WO2022073510A1 - 测量方法、装置及设备 - Google Patents

测量方法、装置及设备 Download PDF

Info

Publication number
WO2022073510A1
WO2022073510A1 PCT/CN2021/122846 CN2021122846W WO2022073510A1 WO 2022073510 A1 WO2022073510 A1 WO 2022073510A1 CN 2021122846 W CN2021122846 W CN 2021122846W WO 2022073510 A1 WO2022073510 A1 WO 2022073510A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
signal quality
ports
service
threshold
Prior art date
Application number
PCT/CN2021/122846
Other languages
English (en)
French (fr)
Inventor
林聪�
谭舒
邹旭
李宁
Original Assignee
锐迪科(重庆)微电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 锐迪科(重庆)微电子科技有限公司 filed Critical 锐迪科(重庆)微电子科技有限公司
Publication of WO2022073510A1 publication Critical patent/WO2022073510A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]

Definitions

  • the present application relates to communication technologies, and in particular, to a measurement method, apparatus and device.
  • many network devices have multiple ports (for example, 2), and the network devices can send data to terminal devices through the multiple ports.
  • the terminal device measures multiple ports of the network device, obtains the signal quality corresponding to each port, combines the signal qualities corresponding to the multiple ports, and performs service processing according to the combined signal quality.
  • the signal quality of the terminal equipment for such ports is inaccurate or invalid, so that the combined signal quality is also inaccurate, causing the terminal equipment to perform operations on services. Processing reliability is poor.
  • Embodiments of the present application provide a measurement method, device, and device, which improve the reliability of service processing.
  • an embodiment of the present application provides a measurement method, including:
  • the terminal device measures the signal quality of at least two ports of the network device, and obtains the signal quality corresponding to each port;
  • the terminal device determines a service port and a non-service port in the at least two ports according to the signal quality corresponding to each port, the non-service port is a port that does not send signals, and the service port is used for the The terminal equipment performs business processing.
  • the signal quality of the service port is greater than or equal to a first threshold
  • the signal quality of the non-service port is less than the first threshold.
  • the terminal device determines the service port and the non-service port among the at least two ports according to the signal quality corresponding to each port, including:
  • the terminal device determines the signal quality corresponding to the at least two ports according to the signal quality corresponding to each port;
  • the terminal device determines the service port and the non-service port among the at least two ports according to the signal quality corresponding to each port and the signal quality corresponding to the at least two ports.
  • the terminal device determines, according to the signal quality corresponding to each port and the signal quality corresponding to the at least two ports, the service port and the non-communication port among the at least two ports.
  • Service ports including:
  • the at least two ports are respectively determined as the service ports ;or,
  • the signal quality corresponding to the at least two ports is greater than or equal to the first threshold, and there is a port whose signal quality is less than the first threshold in the at least two ports, the signal quality is greater than or equal to the first threshold
  • the port with the threshold is determined as the service port, and the port with signal quality less than the first threshold is determined as the non-service port.
  • the at least two ports include a first port and a second port; the first port corresponds to a first signal quality, and the second port corresponds to a second signal quality;
  • determining the service port and the non-service port in the at least two ports including:
  • the first signal quality, the second signal quality, and the signal quality corresponding to the at least two ports are all greater than or equal to the first threshold, determining the at least two ports as the service ports respectively; or,
  • both the first signal quality and the signal quality corresponding to the at least two ports are greater than or equal to the first threshold, and the second signal quality is less than the first threshold, it is determined that the first port is the first port. a service port, determining that the second port is the non-service port; or,
  • both the second signal quality and the signal quality corresponding to the at least two ports are greater than or equal to the first threshold, and the first signal quality is less than the first threshold, it is determined that the first port is the first port.
  • a non-service port determining that the second port is the service port.
  • the terminal device performs signal quality measurement on the port of the network device to obtain the signal quality corresponding to the port, including:
  • the terminal device performs M signal quality measurements on the port to obtain M signal qualities, where M is an integer greater than 1;
  • the terminal device determines the signal quality corresponding to the port according to the M signal qualities.
  • the terminal device performs signal quality measurement on at least two ports of the network device, and before obtaining the signal quality corresponding to each port, the method further includes:
  • the terminal device determines that the signal quality corresponding to the network device is greater than or equal to a second threshold.
  • determining that the signal quality corresponding to the network device is greater than or equal to a second threshold includes:
  • the terminal device determines a third port among the at least two ports
  • the terminal device determines the sampling times of the signal sampling performed to obtain the measurement result corresponding to the third port
  • the terminal device determines that the signal quality corresponding to the network device is greater than or equal to the second threshold.
  • determining a third port among the at least two ports includes:
  • the terminal device simultaneously performs result measurement on each of the at least two ports;
  • the terminal device determines the first port for which the measurement result is obtained among the at least two ports as the third port.
  • the terminal device performs signal quality measurement on at least two ports of the network device, and before obtaining the signal quality corresponding to each port, the method further includes:
  • the terminal device determines that the number of ports of the network device is greater than one.
  • the method further includes:
  • the terminal device performs service processing according to the measurement result.
  • an embodiment of the present application provides a measurement device, including a measurement module and a first determination module, wherein,
  • the measurement module is used to measure the signal quality of at least two ports of the network device to obtain the signal quality corresponding to each port;
  • the first determining module is configured to, according to the signal quality corresponding to each port, determine a service port and a non-service port among the at least two ports, where the non-service port is a port that does not perform signal transmission, and the service port is not used for signal transmission.
  • the port is used for the terminal device to perform service processing.
  • the signal quality of the service port is greater than or equal to a first threshold
  • the signal quality of the non-service port is less than the first threshold.
  • the first determining module is specifically configured to:
  • the device determines the signal quality corresponding to the at least two ports according to the signal quality corresponding to each port;
  • the service port and the non-service port are determined among the at least two ports according to the signal quality corresponding to each port and the signal quality corresponding to the at least two ports.
  • the first determining module is specifically configured to:
  • the at least two ports are respectively determined as the service ports ;or,
  • the signal quality corresponding to the at least two ports is greater than or equal to the first threshold, and there is a port whose signal quality is less than the first threshold in the at least two ports, the signal quality is greater than or equal to the first threshold
  • the port with the threshold is determined as the service port, and the port with signal quality less than the first threshold is determined as the non-service port.
  • the at least two ports include a first port and a second port; the first port corresponds to a first signal quality, and the second port corresponds to a second signal quality; the first Determine which modules are specifically used for:
  • the first signal quality, the second signal quality, and the signal quality corresponding to the at least two ports are all greater than or equal to the first threshold, determining the at least two ports as the service ports respectively; or,
  • both the first signal quality and the signal quality corresponding to the at least two ports are greater than or equal to the first threshold, and the second signal quality is less than the first threshold, it is determined that the first port is the first port. a service port, determining that the second port is the non-service port; or,
  • both the second signal quality and the signal quality corresponding to the at least two ports are greater than or equal to the first threshold, and the first signal quality is less than the first threshold, it is determined that the first port is the first port.
  • a non-service port determining that the second port is the service port.
  • the measurement module is specifically used for:
  • the signal qualities corresponding to the ports are determined.
  • the apparatus further includes a second determining module, wherein,
  • the second determining module is further configured to, before the measuring module performs signal quality measurement on at least two ports of the network device and obtains the signal quality corresponding to each port, determine that the signal quality corresponding to the network device is greater than or equal to second threshold.
  • the second determining module is specifically configured to:
  • the signal quality corresponding to the network device is greater than or equal to the second threshold.
  • the second determining module is specifically configured to:
  • the first port of the at least two ports for which the measurement result is obtained is determined as the third port.
  • the apparatus further includes a third determining module, wherein,
  • the third determination module is configured to determine that the number of ports of the network device is greater than 1 before the measurement module measures the signal quality of at least two ports of the network device and obtains the signal quality corresponding to each port.
  • the apparatus further includes a service processing module, wherein the service processing module is configured to:
  • an embodiment of the present application provides a terminal device, including: a transceiver, a processor, and a memory;
  • the memory stores computer-executable instructions
  • the processor executes the computer-implemented instructions stored in the memory, so that the processor executes the measurement method according to any one of the first aspects.
  • embodiments of the present application provide a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when the computer-executable instructions are executed by a processor, are used to implement any one of the first aspect The measurement method described in item.
  • an embodiment of the present application provides a computer program product, including a computer program, which implements the measurement method described in any one of the first aspect when the computer program is executed by a processor.
  • the terminal device can measure the port of the network device to obtain the signal quality of each port, and determine the service port and non-service port among the ports of the network device according to the signal quality of each port. port.
  • the terminal device can measure the service port to determine the measurement result of the service port, and perform service processing according to the measurement result of the service port. Since the measurement result on which the service processing is performed is the measurement result of the service port, the accuracy of the measurement result is high, thereby improving the reliability of processing the service.
  • FIG. 1A is a schematic diagram of throughput provided by an embodiment of the present application.
  • FIG. 1B is a schematic diagram of a broadcast channel bit error rate provided by an embodiment of the present application.
  • FIG. 1C is a schematic diagram of a control channel bit error rate provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a measurement method provided by an embodiment of the present application.
  • FIG. 4 provides another measurement method according to an embodiment of the present application
  • FIG. 5 is a schematic structural diagram of a measurement device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a measurement device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • Network device It is a device with wireless transceiver function. Including but not limited to: an evolved base station (Evolutional Node B, eNB or eNodeB) in long term evolution (LTE), a base station (gNodeB or gNB) or a transceiver point ( transmission receiving point/transmission receiving poin, TRP), the base station in the subsequent evolution system, the access node in the wireless fidelity (wireless fidelity, WiFi) system, the wireless relay node, the wireless backhaul node, etc.
  • the base station may be: a macro base station, a micro base station, a pico base station, a small base station, a relay station, or a balloon station.
  • Multiple base stations may support the above-mentioned networks of the same technology, or may support the above-mentioned networks of different technologies.
  • a base station may contain one or more co-sited or non-co-sited TRPs.
  • the network device may also be a wireless controller, a centralized unit (centralized unit, CU), and/or a distributed unit (distributed unit, DU) in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the network device has multiple ports, for example, the network device may have two ports.
  • Network equipment can be installed indoors.
  • Terminal equipment It is a device with wireless transceiver function. Terminal equipment can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the terminal device may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal device, industrial control ( Wireless terminals in industrial control, in-vehicle terminal equipment, wireless terminals in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid, transportation security Wireless terminal equipment in (transportation safety), wireless terminal equipment in smart city, wireless terminal equipment in smart home (smart home), wearable terminal equipment, etc.
  • a virtual reality virtual reality
  • AR augmented reality
  • industrial control Wireless terminals in industrial control, in-vehicle terminal equipment, wireless terminals in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid, transportation security Wireless terminal equipment in (transportation safety), wireless terminal equipment in smart city, wireless terminal equipment in smart home (smart home), wearable terminal equipment, etc.
  • the terminal equipment involved in the embodiments of this application may also be referred to as terminal, user equipment (UE), access terminal equipment, vehicle-mounted terminal, industrial control terminal, UE unit, UE station, mobile station, mobile station, and remote station , remote terminal equipment, mobile equipment, UE terminal equipment, wireless communication equipment, UE proxy or UE device, etc.
  • Terminal devices can also be stationary or mobile.
  • a network device can have multiple ports through which a network device can send signals (data).
  • some of the multiple ports of a network device may not send signals, and such ports may be called non-service ports or non-signal ports (muting ports).
  • the port for data transmission may be called a service port.
  • a service port For example, when a port of a network device fails and the network device cannot send data through the port, the port is a non-service port. There may be no non-service ports in the ports of the network device, and the non-service ports of the network device may be different at different times. If there is a non-service port in the network device, the performance of the service provided by the network device will be affected.
  • FIGS. 1A-1C the description will be made with reference to FIGS. 1A-1C .
  • FIG. 1A is a schematic diagram of throughput provided by an embodiment of the present application. Please refer to FIG. 1A, including a coordinate system, the horizontal axis of the coordinate system represents the signal-to-noise ratio, and the vertical axis of the coordinate system represents the throughput.
  • a network device has two ports, denoted as port 0 and port 1.
  • port 0 and port 1 are service ports
  • the throughput curve is the curve above the coordinate system.
  • port 0 is a non-service port
  • port 1 is a service port
  • the throughput curve is the curve below the coordinate system. It can be seen from the two curves that under the condition of the same signal-to-noise ratio, if there are non-service ports in the network device, the throughput will be reduced.
  • FIG. 1B is a schematic diagram of a broadcast channel bit error rate according to an embodiment of the present application.
  • the horizontal axis of the coordinate system represents the signal-to-noise ratio
  • the vertical axis of the coordinate system represents the broadcast channel bit error rate.
  • a network device has two ports, denoted as port 0 and port 1.
  • port 0 and port 1 are service ports
  • the throughput curve is the curve below the coordinate system.
  • port 0 is a non-service port
  • port 1 is a service port
  • the throughput curve is the curve above the coordinate system. It can be seen from the two curves that, in the case of the same signal-to-noise ratio, if there is a non-service port in the network device, the bit error rate of the broadcast channel increases.
  • FIG. 1C is a schematic diagram of a control channel bit error rate according to an embodiment of the present application.
  • the horizontal axis of the coordinate system represents the signal-to-noise ratio
  • the vertical axis of the coordinate system represents the control channel bit error rate.
  • a network device has two ports, denoted as port 0 and port 1.
  • port 0 and port 1 are service ports
  • the throughput curve is the curve below the coordinate system.
  • port 0 is a non-service port
  • port 1 is a service port
  • the throughput curve is the curve above the coordinate system. It can be seen from the two curves that, under the condition of the same signal-to-noise ratio, if there is a non-service port in the network device, the bit error rate of the control channel increases.
  • Measurements Refers to measurements made on a port.
  • Making measurements on the ports may include making result measurements on the ports and making signal quality measurements on the ports.
  • the measurement result of the port may be obtained, and the measurement result may include synchronization information, frequency offset, and the like.
  • the terminal device can decode downlink data, perform mobility management, etc. according to the measurement results.
  • the signal quality of the signal sent by the port can be obtained by measuring the signal quality of the port. For example, you can use the reference signal receiving power (RSRP) or the signal to interference plus noise ratio (SINR), etc. Indicates signal quality.
  • RSRP reference signal receiving power
  • SINR signal to interference plus noise ratio
  • FIG. 2 is a schematic diagram of a communication system provided by an embodiment of the present application. Please refer to FIG. 2 , including a network device 201 and a terminal device 202 .
  • the network device 201 has multiple ports (in FIG. 2 , the network device has port A and port B as an example for illustration). Port A or port B may be a non-service port.
  • the terminal device 202 is located in the serving cell of the network device 201, and the terminal device 202 can receive data sent by the network device 201 through the port.
  • the network device 201 may send configuration information to the terminal device 202 to indicate that the network device 201 has two ports.
  • the terminal device 202 measures the port A and the port B respectively to obtain the measurement result of the port A and the measurement result of the port B respectively, and combines the measurement result of the port A and the measurement result of the port B. , and perform business processing according to the combined measurement results. If there are non-service ports in port A and port B, the measurement results of the terminal equipment on the non-service ports are inaccurate, resulting in inaccurate measurement results after combined processing, which in turn leads to lower reliability of the terminal equipment in processing services.
  • Service processing may include decoding downlink data, performing mobility management, and the like.
  • Mobility management may include service continuity management, cell handover management, and the like.
  • the embodiment of the present application provides a measurement method.
  • the terminal device can measure the port of the network device to obtain the signal quality of each port, and according to the signal quality of each port, in the network
  • the service ports and non-service ports are determined in the ports of the device.
  • the terminal device can measure the service port to determine the measurement result of the service port, and perform service processing according to the measurement result of the service port. Since the measurement result on which the service processing is performed is the measurement result of the service port, the accuracy of the measurement result is high, thereby improving the reliability of processing the service.
  • FIG. 3 is a schematic flowchart of a measurement method provided by an embodiment of the present application. Referring to Figure 3, the method can include:
  • the terminal device measures the signal quality of at least two ports of the network device, and obtains the signal quality corresponding to each port.
  • the network device may send configuration information to the terminal device in advance, where the configuration information includes the number of ports set in the network device.
  • the terminal device can determine the number of ports set in the network device according to the configuration information, and measure the signal quality according to the number of ports.
  • the terminal device receives the reference signal sent by the port, and obtains the measurement information of the reference signal.
  • the signal quality corresponding to the port is determined according to the measurement information, for example, the measurement information may include RSRP, SINR, and the like.
  • RSRP may be determined as the signal quality corresponding to the port
  • SINR may be determined as the signal quality corresponding to the port.
  • M independent signal quality measurements can be performed on the port to obtain M signal qualities, and the M signal qualities can be determined according to the M signal qualities.
  • Signal quality corresponding to the port where M is an integer greater than 1.
  • the maximum value of the M signal qualities may be determined as the signal quality corresponding to the port, or the weighted average of the M signal qualities may be determined as the signal quality corresponding to the port, or the M signal qualities may be determined first.
  • Smoothing is performed, and the weighted average of the smoothed signal qualities is determined as the signal quality corresponding to the port.
  • the smoothing process may include: deleting the signal qualities of the M signal qualities greater than the maximum threshold, and/or deleting the signal qualities of the M signal qualities less than the minimum threshold.
  • S302. Determine a service port and a non-service port in at least two ports according to the signal quality corresponding to each port.
  • the non-service port is a port that does not send signals
  • the service port is a port that sends signals. That is, the network device sends signals through service ports and does not send signals through non-service ports.
  • the signal quality of the service port is greater than or equal to the first threshold, and the signal quality of the non-service port is less than the first threshold.
  • the service port and the non-service port can be determined in the at least two ports in the following manner: the terminal device determines the signal quality corresponding to the at least two ports according to the signal quality corresponding to each port; the terminal device determines the signal quality corresponding to each port according to the signal quality and The signal quality corresponding to the at least two ports determines the service port and the non-service port in the at least two ports.
  • the signal quality corresponding to the at least two ports refers to the signal quality obtained by measuring the at least two ports.
  • the signal quality corresponding to the at least two ports may be acquired in the following manner: a weighted average of the signal quality corresponding to each of the at least two ports is performed to obtain the signal quality corresponding to the at least two ports.
  • the signal quality corresponding to at least two ports may represent the signal quality of the cell.
  • the service port and the non-service port may be determined according to the relationship between the signal quality corresponding to each port and the first threshold, and the relationship between the signal quality corresponding to at least two ports and the first threshold, which may include the following three cases:
  • Case 1 The signal quality corresponding to at least two ports is greater than or equal to the first threshold, and the signal quality corresponding to each port is greater than or equal to the first threshold.
  • At least two ports may be respectively determined as service ports, and there is no non-service port in the at least two ports.
  • Case 2 The signal quality corresponding to at least two ports is greater than or equal to the first threshold, and there are ports whose signal quality is less than the first threshold in the at least two ports.
  • a port whose signal quality is greater than or equal to the first threshold may be determined as a service port, and a port whose signal quality is less than the first threshold may be determined as a non-service port. That is, in this case, there are service ports and non-service ports in at least two service ports.
  • Case 3 The signal quality corresponding to at least two ports is less than the first threshold.
  • the terminal equipment can perform cell handover.
  • the terminal device After the terminal device determines that the service port and the non-service port are obtained, the terminal device can measure the service port to obtain a measurement result, and perform service processing according to the measurement result.
  • the service processing may include decoding downlink data and performing mobility management. Wait.
  • the terminal device may perform processing according to the processing principle corresponding to the non-service ports.
  • the processing principles may include at least one of the following processing principles:
  • Processing principle 1 According to the non-service ports determined in at least two ports, measure the serving cell.
  • the serving cell refers to the cell where the terminal equipment is currently located.
  • Processing principle Perform cell ID detection in a conventional manner.
  • Processing principle 3 The power overhead of neighbor cell detection is greater than the power overhead of serving cell detection.
  • Neighboring cells refer to cells adjacent to the serving cell.
  • ABIS almost blank interference suppression
  • Processing principle 5 Perform physical broadcast channel (PBCH) measurement on the serving cell according to the non-service ports determined in at least two ports.
  • PBCH physical broadcast channel
  • a network device When a network device has only one port, it may have more power overhead if more ports are measured. For example, assuming that the network device has only one port 0, if the terminal device measures port 0 and port 1, it will cause a large power consumption.
  • the terminal device may measure the ports of the network device to obtain the signal quality of each port, and determine the service port and the non-service port among the ports of the network device according to the signal quality of each port.
  • the terminal device can measure the service port to determine the measurement result of the service port, and perform service processing according to the measurement result of the service port. Since the measurement result on which the service processing is performed is the measurement result of the service port, the accuracy of the measurement result is high, thereby improving the reliability of processing the service.
  • Fig. 4 is another measurement method provided by this embodiment of the application, please refer to Fig. 4, the method may include:
  • the terminal device simultaneously performs result measurement on each of the at least two ports, and determines the first port for which the measurement result is obtained among the at least two ports as the third port.
  • the terminal equipment may perform the measurement method shown in the embodiment of FIG. 3 after entering the cell for the first time.
  • the terminal device performs result measurement on port 0 and port 1 at the same time. If the terminal device obtains the measurement result of port 0 first, it determines port 0 as the third port. After the measurement result of port 0 is obtained, the result measurement of port 1 may be suspended.
  • the terminal device acquires the number of ports in the network device.
  • the terminal device can perform blind detection on the PBCH to obtain the broadcast message sent by the network device, and the broadcast message can include the number of ports.
  • the terminal device may perform the PBCH blind detection according to different masks until the PBCH blind detection is successful.
  • the terminal device can perform blind PBCH detection in the order of 2, 1, and 4. For example, the terminal device can perform blind PBCH detection based on two ports (mask of 2) first. If the blind PBCH detection fails, the terminal device will perform 1 The port (mask is 1) performs PBCH blind detection until the PBCH blind detection is successful or the PBCH blind detection has been performed according to all masks.
  • the terminal device determines whether the number of ports is greater than 1.
  • the cell where the terminal device currently resides is a single-port cell, and the measurement ends.
  • the terminal device acquires the signal quality corresponding to the network device.
  • the signal quality corresponding to the network device may also be the signal quality of the cell served by the network device.
  • the signal quality corresponding to the network device may be obtained in the following manner: determining the sampling times of the signal sampling performed to obtain the measurement result corresponding to the third port, and using the sampling times to represent the signal quality corresponding to the network device.
  • Signal sampling refers to the sampling of the reference signal sent by the port. If the measurement result can be obtained through fewer signal samplings, it means that the signal quality corresponding to the network device is better, and it can only be obtained through more signal sampling. If the measurement result is obtained, it means that the signal quality corresponding to the network device is poor.
  • the terminal device determines whether the signal quality corresponding to the network device is greater than or equal to the second threshold.
  • the signal quality is represented by the number of sampling times, when the number of sampling times is less than or equal to the third threshold, it is determined that the signal quality corresponding to the network device is greater than or equal to the second threshold.
  • the terminal device can no longer stay in the cell served by the network device, for example, the terminal device can perform cell handover.
  • the terminal device measures the signal quality of at least two ports of the network device, and obtains the signal quality corresponding to each port.
  • the terminal device determines a service port and a non-service port in at least two ports according to the signal quality corresponding to each port.
  • the terminal device obtains the measurement result corresponding to the service port.
  • the terminal device performs service processing according to the measurement result.
  • the service processing may include decoding the downlink data and performing mobility management.
  • the signal quality corresponding to the network device is obtained first, and when the signal quality is greater than or equal to the second threshold, the terminal device measures the ports of the network device to obtain the signal quality of each port, and determines the signal quality of each port according to each The signal quality of the port determines the service port and the non-service port among the ports of the network device.
  • the terminal device can measure the service port to determine the measurement result of the service port, and perform service processing according to the measurement result of the service port. Since the measurement result on which the service processing is performed is the measurement result of the service port, the accuracy of the measurement result is high, thereby improving the reliability of processing the service.
  • the network device has port 0 and port 1, and the cell served by the network device is denoted as cell 1.
  • the terminal device may perform result measurement on port 0 and port 1 respectively according to the preset configuration. Assuming that the terminal device obtains the measurement result of port 0 first, the terminal device does not continue to measure the result of port 1.
  • the terminal device After the terminal device obtains the measurement result of port 0, the terminal device performs blind detection of the PBCH to obtain the broadcast message sent by the network device.
  • the number of ports of the network device obtained by the terminal device in the broadcast message is 2.
  • the terminal device determines the sampling times of the signal sampling performed in the process of acquiring the detection result of port 0. Assuming that the number of sampling times is greater than or equal to the third threshold, it means that the signal quality corresponding to the network device is greater than or equal to the third threshold.
  • the terminal equipment performs M times of independent signal quality measurements, and obtains each Configure the corresponding M signal qualities.
  • the average value of M signal qualities corresponding to the configuration is determined as the signal quality corresponding to the configuration.
  • the signal quality corresponding to port 0 the signal quality corresponding to port 1
  • the signal quality corresponding to port 0 and port 1 can be obtained.
  • SINR is used to represent the signal quality corresponding to the port
  • the terminal device can determine the service port and the non-service port through the corresponding relationship shown in Table 2.
  • Table 2 is as follows:
  • the terminal device can measure the result of port 1, obtain the measurement result corresponding to port 1, and perform service processing according to the measurement result corresponding to port 1.
  • the AP refers to the port of the network device. It can be seen from Table 3 that when there is no non-service port in the ports of the network device, the signal-to-noise ratio obtained by measuring all the ports is high. When there are non-service ports in the ports of the network device, the signal-to-noise ratio obtained by measuring the non-service port is low, and the signal-to-noise ratio obtained by measuring the service port is high. The signal-to-noise ratio is affected by fading. Therefore, the service port and the non-service port are determined in the ports of the network device, and the service processing is performed according to the measurement result of the service port, which can improve the reliability of the service processing.
  • FIG. 5 is a schematic structural diagram of a measurement device provided by an embodiment of the present application.
  • the measurement device 10 may include a measurement module 11 and a first determination module 12, wherein,
  • the measuring module 11 is used to measure the signal quality of at least two ports of the network device, and obtain the signal quality corresponding to each port;
  • the first determining module 12 is configured to, according to the signal quality corresponding to each port, determine a service port and a non-service port in the at least two ports, where the non-service port is a port that does not send signals, and the The service port is used for the terminal device to perform service processing.
  • the measurement apparatus 10 provided in the embodiments of the present application can implement the technical solutions shown in the foregoing method embodiments, and the implementation principles and beneficial effects thereof are similar, which will not be repeated here.
  • the signal quality of the service port is greater than or equal to a first threshold
  • the signal quality of the non-service port is less than the first threshold.
  • the first determining module 12 is specifically configured to:
  • the device determines the signal quality corresponding to the at least two ports according to the signal quality corresponding to each port;
  • the service port and the non-service port are determined among the at least two ports according to the signal quality corresponding to each port and the signal quality corresponding to the at least two ports.
  • the first determining module 12 is specifically configured to:
  • the at least two ports are respectively determined as the service ports ;or,
  • the signal quality corresponding to the at least two ports is greater than or equal to the first threshold, and there is a port whose signal quality is less than the first threshold in the at least two ports, the signal quality is greater than or equal to the first threshold
  • the port with the threshold is determined as the service port, and the port with signal quality less than the first threshold is determined as the non-service port.
  • the at least two ports include a first port and a second port; the first port corresponds to a first signal quality, and the second port corresponds to a second signal quality; the first The determining module 12 is specifically used for:
  • the first signal quality, the second signal quality, and the signal quality corresponding to the at least two ports are all greater than or equal to the first threshold, determining the at least two ports as the service ports respectively; or,
  • both the first signal quality and the signal quality corresponding to the at least two ports are greater than or equal to the first threshold, and the second signal quality is less than the first threshold, it is determined that the first port is the first port. a service port, determining that the second port is the non-service port; or,
  • both the second signal quality and the signal quality corresponding to the at least two ports are greater than or equal to the first threshold, and the first signal quality is less than the first threshold, it is determined that the first port is the first port.
  • a non-service port determining that the second port is the service port.
  • the measurement module 11 is specifically used for:
  • the signal qualities corresponding to the ports are determined.
  • FIG. 6 is a schematic structural diagram of another measurement device provided by an embodiment of the present application.
  • the measurement device 10 further includes a second determination module 13 , wherein,
  • the second determination module 13 is further configured to, before the measurement module measures the signal quality of at least two ports of the network device and obtains the signal quality corresponding to each port, determine that the signal quality corresponding to the network device is greater than or equal to equal to the second threshold.
  • the second determining module 13 is specifically configured to:
  • the signal quality corresponding to the network device is greater than or equal to the second threshold.
  • the second determining module 13 is specifically configured to:
  • the first port of the at least two ports for which the measurement result is obtained is determined as the third port.
  • the apparatus further includes a third determination module 14, wherein,
  • the third determining module 14 is used to determine that the number of ports of the network device is greater than 1 before the measurement module measures the signal quality of at least two ports of the network device and obtains the signal quality corresponding to each port. .
  • the apparatus further includes a service processing module 15, wherein the service processing module 15 is used for:
  • the measurement apparatus 10 provided in the embodiments of the present application can implement the technical solutions shown in the foregoing method embodiments, and the implementation principles and beneficial effects thereof are similar, and details are not repeated here.
  • FIG. 7 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device 20 may include: a transceiver 21 , a memory 22 , and a processor 23 .
  • the transceiver 21 may include: a transmitter and/or a receiver.
  • the transmitter may also be referred to as a transmitter, transmitter, transmit port, or transmit interface, or the like, and the receiver may be referred to as a receiver, receiver, receive port, or receive interface, or the like.
  • the transceiver 21 , the memory 22 , and the processor 23 are connected to each other through a bus 24 .
  • memory 22 for storing program instructions
  • the processor 23 is configured to execute the program instructions stored in the memory, so as to make the terminal device 20 execute any one of the measurement methods shown above.
  • the receiver of the transceiver 21 may be used to perform the receiving function of the terminal device in the above measurement method.
  • An embodiment of the present application provides a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when the computer-executable instructions are executed by a processor, are used to implement the above measurement method.
  • Embodiments of the present application may further provide a computer program product, which can be executed by a processor, and when the computer program product is executed, can implement any of the measurement methods performed by the terminal device shown above.
  • the terminal device, the computer-readable storage medium, and the computer program product of the embodiments of the present application can execute the measurement method executed by the terminal device, and the specific implementation process and beneficial effects thereof can be referred to above, which will not be repeated here.
  • the aforementioned program can be stored in a readable memory.
  • the steps including the above method embodiments are executed; and the aforementioned memory (storage medium) includes: read-only memory (English: read-only memory, abbreviation: ROM), RAM, flash memory, hard disk, Solid state drive, magnetic tape (English: magnetic tape), floppy disk (English: floppy disk), optical disc (English: optical disc) and any combination thereof.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
  • the term “comprising” and its variants may mean non-limiting inclusion; the term “or” and its variants may mean “and/or”.
  • the terms “first”, “second” and the like in this application are used to distinguish similar objects and are not necessarily used to describe a specific order or sequence.
  • “plurality” means two or more.
  • “And/or”, which describes the association relationship of the associated objects means that there can be three kinds of relationships, for example, A and/or B, which can mean that A exists alone, A and B exist at the same time, and B exists alone.
  • the character “/" generally indicates that the associated objects are an "or” relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Small-Scale Networks (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请实施例提供一种测量方法、装置及设备,该方法包括:终端设备对网络设备的至少两个端口进行信号质量测量,得到每个端口对应的信号质量;所述终端设备根据每个端口对应的信号质量,在所述至少两个端口中确定业务端口和非业务端口,所述非业务端口为不进行信号发送的端口,所述业务端口用于所述终端设备进行业务处理。本申请提高了业务处理的可靠性。

Description

测量方法、装置及设备
本申请要求于2020年10月10日提交中国专利局、申请号为202011078396.3、申请名称为“测量方法、装置及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术,尤其涉及一种测量方法、装置及设备。
背景技术
目前,很多网络设备具有多个端口(例如2个),网络设备可以通过该多个端口向终端设备发送数据。
在通信过程中,终端设备对网络设备的多个端口进行测量,得到每个端口对应的信号质量,将该多个端口对应的信号质量进行合并处理,并根据合并处理后的信号质量进行业务处理。然而,在实际应用过程中,网络设备中可能存在端口不发送任何信息,终端设备对该种端口的信号质量不准确或者无效,使得合并处理后的信号质量也不准确,导致终端设备对业务进行处理的可靠性较差。
发明内容
本申请实施例提供一种测量方法、装置及设备,提高了业务处理的可靠性。
第一方面,本申请实施例提供一种测量方法,包括:
终端设备对网络设备的至少两个端口进行信号质量测量,得到每个端口对应的信号质量;
所述终端设备根据每个端口对应的信号质量,在所述至少两个端口中确定业务端口和非业务端口,所述非业务端口为不进行信号发送的端口,所述业务端口用于所述终端设备进行业务处理。
在一种可能的实施方式中,所述业务端口的信号质量大于或等于第一阈 值;
所述非业务端口的信号质量小于所述第一阈值。
在一种可能的实施方式中,所述终端设备根据每个端口对应的信号质量,在所述至少两个端口中确定所述业务端口和所述非业务端口,包括:
所述终端设备根据每个端口对应的信号质量,确定所述至少两个端口对应的信号质量;
所述终端设备根据每个端口对应的信号质量和所述至少两个端口对应的信号质量,在所述至少两个端口中确定所述业务端口和所述非业务端口。
在一种可能的实施方式中,所述终端设备根据每个端口对应的信号质量和所述至少两个端口对应的信号质量,在所述至少两个端口中确定所述业务端口和所述非业务端口,包括:
若所述至少两个端口对应的信号质量大于或等于所述第一阈值,每个端口对应的信号质量大于或等于所述第一阈值,将所述至少两个端口分别确定为所述业务端口;或者,
若所述至少两个端口对应的信号质量大于或等于所述第一阈值,所述至少两个端口中存在信号质量小于所述第一阈值的端口,则将信号质量大于或等于所述第一阈值的端口确定为所述业务端口,将信号质量小于所述第一阈值的端口确定为所述非业务端口。
在一种可能的实施方式中,所述至少两个端口包括第一端口和第二端口;所述第一端口对应第一信号质量,所述第二端口对应第二信号质量;
根据每个端口对应的信号质量和所述至少两个端口对应的信号质量,在所述至少两个端口中确定所述业务端口和所述非业务端口,包括:
若所述第一信号质量、所述第二信号质量和所述至少两个端口对应的信号质量均大于或等于所述第一阈值,将所述至少两个端口分别确定为所述业务端口;或者,
若所述第一信号质量和所述至少两个端口对应的信号质量均大于或等于所述第一阈值,所述第二信号质量小于所述第一阈值,确定所述第一端口为所述业务端口,确定所述第二端口为所述非业务端口;或者,
若所述第二信号质量和所述至少两个端口对应的信号质量均大于或等于所述第一阈值,所述第一信号质量小于所述第一阈值,确定所述第一端口为所述非业务端口,确定所述第二端口为所述业务端口。
在一种可能的实施方式中,针对所述至少两个端口中的任意一个端口;所述终端设备对网络设备的端口进行信号质量测量,得到所述端口对应的信号质量,包括:
所述终端设备对所述端口进行M次信号质量测量,得到M个信号质量,所述M为大于1的整数;
所述终端设备根据所述M个信号质量,确定所述端口对应的信号质量。
在一种可能的实施方式中,终端设备对网络设备的至少两个端口进行信号质量测量,得到每个端口对应的信号质量之前,还包括:
所述终端设备确定所述网络设备对应的信号质量大于或等于第二阈值。
在一种可能的实施方式中,确定所述网络设备对应的信号质量大于或等于第二阈值,包括:
所述终端设备在所述至少两个端口中确定第三端口;
所述终端设备确定获取第三端口对应的测量结果所进行信号采样的采样次数;
所述终端设备在所述采样次数小于或等于第三阈值时,确定所述网络设备对应的信号质量大于或等于第二阈值。
在一种可能的实施方式中,在所述至少两个端口中确定第三端口,包括:
所述终端设备同时对所述至少两个端口中的每个端口进行结果测量;
所述终端设备将所述至少两个端口中第一个得到测量结果的端口确定为所述第三端口。
在一种可能的实施方式中,终端设备对网络设备的至少两个端口进行信号质量测量,得到每个端口对应的信号质量之前,还包括:
所述终端设备确定所述网络设备的端口的数量大于1。
在一种可能的实施方式中,根据每个端口对应的信号质量,在所述至少两个端口中确定业务端口和非业务端口之后,还包括:
所述终端设备获取所述业务端口对应的测量结果;
所述终端设备根据所述测量结果进行业务处理。
第二方面,本申请实施例提供一种测量装置,包括测量模块和第一确定模块,其中,
所述测量模块用于,对网络设备的至少两个端口进行信号质量测量,得到每个端口对应的信号质量;
所述第一确定模块用于,根据每个端口对应的信号质量,在所述至少两个端口中确定业务端口和非业务端口,所述非业务端口为不进行信号发送的端口,所述业务端口用于所述终端设备进行业务处理。
在一种可能的实施方式中,所述业务端口的信号质量大于或等于第一阈值;
所述非业务端口的信号质量小于所述第一阈值。
在一种可能的实施方式中,所述第一确定模块具体用于:
备根据每个端口对应的信号质量,确定所述至少两个端口对应的信号质量;
根据每个端口对应的信号质量和所述至少两个端口对应的信号质量,在所述至少两个端口中确定所述业务端口和所述非业务端口。
在一种可能的实施方式中,所述第一确定模块具体用于:
若所述至少两个端口对应的信号质量大于或等于所述第一阈值,每个端口对应的信号质量大于或等于所述第一阈值,将所述至少两个端口分别确定为所述业务端口;或者,
若所述至少两个端口对应的信号质量大于或等于所述第一阈值,所述至少两个端口中存在信号质量小于所述第一阈值的端口,则将信号质量大于或等于所述第一阈值的端口确定为所述业务端口,将信号质量小于所述第一阈值的端口确定为所述非业务端口。
在一种可能的实施方式中,所述至少两个端口包括第一端口和第二端口;所述第一端口对应第一信号质量,所述第二端口对应第二信号质量;所述第一确定模块具体用于:
若所述第一信号质量、所述第二信号质量和所述至少两个端口对应的信号质量均大于或等于所述第一阈值,将所述至少两个端口分别确定为所述业务端口;或者,
若所述第一信号质量和所述至少两个端口对应的信号质量均大于或等于所述第一阈值,所述第二信号质量小于所述第一阈值,确定所述第一端口为所述业务端口,确定所述第二端口为所述非业务端口;或者,
若所述第二信号质量和所述至少两个端口对应的信号质量均大于或等于所述第一阈值,所述第一信号质量小于所述第一阈值,确定所述第一端口为所述非业务端口,确定所述第二端口为所述业务端口。
在一种可能的实施方式中,针对所述至少两个端口中的任意一个端口;所述测量模块具体用于:
对所述端口进行M次信号质量测量,得到M个信号质量,所述M为大于1的整数;
根据所述M个信号质量,确定所述端口对应的信号质量。
在一种可能的实施方式中,所述装置还包括第二确定模块,其中,
所述第二确定模块还用于,在所述测量模块对网络设备的至少两个端口进行信号质量测量,得到每个端口对应的信号质量之前,确定所述网络设备对应的信号质量大于或等于第二阈值。
在一种可能的实施方式中,所述第二确定模块具体用于:
在所述至少两个端口中确定第三端口;
确定获取第三端口对应的测量结果所进行信号采样的采样次数;
在所述采样次数小于或等于第三阈值时,确定所述网络设备对应的信号质量大于或等于第二阈值。
在一种可能的实施方式中,所述第二确定模块具体用于:
同时对所述至少两个端口中的每个端口进行结果测量;
将所述至少两个端口中第一个得到测量结果的端口确定为所述第三端口。
在一种可能的实施方式中,所述装置还包括第三确定模块,其中,
所述第三确定模块用于,在所述测量模块对网络设备的至少两个端口进行信号质量测量,得到每个端口对应的信号质量之前,确定所述网络设备的端口的数量大于1。
在一种可能的实施方式中,所述装置还包括业务处理模块,其中,所述业务处理模块用于:
获取所述业务端口对应的测量结果;
根据所述测量结果进行业务处理。
第三方面,本申请实施例提供一种终端设备,包括:收发器、处理器、存储器;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如第一方面任一项所述的测量方法。
第四方面,本申请实施例提供一种计算机可读存储介质,所述计算机可 读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现第一方面任一项所述的测量方法。
第五方面,本申请实施例提供一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现第一方面任一项所述的测量方法。
本申请实施例提供的测量方法、装置及设备,终端设备可以对网络设备的端口进行测量得到各个端口的信号质量,并根据各个端口的信号质量,在网络设备的端口中确定业务端口和非业务端口。终端设备可以对业务端口进行测量,以确定业务端口的测量结果,并根据业务端口的测量结果进行业务处理。由于进行业务处理所依据的测量结果为业务端口的测量结果,该测量结果的准确性较高,进而可以提高对业务进行处理的可靠性。
附图说明
图1A为本申请实施例提供的吞吐量的示意图;
图1B为本申请实施例提供的广播信道误码率的示意图;
图1C为本申请实施例提供的控制信道误码率的示意图;
图2为本申请实施例提供的通信系统的示意图;
图3为本申请实施例提供的一种测量方法的流程示意图;
图4为本申请实施例提供的另一种测量方法;
图5为本申请实施例提供的一种测量装置的结构示意图;
图6为本申请实施例提供的一种测量装置的结构示意图;
图7为本申请实施例提供的终端设备的结构示意图。
具体实施方式
为了便于理解,首先,对本申请所涉及的概念进行说明。
网络设备:是一种具有无线收发功能的设备。包括但不限于:长期演进(long term evolution,LTE)中的演进型基站(Evolutional Node B,eNB或eNodeB),新空口技术(new radio,NR)中的基站(gNodeB或gNB)或收发点(transmission receiving point/transmission reception poin,TRP),后续演进系统中的基站,无线保真(wireless fidelity,WiFi)系统中的接入节点,无线中继节点,无线回传节点等。基站可以是:宏基站,微基站,微微基站, 小站,中继站,或,气球站等。多个基站可以支持上述提及的同一种技术的网络,也可以支持上述提及的不同技术的网络。基站可以包含一个或多个共站或非共站的TRP。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),和/或分布单元(distributed unit,DU)。在本申请实施例中,网络设备具有多个端口,例如,网络设备可以具有2个端口。网络设备可以设置在室内。
终端设备:是一种具有无线收发功能的设备。终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、车载终端设备、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备、可穿戴终端设备等。本申请实施例所涉及的终端设备还可以称为终端、用户设备(user equipment,UE)、接入终端设备、车载终端、工业控制终端、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、无线通信设备、UE代理或UE装置等。终端设备也可以是固定的或者移动的。
端口:网络设备可以具有多个端口,网络设备可以通过端口发送信号(数据)。在实际应用过程中,网络设备的多个端口中可能存在部分端口不发送信号,该种端口可以称为非业务端口或者无信号端口(muting端口)。进行数据发送的端口可以称为业务端口。例如,在网络设备的某端口故障时,网络设备无法通过该端口发送数据,则该端口为非业务端口。网络设备的端口中可能不存在非业务端口,在不同的时间,网络设备的非业务端口可能不同。若网络设备中存在非业务端口,则网络设备提供的服务的性能造成影响。下面,结合图1A-图1C进行说明。
图1A为本申请实施例提供的吞吐量的示意图。请参见图1A,包括坐标系,坐标系的横轴表示信噪比,坐标系的纵轴表示吞吐量。假设网络设备具有两个端口,分别记为端口0和端口1。当端口0和端口1均为业务端口时, 吞吐量曲线为坐标系上方的曲线。当端口0为非业务端口,端口1为业务端口时,吞吐量曲线为坐标系下方的曲线。由该两条曲线可知,在信噪比相同的情况下,若网络设备中存在非业务端口,则导致吞吐量降低。
图1B为本申请实施例提供的广播信道误码率的示意图。请参见图1B,包括坐标系,坐标系的横轴表示信噪比,坐标系的纵轴表示广播信道误码率。假设网络设备具有两个端口,分别记为端口0和端口1。当端口0和端口1均为业务端口时,吞吐量曲线为坐标系下方的曲线。当端口0为非业务端口,端口1为业务端口时,吞吐量曲线为坐标系上方的曲线。由该两条曲线可知,在信噪比相同的情况下,若网络设备中存在非业务端口,则广播信道误码率增大。
图1C为本申请实施例提供的控制信道误码率的示意图。请参见图1C,包括坐标系,坐标系的横轴表示信噪比,坐标系的纵轴表示控制信道误码率。假设网络设备具有两个端口,分别记为端口0和端口1。当端口0和端口1均为业务端口时,吞吐量曲线为坐标系下方的曲线。当端口0为非业务端口,端口1为业务端口时,吞吐量曲线为坐标系上方的曲线。由该两条曲线可知,在信噪比相同的情况下,若网络设备中存在非业务端口,则控制信道误码率增大。
测量:是指对端口进行的测量。对端口进行测量可以包括对端口进行结果测量和对端口进行信号质量测量。其中,对端口进行结果测量可以获取端口的测量结果,测量结果可以包括同步信息、频率偏移等。终端设备可以根据测量结果对下行数据进行译码、执行移动性管理等。对端口进行信号质量测量可以获取得到端口发送信号的信号质量,例如,可以通过参考信号接收功率(reference signal receiving power,RSRP)或者信号与干扰加噪声比(signal to interference plus noise ratio,SINR)等表示信号质量。
下面,对本申请实施例所适用的通信系统进行说明。
图2为本申请实施例提供的通信系统的示意图。请参见图2,包括网络设备201和终端设备202。网络设备201具有多个端口(图2中以网络设备具有端口A和端口B为例进行说明)。端口A或者端口B可能为非业务端口。终端设备202位于网络设备201的服务小区内,终端设备202可以接收网络设备201通过端口发送的数据。
在相关技术中,网络设备201可以向终端设备202发送配置信息,以指 示网络设备201具有两个端口。在终端设备202进行测量时,终端设备分别对端口A和端口B进行测量,以分别获取端口A的测量结果和端口B的测量结果,对端口A的测量结果和端口B的测量结果进行合并处理,并根据合并处理后的测量结果进行业务处理。若端口A和端口B中存在非业务端口,则终端设备对非业务端口的测量结果不准确,则导致合并处理后的测量结果不准确,进而导致终端设备对业务进行处理的可靠性较低。业务处理可以包括对下行数据进行译码、进行移动性管理等。移动性管理可以包括业务连续性管理、小区切换管理等。
为了解决上述技术问题,本申请实施例提供一种测量方法,在本申请实施例中,终端设备可以对网络设备的端口进行测量得到各个端口的信号质量,并根据各个端口的信号质量,在网络设备的端口中确定业务端口和非业务端口。终端设备可以对业务端口进行测量,以确定业务端口的测量结果,并根据业务端口的测量结果进行业务处理。由于进行业务处理所依据的测量结果为业务端口的测量结果,该测量结果的准确性较高,进而可以提高对业务进行处理的可靠性。
下面,通过具体实施例对本申请所示的技术方案进行说明。需要说明的是,下面几个实施例可以独立存在,也可以相互结合,对于相同或相似的内容,在不同的实施例中不再重复说明。
图3为本申请实施例提供的一种测量方法的流程示意图。请参见图3,该方法可以包括:
S301、终端设备对网络设备的至少两个端口进行信号质量测量,得到每个端口对应的信号质量。
网络设备可以预先向终端设备发送配置信息,配置信息中包括网络设备中设置的端口的数量。终端设备可以根据配置信息确定网络设备中设置的端口的数量,并根据该端口的数量进行信号质量测量。
终端设备对每个端口进行信号质量测量的过程相同,下面,对终端设备对任意一个端口进行信号质量测量的过程进行说明:终端设备接收该端口发送的参考信号,获取该参考信号的测量信息,并根据测量信息确定该端口对应的信号质量,例如,测量信息可以包括RSRP、SINR等。例如,可以将RSRP确定为端口对应的信号质量,或者,可以将SINR确定为端口对应的信号质量。
针对至少两个端口中的任意一个端口,为了准确的确定得到该端口对应 的信号质量,可以对端口进行M次独立的信号质量测量,得到M个信号质量,并根据该M个信号质量确定该端口对应的信号质量,M为大于1的整数。例如,可以将M个信号质量中的最大值确定为端口对应的信号质量,或者,可以将该M个信号质量的加权平均值确定为端口对应的信号质量,或者,可以先对M个信号质量进行平滑处理,并将平滑处理后的信号质量的加权平均值确定为端口对应的信号质量。平滑处理可以包括:删除M个信号质量中大于最大阈值的信号质量,和/或,删除M个信号质量中小于最小阈值的信号质量。
S302、根据每个端口对应的信号质量,在至少两个端口中确定业务端口和非业务端口。
其中,非业务端口为不进行信号发送的端口,业务端口为进行信号发送的端口。即,网络设备通过业务端口发送信号,不通过非业务端口发送信号。
可选的,业务端口的信号质量大于或等于第一阈值,非业务端口的信号质量小于第一阈值。
可以通过如下方式在至少两个端口中确定业务端口和非业务端口:终端设备根据每个端口对应的信号质量,确定至少两个端口对应的信号质量;终端设备根据每个端口对应的信号质量和至少两个端口对应的信号质量,在至少两个端口中确定业务端口和非业务端口。
至少两个端口对应的信号质量是指:为对至少两个端口进行测量得到的信号质量。可以通过如下方式获取至少两个端口对应的信号质量:将至少两个端口中每个端口对应的信号质量进行加权平均得到至少两个端口对应的信号质量。至少两个端口对应的信号质量可以表示小区的信号质量。
可以根据每个端口对应的信号质量与第一阈值的关系,以及至少两个端口对应的信号质量与第一阈值的关系,确定业务端口和非业务端口,可以包括如下三种情况:
情况1、至少两个端口对应的信号质量大于或等于第一阈值,每个端口对应的信号质量大于或等于第一阈值。
在该种情况下,可以将至少两个端口分别确定为业务端口,至少两个端口中不存在非业务端口。
情况2、至少两个端口对应的信号质量大于或等于第一阈值,至少两个端口中存在信号质量小于第一阈值的端口。
在该种情况下,可以将信号质量大于或等于第一阈值的端口确定为业务 端口,将信号质量小于第一阈值的端口确定为非业务端口。即,该种情况下,至少两个业务端口中存在业务端口,也存在非业务端口。
情况3、至少两个端口对应的信号质量小于第一阈值。
在该种情况下,若至少两个端口对应的信号质量小于第一阈值,则表示小区的信号质量较差,则可以不进行业务端口和非业务端口的检测。例如,终端设备可以进行小区切换。
在终端设备确定得到业务端口和非业务端口之后,终端设备可以对业务端口进行测量得到测量结果,并根据测量结果进行业务处理,例如,业务处理可以包括对下行数据进行译码、进行移动性管理等。
在终端设备确定至少两个端口中存在非业务端口时,终端设备可以根据非业务端口对应的处理原则进行处理。例如,处理原则可以包括如下处理原则中的至少一种:
处理原则1、根据在至少两个端口中确定得到的非业务端口,进行服务小区的测量。服务小区是指终端设备当前所在小区,
处理原则2、按照常规方式进行小区ID检测。
处理原则3、邻小区检测的功率开销大于服务小区检测功率开销。邻小区是指与服务小区相邻的小区。
处理原则4、根据在至少两个端口中确定得到的非业务端口,对服务小区和邻小区进行资源块干扰抑制(resource block interference suppression,RBIS)或者几乎空白干扰抑制(almost blank interference suppression,ABIS)。
处理原则5、根据在至少两个端口中确定得到的非业务端口,对服务小区进行物理广播信道(physical broadcast channel,PBCH)测量。
处理原则6、当网络设备只要一个端口时,若进行更多端口的测量可能会具有更多的功率开销。例如,假设网络设备只有一个端口0,若终端设备对端口0和端口1进行测量,则会导致功率开销较大。
在本申请实施例中,终端设备可以对网络设备的端口进行测量得到各个端口的信号质量,并根据各个端口的信号质量,在网络设备的端口中确定业务端口和非业务端口。终端设备可以对业务端口进行测量,以确定业务端口的测量结果,并根据业务端口的测量结果进行业务处理。由于进行业务处理所依据的测量结果为业务端口的测量结果,该测量结果的准确性较高,进而可以提高对业务进行处理的可靠性。
图4为本申请实施例提供的另一种测量方法,请参见图4,该方法可以包括:
S401、终端设备同时对至少两个端口中的每个端口进行结果测量,并将至少两个端口中第一个得到测量结果的端口确定为第三端口。
终端设备可以在首次进入小区后进行图3实施例所示的测量方法。
例如,假设网络设备具有两个端口,分别为端口0和端口1,则终端设备同时对端口0和端口1进行结果测量。若终端设备先获取得到端口0的测量结果,则将端口0确定为第三端口。在获取得到端口0的测量结果之后,可以暂停对端口1进行结果测量。
S402、终端设备获取网络设备中的端口的数量。
终端设备可以进行PBCH盲检测,以获取网络设备发送的广播消息,广播消息中可以包括端口的数量。
在终端设备进行PBCH盲检测的过程中,终端设备可以按照不同的掩码进行PBCH盲检测,直至PBCH盲检测成功。终端设备可以按照2、1、4的顺序进行PBCH盲检测,例如,终端设备可以先按照两个端口(掩码为2)进行PBCH盲检测,若PBCH盲检测失败,则终端设备再按照1个端口(掩码为1)进行PBCH盲检测,直至PBCH盲检测成功或者已按照所有的掩码执行PBCH盲检测。
S403、终端设备判断端口的数量是否大于1。
若是,则执行S405。
若否,则执行S404。
若端口的数量为1,则终端设备当前驻留的小区为单端口小区,则测量结束。
S404、终端设备测量结束。
S405、终端设备获取网络设备对应的信号质量。
网络设备对应的信号质量还可以成为网络设备服务的小区的信号质量。
可以通过如下方式获取网络设备对应的信号质量:确定获取第三端口对应的测量结果所进行信号采样的采样次数,通过该采样次数表示网络设备对应的信号质量。信号采样是指对端口发送的参考信号进行的采样,若通过较少次的信号采样即可获取得到测量结果,则说明网络设备对应的信号质量较好,若通过较多次的信号采样才能获取得到测量结果,则说明网络设备对应 的信号质量较差。
S406、终端设备判断网络设备对应的信号质量是否大于或等于第二阈值。
若是,则执行S407。
若否,则执行S404。
若通过采样次数表示信号质量,则在采样次数小于或等于第三阈值时,确定网络设备对应的信号质量大于或等于第二阈值。
在网络设备对应的信号质量小于第二阈值时,说明网络设备对应的信号质量较差,则终端设备可以不再继续在该网络设备服务的小区停留,例如,终端设备可以进行小区切换。
S407、终端设备对网络设备的至少两个端口进行信号质量测量,得到每个端口对应的信号质量。
S408、终端设备根据每个端口对应的信号质量,在至少两个端口中确定业务端口和非业务端口。
需要说明的是,S407-S408的执行过程可以参见S301-S302的执行过程,此处不再进行赘述。
S409、终端设备获取业务端口对应的测量结果。
S410、终端设备根据测量结果进行业务处理。
例如,业务处理可以包括对下行数据进行译码处理、进行移动性管理。
在图4所示的实施例中,先获取网络设备对应的信号质量,在信号质量大于或等于第二阈值时,终端设备再对网络设备的端口进行测量得到各个端口的信号质量,并根据各个端口的信号质量,在网络设备的端口中确定业务端口和非业务端口。终端设备可以对业务端口进行测量,以确定业务端口的测量结果,并根据业务端口的测量结果进行业务处理。由于进行业务处理所依据的测量结果为业务端口的测量结果,该测量结果的准确性较高,进而可以提高对业务进行处理的可靠性。
下面,通过具体示例,对本申请实施例所示的技术方案进行详细说明。
示例性的,假设网络设备具有端口0和端口1,网络设备服务的小区记为小区1。
在终端设备首次进入小区1之后,终端设备可以按照预设的配置,分别对端口0和端口1进行结果测量。假设终端设备先获取得到端口0的测量结果,则终端设备不再继续对端口1进行结果测量。
终端设备获取得到端口0的测量结果之后,终端设备进行PBCH盲检测以获取网络设备发送的广播消息。终端设备在广播消息中获取得到网络设备的端口数量为2。终端设备再确定获取端口0的检测结果的过程中,所进行信号采样的采样次数。假设采样次数大于或等于第三阈值,则说明网络设备对应的信号质量大于或等于第三阈值。
针对如下三种配置:配置1(仅测量端口0)、配置2(仅测量端口1)、配置3(测量端口0和端口1),终端设备分别进行M次独立的信号质量测量,得到每种配置对应的M个信号质量。针对每个配置,将该配置对应的M个信号质量的平均值确定为该配置对应的信号质量。这样,可以得到端口0对应的信号质量,端口1对应的信号质量,以及端口0和端口1对应的信号质量。假设用SINR表示端口对应的信号质量,则获取得到的信号质量可以如表1所示:
表1
端口 端口0 端口1 端口0和端口1
信号质量 SINR 0 SINR 1 SINR 0/1
假设第一阈值为th,终端设备可以通过表2所示的对应关系,确定业务端口和非业务端口,表2如下所示:
表2
信号质量关系 业务端口 非业务端口
SINR 0>th,SINR 1>th,SINR 0/1>th 端口0、端口1
SINR 1>SINR 0/1>th>SINR 0 端口1 端口0
SINR 0>SINR 0/1>th>SINR 1 端口0 端口1
假设对各端口进行测量得到的SINR满足SINR 0>SINR 0/1>th>SINR 1,则可以确定端口0为业务端口,端口1为非业务端口。相应的,终端设备可以对端口1进行结果测量,得到端口1对应的测量结果,并根据端口1对应的测量结果进行业务处理。
通过本申请实施例所示的方法,可以有效提高信噪比。例如,请参见表3:
表3
Figure PCTCN2021122846-appb-000001
Figure PCTCN2021122846-appb-000002
其中,AP是指网络设备的端口。由表3可知,当网络设备的端口中不存在非业务端口时,对所有端口进行测量得到的信噪比较高。当网络设备的端口中存在非业务端口时,对非业务端口进行测量得到的信噪比较低,对业务端口进行测量得到的信噪比较高,对非业务端口和业务端口同时测量得到的信噪比会受到衰落影响。因此,在网络设备的端口中确定业务端口和非业务端口,并根据业务端口的测量结果进行业务处理,可以提高业务处理的可靠性。
图5为本申请实施例提供的一种测量装置的结构示意图。请参见图5,该测量装置10可以包括测量模块11和第一确定模块12,其中,
所述测量模块11用于,对网络设备的至少两个端口进行信号质量测量,得到每个端口对应的信号质量;
所述第一确定模块12用于,根据每个端口对应的信号质量,在所述至少两个端口中确定业务端口和非业务端口,所述非业务端口为不进行信号发送的端口,所述业务端口用于所述终端设备进行业务处理。
本申请实施例提供的测量装置10可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
在一种可能的实施方式中,所述业务端口的信号质量大于或等于第一阈 值;
所述非业务端口的信号质量小于所述第一阈值。
在一种可能的实施方式中,所述第一确定模块12具体用于:
备根据每个端口对应的信号质量,确定所述至少两个端口对应的信号质量;
根据每个端口对应的信号质量和所述至少两个端口对应的信号质量,在所述至少两个端口中确定所述业务端口和所述非业务端口。
在一种可能的实施方式中,所述第一确定模块12具体用于:
若所述至少两个端口对应的信号质量大于或等于所述第一阈值,每个端口对应的信号质量大于或等于所述第一阈值,将所述至少两个端口分别确定为所述业务端口;或者,
若所述至少两个端口对应的信号质量大于或等于所述第一阈值,所述至少两个端口中存在信号质量小于所述第一阈值的端口,则将信号质量大于或等于所述第一阈值的端口确定为所述业务端口,将信号质量小于所述第一阈值的端口确定为所述非业务端口。
在一种可能的实施方式中,所述至少两个端口包括第一端口和第二端口;所述第一端口对应第一信号质量,所述第二端口对应第二信号质量;所述第一确定模块12具体用于:
若所述第一信号质量、所述第二信号质量和所述至少两个端口对应的信号质量均大于或等于所述第一阈值,将所述至少两个端口分别确定为所述业务端口;或者,
若所述第一信号质量和所述至少两个端口对应的信号质量均大于或等于所述第一阈值,所述第二信号质量小于所述第一阈值,确定所述第一端口为所述业务端口,确定所述第二端口为所述非业务端口;或者,
若所述第二信号质量和所述至少两个端口对应的信号质量均大于或等于所述第一阈值,所述第一信号质量小于所述第一阈值,确定所述第一端口为所述非业务端口,确定所述第二端口为所述业务端口。
在一种可能的实施方式中,针对所述至少两个端口中的任意一个端口;所述测量模块11具体用于:
对所述端口进行M次信号质量测量,得到M个信号质量,所述M为大于1的整数;
根据所述M个信号质量,确定所述端口对应的信号质量。
图6为本申请实施例提供的另一种测量装置的结构示意图。在图5所示实施例的基础上,请参见图6,测量装置10还包括第二确定模块13,其中,
所述第二确定模块13还用于,在所述测量模块对网络设备的至少两个端口进行信号质量测量,得到每个端口对应的信号质量之前,确定所述网络设备对应的信号质量大于或等于第二阈值。
在一种可能的实施方式中,所述第二确定模块13具体用于:
在所述至少两个端口中确定第三端口;
确定获取第三端口对应的测量结果所进行信号采样的采样次数;
在所述采样次数小于或等于第三阈值时,确定所述网络设备对应的信号质量大于或等于第二阈值。
在一种可能的实施方式中,所述第二确定模块13具体用于:
同时对所述至少两个端口中的每个端口进行结果测量;
将所述至少两个端口中第一个得到测量结果的端口确定为所述第三端口。
在一种可能的实施方式中,所述装置还包括第三确定模块14,其中,
所述第三确定模14块用于,在所述测量模块对网络设备的至少两个端口进行信号质量测量,得到每个端口对应的信号质量之前,确定所述网络设备的端口的数量大于1。
在一种可能的实施方式中,所述装置还包括业务处理模块15,其中,所述业务处理模块15用于:
获取所述业务端口对应的测量结果;
根据所述测量结果进行业务处理。
本申请实施例提供的测量装置10可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
图7为本申请实施例提供的终端设备的结构示意图。请参见图7,终端设备20可以包括:收发器21、存储器22、处理器23。收发器21可包括:发射器和/或接收器。该发射器还可称为发送器、发射机、发送端口或发送接口等类似描述,接收器还可称为接收器、接收机、接收端口或接收接口等类似描述。示例性地,收发器21、存储器22、处理器23,各部分之间通过总线24相互连接。
存储器22用于存储程序指令;
处理器23用于执行该存储器所存储的程序指令,用以使得终端设备20执行上述任一所示的测量方法。
其中,收发器21的接收器,可用于执行上述测量方法中终端设备的接收功能。
本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现上述测量方法。
本申请实施例还可提供一种计算机程序产品,该计算机程序产品可以由处理器执行,在计算机程序产品被执行时,可实现上述任一所示的终端设备执行的测量方法。
本申请实施例的终端设备、计算机可读存储介质及计算机程序产品,可执行上述终端设备执行的测量方法,其具体的实现过程及有益效果参见上述,在此不再赘述。
实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一可读取存储器中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储器(存储介质)包括:只读存储器(英文:read-only memory,缩写:ROM)、RAM、快闪存储器、硬盘、固态硬盘、磁带(英文:magnetic tape)、软盘(英文:floppy disk)、光盘(英文:optical disc)及其任意组合。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理单元以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理单元执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
在本申请中,术语“包括”及其变形可以指非限制性的包括;术语“或”及其变形可以指“和/或”。本本申请中术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。本申请中,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。

Claims (25)

  1. 一种测量方法,其特征在于,包括:
    终端设备对网络设备的至少两个端口进行信号质量测量,得到每个端口对应的信号质量;
    所述终端设备根据每个端口对应的信号质量,在所述至少两个端口中确定业务端口和非业务端口,所述非业务端口为不进行信号发送的端口,所述业务端口用于所述终端设备进行业务处理。
  2. 根据权利要求1所述的方法,其特征在于,
    所述业务端口的信号质量大于或等于第一阈值;
    所述非业务端口的信号质量小于所述第一阈值。
  3. 根据权利要求2所述的方法,其特征在于,所述终端设备根据每个端口对应的信号质量,在所述至少两个端口中确定所述业务端口和所述非业务端口,包括:
    所述终端设备根据每个端口对应的信号质量,确定所述至少两个端口对应的信号质量;
    所述终端设备根据每个端口对应的信号质量和所述至少两个端口对应的信号质量,在所述至少两个端口中确定所述业务端口和所述非业务端口。
  4. 根据权利要求3所述的方法,其特征在于,所述终端设备根据每个端口对应的信号质量和所述至少两个端口对应的信号质量,在所述至少两个端口中确定所述业务端口和所述非业务端口,包括:
    若所述至少两个端口对应的信号质量大于或等于所述第一阈值,每个端口对应的信号质量大于或等于所述第一阈值,将所述至少两个端口分别确定为所述业务端口;或者,
    若所述至少两个端口对应的信号质量大于或等于所述第一阈值,所述至少两个端口中存在信号质量小于所述第一阈值的端口,则将信号质量大于或等于所述第一阈值的端口确定为所述业务端口,将信号质量小于所述第一阈值的端口确定为所述非业务端口。
  5. 根据权利要求3或4所述的方法,其特征在于,所述至少两个端口包括第一端口和第二端口;所述第一端口对应第一信号质量,所述第二端口对应第二信号质量;
    根据每个端口对应的信号质量和所述至少两个端口对应的信号质量,在所述至少两个端口中确定所述业务端口和所述非业务端口,包括:
    若所述第一信号质量、所述第二信号质量和所述至少两个端口对应的信号质量均大于或等于所述第一阈值,将所述至少两个端口分别确定为所述业务端口;或者,
    若所述第一信号质量和所述至少两个端口对应的信号质量均大于或等于所述第一阈值,所述第二信号质量小于所述第一阈值,确定所述第一端口为所述业务端口,确定所述第二端口为所述非业务端口;或者,
    若所述第二信号质量和所述至少两个端口对应的信号质量均大于或等于所述第一阈值,所述第一信号质量小于所述第一阈值,确定所述第一端口为所述非业务端口,确定所述第二端口为所述业务端口。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,针对所述至少两个端口中的任意一个端口;所述终端设备对网络设备的端口进行信号质量测量,得到所述端口对应的信号质量,包括:
    所述终端设备对所述端口进行M次信号质量测量,得到M个信号质量,所述M为大于1的整数;
    所述终端设备根据所述M个信号质量,确定所述端口对应的信号质量。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,终端设备对网络设备的至少两个端口进行信号质量测量,得到每个端口对应的信号质量之前,还包括:
    所述终端设备确定所述网络设备对应的信号质量大于或等于第二阈值。
  8. 根据权利要求7所述的方法,其特征在于,确定所述网络设备对应的信号质量大于或等于第二阈值,包括:
    所述终端设备在所述至少两个端口中确定第三端口;
    所述终端设备确定获取第三端口对应的测量结果所进行信号采样的采样次数;
    所述终端设备在所述采样次数小于或等于第三阈值时,确定所述网络设备对应的信号质量大于或等于第二阈值。
  9. 根据权利要求8所述的方法,其特征在于,在所述至少两个端口中确定第三端口,包括:
    所述终端设备同时对所述至少两个端口中的每个端口进行结果测量;
    所述终端设备将所述至少两个端口中第一个得到测量结果的端口确定为所述第三端口。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,终端设备对网络设备的至少两个端口进行信号质量测量,得到每个端口对应的信号质量之前,还包括:
    所述终端设备确定所述网络设备的端口的数量大于1。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,根据每个端口对应的信号质量,在所述至少两个端口中确定业务端口和非业务端口之后,还包括:
    所述终端设备获取所述业务端口对应的测量结果;
    所述终端设备根据所述测量结果进行业务处理。
  12. 一种测量装置,其特征在于,包括测量模块和第一确定模块,其中,
    所述测量模块用于,对网络设备的至少两个端口进行信号质量测量,得到每个端口对应的信号质量;
    所述第一确定模块用于,根据每个端口对应的信号质量,在所述至少两个端口中确定业务端口和非业务端口,所述非业务端口为不进行信号发送的端口,所述业务端口用于终端设备进行业务处理。
  13. 根据权利要求12所述的装置,其特征在于,
    所述业务端口的信号质量大于或等于第一阈值;
    所述非业务端口的信号质量小于所述第一阈值。
  14. 根据权利要求13所述的装置,其特征在于,所述第一确定模块具体用于:
    备根据每个端口对应的信号质量,确定所述至少两个端口对应的信号质量;
    根据每个端口对应的信号质量和所述至少两个端口对应的信号质量,在所述至少两个端口中确定所述业务端口和所述非业务端口。
  15. 根据权利要求14所述的装置,其特征在于,所述第一确定模块具体用于:
    若所述至少两个端口对应的信号质量大于或等于所述第一阈值,每个端口对应的信号质量大于或等于所述第一阈值,将所述至少两个端口分别确定为所述业务端口;或者,
    若所述至少两个端口对应的信号质量大于或等于所述第一阈值,所述至少两个端口中存在信号质量小于所述第一阈值的端口,则将信号质量大于或等于所述第一阈值的端口确定为所述业务端口,将信号质量小于所述第一阈值的端口确定为所述非业务端口。
  16. 根据权利要求14或15所述的装置,其特征在于,所述至少两个端口包括第一端口和第二端口;所述第一端口对应第一信号质量,所述第二端口对应第二信号质量;所述第一确定模块具体用于:
    若所述第一信号质量、所述第二信号质量和所述至少两个端口对应的信号质量均大于或等于所述第一阈值,将所述至少两个端口分别确定为所述业务端口;或者,
    若所述第一信号质量和所述至少两个端口对应的信号质量均大于或等于所述第一阈值,所述第二信号质量小于所述第一阈值,确定所述第一端口为所述业务端口,确定所述第二端口为所述非业务端口;或者,
    若所述第二信号质量和所述至少两个端口对应的信号质量均大于或等于所述第一阈值,所述第一信号质量小于所述第一阈值,确定所述第一端口为所述非业务端口,确定所述第二端口为所述业务端口。
  17. 根据权利要求12-16任一项所述的装置,其特征在于,针对所述至少两个端口中的任意一个端口;所述测量模块具体用于:
    对所述端口进行M次信号质量测量,得到M个信号质量,所述M为大于1的整数;
    根据所述M个信号质量,确定所述端口对应的信号质量。
  18. 根据权利要求12-17任一项所述的装置,其特征在于,所述装置还包括第二确定模块,其中,
    所述第二确定模块还用于,在所述测量模块对网络设备的至少两个端口进行信号质量测量,得到每个端口对应的信号质量之前,确定所述网络设备对应的信号质量大于或等于第二阈值。
  19. 根据权利要求18所述的装置,其特征在于,所述第二确定模块具体用于:
    在所述至少两个端口中确定第三端口;
    确定获取第三端口对应的测量结果所进行信号采样的采样次数;
    在所述采样次数小于或等于第三阈值时,确定所述网络设备对应的信号 质量大于或等于第二阈值。
  20. 根据权利要求19所述的装置,其特征在于,所述第二确定模块具体用于:
    同时对所述至少两个端口中的每个端口进行结果测量;
    将所述至少两个端口中第一个得到测量结果的端口确定为所述第三端口。
  21. 根据权利要求12-20任一项所述的装置,其特征在于,所述装置还包括第三确定模块,其中,
    所述第三确定模块用于,在所述测量模块对网络设备的至少两个端口进行信号质量测量,得到每个端口对应的信号质量之前,确定所述网络设备的端口的数量大于1。
  22. 根据权利要求12-21任一项所述的装置,其特征在于,所述装置还包括业务处理模块,其中,所述业务处理模块用于:
    获取所述业务端口对应的测量结果;
    根据所述测量结果进行业务处理。
  23. 一种终端设备,其特征在于,包括:收发器、处理器、存储器;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如权利要求1至11任一项所述的测量方法。
  24. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现权利要求1至11任一项所述的测量方法。
  25. 一种计算机程序产品,其特征在于,包括计算机程序,该计算机程序被处理器执行时实现权利要求1至11任一项所述的测量方法。
PCT/CN2021/122846 2020-10-10 2021-10-09 测量方法、装置及设备 WO2022073510A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011078396.3A CN112218326B (zh) 2020-10-10 2020-10-10 测量方法、装置及设备
CN202011078396.3 2020-10-10

Publications (1)

Publication Number Publication Date
WO2022073510A1 true WO2022073510A1 (zh) 2022-04-14

Family

ID=74053073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122846 WO2022073510A1 (zh) 2020-10-10 2021-10-09 测量方法、装置及设备

Country Status (2)

Country Link
CN (1) CN112218326B (zh)
WO (1) WO2022073510A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112218326B (zh) * 2020-10-10 2022-12-27 锐迪科(重庆)微电子科技有限公司 测量方法、装置及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6114955A (en) * 1998-06-03 2000-09-05 Interactive Technologies, Inc. System and method for antenna failure detection
CN102440023A (zh) * 2011-10-31 2012-05-02 华为技术有限公司 天馈交叉的检测方法及设备
CN110301107A (zh) * 2017-02-23 2019-10-01 瑞典爱立信有限公司 用于报告有故障天线端口的机制
EP3648500A1 (en) * 2018-10-30 2020-05-06 Panasonic Intellectual Property Corporation of America Measurements in the case of missing reference signals
CN112218326A (zh) * 2020-10-10 2021-01-12 锐迪科(重庆)微电子科技有限公司 测量方法、装置及设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102510313B (zh) * 2011-10-21 2014-03-12 中国北方车辆研究所 一种通信端口测量方法
CN103702360B (zh) * 2013-12-12 2017-06-06 华为技术有限公司 一种确定业务接入端口的数据流速的方法及装置
WO2016134537A1 (zh) * 2015-02-28 2016-09-01 华为技术有限公司 一种信道质量测量方法、装置及系统
CN107370556A (zh) * 2016-05-12 2017-11-21 株式会社Ntt都科摩 信道质量反馈方法、用户终端、信道质量测量的控制方法及基站
CN108631975A (zh) * 2017-03-23 2018-10-09 株式会社Ntt都科摩 参考信号发送方法、信道测量方法、无线基站及用户终端
JP6756001B2 (ja) * 2018-05-04 2020-09-16 華碩電腦股▲ふん▼有限公司 無線通信システムにおけるアクティブ下りリンク(dl)帯域幅部分(bwp)変更を考慮する下りリンク制御情報(dci)コンテンツ処理のための方法および装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6114955A (en) * 1998-06-03 2000-09-05 Interactive Technologies, Inc. System and method for antenna failure detection
CN102440023A (zh) * 2011-10-31 2012-05-02 华为技术有限公司 天馈交叉的检测方法及设备
CN110301107A (zh) * 2017-02-23 2019-10-01 瑞典爱立信有限公司 用于报告有故障天线端口的机制
EP3648500A1 (en) * 2018-10-30 2020-05-06 Panasonic Intellectual Property Corporation of America Measurements in the case of missing reference signals
CN112218326A (zh) * 2020-10-10 2021-01-12 锐迪科(重庆)微电子科技有限公司 测量方法、装置及设备

Also Published As

Publication number Publication date
CN112218326B (zh) 2022-12-27
CN112218326A (zh) 2021-01-12

Similar Documents

Publication Publication Date Title
US9510314B2 (en) Method and evolved node-B for geographic bin data collection and reporting
WO2017066917A1 (en) Method and device for performing beamforming
WO2019137172A1 (zh) 确定波束、信号质量测量方法及通信装置
US10193666B2 (en) Method, access point, server and station used for coordinated transmission
US8923331B2 (en) System and method for measurement bandwidth configuration
US11751247B2 (en) Wireless station and communication method for determining transmission to another wireless station in a cell in view of an interference cell
WO2017206730A1 (zh) 一种下行干扰管理方法、基站及用户设备
WO2021190364A1 (zh) 一种测量配置方法及装置
WO2014114106A1 (zh) 无线收发设备的上行数据接收方法和装置
JP2023512795A (ja) 測定制限に基づいたl1-sinr測定手順
JP6363218B2 (ja) ユーザ装置、判定方法、コンピュータプログラム及び記憶媒体
WO2022073510A1 (zh) 测量方法、装置及设备
CN116530206A (zh) 多链路测量报告
WO2016065990A1 (zh) 下行发送功率控制的方法、装置和计算机存储介质
US9936463B2 (en) Method for detecting a terminal by a base station, base station, and network entity
WO2022127499A1 (zh) 功率控制方法、装置及设备
WO2021088089A1 (zh) 链路质量监测方法及相关产品
WO2022206660A1 (zh) 一种干扰处理的方法,相关装置以及设备
WO2019029462A1 (zh) 一种干扰测量方法及装置
WO2022151494A1 (zh) 一种传输参数确定方法及装置
US20230232201A1 (en) Methods for communication, terminal device, network device, and computer readable media
US11659419B2 (en) Method, system and apparatus identifying an interfering aerial vehicle user equipment within a communications system
KR102265987B1 (ko) 적응적 수신기 운용 방법 및 장치
US12010725B2 (en) Wireless station and communication method for determining transmission to another wireless station in a cell in view of an interference cell
WO2022061802A1 (en) Angle calibration for cross-link interference angle-of-arrival estimation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877027

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877027

Country of ref document: EP

Kind code of ref document: A1