10の内壁面を介して加熱されて蒸発する。作動媒体20が蒸発することで、蒸発部EP近傍における蒸気流路50内の気体の圧力が高まる。これにより、気相の作動媒体20が、蒸気流路50内を凝縮部CP側に向かって移動する。 In the evaporation unit EP, the working medium 20 of the liquid phase located on the surfaces of the first porous body 41 and the second porous body 42 is heated and evaporated through the inner wall surface of the housing 10. As the working medium 20 evaporates, the pressure of the gas in the steam flow path 50 in the vicinity of the evaporation unit EP increases. As a result, the working medium 20 of the gas phase moves in the steam flow path 50 toward the condensed portion CP side.
 凝縮部CPに到達した気相の作動媒体20は、筐体10の内壁面を介して熱を奪われて凝縮し、液滴となる。上述のとおり、気相の作動媒体20は凝縮部CP以外でも凝縮され得る。作動媒体20の液滴は、毛細管力によって第1多孔体41の細孔内および第2多孔体42の細孔内に浸み込む。また、第1多孔体41の細孔内および第2多孔体42の細孔内に浸み込んだ液相の作動媒体20の一部は、第1液体流路51内および第2液体流路52内に流入する。したがって、第1多孔体41、第2多孔体42、第1液体流路51および第2液体流路52によって液体流路が形成される。 The gas phase working medium 20 that has reached the condensing portion CP is deprived of heat through the inner wall surface of the housing 10 and is condensed into droplets. As described above, the working medium 20 of the gas phase can be condensed other than the condensed portion CP. The droplets of the working medium 20 permeate into the pores of the first porous body 41 and the pores of the second porous body 42 by the capillary force. Further, a part of the working medium 20 of the liquid phase that has penetrated into the pores of the first porous body 41 and the pores of the second porous body 42 is inside the first liquid flow path 51 and the second liquid flow path. It flows into 52. Therefore, the liquid flow path is formed by the first porous body 41, the second porous body 42, the first liquid flow path 51, and the second liquid flow path 52.
 第1多孔体41の細孔内と第2多孔体42の細孔内と第1液体流路51内と第2液体流路52内との液相の作動媒体20は、毛細管力によって蒸発部EP側に移動する。そして、第1多孔体41の細孔と第2多孔体42の細孔と第1液体流路51と第2液体流路52とから蒸発部EPへと、液相の作動媒体20が供給される。蒸発部EPに到達した液相の作動媒体20は、再び蒸発部EPにおける第1多孔体41および第2多孔体42の表面から蒸発する。なお、図2に示すように、蒸発部EP内に第1液体流路51が到達していることが望ましい。蒸発部EP内には、第1液体流路51およびウィック体40が含まれてもよいし、第1液体流路51が含まれずにウィック体40のみが含まれてもよいし、第1液体流路51およびウィック体40が含まれなくてもよい。 The working medium 20 of the liquid phase in the pores of the first porous body 41, in the pores of the second porous body 42, in the first liquid flow path 51, and in the second liquid flow path 52 is an evaporation part due to the capillary force. Move to the EP side. Then, the working medium 20 of the liquid phase is supplied from the pores of the first porous body 41, the pores of the second porous body 42, the first liquid flow path 51, and the second liquid flow path 52 to the evaporation section EP. To. The working medium 20 of the liquid phase that has reached the evaporation unit EP evaporates again from the surfaces of the first porous body 41 and the second porous body 42 in the evaporation unit EP. As shown in FIG. 2, it is desirable that the first liquid flow path 51 reaches the evaporation unit EP. The evaporation unit EP may include the first liquid flow path 51 and the wick body 40, or the first liquid flow path 51 may not be included and only the wick body 40 may be contained, or the first liquid may be contained. The flow path 51 and the wick body 40 may not be included.
 蒸発して気相となった作動媒体20は、再び蒸気流路50を通って凝縮部CP側へと移動する。このように、ベーパーチャンバー1は、作動媒体20の気-液の相変化を繰り返し利用して、蒸発部EP側で回収した熱を凝縮部CP側に繰り返し輸送することができる。 The working medium 20 that has evaporated and becomes a gas phase moves to the condensed portion CP side again through the steam flow path 50. In this way, the vapor chamber 1 can repeatedly transport the heat recovered on the evaporation unit EP side to the condensation unit CP side by repeatedly utilizing the gas-liquid phase change of the working medium 20.
 第1多孔体41および第2多孔体42の孔径は、各々、50μm以下であることが好ましい。孔径を小さくすることで、高い毛細管力を得ることができる。第1多孔体41および第2多孔体42の孔径は、同じでもよく、異なっていてもよい。なお、孔の形状は特に限定されない。 The pore diameters of the first porous body 41 and the second porous body 42 are preferably 50 μm or less, respectively. By reducing the pore diameter, high capillary force can be obtained. The pore diameters of the first porous body 41 and the second porous body 42 may be the same or different. The shape of the hole is not particularly limited.
 図2に示すように、少なくとも1組の隣り合うウィック体40の蒸発部EP側の端部同士が接続され、第1液体流路51同士が連通していてもよい。また、少なくとも1組の隣り合うウィック体40の蒸発部EPと反対側の端部同士、例えば、凝縮部CP側の端部同士が接続され、第1液体流路51同士が連通していてもよい。 As shown in FIG. 2, at least one set of adjacent wick bodies 40 may be connected to each other at the end portions on the evaporation portion EP side, and the first liquid flow paths 51 may communicate with each other. Further, even if the ends of at least one set of adjacent wick bodies 40 opposite to the evaporation portion EP and the ends on the condensing portion CP side are connected to each other and the first liquid flow paths 51 communicate with each other. good.
 上記のとおり、ベーパーチャンバー1では、ウィック体40間に液体流路および蒸気流路が形成される。中でも、図2に示すように、蒸発部EPにおける流路の密度が、蒸発部EPから離れた部分における流路の密度、例えば、凝縮部CPにおける流路の密度よりも高いことが好ましい。これにより、最大熱輸送量を向上させることができる。 As described above, in the vapor chamber 1, a liquid flow path and a steam flow path are formed between the wick bodies 40. Above all, as shown in FIG. 2, it is preferable that the density of the flow path in the evaporation part EP is higher than the density of the flow path in the portion away from the evaporation part EP, for example, the density of the flow path in the condensation part CP. Thereby, the maximum heat transport amount can be improved.
 本発明のベーパーチャンバーにおいて、ウィック体が延びる方向に垂直な断面において、第1多孔体および第2多孔体は、各々、厚さ方向で幅が一定であってもよく、厚さ方向で幅が一定でなくてもよい。例えば、ウィック体が延びる方向に垂直な断面において、第1多孔体および第2多孔体は、各々、第1内壁面側の端部の幅よりも第2内壁面側の端部の幅が狭くてもよい。この場合、幅が一定である部分が含まれてもよい。 In the vapor chamber of the present invention, in the cross section perpendicular to the direction in which the wick body extends, the first porous body and the second porous body may each have a constant width in the thickness direction, and the width in the thickness direction may be constant. It does not have to be constant. For example, in the cross section perpendicular to the direction in which the wick body extends, the width of the end portion on the second inner wall surface side is narrower than the width of the end portion on the first inner wall surface side, respectively. You may. In this case, a portion having a constant width may be included.
[第2実施形態]
 本発明の第2実施形態では、ウィック体が延びる方向に垂直な断面において、第1多孔体および第2多孔体は、各々、第1内壁面側の端部から第2内壁面側の端部に向かって幅が連続的に狭くなる。
[Second Embodiment]
In the second embodiment of the present invention, in the cross section perpendicular to the direction in which the wick body extends, the first porous body and the second porous body are each from the end portion on the first inner wall surface side to the end portion on the second inner wall surface side. The width becomes continuously narrower toward.
 図8は、本発明の第2実施形態に係るベーパーチャンバーの一例を模式的に示す断面図である。 FIG. 8 is a cross-sectional view schematically showing an example of a vapor chamber according to a second embodiment of the present invention.
 図8に示すベーパーチャンバー1Aでは、隣り合うウィック体40は、各々、第1多孔体41Aおよび第2多孔体42Aを含む。第1多孔体41Aおよび第2多孔体42Aは、各々、第1内壁面11a側の端部の幅よりも第2内壁面12a側の端部の幅が狭い。さらに、第1多孔体41Aおよび第2多孔体42Aは、各々、第1内壁面11a側の端部から第2内壁面12a側の端部に向かって幅が連続的に狭くなっている。図8に示す例では、第1多孔体41Aおよび第2多孔体42Aの断面形状は、各々、台形である。第1多孔体41Aおよび第2多孔体42Aの断面形状は、特に限定されず、他の形状でもよい。 In the vapor chamber 1A shown in FIG. 8, the adjacent wick bodies 40 include the first porous body 41A and the second porous body 42A, respectively. In each of the first porous body 41A and the second porous body 42A, the width of the end portion on the second inner wall surface 12a side is narrower than the width of the end portion on the first inner wall surface 11a side. Further, the width of each of the first porous body 41A and the second porous body 42A is continuously narrowed from the end portion on the first inner wall surface 11a side toward the end portion on the second inner wall surface 12a side. In the example shown in FIG. 8, the cross-sectional shapes of the first porous body 41A and the second porous body 42A are trapezoidal, respectively. The cross-sectional shapes of the first porous body 41A and the second porous body 42A are not particularly limited, and may be other shapes.
 図8に示すベーパーチャンバー1Aでは、第1多孔体41Aおよび第2多孔体42Aが上記の断面形状を有することで、筐体10外部からの圧力を分散させることができる。また、最小限の面積で筐体10の内部空間を保持しやすく、蒸気流路および液体流路の断面積を最大限確保できるため、最大熱輸送量および熱拡散能力を向上させることができる。さらに、面積の小さい第2内壁面12a側の端部と筐体10との間で形成される鋭角の隙間に液体流路が形成されるため、ウィック体40間の液体流路に液相の作動媒体20を引き入れやすくなり、最大熱輸送能力が向上する。あるいは、蒸気流路への液相の作動媒体20の染み出しが改善され、熱拡散能力が向上する。 In the vapor chamber 1A shown in FIG. 8, the first porous body 41A and the second porous body 42A have the above-mentioned cross-sectional shape, so that the pressure from the outside of the housing 10 can be dispersed. Further, since the internal space of the housing 10 can be easily maintained in the minimum area and the cross-sectional area of the vapor flow path and the liquid flow path can be secured to the maximum, the maximum heat transport amount and the heat diffusion capacity can be improved. Further, since the liquid flow path is formed in the acute-angled gap formed between the end portion on the second inner wall surface 12a side having a small area and the housing 10, the liquid phase is formed in the liquid flow path between the wick bodies 40. The working medium 20 can be easily drawn in, and the maximum heat transport capacity is improved. Alternatively, the exudation of the working medium 20 of the liquid phase into the vapor flow path is improved, and the heat diffusion capacity is improved.
[第3実施形態]
 本発明の第3実施形態では、ウィック体が延びる方向に垂直な断面において、第1多孔体および第2多孔体は、各々、第1内壁面側の端部から第2内壁面側の端部に向かって幅が段階的に狭くなる。
[Third Embodiment]
In the third embodiment of the present invention, in the cross section perpendicular to the direction in which the wick body extends, the first porous body and the second porous body are each from the end portion on the first inner wall surface side to the end portion on the second inner wall surface side. The width gradually narrows toward.
 図9は、本発明の第3実施形態に係るベーパーチャンバーの一例を模式的に示す断面図である。 FIG. 9 is a cross-sectional view schematically showing an example of a vapor chamber according to a third embodiment of the present invention.
 図9に示すベーパーチャンバー1Bでは、隣り合うウィック体40は、各々、第1多孔体41Bおよび第2多孔体42Bを含む。第1多孔体41Bおよび第2多孔体42Bは、各々、第1内壁面11a側の端部の幅よりも第2内壁面12a側の端部の幅が狭い。さらに、第1多孔体41Bおよび第2多孔体42Bは、各々、第1内壁面11a側の端部から第2内壁面12a側の端部に向かって幅が段階的に狭くなっている。図9に示す例では、第1多孔体41Bおよび第2多孔体42Bの断面形状は、各々、第1内壁面11a側に配置された第1の長方形と、第2内壁面12a側に配置され、第1の長方形よりも幅が狭い第2の長方形とが組み合わされた形状である。第1多孔体41Bおよび第2多孔体42Bの断面形状は、特に限定されず、他の形状でもよい。 In the vapor chamber 1B shown in FIG. 9, the adjacent wick bodies 40 include the first porous body 41B and the second porous body 42B, respectively. In each of the first porous body 41B and the second porous body 42B, the width of the end portion on the second inner wall surface 12a side is narrower than the width of the end portion on the first inner wall surface 11a side. Further, the widths of the first porous body 41B and the second porous body 42B are gradually narrowed from the end portion on the first inner wall surface 11a side toward the end portion on the second inner wall surface 12a side, respectively. In the example shown in FIG. 9, the cross-sectional shapes of the first porous body 41B and the second porous body 42B are arranged on the first inner wall surface 11a side and the second inner wall surface 12a side, respectively. , A shape that is a combination of a second rectangle that is narrower than the first rectangle. The cross-sectional shapes of the first porous body 41B and the second porous body 42B are not particularly limited, and may be other shapes.
 図9に示すベーパーチャンバー1Bでは、第1多孔体41Bおよび第2多孔体42Bが上記の断面形状を有することで、図8に示すベーパーチャンバー1Aと同様の効果が得られる。 In the vapor chamber 1B shown in FIG. 9, the first porous body 41B and the second porous body 42B have the above-mentioned cross-sectional shape, so that the same effect as that of the vapor chamber 1A shown in FIG. 8 can be obtained.
[第4実施形態]
 本発明の第4実施形態は、第2実施形態および第3実施形態の変形例である。本発明の第4実施形態では、第1多孔体および第2多孔体は、第1内壁面側の端部が互いに接続されている。多孔体の第1内壁面側の端部が互いに接続されていると、多孔体と第1内壁面との接触面積が増えることにより、接着強度が増すため、曲げまたは振動などの機械的なストレスに対する耐性を向上させることができる。
[Fourth Embodiment]
The fourth embodiment of the present invention is a modification of the second embodiment and the third embodiment. In the fourth embodiment of the present invention, the ends of the first porous body and the second porous body on the inner wall surface side are connected to each other. When the ends of the porous body on the first inner wall surface side are connected to each other, the contact area between the porous body and the first inner wall surface increases, and the adhesive strength increases, so that mechanical stress such as bending or vibration occurs. Can improve resistance to.
 図10は、本発明の第4実施形態に係るベーパーチャンバーの一例を模式的に示す断面図である。 FIG. 10 is a cross-sectional view schematically showing an example of a vapor chamber according to a fourth embodiment of the present invention.
 図10に示すベーパーチャンバー1Cでは、隣り合うウィック体40は、各々、第1多孔体41Cおよび第2多孔体42Cを含む。第1多孔体41Cおよび第2多孔体42Cは、各々、第1内壁面11a側の端部の幅よりも第2内壁面12a側の端部の幅が狭い。第1多孔体41Cおよび第2多孔体42Cの断面形状は、特に限定されない。 In the vapor chamber 1C shown in FIG. 10, the adjacent wick bodies 40 include the first porous body 41C and the second porous body 42C, respectively. In each of the first porous body 41C and the second porous body 42C, the width of the end portion on the second inner wall surface 12a side is narrower than the width of the end portion on the first inner wall surface 11a side. The cross-sectional shapes of the first porous body 41C and the second porous body 42C are not particularly limited.
 さらに、第1多孔体41Cおよび第2多孔体42Cは、第1内壁面11a側の端部が互いに接続されている。 Further, the ends of the first porous body 41C and the second porous body 42C on the first inner wall surface 11a side are connected to each other.
[第5実施形態]
 本発明の第5実施形態では、ウィック体が延びる方向に垂直な断面において、第1多孔体および第2多孔体は、各々、第1内壁面側の端部と第2内壁面側の端部との間に、第1内壁面側の端部および第2内壁面側の端部よりも幅が広い部分を有する。
[Fifth Embodiment]
In the fifth embodiment of the present invention, in the cross section perpendicular to the direction in which the wick body extends, the first porous body and the second porous body are the end portion on the first inner wall surface side and the end portion on the second inner wall surface side, respectively. It has a portion wider than the end portion on the first inner wall surface side and the end portion on the second inner wall surface side.
 図11は、本発明の第5実施形態に係るベーパーチャンバーの一例を模式的に示す断面図である。 FIG. 11 is a cross-sectional view schematically showing an example of a vapor chamber according to a fifth embodiment of the present invention.
 図11に示すベーパーチャンバー1Dでは、隣り合うウィック体40は、各々、第1多孔体41Dおよび第2多孔体42Dを含む。第1多孔体41Dおよび第2多孔体42Dは、各々、第1内壁面11a側の端部と第2内壁面12a側の端部との間に、第1内壁面11a側の端部および第2内壁面12a側の端部よりも幅が広い部分を有する。 In the vapor chamber 1D shown in FIG. 11, the adjacent wick bodies 40 include the first porous body 41D and the second porous body 42D, respectively. The first porous body 41D and the second porous body 42D are located between the end portion on the first inner wall surface 11a side and the end portion on the second inner wall surface 12a side, respectively, the end portion on the first inner wall surface 11a side and the second end. 2 It has a portion wider than the end portion on the inner wall surface 12a side.
 図11に示すベーパーチャンバー1Dでは、第1多孔体41Dおよび第2多孔体42Dが上記の断面形状を有することで、図8に示すベーパーチャンバー1Aと同様の効果が得られる。 In the vapor chamber 1D shown in FIG. 11, the first porous body 41D and the second porous body 42D have the above-mentioned cross-sectional shape, so that the same effect as that of the vapor chamber 1A shown in FIG. 8 can be obtained.
 第1多孔体41Dおよび第2多孔体42Dにおいて、第1内壁面11a側の端部の幅は、第2内壁面12a側の端部の幅と同じでもよく、異なっていてもよい。 In the first porous body 41D and the second porous body 42D, the width of the end portion on the first inner wall surface 11a side may be the same as or different from the width of the end portion on the second inner wall surface 12a side.
 第1多孔体41Dおよび第2多孔体42Dにおいて、第1内壁面11a側の端部および第2内壁面12a側の端部よりも幅が広い部分が存在する位置は特に限定されない。また、第1内壁面11a側の端部および第2内壁面12a側の端部よりも幅が広い部分は2箇所以上存在してもよい。その場合、第1内壁面11a側の端部および第2内壁面12a側の端部よりも幅が広い部分の幅は、それぞれ同じでもよく、異なっていてもよい。 In the first porous body 41D and the second porous body 42D, the position where a portion wider than the end portion on the first inner wall surface 11a side and the end portion on the second inner wall surface 12a side exists is not particularly limited. Further, there may be two or more portions wider than the end portion on the first inner wall surface 11a side and the end portion on the second inner wall surface 12a side. In that case, the widths of the end portion on the first inner wall surface 11a side and the portion wider than the end portion on the second inner wall surface 12a side may be the same or different.
 第1多孔体41Dおよび第2多孔体42Dの断面形状は、特に限定されない。第1多孔体41Dおよび第2多孔体42Dの幅は、連続的に変化してもよく、段階的に変化してもよい。 The cross-sectional shapes of the first porous body 41D and the second porous body 42D are not particularly limited. The widths of the first porous body 41D and the second porous body 42D may be continuously changed or may be changed stepwise.
[第6実施形態]
 本発明の第6実施形態では、ウィック体が延びる方向に垂直な断面において、第1多孔体および第2多孔体は、各々、第1内壁面側の端部と第2内壁面側の端部との間に、第1内壁面側の端部および第2内壁面側の端部よりも幅が狭い部分を有する。
[Sixth Embodiment]
In the sixth embodiment of the present invention, in the cross section perpendicular to the direction in which the wick body extends, the first porous body and the second porous body are the end portion on the first inner wall surface side and the end portion on the second inner wall surface side, respectively. It has a portion narrower than the end portion on the first inner wall surface side and the end portion on the second inner wall surface side.
 図12は、本発明の第6実施形態に係るベーパーチャンバーの一例を模式的に示す断面図である。 FIG. 12 is a cross-sectional view schematically showing an example of a vapor chamber according to a sixth embodiment of the present invention.
 図12に示すベーパーチャンバー1Eでは、隣り合うウィック体40は、各々、第1多孔体41Eおよび第2多孔体42Eを含む。第1多孔体41Eおよび第2多孔体42Eは、各々、第1内壁面11a側の端部と第2内壁面12a側の端部との間に、第1内壁面11a側の端部および第2内壁面12a側の端部よりも幅が狭い部分を有する。 In the vapor chamber 1E shown in FIG. 12, the adjacent wick bodies 40 include the first porous body 41E and the second porous body 42E, respectively. The first porous body 41E and the second porous body 42E are located between the end portion on the first inner wall surface 11a side and the end portion on the second inner wall surface 12a side, respectively, the end portion on the first inner wall surface 11a side and the second end. 2 It has a portion narrower than the end portion on the inner wall surface 12a side.
 図12に示すベーパーチャンバー1Eでは、第1多孔体41Eおよび第2多孔体42Eが上記の断面形状を有することで、筐体10外部からの圧力を分散させることができる。また、幅が広い部分で液相の作動媒体20が吸収されやすくなる一方、幅が狭い部分で作動媒体20の蒸発が促進されやすくなる。その結果、最大熱輸送能力が向上する。 In the vapor chamber 1E shown in FIG. 12, the first porous body 41E and the second porous body 42E have the above-mentioned cross-sectional shape, so that the pressure from the outside of the housing 10 can be dispersed. Further, the liquid phase working medium 20 is easily absorbed in the wide portion, while the evaporation of the working medium 20 is easily promoted in the narrow portion. As a result, the maximum heat transport capacity is improved.
 第1多孔体41Eおよび第2多孔体42Eにおいて、第1内壁面11a側の端部の幅は、第2内壁面12a側の端部の幅と同じでもよく、異なっていてもよい。 In the first porous body 41E and the second porous body 42E, the width of the end portion on the first inner wall surface 11a side may be the same as or different from the width of the end portion on the second inner wall surface 12a side.
 第1多孔体41Eおよび第2多孔体42Eにおいて、第1内壁面11a側の端部および第2内壁面12a側の端部よりも幅が狭い部分が存在する位置は特に限定されない。また、第1内壁面11a側の端部および第2内壁面12a側の端部よりも幅が狭い部分は2箇所以上存在してもよい。その場合、第1内壁面11a側の端部および第2内壁面12a側の端部よりも幅が狭い部分の幅は、それぞれ同じでもよく、異なっていてもよい。 In the first porous body 41E and the second porous body 42E, the position where the end portion on the first inner wall surface 11a side and the portion narrower than the end portion on the second inner wall surface 12a side are present is not particularly limited. Further, there may be two or more portions narrower than the end portion on the first inner wall surface 11a side and the end portion on the second inner wall surface 12a side. In that case, the widths of the end portion on the first inner wall surface 11a side and the portion narrower than the end portion on the second inner wall surface 12a side may be the same or different.
 第1多孔体41Eおよび第2多孔体42Eの断面形状は、特に限定されない。第1多孔体41Eおよび第2多孔体42Eの幅は、連続的に変化してもよく、段階的に変化してもよい。 The cross-sectional shapes of the first porous body 41E and the second porous body 42E are not particularly limited. The widths of the first porous body 41E and the second porous body 42E may be continuously changed or may be changed stepwise.
 本発明のベーパーチャンバーにおいては、第1実施形態~第6実施形態で説明した多孔体の形状が2種以上組み合わされてもよい。 In the vapor chamber of the present invention, two or more types of porous body shapes described in the first to sixth embodiments may be combined.
[第7実施形態]
 図13は、本発明の第7実施形態に係るベーパーチャンバーの一例を模式的に示す平面図である。
[7th Embodiment]
FIG. 13 is a plan view schematically showing an example of the vapor chamber according to the seventh embodiment of the present invention.
 図13に示すベーパーチャンバー1Fでは、図2に示すベーパーチャンバー1と異なり、隣り合うウィック体40の蒸発部EPと反対側の端部同士、例えば、凝縮部CP側の端部同士が接続されておらず、第1液体流路51同士が連通していない。第1実施形態~第6実施形態で説明したように、第1多孔体41および第2多孔体42以外の形状であってもよい。 In the vapor chamber 1F shown in FIG. 13, unlike the vapor chamber 1 shown in FIG. 2, the ends opposite to the evaporation portion EP of the adjacent wick bodies 40 are connected to each other, for example, the ends on the condensing portion CP side are connected to each other. The first liquid flow paths 51 do not communicate with each other. As described in the first to sixth embodiments, the shape may be other than the first porous body 41 and the second porous body 42.
[第8実施形態]
 本発明の第8実施形態では、筐体は、複数の蒸発部を有する。
[Eighth Embodiment]
In the eighth embodiment of the present invention, the housing has a plurality of evaporation parts.
 図14は、本発明の第8実施形態に係るベーパーチャンバーの一例を模式的に示す平面図である。 FIG. 14 is a plan view schematically showing an example of the vapor chamber according to the eighth embodiment of the present invention.
 図14に示すベーパーチャンバー1Gでは、筐体10には、複数の蒸発部EP1およびEP2が設定されている。図14に示すように、蒸発部EP1およびEP2のそれぞれにおける流路の密度が、蒸発部EP1およびEP2のそれぞれから離れた部分における流路の密度、例えば、凝縮部CPにおける流路の密度よりも高いことが好ましい。蒸発部の数、配置、サイズは特に限定されない。第1実施形態~第6実施形態で説明したように、第1多孔体41および第2多孔体42以外の形状であってもよい。 In the vapor chamber 1G shown in FIG. 14, a plurality of evaporation units EP1 and EP2 are set in the housing 10. As shown in FIG. 14, the density of the flow path in each of the evaporation parts EP1 and EP2 is higher than the density of the flow path in the portion away from each of the evaporation parts EP1 and EP2, for example, the density of the flow path in the condensation part CP. High is preferable. The number, arrangement, and size of the evaporated parts are not particularly limited. As described in the first to sixth embodiments, the shape may be other than the first porous body 41 and the second porous body 42.
[第9実施形態]
 本発明の第9実施形態では、厚さ方向から見た筐体の平面形状が第1実施形態~第8実施形態と異なる。
[9th Embodiment]
In the ninth embodiment of the present invention, the planar shape of the housing when viewed from the thickness direction is different from the first to eighth embodiments.
 図15は、本発明の第9実施形態に係るベーパーチャンバーの一例を模式的に示す平面図である。 FIG. 15 is a plan view schematically showing an example of the vapor chamber according to the ninth embodiment of the present invention.
 図15に示すベーパーチャンバー1Hでは、筐体10Aの平面形状がL字型である。複数のウィック体40は、筐体10Aの平面形状に沿って延びている。そのため、筐体10Aの平面形状に沿った蒸気流路および液体流路が形成されている。一例として、隣り合うウィック体40は、各々、第1多孔体41および第2多孔体42を含む。第1実施形態~第6実施形態で説明したように、第1多孔体41および第2多孔体42以外の形状であってもよい。 In the vapor chamber 1H shown in FIG. 15, the planar shape of the housing 10A is L-shaped. The plurality of wick bodies 40 extend along the planar shape of the housing 10A. Therefore, a vapor flow path and a liquid flow path are formed along the planar shape of the housing 10A. As an example, adjacent wick bodies 40 include a first porous body 41 and a second porous body 42, respectively. As described in the first to sixth embodiments, the shape may be other than the first porous body 41 and the second porous body 42.
 本発明のベーパーチャンバーにおいて、厚さ方向から見た筐体の平面形状は特に限定されず、例えば、三角形または矩形などの多角形、円形、楕円形、これらを組み合わせた形状などが挙げられる。また、筐体の平面形状は、L字型、C字型(コの字型)などであってもよい。また、筐体の内部に貫通口を有していてもよい。筐体の平面形状は、ベーパーチャンバーの用途、ベーパーチャンバーの組み入れ箇所の形状、近傍に存在する他の部品に応じた形状であってもよい。 In the vapor chamber of the present invention, the planar shape of the housing when viewed from the thickness direction is not particularly limited, and examples thereof include polygons such as triangles and rectangles, circles, ellipses, and combinations thereof. Further, the planar shape of the housing may be L-shaped, C-shaped (U-shaped), or the like. Further, a through hole may be provided inside the housing. The planar shape of the housing may be a shape corresponding to the use of the vapor chamber, the shape of the place where the vapor chamber is incorporated, and other parts existing in the vicinity.
[第10実施形態]
 図16は、本発明の第10実施形態に係るベーパーチャンバーの一例を模式的に示す平面図である。
[10th Embodiment]
FIG. 16 is a plan view schematically showing an example of the vapor chamber according to the tenth embodiment of the present invention.
 図16に示すベーパーチャンバー1Iでは、図2に示すベーパーチャンバー1と異なり、幅方向Xおよび長さ方向Yに対して斜めの方向に沿って延びるウィック体40が存在する。 In the vapor chamber 1I shown in FIG. 16, unlike the vapor chamber 1 shown in FIG. 2, there is a wick body 40 extending along an oblique direction with respect to the width direction X and the length direction Y.
 図16に示すベーパーチャンバー1Iのように、ウィック30は、蒸発部EPから放射状に延びるウィック体40を含んでもよい。第1実施形態~第6実施形態で説明したように、第1多孔体41および第2多孔体42以外の形状であってもよい。 Like the vapor chamber 1I shown in FIG. 16, the wick 30 may include a wick body 40 radially extending from the evaporation unit EP. As described in the first to sixth embodiments, the shape may be other than the first porous body 41 and the second porous body 42.
[第11実施形態]
 本発明の第11実施形態では、蒸気流路内に、筐体の第1内壁面および第2内壁面を内側から支持する複数の支柱が配置されている。
[11th Embodiment]
In the eleventh embodiment of the present invention, a plurality of columns that support the first inner wall surface and the second inner wall surface of the housing from the inside are arranged in the steam flow path.
 図17は、本発明の第11実施形態に係るベーパーチャンバーの一例を模式的に示す平面図である。図18は、本発明の第11実施形態に係るベーパーチャンバーの一例を模式的に示す断面図である。 FIG. 17 is a plan view schematically showing an example of the vapor chamber according to the eleventh embodiment of the present invention. FIG. 18 is a cross-sectional view schematically showing an example of a vapor chamber according to the eleventh embodiment of the present invention.
 図17および図18に示すベーパーチャンバー1Jでは、図8に示すベーパーチャンバー1Aと異なり、蒸気流路50内に、複数の支柱60が配置されている。支柱60間は、蒸気流路50が分断されている。支柱60は、筐体10の第1内壁面11aおよび第2内壁面12aを内側から支持している。第1液体流路51の本数が少ない場合には、蒸気流路50内に支柱60を配置することによって筐体10を支持することが可能である。第1実施形態~第6実施形態で説明したように、第1多孔体41Aおよび第2多孔体42A以外の形状であってもよい。 In the vapor chamber 1J shown in FIGS. 17 and 18, unlike the vapor chamber 1A shown in FIG. 8, a plurality of columns 60 are arranged in the steam flow path 50. The steam flow path 50 is divided between the columns 60. The support column 60 supports the first inner wall surface 11a and the second inner wall surface 12a of the housing 10 from the inside. When the number of the first liquid flow paths 51 is small, it is possible to support the housing 10 by arranging the columns 60 in the steam flow path 50. As described in the first to sixth embodiments, the shape may be other than the first porous body 41A and the second porous body 42A.
 図17および図18に示すように、全ての蒸気流路50内に支柱60が配置されていることが好ましいが、支柱60が配置されていない蒸気流路50が存在してもよい。 As shown in FIGS. 17 and 18, it is preferable that the columns 60 are arranged in all the steam flow paths 50, but there may be a steam flow path 50 in which the columns 60 are not arranged.
 図18に示す例では、支柱60は、第1内壁面11aおよび第2内壁面12aに接している。支柱60は、第1内壁面11aおよび第2内壁面12aのいずれか一方に接していてもよく、第1内壁面11aおよび第2内壁面12aに接していなくてもよい。 In the example shown in FIG. 18, the support column 60 is in contact with the first inner wall surface 11a and the second inner wall surface 12a. The column 60 may be in contact with either the first inner wall surface 11a or the second inner wall surface 12a, or may not be in contact with the first inner wall surface 11a or the second inner wall surface 12a.
 支柱60を形成する材料は、特に限定されないが、例えば、樹脂、金属、セラミックス、またはそれらの混合物、積層物等が挙げられる。また、支柱60は、筐体10と一体であってもよく、例えば、第1シート11または第2シート12の内壁面をエッチング加工すること等により形成されていてもよい。 The material forming the support column 60 is not particularly limited, and examples thereof include resin, metal, ceramics, a mixture thereof, and a laminate. Further, the support column 60 may be integrated with the housing 10, and may be formed by, for example, etching the inner wall surface of the first sheet 11 or the second sheet 12.
 支柱60の形状は、筐体10を支持できる形状であれば特に限定されないが、支柱60の高さ方向に垂直な断面の形状としては、例えば、矩形等の多角形、円形、楕円形等が挙げられる。 The shape of the support column 60 is not particularly limited as long as it can support the housing 10, but examples of the shape of the cross section perpendicular to the height direction of the support column 60 include polygons such as rectangles, circles, and ellipses. Can be mentioned.
 支柱60の高さは、特に限定されず、ウィック体40の高さと同じでもよく、異なっていてもよい。 The height of the support column 60 is not particularly limited, and may be the same as or different from the height of the wick body 40.
 支柱60の高さは、一のベーパーチャンバーにおいて、同じであってもよく、異なっていてもよい。例えば、ある領域における支柱60の高さと、別の領域における支柱60の高さが異なっていてもよい。 The height of the columns 60 may be the same or different in one vapor chamber. For example, the height of the strut 60 in one area and the height of the strut 60 in another area may be different.
 図18に示す断面において、支柱60の幅は、ベーパーチャンバーの筐体の変形を抑制できる強度を与えるものであれば特に限定されないが、支柱60の端部の高さ方向に垂直な断面の円相当径は、例えば100μm以上2000μm以下であり、好ましくは300μm以上1000μm以下である。支柱60の円相当径を大きくすることにより、ベーパーチャンバーの筐体の変形をより抑制することができる。一方、支柱60の円相当径を小さくすることにより、作動媒体の蒸気が移動するための空間をより広く確保することができる。 In the cross section shown in FIG. 18, the width of the support column 60 is not particularly limited as long as it provides strength that can suppress deformation of the housing of the vapor chamber, but is a circle having a cross section perpendicular to the height direction of the end portion of the support column 60. The equivalent diameter is, for example, 100 μm or more and 2000 μm or less, preferably 300 μm or more and 1000 μm or less. By increasing the equivalent circle diameter of the support column 60, deformation of the housing of the vapor chamber can be further suppressed. On the other hand, by reducing the equivalent circle diameter of the support column 60, it is possible to secure a wider space for the steam of the working medium to move.
 支柱60の配置は、特に限定されないが、好ましくは所定の領域において均等に、より好ましくは全体にわたって均等に、例えば支柱60間の距離が一定となるように配置される。支柱60を均等に配置することにより、ベーパーチャンバー全体にわたって均一な強度を確保することができる。 The arrangement of the columns 60 is not particularly limited, but is preferably arranged evenly in a predetermined area, more preferably evenly over the entire area, for example, so that the distance between the columns 60 is constant. By arranging the columns 60 evenly, uniform strength can be ensured over the entire vapor chamber.
[第12実施形態]
 本発明の第12実施形態は、本発明の第11実施形態の変形例である。本発明の第12実施形態では、厚さ方向において、支柱の高さは、ウィック体の高さよりも高い。
[12th Embodiment]
The twelfth embodiment of the present invention is a modification of the eleventh embodiment of the present invention. In the twelfth embodiment of the present invention, the height of the columns is higher than the height of the wick body in the thickness direction.
 図19は、本発明の第12実施形態に係るベーパーチャンバーの一例を模式的に示す断面図である。 FIG. 19 is a cross-sectional view schematically showing an example of a vapor chamber according to a twelfth embodiment of the present invention.
 図19に示すベーパーチャンバー1Kでは、図18に示すベーパーチャンバー1Jと異なり、厚さ方向Zにおいて、支柱60の高さは、第1多孔体41Aの高さよりも高く、第2多孔体42Aの高さよりも高い。 In the vapor chamber 1K shown in FIG. 19, unlike the vapor chamber 1J shown in FIG. 18, the height of the support column 60 is higher than the height of the first porous body 41A and the height of the second porous body 42A in the thickness direction Z. Higher than that.
[第13実施形態]
 本発明の第13実施形態では、蒸気流路内に、ウィック体が延びる方向に沿って延びる第3液体流路が形成されている。
[13th Embodiment]
In the thirteenth embodiment of the present invention, a third liquid flow path extending along the direction in which the wick body extends is formed in the steam flow path.
 図20は、本発明の第13実施形態に係るベーパーチャンバーの一例を模式的に示す断面図である。 FIG. 20 is a cross-sectional view schematically showing an example of a vapor chamber according to a thirteenth embodiment of the present invention.
 図20に示すベーパーチャンバー1Lでは、図3に示すベーパーチャンバー1と異なり、蒸気流路50内に、ウィック体40が延びる方向の一例である長さ方向Yに沿って延びる第3液体流路53が形成されている。第1実施形態~第6実施形態で説明したように、第1多孔体41および第2多孔体42以外の形状であってもよい。 In the vapor chamber 1L shown in FIG. 20, unlike the vapor chamber 1 shown in FIG. 3, a third liquid flow path 53 extending in the steam flow path 50 along the length direction Y, which is an example of the direction in which the wick body 40 extends. Is formed. As described in the first to sixth embodiments, the shape may be other than the first porous body 41 and the second porous body 42.
 図20に示すように、第3液体流路53の幅gは、第1液体流路51の幅bよりも小さい。第3液体流路53の幅gを第1液体流路51の幅bよりも小さくすることで、第3液体流路53を液体流路として利用することができる。 As shown in FIG. 20, the width g of the third liquid flow path 53 is smaller than the width b of the first liquid flow path 51. By making the width g of the third liquid flow path 53 smaller than the width b of the first liquid flow path 51, the third liquid flow path 53 can be used as the liquid flow path.
 さらに、厚さ方向Zにおいて、第3液体流路53の高さは、第1液体流路51の高さよりも低い。第3液体流路53を蒸気流路50内に形成することで、液体流路である第1液体流路51および第2液体流路52が破損した場合においても、ベーパーチャンバーの動作が担保できる。また、曲げまたは振動などの機械的なストレスに対する耐性を向上させることができる。 Further, in the thickness direction Z, the height of the third liquid flow path 53 is lower than the height of the first liquid flow path 51. By forming the third liquid flow path 53 in the steam flow path 50, the operation of the vapor chamber can be ensured even when the first liquid flow path 51 and the second liquid flow path 52, which are liquid flow paths, are damaged. .. It can also improve resistance to mechanical stress such as bending or vibration.
 第3液体流路53は、第1内壁面11aおよび第2内壁面12aの両方に設けられていてもよく、第1内壁面11aおよび第2内壁面12aのいずれか一方のみに設けられていてもよい。第3液体流路53は、第1内壁面11aおよび第2内壁面12aから突出した部分、例えば柱状部等によって形成されてもよく、あるいは、第1内壁面11aおよび第2内壁面12aに凹部、例えば溝等によって形成されてもよい。 The third liquid flow path 53 may be provided on both the first inner wall surface 11a and the second inner wall surface 12a, and may be provided on only one of the first inner wall surface 11a and the second inner wall surface 12a. May be good. The third liquid flow path 53 may be formed by a portion protruding from the first inner wall surface 11a and the second inner wall surface 12a, for example, a columnar portion, or a recess in the first inner wall surface 11a and the second inner wall surface 12a. , For example, it may be formed by a groove or the like.
 図20において、第3液体流路53の幅gは、10μm以上500μm以下であることが好ましい。 In FIG. 20, the width g of the third liquid flow path 53 is preferably 10 μm or more and 500 μm or less.
 厚さ方向Zにおいて、第3液体流路53の高さは、10μm以上100μm以下であることが好ましい。 In the thickness direction Z, the height of the third liquid flow path 53 is preferably 10 μm or more and 100 μm or less.
[第14実施形態]
 本発明の第14実施形態では、筐体の形状が異なる。
[14th Embodiment]
In the 14th embodiment of the present invention, the shape of the housing is different.
 図21は、本発明の第14実施形態に係るベーパーチャンバーの一例を模式的に示す断面図である。 FIG. 21 is a cross-sectional view schematically showing an example of a vapor chamber according to the 14th embodiment of the present invention.
 図21に示すベーパーチャンバー1Mでは、図8に示すベーパーチャンバー1Aと異なり、筐体10Bは、外縁部が接合された対向する第1シート11Bおよび第2シート12Bから構成されている。第1シート11Bは、厚みが一定の平板形状であり、第2シート12Bは、厚みが一定で、かつ、外縁部に対して外縁部以外の部分が外側に凸の形状である。第1実施形態~第6実施形態で説明したように、第1多孔体41Aおよび第2多孔体42A以外の形状であってもよい。 In the vapor chamber 1M shown in FIG. 21, unlike the vapor chamber 1A shown in FIG. 8, the housing 10B is composed of the facing first sheet 11B and the second sheet 12B to which the outer edge portions are joined. The first sheet 11B has a flat plate shape having a constant thickness, and the second sheet 12B has a shape in which the thickness is constant and the portion other than the outer edge portion is convex outward with respect to the outer edge portion. As described in the first to sixth embodiments, the shape may be other than the first porous body 41A and the second porous body 42A.
 本発明の第14実施形態では、筐体の外縁部に凹みが形成される。そのため、ベーパーチャンバーを搭載する際などに凹みを利用することができる。また、外縁部の凹みに他の部品などを配置することができる。 In the 14th embodiment of the present invention, a dent is formed on the outer edge of the housing. Therefore, the dent can be used when mounting the vapor chamber. Further, other parts and the like can be arranged in the recess of the outer edge portion.
[第15実施形態]
 本発明の第15実施形態に係るベーパーチャンバーは、第1内壁面に沿って配置されたウィック、および、第2内壁面に沿って配置されたウィックのうち、少なくとも一方のウィックをさらに備える。
[15th Embodiment]
The vapor chamber according to the fifteenth embodiment of the present invention further includes at least one of the wicks arranged along the first inner wall surface and the wicks arranged along the second inner wall surface.
 図22は、本発明の第15実施形態に係るベーパーチャンバーの一例を模式的に示す断面図である。 FIG. 22 is a cross-sectional view schematically showing an example of the vapor chamber according to the fifteenth embodiment of the present invention.
 図22に示すベーパーチャンバー1Nでは、図3に示すベーパーチャンバー1と異なり、第1内壁面11aに沿ってウィック71が配置され、かつ、第2内壁面12aに沿ってウィック72が配置されている。第1実施形態~第6実施形態で説明したように、第1多孔体41および第2多孔体42以外の形状であってもよい。 In the vapor chamber 1N shown in FIG. 22, unlike the vapor chamber 1 shown in FIG. 3, the wick 71 is arranged along the first inner wall surface 11a, and the wick 72 is arranged along the second inner wall surface 12a. .. As described in the first to sixth embodiments, the shape may be other than the first porous body 41 and the second porous body 42.
 図23は、本発明の第15実施形態に係るベーパーチャンバーの別の一例を模式的に示す断面図である。 FIG. 23 is a cross-sectional view schematically showing another example of the vapor chamber according to the fifteenth embodiment of the present invention.
 図23に示すベーパーチャンバー1Oでは、第1内壁面11aに沿ってウィック71が配置されておらず、第2内壁面12aに沿ってウィック72が配置されている。なお、第2内壁面12aに沿ってウィック72が配置されておらず、第1内壁面11aに沿ってウィック71が配置されていてもよい。 In the vapor chamber 1O shown in FIG. 23, the wick 71 is not arranged along the first inner wall surface 11a, but the wick 72 is arranged along the second inner wall surface 12a. The wick 72 may not be arranged along the second inner wall surface 12a, and the wick 71 may be arranged along the first inner wall surface 11a.
 ウィック71および72は、毛細管力により作動媒体を移動させることができる毛細管構造を有するウィックであれば特に限定されない。ウィックの毛細管構造は、従来のベーパーチャンバーにおいて用いられている公知の構造であってもよい。毛細管構造としては、細孔、溝、突起などの凹凸を有する微細構造、例えば、多孔構造、繊維構造、溝構造、網目構造などが挙げられる。 The wicks 71 and 72 are not particularly limited as long as they have a capillary structure in which the working medium can be moved by a capillary force. The wick's capillary structure may be a known structure used in conventional vapor chambers. Examples of the capillary structure include microstructures having irregularities such as pores, grooves, and protrusions, such as a porous structure, a fiber structure, a groove structure, and a mesh structure.
 ウィック71および72の材料は特に限定されず、例えば、エッチング加工または金属加工により形成される金属多孔膜、メッシュ、不織布、焼結体、多孔体などが用いられる。ウィックの材料となるメッシュは、例えば、金属メッシュ、樹脂メッシュ、もしくは表面コートしたそれらのメッシュから構成されるものであってよく、好ましくは銅メッシュ、ステンレス(SUS)メッシュまたはポリエステルメッシュから構成される。ウィックの材料となる焼結体は、例えば、金属多孔質焼結体、セラミックス多孔質焼結体から構成されるものであってよく、好ましくは銅またはニッケルの多孔質焼結体から構成される。ウィックの材料となる多孔体は、例えば、金属多孔体、セラミックス多孔体、樹脂多孔体から構成されるもの等であってもよい。 The materials of the wicks 71 and 72 are not particularly limited, and for example, a metal porous film formed by etching or metal processing, a mesh, a non-woven fabric, a sintered body, a porous body, or the like is used. The mesh used as the material of the wick may be composed of, for example, a metal mesh, a resin mesh, or a surface-coated mesh thereof, and is preferably composed of a copper mesh, a stainless (SUS) mesh, or a polyester mesh. .. The sintered body used as the material of the wick may be composed of, for example, a metal porous sintered body and a ceramic porous sintered body, and is preferably composed of a copper or nickel porous sintered body. .. The porous body used as the material of the wick may be, for example, a porous body made of a metal porous body, a ceramic porous body, a resin porous body, or the like.
 ウィック71および72の大きさおよび形状は、特に限定されないが、例えば、筐体10の内部において蒸発部から凝縮部まで連続して設置できる大きさおよび形状を有することが好ましい。 The size and shape of the wicks 71 and 72 are not particularly limited, but for example, it is preferable to have a size and shape that can be continuously installed from the evaporation part to the condensation part inside the housing 10.
 ウィック71および72の厚さは、特に限定されないが、各々、例えば2μm以上200μm以下であり、好ましくは5μm以上100μm以下、より好ましくは10μm以上40μm以下である。ウィック71および72の厚さは、部分的に異なっていてもよい。ウィック71の厚さは、ウィック72の厚さと同じでもよく、異なっていてもよい。 The thicknesses of the wicks 71 and 72 are not particularly limited, but are, for example, 2 μm or more and 200 μm or less, preferably 5 μm or more and 100 μm or less, and more preferably 10 μm or more and 40 μm or less. The thicknesses of the wicks 71 and 72 may be partially different. The thickness of the wick 71 may be the same as or different from the thickness of the wick 72.
[第16実施形態]
 図24は、本発明の第16実施形態に係るベーパーチャンバーの一例を模式的に示す平面図である。
[16th Embodiment]
FIG. 24 is a plan view schematically showing an example of the vapor chamber according to the 16th embodiment of the present invention.
 図24に示すベーパーチャンバー1Pでは、図2に示すベーパーチャンバー1と異なり、ウィック30が筐体10の外周部のみに配置されている。第1実施形態~第6実施形態で説明したように、第1多孔体41および第2多孔体42以外の形状であってもよい。 In the vapor chamber 1P shown in FIG. 24, unlike the vapor chamber 1 shown in FIG. 2, the wick 30 is arranged only on the outer peripheral portion of the housing 10. As described in the first to sixth embodiments, the shape may be other than the first porous body 41 and the second porous body 42.
[第17実施形態]
 図25は、本発明の第17実施形態に係るベーパーチャンバーの一例を模式的に示す平面図である。
[17th Embodiment]
FIG. 25 is a plan view schematically showing an example of the vapor chamber according to the 17th embodiment of the present invention.
 図25に示すベーパーチャンバー1Qでは、図2に示すベーパーチャンバー1と異なり、ウィック30が筐体10の中央部のみに配置されている。第1実施形態~第6実施形態で説明したように、第1多孔体41および第2多孔体42以外の形状であってもよい。 In the vapor chamber 1Q shown in FIG. 25, unlike the vapor chamber 1 shown in FIG. 2, the wick 30 is arranged only in the central portion of the housing 10. As described in the first to sixth embodiments, the shape may be other than the first porous body 41 and the second porous body 42.
[第18実施形態]
 本発明の第18実施形態では、ウィック体が延びる方向に沿って筐体内に支持体が配置され、少なくとも1組の隣り合うウィック体は、各々、支持体により支持された多孔体を含む。
[18th Embodiment]
In the eighteenth embodiment of the present invention, a support is arranged in the housing along the direction in which the wick body extends, and at least one set of adjacent wick bodies each includes a porous body supported by the support.
 図26は、本発明の第18実施形態に係るベーパーチャンバーの一例を模式的に示す断面図である。図27は、図26においてXXVIIで示す部分を拡大した断面図である。 FIG. 26 is a cross-sectional view schematically showing an example of a vapor chamber according to the eighteenth embodiment of the present invention. FIG. 27 is an enlarged cross-sectional view of the portion shown by XXVII in FIG. 26.
 図26に示すベーパーチャンバー1Rは、ウィック体40が延びる方向に沿って筐体10内に配置される支持体80をさらに備える。図26および図27に示す例では、ウィック体40が延びる方向に沿って互いに並列するように2列の支持体(第1支持体81および第2支持体82)が配置されているが、ウィック体40が延びる方向に沿って互いに並列するように3列以上の支持体が配置されていてもよい。 The vapor chamber 1R shown in FIG. 26 further includes a support 80 arranged in the housing 10 along the direction in which the wick body 40 extends. In the example shown in FIGS. 26 and 27, two rows of supports (first support 81 and second support 82) are arranged so as to be parallel to each other along the direction in which the wick body 40 extends. Three or more rows of supports may be arranged so as to be parallel to each other along the direction in which the body 40 extends.
 本実施形態では、少なくとも1組の隣り合うウィック体40は、各々、支持体80により支持された多孔体43を含む。 In this embodiment, at least one set of adjacent wick bodies 40 each includes a porous body 43 supported by a support 80.
 第1液体流路51は、多孔体43の一部と筐体10の一部と支持体80の一部とに囲まれた空間に形成されている。具体的には、第1支持体81と第2支持体82との間にウィック体40が延びる方向に沿って間隔が設けられることにより第1液体流路51が形成されている。 The first liquid flow path 51 is formed in a space surrounded by a part of the porous body 43, a part of the housing 10, and a part of the support 80. Specifically, the first liquid flow path 51 is formed by providing a space between the first support 81 and the second support 82 along the direction in which the wick body 40 extends.
 第2液体流路52は、多孔体43が第1内壁面11aまたは第2内壁面12aに接する面のうちの少なくとも1つの面に形成されている。具体的には、第2内壁面12aに対向する多孔体43の面に、ウィック体40が延びる方向に沿って溝部が設けられることにより第2液体流路52が形成されている。 The second liquid flow path 52 is formed on at least one surface of the surface in which the porous body 43 is in contact with the first inner wall surface 11a or the second inner wall surface 12a. Specifically, the second liquid flow path 52 is formed by providing a groove portion along the direction in which the wick body 40 extends on the surface of the porous body 43 facing the second inner wall surface 12a.
 図26および図27では、第1内壁面11aに支持体80が配置され、第2内壁面12aに対向する多孔体43の面に第2液体流路52が形成されているが、第2内壁面12aに支持体80が配置され、第1内壁面11aに対向する多孔体43の面に第2液体流路52が形成されていてもよい。あるいは、これらが混在してもよい。 In FIGS. 26 and 27, the support 80 is arranged on the first inner wall surface 11a, and the second liquid flow path 52 is formed on the surface of the porous body 43 facing the second inner wall surface 12a. The support 80 may be arranged on the wall surface 12a, and the second liquid flow path 52 may be formed on the surface of the porous body 43 facing the first inner wall surface 11a. Alternatively, these may be mixed.
 多孔体43は、例えば、金属多孔体、セラミックス多孔体または樹脂多孔体から構成される。多孔体43は、例えば、金属多孔質焼結体、セラミックス多孔質焼結体等の焼結体から構成されてもよい。多孔体43は、銅またはニッケルの多孔質焼結体から構成されることが好ましい。 The porous body 43 is composed of, for example, a metal porous body, a ceramic porous body, or a resin porous body. The porous body 43 may be composed of, for example, a sintered body such as a metal porous sintered body or a ceramic porous sintered body. The porous body 43 is preferably composed of a porous sintered body of copper or nickel.
 支持体80を形成する材料は、特に限定されないが、例えば、樹脂、金属、セラミックス、またはそれらの混合物、積層物等が挙げられる。また、支持体80は、筐体10と一体であってもよく、例えば、第1シート11または第2シート12の内壁面をエッチング加工すること等により形成されていてもよい。 The material forming the support 80 is not particularly limited, and examples thereof include resins, metals, ceramics, mixtures thereof, and laminates. Further, the support 80 may be integrated with the housing 10, and may be formed, for example, by etching the inner wall surface of the first sheet 11 or the second sheet 12.
 支持体80の形状は、特に限定されず、例えば、ウィック体40が延びる方向に沿って配置されるレール状の支柱から構成されてもよく、ウィック体40が延びる方向に沿って間隔を空けて配置される複数の支柱から構成されてもよい。 The shape of the support 80 is not particularly limited, and may be composed of, for example, rail-shaped columns arranged along the direction in which the wick body 40 extends, at intervals along the direction in which the wick body 40 extends. It may be composed of a plurality of columns to be arranged.
 本発明の熱拡散デバイスは、放熱を目的として電子機器に搭載され得る。したがって、本発明の熱拡散デバイスを備える電子機器も本発明の1つである。本発明の電子機器としては、例えばスマートフォン、タブレット端末、ノートパソコン、ゲーム機器、ウェアラブルデバイス等が挙げられる。本発明の熱拡散デバイスは上記のとおり、外部動力を必要とせず自立的に作動し、作動媒体の蒸発潜熱および凝縮潜熱を利用して、二次元的に高速で熱を拡散することができる。そのため、本発明の熱拡散デバイスを備える電子機器により、電子機器内部の限られたスペースにおいて、放熱を効果的に実現することができる。 The heat diffusion device of the present invention can be mounted on an electronic device for the purpose of heat dissipation. Therefore, an electronic device provided with the heat diffusion device of the present invention is also one of the present inventions. Examples of the electronic device of the present invention include smartphones, tablet terminals, notebook computers, game devices, wearable devices and the like. As described above, the heat diffusion device of the present invention operates independently without the need for external power, and can diffuse heat in two dimensions at high speed by utilizing the latent heat of vaporization and the latent heat of condensation of the working medium. Therefore, the electronic device provided with the heat diffusion device of the present invention can effectively realize heat dissipation in the limited space inside the electronic device.
 本発明の熱拡散デバイスは、携帯情報端末等の分野において、広範な用途に使用できる。例えば、CPU等の熱源の温度を下げ、電子機器の使用時間を延ばすために使用することができ、スマートフォン、タブレット、ノートPC等に使用することができる。 The heat diffusion device of the present invention can be used for a wide range of applications in the field of portable information terminals and the like. For example, it can be used to lower the temperature of a heat source such as a CPU and extend the usage time of an electronic device, and can be used for smartphones, tablets, notebook PCs, and the like.
 1、1A、1B、1C、1D、1E、1F、1G、1H、1I、1J、1K、1L、1M、1N、1O、1P、1Q、1R ベーパーチャンバー(熱拡散デバイス)
 10、10A、10B 筐体
 11、11B 第1シート
 11a 第1内壁面
 12、12B 第2シート
 12a 第2内壁面
 20 作動媒体
 30、71、72 ウィック
 40 ウィック体
 41、41A、41B、41C、41D、41E 第1多孔体
 42、42A、42B、42C、42D、42E 第2多孔体
 43 多孔体
 50 蒸気流路
 51 第1液体流路
 52、52A 第2液体流路
 53 第3液体流路
 60 支柱
 80 支持体
 81 第1支持体
 82 第2支持体
 a 蒸気流路の幅
 b 第1液体流路の幅
 c 第1多孔体の幅
 c 第2多孔体の幅
 d 第1多孔体の高さ
 d 第2多孔体の高さ
 e 第2液体流路の幅
 f 第2液体流路の高さ
 g 第3液体流路の幅
 CP 凝縮部
 EP、EP1、EP2 蒸発部
 HS 熱源
 X 幅方向
 Y 長さ方向
 Z 厚さ方向

 
1,1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H, 1I, 1J, 1K, 1L, 1M, 1N, 1O, 1P, 1Q, 1R vapor chamber (heat diffusion device)
10, 10A, 10B Housing 11, 11B 1st sheet 11a 1st inner wall surface 12, 12B 2nd sheet 12a 2nd inner wall surface 20 Working medium 30, 71, 72 Wick 40 Wick body 41, 41A, 41B, 41C, 41D , 41E 1st porous body 42, 42A, 42B, 42C, 42D, 42E 2nd porous body 43 porous body 50 vapor flow path 51 1st liquid flow path 52, 52A 2nd liquid flow path 53 3rd liquid flow path 60 columns 80 Support 81 1st support 82 2nd support a Width of steam flow path b Width of 1st liquid flow path c 1 Width of 1st porous body c 2 Width of 2nd porous body d 1 Of 1st porous body Height d 2 Height of the second porous body e Width of the second liquid flow path f Height of the second liquid flow path g Width of the third liquid flow path CP Condensation part EP, EP1, EP2 Evaporation part HS Heat source X width Direction Y Length direction Z Thickness direction

Claims (27)

  1.  厚さ方向に対向する第1内壁面および第2内壁面を有する筐体と、
     前記筐体の内部空間に封入された作動媒体と、
     前記筐体の内部空間に配置されたウィックと、を備え、
     前記筐体は、前記作動媒体を蒸発させる蒸発部を有し、
     前記ウィックは、前記蒸発部から線状に延びて、少なくとも一部が前記第1内壁面および前記第2内壁面のうちの少なくとも一方の内壁面に接する複数のウィック体を含み、
     少なくとも1組の隣り合う前記ウィック体の間には、蒸気流路が形成されており、
     前記隣り合うウィック体において、少なくとも各々の前記ウィック体の一部と前記筐体の一部とに囲まれた空間に第1液体流路が形成されており、
     前記ウィック体が前記第1内壁面または前記第2内壁面に接する面のうちの少なくとも1つの面には、前記ウィック体が延びる方向に沿って溝部が設けられることにより第2液体流路が形成されている、熱拡散デバイス。
    A housing having a first inner wall surface and a second inner wall surface facing each other in the thickness direction,
    The working medium enclosed in the internal space of the housing and
    With a wick arranged in the internal space of the housing,
    The housing has an evaporation unit that evaporates the working medium.
    The wick includes a plurality of wicks extending linearly from the evaporation portion and at least partially in contact with the inner wall surface of at least one of the first inner wall surface and the second inner wall surface.
    A steam flow path is formed between at least one set of adjacent wick bodies.
    In the adjacent wick bodies, a first liquid flow path is formed in a space surrounded by at least a part of each of the wick bodies and a part of the housing.
    A second liquid flow path is formed by providing a groove along the direction in which the wick body extends on at least one of the surfaces of the wick body in contact with the first inner wall surface or the second inner wall surface. Has been a heat diffusion device.
  2.  前記隣り合うウィック体は、各々、第1多孔体および第2多孔体を含み、
     前記第1液体流路は、前記第1多孔体の一部と前記第2多孔体の一部と前記筐体の一部とに囲まれた空間に形成され、
     前記第2液体流路は、前記第1多孔体が前記第1内壁面に接する面、前記第1多孔体が前記第2内壁面に接する面、前記第2多孔体が前記第1内壁面に接する面、および、前記第2多孔体が前記第2内壁面に接する面のうちの少なくとも1つの面に形成されている、請求項1に記載の熱拡散デバイス。
    The adjacent wick bodies include a first porous body and a second porous body, respectively.
    The first liquid flow path is formed in a space surrounded by a part of the first porous body, a part of the second porous body, and a part of the housing.
    The second liquid flow path has a surface in which the first porous body is in contact with the first inner wall surface, a surface in which the first porous body is in contact with the second inner wall surface, and the second porous body is on the first inner wall surface. The heat diffusion device according to claim 1, wherein the surface in contact and the surface in which the second porous body is in contact with the second inner wall surface are formed on at least one surface.
  3.  前記ウィック体が延びる方向に垂直な断面において、前記第2液体流路の幅は、前記第1多孔体の幅および前記第2多孔体の幅のいずれよりも小さく、かつ、前記液体流路の高さは、前記第1多孔体の高さの1/2および前記第2多孔体の高さの1/2のいずれよりも小さい、請求項2に記載の熱拡散デバイス。 In the cross section perpendicular to the direction in which the wick body extends, the width of the second liquid flow path is smaller than both the width of the first porous body and the width of the second porous body, and the width of the liquid flow path is smaller than that of the liquid flow path. The heat diffusion device according to claim 2, wherein the height is smaller than either 1/2 of the height of the first porous body and 1/2 of the height of the second porous body.
  4.  前記ウィック体が延びる方向に垂直な断面において、前記第1多孔体の幅および前記第2多孔体の幅は、各々、50μm以上300μm以下である、請求項2または3に記載の熱拡散デバイス。 The heat diffusion device according to claim 2 or 3, wherein the width of the first porous body and the width of the second porous body are 50 μm or more and 300 μm or less, respectively, in a cross section perpendicular to the direction in which the wick body extends.
  5.  前記ウィック体が延びる方向に垂直な断面において、前記第1多孔体の高さおよび前記第2多孔体の高さは、各々、20μm以上300μm以下である、請求項2~4のいずれか1項に記載の熱拡散デバイス。 One of claims 2 to 4, wherein the height of the first porous body and the height of the second porous body are 20 μm or more and 300 μm or less, respectively, in a cross section perpendicular to the direction in which the wick body extends. The heat diffusion device described in.
  6.  前記ウィック体が延びる方向に垂直な断面において、前記第1多孔体および前記第2多孔体は、各々、前記厚さ方向で幅が一定でない、請求項2~5のいずれか1項に記載の熱拡散デバイス。 The aspect according to any one of claims 2 to 5, wherein the first porous body and the second porous body each have a non-constant width in the thickness direction in a cross section perpendicular to the direction in which the wick body extends. Heat diffusion device.
  7.  前記ウィック体が延びる方向に垂直な断面において、前記第1多孔体および前記第2多孔体は、各々、前記第1内壁面側の端部の幅よりも前記第2内壁面側の端部の幅が狭い、請求項2~5のいずれか1項に記載の熱拡散デバイス。 In the cross section perpendicular to the direction in which the wick body extends, the first porous body and the second porous body are each end of the second inner wall surface side with respect to the width of the end portion of the first inner wall surface side. The heat diffusion device according to any one of claims 2 to 5, which has a narrow width.
  8.  前記ウィック体が延びる方向に垂直な断面において、前記第1多孔体および前記第2多孔体は、各々、前記第1内壁面側の端部から前記第2内壁面側の端部に向かって幅が連続的に狭くなる、請求項2~5のいずれか1項に記載の熱拡散デバイス。 In the cross section perpendicular to the direction in which the wick body extends, the first porous body and the second porous body each have a width from the end portion on the first inner wall surface side toward the end portion on the second inner wall surface side. The heat diffusion device according to any one of claims 2 to 5, wherein the heat diffusion device is continuously narrowed.
  9.  前記ウィック体が延びる方向に垂直な断面において、前記第1多孔体および前記第2多孔体は、各々、前記第1内壁面側の端部から前記第2内壁面側の端部に向かって幅が段階的に狭くなる、請求項2~5のいずれか1項に記載の熱拡散デバイス。 In the cross section perpendicular to the direction in which the wick body extends, the first porous body and the second porous body each have a width from the end portion on the first inner wall surface side toward the end portion on the second inner wall surface side. The heat diffusion device according to any one of claims 2 to 5, wherein the heat diffusion device is gradually narrowed.
  10.  前記第1多孔体および前記第2多孔体は、前記第1内壁面側の端部が互いに接続されている、請求項7~9のいずれか1項に記載の熱拡散デバイス。 The heat diffusion device according to any one of claims 7 to 9, wherein the first porous body and the second porous body are connected to each other at the ends on the first inner wall surface side.
  11.  前記ウィック体が延びる方向に垂直な断面において、前記第1多孔体および前記第2多孔体は、各々、前記第1内壁面側の端部と前記第2内壁面側の端部との間に、前記第1内壁面側の端部および前記第2内壁面側の端部よりも幅が広い部分を有する、請求項2~5のいずれか1項に記載の熱拡散デバイス。 In a cross section perpendicular to the direction in which the wick body extends, the first porous body and the second porous body are respectively between the end portion on the first inner wall surface side and the end portion on the second inner wall surface side. The heat diffusion device according to any one of claims 2 to 5, further comprising an end portion on the first inner wall surface side and a portion wider than the end portion on the second inner wall surface side.
  12.  前記ウィック体が延びる方向に垂直な断面において、前記第1多孔体および前記第2多孔体は、各々、前記第1内壁面側の端部と前記第2内壁面側の端部との間に、前記第1内壁面側の端部および前記第2内壁面側の端部よりも幅が狭い部分を有する、請求項2~5のいずれか1項に記載の熱拡散デバイス。 In a cross section perpendicular to the direction in which the wick body extends, the first porous body and the second porous body are respectively between the end portion on the first inner wall surface side and the end portion on the second inner wall surface side. The heat diffusion device according to any one of claims 2 to 5, further comprising an end portion on the first inner wall surface side and a portion narrower than the end portion on the second inner wall surface side.
  13.  前記第1多孔体および前記第2多孔体の孔径は、各々、50μm以下である、請求項2~12のいずれか1項に記載の熱拡散デバイス。 The heat diffusion device according to any one of claims 2 to 12, wherein the pore diameters of the first porous body and the second porous body are 50 μm or less, respectively.
  14.  前記蒸気流路内に配置され、前記筐体の前記第1内壁面および前記第2内壁面を内側から支持する複数の支柱をさらに備え、
     前記厚さ方向において、前記支柱の高さは、前記第1多孔体の高さおよび前記第2多孔体の高さのいずれよりも高い、請求項2~13のいずれか1項に記載の熱拡散デバイス。
    Further provided with a plurality of columns arranged in the steam flow path and supporting the first inner wall surface and the second inner wall surface of the housing from the inside.
    The heat according to any one of claims 2 to 13, wherein the height of the column is higher than either the height of the first porous body or the height of the second porous body in the thickness direction. Spreading device.
  15.  前記ウィック体が延びる方向に沿って前記筐体内に配置される支持体をさらに備え、
     前記隣り合うウィック体は、各々、前記支持体により支持された多孔体を含み、
     前記第1液体流路は、前記多孔体の一部と前記筐体の一部と前記支持体の一部とに囲まれた空間に形成され、
     前記第2液体流路は、前記多孔体が前記第1内壁面または前記第2内壁面に接する面のうちの少なくとも1つの面に形成されている、請求項1に記載の熱拡散デバイス。
    Further comprising a support arranged in the housing along the direction in which the wick body extends.
    Each of the adjacent wicks comprises a porous body supported by the support.
    The first liquid flow path is formed in a space surrounded by a part of the porous body, a part of the housing, and a part of the support.
    The heat diffusion device according to claim 1, wherein the second liquid flow path is formed on at least one surface of the surface in which the porous body is in contact with the first inner wall surface or the second inner wall surface.
  16.  前記ウィック体が延びる方向に垂直な断面において、前記蒸気流路の幅は1000μm以上3000μm以下であり、前記第1液体流路の幅は50μm以上500μm以下である、請求項1~15のいずれか1項に記載の熱拡散デバイス。 Any of claims 1 to 15, wherein the width of the vapor flow path is 1000 μm or more and 3000 μm or less, and the width of the first liquid flow path is 50 μm or more and 500 μm or less in a cross section perpendicular to the direction in which the wick body extends. The heat diffusion device according to item 1.
  17.  前記蒸発部における流路の密度が、前記蒸発部と離れた部分における流路の密度よりも高い、請求項1~16のいずれか1項に記載の熱拡散デバイス。 The heat diffusion device according to any one of claims 1 to 16, wherein the density of the flow path in the evaporation section is higher than the density of the flow path in the portion away from the evaporation section.
  18.  前記筐体は、複数の前記蒸発部を有する、請求項17に記載の熱拡散デバイス。 The heat diffusion device according to claim 17, wherein the housing has a plurality of the evaporation units.
  19.  前記蒸気流路内に配置され、前記筐体の前記第1内壁面および前記第2内壁面を内側から支持する複数の支柱をさらに備える、請求項1~18のいずれか1項に記載の熱拡散デバイス。 The heat according to any one of claims 1 to 18, further comprising a plurality of columns arranged in the steam flow path and supporting the first inner wall surface and the second inner wall surface of the housing from the inside. Spreading device.
  20.  前記隣り合うウィック体の蒸発部側の端部同士が接続され、前記第1液体流路同士が連通している、請求項1~19のいずれか1項に記載の熱拡散デバイス。 The heat diffusion device according to any one of claims 1 to 19, wherein the ends of the adjacent wick bodies on the evaporation portion side are connected to each other and the first liquid flow paths communicate with each other.
  21.  前記隣り合うウィック体の蒸発部と反対側の端部同士が接続され、前記第1液体流路同士が連通している、請求項1~20のいずれか1項に記載の熱拡散デバイス。 The heat diffusion device according to any one of claims 1 to 20, wherein the ends opposite to the evaporation portion of the adjacent wick body are connected to each other, and the first liquid flow paths communicate with each other.
  22.  前記複数のウィック体は、前記厚さ方向から見た前記筐体の平面形状に沿って延びている、請求項1~21のいずれか1項に記載の熱拡散デバイス。 The heat diffusion device according to any one of claims 1 to 21, wherein the plurality of wick bodies extend along the planar shape of the housing when viewed from the thickness direction.
  23.  前記蒸気流路内には、前記ウィック体が延びる方向に沿って延びる第3液体流路が形成されており、
     前記ウィック体が延びる方向に垂直な断面において、前記第3液体流路の幅は、前記第1液体流路の幅よりも小さく、
     前記厚さ方向において、前記第3液体流路の高さは、前記第1液体流路の高さよりも低い、請求項1~22のいずれか1項に記載の熱拡散デバイス。
    In the vapor flow path, a third liquid flow path extending along the direction in which the wick body extends is formed.
    In the cross section perpendicular to the direction in which the wick body extends, the width of the third liquid flow path is smaller than the width of the first liquid flow path.
    The heat diffusion device according to any one of claims 1 to 22, wherein the height of the third liquid flow path is lower than the height of the first liquid flow path in the thickness direction.
  24.  前記筐体は、前記第1内壁面を有する第1シートの外縁部と前記第2内壁面を有する第2シートの外縁部とが接合されて構成され、
     前記第1シートは、厚みが一定の平板形状であり、
     前記第2シートは、前記外縁部が前記外縁部以外の部分よりも厚い形状である、請求項1~23のいずれか1項に記載の熱拡散デバイス。
    The housing is configured by joining the outer edge portion of the first sheet having the first inner wall surface and the outer edge portion of the second sheet having the second inner wall surface.
    The first sheet has a flat plate shape having a constant thickness.
    The heat diffusion device according to any one of claims 1 to 23, wherein the second sheet has a shape in which the outer edge portion is thicker than the portion other than the outer edge portion.
  25.  前記筐体は、前記第1内壁面を有する第1シートの外縁部と前記第2内壁面を有する第2シートの外縁部とが接合されて構成され、
     前記第1シートは、厚みが一定の平板形状であり、
     前記第2シートは、厚みが一定で、かつ、前記外縁部に対して前記外縁部以外の部分が外側に凸の形状である、請求項1~23のいずれか1項に記載の熱拡散デバイス。
    The housing is configured by joining the outer edge portion of the first sheet having the first inner wall surface and the outer edge portion of the second sheet having the second inner wall surface.
    The first sheet has a flat plate shape having a constant thickness.
    The heat diffusion device according to any one of claims 1 to 23, wherein the second sheet has a constant thickness and a portion other than the outer edge portion is convex outward with respect to the outer edge portion. ..
  26.  前記第1内壁面に沿って配置されたウィック、および、前記第2内壁面に沿って配置されたウィックのうち、少なくとも一方のウィックをさらに備える、請求項1~25のいずれか1項に記載の熱拡散デバイス。 The invention according to any one of claims 1 to 25, further comprising at least one of the wicks arranged along the first inner wall surface and the wicks arranged along the second inner wall surface. Heat diffusion device.
  27.  請求項1~26のいずれか1項に記載の熱拡散デバイスを備える、電子機器。

     
    An electronic device comprising the heat diffusion device according to any one of claims 1 to 26.

PCT/JP2021/035365 2020-10-06 2021-09-27 Thermal diffusion device WO2022075108A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202190000766.3U CN220454356U (en) 2020-10-06 2021-09-27 Thermal diffusion device and electronic apparatus
JP2022519556A JP7120494B1 (en) 2020-10-06 2021-09-27 heat spreading device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-169338 2020-10-06
JP2020169338 2020-10-06

Publications (1)

Publication Number Publication Date
WO2022075108A1 true WO2022075108A1 (en) 2022-04-14

Family

ID=81125916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035365 WO2022075108A1 (en) 2020-10-06 2021-09-27 Thermal diffusion device

Country Status (3)

Country Link
JP (1) JP7120494B1 (en)
CN (1) CN220454356U (en)
WO (1) WO2022075108A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004238672A (en) * 2003-02-05 2004-08-26 Fujikura Ltd Method for manufacturing plate-type heat pipe
JP2012132582A (en) * 2010-12-20 2012-07-12 Furukawa Electric Co Ltd:The Thin sheet type heat pipe
JP2018185110A (en) * 2017-04-26 2018-11-22 株式会社フジクラ heat pipe
JP6442594B1 (en) * 2017-12-25 2018-12-19 株式会社フジクラ Heat dissipation module
JP2019070512A (en) * 2017-10-06 2019-05-09 大日本印刷株式会社 Vapor chamber, electronic device, and metal sheet for vapor chamber
JP2019207076A (en) * 2018-05-29 2019-12-05 古河電気工業株式会社 Vapor chamber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004238672A (en) * 2003-02-05 2004-08-26 Fujikura Ltd Method for manufacturing plate-type heat pipe
JP2012132582A (en) * 2010-12-20 2012-07-12 Furukawa Electric Co Ltd:The Thin sheet type heat pipe
JP2018185110A (en) * 2017-04-26 2018-11-22 株式会社フジクラ heat pipe
JP2019070512A (en) * 2017-10-06 2019-05-09 大日本印刷株式会社 Vapor chamber, electronic device, and metal sheet for vapor chamber
JP6442594B1 (en) * 2017-12-25 2018-12-19 株式会社フジクラ Heat dissipation module
JP2019207076A (en) * 2018-05-29 2019-12-05 古河電気工業株式会社 Vapor chamber

Also Published As

Publication number Publication date
JP7120494B1 (en) 2022-08-17
CN220454356U (en) 2024-02-06
JPWO2022075108A1 (en) 2022-04-14

Similar Documents

Publication Publication Date Title
WO2021256126A1 (en) Vapor chamber
JP6564879B2 (en) Vapor chamber
WO2018198372A1 (en) Vapor chamber
JP6442594B1 (en) Heat dissipation module
WO2018198353A1 (en) Vapor chamber
US20200080791A1 (en) Heat dissipation module
WO2019022214A1 (en) Wick structure and heat pipe accommodating wick structure
WO2021157506A1 (en) Vapor chamber
WO2022075108A1 (en) Thermal diffusion device
WO2022075109A1 (en) Heat spreading device
JP2021143809A (en) Vapor chamber and electronic device
JP7173402B2 (en) vapor chamber
WO2022107479A1 (en) Heat spreading device
WO2023182033A1 (en) Thermal diffusion device and electronic apparatus
WO2023182029A1 (en) Heat diffusing device, and electronic apparatus
WO2024018846A1 (en) Heat diffusing device, and electronic apparatus
CN218888890U (en) Thermal diffusion device and electronic device
WO2022201918A1 (en) Thermal diffusion device and electronic apparatus
WO2023026896A1 (en) Thermal diffusion device
WO2022230296A1 (en) Heat dissipation device
JP7231121B2 (en) Porous body, heat dissipation structure and electronic device
WO2022230295A1 (en) Thermal diffusion device
WO2023238626A1 (en) Heat diffusion device and electronic appliance
WO2023058595A1 (en) Thermal diffusion device
WO2023171408A1 (en) Thermal diffusion device and electronic apparatus

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022519556

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877409

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202190000766.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877409

Country of ref document: EP

Kind code of ref document: A1