WO2021190364A1 - 一种测量配置方法及装置 - Google Patents

一种测量配置方法及装置 Download PDF

Info

Publication number
WO2021190364A1
WO2021190364A1 PCT/CN2021/081172 CN2021081172W WO2021190364A1 WO 2021190364 A1 WO2021190364 A1 WO 2021190364A1 CN 2021081172 W CN2021081172 W CN 2021081172W WO 2021190364 A1 WO2021190364 A1 WO 2021190364A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
serving cell
bwp
terminal device
measurement configuration
Prior art date
Application number
PCT/CN2021/081172
Other languages
English (en)
French (fr)
Inventor
金乐
王洲
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to US17/776,772 priority Critical patent/US20220394533A1/en
Priority to EP21774876.3A priority patent/EP4050930A4/en
Publication of WO2021190364A1 publication Critical patent/WO2021190364A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection

Definitions

  • This application relates to the field of communication technology, and in particular to a measurement configuration method and device.
  • the terminal device When the terminal device is in the radio resource control connection state ((radio resource control, RRC)_CONNECTED) state, the terminal device needs to monitor the signal quality of the serving cell through continuous measurement. When the signal quality of the serving cell is lower than a certain threshold, the network equipment will configure the neighboring cell measurement so that the terminal equipment can switch to the neighboring cell with better signal quality in time to maintain business continuity.
  • the network device sends measurement configuration information to the terminal device through RRC reconfiguration (RRC reconfiguration) signaling.
  • the measurement configuration information may include a measurement object (MO), a report configuration (reporting configuration, reportConfig), and a measurement identifier (measurement object). identity, measId), quantity configuration (quantity configuration), measurement gaps (MG), etc.
  • the terminal device When the frequency of synchronization signal/physical broadcast channel block ((synchronization signal, SS)/(physical broadcast channel, PBCH) block, SSB) is configured in the MO corresponding to the serving cell of the terminal device, the terminal device’s The measurement is based on the measurement of the SSB at this frequency point.
  • a bandwidth part (BandWidth Part, BWP) is introduced, and different BWPs have different bandwidth sizes and frequency domain positions.
  • the network device configures the terminal device to work on a certain BWP, which is called the activated BWP.
  • Each serving cell can be configured with at most 1 initial BWP and 4 dedicated BWPs. BWPs can be switched to each other.
  • the SSB corresponding to the serving cell may be outside the bandwidth of the new BWP.
  • the MG needs to be configured.
  • the terminal device adjusts its radio frequency path from the currently activated BWP to the frequency point where the SSB is located, thereby completing the measurement of the SSB.
  • the network device dynamically instructs the terminal device to switch the BWP through downlink control information (DCI).
  • DCI is the physical layer control signaling
  • the BWP is dynamically switched through DCI, and the switching speed is fast, while the measurement configuration is carried through RRC signaling, and the configuration speed is slow. Take measurements.
  • the present application provides a measurement configuration method and device to solve the problem of measurement configuration mismatch in the BWP dynamic switching process in the prior art.
  • this application provides a measurement configuration method.
  • the method may include a terminal device receiving measurement configuration information from a network device, the measurement configuration information includes first information, and the first information is used to indicate When the frequency of the SSB indicated by the MO of the first serving cell of the terminal device is not on the BWP currently activated by the first serving cell, the MG takes effect; After the BWP is switched to the second BWP, the terminal device determines that the MG in the measurement configuration is valid according to the first information; wherein, the second BWP does not include the SSB indicated by the MO corresponding to the first serving cell Frequency point; the first serving cell is any one of at least one serving cell of the terminal device.
  • the terminal device switches to the BWP that does not include the frequency of the MO SSB corresponding to the serving cell to be measured, the MG in the measurement configuration information will take effect accordingly, and there is no need to configure through RRC signaling. Solve the problem of measurement configuration mismatch during BWP dynamic handover, and reduce RRC signaling at the same time.
  • the terminal device may also determine the measurement according to the first information
  • the configured MG does not take effect; wherein, the third BWP includes the frequency of the SSB indicated by the MO corresponding to the first serving cell.
  • the first information may be located in the first field in the measurement time slot configuration of the measurement configuration information.
  • the first field may be a newly added field in the measurement time slot configuration.
  • the frequency of the SSB of the MO corresponding to any one of the multiple serving cells is not currently in the serving cell.
  • the MG that takes effect on the activated BWP is the same. In this way, one MG can be configured for multiple serving cells, reducing signaling overhead.
  • the terminal device may also receive second information from the network device, where the second information is used to indicate the correspondence between the BWP and MO of the first serving cell of the terminal device,
  • the first serving cell is configured with multiple MOs, and any one MO is configured with one SSB frequency;
  • the terminal device determines the first MO corresponding to the fourth BWP according to the correspondence between the BWP and the MO, and the first MO is
  • the fourth BWP is the BWP currently activated in the first serving cell of the terminal device, and the fourth BWP is different from the second BWP; the terminal device is based on the frequency point pair of the SSB indicated by the first MO
  • the SSB is measured.
  • the second information may be received through the measurement configuration information; or, the second information may also be received through the configuration information of the serving cell. In this way, the second information can be flexibly configured.
  • the second information when the second information is received through the measurement configuration information, the second information may be included in the configuration of each MO in the measurement configuration information, and the configuration of any MO
  • the correspondence between the BWP of the first serving cell and the MO indicated by the second information in is the BWP of the first serving cell corresponding to any one of the MOs.
  • the configuration information of the serving cell may further include third information, and the third information is used to indicate the number of the first serving cell. The identification of each MO. This facilitates the subsequent measurement of the first serving cell to associate the MO with the measurement report configuration.
  • the identities of the MOs corresponding to different BWPs of the first serving cell are the same, and one of the MOs of the multiple MOs of the first serving cell takes effect at the same time.
  • the present application provides a measurement configuration method.
  • the method may include a network device determining measurement configuration information and sending the measurement configuration information to a terminal device.
  • the measurement configuration information includes first information. The information is used to indicate that when the frequency of the synchronization signal/physical broadcast channel block SSB indicated by the measurement object MO of the first serving cell of the terminal device is not on the BWP of the currently activated bandwidth of the first serving cell, the measurement time slot MG takes effect ;
  • the first serving cell is any one of the at least one serving cell of the terminal device.
  • the terminal device switches to the BWP that does not include the frequency of the MO SSB corresponding to the serving cell to be measured, the MG in the measurement configuration information will take effect accordingly, and there is no need to configure through RRC signaling. Solve the problem of measurement configuration mismatch during BWP dynamic handover, and reduce RRC signaling at the same time.
  • the first information may be located in the first field in the measurement time slot configuration of the measurement configuration information.
  • the first field may be a newly added field in the measurement time slot configuration.
  • the frequency of the SSB of the MO corresponding to any one of the multiple serving cells is not currently in the serving cell.
  • the MG that takes effect on the activated BWP is the same. In this way, one MG can be configured for multiple serving cells, reducing signaling overhead.
  • the network device may also determine second information and send the second information to the terminal device, where the second information is used to indicate the status of the first serving cell of the terminal device Correspondence between BWP and MO, the first serving cell is configured with multiple MOs, and one SSB frequency point is configured in any MO.
  • the second information may be sent through the measurement configuration information; or, the second information may also be sent through the configuration information of the serving cell. In this way, the second information can be flexibly configured.
  • the second information when the second information is sent through the measurement configuration information, the second information may be included in the configuration of each MO in the measurement configuration information, and the configuration of any MO
  • the correspondence between the BWP of the first serving cell and the MO indicated by the second information in is the BWP of the first serving cell corresponding to any one of the MOs.
  • the configuration information of the serving cell may further include third information, and the third information is used to indicate the number of the first serving cell. The identification of each MO. This facilitates the subsequent measurement of the first serving cell to associate the MO with the measurement report configuration.
  • the identities of the MOs corresponding to different BWPs of the first serving cell are the same, and one of the MOs of the multiple MOs of the first serving cell takes effect at the same time.
  • the present application also provides a terminal device, the terminal device having the function of the terminal device in the foregoing first aspect or each possible design example of the first aspect.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the terminal device includes a transceiver unit and a processing unit. These units can perform the corresponding functions of the terminal device in the first aspect or each possible design example of the first aspect. For details, refer to the method example The detailed description in, I won’t repeat it here.
  • the structure of the terminal device includes a transceiver, a processor, and optionally a memory.
  • the transceiver is used for sending and receiving data and for communicating and interacting with other devices in the communication system
  • the processor is configured to support the terminal device to perform the aforementioned first aspect or corresponding functions of the terminal device in each possible design example of the first aspect.
  • the memory is coupled with the processor, and stores the necessary program instructions and data of the terminal device.
  • this application also provides a network device that has the function of implementing the network device in the second aspect or each possible design example of the second aspect.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the network device includes a transceiver unit and a processing unit. These units can perform the corresponding functions of the network device in the second aspect or each possible design example of the second aspect. For details, refer to the method example The detailed description in, I won’t repeat it here.
  • the structure of the network device includes a transceiver, a processor, and optionally a memory.
  • the transceiver is used for sending and receiving data and for communicating and interacting with other devices in the communication system
  • the processor is configured to support the network device to perform the corresponding function of the network device in the foregoing second aspect or each possible design example of the second aspect.
  • the memory is coupled with the processor, and stores the necessary program instructions and data of the network device.
  • the embodiments of the present application provide a communication system, which may include the aforementioned terminal equipment and network equipment.
  • a computer-readable storage medium provided by an embodiment of the present application.
  • the computer-readable storage medium stores program instructions.
  • the program instructions run on a computer, the computer executes the first aspect of the embodiments of the present application and its Any possible design or implementation of the second aspect of the embodiments of the present application and any possible design.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer.
  • computer-readable media may include non-transitory computer-readable media, random-access memory (RAM), read-only memory (ROM), and electrically erasable In addition to programmable read-only memory (electrically EPROM, EEPROM), CD-ROM or other optical disk storage, magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can Any other medium accessed by the computer.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable
  • CD-ROM or other optical disk storage magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can Any other medium accessed by the computer.
  • the embodiments of the present application provide a computer program product including computer program code or instructions, which, when run on a computer, enables the computer to implement any one of the possible designs of the first aspect or the second aspect. In the method.
  • the present application also provides a chip, which is coupled with a memory, and is used to read and execute program instructions stored in the memory to implement any one of the first aspect or the second aspect. Possible design methods.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by this application.
  • Figure 2 is a schematic structural diagram of a terminal device provided by this application.
  • FIG. 3 is a flowchart of a measurement configuration method provided by this application.
  • FIG. 4 is a schematic diagram of a configuration of SSB and BWP provided by this application.
  • FIG. 5 is a schematic diagram of another configuration of SSB and BWP provided by this application.
  • FIG. 6 is a schematic diagram of another configuration of SSB and BWP provided by this application.
  • FIG. 7 is a schematic structural diagram of a communication device provided by this application.
  • FIG. 8 is a structural diagram of a communication device provided by this application.
  • the embodiments of the present application provide a measurement configuration method and device to solve the problem of the measurement configuration mismatch in the BWP dynamic switching process in the prior art.
  • the method and device described in the present application are based on the same technical concept. Since the method and the device have similar principles for solving the problem, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • FIG. 1 shows the architecture of a possible communication system to which the measurement configuration method provided in the embodiment of the present application is applicable.
  • the access network is divided into cellular cells, and the terminal equipment in each cell and the network equipment of the cell are linked through an air interface, and signaling and data exchange are performed through the air interface.
  • the access network can be based on multiple access technologies, depending on the network standard used. For example, in the 5th generation (5G) new radio (NR), network equipment can use orthogonal frequency division multiple access (orthogonal frequency division multiplexing access, OFDMA) multiple access method.
  • 5G 5th generation
  • NR new radio
  • OFDMA orthogonal frequency division multiple access
  • the network device configures the measurement configuration information of the terminal device through RRC signaling, and the terminal device measures the signal quality of the serving cell according to the configured measurement configuration information .
  • the network equipment will configure the neighboring cell measurement so that the terminal equipment can switch to the neighboring cell with better signal quality in time.
  • the network equipment may be an access network (radio access network, RAN) equipment, and the access network equipment may also be referred to as a base station.
  • the base station may include, but is not limited to, a next generation node B (next generation node).
  • B gNB
  • radio network controller RNC
  • node B Node B, NB
  • base station controller BSC
  • base transceiver station BTS
  • home base station BSS
  • BBU baseband unit
  • AP access point
  • WIFI wireless fidelity
  • Wireless backhaul node transmission point (transmission and reception point, TRP or transmission point, TP), etc.
  • BBU baseband unit
  • DU distributed unit
  • the terminal equipment may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal, wireless communication equipment , User agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( The wireless terminal in transportation safety, the wireless terminal in the smart city, the wireless terminal in the smart home, and so on.
  • terminal devices with wireless transceiver functions and chips that can be installed in the aforementioned terminal devices are collectively referred to as terminal devices.
  • FIG. 2 shows a schematic structural diagram of a terminal device.
  • the terminal device can be applied to the communication system shown in FIG. 1.
  • FIG. 2 only shows the main components of the terminal device.
  • the terminal device may include a processor, a memory, a transmit (TX) signal processing unit, a receive (RX) signal processing unit, a TX radio frequency channel, an RX radio frequency channel, and an antenna.
  • TX transmit
  • RX receive
  • the memory is used to store executable code and data static memory, and also includes dynamic memory used to store instructions and dynamic data.
  • the processor is used to control the TX signal processing unit and the RX signal processing unit to send and receive signals in a predefined manner.
  • the TX signal processing unit implements various signal processing functions for signal transmission, including processes such as channel coding, scrambling, modulation, layer mapping, precoding, and antenna mapping.
  • the RX signal processing unit implements various signal processing functions for signal reception, including synchronization, time-frequency tracking, measurement, channel estimation, equalization, demodulation, descrambling, and decoding.
  • the TX signal processing unit and the RX signal processing unit are respectively connected to the antenna through the TX radio frequency channel and the RX radio frequency channel.
  • the TX radio frequency channel modulates the baseband signal to the carrier frequency and sends it out through the antenna;
  • the RX radio frequency channel demodulates the radio frequency signal received from the antenna into a baseband signal, which is processed by the RX signal processing unit.
  • the RX signal processing unit is mainly used to process the received signal SSB and calculate the signal quality of the serving cell, including reference signal receiving power (RSRP) and reference signal receiving quality (RSRQ) ), at least one of signal-to-noise ratio (SNR).
  • RSRP reference signal receiving power
  • RSRQ reference signal receiving quality
  • SNR signal-to-noise ratio
  • Some antennas can be configured to transmit and receive at the same time, so they are connected to the TX RF channel and RX RF channel at the same time; some antennas are configured to be used only for receiving, so they are only connected to the RX RF channel.
  • the TX radio frequency channel and the RX radio frequency channel can be connected to any antenna, such as TX radio frequency channel 1 and RX radio frequency channel 1 and antenna 2, which can be flexibly configured according to business requirements.
  • the TX signal processing unit and the RX signal processing unit together can be called a transceiver; or the TX signal processing unit, TX radio frequency channel, RX signal processing unit and RX radio frequency channel together can be called a transceiver; or TX signal processing unit, TX radio frequency
  • the channel, RX signal processing unit, RX radio frequency channel and antenna together can be called a transceiver. This application does not limit this.
  • the communication system shown in FIG. 1 can be, but is not limited to, a 5G system, such as NR.
  • the method of the embodiment of this application is also applicable to various future communication systems, such as 6G systems or other communication networks. Wait.
  • the measurement configuration information configured by the network device to the terminal device may include: MO, report configuration, measurement identification, measurement quantity configuration, and MG.
  • MO information such as frequency points that the terminal device needs to be measured is configured in the MO, and each MO has a measurement object identifier (MeasObjectId).
  • MeasObjectId measurement object identifier
  • cell measurement in NR can be based on SSB measurement, and SSB frequency and subcarrier spacing can be configured in MO
  • reporting configuration is to configure the criteria for reporting measurement results, the format of the report, and the type of reference signal on which the measurement is based.
  • the report configuration has a report configuration identifier (reportConfigId); measurement identifier: each measurement identifier associates a measurement object with a report configuration through the MeasObjectId and reportConfigId; the measurement configuration is the filter coefficient of the configured measurement value; MG: when measuring and Data transmission cannot be performed at the same time, and the network device needs to configure an MG for it, that is, when the terminal device needs to measure the time slot for measurement, the network device needs to configure the MG for the terminal device.
  • reportConfigId report configuration identifier
  • measurement identifier each measurement identifier associates a measurement object with a report configuration through the MeasObjectId and reportConfigId
  • the measurement configuration is the filter coefficient of the configured measurement value
  • MG when measuring and Data transmission cannot be performed at the same time, and the network device needs to configure an MG for it, that is, when the terminal device needs to measure the time slot for measurement, the network device needs to configure the MG for the terminal device.
  • the NR protocol stipulates that for each serving cell, an MO must be configured.
  • the serving cell measurement object (servingCellMO) is used to indicate the ID MeasObjectId of the MO corresponding to each serving cell. If the frequency of the SSB is configured in the MO, the measurement of the serving cell is Based on the SSB on this frequency.
  • BWP is introduced in NR, that is, the uplink/downlink bandwidth of the entire cell is configured as a continuous part in multiple frequency domains, which is called uplink/downlink BWP.
  • Different BWPs have different bandwidth sizes and frequency domain positions.
  • the network device configures the terminal device to work on a certain BWP, which is called the activated BWP.
  • the terminal device only needs to receive downlink data on the activated downlink BWP and send uplink data on the activated uplink BWP.
  • Each serving cell can be configured with at most 1 initial BWP and 4 dedicated BWPs.
  • Each BWP has a unique ID for identifying the BWP (hereinafter referred to as bwp-Id), where the bwp-Id of the initial BWP is fixed at 0, and the value range of the bwp-Id of the dedicated BWP is 1 to 4.
  • BWPs can be switched to each other.
  • the SSB corresponding to the serving cell may be outside the bandwidth of the new BWP.
  • the MG needs to be configured.
  • the terminal device adjusts its radio frequency path from the currently activated BWP to the frequency point where the SSB is located, thereby completing the measurement of the SSB.
  • the network device dynamically instructs the terminal device to switch the BWP through DCI.
  • the network device needs to be reconfigured through RRC signaling MG in the measurement configuration information.
  • DCI is the physical layer control signaling.
  • the BWP is dynamically switched through DCI, and the switching speed is fast.
  • the measurement configuration is carried through RRC signaling, and the configuration speed is slow. Take measurements.
  • the network equipment if the network equipment frequently instructs to switch between the BWP of the frequency including the SSB and the BWP of the frequency not including the SSB, the network equipment needs to continuously configure and release the MG, which will cause an RRC signaling storm.
  • the embodiment of the present application provides a measurement configuration method, which can be applied to the communication system shown in FIG.
  • the MG in the measurement configuration information will take effect accordingly, and there is no need to configure it through RRC signaling, which can solve the problem of measurement configuration mismatch during the BWP dynamic handover process and reduce the RRC signaling at the same time.
  • the specific process of the measurement configuration method provided by the embodiment of the present application may include:
  • Step 301 The network device determines measurement configuration information.
  • the measurement configuration information includes first information.
  • the first information is used to indicate that the frequency of the SSB indicated by the MO of the first serving cell of the terminal device is not in the first serving cell.
  • the MG becomes effective; the first serving cell is any one of the at least one serving cell of the terminal device.
  • Step 302 The network device sends the measurement configuration information to the terminal device.
  • Step 303 The terminal device receives the measurement configuration information, and after the active BWP of the first serving cell is switched from the first BWP to the second BWP, the terminal device determines the measurement according to the first information
  • the configured MG takes effect; wherein, the second BWP does not include the frequency of the SSB indicated by the MO corresponding to the first serving cell.
  • the first information may be located in the first field of the measurement time slot configuration (GapConfig) of the measurement configuration information.
  • the first field may be a newly added information element in the GapConfig, and may indicate whether the MG takes effect dynamically with the BWP handover.
  • the specific configuration of the GapConfig containing the first information may be as follows:
  • the activeDynamically field in the above configuration is the first field.
  • the activeDynamically field is set to true (true)
  • the first information is used to indicate that the MG takes effect when the frequency of the SSB indicated by the MO of the first serving cell of the terminal device is not on the BWP currently activated by the first serving cell.
  • the MG does not take effect.
  • the terminal device determines the The MG in the measurement configuration does not take effect; wherein, the third BWP includes the frequency of the SSB indicated by the MO corresponding to the first serving cell.
  • the currently activated BWPs of other serving cells except the first serving cell all include the frequency of the SSB indicated in the MO corresponding to the other serving cell.
  • the network device configures only one serving cell (that is, the first serving cell) for the terminal device, the SSB indicated by the MO of the first serving cell and the BWP of the first serving cell
  • the configuration can be as shown in Figure 4.
  • the network device configures the frequency of the MO indication SSB1 corresponding to the first serving cell, and configures the activeDyanamically field as true in GapConfig at the same time. If the BWP currently activated by the first serving cell is the initial BWP or dedicated BWP1, then the MG is not effective.
  • the network device does not allocate a measurement time slot (gap) to the terminal device; if the first serving cell is currently activated If the BWP is dedicated BWP2 or dedicated BWP3, the MG takes effect. At this time, the network device allocates measurement time slots according to the configuration in GapConfig. In the measurement time slot, the network device does not perform uplink and downlink scheduling, and the terminal device adjusts the radio frequency path At the frequency point where SSB1 is located, the signal of SSB1 is received to complete the measurement of SSB1.
  • the network device when the network device configures multiple serving cells for the terminal device, the network device can configure a corresponding MO for each serving cell, and at the same time configure the activeDyanamically field in GapConfig as true, then If the SSB frequency indicated by the MO associated with any serving cell is not on the currently activated BWP, the MG takes effect; otherwise, the MG does not take effect. Further, when the network device configures multiple serving cells for the terminal device, the frequency of the SSB of the MO corresponding to any one of the multiple serving cells is not on the currently activated BWP of the serving cell The MG that takes effect at the time is the same.
  • the above activeDynamically field may not be included in GapConfig, that is, like the prior art, the MG in the measurement configuration always takes effect. That is, when the measurement configuration information does not include the first information, the MG always takes effect.
  • the network device when the network device is configured for inter-frequency or inter-system measurement at the same time, according to the current protocol, the network device must be configured with MG, and the activeDyanamically field is not included in GapConfig.
  • the NR protocol supports the configuration of multiple SSBs for measurement within a carrier bandwidth.
  • the terminal device may also receive second information from the network device, where the second information is used to indicate the first serving cell of the terminal device The corresponding relationship between the BWP and the MO, the first serving cell is configured with multiple MOs, and any one MO is configured with one SSB frequency; and then the terminal device determines the fourth BWP according to the corresponding relationship between the BWP and the MO Corresponding to the first MO, the fourth BWP is the currently activated BWP of the first serving cell of the terminal device, and the fourth BWP is different from the second BWP; the terminal device is based on the first The frequency point of the SSB indicated by the MO measures the SSB.
  • the second information may be received through the measurement configuration information.
  • the configuration of each MO in the measurement configuration information may include the second information, and the second information in the configuration of any MO indicates the correspondence between the BWP of the first serving cell and the MO It may be the BWP of the first serving cell corresponding to any one MO.
  • a new information element BWP identifier list (that is, the second information) is added to the MO, indicating which BWPs are associated with the MO.
  • bwp-IdList a new information element BWP identifier list (that is, the second information) is added to the MO, indicating which BWPs are associated with the MO.
  • the specific configuration of MO can be as follows:
  • the above MO configuration includes the bwp-IdList, which means that the MO is a dynamically valid MO, which is dynamically valid with the activation of the BWP indicated in the bwp-IdList. That is, the terminal device measures the SSB based on the frequency of the SSB indicated by the MO corresponding to the currently activated BWP.
  • the MO configuration does not include bwp-IdList, it means that the MO is semi-static and will always take effect after configuration until the MO is deleted, for example, configure one for inter-frequency or inter-system measurement MO.
  • the identities of the MOs corresponding to different BWPs of the first serving cell may be the same, and one of the MOs of the multiple MOs of the first serving cell takes effect at the same time. That is, the dynamically valid MO configured for the same serving cell may use an identifier (MeasObjectId), and the MeasObjectID is consistent with the identifier of the MO in the configuration of the serving cell (servingCellMO). Only one MO sharing a MeasObjectId can be effective at a time.
  • the frequency of the SSB configured for a dynamically effective MO and a non-dynamically effective MO that is, the MO that does not include the above-mentioned bwp-IdList
  • the non-dynamically effective MO takes effect.
  • the terminal device has only one serving cell (that is, the first serving cell), with ⁇ MeasObjectId, SSB frequency, bwp-IdList ⁇
  • the MO including the frequency of SSB1 corresponds to BWP0 and BWP1
  • the MO including the frequency of SSB2 corresponds to BWP2
  • the MO including the frequency of SSB3 corresponds to BWP3.
  • the network device may also be configured with frequency points where SSB does not exist on some BWPs.
  • the frequency of SSB is not configured on the dedicated BWP3.
  • the MG needs to be configured to measure SSB1 or SSB2.
  • a dynamically effective MG is configured.
  • the inter-frequency measurement always needs MG, so the gapConfig does not carry activeDyanamically, that is, the MG always takes effect.
  • the frequency of the SSB in the same-frequency neighboring cell is the same as that of SSB1.
  • the second information is received through configuration information of the serving cell.
  • the configuration information of the serving cell may further include third information, and the third information is used to indicate the identities of multiple MOs of the first serving cell.
  • the second information may be included in the BWP configuration in the configuration information of the serving cell
  • the third information may be included in the configuration of the serving cell
  • an information element measObjectDynamic (that is, second information) is added to the BWP-Downlink downlink configuration BWP-Downlink of the configuration information of the serving cell to configure the dynamic MO associated with each BWP.
  • a field MeasObjectId (that is, third information) is added to indicate the MeasObjectId corresponding to the dynamic MO of a serving cell (that is, the first serving cell).
  • the dynamic MOs of a serving cell share the same MeasObjectId.
  • Another possible configuration can be as follows:
  • the dynamic MO list measObjectDynamicList and the MeasObjectId (that is, the third information) corresponding to the dynamic MO are configured in the configuration ServingCellConfig of the serving cell.
  • a field measObjectDynamicId is added to the downlink configuration BWP-Downlink of the BWP in the configuration information of the serving cell to indicate which dynamic MO (that is, the second information) in the measObjectDynamicList associated with the BWP.
  • the RRC signaling configuration can solve the problem of the measurement configuration mismatch during the BWP dynamic handover process, and at the same time reduce the RRC signaling.
  • the communication device 700 may include: a transceiver unit 701 and a processing unit 702.
  • the transceiving unit 701 is used for the communication device 700 to receive information (message or data) or to send information (message or data)
  • the processing unit 702 is used to control and manage the actions of the communication device 700.
  • the processing unit 702 may also control the steps performed by the transceiver unit 701.
  • the communication apparatus 700 may be the terminal device in the foregoing embodiment, specifically may be a processor, or a chip or a chip system in the terminal device, or a functional module, etc.; or, the communication apparatus 700 may It is the network device in the foregoing embodiment, which may specifically be a processor, or a chip or a chip system, or a functional module of the network device.
  • the transceiver unit 701 is used to receive measurement configuration information from a network device, and the measurement configuration information Contains first information, the first information is used to indicate that the frequency of the synchronization signal/physical broadcast channel block SSB indicated by the measurement object MO in the first serving cell of the terminal device is not currently active in the first serving cell
  • the measurement time slot MG takes effect; the first serving cell is any one of the at least one serving cell of the terminal device; the activated BWP of the first serving cell is switched from the first BWP
  • the processing unit 702 is configured to determine that the MG in the measurement configuration is valid according to the first information; wherein, the second BWP does not include the SSB indicated by the MO corresponding to the first serving cell Frequency point.
  • the processing unit 702 may be further configured to determine the The MG in the measurement configuration does not take effect; wherein, the third BWP includes the frequency of the SSB indicated by the MO corresponding to the first serving cell.
  • the first information may be located in the first field in the measurement time slot configuration of the measurement configuration information.
  • the frequency of the SSB of the MO corresponding to any one of the multiple serving cells is not in the serving cell
  • the MG in effect on the currently activated BWP is the same.
  • the transceiving unit 701 may be further configured to receive second information from the network device, where the second information is used to indicate the BWP of the first serving cell of the terminal device Correspondence with MO, the first serving cell is configured with multiple MOs, and any MO is configured with a frequency of SSB; the processing unit 702 is further configured to determine the fourth The first MO corresponding to the BWP, the fourth BWP is the BWP currently activated by the first serving cell of the terminal device, and the fourth BWP is different from the second BWP; and is based on the first MO The frequency point of the indicated SSB measures the SSB.
  • the second information may be received through the measurement configuration information; or, the second information may also be received through the configuration information of the serving cell.
  • the second information may be included in the configuration of each MO in the measurement configuration information, and the second information in the configuration of any MO
  • the correspondence between the BWP of the first serving cell and the MO indicated by the information is the BWP of the first serving cell corresponding to any one of the MOs.
  • the configuration information of the serving cell further includes third information, and the third information is used to indicate multiple information of the first serving cell.
  • the identities of the MOs corresponding to different BWPs of the first serving cell are the same, and one of the MOs of the multiple MOs of the first serving cell takes effect at the same time.
  • the processing unit 702 is used to determine measurement configuration information. Contains first information, the first information is used to indicate that the frequency of the synchronization signal/physical broadcast channel block SSB indicated by the measurement object MO in the first serving cell of the terminal device is not in the currently activated bandwidth of the first serving cell When part of the BWP is on, the measurement time slot MG takes effect; the first serving cell is any one of at least one serving cell of the terminal device; the transceiving unit 701 is configured to send the measurement to the terminal device Configuration information.
  • the first information may be located in the first field in the measurement time slot configuration of the measurement configuration information.
  • the frequency of the SSB of the MO corresponding to any one of the multiple serving cells is not in the The MG that takes effect on the currently activated BWP of the serving cell is the same.
  • the processing unit 702 may also be used to determine second information, where the second information is used to indicate the correspondence between the BWP and the MO of the first serving cell of the terminal device,
  • the first serving cell is configured with multiple MOs, and any MO is configured with one SSB frequency;
  • the transceiver unit 701 is further configured to send the second information to the terminal device.
  • the second information may be sent through the measurement configuration information; or, the second information may also be sent through the configuration information of the serving cell.
  • the second information may be included in the configuration of each MO of the measurement configuration information, as indicated by the second information in the configuration of any MO
  • the correspondence between the BWP of the first serving cell and the MO is the BWP of the first serving cell corresponding to any one MO.
  • the configuration information of the serving cell may further include third information, and the third information is used to indicate the number of the first serving cell. The identification of each MO.
  • the identities of MOs corresponding to different BWPs of the first serving cell are the same, and one of the MOs of the multiple MOs of the first serving cell takes effect at the same time.
  • the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • the functional units in the embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .
  • an embodiment of the present application also provides a communication device.
  • the communication device 800 may include a transceiver 801 and a processor 802.
  • the communication device 800 may further include a memory 803.
  • the memory 803 may be provided inside the communication device 800, and may also be provided outside the communication device 800.
  • the processor 802 can control the transceiver 801 to receive and send data.
  • the processor 802 may be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP.
  • the processor 802 may further include a hardware chip.
  • the above-mentioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the above-mentioned PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL), or any combination thereof.
  • the transceiver 801, the processor 802, and the memory 803 are connected to each other.
  • the transceiver 801, the processor 802, and the memory 803 are connected to each other through a bus 804;
  • the bus 804 may be a Peripheral Component Interconnect (PCI) bus or an extended industry standard Structure (Extended Industry Standard Architecture, EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used in FIG. 8, but it does not mean that there is only one bus or one type of bus.
  • the memory 803 is used to store programs and the like.
  • the program may include program code, and the program code includes computer operation instructions.
  • the memory 803 may include RAM, or may also include non-volatile memory, such as one or more disk memories.
  • the processor 802 executes the application program stored in the memory 803 to realize the above-mentioned functions, thereby realizing the functions of the communication device 800.
  • the communication apparatus 800 may be the terminal device in the foregoing embodiment, and may also be the network device in the foregoing embodiment.
  • the transceiver 801 is used to receive measurement configuration information from a network device. Contains first information, the first information being used to indicate that the frequency of the synchronization signal/physical broadcast channel block SSB indicated by the measurement object MO in the first serving cell of the terminal device is not currently activated in the first serving cell
  • the bandwidth part BWP is on, the measurement time slot MG takes effect; the first serving cell is any one of the at least one serving cell of the terminal device; the activated BWP of the first serving cell is switched from the first BWP to After the second BWP, the processor 802 is configured to determine, according to the first information, that the MG in the measurement configuration is valid; wherein, the second BWP does not include the SSB indicated by the MO corresponding to the first serving cell Frequency.
  • the processor 802 may be further configured to determine the The MG in the measurement configuration does not take effect; wherein, the third BWP includes the frequency of the SSB indicated by the MO corresponding to the first serving cell.
  • the first information may be located in the first field in the measurement time slot configuration of the measurement configuration information.
  • the frequency of the SSB of the MO corresponding to any one of the multiple serving cells is not in the serving cell
  • the MG in effect on the currently activated BWP is the same.
  • the transceiver 801 may also be used to receive second information from the network device, where the second information is used to indicate the BWP of the first serving cell of the terminal device Correspondence with MO, the first serving cell is configured with multiple MOs, and any one MO is configured with a frequency of SSB; the processor 802 is further configured to determine the fourth The first MO corresponding to the BWP, the fourth BWP is the BWP currently activated by the first serving cell of the terminal device, and the fourth BWP is different from the second BWP; and is based on the first MO The frequency point of the indicated SSB measures the SSB.
  • the second information may be received through the measurement configuration information; or, the second information may also be received through the configuration information of the serving cell.
  • the second information when the second information is received through the measurement configuration information, the second information may be included in the configuration of each MO in the measurement configuration information, and the second information in the configuration of any MO
  • the correspondence between the BWP of the first serving cell and the MO indicated by the information is the BWP of the first serving cell corresponding to any one of the MOs.
  • the configuration information of the serving cell may further include third information, and the third information is used to indicate the number of the first serving cell. The identification of each MO.
  • the identities of the MOs corresponding to different BWPs of the first serving cell are the same, and one of the MOs of the multiple MOs of the first serving cell takes effect at the same time.
  • the processor 802 is used to determine measurement configuration information, and the measurement configuration information includes the first Information, the first information is used to indicate that the frequency of the synchronization signal/physical broadcast channel block SSB indicated by the measurement object MO of the first serving cell of the terminal device is not on the currently activated bandwidth part BWP of the first serving cell
  • the measurement time slot MG takes effect; the first serving cell is any one of the at least one serving cell of the terminal device; the transceiver 801 is configured to send the measurement configuration information to the terminal device.
  • the first information may be located in the first field in the measurement time slot configuration of the measurement configuration information.
  • the frequency of the SSB of the MO corresponding to any one of the multiple serving cells is not in the The MG that takes effect on the currently activated BWP of the serving cell is the same.
  • the processor 802 may be further configured to determine second information, where the second information is used to indicate the correspondence between the BWP and the MO of the first serving cell of the terminal device,
  • the first serving cell is configured with multiple MOs, and any MO is configured with one SSB frequency; the transceiver 801 is also used to send the second information to the terminal device.
  • the second information may be sent through the measurement configuration information; or, the second information may also be sent through the configuration information of the serving cell.
  • the second information may be included in the configuration of each MO of the measurement configuration information, as indicated by the second information in the configuration of any MO
  • the correspondence between the BWP of the first serving cell and the MO is the BWP of the first serving cell corresponding to any one MO.
  • the configuration information of the serving cell may further include third information, and the third information is used to indicate the number of the first serving cell. The identification of each MO.
  • the identities of MOs corresponding to different BWPs of the first serving cell are the same, and one of the MOs of the multiple MOs of the first serving cell takes effect at the same time.
  • the embodiments of the present application also provide a communication system.
  • the communication system may include the terminal devices and network devices involved in the above embodiments.
  • the embodiments of the present application also provide a computer-readable storage medium, which is used to store a computer program.
  • the computer program When the computer program is executed by a computer, the computer can implement any of the measurements provided in the above-mentioned method embodiments. Configuration method.
  • the embodiments of the present application also provide a computer program product, the computer program product is used to store a computer program, and when the computer program is executed by a computer, the computer can implement any of the measurement configuration methods provided in the foregoing method embodiments.
  • An embodiment of the present application also provides a chip, including a processor and a communication interface, the processor is coupled with the memory, and is used to call a program in the memory to enable the chip to implement any measurement configuration provided in the foregoing method embodiments method.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种测量配置方法及装置,用以解决现有技术中BWP动态切换过程中测量配置不匹配的问题。该方法为:网络设备确定测量配置信息后向终端设备发送测量配置信息,测量配置信息中包含第一信息,第一信息指示在第一服务小区的MO指示的SSB的频点不在第一服务小区当前激活的BWP上时MG生效;第一服务小区为终端设备的至少一个服务小区中的任一个服务小区;终端设备的第一服务小区的激活BWP从第一BWP切换到第二BWP后,终端设备根据第一信息确定测量配置中的MG生效;第二BWP不包含第一服务小区对应的MO指示的SSB的频点。

Description

一种测量配置方法及装置
相关申请的交叉引用
本申请要求在2020年03月25日提交中国专利局、申请号为202010218679.7、申请名称为“一种测量配置方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种测量配置方法及装置。
背景技术
当终端设备处于无线资源控制连接态((radio resource control,RRC)_CONNECTED)态时,终端设备需要通过不断测量以监测服务小区的信号质量。当服务小区的信号质量低于一定门限时,网络设备将配置邻区测量,以使终端设备能及时切换到信号质量更好的邻区上,保持业务的连续性。网络设备通过RRC重配置(RRC reconfiguration)信令向终端设备发送测量配置信息,所述测量配置信息中可以包括测量对象(measurement object,MO)、上报配置(reporting configuration,reportConfig)、测量标识(measurement identity,measId)、测量量配置(quantity configuration)、测量时隙(measurement gaps,MG)等。当终端设备的服务小区对应的MO中配置了同步信号/物理广播信道块((synchronization signal,SS)/(physical broadcast channel,PBCH)block,SSB)的频点,则终端设备对该服务小区的测量是基于该频点上的SSB的测量。
在第五代(5generation,5G)新空口(new radio,NR)中引入了带宽部分(BandWidth Part,BWP),不同的BWP具有不同的带宽大小和频域位置。网络设备配置终端设备工作在某个BWP上,该BWP称为激活的BWP。每个服务小区最多可配置1个初始BWP和4个专用BWP。BWP之间可以相互切换,当切换到新的BWP上时,也即终端设备需要在新的BWP上工作时,服务小区对应的SSB可能在该新的BWP的带宽范围外,按照NR协议规定,此时需要配置MG,在MG中,终端设备将其射频通路从当前激活的BWP上调整到SSB所在的频点上,从而完成对SSB的测量。
目前,在BWP切换的过程中,网络设备通过下行控制信息(downlink control information,DCI)动态指示终端设备切换BWP,当切换后的BWP不包含服务小区对应的MO中配置的SSB的频点时,网络设备需要通过RRC信令重新配置测量配置信息中的MG。在上述方法中,DCI是物理层控制信令,通过DCI动态切换BWP,切换速度快,而测量配置是通过RRC信令携带,配置速度慢,两者会出现不匹配问题,从而导致无法对小区进行测量。
发明内容
本申请提供一种测量配置方法及装置,用以解决现有技术中BWP动态切换过程中测量配置不匹配的问题。
第一方面,本申请提供了一种测量配置方法,该方法可以包括终端设备从网络设备接收测量配置信息,所述测量配置信息中包含第一信息,所述第一信息用于指示在所述终端设备的第一服务小区的MO指示的SSB的频点不在所述第一服务小区当前激活的BWP上时,MG生效;在所述终端设备的所述第一服务小区的激活BWP从第一BWP切换到第二BWP后,所述终端设备根据所述第一信息确定所述测量配置中的MG生效;其中,所述第二BWP不包含所述第一服务小区对应的MO指示的SSB的频点;所述第一服务小区为所述终端设备的至少一个服务小区中的任一个服务小区。
通过上述方法,当终端设备切换到不包含待测量的服务小区对应的MO的SSB的频点的BWP上时,测量配置信息中的MG随之生效,不需要再通过RRC信令配置,从而可以解决BWP动态切换过程中测量配置不匹配的问题,同时也减小了RRC信令。
在一个可能的设计中,所述终端设备的所述第一服务小区的激活BWP从所述第一BWP切换到第三BWP后,所述终端设备还可以根据所述第一信息确定所述测量配置中的MG不生效;其中,所述第三BWP包含所述第一服务小区对应的MO指示的SSB的频点。这样可以解决BWP动态切换过程中测量配置不匹配的问题,同时也减小了RRC信令。
在一个可能的设计中,所述第一信息可以位于所述测量配置信息的测量时隙配置中的第一字段。其中所述第一字段可以是所述测量时隙配置中新增的字段。
在一个可能的设计中,当所述网络设备为所述终端设备配置了多个服务小区时,所述多个服务小区中任一个服务小区对应的MO的SSB的频点不在所述服务小区当前激活的BWP上时生效的MG相同。这样可以为多个服务小区配置一个MG即可,减少信令开销。
在一个可能的设计中,所述终端设备还可以从所述网络设备接收第二信息,所述第二信息用于指示所述终端设备的所述第一服务小区的BWP与MO的对应关系,所述第一服务小区配置了多个MO,任一个MO中配置了一个SSB的频点;所述终端设备根据所述BWP与MO的对应关系确定第四BWP对应的第一MO,所述第四BWP为所述终端设备的所述第一服务小区当前激活的BWP,且所述第四BWP与所述第二BWP不同;所述终端设备基于所述第一MO指示的SSB的频点对所述SSB进行测量。
通过上述方法,通过为一个服务小区配置多个MO,并配置MO和BWP的关联关系,当BWP切换时,自动生效与当前激活的BWP关联的MO,从而可避免BWP切换过程中测量配置不匹配的问题,减少了RRC信令。
在一个可能的设计中,所述第二信息可以是通过所述测量配置信息接收的;或者,所述第二信息也可以是通过服务小区的配置信息接收的。这样可以灵活配置第二信息。
在一个可能的设计中,当所述第二信息是通过所述测量配置信息接收的时,所述第二信息可以包含于所述测量配置信息的每个MO的配置中,任一个MO的配置中的第二信息指示的所述第一服务小区的BWP与MO的对应关系为所述任一个MO对应的所述第一服务小区的BWP。这样可以明确每个MO关联的BWP。当所述第二信息是通过所述服务小区的配置信息接收的时,所述服务小区的配置信息中还可以包括第三信息,所述第三信息用于指示所述第一服务小区的多个MO的标识。这样便于后续对所述第一服务小区进行测量时,对MO和测量上报配置相关联。
在一个可能的设计中,所述第一服务小区的不同BWP对应的MO的标识相同,在同一时刻所述第一服务小区的多个MO中的其中一个MO生效。
第二方面,本申请提供了一种测量配置方法,该方法可以包括网络设备确定测量配置 信息后向终端设备发送所述测量配置信息,所述测量配置信息中包含第一信息,所述第一信息用于指示在终端设备的第一服务小区的测量对象MO指示的同步信号/物理广播信道块SSB的频点不在所述第一服务小区当前激活的带宽部分BWP上时,测量时隙MG生效;所述第一服务小区为所述终端设备的至少一个服务小区中的任一个服务小区。
通过上述方法,当终端设备切换到不包含待测量的服务小区对应的MO的SSB的频点的BWP上时,测量配置信息中的MG随之生效,不需要再通过RRC信令配置,从而可以解决BWP动态切换过程中测量配置不匹配的问题,同时也减小了RRC信令。
在一个可能的设计中,所述第一信息可以位于所述测量配置信息的测量时隙配置中的第一字段。其中所述第一字段可以是所述测量时隙配置中新增的字段。
在一个可能的设计中,当所述网络设备为所述终端设备配置了多个服务小区时,所述多个服务小区中任一个服务小区对应的MO的SSB的频点不在所述服务小区当前激活的BWP上时生效的MG相同。这样可以为多个服务小区配置一个MG即可,减少信令开销。
在一个可能的设计中,所述网络设备还可以确定第二信息并向所述终端设备发送所述第二信息,所述第二信息用于指示所述终端设备的所述第一服务小区的BWP与MO的对应关系,所述第一服务小区配置了多个MO,任一个MO中配置了一个SSB的频点。
通过上述方法,通过为一个服务小区配置多个MO,并配置MO和BWP的关联关系,当BWP切换时,自动生效与当前激活的BWP关联的MO,从而可避免BWP切换过程中测量配置不匹配的问题,减少了RRC信令。
在一个可能的设计中,所述第二信息可以是通过所述测量配置信息发送的;或者,所述第二信息也可以是通过服务小区的配置信息发送的。这样可以灵活配置第二信息。
在一个可能的设计中,当所述第二信息是通过所述测量配置信息发送的时,所述第二信息可以包含于所述测量配置信息的每个MO的配置中,任一个MO的配置中的第二信息指示的所述第一服务小区的BWP与MO的对应关系为所述任一个MO对应的所述第一服务小区的BWP。这样可以明确每个MO关联的BWP。当所述第二信息是通过所述服务小区的配置信息发送的时,所述服务小区的配置信息中还可以包括第三信息,所述第三信息用于指示所述第一服务小区的多个MO的标识。这样便于后续对所述第一服务小区进行测量时,对MO和测量上报配置相关联。
在一个可能的设计中,所述第一服务小区的不同BWP对应的MO的标识相同,在同一时刻所述第一服务小区的多个MO中的其中一个MO生效。
第三方面,本申请还提供了一种终端设备,所述终端设备具有实现上述第一方面或第一方面的各个可能的设计示例中终端设备的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述终端设备的结构中包括收发单元和处理单元,这些单元可以执行上述第一方面或第一方面的各个可能的设计示例中终端设备的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述终端设备的结构中包括收发器和处理器,可选的还包括存储器,所述收发器用于收发数据,以及用于与通信系统中的其他设备进行通信交互,所述处理器被配置为支持所述终端设备执行上述第一方面或第一方面的各个可能的设计示例中终端设备的相应的功能。所述存储器与所述处理器耦合,其保存所述终端设备必要的程序指令和数据。
第四方面,本申请还提供了一种网络设备,所述网络设备具有实现上述第二方面或第二方面的各个可能的设计示例中网络设备的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述网络设备的结构中包括收发单元和处理单元,这些单元可以执行上述第二方面或第二方面的各个可能的设计示例中网络设备的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述网络设备的结构中包括收发器和处理器,可选的还包括存储器,所述收发器用于收发数据,以及用于与通信系统中的其他设备进行通信交互,所述处理器被配置为支持所述网络设备执行上述第二方面或第二方面的各个可能的设计示例中网络设备的相应的功能。所述存储器与所述处理器耦合,其保存所述网络设备必要的程序指令和数据。
第五方面,本申请实施例提供了一种通信系统,可以包括上述提及的终端设备和网络设备等。
第六方面,本申请实施例提供的一种计算机可读存储介质,该计算机可读存储介质存储有程序指令,当程序指令在计算机上运行时,使得计算机执行本申请实施例第一方面及其任一可能的设计或执行本申请实施例第二方面及其任一可能的设计。示例性的,计算机可读存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括非瞬态计算机可读介质、随机存取存储器(random-access memory,RAM)、只读存储器(read-only memory,ROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。
第七方面,本申请实施例提供一种包括计算机程序代码或指令的计算机程序产品,当其在计算机上运行时,使得计算机可以实现上述第一方面或第二方面中的任意一种可能的设计中的方法。
第八方面,本申请还提供了一种芯片,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现上述第一方面或第二方面中的任意一种可能的设计中的方法。
上述第三方面至第六方面中的各个方面以及各个方面可能达到的技术效果请参照上述针对第一方面或第二方面中的各种可能方案可以达到的技术效果说明,这里不再重复赘述。
附图说明
图1为本申请提供的一种通信系统的架构示意图;
图2为本申请提供的一种终端设备的结构示意图;
图3为本申请提供的一种测量配置方法的流程图;
图4为本申请提供的一种SSB和BWP的配置示意图;
图5为本申请提供的另一种SSB和BWP的配置示意图;
图6为本申请提供的另一种SSB和BWP的配置示意图;
图7为本申请提供的一种通信装置的结构示意图;
图8为本申请提供的一种通信装置的结构图。
具体实施方式
下面将结合附图对本申请作进一步地详细描述。
本申请实施例提供一种测量配置方法及装置,用以解决现有技术中BWP动态切换过程中测量配置不匹配的问题。其中,本申请所述方法和装置基于同一技术构思,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
图1示出了本申请实施例提供的测量配置方法适用的一种可能的通信系统的架构。在所述通信系统的中,接入网被划分成蜂窝小区,每个小区中的终端设备和该小区的网络设备通过空口链接,通过空口进行信令和数据交互。接入网可基于多种接入技术,具体依赖于所采用的网络制式,例如第五代(5th generation,5G)新空口(new radio,NR)中,网络设备可以使用正交频分多址(orthogonal frequency division multiplexing access,OFDMA)的多址接入方式。
当终端设备处于无线资源控制连接((radio resource control,RRC)_CONNECTED)态时,网络设备将通过RRC信令配置终端设备的测量配置信息,终端设备根据配置的测量配置信息测量服务小区的信号质量。当测量得到服务小区的信号质量低于一定门限时,网络设备将配置邻区测量,以使终端设备能及时切换到信号质量更好的邻区上。
具体的,所述网络设备可以为接入网(radio access network,RAN)设备,所述接入网设备又可以称为基站,所述基站可以包括但不限于:下一代节点B(next generation node B,gNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
所述终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。本申请中将具有无线收发功能的终端设备及可设置于前述终端设备的芯片统称为终端设备。
图2示出了一种终端设备的结构示意图。该终端设备可适用于图1所示出的通信系统中。为了便于说明,图2仅示出了终端设备的主要部件。如图2所示,终端设备可以包括处理器、存储器、发送(transmit,TX)信号处理单元、接收(receive,RX)信号处理单元、TX射频通道、RX射频通道和天线。其中:
存储器用于存储可执行代码和数据的静态存储器,也包括用于存储指令和动态数据的动态存储器。处理器用于控制TX信号处理单元和RX信号处理单元按照预定义的方式发送和接收信号。TX信号处理单元实现信号发送的各种信号处理功能,包括信道编码、加扰、调制、层映射、预编码和天线映射等过程。RX信号处理单元实现信号接收的各种信号处理功能,包括同步、时频跟踪、测量、信道估计、均衡、解调、解扰、译码等过程。
TX信号处理单元和RX信号处理单元分别通过TX射频通道和RX射频通道和天线相连。TX射频通道将基带信号调制到载波频率,通过天线发送出去;RX射频通道将从天线接收到的射频信号解调为基带信号,交由RX信号处理单元处理。本申请中,RX信号处理单元主要用于对接收信号SSB进行处理,计算服务小区的信号质量,包括参考信号接收功率(reference sgnal receiving power,RSRP)、参考信号接收质量(reference signal receiving quality,RSRQ)、信噪比(signal-to-noise ratio,SNR)中的至少一种。部分天线可配置为同时发送和接收,因此同时与TX射频通道和RX射频通道相连;部分天线配置为只用于接收,因此只与RX射频通道相连。另外TX射频通道和RX射频通道可与任一天线相连,如TX射频通道1和RX射频通道1与天线2相连,可根据业务需求灵活配置。
其中,TX信号处理单元和RX信号处理单元一起可以叫做收发器;或者,TX信号处理单元、TX射频通道、RX信号处理单元和RX射频通道一起可以叫做收发器;或者TX信号处理单元、TX射频通道、RX信号处理单元、RX射频通道和天线一起可以叫做收发器。本申请对此不作限定。
需要说明的是,图1所示的通信系统可以但不限于为5G系统,如NR,可选的,本申请实施例的方法还适用于未来的各种通信系统,例如6G系统或者其他通信网络等。
目前,网络设备配置给终端设备的测量配置信息中可以包括:MO、上报配置、测量标识、测量量配置和MG。其中,MO中配置终端设备需要测量的频点等信息,每个MO都有一个测量对象标识(MeasObjectId)。例如,NR中小区测量可基于SSB测量,则MO中可配置SSB的频点以及子载波间隔;上报配置是配置测量结果上报的准则,上报的格式以及测量基于的参考信号类型等信息,每个上报配置都有一个上报配置标识(reportConfigId);测量标识:每个测量标识通过MeasObjectId和reportConfigId将一个测量对象和一个上报配置相关联;测量量配置是配置测量值的滤波系数;MG:当测量和数据传输不能同时进行,需要网络设备为其配置MG,即当终端设备需要测量时隙进行测量时,网络设备需要为终端设备配置MG。
NR协议规定,对于每个服务小区,都要配置一个MO。在服务小区的配置信息中,通过信元服务小区测量对象(servingCellMO)指示每个服务小区对应的MO的ID标识MeasObjectId,如果该MO中配置了SSB的频点,则对该服务小区的测量即基于该频点上的SSB。
在NR中引入了BWP,即将整个小区的上行/下行带宽配置为多个频域上连续的部分,称之为上行/下行BWP。不同的BWP具有不同的带宽大小和频域位置。网络设备配置终端设备工作在某个BWP上,该BWP称为激活的BWP。终端设备只需要在激活的下行BWP上接收下行数据,在激活的上行BWP上发送上行数据。每个服务小区最多可配置1个初始BWP和4个专用BWP。每个BWP都有唯一的ID用于标识BWP(下文称之为bwp-Id),其中初始BWP的bwp-Id固定为0,专用BWP的bwp-Id的取值范围为1~4。BWP之间可以相互切换,当切换到新的BWP上时,也即终端设备需要在新的BWP上工作时,服务小 区对应的SSB可能在该新的BWP的带宽范围外,按照NR协议规定,此时需要配置MG,在MG中,终端设备将其射频通路从当前激活的BWP上调整到SSB所在的频点上,从而完成对SSB的测量。
目前,在BWP切换的过程中,网络设备通过DCI动态指示终端设备切换BWP,当切换后的BWP不包含服务小区对应的MO中配置的SSB的频点时,网络设备需要通过RRC信令重新配置测量配置信息中的MG。其中,DCI是物理层控制信令,通过DCI动态切换BWP,切换速度快,而测量配置是通过RRC信令携带,配置速度慢,两者会出现不匹配的问题,从而导致终端设备无法对小区进行测量。并且,如果网络设备频繁指示在包含SSB的频点的BWP和不包含SSB的频点的BWP间切换,网络设备需要不断配置和释放MG,会导致RRC信令风暴。
基于以上描述,本申请实施例提供了一种测量配置方法,可以适用于图1所示的通信系统,当终端设备切换到不包含待测量的服务小区对应的MO的SSB的频点的BWP上时,使测量配置信息中的MG随之生效,不需要再通过RRC信令配置,从而可以解决BWP动态切换过程中测量配置不匹配的问题,同时也减小了RRC信令。
需要说明的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。在本申请中的描述中,“至少一个(种)”是指一个(种)或者多个(种),多个(种)是指两个(种)或者两个(种)以上。
为了更加清晰地描述本申请实施例的技术方案,下面结合附图,对本申请实施例提供的通信方法及装置进行详细说明。
参阅图3所示,本申请实施例提供的测量配置方法的具体流程可以包括:
步骤301、网络设备确定测量配置信息,所述测量配置信息中包含第一信息,所述第一信息用于指示在终端设备的第一服务小区的MO指示的SSB的频点不在所述第一服务小区当前激活的BWP上时,MG生效;所述第一服务小区为所述终端设备的至少一个服务小区中的任一个服务小区。
步骤302、所述网络设备向终端设备发送所述测量配置信息。
步骤303、所述终端设备接收所述测量配置信息,以及在所述第一服务小区的激活BWP从第一BWP切换到第二BWP后,所述终端设备根据所述第一信息确定所述测量配置中的MG生效;其中,所述第二BWP不包含所述第一服务小区对应的MO指示的SSB的频点。
具体的,所述第一信息可以位于所述测量配置信息的测量时隙配置(GapConfig)中的第一字段。可选的,所述第一字段可以是所述GapConfig中新增的一个信元,可以表示MG是否随着BWP切换动态生效。
在一种可选的示例中,包含所述第一信息的所述GapConfig的具体配置可以如下:
Figure PCTCN2021081172-appb-000001
其中,上述配置中的activeDynamically字段即为所述第一字段。当所述 activeDynamically字段设置为真(true)时,则表示任一个MO指示的SSB的频点不在所属服务小区的当前激活的BWP上时,则MG生效。也即,所述第一信息用于指示在所述终端设备的第一服务小区的MO指示的SSB的频点不在所述第一服务小区当前激活的BWP上时,MG生效。
具体的,当所有服务小区当前激活的BWP都包含服务小区对应的MO指示的SSB的频点时,所述MG才不生效。在一种可选的实施方式中,所述终端设备的所述第一服务小区的激活BWP从所述第一BWP切换到第三BWP后,所述终端设备根据所述第一信息确定所述测量配置中的MG不生效;其中,所述第三BWP包含所述第一服务小区对应的MO指示的SSB的频点。此时,当有多个服务小区时,除所述第一服务小区以外的其他服务小区当前激活的BWP都包含其他服务小区对应的MO中指示的SSB的频点。
在一个示例中,当所述网络设备为所述终端设备仅配置一个服务小区(即所述第一服务小区),所述第一服务小区的MO指示的SSB和所述第一服务小区的BWP配置可以如图4所示。所述网络设备配置所述第一服务小区对应的MO指示SSB1的频点,同时在GapConfig中配置activeDyanamically字段为true。如果所述第一服务小区当前激活的BWP为初始BWP或专用BWP1,则MG不生效,此时所述网络设备不分配测量时隙(gap)给终端设备;如果所述第一服务小区当前激活的BWP为专用BWP2或专用BWP3,则MG生效,此时所述网络设备按GapConfig中的配置分配测量时隙,在测量时隙中所述网络设备不进行上下行调度,终端设备将射频通路调整到SSB1所在频点,接收SSB1的信号,从而完成对SSB1的测量。
在另一个示例中,当所述网络设备为所述终端设备配置了多个服务小区,所述网络设备为每个服务小区可以配置相应的MO,同时在GapConfig中配置activeDyanamically字段为true,则当任何一个服务小区关联的MO指示的SSB频点不在当前激活的BWP上,MG生效;否则MG不生效。进一步地,当所述网络设备为所述终端设备配置了多个服务小区时,所述多个服务小区中任一个服务小区对应的MO的SSB的频点不在所述服务小区当前激活的BWP上时生效的MG相同。
需要说明的是,上述activeDynamically字段可以不包含在GapConfig中,也即像现有技术一样,测量配置中的MG始终生效。也即,当所述测量配置信息中不包含所述第一信息时,所述MG始终生效。
需要说明的是,当所述网络设备同时配置异频或异系统测量时,按照目前协议规定,所述网络设备必须配置MG,则在GapConfig中不包含activeDyanamically字段。
在一种实施方式中,NR协议中支持在一个载波带宽内配置多个用于测量的SSB。在此种场景下,一种可选的实施方式中,所述终端设备还可以从所述网络设备接收第二信息,所述第二信息用于指示所述终端设备的所述第一服务小区的BWP与MO的对应关系,所述第一服务小区配置了多个MO,任一个MO中配置了一个SSB的频点;进而所述终端设备根据所述BWP与MO的对应关系确定第四BWP对应的第一MO,所述第四BWP为所述终端设备的所述第一服务小区当前激活的BWP且所述第四BWP与所述第二BWP不同;所述终端设备基于所述第一MO指示的SSB的频点对所述SSB进行测量。
在一种可选的实施方式中,所述第二信息可以是通过所述测量配置信息接收的。示例性的,在所述测量配置信息的每个MO的配置中可以包含所述第二信息,任一个MO的配置中的第二信息指示的所述第一服务小区的BWP与MO的对应关系可以为所述任一个 MO对应的所述第一服务小区的BWP。具体的,在所述MO中新增一个信元BWP标识列表(bwp-IdList)(也即所述第二信息),表示哪些BWP与该MO相关联。一种示例,MO的具体配置可以如下:
Figure PCTCN2021081172-appb-000002
其中,上述MO配置中包含bwp-IdList,则表示该MO为动态生效的MO,随着bwp-IdList中指示的BWP的激活而动态生效的。也即,所述终端设备基于当前激活的BWP对应的MO指示的SSB的频点对SSB进行测量。
在一种具体的实现方式中,如果MO配置中不包含bwp-IdList,则表示该MO是半静态的,配置后始终生效,直至该MO被删除,例如配置一个用于异频或异系统测量的MO。
在一个可选的实施方式中,所述第一服务小区的不同BWP对应的MO的标识可以相同,在同一时刻所述第一服务小区的多个MO中的其中一个MO生效。也即,为同一个服务小区配置的动态生效MO可使用一个标识(MeasObjectId),该MeasObjectID和服务小区的配置中的MO的标识(servingCellMO)一致。共用一个MeasObjectId的MO同一时刻只能有一个生效。如果某个动态生效的MO和某个非动态生效的MO(也即没有包含上述bwp-IdList的MO)配置的SSB的频点相同,则仅非动态生效的MO生效。
例如,图5所示的服务小区的BWP和SSB的示意图中,假设所述终端设备仅有一个服务小区(即所述第一服务小区),以{MeasObjectId,SSB的频点,bwp-IdList}三元组表示每个MO配置,MO可配置为:{MeasObjectId=1,SSB1,[BWP0,BWP1]}、{MeasObjectId=1,SSB2,BWP2}和{MeasObjectId=1,SSB3,BWP3}。也即,包含SSB1的频点的MO与BWP0和BWP1对应,包含SSB2的频点的MO与BWP2对应,包含SSB3的频点的MO与BWP3对应。此时,每个BWP上都存在SSB的频点。
当然,所述网络设备也可以配置某些BWP上不存在SSB的频点。例如,图6所示的服务小区的BWP和SSB的示意图中,专用BWP3上没有配置SSB的频点,则当激活专用BWP3时,就需要配置MG,测量SSB1或SSB2,此时可以按照配置所述第一信息的方式,配置动态生效的MG。例如,针对图6,若仅有一个服务小区,一种测量配置可以为:{MeasObjectId=1,SSB1,[BWP0BWP1]}、{MeasObjectId=1,SSB2,BWP2}和{MeasObjectId=1,SSB2,BWP3};gapConfig中activeDyanamically=true。也即,包含SSB1的频点的MO与BWP0和BWP1对应,包含SSB2的频点的MO与BWP2对应;当BWP3激活时,通过activeDyanamically=true指示MG生效,并配置测量SSB2。
在一个示例中,在图6所示的情况下,如果终端设备仅有一个服务小区,网络设备同时配置了异频邻区测量,则一种测量配置可以如下:{MeasObjectId=1,SSB1,[BWP0BWP1]}、{MeasObjectId=1,SSB2,BWP2}、{MeasObjectId=1,SSB2,BWP3}和 {MeasObjectId=2,异频邻区SSB};gapConfig中不携带activeDyanamically。此时异频测量始终需要MG,因此gapConfig中不携带activeDyanamically,即MG始终生效。
又一个示例中,在图6所示的情况下,如果终端设备仅有一个服务小区,网络设备同时配置了同频邻区测量,同频邻区的SSB的频点和SSB1的相同,则一种测量配置可以如下:{MeasObjectId=1,SSB1,[BWP0BWP1]}、{MeasObjectId=1,SSB2,BWP2}、{MeasObjectId=1,SSB2,BWP3}和{MeasObjectId=2,SSB1};gapConfig中activeDyanamically=true。此时,当服务小区激活的BWP切换到BWP0或BWP1时,包含SSB1的频点的动态MO生效,但由于存在MeasObjectID=2的MO同样配置了SSB1的频点,则MeasObjectID=2生效,而MeasObjectID=1不生效。
在另一种可选的实施方式中,所述第二信息是通过服务小区的配置信息接收的。在这种情况下,所述服务小区的配置信息中还可以包括第三信息,所述第三信息用于指示所述第一服务小区的多个MO的标识。
一种示例中,所述第二信息可以包含于所述服务小区的配置信息中的BWP配置中,所述第三信息可以包含在服务小区的配置中。
例如,一种可能的配置可以如下:
Figure PCTCN2021081172-appb-000003
其中,在所述服务小区的配置信息的BWP的下行配置BWP-Downlink中增加信元measObjectDynamic(也即第二信息),用于配置每个BWP关联的动态MO。在所述服务小区的配置ServingCellConfig中,增加字段MeasObjectId(也即第三信息),指示一个服务小区(即所述第一服务小区)动态MO对应的MeasObjectId。一个服务小区的动态MO共用相同的MeasObjectId。
又例如,另一种可能的配置可以如下:
Figure PCTCN2021081172-appb-000004
Figure PCTCN2021081172-appb-000005
其中,在服务小区的配置ServingCellConfig中配置动态MO列表measObjectDynamicList,以及动态MO对应的MeasObjectId(即第三信息)。在服务小区的配置信息中的BWP的下行配置BWP-Downlink中增加字段measObjectDynamicId,指示该BWP关联measObjectDynamicList中第几个动态MO(也即第二信息)。
采用本申请实施例提供的测量配置方法,当终端设备切换到不包含待测量的服务小区对应的MO的SSB的频点的BWP上时,测量配置信息中的MG随之生效,不需要再通过RRC信令配置,从而可以解决BWP动态切换过程中测量配置不匹配的问题,同时也减小了RRC信令。
基于以上实施例,本申请实施例还提供了一种通信装置,参阅图7所示,该通信装置700可以包括:收发单元701和处理单元702。其中,所述收发单元701用于所述通信装置700接收信息(消息或数据)或发送信息(消息或数据),所述处理单元702用于对所述通信装置700的动作进行控制管理。所述处理单元702还可以控制所述收发单元701执行的步骤。
示例性的,该通信装置700可以是上述实施例中的终端设备,具体可以是所述终端设备中的处理器,或者芯片或者芯片系统,或者是一个功能模块等;或者,该通信装置700可以是上述实施例中的网络设备,具体可以是所述网络设备的处理器,或者芯片或者芯片系统,或者是一个功能模块等。
在一个实施例中,所述通信装置700用于实现上述图3所示的实施例中终端设备的功能时,具体地,收发单元701用于从网络设备接收测量配置信息,所述测量配置信息中包含第一信息,所述第一信息用于指示在所述终端设备的第一服务小区的测量对象MO指示的同步信号/物理广播信道块SSB的频点不在所述第一服务小区当前激活的带宽部分BWP上时,测量时隙MG生效;所述第一服务小区为所述终端设备的至少一个服务小区中的任一个服务小区;所述第一服务小区的激活BWP从第一BWP切换到第二BWP后,所述处理单元702用于根据所述第一信息确定所述测量配置中的MG生效;其中,所述第二BWP不包含所述第一服务小区对应的MO指示的SSB的频点。
在一种可选的实施方式中,所述第一服务小区的激活BWP从所述第一BWP切换到第三BWP后,所述处理单元702还可以用于根据所述第一信息确定所述测量配置中的MG不生效;其中,所述第三BWP包含所述第一服务小区对应的MO指示的SSB的频点。示例性的,所述第一信息可以位于所述测量配置信息的测量时隙配置中的第一字段。
一种可选的实施方式,当所述网络设备为所述终端设备配置了多个服务小区时,所述多个服务小区中任一个服务小区对应的MO的SSB的频点不在所述服务小区当前激活的BWP上时生效的MG相同。
在一种可选的实施方式中,所述收发单元701还可以用于从所述网络设备接收第二信息,所述第二信息用于指示所述终端设备的所述第一服务小区的BWP与MO的对应关系,所述第一服务小区配置了多个MO,任一个MO中配置了一个SSB的频点;所述处理单元702还用于根据所述BWP与MO的对应关系确定第四BWP对应的第一MO,所述第四BWP为所述终端设备的所述第一服务小区当前激活的BWP,且所述第四BWP与所述第二BWP不同;并基于所述第一MO指示的SSB的频点对所述SSB进行测量。
示例性的,所述第二信息可以是通过所述测量配置信息接收的;或者,所述第二信息也可以是通过服务小区的配置信息接收的。具体的,当所述第二信息是通过所述测量配置信息接收的时,所述第二信息可以包含于所述测量配置信息的每个MO的配置中,任一个MO的配置中的第二信息指示的所述第一服务小区的BWP与MO的对应关系为所述任一个MO对应的所述第一服务小区的BWP。当所述第二信息是通过所述服务小区的配置信息接收的时,所述服务小区的配置信息中还包括第三信息,所述第三信息用于指示所述第一服务小区的多个MO的标识。
示例性的,所述第一服务小区的不同BWP对应的MO的标识相同,在同一时刻所述第一服务小区的多个MO中的其中一个MO生效。
在另一个实施例中,所述通信装置700用于实现上述图3所述的实施例中网络设备的功能时,具体地,所述处理单元702用于确定测量配置信息,所述测量配置信息中包含第一信息,所述第一信息用于指示在终端设备的第一服务小区的测量对象MO指示的同步信号/物理广播信道块SSB的频点不在所述第一服务小区当前激活的带宽部分BWP上时,测量时隙MG生效;所述第一服务小区为所述终端设备的至少一个服务小区中的任一个服务小区;所述收发单元701用于向所述终端设备发送所述测量配置信息。
示例性的,所述第一信息可以位于所述测量配置信息的测量时隙配置中的第一字段。
在一种可选的实施方式中,当所述网络设备为所述终端设备配置了多个服务小区时,所述多个服务小区中任一个服务小区对应的MO的SSB的频点不在所述服务小区当前激活的BWP上时生效的MG相同。
在一种具体的实施方式中,所述处理单元702还可以用于确定第二信息,所述第二信息用于指示所述终端设备的所述第一服务小区的BWP与MO的对应关系,所述第一服务小区配置了多个MO,任一个MO中配置了一个SSB的频点;所述收发单元701还用于向所述终端设备发送所述第二信息。
示例性的,所述第二信息可以是通过所述测量配置信息发送的;或者,所述第二信息也可以是通过服务小区的配置信息发送的。当所述第二信息是通过所述测量配置信息发送的时,所述第二信息可以包含于所述测量配置信息的每个MO的配置中,任一个MO的配置中的第二信息指示的所述第一服务小区的BWP与MO的对应关系为所述任一个MO对应的所述第一服务小区的BWP。当所述第二信息是通过所述服务小区的配置信息发送的时,所述服务小区的配置信息中还可以包括第三信息,所述第三信息用于指示所述第一服务小区的多个MO的标识。
具体的,所述第一服务小区的不同BWP对应的MO的标识相同,在同一时刻所述第一服务小区的多个MO中的其中一个MO生效。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能单元可以集成在一个处 理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于以上实施例,本申请实施例还提供了一种通信装置,参阅图8所示,通信装置800可以包括收发器801和处理器802。可选的,所述通信装置800中还可以包括存储器803。其中,所述存储器803可以设置于所述通信装置800内部,还可以设置于所述通信装置800外部。其中,所述处理器802可以控制所述收发器801接收和发送数据。
具体的,所述处理器802可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。所述处理器802还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
其中,所述收发器801、所述处理器802和所述存储器803之间相互连接。可选的,所述收发器801、所述处理器802和所述存储器803通过总线804相互连接;所述总线804可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图8中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在一种可选的实施方式中,所述存储器803,用于存放程序等。具体地,程序可以包括程序代码,该程序代码包括计算机操作指令。所述存储器803可能包括RAM,也可能还包括非易失性存储器(non-volatile memory),例如一个或多个磁盘存储器。所述处理器802执行所述存储器803所存放的应用程序,实现上述功能,从而实现通信装置800的功能。
示例性的,该通信装置800可以是上述实施例中的终端设备,还可以是上述实施例中的网络设备。
在一个实施例中,所述通信装置800用于实现上述图3所述的实施例中终端设备的功能时,所述收发器801用于从网络设备接收测量配置信息,所述测量配置信息中包含第一信息,所述第一信息用于指示在所述终端设备的第一服务小区的测量对象MO指示的同步信号/物理广播信道块SSB的频点不在所述第一服务小区当前激活的带宽部分BWP上时,测量时隙MG生效;所述第一服务小区为所述终端设备的至少一个服务小区中的任一个服务小区;所述第一服务小区的激活BWP从第一BWP切换到第二BWP后,所述处理器802 用于根据所述第一信息确定所述测量配置中的MG生效;其中,所述第二BWP不包含所述第一服务小区对应的MO指示的SSB的频点。
在一种可选的实施方式中,所述第一服务小区的激活BWP从所述第一BWP切换到第三BWP后,所述处理器802还可以用于根据所述第一信息确定所述测量配置中的MG不生效;其中,所述第三BWP包含所述第一服务小区对应的MO指示的SSB的频点。
示例性的,所述第一信息可以位于所述测量配置信息的测量时隙配置中的第一字段。
一种可选的实施方式,当所述网络设备为所述终端设备配置了多个服务小区时,所述多个服务小区中任一个服务小区对应的MO的SSB的频点不在所述服务小区当前激活的BWP上时生效的MG相同。
在一种可选的实施方式中,所述收发器801还可以用于从所述网络设备接收第二信息,所述第二信息用于指示所述终端设备的所述第一服务小区的BWP与MO的对应关系,所述第一服务小区配置了多个MO,任一个MO中配置了一个SSB的频点;所述处理器802还用于根据所述BWP与MO的对应关系确定第四BWP对应的第一MO,所述第四BWP为所述终端设备的所述第一服务小区当前激活的BWP,且所述第四BWP与所述第二BWP不同;并基于所述第一MO指示的SSB的频点对所述SSB进行测量。
示例性的,所述第二信息可以是通过所述测量配置信息接收的;或者,所述第二信息也可以是通过服务小区的配置信息接收的。具体的,当所述第二信息是通过所述测量配置信息接收的时,所述第二信息可以包含于所述测量配置信息的每个MO的配置中,任一个MO的配置中的第二信息指示的所述第一服务小区的BWP与MO的对应关系为所述任一个MO对应的所述第一服务小区的BWP。当所述第二信息是通过所述服务小区的配置信息接收的时,所述服务小区的配置信息中还可以包括第三信息,所述第三信息用于指示所述第一服务小区的多个MO的标识。
示例性的,所述第一服务小区的不同BWP对应的MO的标识相同,在同一时刻所述第一服务小区的多个MO中的其中一个MO生效。
在另一个实施例中,所述通信装置800用于实现上述图3所述的实施例中网络设备的功能时,所述处理器802用于确定测量配置信息,所述测量配置信息中包含第一信息,所述第一信息用于指示在终端设备的第一服务小区的测量对象MO指示的同步信号/物理广播信道块SSB的频点不在所述第一服务小区当前激活的带宽部分BWP上时,测量时隙MG生效;所述第一服务小区为所述终端设备的至少一个服务小区中的任一个服务小区;所述收发器801用于向所述终端设备发送所述测量配置信息。
示例性的,所述第一信息可以位于所述测量配置信息的测量时隙配置中的第一字段。
在一种可选的实施方式中,当所述网络设备为所述终端设备配置了多个服务小区时,所述多个服务小区中任一个服务小区对应的MO的SSB的频点不在所述服务小区当前激活的BWP上时生效的MG相同。
在一种具体的实施方式中,所述处理器802还可以用于确定第二信息,所述第二信息用于指示所述终端设备的所述第一服务小区的BWP与MO的对应关系,所述第一服务小区配置了多个MO,任一个MO中配置了一个SSB的频点;所述收发器801还用于向所述终端设备发送所述第二信息。
示例性的,所述第二信息可以是通过所述测量配置信息发送的;或者,所述第二信息也可以是通过服务小区的配置信息发送的。当所述第二信息是通过所述测量配置信息发送 的时,所述第二信息可以包含于所述测量配置信息的每个MO的配置中,任一个MO的配置中的第二信息指示的所述第一服务小区的BWP与MO的对应关系为所述任一个MO对应的所述第一服务小区的BWP。当所述第二信息是通过所述服务小区的配置信息发送的时,所述服务小区的配置信息中还可以包括第三信息,所述第三信息用于指示所述第一服务小区的多个MO的标识。
具体的,所述第一服务小区的不同BWP对应的MO的标识相同,在同一时刻所述第一服务小区的多个MO中的其中一个MO生效。
基于以上实施例,本申请实施例还提供了一种通信系统,该通信系统可以包括上述实施例涉及的终端设备和网络设备等。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的任一种测量配置方法。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的任一种测量配置方法。
本申请实施例还提供一种芯片,包括处理器和通信接口,所述处理器与存储器耦合,用于调用所述存储器中的程序使得所述芯片实现上述方法实施例提供的任一种测量配置方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (20)

  1. 一种测量配置方法,其特征在于,包括:
    终端设备从网络设备接收测量配置信息,所述测量配置信息中包含第一信息,所述第一信息用于指示在所述终端设备的第一服务小区的测量对象MO指示的同步信号/物理广播信道块SSB的频点不在所述第一服务小区当前激活的带宽部分BWP上时,测量时隙MG生效;所述第一服务小区为所述终端设备的至少一个服务小区中的任一个服务小区;
    所述终端设备的所述第一服务小区的激活BWP从第一BWP切换到第二BWP后,所述终端设备根据所述第一信息确定所述测量配置中的MG生效;其中,所述第二BWP不包含所述第一服务小区对应的MO指示的SSB的频点。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备的所述第一服务小区的激活BWP从所述第一BWP切换到第三BWP后,所述终端设备根据所述第一信息确定所述测量配置中的MG不生效;其中,所述第三BWP包含所述第一服务小区对应的MO指示的SSB的频点。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一信息位于所述测量配置信息的测量时隙配置中的第一字段。
  4. 如权利要求1-3任一项所述的方法,其特征在于,当所述网络设备为所述终端设备配置了多个服务小区时,所述多个服务小区中任一个服务小区对应的MO的SSB的频点不在所述服务小区当前激活的BWP上时生效的MG相同。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备从所述网络设备接收第二信息,所述第二信息用于指示所述终端设备的所述第一服务小区的BWP与MO的对应关系,所述第一服务小区配置了多个MO,任一个MO中配置了一个SSB的频点;
    所述终端设备根据所述BWP与MO的对应关系确定第四BWP对应的第一MO,所述第四BWP为所述终端设备的所述第一服务小区当前激活的BWP,且所述第四BWP与所述第二BWP不同;
    所述终端设备基于所述第一MO指示的SSB的频点对所述SSB进行测量。
  6. 如权利要求5所述的方法,其特征在于,所述第二信息是通过所述测量配置信息接收的;或者,所述第二信息是通过服务小区的配置信息接收的。
  7. 如权利要求6所述的方法,其特征在于,当所述第二信息是通过所述测量配置信息接收的时,所述第二信息包含于所述测量配置信息的每个MO的配置中,任一个MO的配置中的第二信息指示的所述第一服务小区的BWP与MO的对应关系为所述任一个MO对应的所述第一服务小区的BWP。
  8. 如权利要求6所述的方法,其特征在于,当所述第二信息是通过所述服务小区的配置信息接收的时,所述服务小区的配置信息中还包括第三信息,所述第三信息用于指示所述第一服务小区的多个MO的标识。
  9. 如权利要求5-8任一项所述的方法,其特征在于,所述第一服务小区的不同BWP对应的MO的标识相同,在同一时刻所述第一服务小区的多个MO中的其中一个MO生效。
  10. 一种测量配置方法,其特征在于,包括:
    网络设备确定测量配置信息,所述测量配置信息中包含第一信息,所述第一信息用于 指示在终端设备的第一服务小区的测量对象MO指示的同步信号/物理广播信道块SSB的频点不在所述第一服务小区当前激活的带宽部分BWP上时,测量时隙MG生效;所述第一服务小区为所述终端设备的至少一个服务小区中的任一个服务小区;
    所述网络设备向所述终端设备发送所述测量配置信息。
  11. 如权利要求10所述的方法,其特征在于,所述第一信息位于所述测量配置信息的测量时隙配置中的第一字段。
  12. 如权利要求10或11所述的方法,其特征在于,当所述网络设备为所述终端设备配置了多个服务小区时,所述多个服务小区中任一个服务小区对应的MO的SSB的频点不在所述服务小区当前激活的BWP上时生效的MG相同。
  13. 如权利要求10-12任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备确定第二信息,所述第二信息用于指示所述终端设备的所述第一服务小区的BWP与MO的对应关系,所述第一服务小区配置了多个MO,任一个MO中配置了一个SSB的频点;
    所述网络设备向所述终端设备发送所述第二信息。
  14. 如权利要求13所述的方法,其特征在于,所述第二信息是通过所述测量配置信息发送的;或者,所述第二信息是通过服务小区的配置信息发送的。
  15. 如权利要求14所述的方法,其特征在于,当所述第二信息是通过所述测量配置信息发送的时,所述第二信息包含于所述测量配置信息的每个MO的配置中,任一个MO的配置中的第二信息指示的所述第一服务小区的BWP与MO的对应关系为所述任一个MO对应的所述第一服务小区的BWP。
  16. 如权利要求14所述的方法,其特征在于,当所述第二信息是通过所述服务小区的配置信息发送的时,所述服务小区的配置信息中还包括第三信息,所述第三信息用于指示所述第一服务小区的多个MO的标识。
  17. 如权利要求13-16任一项所述的方法,其特征在于,所述第一服务小区的不同BWP对应的MO的标识相同,在同一时刻所述第一服务小区的多个MO中的其中一个MO生效。
  18. 一种终端设备,其特征在于,包括处理器和收发器,其中:
    所述收发器,用于收发数据;
    所述处理器,与存储器耦合,用于调用所述存储器中的程序使得所述终端设备通过所述收发器执行如权利要求1-9任一项所述的方法。
  19. 一种网络设备,其特征在于,包括处理器和收发器,其中:
    所述收发器,用于收发数据;
    所述处理器,与存储器耦合,用于调用所述存储器中的程序使得所述网络设备通过所述收发器执行如权利要求10-17任一项所述的方法。
  20. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令在计算机上运行时,使得计算机执行权利要求1-9任一项所述的方法或者执行权利要求10-17任一项所述的方法。
PCT/CN2021/081172 2020-03-25 2021-03-16 一种测量配置方法及装置 WO2021190364A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/776,772 US20220394533A1 (en) 2020-03-25 2021-03-16 Measurement configuration method and apparatus
EP21774876.3A EP4050930A4 (en) 2020-03-25 2021-03-16 METHOD AND APPARATUS FOR CONFIGURING MEASUREMENTS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010218679.7 2020-03-25
CN202010218679.7A CN113453288B (zh) 2020-03-25 2020-03-25 一种测量配置方法及装置

Publications (1)

Publication Number Publication Date
WO2021190364A1 true WO2021190364A1 (zh) 2021-09-30

Family

ID=77806751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081172 WO2021190364A1 (zh) 2020-03-25 2021-03-16 一种测量配置方法及装置

Country Status (4)

Country Link
US (1) US20220394533A1 (zh)
EP (1) EP4050930A4 (zh)
CN (1) CN113453288B (zh)
WO (1) WO2021190364A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023158896A1 (en) * 2022-02-17 2023-08-24 Qualcomm Incorporated Serving cell measurement objects associated with active bandwidth parts
WO2024021112A1 (en) * 2022-07-29 2024-02-01 Zte Corporation A method of measurement configuration

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116095708A (zh) * 2021-11-05 2023-05-09 华为技术有限公司 通信方法和装置
WO2024011550A1 (zh) * 2022-07-14 2024-01-18 华为技术有限公司 一种通信方法及相关装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190059093A1 (en) * 2017-08-18 2019-02-21 Fg Innovation Ip Company Limited Methods and devices for data transmission without grant during measurement gap
US20190274146A1 (en) * 2018-05-14 2019-09-05 Intel Corporation Mechanism on measurement gap based inter-frequency measurement
CN110622584A (zh) * 2017-05-04 2019-12-27 瑞典爱立信有限公司 用于信号测量的方法和设备
CN110798846A (zh) * 2018-08-03 2020-02-14 中国移动通信有限公司研究院 一种频点测量方法、网络侧设备和用户终端

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190044689A1 (en) * 2017-09-28 2019-02-07 Intel IP Corporation Bandwidth part signaling and measurement handling
US11751204B2 (en) * 2017-10-27 2023-09-05 Comcast Cable Communications, Llc Group common DCI for wireless resources
DE112018004516T5 (de) * 2017-11-13 2020-06-10 Nec Corporation Funkendgerät, Funkzugangsnetzwerkknoten und Verfahren dafür
WO2019107969A1 (ko) * 2017-11-29 2019-06-06 엘지전자 주식회사 무선 통신 시스템에서 신호 품질을 측정하는 방법 및 장치
US10779182B2 (en) * 2018-04-02 2020-09-15 Apple Inc. Measurement objects in a New Radio (NR) system
CN110661600A (zh) * 2018-06-28 2020-01-07 维沃移动通信有限公司 测量配置方法、测量方法、网络侧设备和终端
CN110831042B (zh) * 2018-08-09 2022-05-31 华为技术有限公司 测量配置方法与装置
CN112399492B (zh) * 2019-08-15 2022-01-14 华为技术有限公司 一种ssb测量方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110622584A (zh) * 2017-05-04 2019-12-27 瑞典爱立信有限公司 用于信号测量的方法和设备
US20190059093A1 (en) * 2017-08-18 2019-02-21 Fg Innovation Ip Company Limited Methods and devices for data transmission without grant during measurement gap
US20190274146A1 (en) * 2018-05-14 2019-09-05 Intel Corporation Mechanism on measurement gap based inter-frequency measurement
CN110798846A (zh) * 2018-08-03 2020-02-14 中国移动通信有限公司研究院 一种频点测量方法、网络侧设备和用户终端

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Motivation to introduce new SI of measurement gap enhancement", 3GPP DRAFT; R4-1814543 MOTIVATION TO INTRODUCE NEW WI OF MEASUREMENT GAP ENHANCEMENT, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Spokane, Washington, US; 20181112 - 20181116, 11 November 2018 (2018-11-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051558932 *
SAMSUNG: "Discussion on NR serving cell measurement using gaps", 3GPP DRAFT; R2-1811798 DISCUSSION ON NR SERVING CELL MEASUREMENT USING GAPS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Gothenburg, Sweden; 20180820 - 20180824, 10 August 2018 (2018-08-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051521437 *
See also references of EP4050930A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023158896A1 (en) * 2022-02-17 2023-08-24 Qualcomm Incorporated Serving cell measurement objects associated with active bandwidth parts
WO2024021112A1 (en) * 2022-07-29 2024-02-01 Zte Corporation A method of measurement configuration

Also Published As

Publication number Publication date
EP4050930A4 (en) 2023-01-18
US20220394533A1 (en) 2022-12-08
CN113453288B (zh) 2023-06-23
CN113453288A (zh) 2021-09-28
EP4050930A1 (en) 2022-08-31

Similar Documents

Publication Publication Date Title
EP3817479B1 (en) Communication method and communication apparatus
US10645688B2 (en) Time-frequency resource allocation method and apparatus
CN110809321B (zh) 接收和发送信号的方法以及通信装置
WO2021190364A1 (zh) 一种测量配置方法及装置
WO2019028850A1 (en) METHODS OF TRANSMITTING MULTIPLE SS BLOCKS AND MEASURING RRM IN A BROADBAND CARRIER
US9930652B2 (en) Evolved node-B, user equipment and methods for transition between unlicensed and licensed frequency bands
US20200106591A1 (en) Uplink data transmission method and related device
CN111526584B (zh) 一种信息配置方法、终端及网络侧设备
EP3665946B1 (en) Wireless device and method performed by the wireless device for handling measurements on a set of cells
WO2020199902A1 (zh) 一种选择接收波束的方法及装置
WO2022147720A1 (zh) 波束指示方法、装置及通信设备
CN110740471A (zh) 一种通信方法、装置和系统以及计算机可读存储介质
WO2021196979A1 (zh) 一种rrm测量方法及设备
JP7123195B2 (ja) 通信方法及び通信機器
US11882620B2 (en) Communication method and apparatus
US11399335B2 (en) Network operator assisted connectivity over a second network
US20230300927A1 (en) Communication Method, Communications Apparatus, and Storage Medium
US11108531B2 (en) Method and apparatus for setting symbol
WO2019097828A1 (ja) 無線通信装置、方法、プログラム、及び記録媒体
EP4319458A2 (en) Improving cell access procedure
CN114245472B (zh) 接入方法、共享载波基站、用户设备及记录介质
CN112333811B (zh) 一种同步信号/物理广播信道块发送功率配置方法及装置
WO2024032232A1 (zh) 通信方法及装置
WO2024051584A1 (zh) 配置的方法和装置
US20240015740A1 (en) Method and apparatus for downlink transmission in physical downlink control channel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774876

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021774876

Country of ref document: EP

Effective date: 20220523

NENP Non-entry into the national phase

Ref country code: DE