WO2024011550A1 - 一种通信方法及相关装置 - Google Patents

一种通信方法及相关装置 Download PDF

Info

Publication number
WO2024011550A1
WO2024011550A1 PCT/CN2022/105839 CN2022105839W WO2024011550A1 WO 2024011550 A1 WO2024011550 A1 WO 2024011550A1 CN 2022105839 W CN2022105839 W CN 2022105839W WO 2024011550 A1 WO2024011550 A1 WO 2024011550A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency point
node
physical layer
superframe
layer control
Prior art date
Application number
PCT/CN2022/105839
Other languages
English (en)
French (fr)
Inventor
高磊
王键
程型清
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/105839 priority Critical patent/WO2024011550A1/zh
Publication of WO2024011550A1 publication Critical patent/WO2024011550A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/06Reselecting a communication resource in the serving access point

Definitions

  • This application relates to the field of communication technology, especially to the field of short-range communication technology, such as communication in scenarios such as smart cars, smart homes, smart terminals, and smart manufacturing. Specifically, it relates to a communication method and related devices.
  • the first node Since communication usually occurs between multiple nodes, after a certain node, such as the first node, decides to switch the working frequency point, the first node should notify other nodes with which it communicates (such as at least one second node) to switch the working frequency point. The first node and the node communicating with it are caused to switch from the current communication working frequency point to the new working frequency point to continue communication.
  • the process of frequency switching has high time requirements. If the switching process takes a long time (that is, the interval between deciding to switch the frequency and switching to the new frequency to start communication) is long, it will lead to data and/or signaling transmission efficiency. If it is low, it will affect the transmission performance of the communication link between nodes.
  • the communication of the first node at the first frequency is interfered and the second frequency is detected to be idle, so it is decided to switch the working frequency to the second frequency. If the switching process takes a long time, other nodes (such as a third node) may seize the second frequency as the working frequency. When the first node switches the working frequency to the second frequency, the first node's communication on the second frequency will still be interfered by the third node, affecting the transmission performance of the communication link;
  • the first node needs to continue communicating on the interfered frequency point for a long time, resulting in poor transmission performance of the communication link.
  • Embodiments of the present application provide a communication method and related devices, which can shorten the time required for frequency point switching and improve the transmission performance of communication links between nodes.
  • embodiments of the present application provide a communication method, which method includes:
  • the first node sends high-level signaling, where the high-level signaling includes a first identifier.
  • the first node sends the first physical layer control signaling through the working frequency point, and some or all of the information bits in the first physical layer control signaling are scrambled by the first identifier.
  • the working frequency point is the first frequency point.
  • the first physical layer control signaling is used to instruct the first node to switch the working frequency to the second frequency.
  • the node that receives the above-mentioned high-level signaling and the first physical layer control signaling may be a second node.
  • the following description takes the receiving end as the second node as an example.
  • the number of second nodes may be one or more.
  • high-level signaling includes but is not limited to X resource control (X resource control, XRC) establishment signaling, XRC reconfiguration signaling, or system messages.
  • the first node notifies the second node of the first identifier through high-level signaling in advance.
  • the first identifier is used to scramble the physical layer control signaling indicating frequency point switching, so that the physical layer indicating frequency point switching
  • the control signaling can be distinguished from the signaling of other functions, or the functional group in which the physical layer control signaling indicating frequency point switching is located can be distinguished from other functional groups.
  • the first node After deciding to switch the frequency point, the first node sends the first physical layer control signaling scrambled by the first identifier, and the first physical layer control signaling instructs the operating frequency point to be switched to the second frequency point. If the second node can descramble the first physical layer control signaling according to the first identifier, it can obtain the function of the first physical layer control signaling and obtain its data content according to the data format of the first physical layer control signaling, thereby Receive an instruction to switch the operating frequency point.
  • Using physical layer signaling to indicate operating frequency switching can effectively shorten the time interval from the decision to switch to the signaling taking effect, thereby shortening the switching time.
  • the main reasons include: first, high-level signaling needs to be scheduled and transmitted by physical layer signaling. Physical layer signaling is also required to schedule the signaling and the receiving node sends signaling confirmation to take effect. The signaling takes a complicated process and takes a long time to take effect. Physical layer signaling can be transmitted directly, and the receiver can directly take effect after receiving it. The effective time Shorter. Second, some high-level signaling (such as system messages) only have one transmission opportunity in a long period, which is generally tens to hundreds of milliseconds; physical layer signaling has more transmission opportunities, generally more than once every millisecond. For transmission opportunities, physical layer signaling is used to indicate frequency switching, and the interval from when frequency switching is decided to when corresponding signaling can be sent is short.
  • the embodiment of the present application uses the first identifier to scramble the physical layer control signaling indicating frequency point switching, completes the indication of working frequency point switching through the first identifier and the physical layer control signaling, and shortens the time required for frequency point switching. Time-consuming, the first node can switch to the second frequency point for communication as soon as possible, which improves the transmission efficiency of data and/or signaling and improves the transmission performance of the communication link between nodes.
  • scrambling refers to obtaining a new signal based on the original signal and scrambling code.
  • the inverse operation of scrambling is descrambling.
  • the encoding (or decoding) method of the first physical layer control signaling may use the same encoding (or decoding) method as that of other signaling. This setting can not increase the decoding time of the receiving end and further shorten the time of frequency switching. Moreover, in the case where the receiving end needs to additionally blindly detect the physical layer signaling for carrier switching, the complexity of the receiving end's blind detection of the physical layer signaling is not significantly increased.
  • the first identifier corresponds to a frequency switching function.
  • the second node can distinguish the function of the first physical layer control signaling by using the first identifier to descramble the first physical layer control signaling, speeding up the second node's acquisition of the working frequency point switch. The indicated speed enables the second node to switch to the new working frequency point to communicate with the first node as soon as possible, improving the transmission performance of the link.
  • the first physical layer control signaling includes a function indication field, and the function indication field is used to indicate the frequency point switching function corresponding to the first identifier.
  • the second node can distinguish the function of the first physical layer control signaling after using the first identifier to descramble the first physical layer control signaling and obtaining the function indication field.
  • the first identifier may correspond to a group of signaling function types (including one or more signaling function types), and the differentiation of signaling functions in this group of signaling function types may be completed by the function indication field in the signaling, This improves the flexibility and scalability of the first logo.
  • some of the information bits of the first physical layer control signaling include a cyclic redundancy check CRC code of the first physical layer control signaling.
  • the CRC code of the first physical layer control signaling is scrambled using the first identifier to distinguish it from the physical layer signaling of other functions. This implementation does not increase the decoding time of the second node and further shortens the frequency. The time it takes to switch.
  • the resources used for sending the first physical layer control signaling belong to preconfigured physical layer control signaling common resources.
  • the physical layer control signaling common resource (hereinafter referred to as the common resource) is a resource for detecting physical layer control signaling that can be shared by multiple second nodes, including but not limited to time-frequency resources.
  • the second node detects (or monitors) the signaling on the public resource so that the node configured with the public resource can receive the first physical layer control signaling. Therefore, the first node does not need to notify other nodes one by one to perform frequency switching, which shortens the time required for frequency switching.
  • a communication domain can contain up to 4096 second nodes.
  • Obtaining instructions for frequency point switching results in poor transmission performance of communication links between nodes.
  • the first node sends the first physical layer control signaling on the public resource, and at least one second node blindly detects the physical layer control signaling in the public resource transmitting the physical layer control signaling to obtain the frequency point.
  • the switching instruction greatly shortens the time required to notify the frequency point switch, and allows the second node to switch to the second frequency point to communicate with the first frequency point as soon as possible, improving transmission performance.
  • the method further includes: the first node communicating with at least one second node at the second frequency point.
  • the above operation is performed after sending the first physical layer control signaling.
  • the superframe serial numbers of the first superframe and the second superframe are consecutive.
  • the first superframe is the last superframe used to transmit data and/or signaling on the first frequency before the working frequency of the first node switches from the first frequency to the second frequency.
  • the second superframe is The superframe is the first superframe used to transmit data and/or signaling on the second frequency point after the working frequency point of the first node is switched from the first frequency point to the second frequency point.
  • the superframe serial numbers of the superframes are continuous before and after the working frequency point is switched.
  • the above implementation can ensure that transmission is logically continuous, and the scheduling before the switching of the working frequency can continue to be used after the switching without the need for reconfiguration or rescheduling, which greatly reduces the impact of the switching of the working frequency on the communication process and improves transmission performance.
  • the configuration includes the configuration of time-frequency resources, such as resources reserved for transmitting data/signaling, etc.
  • Scheduling includes the allocation of resources.
  • the first node sends scheduling signaling in the Nth superframe.
  • the scheduling indicated by this scheduling signaling takes effect in the N+1 superframe. If the superframe numbers are consecutive, the scheduling before the working frequency point is switched.
  • the scheduling signaling sent within the superframe can continue to take effect in the superframe after the frequency point is switched, and there is no need to resend the scheduling signaling.
  • the end time of the first superframe and the start time of the second superframe are separated by N milliseconds, where N is an integer and N ⁇ 0.
  • the length of the superframe is 1ms
  • the period of the synchronization signal is 1ms.
  • the position of the synchronization signal is usually at a fixed time position in the superframe, so that the period of the synchronization signal is the same as the length of the superframe.
  • the interval between the end time of the last superframe used by the first node for transmission at the working frequency point and the start time of the first superframe used for transmission at the target frequency point is 0 or a positive integer millisecond, so that the working frequency point During the handover process, the superframe boundary does not change and the position of the synchronization signal does not change, which reduces changes in configuration parameters and makes timing synchronization between the first node and the second node simpler.
  • the first physical layer control signaling includes one or more of the following information: an identifier of the second frequency point, a superframe sequence number continuity indication, a frequency Point handover moment indication, re-access indication, handover interval indication or preamble indication.
  • the first physical layer control signaling includes an identifier of the second frequency point.
  • the identifier of the second frequency point is used to indicate the destination frequency point of the switch, including but not limited to: frequency point serial number, frequency point index number, or channel number, etc.
  • the first physical layer control signaling includes a superframe serial number continuous indication, and the superframe serial number continuous indication is used to indicate whether to ensure that the first superframe and the second superframe are ensured.
  • the superframe sequence numbers of the frames are consecutive.
  • the impact of switching the working frequency point on the superframe sequence number and scheduling can be indicated to the second node, which facilitates the second node to configure accordingly and improve the transmission performance of the communication link.
  • the superframe continuous indication is the sixth value
  • the superframe sequence number of the last superframe before the operating frequency point is switched and the superframe sequence number of the first superframe after the operating frequency point is switched are not guaranteed to be continuous.
  • the schedule before switching the working frequency point is invalid on the second frequency point, and the first node needs to re-determine the schedule.
  • the superframe continuous indication when the superframe continuous indication is the seventh value, it indicates that the superframe serial number of the last superframe before switching the working frequency point and the superframe serial number of the first superframe after switching the working frequency point are continuous. At this time, the scheduling before switching the working frequency point is effective on the second frequency point, without rescheduling, which shortens the time of switching.
  • the first physical layer control signaling includes an indication of frequency switching time.
  • the indication of the switching time is used to indicate the timing of switching the working frequency point.
  • the indication of the frequency switching moment is used to indicate the timing of the first node to start switching the working frequency point, for example: indicating the superframe sequence number of the last superframe transmitted by the first node at the current working frequency point, or Indicates the offset of the last superframe transmitted by the first node at the current working frequency point relative to the superframe in which the first physical layer control signaling is sent.
  • the indication of the frequency switching moment is used to indicate the starting moment of starting transmission at the second frequency point, for example: indicating the superframe of the first superframe transmitted by the first node at the second frequency point.
  • the sequence number indicates the offset of the starting time of the first superframe transmitted by the first node at the second frequency point relative to the starting time of the superframe in which the first physical layer control signaling is sent.
  • the offset in the above method can be in superframe units, or in milliseconds (ms), or in microseconds (us).
  • the second node can determine the timing of frequency switching based on the moment of frequency switching.
  • the first physical layer control signaling includes a re-access indication.
  • the re-access indication is indication information of whether the second node needs to re-access.
  • the second node is required to perform a re-connection operation, and in other cases, the second node is not required to perform a re-connection operation.
  • the re-access indication is used to instruct the second node not to perform a re-access operation.
  • you can change the communication domain system configuration as little or as little as possible or only change the communication domain system configuration that does not affect the current transmission schedule (such as random access resource pool configuration, channel sounding reference signal resource pool configuration ) to prevent the second node from reconnecting, which not only reduces the extra time consumption caused by reconnection, but also avoids the current scheduling failure.
  • This setting can reduce service interruptions caused by frequency switching and improve transmission performance.
  • the first node can adjust communication system parameters, such as cyclic prefix (CP) length, resource allocation, etc., according to the channel conditions of the second frequency point and/or current business requirements. If the second node reconnects to the first node, it is easier for the change of communication parameters to take effect, and the first node can instruct the second node to reconnect to improve communication stability between the second node and the first node.
  • CP cyclic prefix
  • the second node when the re-access indication is a first value, the second node is instructed to perform an access operation on the second frequency point.
  • the access operation includes sending an access request.
  • the access method may be contention access or contention-free access.
  • the second node when the re-access indication is the second value, the second node is instructed not to perform an access operation or to maintain the current access state.
  • the first physical layer control signaling includes a switching interval indication.
  • the switching interval indication is used to indicate the time interval between the last superframe transmitted at the first frequency point (ie, the first superframe) and the first superframe transmitted at the second frequency point (ie, the second superframe). Through the switching interval indication, the switching interval between superframes can be flexibly configured to meet the needs of devices with different frequency switching capabilities.
  • the switching interval indication may include one or more of the following time intervals: the time interval between the end time of the first superframe and the start time of the second superframe, the time interval between the start time of the first superframe and the start time of the second superframe.
  • the switching interval may include one or more of the following: the end time of the first superframe and the start time of the preamble information. or the time interval between the start time of the first superframe and the start time of the preamble information, etc.
  • the second node can perform changes in communication configuration based on the switching interval indication to improve communication stability. For example, the second node may determine the time to start transmitting the superframe after the handover, the position of the synchronization signal, etc. based on the time interval.
  • the switching interval indication is also used to indicate whether the first node sends preamble information at the second frequency point.
  • the second node if the switching interval indicates that the first node sends the preamble information on the second frequency point, the second node correspondingly receives the preamble information on the second frequency point; if the switching interval indicates that the first node does not send the preamble information on the second frequency point, If the preamble information is sent, the second node does not need to receive the preamble information at the second frequency point. It can be seen that the behavior of the second node can be flexibly controlled through the switching interval indication, which can improve the stability of the communication system.
  • the preamble information is a piece of information sent before the superframe is sent at the second frequency point after switching the frequency point.
  • the preamble information can be used to indicate changes in configuration information, such as indicating changes in random access resource pool configuration, channel sounding reference signal (Sounding Reference Signal, SRS) resource pool configuration and other information.
  • SRS Sounding Reference Signal
  • the preamble information can be used to synchronize the receiving node and obtain channel information, for example, for channel estimation, evaluating channel quality, etc. That is, the second node can perform synchronization based on the preamble information, and/or obtain channel information based on the preamble information.
  • the content of the preamble may be predefined or preconfigured.
  • the first node does not send preamble information at the second frequency point to shorten the interval between the last superframe before the handover and the first superframe after the handover. Switching takes time.
  • the method further includes:
  • the first node When the switching interval indication is greater than the third value, the first node sends preamble information at the second frequency point.
  • the first node when the switching interval indication is less than a third value, the first node does not send preamble information at the second frequency point.
  • the first node may not send preamble information at the second frequency point, or may not send preamble information.
  • the first node if the switching interval indication is greater than or equal to the third value, the first node sends preamble information at the second frequency point; if the switching interval indication is less than the third value, the first node does not send the preamble information at the second frequency point. Send preamble information.
  • the first node if the handover interval indication is greater than the third value, the first node sends preamble information at the second frequency point; if the handover interval indication is less than or equal to the third value, the first node sends the preamble information at the second frequency point. No preamble is sent.
  • the first node when the interval switching indication is 0, the first node does not send a preamble at the second frequency point; when the switching interval indication is a value greater than 0, the first node The second frequency point sends preamble information.
  • the first physical layer control signaling includes the preamble indication, and the preamble indication is used to instruct the first node to send preamble information at the second frequency point, or, Used to instruct the first node not to send preamble information at the second frequency point.
  • the behavior of the second node can be flexibly controlled through the leading indication, which can improve the stability of the communication system.
  • the first node when the preamble indication is a fourth value, the first node sends preamble information at the second frequency point.
  • the first node does not send preamble information at the second frequency point.
  • the first physical layer control signaling when the switching interval indicates whether to send preamble information, the first physical layer control signaling does not need to carry an additional preamble indication, so as to save fields in the physical layer control signaling. .
  • the first identifier may be used during multiple frequency switching processes. That is, after the first node sends the first identifier to the second node, during subsequent multiple switching of working frequency points, the physical layer control signaling indicating frequency point switching can be scrambled using the same first identifier. After configuring the first identifier through high-level signaling, frequency switching can be instructed through one physical layer control signaling, which further reduces the signaling interaction during the frequency switching process and further shortens the time-consuming frequency switching, making the first The node can switch to the second frequency point for communication as soon as possible, which improves the transmission performance of the communication network.
  • the method further includes:
  • the first node sends second physical layer control signaling through the working frequency point.
  • the second physical layer control signaling is used to indicate switching the working frequency point to the third frequency point.
  • the second physical layer control signaling Some or all of the information bits in are scrambled by the first identifier, and the working frequency point is the second frequency point.
  • the first node when the first node switches the working frequency to the third frequency, it can instruct the frequency switching through one physical layer control signaling, which shortens the time consuming of frequency switching and improves the transmission of the communication network. performance.
  • the method further includes:
  • the first node receives frequency point capability information of at least one second node.
  • the frequency point capability information includes one or more of supported frequency points, supported switching intervals, etc.
  • the second frequency point belongs to the frequency point supported by the second frequency point.
  • the method further includes:
  • the first node may determine the switching interval based on frequency point capability information reported by at least one second node. In this way, the first node can flexibly configure the switching interval, so that the switching interval can not only match the switching capabilities of the first node and the second node, but also shorten the switching interval as much as possible and reduce the additional delay caused by frequency switching.
  • the sending method of the first physical layer control signaling is broadcast and/or multicast.
  • the first node can notify at least one second node to perform frequency switching through broadcast or multicast at a time, without the need to notify one by one, which greatly shortens the time-consuming notification of frequency switching, and allows the second node to switch to frequency point as soon as possible.
  • the second frequency point communicates with the first frequency point to improve transmission performance.
  • the second node does not send feedback on whether the first physical layer control signaling is successfully detected.
  • the time-consuming frequency switching can be further shortened.
  • the first node sends multiple physical layer control signaling multiple times in multiple superframes to indicate switching of the same frequency point.
  • the first node repeatedly sends signaling indicating the same frequency switching multiple times, giving the second node multiple opportunities to detect the signaling, and reducing the probability of frequency switching failure due to the second node not detecting the signaling.
  • the first node sends the first physical layer control signaling through the working frequency point, including: the first node sends the first physical layer control signaling through the working frequency point in the third superframe.
  • the working frequency point is the first frequency point;
  • the method also includes: the first node sends the third physical layer control signaling in the fourth superframe through the working frequency point, and some or all of the information bits in the third physical layer control signaling pass through The first identifier is scrambled, the working frequency point is the first frequency point, and the third physical layer control signaling is used to instruct the working frequency point of the first node to switch to the second frequency point.
  • both the first physical layer control signaling and the third physical layer control signaling are scrambled by the first identifier, and indicate switching the working frequency point to the second frequency point.
  • the second node detects either the first physical layer control signaling or the third physical layer control signaling, it can obtain the frequency point switching instruction. Therefore, the above embodiment can reduce the probability of frequency switching failure due to the second node not detecting the signaling, and improve transmission performance.
  • the first physical layer control signaling belongs to one of a plurality of physical layer control signaling, and the plurality of physical layer control signaling also includes a fourth physical layer control signaling. It is assumed that the length of the first physical layer control signaling and the bit length of the fourth physical layer control signaling are the same. The first physical layer control signaling and the fourth physical layer control signaling have different functions.
  • the bit length of the first physical layer control signaling is the same as the length of another physical layer control signaling indicating other functions. That is, the bit length of the first physical layer control signaling belongs to the existing bit length.
  • embodiments of the present application provide a communication method, including:
  • the second node receives high-level signaling from the first node, where the high-level signaling includes the first identifier;
  • the second node receives the first physical layer control signaling through the working frequency point. Some or all of the information bits in the first physical layer control signaling are scrambled by the first identifier.
  • the working frequency point is the first frequency point;
  • the first physical layer control signaling is used to instruct the working frequency of the first node to switch to the second frequency.
  • the first identifier corresponds to a frequency switching function.
  • the first physical layer control signaling includes a function indication field, and the function indication field is used to indicate the frequency point switching function corresponding to the first identifier.
  • some of the information bits of the first physical layer control signaling include a cyclic redundancy check CRC code of the first physical layer control signaling.
  • the resources used for sending the first physical layer control signaling belong to preconfigured physical layer control signaling common resources.
  • the method further includes:
  • the second node descrambles some or all of the information bits in the first physical layer control signaling according to the first identifier
  • the second node communicates with the first node at the second frequency point.
  • the second node descrambles all the information bits of the first physical layer control signaling according to the first identifier.
  • the second node descrambles the part of the information bits in the first physical layer control signaling according to the first identifier.
  • the superframe serial numbers of the first superframe and the second superframe are consecutive.
  • the first superframe is the last superframe used to transmit data and/or signaling on the first frequency point before the working frequency point of the first node is switched from the first frequency point to the second frequency point
  • the second superframe is The superframe is the first superframe used to transmit data and/or signaling on the second frequency point after the working frequency point of the first node is switched from the first frequency point to the second frequency point.
  • the superframe serial numbers of the superframes are continuous before and after the working frequency point is switched.
  • the end time of the first superframe and the start time of the second superframe are separated by N milliseconds, where N is an integer and N ⁇ 0.
  • the first physical layer control signaling includes one or more of the following information: an identifier of the second frequency point, a superframe sequence number continuity indication, a frequency Point handover moment indication, re-access indication, handover interval indication or preamble indication.
  • the first physical layer control signaling includes an identifier of the second frequency point.
  • the identifier of the second frequency point is used to indicate the destination frequency point of the switch, including but not limited to: frequency point serial number, frequency point index number, or channel number, etc.
  • the first physical layer control signaling includes a superframe serial number continuous indication, and the superframe serial number continuous indication is used to indicate whether to ensure that the first superframe and the second superframe are ensured.
  • the superframe sequence numbers of the frames are consecutive.
  • the superframe continuous indication is the sixth value
  • the superframe sequence number of the last superframe before the operating frequency point is switched and the superframe sequence number of the first superframe after the operating frequency point is switched are not guaranteed to be continuous.
  • the schedule before switching the working frequency point is invalid on the second frequency point, and the first node needs to re-determine the schedule.
  • the superframe continuous indication when the superframe continuous indication is the seventh value, it indicates that the superframe serial number of the last superframe before switching the working frequency point and the superframe serial number of the first superframe after switching the working frequency point are continuous. At this time, the scheduling before switching the working frequency point is effective on the second frequency point, without rescheduling, which shortens the time of switching.
  • the first physical layer control signaling includes an indication of frequency switching time.
  • the indication of the switching time is used to indicate the timing of switching the working frequency point.
  • the indication of the frequency switching moment is used to indicate the moment when the first node starts to switch the working frequency point, for example: indicating the superframe sequence number of the last superframe transmitted by the first node at the current working frequency point, or Indicates the offset of the last superframe transmitted by the first node at the current working frequency point relative to the superframe in which the first physical layer control signaling is sent.
  • the indication of the frequency switching moment is used to indicate the starting moment of starting transmission at the second frequency point, for example: indicating the superframe of the first superframe transmitted by the first node at the second frequency point.
  • the sequence number indicates the offset of the starting time of the first superframe transmitted by the first node at the second frequency point relative to the starting time of the superframe in which the first physical layer control signaling is sent.
  • the offset in the above method can be in superframe units, or in milliseconds (ms), or in microseconds (us).
  • the first physical layer control signaling includes a re-access indication.
  • the re-access indication is indication information of whether the second node needs to re-access.
  • the re-access indication is used to instruct the second node not to perform a re-access operation. For example, when switching frequency points, you can change the communication domain system configuration as little or as little as possible or only change the communication domain system configuration that does not affect the current transmission schedule (such as random access resource pool configuration, channel sounding reference signal resource pool configuration ) to prevent the second node from reconnecting, thereby avoiding the current scheduling failure.
  • the current transmission schedule such as random access resource pool configuration, channel sounding reference signal resource pool configuration
  • the second node when the re-access indication is the first value, performs an access operation.
  • the access operation may include one or more of sending an access request, determining a communication key, determining a security context, etc.
  • the second node when the re-access indication is the second value, the second node does not perform an access operation or maintains the current access state.
  • the first physical layer control signaling includes a switching interval indication, where the switching interval is used to indicate a time interval between the first superframe and the second superframe.
  • the switching interval indication may include one or more of the following time intervals:
  • the switching interval indication is also used to indicate whether the first node sends preamble information at the second frequency point.
  • the second node determines whether the first node sends preamble information on the second frequency point according to the switching interval indication.
  • the second node if the switching interval indicates that the first node sends the preamble information on the second frequency point, the second node correspondingly receives the preamble information on the second frequency point; if the switching interval indicates that the first node does not send the preamble information on the second frequency point, If the preamble information is sent, the second node does not need to receive the preamble information at the second frequency point.
  • the method further includes:
  • the second node When the handover interval indication is greater than the third value, the second node receives preamble information from the first node at the second frequency point.
  • the first node when the interval switching indication is 0, the first node is instructed not to send a preamble at the second frequency point.
  • the switching interval indication is a value greater than 0, the second node receives the preamble information from the first node at the second frequency point.
  • the first physical layer control signaling includes the preamble indication, and the preamble indication is used to instruct the first node to send preamble information at the second frequency point, or, Used to instruct the first node not to send preamble information at the second frequency point.
  • the second node receives preamble information from the first node at the second frequency point.
  • the first physical layer control signaling when the switching interval is used to indicate whether to send preamble information, the first physical layer control signaling does not need to carry an additional preamble indication.
  • the first identifier may be used during multiple frequency switching processes.
  • the method further includes:
  • the second node receives the second physical layer control signaling from the first node through the working frequency point.
  • the second physical layer control signaling is used to indicate switching the working frequency point to the third frequency point.
  • the second Some information bits in the physical layer control signaling are scrambled by the first identifier, and the working frequency point is the second frequency point.
  • the method further includes:
  • the second node sends the frequency point capability information of the second node to the first node, and the frequency point capability information of the second node indicates the frequency point supported by the second node.
  • the second frequency point belongs to the frequency point supported by the second frequency point.
  • frequency point capability information is used to determine the switching interval.
  • the sending method of the first physical layer control signaling is broadcast and/or multicast.
  • the second node does not send feedback on whether the first physical layer control signaling is successfully detected. In this way, signaling interactions can be reduced, frequency switching time is shortened, and transmission efficiency is improved.
  • the second node receives the first physical layer control signaling through the working frequency point, including:
  • the second node receives the first physical layer control signaling in the third superframe through an operating frequency point, and the operating frequency point is the first frequency point;
  • the method further includes: the second node receives the third physical layer control signaling in the fourth superframe through the working frequency point, and some or all of the information bits in the third physical layer control signaling pass through The first identifier is scrambled, the working frequency point is the first frequency point, and the third physical layer control signaling is used to instruct the working frequency point of the first node to switch to the second frequency point.
  • the first physical layer control signaling belongs to one of a plurality of physical layer control signaling, and the plurality of physical layer control signaling also includes a fourth physical layer control signaling. It is assumed that the length of the first physical layer control signaling and the bit length of the fourth physical layer control signaling are the same. The first physical layer control signaling and the fourth physical layer control signaling have different functions.
  • the bit length of the first physical layer control signaling is the same as the length of another physical layer control signaling indicating other functions. That is, the bit length of the first physical layer control signaling belongs to the existing bit length.
  • embodiments of the present application provide a communication device, which is used to implement the method described in the first aspect or any possible implementation manner of the first aspect.
  • the communication device includes a first communication unit and a second communication unit.
  • the first communication unit is configured to send high-level signaling, where the high-level signaling includes a first identifier
  • the second communication unit is configured to send first physical layer control signaling through an operating frequency point. Some or all of the information bits in the first physical layer control signaling are scrambled by the first identifier, so The working frequency point is a first frequency point; wherein the first physical layer control signaling is used to instruct the first node to switch the working frequency point to the second frequency point.
  • the communication device is the first node, or the communication device is a module (such as a chip, an integrated circuit, or a software module, etc.) in the first node.
  • a module such as a chip, an integrated circuit, or a software module, etc.
  • the first identifier corresponds to a frequency switching function.
  • the first physical layer control signaling includes a function indication field, and the function indication field is used to indicate the frequency point switching function corresponding to the first identifier.
  • some of the information bits of the first physical layer control signaling include a cyclic redundancy check CRC code of the first physical layer control signaling.
  • the resources used for sending the first physical layer control signaling belong to preconfigured physical layer control signaling common resources.
  • the communication device further includes a third communication unit, and the third communication unit is configured to communicate with at least one second node at the second frequency point.
  • the superframe serial numbers of the first superframe and the second superframe are consecutive.
  • the first superframe is the last superframe used to transmit data and/or signaling on the first frequency point before the working frequency point of the first node is switched from the first frequency point to the second frequency point
  • the second superframe is The superframe is the first superframe used to transmit data and/or signaling on the second frequency point after the working frequency point of the first node is switched from the first frequency point to the second frequency point.
  • the superframe serial numbers of the superframes are continuous before and after the working frequency point is switched.
  • the end time of the first superframe and the start time of the second superframe are separated by N milliseconds, where N is an integer and N ⁇ 0.
  • the first physical layer control signaling includes one or more of the following information: an identifier of the second frequency point, a superframe sequence number continuity indication, a frequency Point handover moment indication, re-access indication, handover interval indication or preamble indication.
  • the first physical layer control signaling includes an identifier of the second frequency point.
  • the identifier of the second frequency point is used to indicate the destination frequency point of the switch, including but not limited to: frequency point serial number, frequency point index number, or channel number, etc.
  • the first physical layer control signaling includes a superframe serial number continuous indication, and the superframe serial number continuous indication is used to indicate whether to ensure that the first superframe and the second superframe are ensured.
  • the superframe sequence numbers of the frames are consecutive.
  • the superframe continuous indication is the sixth value
  • the superframe sequence number of the last superframe before the operating frequency point is switched and the superframe sequence number of the first superframe after the operating frequency point is switched are not guaranteed to be continuous.
  • the superframe continuous indication when the superframe continuous indication is the seventh value, it indicates that the superframe serial number of the last superframe before switching the working frequency point and the superframe serial number of the first superframe after switching the working frequency point are continuous.
  • the first physical layer control signaling includes an indication of frequency switching time.
  • the indication of the switching time is used to indicate the timing of switching the working frequency point.
  • the indication of the frequency switching moment is used to indicate the moment when the first node starts switching the working frequency point, for example: indicating the superframe sequence number of the last superframe transmitted by the first node at the current working frequency point, or Indicates the offset of the last superframe transmitted by the first node at the current working frequency point relative to the superframe in which the first physical layer control signaling is sent.
  • the indication of the frequency switching moment is used to indicate the starting moment of starting transmission at the second frequency point, for example: indicating the superframe of the first superframe transmitted by the first node at the second frequency point.
  • the sequence number indicates the offset of the starting time of the first superframe transmitted by the first node at the second frequency point relative to the starting time of the superframe in which the first physical layer control signaling is sent.
  • the offset in the above method can be in superframe units, or in milliseconds (ms), or in microseconds (us).
  • the first physical layer control signaling includes a re-access indication.
  • the re-access indication is indication information of whether the second node needs to re-access.
  • the re-access indication is used to instruct the second node not to perform a re-access operation. For example, when switching frequency points, you can change the communication domain system configuration as little or as little as possible or only change the communication domain system configuration that does not affect the current transmission schedule (such as random access resource pool configuration, channel sounding reference signal resource pool configuration ) to prevent the second node from reconnecting, thereby avoiding the current scheduling failure.
  • the current transmission schedule such as random access resource pool configuration, channel sounding reference signal resource pool configuration
  • the second node when the re-access indication is a first value, the second node is instructed to perform an access operation on the second frequency point.
  • the second node when the re-access indication is the second value, the second node is instructed not to perform an access operation or to maintain the current access state.
  • the first physical layer control signaling includes a switching interval indication, where the switching interval is used to indicate a time interval between the first superframe and the second superframe.
  • the switching interval indication may include one or more of the following time intervals:
  • the switching interval indication is also used to indicate whether the communication device sends preamble information at the second frequency point.
  • the communication device does not send preamble information at the second frequency point to shorten the interval between the last superframe before the handover and the first superframe after the handover, and reduce the handover time. time consuming.
  • the communication device further includes a third communication unit, and the third communication unit is used for:
  • the communication device when the switching interval indication is less than the third value, the communication device does not send preamble information at the second frequency point.
  • the communication device may not send preamble information at the second frequency point, or may not send preamble information, depending on the specific implementation.
  • the communication device when the interval switching indication is 0, the communication device does not send a preamble at the second frequency point; when the switching interval indication is a value greater than 0, the communication device The device sends preamble information at the second frequency point.
  • the first physical layer control signaling includes the preamble indication, and the preamble indication is used to instruct the communication device to send preamble information at the second frequency point, or , used to instruct the communication device not to send preamble information at the second frequency point.
  • the communication device includes a third communication unit, and the third communication unit is configured to: when the preamble indication is a fourth value, send preamble information at the second frequency point.
  • the communication device does not send preamble information at the second frequency point.
  • the switching interval when used to indicate whether to send preamble information, the first physical layer control signaling does not need to carry an additional preamble indication.
  • the first identifier may be used during multiple frequency switching processes. That is, after the communication device sends the first identifier to the second node, during the subsequent multiple switching of working frequency points, the signaling indicating frequency point switching can be scrambled using the same first identifier.
  • the second communication unit is also used for:
  • the second physical layer control signaling is sent through the working frequency point.
  • the second physical layer control signaling is used to indicate switching the working frequency point to the third frequency point.
  • Some information bits in the second physical layer control signaling Or all the information bits are scrambled by the first identifier, and the working frequency point is the second frequency point.
  • the communication device further includes a fourth communication unit, the fourth communication unit being configured to receive frequency point capability information of at least one second node.
  • the frequency point capability information includes one or more of supported frequency points, supported switching intervals, etc.
  • the second frequency point belongs to the frequency point supported by the second frequency point.
  • the communication device further includes a processing unit configured to determine the switching interval based on frequency point capability information reported by at least one second node.
  • the first physical layer control signaling is sent in a broadcast and/or multicast manner.
  • the communication device sends multiple physical layer control signaling multiple times in multiple superframes to indicate switching of the same frequency point.
  • the second communication unit is also used for:
  • the third physical layer control signaling is sent in the fourth superframe through the working frequency point. Some or all of the information bits in the third physical layer control signaling are scrambled by the first identifier.
  • the frequency point is the first frequency point, and the third physical layer control signaling is used to instruct the working frequency point of the first node to switch to the second frequency point.
  • the first physical layer control signaling belongs to one of a plurality of physical layer control signaling, and the plurality of physical layer control signaling also includes a fourth physical layer control signaling. It is assumed that the length of the first physical layer control signaling and the bit length of the fourth physical layer control signaling are the same. The first physical layer control signaling and the fourth physical layer control signaling have different functions.
  • embodiments of the present application provide a communication device, which is used to implement the method described in the first aspect or any possible implementation manner of the first aspect.
  • the communication device includes a first communication unit and a second communication unit.
  • the first communication unit is configured to receive high-level signaling from the first node, where the high-level signaling includes a first identifier;
  • the second communication unit is configured to receive first physical layer control signaling through an operating frequency point. Some or all of the information bits in the first physical layer control signaling are scrambled by the first identifier, so The above working frequency point is the first frequency point;
  • the first physical layer control signaling is used to instruct the working frequency of the first node to switch to the second frequency.
  • the communication device is the second node, or the communication device is a module (such as a chip, integrated circuit, or software module, etc.) in the second node.
  • the first identifier corresponds to a frequency switching function.
  • the first physical layer control signaling includes a function indication field, and the function indication field is used to indicate the frequency point switching function corresponding to the first identifier.
  • some of the information bits of the first physical layer control signaling include a cyclic redundancy check CRC code of the first physical layer control signaling.
  • the resources used for sending the first physical layer control signaling belong to preconfigured physical layer control signaling common resources.
  • the communication device further includes a processing unit and a third communication unit, wherein:
  • the processing unit is further configured to descramble some or all of the information bits in the first physical layer control signaling according to the first identifier;
  • the third communication unit is also used to communicate with the first node at the second frequency point.
  • the processing unit descrambles all the information in the first physical layer control signaling according to the first identifier. bits.
  • the processing unit descrambles the part of the information bits in the first physical layer control signaling according to the first identifier.
  • the superframe serial numbers of the first superframe and the second superframe are consecutive.
  • the first superframe is the last superframe used to transmit data and/or signaling on the first frequency point before the working frequency point of the first node is switched from the first frequency point to the second frequency point
  • the second superframe is The superframe is the first superframe used to transmit data and/or signaling on the second frequency point after the working frequency point of the first node is switched from the first frequency point to the second frequency point.
  • the superframe serial numbers of the superframes are continuous before and after the working frequency point is switched.
  • the end time of the first superframe and the start time of the second superframe are separated by N milliseconds, where N is an integer and N ⁇ 0.
  • the first physical layer control signaling includes one or more of the following information: an identifier of the second frequency point, a superframe sequence number continuity indication, a frequency Point handover moment indication, re-access indication, handover interval indication or preamble indication.
  • the first physical layer control signaling includes an identifier of the second frequency point.
  • the identifier of the second frequency point is used to indicate the destination frequency point of the switch, including but not limited to: frequency point serial number, frequency point index number, or channel number, etc.
  • the first physical layer control signaling includes a superframe serial number continuous indication, and the superframe serial number continuous indication is used to indicate whether the first superframe and the second superframe are guaranteed.
  • the superframe sequence numbers of the frames are consecutive.
  • the superframe continuous indication is the sixth value
  • the superframe sequence number of the last superframe before the operating frequency point is switched and the superframe sequence number of the first superframe after the operating frequency point is switched are not guaranteed to be continuous.
  • the superframe continuous indication when the superframe continuous indication is the seventh value, it indicates that the superframe serial number of the last superframe before switching the working frequency point and the superframe serial number of the first superframe after switching the working frequency point are continuous.
  • the first physical layer control signaling includes an indication of frequency switching time.
  • the indication of the switching time is used to indicate the timing of switching the working frequency point.
  • the indication of the frequency switching moment is used to indicate the moment when the first node starts switching the working frequency point, for example: indicating the superframe sequence number of the last superframe transmitted by the first node at the current working frequency point, or Indicates the offset of the last superframe transmitted by the first node at the current working frequency point relative to the superframe in which the first physical layer control signaling is sent.
  • the indication of the frequency switching moment is used to indicate the starting moment of starting transmission at the second frequency point, for example: indicating the superframe of the first superframe transmitted by the first node at the second frequency point.
  • the sequence number indicates the offset of the starting time of the first superframe transmitted by the first node at the second frequency point relative to the starting time of the superframe in which the first physical layer control signaling is sent.
  • the offset in the above method can be in superframe units, or in milliseconds (ms), or in microseconds (us).
  • the first physical layer control signaling includes a re-access indication.
  • the re-access indication is indication information of whether the second node needs to re-access.
  • the re-access indication is used to instruct the second node not to perform a re-access operation. For example, when switching frequency points, you can change the communication domain system configuration as little or as little as possible or only change the communication domain system configuration that does not affect the current transmission schedule (such as random access resource pool configuration, channel sounding reference signal resource pool configuration ) to prevent the second node from reconnecting, thereby avoiding the current scheduling failure.
  • the current transmission schedule such as random access resource pool configuration, channel sounding reference signal resource pool configuration
  • the communication device further includes a third communication unit, the third communication unit being configured to: perform reconnection when the reconnection indication is a first value. Enter operation.
  • the second node when the re-access indication is the second value, the second node is instructed not to perform an access operation or to maintain the current access state.
  • the first physical layer control signaling includes a switching interval indication, where the switching interval is used to indicate a time interval between the first superframe and the second superframe.
  • the switching interval indication may include one or more of the following time intervals:
  • the switching interval indication is also used to indicate whether the first node sends preamble information at the second frequency point.
  • the communication device may determine whether to receive preamble information from the first node at the second frequency point according to the switching interval indication.
  • the communication device further includes a third communication unit, the third communication unit configured to: when the switching interval indication is greater than a third value, The second frequency point receives the preamble information from the first node.
  • the first node when the interval switching indication is 0, the first node is instructed not to send preamble information at the second frequency point.
  • the switching interval indication is a value greater than 0, the first node is instructed to send preamble information at the second frequency point.
  • the communication device further includes a third communication unit configured to receive preamble information from the first node at the second frequency point when the switching interval indication is a value greater than 0.
  • the first physical layer control signaling includes the preamble indication, and the preamble indication is used to instruct the first node to send preamble information at the second frequency point, or, Used to instruct the first node not to send preamble information at the second frequency point.
  • the third communication unit is configured to receive preamble information from the first node at the second frequency when the preamble indication is a fourth value.
  • the switching interval when used to indicate whether to send preamble information, the first physical layer control signaling does not need to carry an additional preamble indication.
  • the first identifier may be used during multiple frequency switching processes.
  • the second communication unit is also used for:
  • the second physical layer control signaling is used to indicate switching the working frequency point to the third frequency point.
  • the second physical layer control signaling Some of the information bits in the signaling are scrambled by the first identifier, and the working frequency point is the second frequency point.
  • the communication device further includes a fourth communication unit configured to send the frequency point capability of the second node to the first node.
  • Information, the frequency point capability information of the second node indicates the frequency point supported by the second node.
  • the second frequency point belongs to the frequency point supported by the second frequency point.
  • frequency point capability information is used to determine the switching interval.
  • the first physical layer control signaling is sent in a broadcast and/or multicast manner.
  • the communication device does not send feedback on whether the first physical layer control signaling is successfully detected.
  • the second communication unit is also used for:
  • the third physical layer control signaling is received in the fourth superframe through the working frequency point. Some or all of the information bits in the third physical layer control signaling are scrambled by the first identifier.
  • the frequency point is the first frequency point, and the third physical layer control signaling is used to instruct the working frequency point of the first node to switch to the second frequency point.
  • the first physical layer control signaling belongs to one of a plurality of physical layer control signaling, and the plurality of physical layer control signaling also includes a fourth physical layer control signaling. It is assumed that the length of the first physical layer control signaling and the bit length of the fourth physical layer control signaling are the same. The first physical layer control signaling and the fourth physical layer control signaling have different functions.
  • the bit length of the first physical layer control signaling is the same as the length of another physical layer control signaling indicating other functions. That is, the bit length of the first physical layer control signaling belongs to the existing bit length.
  • an embodiment of the present application discloses a communication device, including a processor and a communication interface.
  • the communication interface is used to receive and/or send signals, and/or the communication interface is used to provide input and/or output to the processor.
  • the communication device When the processor calls the computer program or instructions in the memory, the communication device implements the method described in the first aspect or any of the embodiments described in the first aspect.
  • an embodiment of the present application discloses a communication device, including a processor and a communication interface.
  • the communication interface is used to receive and/or send signals, and/or the communication interface is used to provide input and/or output to the processor.
  • the communication device implements the method described in the second aspect or any of the embodiments of the second aspect.
  • the processor included in the communication device described in the fifth aspect and/or the sixth aspect may be a processor specially used to execute these methods (referred to as a dedicated processor for convenience), or It may be a processor that performs these methods by invoking a computer program, such as a general-purpose processor.
  • at least one processor may also include both a special-purpose processor and a general-purpose processor.
  • the above computer program or instructions may be stored in the memory.
  • the memory can be a non-transitory memory, such as a read-only memory (Read Only Memory, ROM), which can be integrated on the same device as the processor, or can be provided on different devices.
  • ROM Read Only Memory
  • the embodiment of the present application does not limit the type of memory and the arrangement method of the memory and the processor.
  • the at least one memory is located outside the communication device.
  • the at least one memory is located in the communication device.
  • part of the at least one memory is located inside the communication device, and another part of the memory is located outside the communication device.
  • processor and the memory may also be integrated into one device, that is, the processor and the memory may also be integrated together.
  • an embodiment of the present application further provides a communication device, where the communication device includes: a logic circuit and a communication interface.
  • the communication interface is used to receive signals or send signals; the logic circuit is used to receive signals or send signals through the communication interface to implement the first aspect or the description of any one of the embodiments of the first aspect.
  • embodiments of the present application further provide a communication device, where the communication device includes: a logic circuit and a communication interface.
  • the communication interface is used to receive signals or send signals; the logic circuit is used to receive signals or send signals through the communication interface to implement the implementation described in any one of the second aspect or the first aspect. Methods.
  • embodiments of the present application further provide a communication system, which includes a first node and/or a second node.
  • the first node includes the communication device described in the third aspect or any possible implementation manner of the third aspect.
  • the second node includes the communication device described in the fourth aspect or any possible implementation manner of the fourth aspect.
  • embodiments of the present application further provide a communication system, which includes a first node and/or a second node.
  • the first node includes the communication device described in the fifth aspect
  • the second node includes the communication device described in the sixth aspect.
  • embodiments of the present application further provide a communication system, which includes a first node and/or a second node.
  • the first node includes the communication device described in the seventh aspect
  • the second node includes the communication device described in the seventh aspect
  • an embodiment of the present application discloses a computer-readable storage medium.
  • a computer program is stored in the computer-readable storage medium.
  • the communication device causes the communication device to execute The method described in the first aspect or any possible implementation manner of the first aspect, or the method described in the second aspect or any possible implementation manner of the second aspect is performed.
  • embodiments of the present application disclose a computer program product.
  • the computer program product When the computer program product is run on one or more processors, it executes the first aspect or any possible implementation manner of the first aspect. the method described, or perform the method described in the second aspect or any possible implementation of the second aspect.
  • an embodiment of the present application discloses a terminal, where the terminal includes a first node and/or a second node.
  • the terminal includes but is not limited to a handheld terminal device, a vehicle, a vehicle-mounted device, a sensing device, or an entertainment and leisure device, etc.
  • the terminal may be a vehicle, a drone, a robot and other intelligent terminals or transportation vehicles.
  • the second node includes the device described in the above third aspect or any possible implementation manner of the third aspect.
  • the first node includes the communication device described in the above fourth aspect or any possible implementation manner of the fourth aspect.
  • the second node includes the device described in the above fifth aspect or any possible implementation manner of the fifth aspect.
  • the first node includes the communication device described in the sixth aspect or any possible implementation manner of the sixth aspect.
  • the second node includes the device described in the seventh aspect or any possible implementation manner of the seventh aspect.
  • the first node includes the communication device described in the eighth aspect or any possible implementation manner of the eighth aspect.
  • the first node includes one or more modules such as a gateway, a base station, and a cockpit domain controller (CDC).
  • modules such as a gateway, a base station, and a cockpit domain controller (CDC).
  • CDC cockpit domain controller
  • the second node includes one or more modules such as a camera, a screen, a microphone, a speaker, a radar, an electronic key, a keyless entry, a starting system controller, a battery management system, and a battery pack.
  • modules such as a camera, a screen, a microphone, a speaker, a radar, an electronic key, a keyless entry, a starting system controller, a battery management system, and a battery pack.
  • Figure 1A is a schematic diagram of a communication domain provided by an embodiment of the present application.
  • Figure 1B is a schematic diagram of another communication domain provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of a frequency point provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • Figure 4 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of a first identification provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of another correspondence between a first identifier and a function provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram of multiple superframes provided by an embodiment of the present application.
  • Figure 8 is a schematic diagram of yet another multiple superframes provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of yet another communication method provided by an embodiment of the present application.
  • Figure 10 is a schematic flow chart of yet another communication method provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 13 is a schematic structural diagram of yet another communication device provided by an embodiment of the present application.
  • a node is a device with communication capabilities, including but not limited to one or more of terminal equipment, network equipment, industrial equipment, or entertainment equipment.
  • terminal devices include handheld terminals, wearable terminals, vehicles, vehicle-mounted devices, sensing devices, smart home devices, etc.
  • Handheld terminals include but are not limited to mobile phones, tablets, or laptops
  • wearable devices include but are not limited to Earphones, smart bracelets, smart watches, or smart glasses, etc.
  • the means of transportation include but are not limited to vehicles, ships, aircraft, rail transit (such as subways, high-speed trains, etc.), or logistics robots (such as automated guided vehicles (automated guided vehicles) , AGV), etc.
  • vehicle-mounted equipment includes but is not limited to domain controller (DC), screen, microphone, audio, electronic key, keyless entry, starting system controller, battery management system, BMS), etc.
  • sensing devices include but are not limited to cameras, radar, lidar, light sensors, temperature sensors, or humidity sensors, etc.
  • smart home devices include but are not limited to projectors, smart TVs, smart refrigerators, smart home gateways, or Security equipment, etc.
  • Network equipment includes but is not limited to routers, switches, or base stations.
  • Industrial equipment such as industrial robots, robotic arms, etc.
  • Leisure and entertainment equipment such as virtual reality (VR) equipment, mixed reality (MR) equipment, massage chairs, home theaters, game control equipment or 4D theater cockpits, etc.
  • VR virtual reality
  • MR mixed reality
  • the nodes in this embodiment can be applied in various scenarios such as smart cars, smart homes, smart terminals, smart manufacturing, or smart exhibition halls.
  • the names of devices with similar communication capabilities may not be called nodes.
  • devices with communication capabilities are collectively referred to as nodes.
  • nodes include management nodes (or G nodes) and managed nodes (or T nodes).
  • the G node manages a certain number of T nodes, and the G node is connected to these T nodes to jointly complete specific communication functions.
  • the G node and the T nodes connected to it belong to a communication domain.
  • the number of G nodes in the communication domain can be one or multiple.
  • a single G node and the T nodes connected to it together form a communication domain.
  • FIG. 1A is a schematic diagram of a communication domain provided by an embodiment of the present application.
  • the cockpit domain controller CDC
  • various vehicle-mounted devices such as microphones, speakers, etc.
  • the CDC and the vehicle-mounted equipment form a communication domain, which is called the first communication domain for easy identification.
  • the mobile phone when the mobile phone is connected to the CDC, the mobile phone can also serve as a T node in the first communication domain.
  • PEPS Passive Entry Passive Start
  • PEPS can also serve as a T node in the first communication domain.
  • the mobile phone can also be used as a G node to connect to wearable devices (such as headphones, or smart watches, etc.). At this time, the mobile phone and the wearable device form another communication domain, such as the second communication domain as shown in Figure 1A.
  • wearable devices such as headphones, or smart watches, etc.
  • PEPS can also be used as a G node to connect the body control module (BCM), mobile phone key, and car key. At this time, PEPS, BCM, mobile phone key, and car key form another communication domain, as shown in Figure 1A.
  • BCM body control module
  • PEPS, BCM, mobile phone key, and car key form another communication domain, as shown in Figure 1A.
  • the communication domain can be divided into high-level communication domain, general communication domain, etc.
  • the advanced communication domain can coordinate resources and achieve coordinated coexistence among multiple domains.
  • FIG. 1B is a schematic diagram of another communication domain provided by an embodiment of the present application.
  • the TV and the speakers and microphones connected to the TV belong to one communication domain.
  • This communication domain is a general communication domain; the mobile phone
  • the headset connected to the mobile phone belongs to another communication domain, which is an advanced communication domain.
  • mobile phones can realize resource management between multiple domains.
  • the communication link from G node to T node may be called G link.
  • the communication link from T node to G node can be called T link.
  • Public resources are resources that can be shared by multiple nodes, including but not limited to time-frequency resources. Nodes that share common resources can detect signaling on the common resources.
  • public resources are resources that are pre-configured and shared by T nodes in the communication domain.
  • public resources can be used to transmit various signaling.
  • the common resources may include common resources for transmitting physical layer control signaling.
  • the node can blindly detect the physical layer control signaling in the public resources that transmit the physical layer control signaling.
  • Detecting a signal is the process of trying to receive a signal. Taking the second node as an example, the second node tries to receive the signal on time-frequency resources. If the signal is decoded and the CRC check is successful, it is regarded as a successful reception.
  • Blind detection is a method of detecting signals. Nodes try to receive signals and identify signals in designated time-frequency resources without knowing whether information is transmitted in the resources or the content of the transmitted information. Corresponding information content.
  • Scrambling refers to obtaining a new signal based on the original signal and scrambling code.
  • the inverse operation of scrambling is descrambling.
  • Superframe A unit of time that contains multiple radio frames.
  • Each radio frame contains one or more symbols, where the symbols may be, for example, orthogonal frequency-division multiplexing (OFDM) symbols.
  • OFDM orthogonal frequency-division multiplexing
  • the superframe period is 1 millisecond (ms), that is, the duration of the superframe is 1ms.
  • a superframe has a superframe sequence number (or number, superframe number) to distinguish different superframes within a period of time. It is usually expressed in the form of one or more bits, that is, the superframe sequence number contains S bits, S is a positive integer and S>0.
  • the superframe sequence number Since the number of bits in a superframe sequence number is usually limited, the superframe sequence number will be reversed when it reaches the maximum count value.
  • the superframe sequence number is indicated by 8-bit data (from 0x00-0xFF).
  • the superframe sequence number is also continuously accumulated.
  • the frame number is inverted. Rollover and start counting again from 0x00.
  • Frequency point also called carrier
  • FIG. 2 shows a schematic diagram of a possible frequency point, and the available bandwidth ranges from: X megahertz (MHz) to (X+160) Mhz.
  • the available bandwidth is divided into 8 frequency bands according to the frequency interval of 20MHz, and each frequency band is numbered, respectively 1, 2, 3, 4...8. These numbers for fixed frequencies are frequency points. It should be understood that the available bandwidth, the width of the frequency band, and the number of frequency points shown in Figure 2 are only examples and are not intended to limit the embodiments of the present application.
  • the operating frequency point of the first node is frequency point 1
  • the signal sent by the first node is sent within the frequency range corresponding to frequency point 1
  • the first node receives The signal is received within the frequency range corresponding to frequency point 1.
  • the signaling and data sent and/or received by the first node are all transmitted at frequency point 1.
  • the working frequency is switched to frequency 2
  • the signaling and data sent and/or received by the first node are all transmitted on frequency 2.
  • the preamble information is a piece of information sent by the first node on the switched frequency point after switching the frequency point. For example, after frequency switching, before the first node enters the superframe structure, it first sends a piece of preamble information.
  • the preamble information can be used to indicate changes in configuration information, such as indicating changes in random access resource pool configuration, channel sounding reference signal (Sounding Reference Signal, SRS) resource pool configuration and other information.
  • configuration information such as indicating changes in random access resource pool configuration, channel sounding reference signal (Sounding Reference Signal, SRS) resource pool configuration and other information.
  • SRS Sounding Reference Signal
  • the preamble message can be used to synchronize the receiving node.
  • the preamble information can be used to obtain communication channel information, for example, for channel estimation, channel quality evaluation, etc.
  • the first node sends preamble information at the second frequency point, and correspondingly, the second node receives the preamble information.
  • the second node Based on the preamble information, the second node can measure the channel between the first node and the second node to obtain the channel quality and so on.
  • the content of the preamble information may be predefined (for example, specified through a protocol), preconfigured, or configured through high-level signaling, etc.
  • the "access” mentioned in various embodiments of this application indicates the process of a node establishing a connection with another node.
  • the process of one node "connecting" to another node can also be described as one node "associating" another node.
  • Figure 3 is a schematic diagram of a possible communication system provided by an embodiment of the present application.
  • the communication system includes a first node 301 and a second node 302. in:
  • the first node 301 has communication capabilities and can send signals.
  • the first node 301 sends a signal at a certain frequency point, and the frequency point at which the signal is sent and received is called the working frequency point.
  • the working frequency point can be changed, and the change of the working frequency point is called frequency point switching.
  • the second node 302 has communication capabilities and can receive signals.
  • the second node 302 can receive the signal sent by the first node 301 at the working frequency point, that is, the first node 301 and the second node 302 communicate at the working frequency point.
  • the communication link between the second node 302 and the first node 301 may include various types of connection media, including wired links (such as optical fibers), wireless links, or a combination of wired links and wireless links. Combination etc.
  • connection media include SparkLink, 802.11b/g, blue tooth, Zigbee, radio frequency identification (RFID), ultra-wideband, UWB) technology, etc.
  • Another example can also be long-distance connection technology, including but not limited to communication technology based on Long Term Evolution (Long Term Evolution), fifth generation mobile communication technology (5th generation mobile networks or 5th generation wireless systems, 5th-Generation , referred to as 5G or 5G technology), Global System for mobile communications (GSM), General Packet Radio Service (GPRS), Universal Mobile Telecommunications System (UMTS), etc.
  • Long Term Evolution Long Term Evolution
  • 5G or 5G technology fifth generation mobile communication technology
  • GSM Global System for mobile communications
  • GPRS General Packet Radio Service
  • UMTS Universal Mobile Telecommunications System
  • the first node may be called a G node, a control node or an access point.
  • the second node may be called a T node or terminal node.
  • the communication system needs to have anti-interference capabilities. For example, as shown in Figure 3, if the current working frequency point of the first node 301 and the second node 302 is frequency point 1, when there is interference at frequency point 1 or the interference is serious, the working frequency point can be switched to suppress the impact of the interference. .
  • the first node 301 can switch the working frequency point to frequency point 2.
  • the first node 301 When the first node 301 switches the frequency point, the first node 301 should notify other nodes communicating with it (such as the second node 302) that it has switched the operating frequency point, so that the second node 302 can perform relevant operations to maintain the communication status.
  • the process of frequency switching has high time requirements. If the interval between the decision to switch the frequency and the actual switching is long, other communication systems may seize the frequency, affecting transmission performance.
  • embodiments of the present application provide communication methods and related devices, which can shorten the time required for frequency point switching and improve the transmission performance of inter-node communication networks.
  • the first node when switching a frequency point, uses physical layer control signaling indicating frequency point switching to notify the second node to switch the working frequency point, and the physical layer control signaling indicating frequency point switching uses a third node.
  • the indication of working frequency point switching is completed through the first identification and physical layer control signaling, which shortens the time-consuming frequency point switching, so that the first node and the second node can switch to the second frequency point as soon as possible. Communicate and improve the transmission performance of the communication network.
  • the first identity may be configured in the second node through signaling (eg, high-level signaling).
  • the first identity may be obtained in advance by the first node and the second node.
  • the first identity may be specified by a protocol or preconfigured in the second node.
  • Figure 4 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • this method can be implemented based on the communication system shown in Figure 3.
  • the communication method shown in FIG. 4 may include one or more steps from step S401 to step S403. It should be understood that this application describes the sequence of S401 to S403 for convenience of description, and is not intended to limit execution to the above sequence. The embodiments of the present application do not limit the execution sequence, execution time, number of executions, etc. of one or more of the above steps. The details of steps S401 to S403 are as follows:
  • Step S401 The first node sends high-level signaling, where the high-level signaling includes a first identifier.
  • the node that receives high-level signaling may include a second node.
  • This application takes the receiving end as the second node as an example for description, where the number of second nodes may be one or more. That is, the second node receives high-level signaling from the first node.
  • high-level signaling includes but is not limited to X resource control (XRC) signaling or system messages.
  • X resources include but are not limited to wireless resources.
  • XRC signaling includes XRC establishment signaling, XRC reconfiguration signaling, etc.
  • X resource control can also be called radio resource control.
  • the first identifier includes multiple bits of information, where the number of bits and the position of the bits in the high-layer signaling are not strictly limited in the embodiment of the present application.
  • Figure 5 is a schematic diagram of a possible first identifier provided by the embodiment of the present application.
  • the first identifier includes a 6-bit (example only) signal, located at the nth to nth bits in the high-layer signaling. +6 bits.
  • the first identifier is "111000", and the values of each bit are only examples.
  • the first identifier may also be called the identifier of the switching frequency point.
  • the first identifier corresponds to a frequency switching function.
  • Figure 6 shows a corresponding relationship between a first identifier and a function provided by an embodiment of the present application.
  • the first identifier may be used to distinguish physical layer control signaling indicating frequency point switching, as shown in part (a) of Figure 6 .
  • some or all of the information bits of the physical layer control signaling indicating frequency point switching can be scrambled through the first identifier.
  • This signaling is physical layer control signaling instructing frequency point switching.
  • the first identifier corresponds to a group of signaling function types.
  • This group of signaling function types is called a functional group.
  • the functional group includes physical layer control signaling of one or more functional types.
  • the physical layer control signaling indicating frequency point switching belongs to the signaling in this functional group.
  • the function group corresponding to the first identifier includes physical layer control signaling indicating frequency point switching, physical layer control signaling to implement function F1, and physical layer control signaling to implement function F2. layer control signaling.
  • the physical layer control signaling also includes a function indication field, and the first identifier and the function indication field jointly indicate the signaling function.
  • the high-layer signaling may be sent when the working frequency point is the first frequency point.
  • the high-level signaling may not be sent when the working frequency is the first frequency.
  • a frequency switch may occur after sending high-level signaling.
  • the working frequency for sending high-level signaling may be another frequency.
  • the first node may send high-level signaling in a broadcast, multicast or unicast manner.
  • high-level signaling can be sent to all nodes (or all nodes within a certain range) in broadcast mode; in multicast mode, high-level signaling can be sent to a group of nodes in multicast mode; in unicast mode , high-level signaling is sent to a node in unicast mode.
  • broadcast, multicast, and unicast can be implemented through the signaling destination address.
  • the destination address of signaling in broadcast mode, is the broadcast address.
  • the signaling destination address is the multicast address.
  • the destination address of the signaling is the address of the receiving end, for example, the Internet Protocol (IP) address of the receiving end and/or the Media Access Control (Media Access Control, MAC) address of the second node.
  • IP Internet Protocol
  • MAC Media Access Control
  • broadcast, multicast, and unicast can be implemented through a signaling channel.
  • the channel for sending signaling is the broadcast channel.
  • the channel for sending signaling is the channel used by a group of nodes to communicate, and optional signaling is distinguished by a certain identifier (or key, or codec method).
  • the channel for sending signaling is the channel between two nodes for point-to-point communication.
  • Optional signaling is distinguished by a certain identifier (or key, or codec method).
  • Step S402 The first node sends first physical layer control signaling at the working frequency point.
  • the node that receives the first physical layer control signal may include a second node.
  • the following description takes an example in which the receiving end is the second node. That is, the second node receives the first physical layer control signaling.
  • the working frequency point of the first node is called the first frequency point.
  • physical layer control signaling is also called physical layer control information, or frequency switching physical layer control signaling.
  • physical layer control information or frequency switching physical layer control signaling.
  • the first physical layer control signaling is used to instruct the working frequency point to be switched to the second frequency point.
  • the first physical layer control signaling includes a destination frequency field, and the value of the destination frequency field is an identifier of the second frequency point or includes an identifier of the second frequency point.
  • the first physical layer control signaling includes an identifier of the second frequency point and an indication of the frequency point switching time.
  • the first physical layer control signaling corresponds to the frequency point switching function, and the first physical layer control signaling includes an identifier of the second frequency point.
  • the first physical layer control signaling is used to instruct the working frequency of the first node to switch to the second frequency.
  • the first physical layer control signaling is used to notify the second node of the switching of the working frequency point of the first node.
  • the second node can switch the working frequency to the second frequency to communicate with the first node.
  • the second node may not switch the working frequency point. For example, the second node's task on the first node has been completed, and there is no need to maintain a communication connection state with the first node.
  • the first physical layer control signaling is used to instruct the second node (ie, the node that receives the first physical layer control signaling) to switch the working frequency point to the second frequency point.
  • the second node receives the first physical layer control signaling and switches the working frequency point to the second frequency point.
  • the above situation can be combined with an instruction to switch the working frequency of the first node to the second frequency, and can also be regarded as an instruction to switch the working frequency of the second node. That is, the first physical layer control signaling is used to instruct the first node to switch the working frequency to the second frequency, and is also used to instruct the second node to switch the working frequency to the second frequency.
  • the second node descrambles the first physical layer control signaling according to the first identifier to obtain the function of the first physical layer control signaling and obtains its data content according to the data format of the first physical layer control signaling, thereby receiving Instructions for switching operating frequency points.
  • the second node may descramble some or all of the information bits of the physical layer control signaling. If the scrambling and descrambling according to the first identification is successful, it is determined that the physical layer control signaling is the physical layer control signaling indicating frequency point switching, so that the corresponding information can be extracted according to the format of the frequency point switching physical layer control signaling. .
  • the above descrambling process may be performed after decoding the first physical layer control signaling. Since the first identifier is a scrambling process applied to signaling, the decoding method of the first physical layer control signaling can use the same encoding and decoding method as that of other signaling. This setting can not increase the decoding time of the second node and further shorten the time of frequency switching.
  • the Cyclic Redundancy Check (CRC) code in the first physical layer control signaling is scrambled using the identifier of the switching frequency point.
  • the second node decodes the physical layer control signaling, it performs a CRC check on the decoded physical layer control signaling according to one or more configured wraparound codes. If the scrambling code is performed according to the identification of the switching frequency point and the CRC check passes, it is determined that the physical layer control signaling is the frequency point switching physical layer control signaling.
  • the first physical layer control signaling includes one or more of the following information: an identifier of the second frequency point, an indication of frequency point switching time, a re-access indication, a switching interval indication, a preamble Indication, function indication field or superframe serial number continuous indication, etc.
  • an identifier of the second frequency point includes one or more of the following information: an indication of frequency point switching time, a re-access indication, a switching interval indication, a preamble Indication, function indication field or superframe serial number continuous indication, etc.
  • the identifier of the second frequency point is used to indicate the destination frequency point for switching, including but not limited to: frequency point serial number, frequency point index number, channel number, center frequency of the frequency band corresponding to the frequency point, and the start of the frequency band corresponding to the frequency point. frequency, or the end frequency of the frequency band corresponding to the frequency point, etc.
  • the identifier of the second frequency point includes the channel number of frequency point 2, the index number of frequency point 2, or the center frequency of frequency point 2 wait.
  • the indication of the switching time is used to indicate the timing (or time) of switching the working frequency point.
  • the last superframe used for transmission on the first frequency point before switching the working frequency point of the first node from the first frequency point to the second frequency point is called the first Superframe
  • the first superframe used for transmission on the second frequency is called the second superframe
  • the indication of the frequency point switching moment is used to indicate the moment of starting to switch the working frequency point. For example: indicating the superframe sequence number of the first superframe, or indicating the offset of the first superframe relative to the superframe for sending the first physical layer control signaling.
  • the indication of the frequency point switching moment is used to indicate the starting moment of starting transmission at the second frequency point, for example, indicating the superframe sequence number of the second superframe. Or, indicate the offset of the second superframe relative to the starting time of the superframe for sending the first frequency point switching physical layer control signaling.
  • the offset in the above method can be in superframe units, or in milliseconds (ms), or in microseconds (us).
  • Figure 7 shows a schematic diagram of multiple superframes provided by this embodiment.
  • the superframe in which the first physical layer control signaling is sent has a superframe number of 1 (only an example); and the timing of switching the working frequency point is after the superframe with a superframe number of 3.
  • the switching time indication may be "3" (that is, the superframe sequence number of the first superframe).
  • the switching time indication may be "2" (that is, the offset of the first superframe relative to the superframe in which the first physical layer control signaling is sent).
  • the switching time indication may be “4” (i.e., the superframe sequence number of the second superframe), or the switching time indication may be “3” (i.e., the starting time of the second superframe relative to the time when the first frequency is transmitted). The offset of the starting moment of the superframe for switching physical layer control signaling).
  • the re-access indication is indication information of whether the second node needs to re-access.
  • the second node is required to perform a re-connection operation, and in other cases, the second node is not required to perform a re-connection operation.
  • the behavior of the second node can be flexibly controlled, thereby improving the stability of the communication system.
  • the re-access indication is used to instruct the second node not to perform a re-access operation.
  • you can change the communication domain system configuration as little or as little as possible or only change the communication domain system configuration that does not affect the current transmission schedule (such as random access resource pool configuration, channel sounding reference signal resource pool configuration ) to prevent the second node from reconnecting, thereby avoiding the current scheduling failure.
  • This setting can reduce service interruptions caused by frequency switching and improve transmission performance.
  • the first node can adjust communication system parameters, such as cyclic prefix (CP) length, resource allocation, etc., according to the channel conditions of the second frequency point and/or current business requirements. If the second node reconnects to the first node and it is easier for the change of communication parameters to take effect, the first node can instruct the second node to reconnect.
  • CP cyclic prefix
  • the second node when the re-access indication is a first value, the second node is instructed to perform an access operation on the second frequency point.
  • the second node when the re-access indication is the second value, the second node is instructed not to perform an access operation or to maintain the current access state.
  • the first value and/or the second value may be predefined (for example, specified by a protocol) by a user, manufacturer, or management device, or preconfigured in the node.
  • the management device may be a first node, a second node or a third-party device.
  • the access method may include contention access or contention-free access.
  • the access operation includes sending an access request.
  • the re-access indication includes one or more bits, and the value of the one or more bits indicates whether the second node re-accesses. Taking the re-access indication as containing 1 bit as an example, when the re-access indication is 0, it indicates that the second node does not perform the re-access operation or maintains the current access state; when the re-access indication is 1, it indicates that the second node The node reconnects to the first node.
  • the second node when the second node performs an access operation, it may access the first node or other nodes. For example, when the second node performs an access operation, it re-accesses the first node; after the second node accesses the first node, the first node and the second node belong to the first communication domain. For another example, after the second node performs the access operation, the second node may access the fourth node; after the second node accesses the fourth node, the second node and the fourth node belong to the second communication domain.
  • Switching interval indication Limited by the capabilities of the device, a certain interval is required between the end of transmission at the current working frequency point (such as the first frequency point) and the start of transmission at the next working frequency point (such as the second frequency point).
  • Devices with different capabilities have different costs, power consumption, and complexity. Therefore, different devices have different switching capabilities, so the minimum time required for switching may also be different.
  • the switching indication can indicate the interval between the end of transmission at the current working frequency point (such as the first frequency point) and the start of transmission at the next working frequency point (such as the second frequency point).
  • the switching interval indicates the last superframe transmitted at the first frequency point (i.e., the first superframe) and the first superframe transmitted at the second frequency point (i.e., the second superframe). ) the time interval between.
  • the first node determines the handover interval indication according to the device capability (the device capability of the first node and/or the second node), and sends it to the second node through first physical layer control signaling.
  • the second node can perform changes in the communication configuration to improve communication stability. For example, the second node may determine the time to start transmitting the superframe after the handover, the position of the synchronization signal, etc. based on the time interval.
  • the switching interval indication may include one or more of the following time intervals: the time interval between the end time of the first superframe and the start time of the second superframe, the time interval between the start time of the first superframe and the start time of the second superframe.
  • the switching interval may include one or more of the following: the end time of the first superframe and the start time of the preamble information. or the time interval between the start time of the first superframe and the start time of the preamble information, etc.
  • the switching interval indication is also used to indicate whether the first node sends preamble information at the second frequency point.
  • the second node determines whether the first node sends preamble information on the second frequency point according to the switching interval indication.
  • the second node if the switching interval indicates that the first node sends the preamble information on the second frequency point, the second node correspondingly receives the preamble information on the second frequency point; if the switching interval indicates that the first node does not send the preamble information on the second frequency point, If the preamble information is sent, the second node does not need to receive the preamble information at the second frequency point. It can be seen that the behavior of the second node can be flexibly controlled through the switching interval indication, which can improve the stability of the communication system.
  • the first node when the switching interval indication is greater than a third value, the first node sends preamble information to at least one second node at the post-switched working frequency point (ie, the second frequency point).
  • the third value may be predefined (for example, specified by a protocol) by the user, manufacturer or management device, or preconfigured in the node.
  • the management device may be a first node, a second node or a third-party device.
  • the switching interval indication when the switching interval indication is less than a third value, the first node does not send preamble information at the second frequency point. It should be understood that when the switching interval is equal to the third value, the first node may not send preamble information at the second frequency point, or may not send preamble information.
  • the switching interval indication is used to indicate the number of milliseconds separated between the end moment of the first superframe and the start moment of the second superframe.
  • the switching interval indication is greater than 1 (that is, the interval between the end time of the first superframe and the start time of the second superframe is 1ms)
  • the first node sends preamble information at the second frequency point; correspondingly, when the switching interval indication
  • the above interval is less than or equal to 1
  • the first node does not send preamble information at the second frequency point.
  • no preamble information is sent when the switching interval indication is 0; preamble information is sent when the switching interval indication is greater than 0.
  • the first node and the second node can communicate in the superframe as soon as possible, thereby shortening the interval between the last superframe before the handover and the first superframe after the handover, reducing Switching takes time.
  • the switching interval indicates the time interval between the starting time of the first superframe and the starting time of the second superframe, and the switching interval indicates N milliseconds, N is an integer and N ⁇ equal to 0.
  • the first node determines the time required to switch the frequency point based on the ability of the first node and/or the second node to switch the frequency point.
  • the time interval indicated by the switching interval indicator is greater than the time required to switch the frequency point.
  • the first node rounds the time required to switch the frequency point to obtain an indication of the ring interval.
  • the rounding method can be rounding up or other rounding methods.
  • the switching interval indication field may not be included in the first physical layer control signaling.
  • the switching interval may be specified by a protocol, preconfigured in the first node and/or the second node, or indicated by other high-level signaling.
  • the preamble indication is used to instruct the first node to send preamble information at the second frequency point, or to instruct the first node not to send preamble information at the second frequency point.
  • the first node when the preamble indication is a fourth value, the first node sends preamble information at the second frequency point.
  • the preamble indication is the fifth value, the first node does not send preamble information at the second frequency point.
  • the fourth value and/or the fifth value may be predefined (for example, specified by a protocol) by the user, manufacturer, or management device, or preconfigured in the node.
  • the management device may be a first node, a second node or a third-party device.
  • the preamble indication includes one or more bits of information, and the value of one or more bits indicates whether the first node sends preamble information at the second frequency point.
  • the preamble indication as containing 1 bit as an example, when the preamble indication is 0, it indicates that the first node does not send preamble information at the second frequency point; when the preamble indication is 1, it instructs the first node to send preamble information at the second frequency point. .
  • the first physical layer control signaling may not carry the preamble indication. This setting can save fields for physical layer control signaling and improve scalability.
  • the function indication field is used to indicate the signaling function, or to indicate the signaling function together with the first identifier.
  • the first identifier corresponds to one or more functions
  • the function indication field is used to indicate that the first identifier corresponds to the frequency switching function.
  • Table 1 exemplarily lists the value machine descriptions of several function indication fields.
  • the first identifier indicates multiple functions, including frequency switching function, function F1, and function F2.
  • the function indication field in the signaling is 00
  • the first identifier indicates the frequency switching function.
  • the function indication field in the signaling is 01
  • the first identifier indicates function F1 (an exemplary function name); when the function indication field in the signaling is 10, the first identifier indicates function F2 ( An example function name).
  • the function indication field may contain more or fewer bits, and the corresponding relationship between its value and function may also be designed in other ways.
  • Superframe serial number continuous indication is used to indicate whether the superframe serial numbers of the first superframe and the second superframe are guaranteed to be continuous.
  • the superframe continuous indication when the superframe continuous indication is the sixth value, it indicates that the superframe sequence number of the last superframe before switching the operating frequency point and the superframe sequence number of the first superframe after switching the operating frequency point are not guaranteed to be continuous; when the superframe sequence number is exceeded.
  • the frame continuity indicator is the seventh value, it indicates that the superframe sequence number of the last superframe before switching the operating frequency point and the superframe sequence number of the first superframe after switching the operating frequency point are continuous.
  • the scheduling before switching the working frequency point is invalid on the second frequency point, and the first node needs to re-determine the scheduling.
  • the scheduling before switching the working frequency point is valid on the second frequency point. At this time, the first node does not need to be rescheduled, which shortens the time of switching.
  • the superframe serial number continuous indication includes 1 bit of information.
  • the superframe serial number continuous indication is 1, it indicates that the superframe serial numbers of the first superframe and the second superframe are continuous; when the superframe serial number continuous indication is 0, it indicates that the superframe serial numbers of the first superframe and the second superframe are continuous.
  • the superframe sequence numbers of the first superframe and the second superframe are not guaranteed to be consecutive.
  • the sixth value and/or the seventh value may be predefined (for example, specified by a protocol) by the user, manufacturer, or management device, or preconfigured in the node.
  • the management device may be a first node, a second node or a third-party device.
  • the function and information contained in the first physical layer control signaling are introduced above.
  • the following is an exemplary description of the sending method of the first physical layer control signaling.
  • the resources used for sending the first physical layer control signaling belong to preconfigured physical layer control signaling common resources.
  • the physical layer control signaling common resource (hereinafter referred to as the common resource) is a resource for detecting physical layer control signaling that can be shared by multiple second nodes, including but not limited to time-frequency resources.
  • the second node detects (or monitors) the signaling on the public resource so that the node configured with the public resource can receive the first physical layer control signaling. Therefore, the first node does not need to notify other nodes one by one to perform frequency switching, which shortens the time required for frequency switching.
  • one communication domain in SparkLink Basic (SLB) technology can contain 4096 second nodes.
  • SLB SparkLink Basic
  • the first physical layer control signaling is sent on the public resource
  • the second node can detect the first physical layer control signaling on the public resource, thereby obtaining the working frequency point switching instruction in time, so that the first node
  • the node and the second node can communicate on the new working frequency point as soon as possible, which improves the anti-interference ability of the communication system and improves the transmission performance.
  • the first node may send physical layer control signaling multiple times to indicate the same frequency point switching.
  • the first node repeatedly sends signaling indicating the same frequency switching multiple times, giving the second node multiple opportunities to detect the signaling, and reducing the probability of frequency switching failure due to the second node not detecting the signaling.
  • the physical layer control signaling indicating the same frequency point switching can be sent in multiple superframes.
  • the above-mentioned first physical layer control signaling is sent in the third superframe.
  • the first node also sends the third physical layer control signaling in the fourth superframe through the working frequency point (the current working frequency point is the first frequency point), and some or all of the information bits in the third physical layer control signaling
  • the information bits are scrambled by the first identifier, and the third physical layer control signaling is used to instruct the working frequency of the first node to switch to the second frequency.
  • the switching time indication is the offset of the switching time relative to the time (or superframe) when the physical layer control signaling is sent
  • the switching time indications of multiple physical layer control signaling indicating the same frequency point switching are Values may vary.
  • FIG. 8 shows another schematic diagram of multiple superframes provided by this embodiment.
  • the superframe with superframe number "1" carries physical layer control signaling 801.
  • the physical layer control signaling 801 is used to instruct the switching of the working frequency point to the second frequency point.
  • the physical layer control signaling 801 includes the switching time. Indication, the switching time indication is used to indicate the offset of the starting time of the first superframe transmitted by the first node at the second frequency point relative to the starting time of the superframe for sending the first frequency point switching physical layer control signaling.
  • the shift amount, that is, the switching moment is indicated as "2".
  • the superframe with superframe number “2” carries physical layer control signaling 802, which is the same as the indicated content (related to frequency switching) in physical layer control signaling 801.
  • the superframe with superframe number “3” carries the physical layer control signaling 803.
  • the physical layer control signaling 803 is the same as the indicated content in the physical layer control signaling 801 and the physical layer control signaling 802. same
  • the second node detects any physical layer control signaling, that is, Frequency switching instructions can be obtained. Therefore, the above embodiments can increase the probability of successful frequency switching, so that the second node can continue to communicate with the first node and improve transmission performance.
  • the first node may also send multiple physical layer control signalings in one superframe, and the multiple physical layer control signalings indicate the same frequency point switching.
  • the bit length of the physical layer control signaling indicating frequency point switching is the same as the length of another physical layer control signaling indicating other functions. That is, the bit length of the physical layer control signaling indicating frequency point switching belongs to the existing bit length.
  • the length of the first physical layer control signaling is the same as the bit length of the fourth physical layer control signaling.
  • the first physical layer control signaling and the fourth physical layer control signaling have different functions. With this arrangement, the first physical layer control signaling and the fourth physical layer control signaling can use the same encoding/decoding method.
  • the second node does not send feedback on whether the first physical layer control signaling is successfully detected.
  • the time-consuming frequency switching can be further shortened.
  • the second node can re-execute the operation of accessing the first node to communicate with the first node on the second frequency point.
  • the second node does not send feedback on whether the second physical layer control signaling is successfully detected, so as to reduce signaling interactions.
  • the first node may receive frequency point capability information sent by the second node.
  • the frequency point capability information includes one or more of supported frequency points, supported switching intervals, etc.
  • the second frequency point belongs to a frequency point supported by the second node.
  • the first node can flexibly configure the switching interval according to the frequency point capability information, so that the switching interval can not only match the switching capabilities of the first node and the second node, but also shorten the switching interval as much as possible to reduce the problems caused by frequency point switching. Additional delay.
  • the embodiment shown in Figure 4 also includes step S403, specifically as follows:
  • Step S403 (optional): The first node communicates on the second frequency point.
  • the first node may communicate with at least one second node on the second frequency point.
  • the first node sends data and/or signaling on the second frequency point.
  • the first node receives data and/or signaling on the second frequency point.
  • the first node may switch the working frequency at the moment of frequency switching. After the frequency point switching moment, the first node communicates with at least one second node on the second frequency point.
  • the frequency switching time is the time indicated by the frequency switching time indication in the first physical layer control signaling.
  • the second node switches the working frequency to the second frequency at the frequency switching time according to the frequency switching time indication. After the frequency point switching moment, the second node communicates with the first node on the second frequency point.
  • the first node sends preamble information to the second node on the second frequency point.
  • the second node receives the preamble information from the first node.
  • the first physical layer control signaling instructs the second node to perform a re-access operation, and the second node sends an access request to the first node to re-access the first node.
  • the superframe sequence numbers of the superframes used by the first node for transmission are continuous before and after the working frequency point is switched. That is: the superframe serial numbers of the first superframe and the second superframe are consecutive.
  • the superframe sequence number of the last superframe used by the first node for transmission on the first frequency point is 3, and the last superframe used for transmission on the second frequency point.
  • the superframe sequence number of the frame is 4, and the frame numbers are consecutive.
  • a new counting cycle may start when the count value of the superframe sequence number reaches the maximum value. This phenomenon is called frame number inversion. When the frame number occurs, the superframe sequence numbers before and after the frame number inversion are also regarded as consecutive superframe sequence numbers.
  • the superframe sequence number of the working frequency point switching is continuous, ensuring that the transmission is logically continuous, which is conducive to the scheduling before the working frequency point switching and can continue to be used after the working frequency point is switched, without the need for rescheduling, which greatly reduces the communication impact of the working frequency point switching. process to improve transmission performance.
  • scheduling includes resource allocation in the frequency domain or resource allocation in the time domain.
  • the first node sends scheduling signaling in the Nth superframe.
  • the scheduling indicated by this scheduling signaling takes effect in the N+1 superframe. If the superframe numbers are consecutive, the scheduling signal sent in the last superframe before the working frequency point is switched. Scheduling signaling can continue to take effect in the first superframe after frequency switching, and there is no need to resend scheduling signaling.
  • the end time of the first superframe and the start time of the second superframe are separated by N milliseconds, where N is an integer and N ⁇ 0.
  • the length of the superframe is 1ms.
  • the position of the synchronization signal is usually at a fixed time position in the superframe, so that the period of the synchronization signal is the same as the length of the superframe, that is, the period of the synchronization signal is 1 ms.
  • the interval between the starting time of the first superframe and the starting time of the second superframe is 0 or a positive integer millisecond.
  • step S403 is an optional step, that is, the first node may transmit data and/or signaling on the second frequency point, or may not transmit data and/or signaling on the second frequency point.
  • the first node may be faulty (for example, powered off) after sending the first physical layer control signaling, and data transmission on the second frequency point has not yet been performed at this time.
  • the first node needs to re-determine the destination frequency of the switch.
  • the first node before switching to the second frequency point, the first node detects a frequency point that is more suitable for communication as the switching destination frequency point.
  • the first identifier can be used during multiple frequency switching processes. That is, after the first node sends the first identifier to the second node, during the subsequent multiple switching of working frequency points, the signaling indicating frequency point switching can be scrambled using the same first identifier. Therefore, after configuring the first identifier through high-level signaling, frequency switching can be instructed through one physical layer control signaling, which further reduces the signaling interaction during the frequency switching process and further shortens the time consuming of frequency switching, so that The first node can switch to the second frequency point for communication as soon as possible, which improves the transmission performance of the communication network.
  • the first node after the first node switches the working frequency point to the second frequency point, it can also switch the frequency point to the third frequency point. Specifically, the first node sends the second physical layer control signaling through the working frequency point (ie, the second frequency point).
  • the second physical layer control signaling is used to indicate switching the working frequency point to the third frequency point.
  • the second physical layer control signaling Some or all of the information bits in the physical layer control signaling are scrambled by the first identifier.
  • the first node when the first node switches the working frequency to the third frequency, it can instruct the frequency switching through one physical layer control signaling, which shortens the time consuming of frequency switching and improves the transmission of the communication network. performance.
  • the first node uses high-level signaling to configure the first identifier for the second node.
  • the first node uses the first identifier to scramble the physical layer control signaling indicating the frequency point switching.
  • the instruction of the working frequency point switching is completed, shortening the frequency point.
  • the time-consuming switching allows the first node to switch to the second frequency for communication as soon as possible, improving the transmission performance of the communication network.
  • the information in the first physical layer control signaling has multiple possible designs.
  • Table 2 shows an exemplary format of information in a possible first physical layer control letter provided by the embodiment of the present application.
  • the embodiment shown in Figure 4 describes the solution of configuring the first identity through high-level signaling.
  • the first identity can also be predefined in the first node and the second node (for example, specified by the protocol). ), or preconfigured.
  • the implementation scheme in which the first node and the second node obtain the first identifier in advance is described below. For relevant concepts, operations or logical relationships not explained below, please refer to the corresponding descriptions in the embodiment shown in FIG. 4 .
  • FIG. 9 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • this method can be implemented based on the communication system shown in Figure 3.
  • the communication method shown in FIG. 9 may include one or more steps from step S901 to step S904.
  • the details of steps S901 to S904 are as follows:
  • Step S901 The first node sends first physical layer control signaling at the working frequency point.
  • This working frequency point is the first frequency point.
  • the second node receives the first physical layer control signaling at the working frequency point.
  • the first node obtains the first identifier in advance, and some or all of the information bits in the first physical layer control signaling are scrambled by the first identifier. Since the second node has also obtained the first identifier in advance, the second node can descramble the first physical layer control signaling according to the first identifier, thereby obtaining the function of the first physical layer control signaling, and according to the first physical layer The data format of the layer control signaling is obtained to obtain its data content, thereby receiving the instruction for switching the working frequency point.
  • Step S902 (optional): The first node communicates with the second node on the second frequency point.
  • the second node communicates with the first node on the second frequency point.
  • the first node sends data and/or signaling to the second node on the second frequency point.
  • the first node receives data and/or signaling from the second node on the second frequency point.
  • the first identifier can be used during multiple frequency switching processes. That is, the communication method shown in Figure 9 also includes step S903.
  • Step S903 (optional): The first node sends the second physical layer control signaling at the working frequency point.
  • This working frequency point is the second frequency point.
  • the second node receives the second physical layer control signaling at the working frequency point.
  • the second physical layer control signaling is used to indicate switching the working frequency point to the third frequency point. Some or all of the information bits in the second physical layer control signaling are scrambled by the first identifier.
  • step S903 is included in step S902.
  • Step S904 (optional): The first node communicates with the second node on the third frequency point.
  • the second node communicates with the first node on the third frequency point.
  • the first node sends data and/or signaling to the second node on the third frequency point.
  • the first node receives data and/or signaling from the second node on the third frequency point.
  • the first node and the second node obtain the first identity in advance.
  • the first node uses the first identifier to scramble the physical layer control signaling indicating the frequency point switching.
  • the instruction of the working frequency point switching is completed, shortening the frequency point.
  • the time-consuming switching allows the first node to switch to the second frequency for communication as soon as possible, improving the transmission performance of the communication network.
  • FIG. 10 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • this method can be implemented based on the communication system shown in Figure 3.
  • the communication method as shown in Figure 10 may include steps S1001 to S1003, specifically as follows:
  • Step S1001 The first node sends high-level signaling.
  • the second node receives the higher layer signaling.
  • step S401 For detailed description, please refer to step S401.
  • Step S1002 The first node sends first physical layer control signaling at the working frequency point.
  • the second node receives the first physical layer control signaling.
  • the working frequency point is the first frequency point.
  • the first physical layer control signaling includes a preamble indication, and the preamble indication is used to instruct the first node to send preamble information at the second frequency point.
  • the first physical layer control signaling includes a switching interval indication, and the switching interval indication is greater than the third value.
  • the switching interval indication is greater than the third value, the first node is instructed to send preamble information at the second frequency point.
  • Step S1003 The first node sends preamble information at the working frequency point.
  • the second node receives the preamble information from the first node at the working frequency point.
  • the working frequency point is the second frequency point.
  • the second node obtains channel conditions and implements synchronization with the first node based on the preamble information.
  • the second node can obtain changes in communication domain configuration information in the preamble, such as changes in random access resource pool configuration, SRS resource pool configuration and other information. With this setting, the second node does not need to reconnect to the first node, which avoids service transmission terminals between the first node and the second node and improves transmission performance.
  • the operation of the second node can be flexibly controlled, which can improve the stability of the communication system and improve the transmission performance.
  • FIG 11 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • this method can be implemented based on the communication system shown in Figure 3.
  • the communication method as shown in Figure 11 may include steps S1101 to S1103, specifically as follows:
  • Step S1101 The first node sends high-level signaling.
  • the second node receives the higher layer signaling.
  • step S401 For detailed description, please refer to step S401.
  • Step S1102 The first node sends first physical layer control signaling.
  • the second node receives the first physical layer control signaling.
  • the first physical layer control signaling includes a re-access indication, and the re-access indication is used to instruct the first node to perform an access operation.
  • Step S1103 The second node sends an access request to the first node.
  • the first node receives the access request from the second node.
  • the second node performs the operation of reconnecting to the first node according to the reconnection instruction.
  • sending the access request is a step in the second node performing the access operation.
  • the embodiment shown in Figure 11 can be compatible with nodes with different performance to improve communication stability. For example, for a node with poor frequency switching capability, a re-entry process can be performed to continue communicating with the first node.
  • the multiple devices provided by the embodiments of the present application such as communication devices, in order to implement the functions in the above method embodiments, include corresponding hardware structures, software units, or hardware structures and software structures that perform each function. Combination etc.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or by computer software driving the hardware depends on the specific application and design constraints of the technical solution. Professionals and technicians can use different device implementations to implement the foregoing method embodiments in different usage scenarios, and different device implementations should not be considered to be beyond the scope of the embodiments of this application.
  • the embodiment of the present application can divide the device into functional units.
  • each functional unit can be divided corresponding to each function, or two or more functions can be integrated into one functional unit.
  • the above integrated modules can be implemented in the form of hardware or software functional units. It should be noted that the division of units in the embodiment of the present application is schematic and is only a logical function division. In actual implementation, there may be other division methods.
  • Figure 12 is a schematic structural diagram of a communication device 120 provided by an embodiment of the present application.
  • the communication device 120 may be an independent device, such as a node.
  • the communication device 120 can also be a component in an independent device (such as a node), such as a chip or an integrated circuit.
  • the communication device 120 is used to implement the aforementioned communication method, such as the communication method shown in Figure 4, Figure 9, Figure 10 or Figure 11.
  • the communication device 120 is used to implement the method on the first node side in the foregoing communication method.
  • the first communication unit 1201 is configured to send high-level signaling, where the high-level signaling includes a first identifier
  • the second communication unit 1202 is configured to send first physical layer control signaling through the working frequency point, and some or all of the information bits in the first physical layer control signaling are scrambled by the first identifier,
  • the working frequency point is a first frequency point; wherein the first physical layer control signaling is used to instruct the first node to switch the working frequency point to the second frequency point.
  • the first identifier corresponds to a frequency switching function.
  • the first physical layer control signaling includes a function indication field, and the function indication field is used to indicate the frequency point switching function corresponding to the first identifier.
  • some of the information bits of the first physical layer control signaling include a cyclic redundancy check CRC code of the first physical layer control signaling.
  • the resources used for sending the first physical layer control signaling belong to preconfigured physical layer control signaling common resources.
  • the communication device 120 further includes a third communication unit 1204, the third communication unit 1204 being configured to communicate with at least one second node at the second frequency point.
  • the superframe serial numbers of the first superframe and the second superframe are consecutive.
  • the first superframe is the last superframe used to transmit data and/or signaling on the first frequency point before the working frequency point of the first node is switched from the first frequency point to the second frequency point
  • the second superframe is The superframe is the first superframe used to transmit data and/or signaling on the second frequency point after the working frequency point of the first node is switched from the first frequency point to the second frequency point.
  • the superframe serial numbers of the superframes are continuous before and after the working frequency point is switched.
  • the end time of the first superframe and the start time of the second superframe are separated by N milliseconds, where N is an integer and N ⁇ 0.
  • the first physical layer control signaling includes one or more of the following information: an identifier of the second frequency point, an indication of frequency point switching time, and a re-access indication. , switching interval indication or leading indication.
  • the first physical layer control signaling includes an identifier of the second frequency point.
  • the identifier of the second frequency point is used to indicate the destination frequency point of the switch, including but not limited to: frequency point serial number, frequency point index number, or channel number, etc.
  • the first physical layer control signaling includes an indication of frequency switching time.
  • the indication of the switching time is used to indicate the timing of switching the working frequency point.
  • the indication of the frequency switching moment is used to indicate the moment when the first node starts switching the working frequency point, for example: indicating the superframe sequence number of the last superframe transmitted by the first node at the current working frequency point, or Indicates the offset of the last superframe transmitted by the first node at the current working frequency point relative to the superframe in which the first physical layer control signaling is sent.
  • the indication of the frequency switching moment is used to indicate the starting moment of starting transmission at the second frequency point, for example: indicating the superframe of the first superframe transmitted by the first node at the second frequency point.
  • the sequence number indicates the offset of the starting time of the first superframe transmitted by the first node at the second frequency point relative to the starting time of the superframe in which the first physical layer control signaling is sent.
  • the offset in the above method can be in superframe units, or in milliseconds (ms), or in microseconds (us).
  • the first physical layer control signaling includes a re-access indication.
  • the re-access indication is indication information of whether the second node needs to re-access.
  • the re-access indication is used to instruct the second node not to perform a re-access operation. For example, when switching frequency points, you can change the communication domain system configuration as little or as little as possible or only change the communication domain system configuration that does not affect the current transmission schedule (such as random access resource pool configuration, channel sounding reference signal resource pool configuration ) to prevent the second node from reconnecting, thereby avoiding the current scheduling failure.
  • the current transmission schedule such as random access resource pool configuration, channel sounding reference signal resource pool configuration
  • the second node when the re-access indication is a first value, the second node is instructed to perform an access operation on the second frequency point.
  • the second node when the re-access indication is the second value, the second node is instructed not to perform an access operation or to maintain the current access state.
  • the first physical layer control signaling includes a switching interval indication, where the switching interval is used to indicate a time interval between the first superframe and the second superframe.
  • the switching interval indication may include one or more of the following time intervals:
  • the switching interval indication is also used to indicate whether the communication device sends preamble information at the second frequency point.
  • the communication device 120 does not send preamble information at the second frequency point to shorten the interval between the last superframe before the handover and the first superframe after the handover and reduce the handover time.
  • the communication device 120 further includes a third communication unit 1204, and the third communication unit 1204 is used for:
  • the communication device 120 does not send preamble information at the second frequency point.
  • the communication device 120 may not send preamble information at the second frequency point, or may not send preamble information, depending on the specific implementation.
  • the communication device 120 when the interval switching indication is 0, the communication device 120 does not send a preamble at the second frequency point; when the switching interval indication is a value greater than 0, the communication device 120 The second frequency point sends preamble information.
  • the first physical layer control signaling includes the preamble indication, which is used to instruct the communication device 120 to send preamble information at the second frequency point, or is used to The communication device 120 is instructed not to send preamble information at the second frequency point.
  • the communication device 120 includes a third communication unit 1204.
  • the third communication unit 1204 is configured to: when the preamble indication is a fourth value, send preamble information at the second frequency point.
  • the communication device 120 does not send preamble information at the second frequency point.
  • the switching interval when used to indicate whether to send preamble information, the first physical layer control signaling does not need to carry an additional preamble indication.
  • the first identifier can be used during multiple frequency switching processes. That is, after the communication device 120 sends the first identifier to the second node, during the subsequent multiple switching of working frequency points, the signaling indicating frequency point switching can be scrambled using the same first identifier.
  • the second communication unit 1202 is also used to:
  • the second physical layer control signaling is sent through the working frequency point.
  • the second physical layer control signaling is used to indicate switching the working frequency point to the third frequency point.
  • Some information bits in the second physical layer control signaling Or all the information bits are scrambled by the first identifier, and the working frequency point is the second frequency point.
  • the communication device 120 further includes a fourth communication unit 1205, which is configured to receive frequency point capability information of at least one second node.
  • the frequency point capability information includes one or more of supported frequency points, supported switching intervals, etc.
  • the second frequency point belongs to the frequency point supported by the second frequency point.
  • the communication device 120 further includes a processing unit 1203, which is configured to determine the switching interval according to the frequency point capability information reported by at least one second node.
  • the first physical layer control signaling is sent in a broadcast and/or multicast manner.
  • the communication device 120 sends multiple physical layer control signaling multiple times in multiple superframes to indicate switching of the same frequency point.
  • the second communication unit 1202 is also used to:
  • the third physical layer control signaling is sent in the fourth superframe through the working frequency point. Some or all of the information bits in the third physical layer control signaling are scrambled by the first identifier.
  • the frequency point is the first frequency point, and the third physical layer control signaling is used to instruct the working frequency point of the first node to switch to the second frequency point.
  • the first physical layer control signaling belongs to one of multiple physical layer control signalings, and the multiple physical layer control signalings also include fourth physical layer control signaling, and the The length of the first physical layer control signaling is the same as the bit length of the fourth physical layer control signaling.
  • the first physical layer control signaling and the fourth physical layer control signaling have different functions.
  • the communication device 120 is used to implement the method on the second node side in the foregoing communication method.
  • the first communication unit 1201 is configured to receive high-level signaling from the first node, where the high-level signaling includes a first identifier;
  • the second communication unit 1202 is configured to receive the first physical layer control signaling through the working frequency point, and some or all of the information bits in the first physical layer control signaling are scrambled by the first identifier,
  • the working frequency point is the first frequency point;
  • the first physical layer control signaling is used to instruct the working frequency of the first node to switch to the second frequency.
  • the first identifier corresponds to a frequency switching function.
  • the first physical layer control signaling includes a function indication field, and the function indication field is used to indicate the frequency point switching function corresponding to the first identifier.
  • some of the information bits of the first physical layer control signaling include a cyclic redundancy check CRC code of the first physical layer control signaling.
  • the resources used for sending the first physical layer control signaling belong to preconfigured physical layer control signaling common resources.
  • the communication device 120 further includes a processing unit 1203 and a third communication unit 1204, wherein:
  • the processing unit 1203 is further configured to descramble some or all of the information bits in the first physical layer control signaling according to the first identifier;
  • the third communication unit 1204 is also configured to communicate with the first node at the second frequency point.
  • the processing unit descrambles all the information in the first physical layer control signaling according to the first identifier. bits.
  • the processing unit descrambles the part of the information bits in the first physical layer control signaling according to the first identifier.
  • the superframe serial numbers of the first superframe and the second superframe are consecutive.
  • the first superframe is the last superframe used to transmit data and/or signaling on the first frequency point before the working frequency point of the first node is switched from the first frequency point to the second frequency point
  • the second superframe is The superframe is the first superframe used to transmit data and/or signaling on the second frequency point after the working frequency point of the first node is switched from the first frequency point to the second frequency point.
  • the superframe serial numbers of the superframes are continuous before and after the working frequency point is switched.
  • the end time of the first superframe and the start time of the second superframe are separated by N milliseconds, where N is an integer and N ⁇ 0.
  • the first physical layer control signaling includes one or more of the following information: an identifier of the second frequency point, an indication of frequency point switching time, and a re-access indication. , switching interval indication or leading indication.
  • the first physical layer control signaling includes an identifier of the second frequency point.
  • the identifier of the second frequency point is used to indicate the destination frequency point of the switch, including but not limited to: frequency point serial number, frequency point index number, or channel number, etc.
  • the first physical layer control signaling includes an indication of frequency switching time.
  • the indication of the switching time is used to indicate the timing of switching the working frequency point.
  • the indication of the frequency switching moment is used to indicate the moment when the first node starts switching the working frequency point, for example: indicating the superframe sequence number of the last superframe transmitted by the first node at the current working frequency point, or Indicates the offset of the last superframe transmitted by the first node at the current working frequency point relative to the superframe in which the first physical layer control signaling is sent.
  • the indication of the frequency switching moment is used to indicate the starting moment of starting transmission at the second frequency point, for example: indicating the superframe of the first superframe transmitted by the first node at the second frequency point.
  • the sequence number indicates the offset of the starting time of the first superframe transmitted by the first node at the second frequency point relative to the starting time of the superframe in which the first physical layer control signaling is sent.
  • the offset in the above method can be in superframe units, or in milliseconds (ms), or in microseconds (us).
  • the first physical layer control signaling includes a re-access indication.
  • the re-access indication is indication information of whether the second node needs to re-access.
  • the re-access indication is used to instruct the second node not to perform a re-access operation. For example, when switching frequency points, you can change the communication domain system configuration as little or as little as possible or only change the communication domain system configuration that does not affect the current transmission schedule (such as random access resource pool configuration, channel sounding reference signal resource pool configuration ) to prevent the second node from reconnecting, thereby avoiding the current scheduling failure.
  • the current transmission schedule such as random access resource pool configuration, channel sounding reference signal resource pool configuration
  • the communication device 120 further includes a third communication unit 1204, the third communication unit 1204 is configured to: perform re-access when the re-access indication is a first value. operate.
  • the second node when the re-access indication is the second value, the second node is instructed not to perform an access operation or to maintain the current access state.
  • the first physical layer control signaling includes a switching interval indication, where the switching interval is used to indicate a time interval between the first superframe and the second superframe.
  • the switching interval indication may include one or more of the following time intervals:
  • the switching interval indication is also used to indicate whether the first node sends preamble information at the second frequency point.
  • the communication device 120 may determine whether to receive preamble information from the first node at the second frequency point according to the switching interval indication.
  • the communication device 120 further includes a third communication unit 1204.
  • the third communication unit 1204 is configured to: when the switching interval indication is greater than a third value, the second communication unit 1204 is configured to: The frequency point receives the preamble information from the first node.
  • the first node when the interval switching indication is 0, the first node is instructed not to send preamble information at the second frequency point.
  • the switching interval indication is a value greater than 0, the first node is instructed to send preamble information at the second frequency point.
  • the communication device 120 also includes a third communication unit 1204.
  • the third communication unit 1204 is configured to receive preamble information from the first node at the second frequency point when the switching interval indicates a value greater than 0. .
  • the first physical layer control signaling includes the preamble indication, which is used to instruct the first node to send preamble information at the second frequency point, or is used to instruct the first node to send preamble information at the second frequency point. A node does not send preamble information at the second frequency point.
  • the third communication unit 1204 is configured to receive preamble information from the first node at the second frequency when the preamble indication is a fourth value.
  • the switching interval when used to indicate whether to send preamble information, the first physical layer control signaling does not need to carry an additional preamble indication.
  • the first identifier can be used during multiple frequency switching processes.
  • the second communication unit 1202 is also used to:
  • the second physical layer control signaling is used to indicate switching the working frequency point to the third frequency point.
  • the second physical layer control signaling Some of the information bits in the signaling are scrambled by the first identifier, and the working frequency point is the second frequency point.
  • the communication device 120 further includes a fourth communication unit 1205, the fourth communication unit being configured to send the frequency point capability information of the second node to the first node, The frequency point capability information of the second node indicates the frequency point supported by the second node.
  • the second frequency point belongs to the frequency point supported by the second frequency point.
  • frequency point capability information is used to determine the switching interval.
  • the first physical layer control signaling is sent in a broadcast and/or multicast manner.
  • the communication device 120 does not send feedback on whether the first physical layer control signaling is successfully detected.
  • the second communication unit 1202 is also used to:
  • the third physical layer control signaling is received in the fourth superframe through the working frequency point. Some or all of the information bits in the third physical layer control signaling are scrambled by the first identifier.
  • the frequency point is the first frequency point, and the third physical layer control signaling is used to instruct the working frequency point of the first node to switch to the second frequency point.
  • the first physical layer control signaling belongs to one of multiple physical layer control signalings, and the multiple physical layer control signalings also include fourth physical layer control signaling, and the The length of the first physical layer control signaling is the same as the bit length of the fourth physical layer control signaling.
  • the first physical layer control signaling and the fourth physical layer control signaling have different functions.
  • the bit length of the first physical layer control signaling is the same as the length of another physical layer control signaling indicating other functions. That is, the bit length of the first physical layer control signaling belongs to the existing bit length.
  • Figure 13 is a schematic structural diagram of a possible communication device 130 provided by an embodiment of the present application.
  • the communication device 130 can be an independent device, such as a node, or a device included in an independent device, such as a chip, software module, or integrated circuit.
  • the communication device 130 may include at least one processor 1301 and a communication interface 1302.
  • at least one memory 1303 may also be included.
  • a connection line 1304 may also be included, wherein the processor 1301, the communication interface 1302 and/or the memory 1303 are connected through the connection line 1304, and/or communicate with each other through the connection line 1304 to transfer control signals and/or data. Signal.
  • the processor 1301 is a module that performs arithmetic operations and/or logical operations, and may specifically include one or more of the following modules: filter, modem, power amplifier, low noise amplifier (LNA), Baseband processor, radio frequency processor, radio frequency circuit, central processing unit (CPU), application processor (application processor, AP), microcontroller unit (MCU), electronic control unit (electronic control unit) , ECU), graphics processing unit (GPU), microprocessor unit (MPU), application specific integrated circuit (ASIC), image signal processor (image signal processor, ISP), digital Digital signal processor (DSP), field programmable gate array (FPGA), complex programmable logic device (CPLD), or co-processor, etc.
  • LNA low noise amplifier
  • MCU microcontroller unit
  • ECU electronic control unit
  • GPU graphics processing unit
  • MPU microprocessor unit
  • ASIC application specific integrated circuit
  • image signal processor image signal processor
  • ISP digital Digital signal processor
  • DSP digital Digital signal processor
  • FPGA field programmable gate array
  • the communication interface 1302 may be used to provide information input or output for the at least one processor, or to receive signals sent from the outside and/or to send signals to the outside.
  • communication interface 1302 may include interface circuitry.
  • the communication interface 1302 may include a wired link interface such as an Ethernet cable, or a wireless link (Wi-Fi, Bluetooth, universal wireless transmission, vehicle short-range communication technology, other short-range wireless communication technology, etc.) interface.
  • a wired link interface such as an Ethernet cable
  • a wireless link Wi-Fi, Bluetooth, universal wireless transmission, vehicle short-range communication technology, other short-range wireless communication technology, etc.
  • the communication interface 1302 may also include a radio frequency transmitter, an antenna, etc.
  • the number of antennas may be one or multiple.
  • the communication interface 1302 may include a receiver and a transmitter.
  • the receiver and transmitter may be the same component or different components.
  • the component can be called a transceiver.
  • the communication interface 1302 may include an input interface and an output interface.
  • the input interface and the output interface may be the same interface, or they may be different interfaces.
  • the function of the communication interface 1302 can be implemented through a transceiver circuit or a dedicated chip for transceiver.
  • the memory 1303 is used to provide storage space, and data such as operating systems and computer programs can be stored in the storage space.
  • the memory 1303 may be a random access memory (RAM), a read-only memory (ROM), an erasable programmable read only memory (EPROM), or a portable read-only memory.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read only memory
  • portable read-only memory One or more combinations of memory (compact disc read-only memory, CD-ROM), etc.
  • Each functional unit in the communication device 130 can be used to implement the aforementioned communication method, such as the communication method shown in Figure 4, Figure 9, Figure 10 or Figure 11. In order to avoid redundancy, detailed description is omitted here.
  • the processor 1301 can be a processor specially used to execute the foregoing method (for convenience of distinction, it is called a special-purpose processor), or it can be a processor that executes the foregoing method by calling a computer program (for convenience of distinction, it is called a special-purpose processor). device).
  • at least one processor may also include both a special-purpose processor and a general-purpose processor.
  • the communication device 130 includes at least one memory 1303, if the processor 1301 implements the aforementioned communication method by calling a computer program, the computer program can be stored in the memory 1303.
  • An embodiment of the present application also provides a chip, which includes a logic circuit and a communication interface.
  • the communication interface is used to receive signals or send signals; the logic circuit is used to receive signals or send signals through the communication interface.
  • the chip is used to implement the aforementioned communication method, such as the method described in Figure 4, Figure 9, Figure 10 or Figure 11.
  • Embodiments of the present application also provide a computer-readable storage medium. Instructions are stored in the computer-readable storage medium. When the instructions are run on at least one processor (or communication device), the aforementioned communication is realized. Methods, such as those described in Figure 4, Figure 9, Figure 10 or Figure 11.
  • An embodiment of the present application also provides a computer program product.
  • the computer program product includes computer instructions, and the computing instructions are used to implement the aforementioned communication method, such as the method described in Figure 4, Figure 9, Figure 10, or Figure 11.
  • An embodiment of the present application also provides a terminal, which includes the aforementioned communication device 120 or communication device 130.
  • the terminal includes a first node and/or a second node.
  • the first node includes the aforementioned communication device 120 or the communication device 130;
  • the second terminal includes the aforementioned communication device 120 or the communication device 130.
  • the terminal can be an intelligent terminal or transportation vehicle such as a vehicle, a drone, or a robot.
  • At least one mentioned in the embodiments of this application means one or more, and “multiple” means two or more. “At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • At least one of a, b, or c can represent: a, b, c, (a and b), (a and c), (b and c), or (a and b and c), where a, b, c can be single or multiple.
  • “And/or” describes the relationship between related objects, indicating that there can be three relationships.
  • a and/or B can mean: A alone exists, A and B exist simultaneously, and B exists alone, where A and B can be singular or plural.
  • the character "/" generally indicates that the related objects are in an "or" relationship.
  • the first physical layer control signaling and the second physical layer control signaling are only for the convenience of describing different signaling, but do not represent the structure of the first physical layer control signaling and the second physical layer control signaling.
  • the first physical layer control signaling and the second physical layer control signaling may also be physical layer control signaling with the same data content.
  • first superframe, the second superframe, the third superframe, and the fourth superframe indicate that the superframes are described in different implementations for convenience and do not indicate differences in their structures, transmission methods, importance, etc. .
  • the fourth superframe and the second superframe may be the same superframe.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及相关装置,应用于通信技术领域。本申请实施例中,第一节点在切换频点时,使用指示频点切换的物理层控制信令通知第二节点切换工作频点,指示频点切换的物理层控制信令使用第一标识加扰以区别于其它功能的物理层信令。在上述实施方式中,通过第一标识和物理层控制信令完成了工作频点切换的指示,缩短了频点切换的耗时,使得第一节点和第二节点可以尽快切换到第二频点进行通信,提升了通信网络的传输性能。

Description

一种通信方法及相关装置 技术领域
本申请涉及通信技术领域,尤其涉及短距通信技术领域,例如智能汽车、智能家居、智能终端和智能制造等场景中的通信等。具体涉及一种通信方法及相关装置。
背景技术
无线通信环境中存在各种干扰,部分频谱还有多种不同的无线通信技术共享的情况,这要求无线通信技术具有抗干扰能力。若无线通信系统中的节点在检测到当前工作频点存在干扰时或者干扰比较严重时,可以切换工作频点,以抑制干扰的影响。
由于通信通常发生在多个节点之间,某一个节点,例如第一节点,决定切换工作频点后,第一节点应通知与其通信的其他节点(例如至少一个第二节点)切换工作频点,使得第一节点和与其通信的节点从当前通信的工作频点切换到新的工作频点继续通信。
频点切换的过程对时间要求较高,若切换过程耗时(即从决定切换频点到切换到新频点开始通信之间的间隔时间)较长,导致数据和/或信令的传输效率低,会影响节点间通信链路的传输性能。
例如,第一节点在第一频点的通信受到干扰,且检测到第二频点空闲,故决定将工作频点切换到第二频点。如果切换过程耗时较长,则其他节点(例如第三节点)可能抢占了第二频点作为工作频点。当第一节点将工作频点切换到第二频点后,第一节点在第二频点上的通信仍会受到第三节点的干扰,影响通信链路的传输性能;
再如,如果切换过程耗时较长,则第一节点则需要在受干扰的频点上继续通信较长时间,使得通信链路的传输性能差。
发明内容
本申请实施例提供一种通信方法及相关装置,能够缩短频点切换的耗时,提升节点间通信链路的传输性能。
第一方面,本申请实施例提供了一种通信方法,所述方法包括:
第一节点发送高层信令,所述高层信令包含第一标识。
所述第一节点通过工作频点发送第一物理层控制信令,所述第一物理层控制信令中的部分信息比特或全部信息比特经过所述第一标识加扰,所述工作频点为第一频点。所述第一物理层控制信令用于指示所述第一节点的工作频点切换为第二频点。
可选的,接收上述高层信令和第一物理层控制信令的节点可以为第二节点,以下以接收端为第二节点为例进行描述,第二节点的数量可以为一个或者多个。其中,高层信令包含但不限于是X资源控制(X resource control,XRC)建立信令、XRC重配信令、或系统消息等。
本申请实施例中,第一节点预先通过高层信令告知第二节点第一标识,该第一标识用于加扰指示频点切换的物理层控制信令,以使得指示频点切换的物理层控制信令可以区别于其他功能的信令,或者,使得指示频点切换的物理层控制信令所在的功能组可以区别于其他功能组。
在决定频点切换后,第一节点发送经过第一标识加扰的第一物理层控制信令,第一物理 层控制信令指示工作频点切换为第二频点。若第二节点能够根据第一标识解扰第一物理层控制信令,即可获取第一物理层控制信令的功能,以及根据第一物理层控制信令的数据格式获取其数据内容,从而接收到工作频点切换的指示。
使用物理层信令指示工作频点切换,可以有效缩短从决定切换到信令生效的时间间隔,进而缩短切换耗时,主要原因包括:第一,高层信令需要由物理层信令调度传输,还需要物理层信令调度信令接收节点发送信令确认才能生效,信令生效需要复杂的过程,生效耗时较长;物理层信令可以直接传输,接收方接收后可以直接生效,生效时间较短。第二,部分高层信令(如系统消息)在较长周期中才有一次传输机会,周期一般为数十到数百毫秒;物理层信令传输机会较多,一般每毫秒都有一次以上的传输机会,使用物理层信令指示频点切换,从决定频点切换到可以发送对应信令间隔时间较短。
综上,本申请实施例使用第一标识来加扰指示频点切换的物理层控制信令,通过第一标识和物理层控制信令完成了工作频点切换的指示,缩短了频点切换的耗时,使得第一节点可以尽快切换到第二频点进行通信,提高了数据和/或信令的传输效率,提升了节点间通信链路的传输性能。
一些场景中,加扰是指根据原始信号和扰码得到新的信号。加扰的逆操作为解扰。
由于第一标识是作用于信令的扰码过程,第一物理层控制信令的编码(或解码)方式可以使用与其他信令相同的编码(或解码)方式。这样设置可以不增加接收端的解码时间,进一步缩短频点切换的耗时。并且,在接收端需要额外盲检用于载波切换的物理层信令的情况下,不显著增加接收端盲检物理层信令的复杂度。
在第一方面的又一种可能的实施方式中,第一标识对应于频点切换功能。这种实施方式中,第二节点通过在使用第一标识解扰第一物理层控制信令后,即可区分第一物理层控制信令的功能,加快了第二节点获取工作频点切换的指示的速度,使得第二节点可以尽快切换到新的工作频点与第一节点通信,提升了链路的传输性能。
在第一方面的又一种可能的实施方式中,第一物理层控制信令包含功能指示字段,功能指示字段用于指示第一标识对应频点切换功能。这种实施方式中,第二节点在使用第一标识解扰第一物理层控制信令、以及获取功能指示字段后,可区分第一物理层控制信令的功能。即,第一标识可以对应于一组信令功能类型(包含一个或者多个信令功能类型),这组信令功能类型中的信令功能区分可以由信令中的功能指示字段来完成,从而提升第一标识的灵活性和可扩展性。
在第一方面的又一种可能的实施方式中,所述第一物理层控制信令的部分信息比特包含所述第一物理层控制信令的循环冗余校验CRC码。这种实施方式中,第一物理层控制信令的CRC码使用第一标识加扰以区别于其它功能的物理层信令,这中实施方式可以不增加第二节点的解码时间,进一步缩短频点切换的耗时。
在第一方面的又一种可能的实施方式中,用于发送所述第一物理层控制信令的资源属于预先配置的物理层控制信令公共资源。
其中,物理层控制信令公共资源(以下简称公共资源)是能够被多个第二节点共享的检测物理层控制信令的资源,包含但不限于是时频资源等。第二节点在公共资源上检测(或监听)信令,使得配置了公共资源的节点能够接收到第一物理层控制信令。因此,第一节点无需逐个通知其他节点进行频点切换,缩短了频点切换的耗时。
考虑一种可能的情况,第二节点的数量可能为多个。例如,星闪基础接入(SparkLink Basic,SLB)技术中一个通信域中最多可以包含4096个第二节点。这种情况下,第一节点逐 个通知第二节点切换工作频点的总耗时非常长,由于需要较长时间通知,第一节点不能尽快切换到新的工作频点,第二节点也无法及时获取到频点切换的指示,使得节点间的通信链路的传输性能差。
而上述实施方式中,第一节点在公共资源上发送第一物理层控制信令,至少一个第二节点在传输物理层控制信令的公共资源中盲检物理层控制信令,以获取频点切换的指示,大大缩短通知频点切换的耗时,而且使得第二节点可以尽快切换到第二频点与第一频点进行通信,提升传输性能。
在第一方面的又一种可能的实施方式中,所述方法还包括:第一节点在所述第二频点与至少一个第二节点通信。可选的,上述操作在发送第一物理层控制信令之后执行。
在第一方面的又一种可能的实施方式中,第一超帧和第二超帧的超帧序号连续。其中,第一超帧为第一节点的工作频点由第一频点切换为第二频点前、在第一频点上传输数据和/或信令所使用的最后一个超帧,第二超帧为第一节点的工作频点由第一频点切换为第二频点后、在第二频点上传输数据和/或信令所使用的第一个超帧。
也即,工作频点切换前后,超帧的超帧序号连续。上述实施方式可以保证传输在逻辑上连续,工作频点切换前的调度可以在切换后能够继续使用,无需重配或重新调度,大大减小工作频点切换对通信过程的影响,提升传输性能。
其中,配置包含对时频资源的配置,例如为传输数据/信令预留的资源等。调度包含对资源的分配,例如,第一节点在第N超帧发送调度信令,这个调度信令指示的调度在N+1超帧生效,若超帧号连续,则工作频点切换前的超帧内发送的调度信令可以在频点切换后的超帧内继续生效,无需重新发送调度信令。
在第一方面的又一种可能的实施方式中,第一超帧的结尾时刻和所述第二超帧的起始时刻间隔N个毫秒,N为整数且N≥0。
可选的,超帧的长度为1ms,同步信号的周期为1ms。进一步的,同步信号的位置通常在超帧中的固定时间位置上,使得同步信号的周期与超帧的长度相同。
第一节点在工作频点的传输使用的最后一个超帧的结尾时刻与在目标频点传输使用的第一个超帧的起始时刻的间隔为0或正整数个毫秒,可以使得工作频点切换过程中,超帧边界不改变,同步信号位置不改变,减少了配置参数的变更,且第一节点与第二节点的定时同步的实现更简单。
在第一方面的又一种可能的实施方式中,所述第一物理层控制信令包含以下信息中的一项或者多项:所述第二频点的标识、超帧序号连续指示、频点切换时刻的指示、重接入指示、切换间隔指示或前导指示。
在第一方面的又一种可能的实施方式中,所述第一物理层控制信令包含第二频点的标识。第二频点的标识用于指示切换的目的频点,包含但不限于是:频点序号、频点的索引号、或信道号等。
在第一方面的又一种可能的实施方式中,所述第一物理层控制信令包含超帧序号连续指示,所述超帧序号连续指示用于指示是否保证第一超帧和第二超帧的超帧序号连续。
通过超帧序号连续指示,可以向第二节点指示切换工作频点对于超帧序号和调度的影响,便于第二节点进行相应配置,提升通信链路的传输性能。
一种可能的设计中,当超帧连续指示为第六值时,指示切换工作频点前最后一个超帧的超帧序号和切换工作频点后第一个超帧的超帧序号不保证连续。此时,切换工作频点前的调度在第二频点上无效,第一节点需要重新确定调度。
一种可能的设计中,当超帧连续指示为第七值时,指示切换工作频点前最后一个超帧的超帧序号和切换工作频点后第一个超帧的超帧序号连续。此时,切换工作频点前的调度在第二频点上有效,无需重新调度,缩短了切换的耗时。
在第一方面的又一种可能的实施方式中,所述第一物理层控制信令包含频点切换时刻的指示。该切换时刻的指示用于指示切换工作频点的时机。
一种可能的方式中,频点切换时刻的指示用于指示第一节点开始切换工作频点的时机,例如:指示第一节点在当前工作频点传输的最后一个超帧的超帧序号,或者指示第一节点在当前工作频点传输的最后一个超帧相对于发送第一物理层控制信令的超帧的偏移量。
又一种可能的方式中,频点切换时刻的指示用于指示在第二频点开始传输的起始时刻,例如:指示第一节点在第二频点传输的第一个超帧的超帧序号,或者,指示第一节点在第二频点传输的第一个超帧的起始时刻相对于发送第一物理层控制信令的超帧的起始时刻的偏移量。
可选的,上述方式中的偏移量可以为超帧为单位,或者以毫秒(ms)为单位,或以微秒(us)为单位。
在第一方面的又一种可能的实施方式中,第二节点能够根据频点切换的时刻确定切换频点的时机。
在第一方面的又一种可能的实施方式中,所述第一物理层控制信令包含重接入指示。其中,重接入指示为是否需要第二节点重新接入的指示信息。
在频点切换的过程中,有些情况下需要第二节点执行重新接入的操作,有些情况下则不需要第二节点执行重新接入操作。通过在第一物理层控制信令中携带重接入指示来灵活调控第二节点的行为,可以提升通信系统的灵活性和稳定性。
一些可能的情况中,重接入指示用于指示第二节点不执行重新接入的操作。例如,在频点切换时,可以通过尽量不改动或少改动通信域系统配置或只改动不影响当前传输的调度的通信域系统配置(例如随机接入资源池配置、信道探测参考信号资源池配置),避免第二节点重新接入,不仅减少了因重新接入所带来的额外时间消耗,又能够避免当前的调度失效。这样设置可以减少因为频点切换造成业务中断的情况,提升传输性能。
一些可能的情况中,第一节点可以根据第二频点的信道状况和/或当前业务需求,调整通信系统参数,例如循环前缀(Cyclic Prefix,CP)长度、资源配比等。若第二节点重新接入第一节点,更易于通信参数的变更生效,则第一节点可以指示第二节点重新接入,以提升第二节点与第一节点之间的通信稳定性。
在第一方面的又一种可能的实施方式中,当所述重接入指示为第一值时,指示所述第二节点在所述第二频点上执行接入的操作。例如,接入操作包含发送接入请求。
其中,接入的方式可以是竞争接入或无竞争接入等。
在第一方面的又一种可能的实施方式中,当所述重接入指示为第二值时,指示所述第二节点不执行接入的操作或维持当前接入状态。
在第一方面的又一种可能的实施方式中,所述第一物理层控制信令包含切换间隔指示。切换间隔指示用于指示在第一频点传输的最后一个超帧(即第一超帧)和在第二频点传输的第一个超帧(即第二超帧)之间的时间间隔。通过切换间隔指示,能够灵活配置超帧之间的切换间隔,满足具有不同的频点切换能力的设备的需求。
可选的,切换间隔指示可以包含以下时间间隔中的一项或者多项:第一超帧的结尾时刻和第二超帧的开始时刻之间的时间间隔、第一超帧的开始时刻和第二超帧的开始时刻之间的 时间间隔、第一超帧的结尾时刻和第二超帧的结尾时刻的时间间隔、第一超帧中的同步信号和第二超帧中的同步信号之间的时间间隔等。
作为一种可能的实施方式,在第一节点在第二频点发送前导信息的情况下,切换间隔可以包含以下中的一项或者多项:第一超帧的结尾时刻与前导信息的开始时刻之间的时间间隔、或第一超帧的开始时刻和前导信息的开始时刻之间的时间间隔等。
在第一方面的又一种可能的实施方式中,第二节点基于该切换间隔指示,能够执行通信配置的变更,以提高通信的稳定性。例如,第二节点可以基于时间间隔确定切换后开始传输超帧的时间、同步信号的位置等。
在第一方面的又一种可能的实施方式中,切换间隔指示还用于指示第一节点是否在第二频点发送前导信息。
进一步的,若切换间隔指示第一节点在第二频点上发送前导信息,则第二节点相应在第二频点上接收该前导信息;若切换间隔指示第一节点在第二频点上不发送前导信息,则第二节点则无需在第二频点接收前导信息。可以看出,通过切换间隔指示可以灵活调控第二节点的行为,可以提升通信系统的稳定性。
其中,前导信息是切换频点后,在第二频点发送超帧前先发送的一段信息。可选的,前导信息可以用于指示配置信息的变更,例如指示随机接入资源池配置、信道探测参考信号(Sounding Reference Signal,SRS)资源池配置等信息的变更。
可选的,前导信息可以用于接收节点同步和获取信道信息,例如用于信道估计、评估信道质量等。即,第二节点可以根据前导信息进行同步,和/或,根据前导信息获取信道信息。
在一些可能的实现中,前导信息的内容可以预先定义或者预先配置。
在第一方面的又一种可能的实施方式中,第一节点在第二频点不发送前导信息,以缩小切换前最后一个超帧和切换后第一个超帧之间的间隔,减小切换耗时。
在第一方面的又一种可能的实施方式中,所述方法还包括:
在所述切换间隔指示大于第三值时,所述第一节点在所述第二频点发送前导信息。
可选的,在所述切换间隔指示小于第三值时,所述第一节点在所述第二频点不发送前导信息。
应理解,在所述切换间隔等于第三值时,所述第一节点可以在所述第二频点不发送前导信息,或者,不发送前导信息。
一种可能的设计中,若切换间隔指示大于或大于等于第三值时,第一节点在第二频点发送前导信息;若切换间隔指示小于第三值,第一节点在第二频点不发送前导信息。
又一种可能的设计中,若切换间隔指示大于第三值时,第一节点在第二频点发送前导信息;若切换间隔指示小于或小于等于第三值,第一节点在第二频点不发送前导信息。
在第一方面的又一种可能的实施方式中,在所述间隔切换指示为0时,第一节点在第二频点不发送前导;切换间隔指示为大于0的值时,第一节点在第二频点发送前导信息。
在第一方面的又一种可能的实施方式中,所述第一物理层控制信令包含所述前导指示,所述前导指示用于指示第一节点在第二频点发送前导信息,或者,用于指示第一节点在第二频点不发送前导信息。通过前导指示可以灵活调控第二节点的行为,可以提升通信系统的稳定性。
可选的,当所述前导指示为第四值时,第一节点在第二频点发送前导信息。
可选的,当所述前导指示为第五值时,第一节点在第二频点不发送前导信息。
在第一方面的又一种可能的实施方式中,在通过切换间隔指示是否发送前导信息的情况 下,第一物理层控制信令中无需携带额外前导指示,以节约物理层控制信令的字段。
在第一方面的又一种可能的实施方式中,第一标识可以在多次频点切换过程中使用。也即,第一节点向第二节点发送第一标识后,后续的多次切换工作频点过程中,指示频点切换的物理层控制信令可以使用相同的第一标识来加扰。在通过高层信令配置第一标识后,通过一次物理层控制信令即可指示频点切换,进一步降低了频点切换过程中的信令交互,进一步缩短频点切换的耗时,使得第一节点可以尽快切换到第二频点进行通信,提升了通信网络的传输性能。
在第一方面的又一种可能的实施方式中,所述方法还包括:
所述第一节点通过工作频点发送第二物理层控制信令,所述第二物理层控制信令用于指示将工作频点切换为第三频点,所述第二物理层控制信令中的部分信息比特或全部信息比特经过所述第一标识加扰,所述工作频点为第二频点。
在上述实施方式中,第一节点将工作频点切换为第三频点时,通过一次物理层控制信令即可指示频点切换,缩短了频点切换的耗时,提升了通信网络的传输性能。
在第一方面的又一种可能的实施方式中,所述方法还包括:
所述第一节点接收至少一个第二节点的频点能力信息。其中,频点能力信息包含支持的频点、支持的切换间隔等中的一项或者多项。
可选的,第二频点属于第二频点支持的频点。
在第一方面的又一种可能的实施方式中,所述方法还包括:
第一节点可以根据至少一个第二节点上报的频点能力信息,确定切换间隔。如此,第一节点可以灵活配置切换间隔,使得切换间隔既能够与第一节点、第二节点的切换能力匹配,又尽量缩短切换间隔,减少频点切换带来的额外时延。
在第一方面的又一种可能的实施方式中,所述第一物理层控制信令的发送方式为广播和/或组播。
这种实施方式中,第一节点可以通过广播或组播一次通知至少一个第二节点进行频点切换,无需逐个通知,大大缩短通知频点切换的耗时,而且使得第二节点可以尽快切换到第二频点与第一频点进行通信,提升传输性能。
在第一方面的又一种可能的实施方式中,第二节点不发送是否成功检测第一物理层控制信令的反馈。通过减少信令交互,可以进一步缩短频点切换的耗时。
在第一方面的又一种可能的实施方式中,第一节点在多个超帧中分别发送多次物理层控制信令指示同一个频点切换。第一节点多次重复发送指示同一次频点切换的信令,使第二节点有多次检测该信令的机会,降低因第二节点未检测到该信令导致频点切换失败的概率。
在第一方面的又一种可能的实施方式中,所述第一节点通过工作频点发送第一物理层控制信令,包括:所述第一节点通过工作频点在第三超帧发送所述第一物理层控制信令,所述工作频点为第一频点;
所述方法还包括:所述第一节点通过工作频点在第四超帧发送所述第三物理层控制信令,所述第三物理层控制信令中的部分信息比特或全部信息比特经过所述第一标识加扰,所述工作频点为第一频点,所述第三物理层控制信令用于指示所述第一节点的工作频点切换为第二频点。
可以看出,第一物理层控制信令和第三物理层控制信令都经过第一标识加扰,且指示将工作频点切换为第二频点。相应的,第二节点只要检测到第一物理层控制信令和第三物理层控制信令中的任一个,即可获取频点切换的指示。因此,上述实施方式可以降低因第二节点 未检测到该信令导致频点切换失败的概率,提升传输性能。
在第一方面的又一种可能的实施方式中,第一物理层控制信令属于多个物理层控制信令中的一个,所述多个物理层控制信令还包含第四物理层控制信令,所述第一物理层控制信令的长度和所述第四物理层控制信令比特长度相同。其中,第一物理层控制信令和所述第四物理层控制信令的功能不同。
上述实施方式中,第一物理层控制信令的比特长度与另一种指示其他功能的物理层控制信令的长度相同。也即,第一物理层控制信令的比特长度属于已有的比特长度。通过不增加新的比特长度,可以减少第二节点盲检时解码信令的时间,缩短频点切换的耗时。
第二方面,本申请实施例提供一种通信方法,包括:
第二节点接收来自第一节点的高层信令,所述高层信令包含第一标识;
所述第二节点通过工作频点接收第一物理层控制信令,所述第一物理层控制信令中的部分信息比特或全部信息比特经过所述第一标识加扰,所述工作频点为第一频点;
其中,所述第一物理层控制信令用于指示所述第一节点的工作频点切换为第二频点。
在第二方面的又一种可能的实施方式中,第一标识对应于频点切换功能。
在第二方面的又一种可能的实施方式中,第一物理层控制信令包含功能指示字段,功能指示字段用于指示第一标识对应频点切换功能。
在第二方面的又一种可能的实施方式中,所述第一物理层控制信令的部分信息比特包含所述第一物理层控制信令的循环冗余校验CRC码。
在第二方面的又一种可能的实施方式中,用于发送所述第一物理层控制信令的资源属于预先配置的物理层控制信令公共资源。
在第二方面的又一种可能的实施方式中,所述方法还包括:
所述第二节点根据所述第一标识解扰所述第一物理层控制信令中的部分信息比特或全部信息比特;
所述第二节点在所述第二频点与所述第一节点通信。
应理解,在第一物理层控制信令的全部信息比特通过第一标识加扰的情况下,第二节点根据所述第一标识解扰所述第一物理层控制信令中的全部信息比特。
在第一物理层控制信令的部分信息比特通过第一标识加扰的情况下,第二节点根据所述第一标识解扰所述第一物理层控制信令中的部分信息比特。
在第二方面的又一种可能的实施方式中,第一超帧和第二超帧的超帧序号连续。其中,第一超帧为第一节点的工作频点由第一频点切换为第二频点前、在第一频点上传输数据和/或信令所使用的最后一个超帧,第二超帧为第一节点的工作频点由第一频点切换为第二频点后、在第二频点上传输数据和/或信令所使用的第一个超帧。
也即,工作频点切换前后,超帧的超帧序号连续。
在第二方面的又一种可能的实施方式中,第一超帧的结尾时刻和所述第二超帧的起始时刻间隔N个毫秒,N为整数且N≥0。
在第二方面的又一种可能的实施方式中,所述第一物理层控制信令包含以下信息中的一项或者多项:所述第二频点的标识、超帧序号连续指示、频点切换时刻的指示、重接入指示、切换间隔指示或前导指示。
在第二方面的又一种可能的实施方式中,所述第一物理层控制信令包含第二频点的标识。第二频点的标识用于指示切换的目的频点,包含但不限于是:频点序号、频点的索引号、或 信道号等。
在第二方面的又一种可能的实施方式中,所述第一物理层控制信令包含超帧序号连续指示,所述超帧序号连续指示用于指示是否保证第一超帧和第二超帧的超帧序号连续。
一种可能的设计中,当超帧连续指示为第六值时,指示切换工作频点前最后一个超帧的超帧序号和切换工作频点后第一个超帧的超帧序号不保证连续。此时,切换工作频点前的调度在第二频点上无效,第一节点需要重新确定调度。
一种可能的设计中,当超帧连续指示为第七值时,指示切换工作频点前最后一个超帧的超帧序号和切换工作频点后第一个超帧的超帧序号连续。此时,切换工作频点前的调度在第二频点上有效,无需重新调度,缩短了切换的耗时。
在第二方面的又一种可能的实施方式中,所述第一物理层控制信令包含频点切换时刻的指示。该切换时刻的指示用于指示切换工作频点的时机。
一种可能的方式中,频点切换时刻的指示用于指示第一节点开始切换工作频点的时刻,例如:指示第一节点在当前工作频点传输的最后一个超帧的超帧序号,或者指示第一节点在当前工作频点传输的最后一个超帧相对于发送第一物理层控制信令的超帧的偏移量。
又一种可能的方式中,频点切换时刻的指示用于指示在第二频点开始传输的起始时刻,例如:指示第一节点在第二频点传输的第一个超帧的超帧序号,或者,指示第一节点在第二频点传输的第一个超帧的起始时刻相对于发送第一物理层控制信令的超帧的起始时刻的偏移量。
可选的,上述方式中的偏移量可以为超帧为单位,或者以毫秒(ms)为单位,或以微秒(us)为单位。
在第二方面的又一种可能的实施方式中,所述第一物理层控制信令包含重接入指示。其中,重接入指示为是否需要第二节点重新接入的指示信息。
一些可能的情况中,重接入指示用于指示第二节点不执行重新接入的操作。例如,在频点切换时,可以通过尽量不改动或少改动通信域系统配置或只改动不影响当前传输的调度的通信域系统配置(例如随机接入资源池配置、信道探测参考信号资源池配置),避免第二节点重新接入,从而避免当前的调度失效。
在第二方面的又一种可能的实施方式中,当所述重接入指示为第一值时,所述第二节点执行接入操作。其中,接入操作可以包含发送接入请求、确定通信密钥、确定安全上下文等中的一项或者多项。
在第二方面的又一种可能的实施方式中,当所述重接入指示为第二值时,所述第二节点不执行接入的操作或维持当前接入状态。
在第二方面的又一种可能的实施方式中,所述第一物理层控制信令包含切换间隔指示,所述切换间隔用于指示第一超帧和第二超帧的时间间隔。
可选的,切换间隔指示可以包含以下时间间隔中的一项或者多项:
第一超帧的结尾时刻和第二超帧的开始时刻之间的时间间隔、第一超帧的开始时刻和第二超帧的开始时刻之间的时间间隔、第一超帧的结尾时刻和第二超帧的结尾时刻的时间间隔、第一超帧中的同步信号和第二超帧中的同步信号之间的时间间隔等。
在第二方面的又一种可能的实施方式中,切换间隔指示还用于指示第一节点是否在第二频点发送前导信息。相应的,第二节点根据切换间隔指示,确定第一节点是否在第二频点上发送前导信息。
进一步的,若切换间隔指示第一节点在第二频点上发送前导信息,则第二节点相应在第 二频点上接收该前导信息;若切换间隔指示第一节点在第二频点上不发送前导信息,则第二节点则无需在第二频点接收前导信息。
在第二方面的又一种可能的实施方式中,所述方法还包括:
在所述切换间隔指示大于第三值时,第二节点在所述第二频点接收来自所述第一节点的前导信息。
在第二方面的又一种可能的实施方式中,在所述间隔切换指示为0时,指示第一节点在第二频点不发送前导。切换间隔指示为大于0的值时,第二节点在所述第二频点接收来自所述第一节点的前导信息。
在第二方面的又一种可能的实施方式中,所述第一物理层控制信令包含所述前导指示,所述前导指示用于指示第一节点在第二频点发送前导信息,或者,用于指示第一节点在第二频点不发送前导信息。
可选的,当所述前导指示为第四值时,第二节点在所述第二频点接收来自所述第一节点的前导信息。
在第二方面的又一种可能的实施方式中,在通过切换间隔指示是否发送前导信息的情况下,第一物理层控制信令中无需携带额外前导指示。
在第二方面的又一种可能的实施方式中,第一标识可以在多次频点切换过程中使用。
在第二方面的又一种可能的实施方式中,所述方法还包括:
第二节点通过工作频点接收来自所述第一节点的第二物理层控制信令,所述第二物理层控制信令用于指示将工作频点切换为第三频点,所述第二物理层控制信令中的部分信息比特经过所述第一标识加扰,所述工作频点为第二频点。
在第二方面的又一种可能的实施方式中,所述方法还包括:
所述第二节点向所述第一节点发送所述第二节点的频点能力信息,所述第二节点的频点能力信息指示所述第二节点支持的频点。
可选的,第二频点属于第二频点支持的频点。
可选的,频点能力信息用于确定切换间隔。
在第二方面的又一种可能的实施方式中,所述第一物理层控制信令的发送方式为广播和/或组播。
在第二方面的又一种可能的实施方式中,第二节点不发送是否成功检测第一物理层控制信令的反馈。如此,可以减少信令交互,缩短频点切换的耗时,提升传输效率。
在第二方面的又一种可能的实施方式中,第二节点通过工作频点接收第一物理层控制信令,包括:
所述第二节点通过工作频点在第三超帧接收所述第一物理层控制信令,所述工作频点为第一频点;
所述方法还包括:所述第二节点通过工作频点在第四超帧接收所述第三物理层控制信令,所述第三物理层控制信令中的部分信息比特或全部信息比特经过所述第一标识加扰,所述工作频点为第一频点,所述第三物理层控制信令用于指示所述第一节点的工作频点切换为第二频点。
在第二方面的又一种可能的实施方式中,第一物理层控制信令属于多个物理层控制信令中的一个,所述多个物理层控制信令还包含第四物理层控制信令,所述第一物理层控制信令的长度和所述第四物理层控制信令比特长度相同。其中,第一物理层控制信令和所述第四物理层控制信令的功能不同。
上述实施方式中,第一物理层控制信令的比特长度与另一种指示其他功能的物理层控制信令的长度相同。也即,第一物理层控制信令的比特长度属于已有的比特长度。
第三方面,本申请实施例提供一种通信装置,该通信装置用于实现第一方面或第一方面的任意一项可能的实施方式所描述的方法。
在第三方面的一种可能的实施方式中,所述通信装置包含第一通信单元和第二通信单元。
在第三方面的又一种可能的实施方式中,所述第一通信单元,用于发送高层信令,所述高层信令包含第一标识;
所述第二通信单元,用于通过工作频点发送第一物理层控制信令,所述第一物理层控制信令中的部分信息比特或全部信息比特经过所述第一标识加扰,所述工作频点为第一频点;其中,所述第一物理层控制信令用于指示第一节点的工作频点切换为第二频点。
可选的,通信装置为第一节点,或者,通信装置为第一节点中模块(例如芯片、集成电路、或软件模块等)。
在第三方面的一种可能的实施方式中,第一标识对应于频点切换功能。
在第三方面的又一种可能的实施方式中,第一物理层控制信令包含功能指示字段,功能指示字段用于指示第一标识对应频点切换功能。
在第三方面的又一种可能的实施方式中,所述第一物理层控制信令的部分信息比特包含所述第一物理层控制信令的循环冗余校验CRC码。
在第三方面的又一种可能的实施方式中,用于发送所述第一物理层控制信令的资源属于预先配置的物理层控制信令公共资源。
在第三面的又一种可能的实施方式中,所述通信装置还包含第三通信单元,所述第三通信单元,用于在所述第二频点与至少一个第二节点通信。
在第三方面的又一种可能的实施方式中,第一超帧和第二超帧的超帧序号连续。其中,第一超帧为第一节点的工作频点由第一频点切换为第二频点前、在第一频点上传输数据和/或信令所使用的最后一个超帧,第二超帧为第一节点的工作频点由第一频点切换为第二频点后、在第二频点上传输数据和/或信令所使用的第一个超帧。
也即,工作频点切换前后,超帧的超帧序号连续。
在第三方面的又一种可能的实施方式中,第一超帧的结尾时刻和所述第二超帧的起始时刻间隔N个毫秒,N为整数且N≥0。
在第三方面的又一种可能的实施方式中,所述第一物理层控制信令包含以下信息中的一项或者多项:所述第二频点的标识、超帧序号连续指示、频点切换时刻的指示、重接入指示、切换间隔指示或前导指示。
在第三方面的又一种可能的实施方式中,所述第一物理层控制信令包含第二频点的标识。第二频点的标识用于指示切换的目的频点,包含但不限于是:频点序号、频点的索引号、或信道号等。
在第三方面的又一种可能的实施方式中,所述第一物理层控制信令包含超帧序号连续指示,所述超帧序号连续指示用于指示是否保证第一超帧和第二超帧的超帧序号连续。
一种可能的设计中,当超帧连续指示为第六值时,指示切换工作频点前最后一个超帧的超帧序号和切换工作频点后第一个超帧的超帧序号不保证连续。
一种可能的设计中,当超帧连续指示为第七值时,指示切换工作频点前最后一个超帧的超帧序号和切换工作频点后第一个超帧的超帧序号连续。
在第三方面的又一种可能的实施方式中,所述第一物理层控制信令包含频点切换时刻的指示。该切换时刻的指示用于指示切换工作频点的时机。
一种可能的方式中,频点切换时刻的指示用于指示第一节点开始切换工作频点的时刻,例如:指示第一节点在当前工作频点传输的最后一个超帧的超帧序号,或者指示第一节点在当前工作频点传输的最后一个超帧相对于发送第一物理层控制信令的超帧的偏移量。
又一种可能的方式中,频点切换时刻的指示用于指示在第二频点开始传输的起始时刻,例如:指示第一节点在第二频点传输的第一个超帧的超帧序号,或者,指示第一节点在第二频点传输的第一个超帧的起始时刻相对于发送第一物理层控制信令的超帧的起始时刻的偏移量。
可选的,上述方式中的偏移量可以为超帧为单位,或者以毫秒(ms)为单位,或以微秒(us)为单位。
在第三方面的又一种可能的实施方式中,所述第一物理层控制信令包含重接入指示。其中,重接入指示为是否需要第二节点重新接入的指示信息。
一些可能的情况中,重接入指示用于指示第二节点不执行重新接入的操作。例如,在频点切换时,可以通过尽量不改动或少改动通信域系统配置或只改动不影响当前传输的调度的通信域系统配置(例如随机接入资源池配置、信道探测参考信号资源池配置),避免第二节点重新接入,从而避免当前的调度失效。
在第三方面的又一种可能的实施方式中,当所述重接入指示为第一值时,指示所述第二节点在所述第二频点上执行接入的操作。
在第三方面的又一种可能的实施方式中,当所述重接入指示为第二值时,指示所述第二节点不执行接入的操作或维持当前接入状态。
在第三方面的又一种可能的实施方式中,所述第一物理层控制信令包含切换间隔指示,所述切换间隔用于指示第一超帧和第二超帧的时间间隔。
可选的,切换间隔指示可以包含以下时间间隔中的一项或者多项:
第一超帧的结尾时刻和第二超帧的开始时刻之间的时间间隔、第一超帧的开始时刻和第二超帧的开始时刻之间的时间间隔、第一超帧的结尾时刻和第二超帧的结尾时刻的时间间隔、第一超帧中的同步信号和第二超帧中的同步信号之间的时间间隔等。
在第三方面的又一种可能的实施方式中,切换间隔指示还用于指示通信装置是否在第二频点发送前导信息。
在第三方面的又一种可能的实施方式中,通信装置在第二频点不发送前导信息,以缩小切换前最后一个超帧和切换后第一个超帧之间的间隔,减小切换耗时。
在第三方面的又一种可能的实施方式中,所述通信装置还包含第三通信单元,所述第三通信单元,用于:
在所述切换间隔指示大于第三值时,在所述第二频点发送前导信息。
可选的,在所述切换间隔指示小于第三值时,所述通信装置在所述第二频点不发送前导信息。
应理解,在所述切换间隔等于第三值时,所述通信装置可以在所述第二频点不发送前导信息,或者,不发送前导信息,以具体实施为准。
在第三方面的又一种可能的实施方式中,在所述间隔切换指示为0时,所述通信装置在第二频点不发送前导;切换间隔指示为大于0的值时,所述通信装置在第二频点发送前导信息。
在第三方面的又一种可能的实施方式中,所述第一物理层控制信令包含所述前导指示,所述前导指示用于指示所述通信装置在第二频点发送前导信息,或者,用于指示所述通信装置在第二频点不发送前导信息。
可选的,所述通信装置包含第三通信单元,所述第三通信单元用于:当所述前导指示为第四值时,在第二频点发送前导信息。
可选的,当所述前导指示为第五值时,所述通信装置在第二频点不发送前导信息。
在第三方面的又一种可能的实施方式中,在通过切换间隔指示是否发送前导信息的情况下,第一物理层控制信令中无需携带额外前导指示。
在第三方面的又一种可能的实施方式中,第一标识可以在多次频点切换过程中使用。也即,通信装置向第二节点发送第一标识后,后续的多次切换工作频点过程中,指示频点切换的信令可以使用相同的第一标识来加扰。
在第三方面的又一种可能的实施方式中,所述第二通信单元,还用于:
通过工作频点发送第二物理层控制信令,所述第二物理层控制信令用于指示将工作频点切换为第三频点,所述第二物理层控制信令中的部分信息比特或全部信息比特经过所述第一标识加扰,所述工作频点为第二频点。
在第三方面的又一种可能的实施方式中,所述通信装置还包含第四通信单元,所述第四通信单元,用于接收至少一个第二节点的频点能力信息。其中,频点能力信息包含支持的频点、支持的切换间隔等中的一项或者多项。
可选的,第二频点属于第二频点支持的频点。
在第三方面的又一种可能的实施方式中,所述通信装置还包含处理单元,所述处理单元用于:根据至少一个第二节点上报的频点能力信息,确定切换间隔。
在第三方面的又一种可能的实施方式中,所述第一物理层控制信令的发送方式为广播和/或组播。
在第三方面的又一种可能的实施方式中,所述通信装置在多个超帧中分别发送多次物理层控制信令指示同一个频点切换。
在第三方面的又一种可能的实施方式中,所述第二通信单元,还用于:
通过工作频点在第三超帧发送所述第一物理层控制信令,所述工作频点为第一频点;
通过工作频点在第四超帧发送所述第三物理层控制信令,所述第三物理层控制信令中的部分信息比特或全部信息比特经过所述第一标识加扰,所述工作频点为第一频点,所述第三物理层控制信令用于指示第一节点的工作频点切换为第二频点。
在第三方面的又一种可能的实施方式中,第一物理层控制信令属于多个物理层控制信令中的一个,所述多个物理层控制信令还包含第四物理层控制信令,所述第一物理层控制信令的长度和所述第四物理层控制信令比特长度相同。其中,第一物理层控制信令和所述第四物理层控制信令的功能不同。
第四方面,本申请实施例提供一种通信装置,该通信装置用于实现第一方面或第一方面的任意一项可能的实施方式所描述的方法。
在第四方面的一种可能的实施方式中,所述通信装置包含第一通信单元和第二通信单元。
所述第一通信单元,用于接收来自第一节点的高层信令,所述高层信令包含第一标识;
所述第二通信单元,用于通过工作频点接收第一物理层控制信令,所述第一物理层控制信令中的部分信息比特或全部信息比特经过所述第一标识加扰,所述工作频点为第一频点;
其中,所述第一物理层控制信令用于指示所述第一节点的工作频点切换为第二频点。
可选的,通信装置为第二节点,或者,通信装置为第二节点中模块(例如芯片、集成电路、或软件模块等)。
在第四方面的又一种可能的实施方式中,第一标识对应于频点切换功能。
在第四方面的又一种可能的实施方式中,第一物理层控制信令包含功能指示字段,功能指示字段用于指示第一标识对应频点切换功能。
在第四方面的又一种可能的实施方式中,所述第一物理层控制信令的部分信息比特包含所述第一物理层控制信令的循环冗余校验CRC码。
在第四方面的又一种可能的实施方式中,用于发送所述第一物理层控制信令的资源属于预先配置的物理层控制信令公共资源。
在第四方面的又一种可能的实施方式中,所述通信装置还包含处理单元和第三通信单元,其中:
所述处理单元,还用于根据所述第一标识解扰所述第一物理层控制信令中的部分信息比特或全部信息比特;
所述第三通信单元,还用于在所述第二频点与所述第一节点通信。
应理解,在第一物理层控制信令的全部信息比特通过第一标识加扰的情况下,所述处理单元根据所述第一标识解扰所述第一物理层控制信令中的全部信息比特。
在第一物理层控制信令的部分信息比特通过第一标识加扰的情况下,所述处理单元根据所述第一标识解扰所述第一物理层控制信令中的部分信息比特。
在第四方面的又一种可能的实施方式中,第一超帧和第二超帧的超帧序号连续。其中,第一超帧为第一节点的工作频点由第一频点切换为第二频点前、在第一频点上传输数据和/或信令所使用的最后一个超帧,第二超帧为第一节点的工作频点由第一频点切换为第二频点后、在第二频点上传输数据和/或信令所使用的第一个超帧。
也即,工作频点切换前后,超帧的超帧序号连续。
在第四方面的又一种可能的实施方式中,第一超帧的结尾时刻和所述第二超帧的起始时刻间隔N个毫秒,N为整数且N≥0。
在第四方面的又一种可能的实施方式中,所述第一物理层控制信令包含以下信息中的一项或者多项:所述第二频点的标识、超帧序号连续指示、频点切换时刻的指示、重接入指示、切换间隔指示或前导指示。
在第四方面的又一种可能的实施方式中,所述第一物理层控制信令包含第二频点的标识。第二频点的标识用于指示切换的目的频点,包含但不限于是:频点序号、频点的索引号、或信道号等。
在第四方面的又一种可能的实施方式中,所述第一物理层控制信令包含超帧序号连续指示,所述超帧序号连续指示用于指示是否保证第一超帧和第二超帧的超帧序号连续。
一种可能的设计中,当超帧连续指示为第六值时,指示切换工作频点前最后一个超帧的超帧序号和切换工作频点后第一个超帧的超帧序号不保证连续。
一种可能的设计中,当超帧连续指示为第七值时,指示切换工作频点前最后一个超帧的超帧序号和切换工作频点后第一个超帧的超帧序号连续。
在第四方面的又一种可能的实施方式中,所述第一物理层控制信令包含频点切换时刻的指示。该切换时刻的指示用于指示切换工作频点的时机。
一种可能的方式中,频点切换时刻的指示用于指示第一节点开始切换工作频点的时刻, 例如:指示第一节点在当前工作频点传输的最后一个超帧的超帧序号,或者指示第一节点在当前工作频点传输的最后一个超帧相对于发送第一物理层控制信令的超帧的偏移量。
又一种可能的方式中,频点切换时刻的指示用于指示在第二频点开始传输的起始时刻,例如:指示第一节点在第二频点传输的第一个超帧的超帧序号,或者,指示第一节点在第二频点传输的第一个超帧的起始时刻相对于发送第一物理层控制信令的超帧的起始时刻的偏移量。
可选的,上述方式中的偏移量可以为超帧为单位,或者以毫秒(ms)为单位,或以微秒(us)为单位。
在第四方面的又一种可能的实施方式中,所述第一物理层控制信令包含重接入指示。其中,重接入指示为是否需要第二节点重新接入的指示信息。
一些可能的情况中,重接入指示用于指示第二节点不执行重新接入的操作。例如,在频点切换时,可以通过尽量不改动或少改动通信域系统配置或只改动不影响当前传输的调度的通信域系统配置(例如随机接入资源池配置、信道探测参考信号资源池配置),避免第二节点重新接入,从而避免当前的调度失效。
在第四方面的又一种可能的实施方式中,所述通信装置还包含第三通信单元,所述第三通信单元用于:当所述重接入指示为第一值时,执行重接入操作。
在第四方面的又一种可能的实施方式中,当所述重接入指示为第二值时,指示第二节点不执行接入的操作或维持当前接入状态。
在第四方面的又一种可能的实施方式中,所述第一物理层控制信令包含切换间隔指示,所述切换间隔用于指示第一超帧和第二超帧的时间间隔。
可选的,切换间隔指示可以包含以下时间间隔中的一项或者多项:
第一超帧的结尾时刻和第二超帧的开始时刻之间的时间间隔、第一超帧的开始时刻和第二超帧的开始时刻之间的时间间隔、第一超帧的结尾时刻和第二超帧的结尾时刻的时间间隔、第一超帧中的同步信号和第二超帧中的同步信号之间的时间间隔等。
在第四方面的又一种可能的实施方式中,切换间隔指示还用于指示第一节点是否在第二频点发送前导信息。
通信装置可以根据切换间隔指示,确定是否在第二频点接收来自第一节点的前导信息。
在第四方面的又一种可能的实施方式中,所述通信装置还包含第三通信单元,所述第三通信单元,用于在所述切换间隔指示大于第三值时,在所述第二频点接收来自所述第一节点的前导信息。
在第四方面的又一种可能的实施方式中,在所述间隔切换指示为0时,指示第一节点在第二频点不发送前导信息。在切换间隔指示为大于0的值时,指示第一节点在第二频点发送前导信息。
所述通信装置还包含第三通信单元,所述第三通信单元用于在切换间隔指示为大于0的值时,在所述第二频点接收来自所述第一节点的前导信息。
在第四方面的又一种可能的实施方式中,所述第一物理层控制信令包含所述前导指示,所述前导指示用于指示第一节点在第二频点发送前导信息,或者,用于指示第一节点在第二频点不发送前导信息。
可选的,所述第三通信单元,用于:当所述前导指示为第四值时,在所述第二频点接收来自所述第一节点的前导信息。
在第四方面的又一种可能的实施方式中,在通过切换间隔指示是否发送前导信息的情况 下,第一物理层控制信令中无需携带额外前导指示。
在第四方面的又一种可能的实施方式中,第一标识可以在多次频点切换过程中使用。
在第四方面的又一种可能的实施方式中,所述第二通信单元,还用于:
通过工作频点接收来自所述第一节点的第二物理层控制信令,所述第二物理层控制信令用于指示将工作频点切换为第三频点,所述第二物理层控制信令中的部分信息比特经过所述第一标识加扰,所述工作频点为第二频点。
在第四方面的又一种可能的实施方式中,所述通信装置还包括第四通信单元,所述第四通信单元,用于向所述第一节点发送所述第二节点的频点能力信息,所述第二节点的频点能力信息指示所述第二节点支持的频点。
可选的,第二频点属于第二频点支持的频点。
可选的,频点能力信息用于确定切换间隔。
在第四方面的又一种可能的实施方式中,所述第一物理层控制信令的发送方式为广播和/或组播。
在第四方面的又一种可能的实施方式中,所述通信装置不发送是否成功检测第一物理层控制信令的反馈。
在第四方面的又一种可能的实施方式中,所述第二通信单元,还用于:
通过工作频点在第三超帧接收所述第一物理层控制信令,所述工作频点为第一频点;
通过工作频点在第四超帧接收所述第三物理层控制信令,所述第三物理层控制信令中的部分信息比特或全部信息比特经过所述第一标识加扰,所述工作频点为第一频点,所述第三物理层控制信令用于指示所述第一节点的工作频点切换为第二频点。
在第四方面的又一种可能的实施方式中,第一物理层控制信令属于多个物理层控制信令中的一个,所述多个物理层控制信令还包含第四物理层控制信令,所述第一物理层控制信令的长度和所述第四物理层控制信令比特长度相同。其中,第一物理层控制信令和所述第四物理层控制信令的功能不同。
上述实施方式中,第一物理层控制信令的比特长度与另一种指示其他功能的物理层控制信令的长度相同。也即,第一物理层控制信令的比特长度属于已有的比特长度。
第五方面,本申请实施例公开了一种通信装置,包括处理器和通信接口。所述通信接口用于接收和/或发送信号,和/或,所述通信接口用于为所述处理器提供输入和/或输出。
当所述处理器调用存储器中的计算机程序或指令时,所述通信装置实现第一方面或第一方面任一项所述的实施方式所描述的方法。
第六方面,本申请实施例公开了一种通信装置,包括处理器和通信接口。所述通信接口用于接收和/或发送信号,和/或,所述通信接口用于为所述处理器提供输入和/或输出。
当所述处理器调用存储器中的计算机程序或指令时,所述通信装置实现第二方面或第二方面任一项所述的实施方式所描述的方法。
需要说明的是,上述第五方面,和/或,第六方面所描述的通信装置所包含的处理器,可以是专门用于执行这些方法的处理器(便于区别称为专用处理器),也可以是通过调用计算机程序来执行这些方法的处理器,例如通用处理器。可选的,至少一个处理器还可以既包括专用处理器也包括通用处理器。
可选的,上述计算机程序或指令可以存在存储器中。示例性的,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(Read Only Memory,ROM),其可以与处理器 集成在同一块器件上,也可以分别设置在不同的器件上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
在一种可能的实施方式中,上述至少一个存储器位于上述通信装置之外。
在又一种可能的实施方式中,上述至少一个存储器位于上述通信装置之内。
在又一种可能的实施方式之中,上述至少一个存储器的部分存储器位于上述通信装置之内,另一部分存储器位于上述通信装置之外。
本申请中,处理器和存储器还可能集成于一个器件中,即处理器和存储器还可以被集成在一起。
第七方面,本申请实施例还提供一种通信装置,所述通信装置包括:逻辑电路和通信接口。所述通信接口,用于接收信号或者发送信号;所述逻辑电路,用于通过所述通信接口接收信号或者发送信号,以实现第一方面或第一方面任一项所述的实施方式所描述的方法。
第八方面,本申请实施例还提供一种通信装置,所述通信装置包括:逻辑电路和通信接口。所述通信接口,用于接收信号或者发送信号;所述逻辑电路,用于通过所述通信接口接收信号或者发送信号,以实现第二方面或第一方面任一项所述的实施方式所描述的方法。
第九方面,本申请实施例还提供一种通信系统,该通信系统包括第一节点和/第二节点。
其中,第一节点包含第三方面或第三方面任意一种可能的实施方式所描述的通信装置。
第二节点包含第四方面或第四方面任意一种可能的实施方式所描述的通信装置。
第十方面,本申请实施例还提供一种通信系统,该通信系统包括第一节点和/第二节点。
其中,第一节点包含第五方面所描述的通信装置,第二节点包含第六方面所描述的通信装置。
第十一方面,本申请实施例还提供一种通信系统,该通信系统包括第一节点和/第二节点。
其中,第一节点包含第七方面所描述的通信装置,第二节点包含第七方面所描述的通信装置。
第十二方面,本申请实施例公开了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,当所述计算机程序在通信装置上运行时,使得所述通信装置执行第一方面或第一方面的任意一种可能的实施方式所描述的方法,又或者执行第二方面或第二方面的任意一种可能的实施方式所描述的方法。
第十三方面,本申请实施例公开了一种计算机程序产品,当所述计算机程序产品在一个或多个处理器上运行时,执行第一方面或第一方面的任意一种可能的实施方式所描述的方法,又或者执行第二方面或第二方面的任意一种可能的实施方式所描述的方法。
第十四方面,本申请实施例公开了一种终端,所述终端包括第一节点和/或第二节点。所述终端包含但不限于是手持终端设备、交通工具、车载设备、感知设备、或娱乐休闲设备等,例如,终端可以为车辆、无人机、机器人等智能终端或者运输工具。
作为一种可能的实施方式,所述第二节点包含上述第三方面或第三方面的任意一种可能的实施方式所描述的装置。所述第一节点包含上述第四方面或第四方面的任意一种可能的实施方式所描述的通信装置。
作为又一种可能的实施方式,所述第二节点包含上述第五方面或第五方面的任意一种可能的实施方式所描述的装置。所述第一节点包含上述第六方面或第六方面的任意一种可能的实施方式所描述的通信装置。
作为又一种可能的实施方式,所述第二节点包含上述第七方面或第七方面的任意一种可能的实施方式所描述的装置。所述第一节点包含上述第八方面或第八方面的任意一种可能的 实施方式所描述的通信装置。
可选的,所述第一节点包含网关、基站、汽车座舱域控制器(cockpit domain controller,CDC)等模块中的一个或者多个。
可选的,所述第二节点包含摄像头、屏幕、麦克风、音响、雷达、电子钥匙、无钥匙进入、启动系统控制器、电池管理系统、电池包等模块中的一个或者多个。
本申请第二至第十四方面所提供的技术方案,其有益效果可以参考第一方面的技术方案的有益效果,此处不再赘述。
附图说明
下面将对实施例描述中所需要使用的附图作简单的介绍。
图1A是本申请实施例提供的一种通信域的示意图;
图1B是本申请实施例提供的又一种通信域的示意图;
图2是本申请实施例提供的一种频点的示意图;
图3是本申请实施例提供的一种通信系统的示意图;
图4是本申请实施例提供的一种通信方法的流程示意图;
图5是本申请实施例提供的一种第一标识的示意图;
图6是本申请实施例提供的又一种第一标识和功能的对应关系示意图;
图7是本申请实施例提供的一种多个超帧的示意图;
图8是本申请实施例提供的又一种多个超帧的示意图;
图9是本申请实施例提供的又一种通信方法的流程示意图;
图10是本申请实施例提供的又一种通信方法的流程示意图;
图11是本申请实施例提供的一种通信装置的结构示意图;
图12是本申请实施例提供的一种通信装置的结构示意图;
图13是本申请实施例提供的又一种通信装置的结构示意图。
具体实施方式
为了便于理解本申请实施例方案的详细实现,下面先对本申请实施例中涉及的技术术语进行描述。
1.节点(node)
节点(或称通信节点)是具有通信能力的设备,包含但不限于是终端设备、网络设备、工业设备、或娱乐设备等中的一项或者多项。
其中,终端设备包含手持终端、可穿戴终端、交通工具、车载设备、感知设备、智能家居设备等,手持终端包含但不限于是手机、平板、或笔记本电脑等,可穿戴设备包含但不限于是耳机、智能手环、智能手表、或智能眼镜等,交通工具包含但不限于是车辆、舰船、飞行器、轨道交通(如地铁、高铁等)、或物流机器人(如自动引导车(automated guided vehicl,AGV)等)等,车载设备包含但不限于是域控制器(domain controller,DC)、屏幕、麦克风、音响、电子钥匙、无钥匙进入、启动系统控制器、电池管理系统(battery management system,BMS)等,感知设备包含但不限于是相机、雷达、激光雷达、光照传感器、温度传感器、或湿度传感器等,智能家居设备包含但不于是投影仪、智能电视、智能冰箱、智能家庭网关、或安防设备等。
网络设备包含但不限于是路由器、交换机、或基站等。工业设备例如工业机器人、机械 臂等。休闲娱乐设备例如虚拟现实(virtual reality,VR)设备、混合现实(Mixed Reality,MR)设备、按摩椅、家庭影院、游戏操控设备或4D影院座舱等。
本身实施例中的节点可以应用于智能汽车、智能家居、智能终端、智能制造、或智能展厅等各个场景中。在某些应用场景、或某些网络类型中,具备类似通信能力的设备的名称也可能不称为节点,但是为了方便描述,本申请实施例中将具有通信能力的设备统称为节点。
2.通信域
一种通信系统中,节点包含管理节点(或称G节点)和被管理节点(或称T节点)。G节点管理一定数量的T节点,G节点与这些T节点连接,共同完成特定的通信功能。
G节点以及与其连接的T节点属于一个通信域。可选的,通信域内的G节点的数量可以为一个,也可以为多个。示例性地,单个G节点以及与其连接的T节点共同组成一个通信域。
图1A所示是本申请实施例提供的一种通信域的示意图,以智能汽车场景为例,座舱域控制器(cockpit domain controller,CDC)可以作为G节点,各类车载设备(例如麦克风、扬声器等)作为T节点,共同完成座舱娱乐功能。此时,CDC与车载设备组成了一个通信域,便于区分称为第一通信域。可选的,当手机与CDC连接时,手机也可以作为第一通信域内的T节点。类似的,无钥匙进入及启动(Passive Entry Passive Start,PEPS)与CDC连接时,PEPS也可以作为第一通信域内的T节点。
部分场景下可能存在多个通信域。如图1A所示,手机也可以作为G节点连接可穿戴设备(例如耳机、或智能手表等),此时手机与可穿戴设备组成了另外一个通信域,如图1A所示的第二通信域。再如,PEPS也可以作为G节点连接车身控制模块(bodycontrolmodule,BCM)、手机钥匙、车钥匙,此时PEPS、BCM、手机钥匙、车钥匙组成了另外一个通信域,如图1A所示的第三通信域。
在存在多个通信域的场景中,多个通信域之间可以具有不同的级别。示例性地,通信域可以区分为高级通信域、一般通信域等。此时,高级通信域能够进行资源协调,实现多域之间的协调共存。
如图1B所示是本申请实施例提供的又一种通信域的示意图,以智能家居场景为例,电视和与电视连接的音响、麦克风属于一个通信域,该通信域为一般通信域;手机和与手机连接的耳机属于另一个通信域,该通信域为高级通信域。其中,手机能够实现多域之间的资源管理。
3.G链路
G节点向T节点的通信链路可以称为G链路。而T节点向G节点的通信链路可以称为T链路。
4.公共资源
公共资源是能够被多个节点共享的资源,包含但不限于是时频资源等。共享公共资源的节点,能够在公共资源上检测信令。
示例性地,在包含G节点和T节点的通信域中,公共资源是在预先配置的、供通信域的T节点共享的资源。
在一种可能的实施方式中,公共资源可以用于传输多种信令。例如,公共资源可以包含用于传输物理层控制信令的公共资源。节点可以在传输物理层控制信令的公共资源中,盲检物理层控制信令。
5.检测、盲检
检测信号是尝试接收信号的过程,以第二节点为例,第二节点在时频资源上尝试接收信 号,若对信号进行解码、CRC校验成功,则视为成功接收。
盲检是一种检测信号的方式,节点在指定的时频资源中,在不知道在资源中是否传输信息、以及也不知道传输的信息的内容的前提下,去尝试接收信号、并识别信号对应的信息内容。
6.加扰
加扰是指根据原始信号和扰码得到新的信号。加扰的逆操作为解扰。
7.超帧
超帧一种时间单元,包含多个无线帧。每个无线帧包含一个或多个符号,其中,符号例如可以是正交频分复用(orthogonalfrequency-division multiplexing,OFDM)符号。
以星闪基础(SparkLink basic,SLB)接入技术为例,超帧周期为1毫秒(ms),即超帧的时长为1ms,一个超帧包含48个无线帧,每个无线帧的时长为1/48=20.833微秒(us)。
超帧具有超帧序号(或称编号、超帧号),以区别一段时间内不同的超帧。通常以一个或者多个比特的形式表示,即,超帧序号包含S个比特,S为正整数且S>0。
由于超帧序号的位数通常有限的,因此,超帧序号在达到最大计数值时会产生反转。例如,超帧序号以8个比特的数据指示(从0x00-0xFF),当信号在多个超帧中不断发送/接收,超帧序号也不断累加,当超帧序号达到0xFF后,帧号反转(rollover),重新从0x00开始计数。
8.频点
频点,也称为载波,是一段频率范围的编号,用于指示收发的频率。示例性地,图2所示为一种可能的频点的示意图,可用带宽的范围为:X兆赫兹(MHz)至(X+160)Mhz。可用带宽按照20MHz的频率间隔分为8个频段,并对每个频段进行编号,分别为1、2、3、4……8,这些对固定频率的编号即频点。应理解,图2所示的可用带宽、频段的宽度、频点的数量仅为示例,不作为对本申请实施例的限定。
以图2所示的频点为例,若第一节点的工作频点为频点1,则第一节点发送的信号在频点1对应的频率范围内发送,和/或,第一节点接收的信号在频点1对应的频率范围内接收。
在工作频点为频点1时,第一节点发送和/或接收的信令、数据等都在频点1传输。而当工作频点切换到频点2后,第一节点发送和/或接收的信令、数据等都在频点2传输。
9.前导信息(或称前导)
前导信息是切换频点后,第一节点在切换后的频点上发送的一段信息。例如,频点切换后,在第一节点进入超帧结构前,先发送一段前导信息。
可选的,前导信息可以用于指示配置信息的变更,例如指示随机接入资源池配置、信道探测参考信号(Sounding Reference Signal,SRS)资源池配置等信息的变更。
一些可能的设计中,前导信息可以用于接收节点同步。
又一些可能的设计中,前导信息可以用于获取通信信道的信息,例如用于信道估计、评估信道质量等。示例性的,第一节点在第二频点发送前导信息,相应的,第二节点接收前导信息。第二节点根据前导信息,可以对第一节点到第二节点之间的信道进行测量,得到信道质量等。
在一些可能的实现中,前导信息的内容可以预先定义(例如通过协议规定)、预先配置或通过高层信令配置等。
10.接入
本申请各实施例中提到的“接入”表明节点与另一节点建立连接的过程。在一些具体的 技术场景中,也可以将一个节点“接入”另一个节点的过程,描述为一个节点“关联”另一个节点。
上述对技术术语的说明可选使用在下文的实施例中。
下面对本申请实施例的系统架构进行描述。需要说明的是,本申请描述的系统架构是为了更加清楚的说明本申请的技术方案,并不构成对于本申请提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
参见图3,图3是本申请实施例提供的一种可能的通信系统的示意图,该通信系统包括第一节点301和第二节点302。其中:
第一节点301具有通信能力,能够发送信号。第一节点301在某一个频点上发送信号,发送信号和接收信号的频点称为工作频点。其中,工作频点可以变更,工作频点的变更称为频点切换。
第二节点302具有通信能力,能够接收信号。第二节点302能够在工作频点接收第一节点301发送的信号,即第一节点301和第二节点302在工作频点上通信。
可选的,第二节点302与第一节点301之间通信的链路可以包括各种类型的连接介质,包括有线链路(例如光纤)、无线链路、或者有线链路和无线链路的组合等。例如可以为近距离连接技术包括星闪(SparkLink)、802.11b/g、蓝牙(blue tooth)、紫蜂(Zigbee)、无线射频识别技术(radio frequency identification,RFID)、超宽带(ultra-wideband,UWB)技术等。再如还可以为远距离连接技术,包括但不限于是基于长期演进(Long Term Evolution,长期演进)的通信技术、第五代移动通信技术(5th generation mobile networks或5th generation wireless systems、5th-Generation,简称5G或5G技术)、全球移动通信系统(global System for mobile communications,GSM)、通用分组无线业务(general packet radio Service,GPRS)、通用移动通信系统(universal mobile telecommunications system,UMTS)等。
在一些具体的实施场景中,第一节点可以称为G节点、控制节点或者接入点(access point)。第二节点可以称为T节点或者终端节点。
应理解,本申请实施例各附图中所示的节点的数量、位置、连接关系为了便于描述而示出的一种可能的情况,不作为对具体通信系统和通信场景的限定。
无线通信环境中存在各种干扰,因此通信系统需要具备抗干扰能力。例如,如图3所示,若第一节点301和第二节点302当前工作频点为频点1,在频点1存在干扰时或者干扰比较严重时,可以切换工作频点以抑制干扰的影响。例如,第一节点301可以将工作频点切换为频点2。
第一节点301切换频点时,第一节点301应通知与其通信的其他节点(如第二节点302)其切换了工作频点,以便于第二节点302执行相关操作以维持通信状态。频点切换的过程对时间要求较高,若决定切换频点到实际切换频点之间的间隔时间较长,则其它通信系统可能抢占频点,影响传输性能。
有鉴于此,本申请实施例的提供通信方法及相关装置,能够缩短频点切换的耗时,提升节点间通信网络的传输性能。
在一种可能的实施方式中,在切换频点时,第一节点使用指示频点切换的物理层控制信令通知第二节点切换工作频点,指示频点切换的物理层控制信令使用第一标识加扰以区别于其它功能的物理层信令。在上述实施方式中,通过第一标识和物理层控制信令完成了工作频 点切换的指示,缩短了频点切换的耗时,使得第一节点和第二节点可以尽快切换到第二频点进行通信,提升了通信网络的传输性能。
应理解,第一标识可以是通过信令(例如高层信令)在第二节点中配置的。或者,第一标识可以是第一节点和第二节点预先获取的,例如第一标识由协议规定、或在第二节点中预先配置等。
下面对本申请实施例的方法进行详细介绍。
请参见图4,图4是本申请实施例提供的一种通信方法的流程示意图。可选的,该方法可以基于图3所示的通信系统来实现。
如图4所示的通信方法可以包括步骤S401至步骤S403中的一个或多个步骤。应理解,本申请为了方便描述,故通过S401至S403这一顺序进行描述,并不旨在限定一定通过上述顺序进行执行。本申请实施例对于上述一个或多个步骤的执行的先后顺序、执行的时间、执行的次数等不做限定。步骤S401至步骤S403具体如下:
步骤S401:第一节点发送高层信令,所述高层信令包含第一标识。
可选的,接收高层信令的节点可以包含第二节点,本申请以接收端是第二节点为例进行描述,其中,第二节点的数量可以为一个或者多个。即,第二节点接收来自第一节点的高层信令。
其中,高层信令包含但不限于X资源控制(X resource control,XRC)信令或系统消息等。其中,X资源包含但不限于是无线资源等。可选的,XRC信令包含XRC建立信令、XRC重配信令等。X资源控制也可以称为无线资源控制。
示例性地,第一标识包含多个比特的信息,其中,比特的数量和比特在高层信令中的位置本申请实施例不作严格限制。如图5所示为本申请实施例提供的一种可能的第一标识的示意图,第一标识包含6个比特(仅为示例)的信号,位置在高层信令中的第n位至第n+6位。例如,第一标识为“111000”,其中各比特位的取值仅为示例。
一些场景中,第一标识也可以称为切换频点的标识。
作为一种可能的实施方式,第一标识对应于频点切换功能。如图6所示为本申请实施例提供的一种第一标识和功能的对应关系。作为一种可能的实现,第一标识可以用于区分指示频点切换的物理层控制信令,如图6的(a)部分所示。示例性地,指示频点切换的物理层控制信令的部分或者全部信息比特可以通过第一标识加扰,则第二节点接收某一控制信令后,若能够通过第一标识解扰,则该信令为指示频点切换的物理层控制信令。
作为又一种可能的实施方式,第一标识对应于一组信令功能类型,这一组信令功能类型称为功能组,该功能组包含一个或者多个功能类型的物理层控制信令。其中,指示频点切换的物理层控制信令属于该功能组中的信令。示例性的,如图6的(b)部分所示,第一标识对应的功能组中包含指示频点切换的物理层控制信令、实现功能F1的物理层控制信令、实现功能F2的物理层控制信令。此时,物理层控制信令中还包含功能指示字段,通过第一标识和功能指示字段来共同指示信令的功能。
此处需要说明的是,高层信令可以是在工作频点为第一频点时发送的。当然,高层信令也可能不是在工作频点为第一频点时发送的。例如,发送高层信令后可能经历了频点切换,此时发送高层信令的工作频点可能为其他频点。
可选的,第一节点发送高层信令的方式可以为广播、组播或单播。广播方式中,高层信令可以以广播的方式发送给所有节点(或一定范围内的所有节点);组播方式中,高层信令可 以以组播的方式发送给一组节点;单播方式中,高层信令以单播的方式发送给一个节点。
作为一种可能的实施方式,通过信令的目的地址可以实现广播、组播和单播。其中,广播方式下,信令的目的地址为广播地址。组播方式下。信令的目的地址为组播地址。单播方式下,信令的目的地址为接收端的地址,例如,为接收端的网际互连(Internet Protocol,IP)地址和/或第二节点的媒体存取控制(Media Access Control,MAC)地址。
作为又一种可能的实施方式,通过发送信令的信道可以实现广播、组播和单播。例如,广播方式下,发送信令的信道为广播信道。组播方式下,发送信令的信道为一组节点通信时使用的信道,可选信令通过某一标识(或密钥、或编解码方式)区分。单播方式下,发送信令的信道为点对点通信的两个节点之间的信道,可选信令通过某一标识(或密钥、或编解码方式)区分。
上述两种实施方式为示例性地实现,本申请对于实现广播、组播、单播的方式不作严格限定,具体实施过程中还可以包含其他实现的方式。
步骤S402:第一节点在工作频点发送第一物理层控制信令。
可选的,接收第一物理层控制信的节点可以包含第二节点,以下以接收端是第二节点为例进行描述。即,第二节点接收第一物理层控制信令。
为了方便描述,发送第一物理层控制信令时,第一节点的工作频点称为第一频点。
一些场景中,物理层控制信令也称为物理层控制信息,或称为频点切换物理层控制信令。应理解,本申请实施例不对信令、信息、字段的名称进行限定,仅是进行示例性的说明和表示,本申请中信令、信息、字段的名称可以任意替换。
第一物理层控制信令用于指示工作频点切换为第二频点。例如,第一物理层控制信令包含目的频点字段,该目的频点字段的值为第二频点的标识或者包含第二频点的标识。再如,第一物理层控制信令包含第二频点的标识和频点切换时刻的指示。再如,第一物理层控制信令对应频点切换功能,且第一物理层控制信令中包含第二频点的标识。
可选的,第一物理层控制信令用于指示第一节点的工作频点切换为第二频点。作为一种可能的方案,第一物理层控制信令用于向第二节点通知第一节点的工作频点的切换。这种情况下,第二节点可以将工作频点切换为第二频点,以与第一节点通信。或者,第二节点也可以不切换工作频点,例如,第二节点在第一节点的任务已经完成,则无需与第一节点保持通信连接状态。
或者可选的,第一物理层控制信令用于指示第二节点(即接收第一物理层控制信令的节点)将工作频点切换为第二频点。相应的,第二节点接收第一物理层控制信令,将工作频点切换为第二频点。
应理解,上述情况可以结合,对第一节点的工作频点切换为第二频点的指示,也可以看作是对第二节点的切换工作频点的指示。即,第一物理层控制信令用于指示第一节点的工作频点切换为第二频点,也用于指示第二节点将工作频点切换为第二频点。
第一物理层控制信令中的部分或者全部信息比特通过第一标识加扰。第二节点根据第一标识解扰第一物理层控制信令,即可获取第一物理层控制信令的功能,以及根据第一物理层控制信令的数据格式获取其数据内容,从而接收到工作频点切换的指示。
作为一种可能的实施方式,第二节点检测到物理层控制信令后,可以对物理层控制信令的部分或者全部信息比特进行解扰。若按照第一标识做扰码解扰成功,则确定该物理层控制信令为指示频点切换的物理层控制信令,从而可以按照频点切换物理层控制信令的格式提取其中对应的信息。
可选的,上述解扰过程可以在对第一物理层控制信令解码后进行。由于第一标识是作用于信令的扰码过程,第一物理层控制信令的解码方式可以使用与其他信令相同的编解码方式。这样设置可以不增加第二节点的解码时间,进一步缩短频点切换的耗时。
作为一种可能的实施方式,第一物理层控制信令中的循环冗余校验(Cyclic Redundancy Check,CRC)码使用切换频点的标识加扰。上述实施方式中,第二节点解码物理层控制信令后,按照已配置的一个或多个绕码,分别对解码后物理层控制信令进行CRC校验。若按照切换频点的标识做扰码进行CRC校验通过,则确定该物理层控制信令为频点切换物理层控制信令。
下面介绍第一物理层控制信令中包含的信息。作为一种可能的实施方式,第一物理层控制信令包含以下信息中的一项或者多项:第二频点的标识、频点切换时刻的指示、重接入指示、切换间隔指示、前导指示、功能指示字段或超帧序号连续指示等。下面对上述信息进行示例性地介绍:
(1)第二频点的标识。第二频点的标识用于指示切换的目的频点,包含但不限于是:频点序号、频点的索引号、信道号、频点对应的频段的中心频率、频点对应的频段的开始频率、或频点对应的频段的结束频率等。
以图2所示的频点为例,若第二频点为频点2,则第二频点的标识包含频点2的信道号、频点2的索引号、或频点2的中心频率等。
(2)切换时刻的指示,或称,切换时刻信息。切换时刻的指示用于指示切换工作频点的时机(或时刻)。
为了便于描述,本申请各实施例中,将第一节点的工作频点由第一频点切换为第二频点前、在第一频点上传输所使用的最后一个超帧称为第一超帧,将第一节点的工作频点由第一频点切换为第二频点后、在第二频点上传输所使用的第一个超帧称为第二超帧,其中,“传输”具体可以为传输数据和/或信令。
一种可能的实施方式中,频点切换时刻的指示用于指示开始切换工作频点的时刻。例如:指示第一超帧的超帧序号,或者指示第一超帧相对于发送第一物理层控制信令的超帧的偏移量。
又一种可能的实施方式中,频点切换时刻的指示用于指示在第二频点开始传输的起始时刻,例如:指示第二超帧的超帧序号。或者,指示第二超帧相对于发送第一频点切换物理层控制信令的超帧的起始时刻的偏移量。
可选的,上述方式中的偏移量可以为超帧为单位,或者以毫秒(ms)为单位,或以微秒(us)为单位。
如图7所示为本身实施例提供的一种多个超帧的示意图。其中,发送第一物理层控制信令的超帧,其超帧序号为1(仅为示例);而切换工作频点的时机为超帧序号为3的超帧后。切换时刻指示可以为“3”(即:第一超帧的超帧序号)。或者,切换时刻指示可以为“2”(即:第一超帧相对于发送第一物理层控制信令的超帧的偏移量)。或者,切换时刻指示可以为“4”(即:第二超帧的超帧序号),或者,切换时刻指示可以为“3”(即:第二超帧的起始时刻相对于发送第一频点切换物理层控制信令的超帧的起始时刻的偏移量)。
(3)重接入指示。重接入指示为是否需要第二节点重新接入的指示信息。
在频点切换的过程中,有些情况下需要第二节点执行重新接入的操作,有些情况下则不需要第二节点执行重新接入操作。在上述实施方式中,通过在第一物理层控制信令中携带重接入指示,来灵活调控第二节点的行为,可以提升通信系统的稳定性。
一些可能的情况中,重接入指示用于指示第二节点不执行重新接入的操作。例如,在频点切换时,可以通过尽量不改动或少改动通信域系统配置或只改动不影响当前传输的调度的通信域系统配置(例如随机接入资源池配置、信道探测参考信号资源池配置),避免第二节点重新接入,从而避免当前的调度失效。这样设置可以减少因为频点切换造成业务中断的情况,提升传输性能。
一些可能的情况中,第一节点可以根据第二频点的信道状况和/或当前业务需求,调整通信系统参数,例如循环前缀(Cyclic Prefix,CP)长度、资源配比等。若第二节点重新接入第一节点,更易于通信参数的变更生效,则第一节点可以指示第二节点重新接入。
作为一种可能的实施方式,当所述重接入指示为第一值时,指示所述第二节点在所述第二频点上执行接入的操作。可选的,当所述重接入指示为第二值时,指示所述第二节点不执行接入的操作或维持当前接入状态。其中,第一值和/或第二值可以是用户、厂商或管理设备预先定义(例如协议规定)的或预先在节点中预先配置的。管理设备可以为第一节点、第二节点或第三方设备。
其中,接入的方式可以包含竞争接入或无竞争接入等。可选的,接入操作包含发送接入请求。
示例性的,重接入指示包含一个或者多个比特,通过一个或者多个比特的取值指示第二节点是否重新接入。以重接入指示包含1个比特为例,当重接入指示为0时,指示第二节点不执行重新接入操作或维持当前接入状态;当重接入指示为1时,指示第二节点重新接入第一节点。
可选的,第二节点执行接入操作时,可能会接入第一节点,也可能接入其他节点。例如,第二节点执行接入操作时,重新接入第一节点;第二节点接入第一节点后,则第一节点和第二节点属于第一通信域。再如,在第二节点执行接入操作后,第二节点可能接入第四节点;第二节点接入第四节点后,则第二节点和第四节点属于第二通信域。
(4)切换间隔指示。受限于设备的能力,从当前工作频点(如第一频点)结束传输到下一个工作频点(如第二频点)开始传输之间,需要一定的间隔时间。不同的能力的设备,成本、功耗、复杂度不同,因此不同的设备具有的切换能力,使得切换所需的最短时间也可能不同。
由于工作频点切换需要时间,使得频点切换前后,传输数据和/或信令的超帧也具有一定的时间间隔。通过切换指示可以指示从当前工作频点(如第一频点)结束传输到下一个工作频点(如第二频点)开始传输之间的间隔。
作为一种可能的实施方式,切换间隔指示在第一频点传输的最后一个超帧(即:第一超帧)和在第二频点传输的第一个超帧(即:第二超帧)之间的时间间隔。例如,第一节点根据设备能力(第一节点和/或第二节点的设备能力)确定切换间隔指示,通过第一物理层控制信令发送给第二节点。相应的,第二节点基于该切换间隔指示,能够执行通信配置的变更,以提高通信的稳定性。例如,第二节点可以基于时间间隔确定切换后开始传输超帧的时间、同步信号的位置等。
可选的,切换间隔指示可以包含以下时间间隔中的一项或者多项:第一超帧的结尾时刻和第二超帧的开始时刻之间的时间间隔、第一超帧的开始时刻和第二超帧的开始时刻之间的时间间隔、第一超帧的结尾时刻和第二超帧的结尾时刻的时间间隔、第一超帧中的同步信号和第二超帧中的同步信号之间的时间间隔等。
作为一种可能的实施方式,在第一节点在第二频点发送前导信息的情况下,切换间隔可 以包含以下中的一项或者多项:第一超帧的结尾时刻与前导信息的开始时刻之间的时间间隔、或第一超帧的开始时刻和前导信息的开始时刻之间的时间间隔等。
作为一种可能的实施方式,切换间隔指示还用于指示第一节点是否在第二频点发送前导信息。相应的,第二节点根据切换间隔指示,确定第一节点是否在第二频点上发送前导信息。
进一步的,若切换间隔指示第一节点在第二频点上发送前导信息,则第二节点相应在第二频点上接收该前导信息;若切换间隔指示第一节点在第二频点上不发送前导信息,则第二节点则无需在第二频点接收前导信息。可以看出,通过切换间隔指示可以灵活调控第二节点的行为,可以提升通信系统的稳定性。
一种可能的设计中,在所述切换间隔指示大于第三值时,所述第一节点在切换后的工作频点(即第二频点)向至少一个第二节点发送前导信息。其中,第三值可以是用户、厂商或管理设备预先定义(例如协议规定)的或预先在节点中预先配置的。管理设备可以为第一节点、第二节点或第三方设备。或者可选的,在所述切换间隔指示小于第三值时,所述第一节点在所述第二频点不发送前导信息。应理解,在所述切换间隔等于第三值时,所述第一节点可以在所述第二频点不发送前导信息,或者,不发送前导信息。
例如,切换间隔指示用于指示第一超帧的结尾时刻和第二超帧的开始时刻之间间隔的毫秒数。当切换间隔指示大于1时(即第一超帧的结尾时刻和第二超帧的开始时刻之间间隔1ms),则第一节点在第二频点发送前导信息;相应的,当切换间隔指示的上述间隔小于或小于等于1时,则第一节点在第二频点不发送前导信息。
又一种可能的设计中,在切换间隔指示为0时不发送前导信息;在切换间隔指示大于0时,则发送前导信息。
在第一节点不发送前导信息的情况下,第一节点和第二节点可以尽快在超帧进行通信,从而缩小切换前最后一个超帧和切换后第一个超帧之间的间隔,减小切换耗时。
作为一种可能的实施方式,切换间隔指示第一超帧的起始时刻和第二超帧的开始时刻之间的时间间隔,且切换间隔指示N毫秒,N为整数且N≥等于0。
可选的,第一节点根据第一节点和/或第二节点的切换频点的能力,确定切换频点所需的时长。切换间隔指示所指示的时间间隔,大于切换频点所需的时长。
作为一种可能的设计,第一节点对切换频点所需的时长进行取整,得到接环间隔指示。可选的,取整方式可以为向上取整等取整方式。
应理解,切换间隔指示字段也可以不包含在第一物理层控制信令中。例如,切换间隔可以由协议规定、预先配置在第一节点和/或第二节点中、或通过其它高层信令指示等。
(5)前导指示。前导指示用于指示第一节点在所述第二频点发送前导信息,或者,用于指示第一节点在第二频点不发送前导信息。
可选的,当所述前导指示为第四值时,第一节点在第二频点发送前导信息。当所述前导指示为第五值时,第一节点在第二频点不发送前导信息。其中,第四值和/或第五值可以是用户、厂商或管理设备预先定义(例如协议规定)的或预先在节点中预先配置的。管理设备可以为第一节点、第二节点或第三方设备。
示例性的,前导指示包含一个或者多个比特的信息,通过一个或者多个比特的取值指示第一节点在第二频点是否发送前导信息。以前导指示包含1个比特为例,当前导指示为0时,指示第一节点在第二频点不发送前导信息;当前导指示为1时,指示第一节点在第二频点发送前导信息。
作为一种可能的实施方式,在通过切换间隔指示来指示是否发送前导信息的情况下,第 一物理层控制信令中可以不携带前导指示。这样设置可以节约物理层控制信令的字段,提高可扩展性。
(6)功能指示字段。功能指示字段用于指示信令的功能,或者用于与第一标识共同指示信令的功能。
一种可能的实施方式中,第一标识对应一个或者多个功能,功能指示字段用于指示第一标识对应频点切换功能。为了便于理解,表1示例性地列举几种功能指示字段的取值机器描述,结合图6的(b)部分,第一标识指示多个功能,包含频点切换功能、功能F1、功能F2。当信令中的功能指示字段为00时,第一标识指示频点切换功能。类似地,当信令中的功能指示字段为01时,第一标识指示功能F1(示例性的一种功能名称);当信令中的功能指示字段为10时,第一标识指示功能F2(示例性的一种功能名称)。
表1功能指示字段的取值与描述
功能指示字段的取值 描述
00 频点切换功能
01 功能F1
10 功能F2
11 保留字段(reserved)
应理解,上述是为了方便理解所提供的一些可能的功能指示字段的取值,不作为对功能指示字段的限定。具体实施过程,功能指示字段可以包含更多或者更少的比特位,其取值与功能之间的对应关系也可以有其他设计。
(7)超帧序号连续指示。超帧序号连续指示用于指示是否保证第一超帧和第二超帧的超帧序号连续。
可选的,当超帧连续指示为第六值时,指示切换工作频点前最后一个超帧的超帧序号和切换工作频点后第一个超帧的超帧序号不保证连续;当超帧连续指示为第七值时,指示切换工作频点前最后一个超帧的超帧序号和切换工作频点后第一个超帧的超帧序号连续。
作为一种可能的设计,在超帧序号不保证连续时,切换工作频点前的调度在第二频点上无效,第一节点需要重新确定调度。在超帧序号连续时,切换工作频点前的调度在第二频点上有效,此时第一节点无需重新调度,缩短了切换的耗时。
示例性的,超帧序号连续指示包含1个比特的信息,当超帧序号连续指示为1指示第一超帧和第二超帧的超帧序号连续;当超帧序号连续指示为0指示第一超帧和第二超帧的超帧序号不保证连续。
其中,第六值和/或第七值可以是用户、厂商或管理设备预先定义(例如协议规定)的或预先在节点中预先配置的。管理设备可以为第一节点、第二节点或第三方设备。
以上对第一物理层控制信令的功能和包含的信息进行了介绍,下面对第一物理层控制信令的发送方式进行示例性说明。
作为一种可能的实施方式,用于发送所述第一物理层控制信令的资源属于预先配置的物理层控制信令公共资源。其中,物理层控制信令公共资源(以下简称公共资源)是能够被多个第二节点共享的检测物理层控制信令的资源,包含但不限于是时频资源等。第二节点在公共资源上检测(或监听)信令,使得被配置了公共资源的节点能够接收到第一物理层控制信令。因此,第一节点无需逐个通知其他节点进行频点切换,缩短了频点切换的耗时。
考虑一种可能的情况,第二节点的数量可能为多个。例如,星闪基础接入技术(SparkLink Basic,SLB)技术中一个通信域中可以包含4096个第二节点。这种情况下,第一节点逐 个通知第二节点切换工作频点的总耗时非常长,由于需要较长时间通知,因此从第二节点决定切换频点到切换时刻的间隔时间较长,使得第一节点不能尽快切换到新的工作频点,影响传输性能。而上述实施方式中,第一物理层控制信令在公共资源上发送,第二节点可以在公共资源上检测第一物理层控制信令,从而及时获取到工作频点切换的指示,使得第一节点和第二节点可以尽快在新的工作频点上通信,提升了通信系统的抗干扰能力,提升传输性能。
作为一种可能的实施方式,第一节点可以发送多次物理层控制信令指示同一次频点切换。第一节点多次重复发送指示同一次频点切换的信令,使第二节点有多次检测该信令的机会,降低因第二节点未检测到该信令导致频点切换失败的概率。
可选的,指示同一次频点切换的物理层控制信令可以分别在多个超帧中发送。例如,上述第一物理层控制信令是在第三超帧中发送。此时,第一节点还通过工作频点(当前工作频点为第一频点)在第四超帧发送第三物理层控制信令,第三物理层控制信令中的部分信息比特或全部信息比特经过所述第一标识加扰,第三物理层控制信令用于指示所述第一节点的工作频点切换为第二频点。
应理解,指示同一次频点切换的物理层控制信令的部分或者全部信息相同。例如,在切换时刻指示为切换时刻相对于发送该物理层控制信令的时刻(或超帧)的偏移量时,多个指示同一次频点切换的物理层控制信令的切换时刻指示的值可能不同。
如图8所示为本身实施例提供的又一种多个超帧的示意图。超帧序号为“1”的超帧中承载了物理层控制信令801,该物理层控制信令801用于指示工作频点切换为第二频点,物理层控制信令801中包含切换时刻指示,该切换时刻指示用于指示第一节点在第二频点传输的第一个超帧的起始时刻相对于发送第一频点切换物理层控制信令的超帧的起始时刻的偏移量,即切换时刻指示为“2”。超帧序号为“2”的超帧中承载了物理层控制信令802,该物理层控制信令802与物理层控制信令801中的所指示的(与频点切换相关的)内容相同。同理,超帧序号为“3”的超帧中承载了物理层控制信令803,该物理层控制信令803与物理层控制信令801、物理层控制信令802中的所指示的内容相同。
当第一节点在超帧1、超帧2和超帧3多次发送了执行同一个频点切换的物理层控制信令的情况下,第二节点检测到任意一个物理层控制信令,即可获取频点切换的指示。因此,上述实施方式可以提高频点切换成功的概率,使得第二节点可以继续与第一节点通信,提升传输性能。
或者可选的,第一节点也可以在一个超帧内发送多个物理层控制信令,该多个物理层控制信令指示同一次频点切换。
作为一种可能的实施方式,指示频点切换的物理层控制信令的比特长度与另一种指示其他功能的物理层控制信令的长度相同。也即,指示频点切换的物理层控制信令的比特长度属于已有的比特长度。
在控制信令的信息比特长度相同的情况下,其编/解码方式也相同。这样设置可以不增加接收端的解码时间,进一步缩短频点切换的耗时。并且,在接收端需要额外盲检用于载波切换的物理层信令的情况下,不显著增加接收端盲检物理层信令的复杂度。
例如,以第一物理层控制信令为例,所述第一物理层控制信令的长度和所述第四物理层控制信令比特长度相同。其中,第一物理层控制信令和所述第四物理层控制信令的功能不同。这样设置,第一物理层控制信令可以与第四物理层控制信令使用相同的编码\解码方式。
作为一种可能的实施方式,第二节点不发送是否成功检测第一物理层控制信令的反馈。通过减少信令交互,可以进一步缩短频点切换的耗时。可选的,若第二节点未成功接收到频 点切换的指示,则第二节点可以重新执行接入第一节点的操作,以与第一节点在第二频点上通信。
同理,在第一节点发送前述第二物理层控制信令的情况下,第二节点也不发送是否成功检测第二物理层控制信令的反馈,以减少信令交互。
作为一种可能的实施方式,第一节点可以接收第二节点发送的频点能力信息。其中,频点能力信息包含支持的频点、支持的切换间隔等中的一项或者多项。
示例性的,第二频点属于第二节点支持的频点。
示例性的,第一节点可以根据频点能力信息,灵活配置切换间隔,使得切换间隔既能够与第一节点、第二节点的切换能力匹配,又尽量缩短切换间隔,减少频点切换带来的额外时延。
可选的,在发送第一物理层控制信令后的某个时刻。第二节点可以将工作频点切换为第二频点,在第二频点发送或者接收信号。即,图4所示的实施例还包含步骤S403,具体如下:
步骤S403(可选):第一节点在第二频点上通信。
具体的,第一节点可以与至少一个第二节点在第二频点上通信。例如,第一节点在第二频点上发送数据和/或信令。再如,第一节点在第二频点上接收数据和/或信令。
作为一种可能的实施方式,第一节点可以在频点切换时刻,切换工作频点。在频点切换时刻后,第一节点在第二频点上与至少一个第二节点通信。其中,频点切换时刻为第一物理层控制信令中的频点切换时刻指示所指示的时刻。
相应的,第二节点根据频点切换时刻指示,在频点切换时刻将工作频点切换为第二频点。在频点切换时刻后,第二节点在第二频点上与第一节点通信。
作为一种可能的实施方式,第一节点在第二频点上向第二节点发送前导信息。相应的,第二节点接收来自第一节点的前导信息。
作为一种可能的实施方式,第一物理层控制信令指示第二节点执行重新接入操作,第二节点向第一节点发送接入请求以重新接入第一节点。
作为一种可能的实施方式,工作频点切换前后,第一节点传输所使用的超帧的超帧序号连续。即:第一超帧和第二超帧的超帧序号连续。示例性地,如图7和图8所示,第一节点在第一频点上传输所使用的最后一个超帧的超帧序号为3,在第二频点上传输所使用的最后一个超帧的超帧序号为4,帧号连续。需要说明的是,由于超帧序号的位数通常有限,因此超帧序号的计数值到达最大值时可能会开始新一轮的计数周期,这种现象称为帧号反转。帧号发生帧号时,帧号反转前后的超帧序号也看作连续的超帧序号。
工作频点切换的超帧序号连续,保证传输在逻辑上连续,有利于工作频点切换前的调度可以在切换工作频点后能够继续使用,无需重新调度,大大减小工作频点切换对通信过程的影响,提升传输性能。
其中,调度包含对频率域的资源分配、或时间域的资源分配等。例如,第一节点在第N超帧发送调度信令,这个调度信令指示的调度在N+1超帧生效,若超帧号连续,则工作频点切换前的最后一个超帧内发送的调度信令可以在频点切换后的第一个超帧继续生效,无需重新发送调度信令。
作为一种可能的实施方式,第一超帧的结尾时刻和所述第二超帧的起始时刻间隔N个毫秒,N为整数且N≥0。
可选的,超帧的长度为1ms。而同步信号的位置通常在超帧中的固定时间位置上,使得同步信号的周期与超帧的长度相同,即:同步信号的周期为1ms。
上述实施方式中,第一超帧的起始时刻和第二超帧起始时刻的间隔为0或正整数个毫秒。这样设置,可以使得工作频点切换过程中,超帧边界不改变,同步信号位置不改变,可以减少设备配置参数的变更,且第一节点与第二节点的定时同步的实现更简单。
一些场景中,步骤S403为可选步骤,即,第一节点可能在第二频点上传输了数据和/或信令,也可能没有在第二频点传输数据和/或信令。例如,第一节点可能在发送第一物理层控制信令后发生了故障(例如断电),此时还未在第二频点上进行数据传输。再如,第一节点在发送第一物理层控制信令以后,还未切换到第二频点时,由于第二频点被抢占,此时第一节点需要重新确定切换的目的频点。再如,第一节点在切换到第二频点之前,检测到更适宜通信的频点作为切换的目的频点。
作为一种可能的实施方式,第一标识可以在多次频点切换过程中使用。也即,第一节点向第二节点发送第一标识后,后续的多次切换工作频点过程中,指示频点切换的信令可以使用相同的第一标识来加扰。因此,在通过高层信令配置第一标识后,通过一次物理层控制信令即可指示频点切换,进一步降低了频点切换过程中的信令交互,进一步缩短频点切换的耗时,使得第一节点可以尽快切换到第二频点进行通信,提升了通信网络的传输性能。
例如,第一节点将工作频点切换为第二频点后,还可以将频点切换为第三频点。具体地,第一节点通过工作频点(即第二频点)发送第二物理层控制信令,第二物理层控制信令用于指示将工作频点切换为第三频点,该第二物理层控制信令中的部分信息比特或全部信息比特经过所述第一标识加扰。在上述实施方式中,第一节点将工作频点切换为第三频点时,通过一次物理层控制信令即可指示频点切换,缩短了频点切换的耗时,提升了通信网络的传输性能。
在图4所示的实施例中,第一节点使用高层信令给第二节点配置第一标识。在切换频点时,第一节点使用第一标识来加扰指示频点切换的物理层控制信令,通过第一标识和物理层控制信令完成了工作频点切换的指示,缩短了频点切换的耗时,使得第一节点可以尽快切换到第二频点进行通信,提升了通信网络的传输性能。
图4所示实施例中,第一物理层控制信令中的信息有多种可能的设计。为了便于理解,表2所示为本申请实施例提供的一种可能的第一物理层控制信中信息的示例性格式。
表2第一物理层控制信令包含的字段及其说明
Figure PCTCN2022105839-appb-000001
Figure PCTCN2022105839-appb-000002
图4所示实施例对通过高层信令配置第一标识的方案进行了描述,在具体实施过程中,第一标识还可以是在第一节点和第二节点中预先定义(例如通过协议规定的)、或预先配置的。下面对第一节点和第二节点预先获取了第一标识的实现方案进行说明,以下未解释到的相关概念、操作或者逻辑关系可以参照图4所示实施例中的相应描述。
如图9本申请实施例提供的一种通信方法的流程示意图。可选的,该方法可以基于图3所示的通信系统来实现。如图9所示的通信方法可以包括步骤S901至步骤S904中的一个或多个步骤。步骤S901至步骤S904具体如下:
步骤S901:第一节点在工作频点发送第一物理层控制信令。
该工作频点为第一频点。相应的,第二节点在工作频点接收第一物理层控制信令。
其中,第一节点预先获取了第一标识,第一物理层控制信令中的部分或者全部信息比特通过第一标识加扰。由于第二节点中也预先获取了第一标识,因此第二节点可以根据第一标识解扰第一物理层控制信令,即可获取第一物理层控制信令的功能,以及根据第一物理层控制信令的数据格式获取其数据内容,从而接收到工作频点切换的指示。
详细描述可以参考步骤S402中的描述。
步骤S902(可选):第一节点在第二频点上与第二节点通信。
相应的,第二节点在第二频点上与第一节点通信。
例如,第一节点在第二频点上向第二节点发送数据和/或信令。再如,第一节点在第二频点上接收来自所述第二节点的数据和/或信令。
详细描述可以参考步骤S403中的描述。
应理解,第一标识可以在多次频点切换过程中使用。即图9所示的通信方法还包含步骤S903。
步骤S903(可选):第一节点在工作频点发送第二物理层控制信令。
该工作频点为第二频点。相应的,第二节点在工作频点接收第二物理层控制信令。
第二物理层控制信令用于指示将工作频点切换为第三频点,该第二物理层控制信令中的部分信息比特或全部信息比特经过所述第一标识加扰。
第三物理层控制信令包含的信息、发送方式、发送实际等,可以参考步骤S402中对第二物理层控制信令的相关描述。
一些场景中,步骤S903包含于步骤S902中。
步骤S904(可选):第一节点在第三频点上与第二节点通信。
相应的,第二节点在第三频点上与第一节点通信。
例如,第一节点在第三频点上向第二节点发送数据和/或信令。再如,第一节点在第三频 点上接收来自所述第二节点的数据和/或信令。
在图9所示的实施例中,第一节点和第二节点预先获取了第一标识。在切换频点时,第一节点使用第一标识来加扰指示频点切换的物理层控制信令,通过第一标识和物理层控制信令完成了工作频点切换的指示,缩短了频点切换的耗时,使得第一节点可以尽快切换到第二频点进行通信,提升了通信网络的传输性能。
以上图4所示的方法实施例中包含了很多可能的实现方案,下面结合图10、图11对其中的部分实现方案进行举例说明,需要说明的是,图10和/或图11未解释到的相关概念、操作或者逻辑关系可以参照图4所示实施例中的相应描述。
如图10本申请实施例提供的一种通信方法的流程示意图。可选的,该方法可以基于图3所示的通信系统来实现。如图10所示的通信方法可以包括步骤S1001至步骤S1003,具体如下:
步骤S1001:第一节点发送高层信令。相应的,第二节点接收高层信令。
详细描述可以参考步骤S401。
步骤S1002:第一节点在工作频点发送第一物理层控制信令。相应的,第二节点接收第一物理层控制信令。其中,工作频点为第一频点。
可选的,第一物理层控制信令包含前导指示,前导指示用于指示第一节点在第二频点发送前导信息。
或者可选的,第一物理层控制信令包含切换间隔指示,所述切换间隔指示大于第三值。当所述切换间隔指示大于第三值时,指示第一节点在第二频点发送前导信息。
详细描述可以参考步骤S402中。
步骤S1003:第一节点在工作频点发送前导信息。相应的,第二节点在工作频点接收来自第一节点的前导信息。其中,工作频点为第二频点。
第二节点根据前导信息,获取信道状况及实现与第一节点间的同步。另外,第二节点可以在前导中获取通信域配置信息的变更,例如随机接入资源池配置、SRS资源池配置等信息的变更。这样设置,第二节点无需重新接入第一节点,避免了第一节点和第二节点之间的业务传输终端,提升了传输性能。
在图10所示的实施例中,通过切换间隔指示和/或前导指示,可以灵活调控第二节点的操作,可以提升通信系统的稳定性,提升了传输性能。
如图11本申请实施例提供的一种通信方法的流程示意图。可选的,该方法可以基于图3所示的通信系统来实现。如图11所示的通信方法可以包括步骤S1101至步骤S1103,具体如下:
步骤S1101:第一节点发送高层信令。相应的,第二节点接收高层信令。
详细描述可以参考步骤S401。
步骤S1102:第一节点发送第一物理层控制信令。相应的,第二节点接收第一物理层控制信令。
可选的,第一物理层控制信令包含重接入指示,该重接入指示用于指示第一节点执行接入操作。
详细描述可以参考步骤S402中。
步骤S1103:第二节点向第一节点发送接入请求。相应的,第一节点接收来自第二节点的接入请求。
具体的,第二节点根据重接入指示,执行重新接入第一节点的操作。其中,发送接入请 求是第二节点执行接入操作中的一个步骤。
另外,图11所示的实施例可以兼容具有不同性能的节点,提升通信稳定性。例如,对于频点切换能力较差的节点,可以执行重接入流程来与第一节点继续通信。
上述详细阐述了本申请实施例的方法,下面提供本申请实施例的装置。
可以理解的是,本申请实施例提供的多个装置,例如通信装置,为了实现上述方法实施例中的功能,其包含了执行各个功能相应的硬件结构、软件单元、或硬件结构和软件结构的组合等。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以在不同的使用场景中,使用不同的装置实现方式来实现前述的方法实施例,对于装置的不同实现方式不应认为超出本申请实施例的范围。
本申请实施例可以对装置进行功能单元的划分。例如,可对应各个功能划分各个功能单元,也可将两个或两个以上的功能集成在一个功能单元中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
以下列举几种可能的装置。
请参见图12,图12是本申请实施例提供的一种通信装置120的结构示意图。可选的,该通信装置120可以为独立设备,例如节点。或者,该通信装置120也可以独立设备(如节点)中的一个器件,例如芯片或者集成电路等。该通信装置120用于实现前述的通信方法,例如图4、图9、图10或图11所示的通信方法。
在一种可能的设计中,通信装置120用于实现前述通信方法中第一节点一侧的方法。
在又一种可能的实施方式中,所述第一通信单元1201,用于发送高层信令,所述高层信令包含第一标识;
所述第二通信单元1202,用于通过工作频点发送第一物理层控制信令,所述第一物理层控制信令中的部分信息比特或全部信息比特经过所述第一标识加扰,所述工作频点为第一频点;其中,所述第一物理层控制信令用于指示第一节点的工作频点切换为第二频点。
在一种可能的实施方式中,第一标识对应于频点切换功能。
在又一种可能的实施方式中,第一物理层控制信令包含功能指示字段,功能指示字段用于指示第一标识对应频点切换功能。
在又一种可能的实施方式中,所述第一物理层控制信令的部分信息比特包含所述第一物理层控制信令的循环冗余校验CRC码。
在又一种可能的实施方式中,用于发送所述第一物理层控制信令的资源属于预先配置的物理层控制信令公共资源。
在又一种可能的实施方式中,所述通信装置120还包含第三通信单元1204,所述第三通信单元1204,用于在所述第二频点与至少一个第二节点通信。
在又一种可能的实施方式中,第一超帧和第二超帧的超帧序号连续。其中,第一超帧为第一节点的工作频点由第一频点切换为第二频点前、在第一频点上传输数据和/或信令所使用的最后一个超帧,第二超帧为第一节点的工作频点由第一频点切换为第二频点后、在第二频点上传输数据和/或信令所使用的第一个超帧。
也即,工作频点切换前后,超帧的超帧序号连续。
在又一种可能的实施方式中,第一超帧的结尾时刻和所述第二超帧的起始时刻间隔N个毫秒,N为整数且N≥0。
在又一种可能的实施方式中,所述第一物理层控制信令包含以下信息中的一项或者多项:所述第二频点的标识、频点切换时刻的指示、重接入指示、切换间隔指示或前导指示。
在又一种可能的实施方式中,所述第一物理层控制信令包含第二频点的标识。第二频点的标识用于指示切换的目的频点,包含但不限于是:频点序号、频点的索引号、或信道号等。
在又一种可能的实施方式中,所述第一物理层控制信令包含频点切换时刻的指示。该切换时刻的指示用于指示切换工作频点的时机。
一种可能的方式中,频点切换时刻的指示用于指示第一节点开始切换工作频点的时刻,例如:指示第一节点在当前工作频点传输的最后一个超帧的超帧序号,或者指示第一节点在当前工作频点传输的最后一个超帧相对于发送第一物理层控制信令的超帧的偏移量。
又一种可能的方式中,频点切换时刻的指示用于指示在第二频点开始传输的起始时刻,例如:指示第一节点在第二频点传输的第一个超帧的超帧序号,或者,指示第一节点在第二频点传输的第一个超帧的起始时刻相对于发送第一物理层控制信令的超帧的起始时刻的偏移量。
可选的,上述方式中的偏移量可以为超帧为单位,或者以毫秒(ms)为单位,或以微秒(us)为单位。
在又一种可能的实施方式中,所述第一物理层控制信令包含重接入指示。其中,重接入指示为是否需要第二节点重新接入的指示信息。
一些可能的情况中,重接入指示用于指示第二节点不执行重新接入的操作。例如,在频点切换时,可以通过尽量不改动或少改动通信域系统配置或只改动不影响当前传输的调度的通信域系统配置(例如随机接入资源池配置、信道探测参考信号资源池配置),避免第二节点重新接入,从而避免当前的调度失效。
在又一种可能的实施方式中,当所述重接入指示为第一值时,指示所述第二节点在所述第二频点上执行接入的操作。
在又一种可能的实施方式中,当所述重接入指示为第二值时,指示所述第二节点不执行接入的操作或维持当前接入状态。
在又一种可能的实施方式中,所述第一物理层控制信令包含切换间隔指示,所述切换间隔用于指示第一超帧和第二超帧的时间间隔。
可选的,切换间隔指示可以包含以下时间间隔中的一项或者多项:
第一超帧的结尾时刻和第二超帧的开始时刻之间的时间间隔、第一超帧的开始时刻和第二超帧的开始时刻之间的时间间隔、第一超帧的结尾时刻和第二超帧的结尾时刻的时间间隔、第一超帧中的同步信号和第二超帧中的同步信号之间的时间间隔等。
在又一种可能的实施方式中,切换间隔指示还用于指示通信装置是否在第二频点发送前导信息。
在又一种可能的实施方式中,通信装置120在第二频点不发送前导信息,以缩小切换前最后一个超帧和切换后第一个超帧之间的间隔,减小切换耗时。
在又一种可能的实施方式中,所述通信装置120还包含第三通信单元1204,所述第三通信单元1204,用于:
在所述切换间隔指示大于第三值时,在所述第二频点发送前导信息。
可选的,在所述切换间隔指示小于第三值时,所述通信装置120在所述第二频点不发送前导信息。
应理解,在所述切换间隔等于第三值时,所述通信装置120可以在所述第二频点不发送前导信息,或者,不发送前导信息,以具体实施为准。
在又一种可能的实施方式中,在所述间隔切换指示为0时,所述通信装置120在第二频点不发送前导;切换间隔指示为大于0的值时,所述通信装置120在第二频点发送前导信息。
在又一种可能的实施方式中,所述第一物理层控制信令包含所述前导指示,所述前导指示用于指示所述通信装置120在第二频点发送前导信息,或者,用于指示所述通信装置120在第二频点不发送前导信息。
可选的,所述通信装置120包含第三通信单元1204,所述第三通信单元1204用于:当所述前导指示为第四值时,在第二频点发送前导信息。
可选的,当所述前导指示为第五值时,所述通信装置120在第二频点不发送前导信息。
在又一种可能的实施方式中,在通过切换间隔指示是否发送前导信息的情况下,第一物理层控制信令中无需携带额外前导指示。
在又一种可能的实施方式中,第一标识可以在多次频点切换过程中使用。也即,通信装置120向第二节点发送第一标识后,后续的多次切换工作频点过程中,指示频点切换的信令可以使用相同的第一标识来加扰。
在又一种可能的实施方式中,所述第二通信单元1202,还用于:
通过工作频点发送第二物理层控制信令,所述第二物理层控制信令用于指示将工作频点切换为第三频点,所述第二物理层控制信令中的部分信息比特或全部信息比特经过所述第一标识加扰,所述工作频点为第二频点。
在又一种可能的实施方式中,所述通信装置120还包含第四通信单元1205,所述第四通信单元1205,用于接收至少一个第二节点的频点能力信息。其中,频点能力信息包含支持的频点、支持的切换间隔等中的一项或者多项。
可选的,第二频点属于第二频点支持的频点。
在又一种可能的实施方式中,所述通信装置120还包含处理单元1203,所述处理单元1203用于:根据至少一个第二节点上报的频点能力信息,确定切换间隔。
在又一种可能的实施方式中,所述第一物理层控制信令的发送方式为广播和/或组播。
在又一种可能的实施方式中,所述通信装置120在多个超帧中分别发送多次物理层控制信令指示同一个频点切换。
在又一种可能的实施方式中,所述第二通信单元1202,还用于:
通过工作频点在第三超帧发送所述第一物理层控制信令,所述工作频点为第一频点;
通过工作频点在第四超帧发送所述第三物理层控制信令,所述第三物理层控制信令中的部分信息比特或全部信息比特经过所述第一标识加扰,所述工作频点为第一频点,所述第三物理层控制信令用于指示第一节点的工作频点切换为第二频点。
在又一种可能的实施方式中,第一物理层控制信令属于多个物理层控制信令中的一个,所述多个物理层控制信令还包含第四物理层控制信令,所述第一物理层控制信令的长度和所述第四物理层控制信令比特长度相同。其中,第一物理层控制信令和所述第四物理层控制信令的功能不同。
在一种可能的设计中,通信装置120用于实现前述通信方法中第二节点一侧的方法。
在第四方面的一种可能的实施方式中,所述第一通信单元1201,用于接收来自第一节点的高层信令,所述高层信令包含第一标识;
所述第二通信单元1202,用于通过工作频点接收第一物理层控制信令,所述第一物理层控制信令中的部分信息比特或全部信息比特经过所述第一标识加扰,所述工作频点为第一频点;
其中,所述第一物理层控制信令用于指示所述第一节点的工作频点切换为第二频点。
在又一种可能的实施方式中,第一标识对应于频点切换功能。
在又一种可能的实施方式中,第一物理层控制信令包含功能指示字段,功能指示字段用于指示第一标识对应频点切换功能。
在又一种可能的实施方式中,所述第一物理层控制信令的部分信息比特包含所述第一物理层控制信令的循环冗余校验CRC码。
在又一种可能的实施方式中,用于发送所述第一物理层控制信令的资源属于预先配置的物理层控制信令公共资源。
在又一种可能的实施方式中,所述通信装置120还包含处理单元1203和第三通信单元1204,其中:
所述处理单元1203,还用于根据所述第一标识解扰所述第一物理层控制信令中的部分信息比特或全部信息比特;
所述第三通信单元1204,还用于在所述第二频点与所述第一节点通信。
应理解,在第一物理层控制信令的全部信息比特通过第一标识加扰的情况下,所述处理单元根据所述第一标识解扰所述第一物理层控制信令中的全部信息比特。
在第一物理层控制信令的部分信息比特通过第一标识加扰的情况下,所述处理单元根据所述第一标识解扰所述第一物理层控制信令中的部分信息比特。
在又一种可能的实施方式中,第一超帧和第二超帧的超帧序号连续。其中,第一超帧为第一节点的工作频点由第一频点切换为第二频点前、在第一频点上传输数据和/或信令所使用的最后一个超帧,第二超帧为第一节点的工作频点由第一频点切换为第二频点后、在第二频点上传输数据和/或信令所使用的第一个超帧。
也即,工作频点切换前后,超帧的超帧序号连续。
在又一种可能的实施方式中,第一超帧的结尾时刻和所述第二超帧的起始时刻间隔N个毫秒,N为整数且N≥0。
在又一种可能的实施方式中,所述第一物理层控制信令包含以下信息中的一项或者多项:所述第二频点的标识、频点切换时刻的指示、重接入指示、切换间隔指示或前导指示。
在又一种可能的实施方式中,所述第一物理层控制信令包含第二频点的标识。第二频点的标识用于指示切换的目的频点,包含但不限于是:频点序号、频点的索引号、或信道号等。
在又一种可能的实施方式中,所述第一物理层控制信令包含频点切换时刻的指示。该切换时刻的指示用于指示切换工作频点的时机。
一种可能的方式中,频点切换时刻的指示用于指示第一节点开始切换工作频点的时刻,例如:指示第一节点在当前工作频点传输的最后一个超帧的超帧序号,或者指示第一节点在当前工作频点传输的最后一个超帧相对于发送第一物理层控制信令的超帧的偏移量。
又一种可能的方式中,频点切换时刻的指示用于指示在第二频点开始传输的起始时刻,例如:指示第一节点在第二频点传输的第一个超帧的超帧序号,或者,指示第一节点在第二频点传输的第一个超帧的起始时刻相对于发送第一物理层控制信令的超帧的起始时刻的偏移 量。
可选的,上述方式中的偏移量可以为超帧为单位,或者以毫秒(ms)为单位,或以微秒(us)为单位。
在又一种可能的实施方式中,所述第一物理层控制信令包含重接入指示。其中,重接入指示为是否需要第二节点重新接入的指示信息。
一些可能的情况中,重接入指示用于指示第二节点不执行重新接入的操作。例如,在频点切换时,可以通过尽量不改动或少改动通信域系统配置或只改动不影响当前传输的调度的通信域系统配置(例如随机接入资源池配置、信道探测参考信号资源池配置),避免第二节点重新接入,从而避免当前的调度失效。
在又一种可能的实施方式中,所述通信装置120还包含第三通信单元1204,所述第三通信单元1204用于:当所述重接入指示为第一值时,执行重接入操作。
在又一种可能的实施方式中,当所述重接入指示为第二值时,指示第二节点不执行接入的操作或维持当前接入状态。
在又一种可能的实施方式中,所述第一物理层控制信令包含切换间隔指示,所述切换间隔用于指示第一超帧和第二超帧的时间间隔。
可选的,切换间隔指示可以包含以下时间间隔中的一项或者多项:
第一超帧的结尾时刻和第二超帧的开始时刻之间的时间间隔、第一超帧的开始时刻和第二超帧的开始时刻之间的时间间隔、第一超帧的结尾时刻和第二超帧的结尾时刻的时间间隔、第一超帧中的同步信号和第二超帧中的同步信号之间的时间间隔等。
在又一种可能的实施方式中,切换间隔指示还用于指示第一节点是否在第二频点发送前导信息。
通信装置120可以根据切换间隔指示,确定是否在第二频点接收来自第一节点的前导信息。
在又一种可能的实施方式中,所述通信装置120还包含第三通信单元1204,所述第三通信单元1204,用于在所述切换间隔指示大于第三值时,在所述第二频点接收来自所述第一节点的前导信息。
在又一种可能的实施方式中,在所述间隔切换指示为0时,指示第一节点在第二频点不发送前导信息。在切换间隔指示为大于0的值时,指示第一节点在第二频点发送前导信息。
所述通信装置120还包含第三通信单元1204,所述第三通信单元1204用于在切换间隔指示为大于0的值时,在所述第二频点接收来自所述第一节点的前导信息。
在又一种可能的实施方式中,所述第一物理层控制信令包含所述前导指示,所述前导指示用于指示第一节点在第二频点发送前导信息,或者,用于指示第一节点在第二频点不发送前导信息。
可选的,所述第三通信单元1204,用于:当所述前导指示为第四值时,在所述第二频点接收来自所述第一节点的前导信息。
在又一种可能的实施方式中,在通过切换间隔指示是否发送前导信息的情况下,第一物理层控制信令中无需携带额外前导指示。
在又一种可能的实施方式中,第一标识可以在多次频点切换过程中使用。
在又一种可能的实施方式中,所述第二通信单元1202,还用于:
通过工作频点接收来自所述第一节点的第二物理层控制信令,所述第二物理层控制信令用于指示将工作频点切换为第三频点,所述第二物理层控制信令中的部分信息比特经过所述 第一标识加扰,所述工作频点为第二频点。
在又一种可能的实施方式中,所述通信装置120还包括第四通信单元1205,所述第四通信单元,用于向所述第一节点发送所述第二节点的频点能力信息,所述第二节点的频点能力信息指示所述第二节点支持的频点。
可选的,第二频点属于第二频点支持的频点。
可选的,频点能力信息用于确定切换间隔。
在又一种可能的实施方式中,所述第一物理层控制信令的发送方式为广播和/或组播。
在又一种可能的实施方式中,所述通信装置120不发送是否成功检测第一物理层控制信令的反馈。
在的又一种可能的实施方式中,所述第二通信单元1202,还用于:
通过工作频点在第三超帧接收所述第一物理层控制信令,所述工作频点为第一频点;
通过工作频点在第四超帧接收所述第三物理层控制信令,所述第三物理层控制信令中的部分信息比特或全部信息比特经过所述第一标识加扰,所述工作频点为第一频点,所述第三物理层控制信令用于指示所述第一节点的工作频点切换为第二频点。
在又一种可能的实施方式中,第一物理层控制信令属于多个物理层控制信令中的一个,所述多个物理层控制信令还包含第四物理层控制信令,所述第一物理层控制信令的长度和所述第四物理层控制信令比特长度相同。其中,第一物理层控制信令和所述第四物理层控制信令的功能不同。
上述实施方式中,第一物理层控制信令的比特长度与另一种指示其他功能的物理层控制信令的长度相同。也即,第一物理层控制信令的比特长度属于已有的比特长度。
请参见图13,图13是本申请实施例提供的一种可能的通信装置130的结构示意图。
该通信装置130可以为独立设备,例如节点,也可以为包含于独立设备中的器件,例如芯片、软件模块、或集成电路等。该通信装置130可以包括至少一个处理器1301和通信接口1302。可选的,还可以包括至少一个存储器1303。进一步可选的,还可以包含连接线路1304,其中,处理器1301、通信接口1302和/或存储器1303通过连接线路1304相连,和/或,通过连接线路1304互相通信以传递控制信号和/或数据信号。
其中:
(1)处理器1301是进行算术运算和/或逻辑运算的模块,具体可以包含以下模块中的一项或者多项:滤波器、调制解调器、功率放大器、低噪声放大器(low noise amplifier,LNA)、基带处理器、射频处理器、射频电路、中央处理器(central processing unit,CPU)、应用处理器(application processor,AP)、微电子控制单元(microcontroller unit,MCU)、电子控制单元(electronic control unit,ECU)、图形处理器(graphics processing unit,GPU)、微处理器(microprocessor unit,MPU)、专用集成电路(application specific integrated Circuit,ASIC)、图像信号处理器(image signal processor,ISP)、数字信号处理器(digital signal processor,DSP)、现场可编程逻辑门阵列(field programmable gate array,FPGA)、复杂可编程逻辑器件(complex programmable logic device,CPLD)、或协处理器等。
(2)通信接口1302可以用于为所述至少一个处理器提供信息输入或者输出,或用于接收外部发送的信号和/或向外部发送信号。
例如,通信接口1302可以包含接口电路。
例如,通信接口1302可以包括诸如以太网电缆等的有线链路接口,也可以是无线链路(W i-Fi、蓝牙、通用无线传输、车载短距通信技术以及其他短距无线通信技术等)接口。
可选的,通信接口1302还可以包括射频发射器、天线等。在通信接口1302包含天线的情况下,天线的数量可以是一个,也可以是多个。
作为一种可能的设计,若通信装置130为独立设备时,通信接口1302可以包括接收器和发送器。其中,接收器和发送器可以为相同的部件,或者为不同的部件。接收器和发送器为相同的部件时,可以将该部件称为收发器。
作为又一种可能的设计,若通信装置130为芯片或电路时,通信接口1302可以包括输入接口和输出接口,输入接口和输出接口可以是相同的接口,或者可以分别是不同的接口。
可选地,通信接口1302的功能可以通过收发电路或收发的专用芯片实现。
(3)存储器1303用于提供存储空间,存储空间中可以存储操作系统和计算机程序等数据。存储器1303可以是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM)等等中的一种或者多种的组合。
其中,以上列举的通信装置130中各模块或单元的功能和动作仅为示例性说明。
通信装置130中各功能单元可用于实现前述的通信方法,例如图4、图9、图10或图11所示的通信方法。这里为了避免赘述,省略其详细说明。
可选的,处理器1301,可以是专门用于执行前述方法的处理器(便于区别称为专用处理器),也可以是通过调用计算机程序来执行前述方法的处理器(便于区别称为专用处理器)。可选的,至少一个处理器还可以既包括专用处理器也包括通用处理器。
可选的,在通信装置130包括至少一个存储器1303的情况下,若处理器1301通过调用计算机程序来实现前述通信方法,该计算机程序可以存储在存储器1303中。
本申请实施例还提供了一种芯片,该芯片包括逻辑电路和通信接口。所述通信接口,用于接收信号或者发送信号;所述逻辑电路,用于通过所述通信接口接收信号或者发送信号。所述芯片用于实现前述的通信方法,例如图4、图9、图10或图11所述的方法。
本申请实施例还提供了一种算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在至少一个处理器(或通信装置)上运行时,实现前述的通信方法,例如图4、图9、图10或图11所述的方法。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品包括计算机指令,所述计算指令用于实现前述的通信方法,例如图4、图9、图10或图11所述的方法。
本申请实施例还提供了一种终端,该终端包含前述的通信装置120或通信装置130。
作为一种可能的实施方式,终端包含第一节点和/或第二节点。其中,第一节点包含前述的通信装置120或通信装置130;第二终端包含前述的通信装置120或通信装置130。
其中,终端可以为车辆、无人机、机器人等智能终端或运输工具。
需要说明的是,本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请中实施例提到的“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数 项(个)的任意组合。
例如,a、b、或c中的至少一项(个),可以表示:a、b、c、(a和b)、(a和c)、(b和c)、或(a和b和c),其中a、b、c可以是单个,也可以是多个。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A、同时存在A和B、单独存在B这三种情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
以及,除非有相反的说明,本申请实施例使用“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
例如,第一物理层控制信令和第二物理层控制信令,只是为了便于描述不同的信令,而并不是表示这第一物理层控制信令和第二物理层控制信令的结构、发送方式、重要程度等的不同,在某些实施例中,第一物理层控制信令和第二物理层控制信令还可以是数据内容相同的物理层控制信令。
再如,第一超帧、第二超帧、第三超帧、第四超帧,指示为了方便在不同的实施方式中描述超帧,并不表示其结构、发送方式、重要程度等的不同。一些可能的场景中,第四超帧与第二超帧可以为同一个超帧。
上述实施例中所用,根据上下文,术语“当……时”可以被解释为意思是“如果……”或“在……后”或“响应于确定……”或“响应于检测到……”。以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的构思和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。

Claims (41)

  1. 一种通信方法,其特征在于,包括:
    第一节点发送高层信令,所述高层信令包含第一标识;
    所述第一节点通过工作频点发送第一物理层控制信令,所述第一物理层控制信令中的部分信息比特或全部信息比特经过所述第一标识加扰,所述工作频点为第一频点;
    其中,所述第一物理层控制信令用于指示所述第一节点的工作频点切换为第二频点。
  2. 根据权利要求1所述的方法,其特征在于,所述第一物理层控制信令包含功能指示字段,所述功能指示字段用于指示所述第一标识对应频点切换功能。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一标识对应于频点切换功能。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述部分信息比特包含所述第一物理层控制信令的循环冗余校验CRC码。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,用于承载所述第一物理层控制信令的资源属于预先配置的物理层控制信令公共资源。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,在发送第一物理层控制信令之后,所述方法还包括:
    所述第一节点在所述第二频点与至少一个第二节点通信。
  7. 根据权利要求1-6任一项所述的方法,其特征在于:
    第一超帧和第二超帧的超帧序号连续;
    其中,所述第一超帧为所述第一节点的工作频点由所述第一频点切换为所述第二频点前、在所述第一频点上传输数据和/或信令所使用的最后一个超帧,所述第二超帧为所述第一节点的工作频点由所述第一频点切换为所述第二频点后、在所述第二频点上传输数据和/或信令所使用的第一个超帧。
  8. 根据权利要求1-6任一项所述的方法,其特征在于,所述第一物理层控制信令包含超帧序号连续指示,所述超帧序号连续指示用于指示是否保证第一超帧和第一超帧的超帧序号连续;
    其中,所述第一超帧为所述第一节点的工作频点由所述第一频点切换为所述第二频点前、在所述第一频点上传输数据和/或信令所使用的最后一个超帧,所述第二超帧为所述第一节点的工作频点由所述第一频点切换为所述第二频点后、在所述第二频点上传输数据和/或信令所使用的第一个超帧。
  9. 根据权利要求7或8所述的方法,其特征在于,第一超帧的结尾时刻和所述第二超帧的起始时刻间隔N毫秒,N为整数且N≥0。
  10. 根据权利要求7-9任一项所述的方法,其特征在于,所述第一物理层控制信令包含切换间隔指示,所述切换间隔指示用于指示所述第一超帧和所述第二超帧的时间间隔。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    在所述切换间隔指示大于第三值时,所述第一节点在所述第二频点向至少一个第二节点发送前导信息。
  12. 根据权利要求1-10任一项所述的方法,其特征在于,所述第一物理层控制信令包含以下信息中的一项或者多项:
    所述第二频点的标识、频点切换时刻的指示、重接入指示或前导指示。
  13. 根据权利要求12所述的方法,其特征在于,所述第一物理层控制信令包含所述重接入指示,
    当所述重接入指示为第一值时,指示至少一个第二节点在所述第二频点上执行接入的操作;
    当所述重接入指示为第二值时,指示至少一个第二节点不执行接入的操作或维持当前接入状态。
  14. 根据权利要求12或13所述的方法,其特征在于,所述第一物理层控制信令包含所述前导指示,所述前导指示用于指示第一节点在所述第二频点发送前导信息,或者,用于指示第一节点在所述第二频点不发送前导信息。
  15. 根据权利要求1-14任一项所述的方法,其特征在于,所述方法还包括:
    所述第一节点通过工作频点发送第二物理层控制信令,所述第二物理层控制信令用于指示将工作频点切换为第三频点,所述第二物理层控制信令中的部分信息比特或全部信息比特经过所述第一标识加扰,所述工作频点为第二频点。
  16. 根据权利要求1-15任一项所述的方法,其特征在于,所述方法还包括:
    所述第一节点接收至少一个第二节点的频点能力信息,所述至少一个第二节点的频点能力信息指示所述至少一个第二节点支持的频点。
  17. 根据权利要求1-16任一项所述的方法,其特征在于,所述第一物理层控制信令的发送方式为广播和/或组播。
  18. 根据权利要求1-17任一项所述的方法,其特征在于,所述第一节点通过工作频点发送第一物理层控制信令,包括:
    所述第一节点通过工作频点在第三超帧发送所述第一物理层控制信令,所述工作频点为第一频点;
    所述方法还包括:
    所述第一节点通过工作频点在第四超帧发送所述第三物理层控制信令,所述第三物理层控制信令中的部分信息比特或全部信息比特经过所述第一标识加扰,所述工作频点为第一频 点,所述第三物理层控制信令用于指示所述第一节点的工作频点切换为第二频点。
  19. 一种通信方法,其特征在于,包括:
    第二节点接收来自第一节点的高层信令,所述高层信令包含第一标识;
    所述第二节点通过工作频点接收第一物理层控制信令,所述第一物理层控制信令中的部分信息比特或全部信息比特经过所述第一标识加扰,所述工作频点为第一频点;
    其中,所述第一物理层控制信令用于指示所述第一节点的工作频点切换为第二频点。
  20. 根据权利要求19所述的方法,其特征在于,所述第一物理层控制信令包含功能指示字段,所述功能指示字段用于指示所述第一标识对应频点切换功能。
  21. 根据权利要求19或20所述的方法,其特征在于,所述第一标识对应于频点切换功能。
  22. 根据权利要求19-21任一项所述的方法,其特征在于,所述部分信息比特包含所述第一物理层控制信令的循环冗余校验CRC码。
  23. 根据权利要求19-22任一项所述的方法,其特征在于,用于发送所述第一物理层控制信令的资源属于预先配置的物理层控制信令公共资源。
  24. 根据权利要求19-23任一项所述的方法,其特征在于,所述方法还包括:
    所述第二节点根据所述第一标识解扰所述第一物理层控制信令中的部分信息比特或全部信息比特;
    所述第二节点在所述第二频点与所述第一节点通信。
  25. 根据权利要求19-24任一项所述的方法,其特征在于,第一超帧和第二超帧的超帧序号连续;
    其中,所述第一超帧为所述第一节点的工作频点由所述第一频点切换为所述第二频点前、在所述第一频点上传输数据和/或信令所使用的最后一个超帧,所述第二超帧为所述第一节点的工作频点由所述第一频点切换为所述第二频点后、在所述第二频点上传输数据和/或信令所使用的第一个超帧。
  26. 根据权利要求19-24任一项所述的方法,其特征在于,所述第一物理层控制信令包含超帧序号连续指示,所述超帧序号连续指示用于指示是否保证第一超帧和第一超帧的超帧序号连续;
    其中,所述第一超帧为所述第一节点的工作频点由所述第一频点切换为所述第二频点前、在所述第一频点上传输数据和/或信令所使用的最后一个超帧,所述第二超帧为所述第一节点的工作频点由所述第一频点切换为所述第二频点后、在所述第二频点上传输数据和/或信令所使用的第一个超帧。
  27. 根据权利要求25或26所述的方法,其特征在于,第一超帧的结尾时刻和所述第二超帧的起始时刻间隔N毫秒,N为整数且N≥0。
  28. 根据权利要求25-27任一项所述的方法,其特征在于,所述第一物理层控制信令包含切换间隔指示,所述切换间隔指示用于指示所述第一超帧和所述第二超帧的时间间隔。
  29. 根据权利要求28所述的方法,其特征在于,所述方法还包括:
    在所述切换间隔指示大于第三值时,所述第二节点在所述第二频点接收来自所述第一节点的前导信息。
  30. 根据权利要求19-28任一项所述的方法,其特征在于,所述第一物理层控制信令包含以下信息中的一项或者多项:
    所述第二频点的标识、频点切换时刻的指示、重接入指示、切换间隔指示或前导指示。
  31. 根据权利要求30所述的方法,其特征在于,所述第一物理层控制信令包含所述重接入指示,
    当所述重接入指示为第一值时,指示所述第二节点在所述第二频点上执行接入的操作;
    当所述重接入指示为第二值时,指示所述第二节点不执行接入的操作或维持当前接入状态。
  32. 根据权利要求30或31所述的方法,其特征在于,所述第一物理层控制信令包含所述前导指示,所述前导指示用于指示所述第一节点在第二频点发送前导信息,或者,用于指示所述第一节点在第二频点不发送前导信息。
  33. 根据权利要求19-32任一项所述的方法,其特征在于,所述方法还包括:
    所述第二节点通过工作频点接收来自所述第一节点的第二物理层控制信令,所述第二物理层控制信令用于指示将工作频点切换为第三频点,所述第二物理层控制信令中的部分信息比特经过所述第一标识加扰,所述工作频点为第二频点。
  34. 根据权利要求19-33任一项所述的方法,其特征在于,所述方法还包括:
    所述第二节点向所述第一节点发送所述第二节点的频点能力信息,所述第二节点的频点能力信息指示所述第二节点支持的频点。
  35. 一种通信装置,其特征在于,所述通信装置包括第一通信单元和第二通信单元;
    所述第一通信单元,用于发送高层信令,所述高层信令包含第一标识;
    所述第二通信单元,用于通过工作频点发送第一物理层控制信令,所述第一物理层控制信令中的部分信息比特或全部信息比特经过所述第一标识加扰,所述工作频点为第一频点;
    其中,所述第一物理层控制信令用于指示第一节点的工作频点切换为第二频点。
  36. 一种通信装置,其特征在于,所述通信装置包括第一通信单元和第二通信单元;
    所述第一通信单元,用于接收来自第一节点的高层信令,所述高层信令包含第一标识;
    所述第二通信单元,用于通过工作频点接收第一物理层控制信令,所述第一物理层控制信令中的部分信息比特或全部信息比特经过所述第一标识加扰,所述工作频点为第一频点;
    其中,所述第一物理层控制信令用于指示所述第一节点的工作频点切换为第二频点。
  37. 一种通信装置,其特征在于,所述通信装置包括处理器和通信接口;
    所述通信接口用于发送和/或接收信号,和/或,所述通信接口用于为所述处理器提供输入/输出;
    当所述处理器调用存储器中的计算机程序或指令时,所述通信装置实现权利要求1-18中任一项所述的方法,或者,所述通信装置实现权利要求19-34中任一项所述的方法。
  38. 一种通信装置,其特征在于,包括:逻辑电路和通信接口;
    所述通信接口,用于接收信号或者发送信号;
    所述逻辑电路,用于通过所述通信接口接收信号或者发送信号,使如权利要求1-18中任一项所述的方法被实现,或权利要求19-34中任一项所述的方法被实现。
  39. 一种终端设备,其特征在于,包括如权利要求35-38任一项所述的通信装置。
  40. 一种计算机可读存储介质,其特征在于,包括:
    所述计算机可读存储介质用于存储指令或计算机程序;当所述指令或所述计算机程序被执行时,使如权利要求1-18中任一项所述的方法被实现,或权利要求19-34中任一项所述的方法被实现。
  41. 一种计算机程序产品,其特征在于,包括:指令或计算机程序;
    所述指令或所述计算机程序被执行时,使如权利要求1-18中任一项所述的方法被实现,或权利要求19-34中任一项所述的方法被实现。
PCT/CN2022/105839 2022-07-14 2022-07-14 一种通信方法及相关装置 WO2024011550A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/105839 WO2024011550A1 (zh) 2022-07-14 2022-07-14 一种通信方法及相关装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/105839 WO2024011550A1 (zh) 2022-07-14 2022-07-14 一种通信方法及相关装置

Publications (1)

Publication Number Publication Date
WO2024011550A1 true WO2024011550A1 (zh) 2024-01-18

Family

ID=89535177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105839 WO2024011550A1 (zh) 2022-07-14 2022-07-14 一种通信方法及相关装置

Country Status (1)

Country Link
WO (1) WO2024011550A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102523612A (zh) * 2011-12-08 2012-06-27 电信科学技术研究院 一种认知无线电系统中的频谱切换方法和设备
CN103518399A (zh) * 2013-03-19 2014-01-15 华为技术有限公司 小区切换方法及设备
CN109392047A (zh) * 2017-08-10 2019-02-26 普天信息技术有限公司 正交频分复用系统中子带切换的指示方法
CN112566012A (zh) * 2020-09-11 2021-03-26 深圳前海中电慧安科技有限公司 一种终端特征采集方法、装置、服务器和存储介质
CN113453288A (zh) * 2020-03-25 2021-09-28 荣耀终端有限公司 一种测量配置方法及装置
WO2022027488A1 (zh) * 2020-08-06 2022-02-10 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102523612A (zh) * 2011-12-08 2012-06-27 电信科学技术研究院 一种认知无线电系统中的频谱切换方法和设备
CN103518399A (zh) * 2013-03-19 2014-01-15 华为技术有限公司 小区切换方法及设备
CN109392047A (zh) * 2017-08-10 2019-02-26 普天信息技术有限公司 正交频分复用系统中子带切换的指示方法
CN113453288A (zh) * 2020-03-25 2021-09-28 荣耀终端有限公司 一种测量配置方法及装置
WO2022027488A1 (zh) * 2020-08-06 2022-02-10 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
CN112566012A (zh) * 2020-09-11 2021-03-26 深圳前海中电慧安科技有限公司 一种终端特征采集方法、装置、服务器和存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LENOVO, MOTOROLA MOBILITY: "On group scheduling mechanism for NR MBS", 3GPP DRAFT; R1-2107160, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20210816 - 20210827, 6 August 2021 (2021-08-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052033465 *
MODERATOR (NTT DOCOMO, INC.): "Summary#2 of discussion on multi-carrier UL Tx switching scheme", 3GPP DRAFT; R1-2205363, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 17 May 2022 (2022-05-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052191996 *

Similar Documents

Publication Publication Date Title
WO2019228321A1 (zh) 资源分配方法以及通信设备
CN111865388B (zh) 一种上行波束管理方法及装置
CN109479299A (zh) V2x消息发送方法、装置及系统
EP2787755B1 (en) Transmission method and system for achieving data and voice service coexistence and communication device
WO2016197396A1 (zh) 一种网络设备、终端设备及资源分配方法
US9173235B2 (en) Apparatus and method for self-scheduling in a wireless communication system
US20230164827A1 (en) Communications method and apparatus
JP2023528613A (ja) 無線通信方法及び装置、端末及び記憶媒体
WO2012021131A1 (en) Common control channel design and coexistence mechanism for tv white space
KR102049047B1 (ko) 단말간 직접 통신 네트워크에서 데이터를 송수신하는 방법
WO2019051654A1 (zh) 一种逻辑信道的资源确定方法及装置、计算机存储介质
WO2024011550A1 (zh) 一种通信方法及相关装置
US20230189248A1 (en) Method and device for communication
WO2023245518A1 (zh) 测距方法及装置
WO2021217534A1 (zh) 一种通信方法和装置
CN113875208B (zh) 一种数据传输方法和通信装置
WO2023272444A1 (zh) 一种通信方法及其通信装置
CN112825572A (zh) 蓝牙查询/寻呼的方法及通信设备
WO2023030052A1 (zh) 一种通信方法及装置
WO2023024952A1 (zh) 一种通信方法及设备
EP4192151A1 (en) Communication method, apparatus and device and storage medium
US20230224889A1 (en) Wireless communication method and apparatus, wireless communication system, and device and terminal
WO2024044996A1 (zh) 一种测量方法及相关装置
WO2023279359A1 (zh) 通信方法和装置
WO2023030209A1 (zh) 一种通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950671

Country of ref document: EP

Kind code of ref document: A1