WO2023245518A1 - 测距方法及装置 - Google Patents

测距方法及装置 Download PDF

Info

Publication number
WO2023245518A1
WO2023245518A1 PCT/CN2022/100571 CN2022100571W WO2023245518A1 WO 2023245518 A1 WO2023245518 A1 WO 2023245518A1 CN 2022100571 W CN2022100571 W CN 2022100571W WO 2023245518 A1 WO2023245518 A1 WO 2023245518A1
Authority
WO
WIPO (PCT)
Prior art keywords
ranging
frame
information
symbol
channel
Prior art date
Application number
PCT/CN2022/100571
Other languages
English (en)
French (fr)
Inventor
李德建
高磊
程型清
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/100571 priority Critical patent/WO2023245518A1/zh
Publication of WO2023245518A1 publication Critical patent/WO2023245518A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communication technology, and in particular, to a ranging method and device.
  • wireless ranging and/or positioning can be achieved, such as indoor positioning, keyless entry passive start (PEPS), asset management, logistics management, etc.
  • PEPS keyless entry passive start
  • One communication domain includes a master node and at least one slave node.
  • the master node schedules the time-frequency resources of the slave nodes to realize data transmission between nodes. For example, on a carrier that the master node can use (for example, a channel with a bandwidth of 20 MHz), the master node can schedule time-frequency resources for slave node communication.
  • This application provides a ranging method and device, which can realize ranging between nodes and help improve ranging accuracy.
  • this application provides a ranging method, which may include: sending a first ranging frame on a first channel, where the first ranging frame carries first ranging information through at least one first symbol; On the first channel, receive a second ranging frame from the second node, the second ranging frame carries second ranging information through at least one second symbol; receive first channel status information, the first channel status information is from the first channel Channel state information of the two nodes corresponding to the first channel; determining second channel state information corresponding to the first channel based on at least one second symbol; determining the channel of the first channel based on the first channel state information and the second channel state information Status information, the channel status information of the first channel is used to measure the distance between the sender of the first ranging frame and the second node.
  • the transmission of the ranging frame for the first channel can be achieved.
  • the ranging frame carries the ranging information through at least one symbol, which can realize the transmission of the ranging information.
  • the channel state information of the first channel can be determined, thereby realizing inter-node ranging for the first channel and helping to improve the ranging accuracy.
  • the first ranging frame and the second ranging frame have the same frame structure, so that using ranging frames with the same frame structure on the first channel helps improve the stability of ranging frame transmission.
  • the first ranging frame includes at least one first wireless frame
  • the second ranging frame includes at least one second wireless frame
  • Optional mode 1 The symbols in the at least one first radio frame are all used to carry the first ranging information, the symbols in the at least one second radio frame are all used to carry the second ranging information, the first radio frame and There is a switching interval between the second wireless frames, and the switching interval is used to perform transceiver switching.
  • the switching interval does not occupy the duration of the first wireless frame nor the duration of the second wireless frame, thereby saving overhead; the symbols in the first wireless frame are used to carry the first ranging information, and the The symbols in the two wireless frames are all used to carry the second ranging information, which increases the transmission amount of ranging information, thereby improving transmission efficiency and ranging accuracy.
  • Optional method 1 may be applicable to the situation where the first channel is the initial channel or the frequency hopping channel for frequency hopping ranging.
  • the first radio frame includes a switching interval, and each symbol except the switching interval is used to carry the first ranging information. , and the switching interval is temporally located after the symbol used to carry the first ranging information, that is to say, the switching interval occupies the duration of one symbol in the first wireless frame; for any one of the above-mentioned at least one second wireless frame
  • the second wireless frame includes a switching interval. Each symbol except the switching interval is used to carry the second ranging information, and the switching interval is located in time at the symbol used to carry the second ranging information. After that, that is to say, the switching interval occupies the duration of one symbol in the second radio frame.
  • the switching interval is used to perform sending and receiving switching.
  • the switching interval in the first radio frame is located in time after the symbol used to carry the first ranging information
  • the switching interval in the second radio frame is located in time after the symbol used to carry the second ranging information, reducing
  • the interval between uplink and downlink switching can save overhead.
  • Symbols other than the switching interval are used to carry ranging information, which increases the transmission volume of ranging information, thereby improving transmission efficiency and ranging accuracy.
  • Optional method 2 may be applicable to the situation where the first channel is the initial channel or the frequency hopping channel for frequency hopping ranging.
  • the first radio frame includes a switching interval, a first overhead symbol and a first link symbol, a first overhead symbol and a first link symbol.
  • Link symbols are used to carry first ranging information;
  • the second wireless frame includes a switching interval, a second overhead symbol and a second link symbol, The second overhead symbol and the second link symbol are used to carry second ranging information.
  • the switching interval is used to perform sending and receiving switching.
  • the first link symbol is a link symbol sent to the second node
  • the second link symbol is a link symbol sent to the second node.
  • Optional mode 3 is compatible with wireless frames including switching intervals, overhead symbols and link symbols, which increases the transmission amount of ranging information, thereby improving transmission efficiency and ranging accuracy.
  • Optional method 3 may be applicable to the situation where the first channel is the initial channel for frequency hopping ranging.
  • the number of switching intervals included in the first wireless frame and/or the second wireless frame is 2, further, the first wireless frame further includes at least one second link symbol, and/or the second wireless frame further Including at least one first link symbol enables parallel transmission of ranging information and data.
  • the first link symbol and the second link symbol are used to carry information in different transmission directions.
  • the above method also includes: sending a first bit map, the first bit map is used to indicate the above-mentioned first wireless frame within a superframe, so that the second node determines which wireless frames within a superframe are the first wireless frames. frame.
  • the first bit of the image is a 48-bit bitmap, and the value of one bit indicates whether the wireless frame corresponding to the bit is the first wireless frame.
  • the above-mentioned first bit map may be carried in the first configuration information sent to the second node.
  • the first configuration information may also include the superframe number L1 and/or the first indication information, where L1 is a positive integer.
  • the number of superframes is L1, that is, L1 superframes. These L1 superframes are continuous in the time domain.
  • Each of the L1 superframes includes a first ranging frame, and the second node can determine the time-frequency resource for transmitting the first ranging frame according to the number of superframes L1 and the first bit map.
  • the first indication information is used to indicate whether the first bit image corresponding to each of the L1 superframes is the same. If the indications are the same, the first configuration information may include a first-order map, which is applicable to each of the L1 superframes, and then the second node may configure the first-order map according to the first-order map and the L1 superframes. frame, determine the time-frequency resources for transmitting the first ranging frame. If the indications are different, then the first configuration information may include at most L1 first-bit maps, and the second node may determine the method for transmitting the first ranging frame based on the first-bit map corresponding to each of the L1 superframes. Time and frequency resources.
  • the last N symbols contained in it for carrying the first ranging information are the same as the other ones in the last first radio frame used for carrying the first ranging information.
  • the sign of the ranging information is inverted, and the last first wireless frame indicates channel switching; where N is a positive integer;
  • the last M symbols used to carry the second ranging information contained therein are the same as the other ones in the last second radio frame used to carry the second ranging information.
  • the sign of the ranging information is inverted, and the last second wireless frame indicates channel switching; where M is a positive integer.
  • channel switching can be instructed to frequency hop from the first channel to another channel, thereby facilitating ranging interaction on the other channel.
  • the first ranging frame consists of at least one first overhead symbol, and the at least one first overhead symbol is all or part of the overhead symbol of the at least one first wireless frame, and the at least one first overhead symbol Used to carry the first ranging information;
  • the second ranging frame consists of at least one second overhead symbol, the at least one second overhead symbol is all or part of the overhead symbol of at least one second wireless frame, and the at least one second overhead symbol is To carry the second ranging information.
  • This method is compatible with wireless frames including overhead symbols and link symbols. Using overhead symbols to carry ranging information can improve the utilization of overhead symbols. This method may be applicable to the situation where the first channel is the initial channel for frequency hopping ranging.
  • the at least one first overhead symbol is a partial overhead symbol of at least one first radio frame
  • the at least one third overhead symbol of at least one first radio frame is a first link system overhead symbol or a second link system overhead symbol.
  • Overhead symbols; the above-mentioned at least one second overhead symbol is a partial overhead symbol of at least one second wireless frame, and at least one fourth overhead symbol of at least one second wireless frame is a first link system overhead symbol or a second link system overhead symbol.
  • the first link system overhead symbols and the second link system overhead symbols are used to ensure data communication.
  • Part of the overhead symbols of at least one first wireless frame is used to carry ranging information
  • the other part of the overhead symbols is used to ensure data communication, so that it can Realize parallel transmission of ranging information and data.
  • first overhead symbol and the third overhead symbol in the same first wireless frame can be arranged in a comb-tooth manner.
  • the comb-tooth manner can maintain the synchronization performance of the communication system, while ensuring the communication performance of the communication system, and utilizing the characteristics of the communication symbols. Synchronization accuracy improves the accuracy of ranging.
  • the second overhead symbol and the fourth overhead symbol in the same second wireless frame can be arranged in a comb-tooth manner.
  • the comb-tooth manner can maintain the synchronization performance of the communication system and utilize the communication symbols while ensuring the communication performance of the communication system.
  • the synchronization accuracy improves the accuracy of ranging.
  • the above-mentioned at least one first overhead symbol is all the overhead symbols of at least one first radio frame
  • the above-mentioned at least one second overhead symbol is all the overhead symbols of at least one second radio frame, which helps to expand the Doppler ( Doppler) frequency shift estimation range, which can be suitable for ranging in high-speed moving scenarios.
  • the difference between the number of symbols used to carry the first ranging information in the first ranging frame and the number of symbols used to carry the second ranging information in the second ranging frame Less than the first threshold, so that the signal-to-noise ratio (SNR) when determining the first channel state information is the same or similar to the SNR when determining the second channel state information, thereby obtaining the same or similar accuracy
  • SNR signal-to-noise ratio
  • the above method also includes: sending a second bitmap, the second bitmap is used to indicate the overhead symbols used to carry the first ranging information in a superframe, so that the second node determines which overheads are in a superframe.
  • the symbol carries the first ranging information.
  • the second bitmap is a 96-bit bitmap, and the value of one bit indicates whether the overhead symbol corresponding to the bit carries the first ranging information.
  • the last X first overhead symbols of the above-mentioned at least one first overhead symbol are inverted with other first overhead symbols used to carry the first ranging information, and the inverted last Frequency hopping from the first channel to another channel to facilitate ranging interaction on the other channel;
  • X is a positive integer
  • the last Y second overhead symbols of the at least one second overhead symbol are inverted with other second overhead symbols used to carry the second ranging information, and the inverted last Y second overhead symbols indicate channel switching. , to achieve frequency hopping from the first channel to another channel, thereby facilitating ranging interaction on the other channel; where Y is a positive integer.
  • the number of the first wireless frame included in the first ranging frame is greater than K, and the overhead symbols in the first wireless frame to the wireless frame numbered K in the superframe are Used to transmit control information, K is a positive integer greater than 1.
  • the overhead symbols used to transmit control information are not used for ranging, that is, they do not carry ranging information.
  • the above method further includes: receiving P third ranging frames from P third nodes on the first channel, the third ranging frames carrying the second ranging frame through at least one second symbol.
  • Ranging information the third ranging frame has the same frame structure as the second ranging frame, and P is a positive integer.
  • the third node has the same node type as the second node. That is to say, on the first channel, the first ranging frame is broadcast, and multiple second ranging frames are received from multiple second nodes, thereby realizing multicast ranging interaction on the first channel.
  • the order of the P third ranging frames and the second ranging frames in the time domain satisfies the preset settings, that is to say, the plurality of second nodes send the second ranging frames in the preset order.
  • the above method further includes: sending a fourth ranging frame on the second channel according to the first information used to indicate channel switching, and the fourth ranging frame is carried by at least one first symbol
  • the first ranging information; the frame structure of the fourth ranging frame and the first ranging frame are the same or different, that is to say, the ranging frame transmitted on the first channel is different from the ranging frame transmitted on the second channel.
  • the structures may be the same or different; on the second channel, a fifth ranging frame is received from the second node, and the fifth ranging frame carries the second ranging information through at least one second symbol; the fifth ranging frame is the same as the fourth ranging frame.
  • the frame structure of the ranging frame is the same; the third channel state information is received, and the third channel state information is the channel state information from the second node corresponding to the second channel; and the fourth channel state information corresponding to the second channel is determined according to the fifth ranging frame.
  • Channel state information determine the channel state information of the second channel according to the third channel state information and the fourth channel state information.
  • the channel state information of the second channel is used to measure the relationship between the sender of the fourth ranging frame and the second node. distance, thereby achieving inter-node ranging for the second channel. It can be seen that the accuracy and precision of ranging can be improved through frequency hopping.
  • the above method further includes: determining the distance between the sender of the first ranging frame and the second node according to the channel state information of the first channel and the channel state information of the second channel. That is, based on the channel state information of multiple channels of frequency hopping ranging (including the initial channel of frequency hopping ranging and the frequency hopping channel of frequency hopping ranging), the relationship between the sender of the first ranging frame and the second node is determined. distance between each other, so that the distance obtained has higher accuracy and precision. Further, the above method further includes: sending the distance between the sender of the first ranging frame and the second node to the second node, so that the second node can learn the distance from the sender of the first ranging frame.
  • the above method further includes: sending second information, the second information is used to indicate the number of fourth ranging frames continuously transmitted in time and/or the number of fifth ranging frames continuously transmitted in time, so as to The continuous transmission of ranging frames on the frequency hopping channel of frequency hopping ranging is beneficial to improving the accuracy and precision of ranging.
  • the difference between the number of symbols used to carry the first ranging information included in the fourth ranging frame and the number of symbols used to carry the first ranging information included in the first ranging frame is less than the Two thresholds; and/or, the difference between the number of symbols used to carry the second ranging information contained in the fifth ranging frame and the number of symbols used to carry the second ranging information contained in the second ranging frame
  • the value is smaller than the second threshold, so that the channel state information on different channels maintains the same or similar SNR.
  • the method provided in the first aspect may be executed by the first node, or may be executed by a module in the first node, for example, by a chip in the first node.
  • this application provides a ranging method.
  • the method may include: receiving a first ranging frame from a first node on a first channel, where the first ranging frame carries a first ranging frame through at least a first symbol. Ranging information; on the first channel, send a second ranging frame to the first node, and the second ranging frame carries the second ranging information through at least one second symbol; determine the corresponding first channel according to at least one first symbol first channel state information; sending the first channel state information to the first node, where the first channel state information is used to measure the distance between the first node and the receiver of the first ranging frame.
  • the transmission of the ranging frame for the first channel can be achieved.
  • the ranging frame carries the ranging information through at least one symbol, which can realize the transmission of the ranging information.
  • the first channel state information is sent to the first node so that the first node determines the channel state information of the first channel, thereby achieving inter-node ranging for the first channel and helping to improve ranging accuracy.
  • the first ranging frame and the second ranging frame have the same frame structure, so that using ranging frames with the same frame structure on the first channel helps improve the stability of ranging frame transmission.
  • the first ranging frame includes at least one first wireless frame
  • the second ranging frame includes at least one second wireless frame
  • Optional mode 1 The symbols in the at least one first radio frame are all used to carry the first ranging information, the symbols in the at least one second radio frame are all used to carry the second ranging information, the first radio frame and There is a switching interval between the second wireless frames, and the switching interval is used to perform transceiver switching. In this mode, the switching interval does not occupy the duration of the first wireless frame nor the duration of the second wireless frame, thereby saving overhead; the symbols in the first wireless frame are used to carry the first ranging information, and the symbols in the second wireless frame are used to carry the first ranging information. The symbols in the frame are all used to carry the second ranging information, which increases the transmission amount of ranging information, thereby improving transmission efficiency and ranging accuracy.
  • Optional method 1 may be applicable to the situation where the first channel is the initial channel or the frequency hopping channel for frequency hopping ranging.
  • the first radio frame includes a switching interval, and each symbol except the switching interval is used to carry the first ranging information. , and the switching interval is temporally located after the symbol used to carry the first ranging information, that is to say, the switching interval occupies the duration of one symbol in the first wireless frame; for any one of the above-mentioned at least one second wireless frame
  • the second wireless frame includes a switching interval. Each symbol except the switching interval is used to carry the second ranging information, and the switching interval is located in time at the symbol used to carry the second ranging information. Afterwards, that is to say, the switching interval occupies the second radio frame.
  • the switching interval is used to perform sending and receiving switching.
  • the switching interval in the first radio frame is located in time after the symbol used to carry the first ranging information
  • the switching interval in the second radio frame is located in time after the symbol used to carry the second ranging information, reducing Switches the number of intervals, thereby saving overhead.
  • Symbols other than the switching interval are used to carry ranging information, which increases the transmission volume of ranging information, thereby improving transmission efficiency and ranging accuracy.
  • Optional method 2 may be applicable to the situation where the first channel is the initial channel or the frequency hopping channel for frequency hopping ranging.
  • the first radio frame includes a switching interval, a first overhead symbol and a first link symbol, a first overhead symbol and a first link symbol.
  • Link symbols are used to carry first ranging information;
  • the second wireless frame includes a switching interval, a second overhead symbol and a second link symbol, The second overhead symbol and the second link symbol are used to carry second ranging information.
  • the switching interval is used to perform sending and receiving switching.
  • the first link symbol is a link symbol sent to the second node
  • the second link symbol is a link symbol sent to the second node.
  • Optional mode 3 is compatible with wireless frames including switching intervals, overhead symbols and link symbols, which increases the transmission amount of ranging information, thereby improving transmission efficiency and ranging accuracy.
  • Optional method 3 may be applicable to the situation where the first channel is the initial channel for frequency hopping ranging.
  • the number of switching intervals included in the first wireless frame and/or the second wireless frame is 2, further, the first wireless frame further includes at least one second link symbol, and/or the second wireless frame further Including at least one first link symbol enables parallel transmission of ranging information and data.
  • the above method further includes: receiving a first bit map, where the first bit map is used to indicate the above-mentioned first radio frame within a superframe, and then determine the first radio frame within a superframe.
  • the first bit of the image is a 48-bit bitmap, and the value of one bit indicates whether the wireless frame corresponding to the bit is the first wireless frame.
  • the above-mentioned first bit map may be carried in the first configuration information sent by the first node.
  • the first configuration information may also include the superframe number L1 and/or first indication information, where L1 is a positive integer.
  • the number of superframes is L1, that is, L1 superframes. These L1 superframes are continuous in the time domain.
  • Each of the L1 superframes includes a first ranging frame, and the time-frequency resource for transmitting the first ranging frame can be determined according to the number of superframes L1 and the first bit map.
  • the first indication information is used to indicate whether the first bit image corresponding to each of the L1 superframes is the same. If the indications are the same, then the first configuration information may include a first-order map, which is applicable to each of the L1 superframes, and then may be determined based on the first-order map and the L1 superframes. Time-frequency resources for transmitting the first ranging frame. If the indications are different, the first configuration information may include at most L1 first-bit images, and then the time-frequency for transmitting the first ranging frame may be determined respectively based on the first-bit image corresponding to each of the L1 superframes. resource.
  • the last N symbols contained in it for carrying the first ranging information are the same as the other ones in the last first radio frame used for carrying the first ranging information.
  • the sign of the ranging information is inverted, and the last first wireless frame indicates channel switching; where N is a positive integer;
  • the last M symbols used to carry the second ranging information contained therein are the same as the other ones in the last second radio frame used to carry the second ranging information.
  • the sign of the ranging information is inverted, and the last second wireless frame indicates channel switching; where M is a positive integer.
  • channel switching can be instructed to frequency hop from the first channel to another channel, thereby facilitating ranging interaction on the other channel.
  • the first ranging frame consists of at least one first overhead symbol, and the at least one first overhead symbol is all or part of the overhead symbol of the at least one first wireless frame, and the at least one first overhead symbol Used to carry the first ranging information;
  • the second ranging frame consists of at least one second overhead symbol, the at least one second overhead symbol is all or part of the overhead symbol of at least one second wireless frame, and the at least one second overhead symbol is To carry the second ranging information.
  • This method is compatible with wireless frames including overhead symbols and link symbols. Using overhead symbols to carry ranging information can improve the utilization of overhead symbols. This method may be applicable to the situation where the first channel is the initial channel for frequency hopping ranging.
  • the at least one first overhead symbol is a partial overhead symbol of at least one first radio frame
  • the at least one third overhead symbol of at least one first radio frame is a first link system overhead symbol or a second link system overhead symbol.
  • Overhead symbols; the above-mentioned at least one second overhead symbol is a partial overhead symbol of at least one second wireless frame, and at least one fourth overhead symbol of at least one second wireless frame is a first link system overhead symbol or a second link system overhead symbol.
  • the first link system overhead symbols and the second link system overhead symbols are used to ensure data communication.
  • Part of the overhead symbols of at least one first wireless frame is used to carry ranging information
  • the other part of the overhead symbols is used to ensure data communication, so that it can Realize parallel transmission of ranging information and data.
  • first overhead symbol and the third overhead symbol in the same first wireless frame can be arranged in a comb-tooth manner.
  • the comb-tooth manner can maintain the synchronization performance of the communication system, while ensuring the communication performance of the communication system, and utilizing the characteristics of the communication symbols. Synchronization accuracy improves the accuracy of ranging.
  • the second overhead symbol and the fourth overhead symbol in the same second wireless frame can be arranged in a comb-tooth manner.
  • the comb-tooth manner can maintain the synchronization performance of the communication system and utilize the communication symbols while ensuring the communication performance of the communication system.
  • the synchronization accuracy improves the accuracy of ranging.
  • the above-mentioned at least one first overhead symbol is all the overhead symbols of at least one first radio frame
  • the above-mentioned at least one second overhead symbol is all the overhead symbols of at least one second radio frame, which helps to expand the Doppler ( Doppler) frequency shift estimation range, which can be suitable for ranging in high-speed moving scenarios.
  • the difference between the number of symbols used to carry the first ranging information in the first ranging frame and the number of symbols used to carry the second ranging information in the second ranging frame Less than the first threshold, so that the SNR when determining the first channel state information is the same or similar to the SNR when determining the second channel state information, thereby obtaining the first channel state information and the second channel state information with the same or similar accuracy. , thereby determining and obtaining higher-accuracy channel state information on the first channel based on the first channel state information and the second channel state information.
  • the above method further includes: receiving a second bitmap, the second bitmap is used to indicate an overhead symbol used to carry the first ranging information in a superframe, and then determines whether to carry the first ranging information in a superframe.
  • the overhead symbol for information is a 96-bit bitmap, and the value of one bit indicates whether the overhead symbol corresponding to the bit carries the first ranging information.
  • the last X first overhead symbols of the at least one first overhead symbol are inverted with other first overhead symbols used to carry the first ranging information, and the inverted last X first overhead symbols indicate channel switching. , to realize frequency hopping from the first channel to another channel, thereby facilitating ranging interaction on another channel; where, X is a positive integer;
  • the last Y second overhead symbols of the at least one second overhead symbol are inverted with other second overhead symbols used to carry the second ranging information, and the inverted last Y second overhead symbols indicate channel switching. , to achieve frequency hopping from the first channel to another channel, thereby facilitating ranging interaction on the other channel; where Y is a positive integer.
  • the number of the first wireless frame included in the first ranging frame is greater than K, and the overhead symbols in the first wireless frame to the wireless frame numbered K in the superframe are Used to transmit control information, K is a positive integer greater than 1.
  • the overhead symbols used to transmit control information are not used for ranging, that is, they do not carry ranging information.
  • the above method further includes: receiving a fourth ranging frame from the first node on the second channel according to the first information used to indicate channel switching, and the fourth ranging frame passes at least A first symbol carries the first ranging information; the frame structure of the fourth ranging frame and the first ranging frame are the same or different, that is to say, the ranging frame transmitted on the first channel is different from the ranging frame transmitted on the second channel.
  • the frame structure of the ranging frame may be the same or different; on the second channel, a fifth ranging frame is sent to the first node, and the fifth ranging frame carries the second ranging information through at least one second symbol; the fifth ranging frame
  • the frame structure of the frame is the same as that of the fourth ranging frame; the third channel state information corresponding to the second channel is determined according to the fifth ranging frame, and the third channel state information is sent to the first node, and the third channel state information is used to measure the third channel state information.
  • the above method also includes: receiving the distance between the receiver of the first ranging frame from the first node and the first node, that is, obtaining the distance between the receiver and the first node, and the distance has higher accuracy and Accuracy.
  • the above method further includes: receiving second information, the second information is used to indicate the number of fourth ranging frames continuously transmitted in time and/or the number of fifth ranging frames continuously transmitted in time, so as to The continuous transmission of ranging frames on the frequency hopping channel of frequency hopping ranging is beneficial to improving the accuracy and precision of ranging.
  • the difference between the number of symbols used to carry the first ranging information included in the fourth ranging frame and the number of symbols used to carry the first ranging information included in the first ranging frame is less than the Two thresholds; and/or, the difference between the number of symbols used to carry the second ranging information contained in the fifth ranging frame and the number of symbols used to carry the second ranging information contained in the second ranging frame
  • the value is smaller than the second threshold, so that the channel state information on different channels maintains the same or similar SNR.
  • the method provided in the second aspect may be executed by the second node, or may be executed by a module in the second node, for example, by a chip in the second node.
  • the present application provides a communication device, which includes a module or unit for performing the method as described in any one of the first aspect or the second aspect.
  • the communication device includes:
  • the communication unit is configured to send a first ranging frame on a first channel, where the first ranging frame carries first ranging information through at least one first symbol; and on the first channel, receive a second ranging frame from a second node.
  • Ranging frame the second ranging frame carries the second ranging information through at least one second symbol; receiving the first channel status information, the first channel status information is the channel status information corresponding to the first channel from the second node;
  • a processing unit configured to determine second channel state information corresponding to the first channel based on at least one second symbol; determine channel state information of the first channel based on the first channel state information and the second channel state information, and determine the channel state information of the first channel.
  • the status information is used to measure the distance between the sender of the first ranging frame and the second node.
  • the first ranging frame includes at least one first wireless frame
  • the second ranging frame includes at least one second wireless frame
  • Optional mode 1 The symbols in the at least one first radio frame are all used to carry the first ranging information, the symbols in the at least one second radio frame are all used to carry the second ranging information, the first radio frame and There is a switching interval between the second wireless frames, and the switching interval is used to perform transceiver switching.
  • Optional method 2 For any one of the above at least one first radio frame: the first radio frame includes a switching interval, and each symbol except the switching interval is used to carry the first ranging information. , and the switching interval is located in time after the symbol used to carry the first ranging information; for any second radio frame of the at least one second radio frame: the second radio frame includes the switching interval, except for the switching interval Each symbol other than the symbol used to carry the second ranging information is used to carry the second ranging information, and the switching interval is located in time after the symbol used to carry the second ranging information. Among them, the switching interval is used to perform sending and receiving switching.
  • the first radio frame includes a switching interval, a first overhead symbol and a first link symbol, a first overhead symbol and a first link symbol.
  • Link symbols are used to carry first ranging information;
  • the second wireless frame includes a switching interval, a second overhead symbol and a second link symbol, The second overhead symbol and the second link symbol are used to carry second ranging information.
  • the switching interval is used to perform sending and receiving switching.
  • the communication unit is also configured to send a first bit image, where the first bit image is used to indicate the above-mentioned first wireless frame within a superframe.
  • the last N symbols contained in it for carrying the first ranging information are the same as the other ones in the last first radio frame used for carrying the first ranging information.
  • the sign of the ranging information is inverted, and the last first wireless frame indicates channel switching; where N is a positive integer;
  • the last M symbols used to carry the second ranging information contained therein are the same as the other ones in the last second radio frame used to carry the second ranging information.
  • the sign of the ranging information is inverted, and the last second wireless frame indicates channel switching; where M is a positive integer.
  • the first ranging frame consists of at least one first overhead symbol, and the at least one first overhead symbol is all or part of the overhead symbol of the at least one first wireless frame, and the at least one first overhead symbol Used to carry the first ranging information;
  • the second ranging frame consists of at least one second overhead symbol, the at least one second overhead symbol is all or part of the overhead symbol of at least one second wireless frame, and the at least one second overhead symbol is To carry the second ranging information.
  • the at least one first overhead symbol is a partial overhead symbol of at least one first radio frame
  • the at least one third overhead symbol of at least one first radio frame is a first link system overhead symbol or a second link system overhead symbol.
  • Overhead symbols; the above-mentioned at least one second overhead symbol is a partial overhead symbol of at least one second wireless frame, and at least one fourth overhead symbol of at least one second wireless frame is a first link system overhead symbol or a second link system overhead symbol.
  • the difference between the number of symbols used to carry the first ranging information in the first ranging frame and the number of symbols used to carry the second ranging information in the second ranging frame less than the first threshold.
  • the communication unit is also configured to send a second bitmap, where the second bitmap is used to indicate overhead symbols used to carry the first ranging information within a superframe.
  • the last X first overhead symbols of the above-mentioned at least one first overhead symbol are inverted with other first overhead symbols used to carry the first ranging information, and the inverted last X is a positive integer;
  • the last Y second overhead symbols of the at least one second overhead symbol are inverted with other second overhead symbols used to carry the second ranging information, and the inverted last Y second overhead symbols indicate channel switching. ; Among them, Y is a positive integer.
  • the number of the first wireless frame included in the first ranging frame is greater than K, and the overhead symbols in the first wireless frame to the wireless frame numbered K in the superframe are Used to transmit control information, K is a positive integer greater than 1.
  • the communication unit is further configured to receive P third ranging frames from P third nodes on the first channel, where the third ranging frames carry the third ranging frame through at least one second symbol.
  • Second ranging information the third ranging frame has the same frame structure as the second ranging frame, and P is a positive integer.
  • the order of the P third ranging frames and the second ranging frames in the time domain satisfies the preset settings.
  • the communication unit is further configured to send a fourth ranging frame on the second channel according to the first information used to indicate channel switching, and the fourth ranging frame passes at least one first symbol Carrying the first ranging information;
  • the frame structure of the fourth ranging frame is the same as or different from the first ranging frame;
  • the fifth ranging frame passes at least A second symbol carries second ranging information;
  • the fifth ranging frame has the same frame structure as the fourth ranging frame;
  • third channel status information is received, and the third channel status information is from the second node and corresponds to the second channel channel status information;
  • the processing unit is also configured to determine the fourth channel state information corresponding to the second channel according to the fifth ranging frame; determine the channel state information of the second channel according to the third channel state information and the fourth channel state information.
  • the channel state information is used to measure the distance between the sender of the fourth ranging frame and the second node.
  • processing unit is further configured to determine the distance between the sender of the first ranging frame and the second node according to the channel state information of the first channel and the channel state information of the second channel.
  • the communication unit is also configured to send second information, and the second information is used to indicate the number of fourth ranging frames that are continuously transmitted in time and/or the number of fifth ranging frames that are continuously transmitted in time.
  • the difference between the number of symbols used to carry the first ranging information included in the fourth ranging frame and the number of symbols used to carry the first ranging information included in the first ranging frame is less than the Two thresholds; and/or, the difference between the number of symbols used to carry the second ranging information contained in the fifth ranging frame and the number of symbols used to carry the second ranging information contained in the second ranging frame The value is less than the second threshold.
  • the communication device includes:
  • a communication unit configured to receive a first ranging frame from a first node on a first channel, where the first ranging frame carries first ranging information through at least one first symbol; on the first channel, send a message to the first ranging frame.
  • the node sends a second ranging frame, and the second ranging frame carries second ranging information through at least one second symbol;
  • a processing unit configured to determine first channel state information corresponding to the first channel based on at least one first symbol
  • the communication unit is also configured to send first channel state information to the first node, where the first channel state information is used to measure the distance between the first node and the receiver of the first ranging frame.
  • the communication unit is also configured to receive a first bit image, where the first bit image is used to indicate the first wireless frame within a superframe; the symbols in the first wireless frame are used to carry the first bit of the first wireless frame. a ranging information; or, the first wireless frame includes a switching interval, each symbol except the switching interval is used to carry the first ranging information, and the switching interval is located in time to carry the first ranging information After the symbols, the switching interval is used to perform transceiver switching.
  • the communication unit is also configured to receive a second bitmap, where the second bitmap is used to indicate overhead symbols used to carry the first ranging information within a superframe.
  • the communication unit is further configured to receive a fourth ranging frame from the first node on the second channel according to the first information, where the fourth ranging frame carries the first ranging information through at least one first symbol;
  • the fourth ranging frame has the same or different frame structure as the first ranging frame; the first information is used to indicate channel switching; on the second channel, the fifth ranging frame is sent to the first node, and the fifth ranging frame passes At least one second symbol carries second ranging information; the fifth ranging frame and the fourth ranging frame have the same frame structure;
  • the processing unit is also configured to determine the third channel state information corresponding to the second channel according to the fifth ranging frame;
  • the communication unit is also configured to send third channel state information to the first node, where the third channel state information is used to measure the distance between the first node and the receiver of the fourth ranging frame.
  • the communication unit is further configured to receive the distance between the recipient of the first ranging frame from the first node and the first node.
  • an embodiment of the present application provides a communication device, including a processor.
  • the processor is coupled to a memory and may be used to execute instructions in the memory to implement any one of the above first to second aspects and the method of any possible implementation.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • embodiments of the present application provide a communication device, including: a logic circuit and a communication interface.
  • the communication interface is used to receive information or send information;
  • the logic circuit is used to receive information or send information through the communication interface, so that the communication device performs any one of the first to second aspects and any of the above.
  • embodiments of the present application provide a computer-readable storage medium, the computer-readable storage medium being used to store a computer program (also called a code, or an instruction); when the computer program is run on a computer
  • a computer program also called a code, or an instruction
  • inventions of the present application provide a computer program product.
  • the computer program product includes: a computer program (which can also be called a code, or an instruction); when the computer program is run, it causes the computer to execute the above-mentioned first step.
  • a computer program which can also be called a code, or an instruction
  • embodiments of the present application provide a chip.
  • the chip includes a processor.
  • the processor is configured to execute instructions. When the processor executes the instructions, the chip performs any of the above first to second aspects. Methods of one aspect and any of the possible embodiments.
  • the chip also includes a communication interface, which is used to receive signals or send signals.
  • embodiments of the present application provide a terminal device, which includes at least one communication device as described in the third aspect, or a communication device as described in the fourth aspect, or a communication device as described in the fifth aspect. , or the chip described in the eighth aspect.
  • embodiments of the present application provide a system, which includes a terminal device and at least one communication device as described in the third aspect, or a communication device as described in the fourth aspect, or a communication device as described in the fifth aspect. device, or the chip according to the eighth aspect.
  • the above method is related to sending information and/or
  • the process of receiving information can be understood as the process of outputting information by the processor, and/or the process of receiving input information by the processor.
  • the processor may output the information to the transceiver (or communication interface, or transmitting module) for transmission by the transceiver. After the information is output by the processor, it may also need to undergo other processing before it reaches the transceiver.
  • the transceiver or communication interface, or sending module
  • the transceiver receives the information and inputs it into the processor.
  • the information may need to undergo other processing before being input to the processor.
  • the sending information mentioned in the foregoing method can be understood as processor output information.
  • receiving information can be understood as the processor receiving input information.
  • the above-mentioned processor may be a dedicated processor.
  • the processor that performs these methods may also be a processor that performs these methods by executing computer instructions in a memory, such as a general-purpose processor.
  • the above-mentioned memory can be a non-transitory memory, such as a read-only memory (ROM), which can be integrated on the same chip as the processor, or can be separately provided on different chips.
  • ROM read-only memory
  • the above-mentioned at least one memory is located outside the device.
  • the above-mentioned at least one memory is located within the device.
  • part of the at least one memory is located within the device, and another part of the memory is located outside the device.
  • processor and the memory may also be integrated into one device, that is, the processor and the memory may also be integrated together.
  • the transmission of the ranging frame for the first channel between nodes can be realized.
  • the ranging frame carries the ranging information through at least one symbol, which can realize the transmission of the ranging information.
  • the channel state information of the first channel can be determined, thereby realizing inter-node ranging for the first channel and helping to improve the ranging accuracy.
  • Figure 1 is an example of the structure of a superframe
  • Figure 2 is a schematic diagram of a vehicle positioning scenario
  • Figure 3 is a schematic diagram of a possible wireless communication system provided by this application.
  • Figure 4 is an example of the frame structure of ranging frame 1 provided by this application.
  • Figure 5 is an example diagram of the frame structure of ranging frame 2 provided by this application.
  • Figure 6 is an example diagram of the frame structure of ranging frame 3 provided by this application.
  • Figure 7 is an example diagram of the frame structure of ranging frame 4 provided by this application.
  • Figure 8 is an example diagram of frequency hopping ranging
  • Figure 9 is a schematic flow chart of a ranging method provided by this application.
  • Figure 9-1 is an example diagram of ranging interaction provided by this application.
  • Figure 9-2 is another example diagram of ranging interaction provided by this application.
  • Figure 10 is a schematic flow chart of another ranging method provided by this application.
  • Figure 10-1 is another example diagram of ranging interaction provided by this application.
  • Figure 11 is a schematic flow chart of yet another ranging method provided by this application.
  • Figure 11-1 is another example diagram of ranging interaction provided by this application.
  • Figure 12 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 13 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 14 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • words such as “first” and “second” are used to distinguish the same or similar items with substantially the same functions and effects. Those skilled in the art can understand that words such as “first” and “second” do not limit the number and execution order, and words such as “first” and “second” do not limit the number and execution order.
  • “And/or” describes the relationship between associated objects, indicating that there can be three relationships. For example, A and/or B can mean: A exists alone, A and B exist simultaneously, and B exists alone. The character “/" generally indicates that the related objects are in an "or” relationship.
  • Nodes are electronic devices with communication capabilities, also called communication nodes.
  • a node may include a handheld terminal, a vehicle, a vehicle-mounted device, or a network side device, a user equipment, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a wireless communication device, a user agent, or
  • An independent device such as a user device may also be a component (such as a chip or integrated circuit) included in the independent device.
  • Nodes can be any possible intelligent terminal equipment (such as mobile phones), intelligent transportation equipment (such as vehicles, drones, etc.), intelligent manufacturing equipment, smart home equipment (such as large screens, speakers, etc.), etc.
  • node when the node is a vehicle-mounted device, it can be a car cockpit (cockpit domain) device, or a module in the car cockpit device, such as: cockpit domain controller (CDC), camera, screen, microphone, One or more of the modules for audio, electronic key, keyless entry and starting system controller.
  • CDC cockpit domain controller
  • nodes can also be battery management systems and batteries in battery packs.
  • the node when it is a handheld terminal, it may be a mobile phone, a wearable device, a tablet computer (pad), or a computer with data transceiver functions (such as a notebook computer, a handheld computer, etc.).
  • the nodes in the embodiments of this application can be used in a variety of application scenarios, such as the following application scenarios: mobile internet (MI), industrial control (industrial control), self-driving (self-driving), transportation safety (tra NSportation safety), Internet of things (IoT), smart city (smart city), or smart home (smart home), etc.
  • MI mobile internet
  • industrial control industrial control
  • self-driving self-driving
  • transportation safety tra NSportation safety
  • IoT Internet of things
  • smart city smart city
  • smart home smart home
  • the nodes in this application can be applied to a variety of network types, such as one or more of the following network types: SparkLink, long term evolution (LTE) network, fifth-generation mobile communication technology ( 5th -generation mobile communication technology, 5G), wireless local area network (for example, Wi-Fi), Bluetooth (Blu etooth, BT), Zigbee, or vehicle-mounted short-range wireless communication network, etc.
  • SparkLink long term evolution (LTE) network
  • 5G fifth-generation mobile communication technology
  • 5G wireless local area network
  • Wi-Fi for example, Wi-Fi
  • Bluetooth Bluetooth
  • Zigbee Zigbee
  • vehicle-mounted short-range wireless communication network etc.
  • nodes In some application scenarios or certain network types, the names of devices with similar communication capabilities may not be called nodes. However, for convenience of description, in the embodiments of this application, devices with communication capabilities are collectively referred to as nodes.
  • a superframe is a concept in the time domain.
  • a superframe is composed of multiple wireless frames.
  • One wireless frame is composed of multiple symbols.
  • the symbols may be, for example, orthogonal frequency-division multiplexing (OFDM) symbols.
  • the SparkLink basic (SLB) standard involved in the Spark Alliance specifies the frame structure of super frames and wireless frames.
  • the superframe period is 1 millisecond (ms), that is, the duration of the superframe is 1ms.
  • one superframe includes 48 radio frames, and the 48 radio frames are numbered in sequence from radio frame #0 to radio frame #47.
  • Each wireless frame contains several downlink symbols, several uplink symbols, overhead symbols and switching intervals (GAP, GAP). Downlink symbols are used for downlink transmission, and uplink symbols are used for uplink transmission.
  • Overhead symbols can also be described as flexible symbols or specific symbols, which are used for synchronization, channel detection, downlink control information (DCI) transmission, etc. Overhead symbols can be divided into downlink overhead symbols and uplink overhead symbols.
  • the switching interval is used to perform uplink and downlink switching.
  • the duration of a switching interval in a wireless frame is, for example, the duration of one symbol in the wireless frame.
  • uplink usually refers to the direction in which the terminal (terminal, T) node sends data or information to the management (grant, G) node, and can be represented by "T”.
  • Downlink usually refers to the direction in which G node sends data or information to T node, and can be represented by "G”.
  • the downlink symbol is represented as a G symbol, and the G symbol can also be described as a G link symbol or G link data symbol, etc.
  • the uplink symbol is represented as a T symbol
  • T symbol can also be described as a T link symbol or T link data. symbols etc.
  • the downlink overhead symbol is represented as a special management (special grant, SG) symbol.
  • the SG symbol can also be described as a G overhead symbol or overhead G symbol or G link overhead symbol, etc.;
  • the uplink overhead symbol is represented as a special terminal (special terminal).
  • ST special terminal
  • ST symbol ST symbol can also be described as T overhead symbol or overhead T symbol or T link overhead symbol, etc.
  • G overhead symbols and T overhead symbols can be collectively referred to as system overhead symbols.
  • Each radio frame can contain 1 or 2 overhead symbols, and a superframe can contain up to 96 overhead symbols.
  • each wireless frame of the superframe includes an overhead symbol
  • the superframe includes 48 overhead symbols.
  • the overhead symbol included in wireless frame #0 is SG symbol #.
  • the overhead symbol included in radio frame #46 is ST symbol #46. It should be noted that in Figure 1, the overhead symbols are numbered consecutively from 0, instead of the SG symbols being numbered from 0 and the ST symbols being numbered from 0.
  • OFDM technology is a multi-carrier frequency division multiplexing (FDM) technology. Multiple carriers work at the same time. These carriers can be called subcarriers in FDM technology.
  • OFDM technology also known as discrete multi-carrier modulation (DMT) technology, has the capability of high-rate transmission and can effectively resist frequency-selective attenuation.
  • DMT discrete multi-carrier modulation
  • OFDM multiple subcarriers are orthogonal, so it is called orthogonal frequency division multiplexing.
  • the operating frequency of the subcarrier corresponds to the frequency point. From the spectrum perspective, each subcarrier takes its respective frequency point as the center frequency and occupies a certain frequency bandwidth.
  • OFDM By adjusting the number of subcarriers, OFDM can flexibly change the operating bandwidth to meet the demand for large bandwidth and achieve better expansion effects.
  • OFDM technology carries signals through OFDM symbols, and one OFDM symbol can correspond to one or more subcarriers. Adding cyclic prefix (CP) to OFDM symbols can avoid inter-symbol interference. OFDM symbols with CP added are called CP-OFDM symbols. CP-OFDM symbols can be divided into normal (normal) CP-OFDM symbols and extended ( extended)CP-OFDM symbols. That is to say, the CP types of OFDM symbols can be divided into no CP, regular CP and extended CP. The symbols involved in this application may be OFDM symbols.
  • a carrier of SLB consists of 39 consecutive subcarriers.
  • the 39 subcarriers are numbered #0, #1,..., #38 in order from low to high corresponding frequencies.
  • #19 subcarrier is a direct current (DC) subcarrier.
  • the other 38 subcarriers are called effective subcarriers.
  • G nodes and T nodes may work on multiple carriers, and multiple carriers constitute a carrier group.
  • Frequency hopping means that the device switches the center frequency of the transmitted signal by changing the center frequency of the radio frequency channel of the device (such as changing the carrier frequency of the local oscillator signal) or digitally changing the center frequency of the generated transmitted signal.
  • Frequency hopping may refer to frequency hopping based on OFDM signals.
  • OFDM frequency hopping is defined as switching the DC subcarrier of an OFDM symbol from the center frequency of one carrier channel to the center frequency of another carrier channel. For frequency hopping switching of a single carrier, it refers to the DC subcarrier switching from one carrier channel to another carrier channel; for frequency hopping switching of multiple carriers, it refers to the switching of the carrier channel group corresponding to multiple carriers to another. Carrier channel group.
  • G nodes and T nodes originally worked on carrier channel groups 1 to 4, but switched to carrier channel groups 5 to 8 after frequency hopping.
  • Carrier channel groups 1 to 4 are called initial carrier channel groups or initial channel groups, and carrier channel groups 5 to 8 are called frequency hopping carrier channel groups or frequency hopping channel groups.
  • the carrier channel is referred to as a channel for short, and the terms "channel” and “carrier channel” are interchangeable.
  • the frequency hopping modes of different nodes can be the same (for example, they are all radio frequency hopping or digital frequency hopping), or they can be different (for example, the frequency hopping mode of the first node is radio frequency hopping, and the frequency hopping mode of the second node is digital frequency hopping), this application does not limit it.
  • Ranging is achieved by at least two nodes sending ranging wireless signals to each other to measure the distance between each other.
  • the G node and the T node send ranging wireless signals to each other to measure the distance between the G node and the T node.
  • G node and T node #1 send ranging wireless signals to each other to measure the distance between G node and T node #1;
  • G node and T node #2 send ranging wireless signals to each other, The distance between G node and T node #2 is measured;
  • T node #1 and T node #2 send ranging wireless signals to each other to measure the distance between T node #1 and T node #2.
  • Communication systems usually contain multiple nodes that can communicate with each other to transmit data.
  • the communication domain refers to a system composed of a group of nodes with communication relationships and the communication connection relationships (i.e. communication links) between the communication nodes. It is usually used for Complete a specific function.
  • a communication domain may include a master node and at least one slave node, and master and slave nodes may communicate with each other, or between master nodes and master nodes, or between slave nodes and slave nodes.
  • the master node can manage the slave nodes, has the function of allocating resources, and is responsible for allocating resources to the slave nodes; the slave nodes obey the scheduling of the master node and use the resources allocated by the master node to communicate with the master node and/or with other nodes.
  • the master node can also be called a G node, management node or control node, and the slave node can also be called a T node or terminal.
  • the communication link from G node to T node may be called G link or downlink, and the communication link from T node to G node may be called T link or uplink.
  • This application can be applied to vehicle wireless positioning scenarios (such as PEPS) and indoor positioning scenarios, and can also be applied to other wide-area wireless communication or local area wireless communication scenarios.
  • vehicle wireless positioning scenarios such as PEPS
  • indoor positioning scenarios can also be applied to other wide-area wireless communication or local area wireless communication scenarios.
  • positioning nodes are deployed at the four corners outside the car
  • PEPS positioning nodes are deployed on the center console/rearview mirror/ceiling (inside the roof) of the car
  • the display, microphone, speaker, and camera in the car are
  • T-BOX and other vehicle-mounted wireless communication devices can also be used as positioning nodes.
  • Positioning nodes and/or PEPS positioning nodes can be used to locate car keys/mobile phones.
  • the car key/mobile phone represents the electronic device positioned by the positioning node, which can be a traditional car key with positioning function, or a mobile phone or wearable device with positioning function.
  • Figure 2 shows a schematic diagram of a vehicle positioning scenario, in which the car key/mobile phone can be used as a G node, and all positioning nodes on the vehicle (including PEPS positioning nodes) can be used as T nodes; or, the PEPS positioning node can be used as a G node, and the rest The device acts as a T node.
  • the application scenario shown in Figure 2 is only one exemplary scenario in which the solution of the present application can be applied.
  • the solution of this application can also be applied to any other suitable application scenarios, such as but not limited to home, office, exhibition hall, production and other scenarios.
  • FIG. 3 is a schematic diagram of a possible wireless communication system provided by this application.
  • the wireless communication system includes a first node 301 and a second node 302.
  • the first node 301 may be a G node or a master node
  • the second node 302 may be a T node or a slave node.
  • the communication system may include more nodes, which are shown as a first node and a second node for ease of description.
  • the number of second nodes may be multiple. .
  • the frame shown in Figure 1 is a communication frame. Data transmission between nodes can be achieved based on the communication frame, but ranging between nodes cannot be achieved. Therefore, this application provides a ranging method that can achieve ranging between nodes. In order to implement ranging between nodes, this application can provide the frame structure of the ranging frame. Taking the first node as the G node and the second node as the T node as an example, the following describes the frame structures of several ranging frames provided by this application.
  • Ranging frame 1 For the ranging frame 1 sent by the G node, the ranging frame 1 contains at least one wireless frame 1, and the symbols in at least one wireless frame 1 are used to carry the ranging information 1; for the ranging frame 1 sent by the T node For ranging frame 1, ranging frame 1 includes at least one wireless frame 2, and the symbols in at least one wireless frame 2 are used to carry ranging information 2; the ranging frame 1 sent by the G node is different from the ranging frame 1 sent by the T node. There is a switching interval (GAP) between frames 1, which is used to perform transceiver switching.
  • GAP switching interval
  • the symbols in at least one wireless frame 1 are used to carry ranging information 1, that is, for any wireless frame 1, the symbols contained in it are used to carry ranging information 1.
  • the ranging information 1 may be a positioning reference signal (PRS) sent by the G node to the T node.
  • PRS may be, for example, a channel state information reference signal (channel state information reference signal, CSI-RS) or the first training signal. (first training signal, FTS) or second training signal (second training signal, STS).
  • the symbol type of any radio frame 1 is a CSI-RS symbol, FTS symbol, or STS symbol; or all symbols of any radio frame 1 are configured as CSI-RS symbols, FTS symbols, or STS symbols;
  • CSI -RS is the channel state information reference signal sent by the G node, which is used by other nodes to measure the transmission channel characteristics (i.e., channel state information) from the G node to the other nodes;
  • FTS is used for time and frequency in the vehicle-mounted wireless short-range communication system Synchronized signals, such as the signals used for time and frequency synchronization in the SparkLink Basic (SLB) standard.
  • SLB SparkLink Basic
  • FTS is the signal that appears first in the time domain and can also be used to transmit channel characteristics (ie, channel status information) ;
  • STS is a signal used for time and frequency synchronization in a vehicle-mounted wireless short-range communication system.
  • STS is a signal that appears later in the time domain.
  • the signal can also be used to transmit channel characteristics (ie, channel status information).
  • synchronization signals appear in pairs, that is, two synchronization signals are understood as a group of synchronization signals.
  • FTS the OFDM symbol that appears first in the time domain
  • STS The OFDM symbol that appears first in the field is called the STS.
  • the symbols in at least one wireless frame 2 are used to carry ranging information 2, that is, for any wireless frame 2, the symbols contained in it are used to carry ranging information 2.
  • the ranging information 2 may be a PRS sent by the T node to the G node.
  • the PRS may be, for example, a channel sounding signal (sounding reference signal, SRS) or a second training signal (STS) or a first training signal (FTS).
  • the symbol type of any one radio frame 2 is an SRS symbol or an STS symbol or an FTS symbol; or all the symbols of any one radio frame 2 are configured as an SRS symbol or an STS symbol or an FTS symbol;
  • SRS is the G node in Receive channel detection signals sent by other nodes for the G node to measure transmission channel characteristics (ie, channel state information) from other nodes to the G node.
  • the symbols in wireless frame 1 are all used to carry ranging information 1, and the symbols in wireless frame 2 are all used to carry ranging information 2. This increases the number of continuously transmitted symbols carrying ranging information, thereby improving transmission efficiency and measurement. range accuracy, continuous transmission can also facilitate centralized processing of ranging information.
  • GAP is used to perform transceiver switching, which can also be described as uplink and downlink switching.
  • wireless frame 1 and wireless frame 2 eliminate all GAPs in the wireless frame shown in Figure 1 and change them to the GAP between wireless frame 1 and wireless frame 2, which can reduce the number of handovers, thus Save money.
  • wireless frame #0 and wireless frame #1 shown in Figure 1 include a total of 4 GAPs, and there is 1 GAP between wireless frame 1 and wireless frame 2.
  • wireless frame 1 and wireless frame 2 may be a frame format in which OFDM symbol parameters are preconfigured by G node (the frame length may be less than 640 ⁇ Ts), and a wireless frame may contain Q OFDM preconfigured symbol, where Q is a positive integer, and the value of Q can be configured according to the desired SNR.
  • the pre-configured OFDM symbol parameters include at least one of the following: with or without CP, extended CP or conventional CP, carrying CSI-RS or SRS or FTS or STS, etc.
  • the CP type of the symbols contained in wireless frame 1 and wireless frame 2 is no CP, then wireless frame 1 contains 10 CSI-RS symbols/FTS symbols, and wireless frame 2 contains 10 SRS symbols/STS symbols; for another example, wireless
  • the CP type of the symbols contained in frame 1 and radio frame 2 is regular CP, then radio frame 1 contains 8 CSI-RS symbols, and radio frame 2 contains 8 SRS symbols; for another example, the symbols contained in radio frame 1 and radio frame 2
  • the CP type is extended CP, then radio frame 1 contains 7 CSI-RS symbols, and radio frame 2 contains 7 SRS symbols.
  • a ranging frame 1 (or a radio frame) contains 1 OFDM symbol; that is, the radio frame 1 and radio frame 2 corresponding to the ranging frame 1 contain only 1 OFDM symbol respectively.
  • the number of OFDM symbols of wireless frame 1 and wireless frame 2 is configured according to the G node, and the G node and the T node use the ranging frame 1 with the corresponding number of OFDM symbols to perform ranging interactive measurements.
  • the frame structure of ranging frame 1 is shown in Figure 4.
  • the ranging frame 1 sent by G node contains one wireless frame 1
  • the ranging frame 1 sent by T node contains one wireless frame 2.
  • the CP type of the symbols contained in wireless frame 1 and wireless frame 2 is no CP.
  • G in Figure 4 represents a G link symbol, and the G link symbol can be configured as a CSI-RS symbol or FTS symbol;
  • T in Figure 4 represents a T link symbol, and the T link symbol can be configured as an SRS symbol or STS symbol.
  • one or some symbols carrying ranging information 1 in wireless frame 1 are inverted with other symbols carrying ranging information 1, which can indicate channel switching.
  • Channel switching can also be described as frequency hopping, or jumping to Other channels; and/or, one or some symbols carrying ranging information 2 in the wireless frame 2 are inverted with other symbols carrying ranging information 2, which can indicate channel switching.
  • some can be the first number, the last number, or specified, or preset, etc.
  • the last N symbols used to carry the ranging information 1 contained therein are the same as the other symbols in the last wireless frame 1 used to carry the ranging information.
  • the sign of 1 is inverted, the last wireless frame 1 can indicate channel switching, and the T node can perform channel switching according to the last wireless frame 1; and/or, for the last wireless frame 2 in at least one wireless frame 2, it contains The last M symbols used to carry ranging information 2 are inverted with other symbols used to carry ranging information 2 in the last wireless frame 2.
  • the last wireless frame 2 can indicate channel switching, and the G node can switch according to the last wireless frame 2 Perform channel switching.
  • the first N' symbols used to carry the ranging information 1 contained therein are different from the other symbols in the last radio frame 1 used to carry the ranging information.
  • the symbol from the information 1 is inverted, the last wireless frame 1 may indicate channel switching, and the T node may perform channel switching according to the last wireless frame 3; and/or, for the last wireless frame 2 in at least one wireless frame 2, the The included first M' symbols used to carry ranging information 2 are inverted with other symbols used to carry ranging information 2 in the last wireless frame 2.
  • the last wireless frame 2 can indicate channel switching, and the G node can switch according to the last A radio frame 2 performs channel switching.
  • N’ and M’ are positive integers, and N’ and M’ can be the same or different.
  • the sequence numbers of the wireless frame structures in Tables 1 to 3 are for example only and do not constitute a limitation on the present application.
  • Ranging frame 2 For the ranging frame 2 sent by the G node, the ranging frame 2 contains at least one wireless frame 3. Each wireless frame 3 contains a switching interval (GAP). Each symbol except GAP is is used to carry ranging information 1, and the GAP is located in time after the symbol used to carry ranging information 1; for the ranging frame 2 sent by the T node, the ranging frame 2 includes at least one wireless frame 4, each wireless Frame 4 contains a switching interval (GAP), and each symbol except GAP is used to carry ranging information 2, and GAP is located after the symbol used to carry ranging information 2 in time. Among them, the switching interval is used to perform sending and receiving switching. For ranging information 1 and ranging information 2, please refer to the description of ranging information 1 and ranging information 2 in ranging frame 1.
  • GAP switching interval
  • the number of GAPs in wireless frame 3 is 1, occupying the duration of one symbol in wireless frame 3; the number of GAPs in wireless frame 4 is 1, occupying the duration of one symbol in wireless frame 4.
  • wireless frame 3 and wireless frame 4 eliminate part of the GAP in the wireless frame shown in Figure 1, which can reduce the number of handovers and thereby save overhead.
  • wireless frame #0 and wireless frame #1 shown in Figure 1 include a total of 4 GAPs, while a wireless frame 3 and a wireless frame 4 each contain a GAP, and the GAP in wireless frame 3 is located in the position carrying ranging information 1 After the symbol of , the GAP in radio frame 4 is located after the symbol carrying ranging information 2.
  • wireless frame 3 and wireless frame 4 may be a frame format in which OFDM symbol parameters are preconfigured by G node (the frame length may be less than 640 ⁇ Ts), and a wireless frame may contain preconfigured Q OFDM symbols, Q is a positive integer, and the value of Q can be configured according to the desired SNR.
  • the pre-configured OFDM symbol parameters include at least one of the following: with or without CP, extended CP or conventional CP, carrying CSI-RS or SRS or FTS or STS, etc.
  • the CP type of the symbols contained in radio frame 3 and radio frame 4 is no CP, then radio frame 3 contains 9 CSI-RS symbols and 1 GAP (located after 9 CSI-RS symbols in time), and the radio frame 2 contains 9 SRS symbols and 1 GAP (located after 9 SRS symbols in time); for another example, the CP type of the symbols contained in radio frame 1 and radio frame 2 is regular CP, then radio frame 3 contains 7 CSI -RS symbol and 1 GAP (located in time after 7 CSI-RS symbols), radio frame 4 contains 7 SRS symbols and 1 GAP (located in time after 7 SRS symbols).
  • the frame structure of ranging frame 2 is shown in Figure 5.
  • the ranging frame 2 sent by G node contains one wireless frame 3
  • the ranging frame 2 sent by T node contains one wireless frame 4.
  • the CP type of the symbols contained in radio frame 3 and radio frame 4 is no CP.
  • G in Figure 5 represents a G link symbol, and the G link symbol can be configured as a CSI-RS symbol or FTS symbol;
  • T in Figure 5 represents a T link symbol, and the T link symbol can be configured as an SRS symbol or STS symbol.
  • one or some symbols carrying ranging information 1 in wireless frame 3 are inverted with other symbols carrying ranging information 1, which can indicate channel switching; and/or one or some symbols carrying ranging information 1 in wireless frame 4
  • the symbol carrying ranging information 2 is inverted with other symbols carrying ranging information 2, which can indicate channel switching.
  • the frame structure of the last wireless frame 3 and the last wireless frame 4 can be as shown in Table 4 below .
  • the sequence numbers of the wireless frame structures in Table 4 are for example and do not constitute a limitation on the present application.
  • ranging frame 2 and ranging frame 1 The difference between ranging frame 2 and ranging frame 1 is that there is a GAP between wireless frame 1 and wireless frame 2 in ranging frame 1.
  • the GAP does not occupy the duration of wireless frame 1 nor the duration of wireless frame 2;
  • Wireless frame 3 and wireless frame 4 in ranging frame 2 each contain a GAP, and the GAP in wireless frame 3 is located after the symbol carrying ranging information 1, and the GAP in wireless frame 4 is located after the symbol carrying ranging information 2.
  • Ranging frame 3 For the ranging frame 3 sent by the G node, the ranging frame 3 includes at least one wireless frame 5, and each wireless frame 5 includes the switching interval (GAP), G overhead symbols and G link symbols, G Overhead symbols and G link symbols are used to carry ranging information 1; for the ranging frame 3 sent by the T node, the ranging frame 3 contains at least one wireless frame 6, and each wireless frame 6 contains GAP, T overhead symbols and T link symbols, T overhead symbols and T link symbols are used to carry ranging information2. Among them, the switching interval is used to perform sending and receiving switching. For ranging information 1 and ranging information 2, please refer to the description of ranging information 1 and ranging information 2 in ranging frame 1.
  • the number of GAPs included in wireless frame 5 and wireless frame 6 may be 1 or 2. If the number of switching intervals GAP included in the wireless frame 5 is 2, further, the wireless frame 5 also includes at least one T link symbol; and/or, if the number of switching intervals included in the wireless frame 6 is 2, Further, the radio frame 6 also includes at least one G link symbol.
  • wireless frame 5 and wireless frame 6 may be a frame format in which OFDM symbol parameters are preconfigured by G node (the frame length may be less than 640 ⁇ Ts), and a wireless frame may contain preconfigured Q OFDM symbols, Q is a positive integer, and the value of Q can be configured according to the desired SNR.
  • the pre-configured OFDM symbol parameters include at least one of the following: with or without CP, extended CP or conventional CP, carrying CSI-RS or SRS or FTS or STS, etc.
  • the G overhead symbols and G link symbols in the wireless frame #0 are used to carry ranging information 1, that is, the G overhead symbols and G link symbols in the wireless frame #0
  • the symbols are configured as CSI-RS symbols or FTS symbols, so that radio frame 5 can be obtained.
  • the T overhead symbols and T link symbols in the wireless frame #46 are used to carry ranging information 2, that is, the T overhead symbols and T link symbols in the wireless frame #46
  • the road symbols are configured as SRS symbols or STS symbols, so that radio frame 6 can be obtained.
  • the frame structure of ranging frame 3 is shown in Figure 6.
  • the ranging frame 3 sent by G node contains one wireless frame 5, and the ranging frame 3 sent by T node contains one wireless frame 6.
  • G in wireless frame 5 represents a G link symbol
  • G(SG) represents that the G link symbol is configured as a G overhead symbol.
  • the G link symbol and the G overhead symbol can be further configured as a CSI-RS symbol or FTS symbol
  • T in wireless frame 6 represents a T link symbol
  • G(ST) represents a G link symbol configured as a T overhead symbol
  • the T link symbol and T overhead symbol can be further configured as an SRS symbol or an STS symbol.
  • Wireless frame 5 and wireless frame 6 in Figure 6 may have a wireless frame structure as shown in Table 5 below.
  • G represents the G link symbol
  • T represents the T link symbol
  • one or some symbols carrying ranging information 1 in wireless frame 5 are inverted with other symbols carrying ranging information 1, which can indicate channel switching; and/or one or some symbols carrying ranging information 1 in wireless frame 6
  • the symbol carrying ranging information 2 is inverted with other symbols carrying ranging information 2, which can indicate channel switching.
  • ranging frame 3 can also use wireless frame structures with other sequence numbers.
  • the G link symbols in the symbol configuration can use CSI-RS symbols
  • the T link symbols can use SRS symbols.
  • Ranging frame 4 For the ranging frame 4 sent by the G node, the ranging frame 4 consists of at least one overhead symbol 1, and the at least one overhead symbol 1 is all or part of the overhead symbol of at least one wireless frame 7, and at least one overhead symbol Symbols 1 are all used to carry ranging information 1; for the ranging frame 4 sent by the T node, the ranging frame 4 consists of at least one overhead symbol 2, and at least one overhead symbol 2 is all or part of at least one wireless frame 8 Overhead symbols, at least one overhead symbol 2, are used to carry ranging information 2. For ranging information 1 and ranging information 2, please refer to the description of ranging information 1 and ranging information 2 in ranging frame 1. Overhead symbol 1 is a G overhead symbol or T overhead symbol, and overhead symbol 2 is a G overhead symbol or T overhead symbol.
  • At least one wireless frame 7 and at least one wireless frame 8 are located in the same superframe, then at least one overhead symbol 1 used to carry ranging information 1 and at least one overhead symbol 2 used to carry ranging information 2 are located in within the same superframe.
  • the overhead symbols in the first K+1 wireless frames i.e., the wireless frames numbered from 0 to K
  • control information such as G link system information, etc.
  • K is a positive integer greater than 1. The specific value of K can be preset or predefined.
  • the first K overhead symbols are used to transmit control information and cannot carry ranging information 1 or ranging information 2.
  • the number of at least one overhead symbol 1 used to carry ranging information 1 may be preset or predefined, and the number of at least one overhead symbol 2 used to carry ranging information 2 may be preset or predefined.
  • All overhead symbols 1 of at least one radio frame 7 are used to carry ranging information 1
  • all overhead symbols 2 of at least one radio frame 8 are used to carry ranging information 2.
  • the interval between two adjacent overhead symbols used to carry ranging information is relatively large (20.83us), resulting in a lower Doppler frequency shift that can be estimated.
  • all overhead symbols 1 of at least one radio frame 7 are used to carry ranging information 1
  • all overhead symbols 2 of at least one radio frame 8 are used to carry ranging information 2, which can expand the Doppler frequency shift.
  • the estimated range is suitable for ranging in high-speed moving scenarios.
  • the two overhead symbols 1 used to carry ranging information 1 included in one wireless frame 7 are consecutive in time (i.e., adjacent in domain position), and the two overhead symbols 1 used to carry ranging information 2 included in wireless frame 8 Overhead symbols 2 are continuous in time to reduce interference.
  • part of the overhead symbols 1 of at least one wireless frame 7 is used to carry ranging information 1, and the other part of the overhead symbols 1 is the G overhead symbol or T overhead symbol, used for synchronization or data transmission; at least one wireless Part of the overhead symbols 2 of frame 8 is used to carry ranging information 2, and the other part of the overhead symbols 2 is the G overhead symbol or T overhead symbol, used for synchronization or data transmission. That is to say, one overhead symbol 1 in any wireless frame 7 is used to carry ranging information 1, and another overhead symbol 1 is used for synchronization or data transmission; one overhead symbol 1 in any wireless frame 8 is used to carry Carrying ranging information 1, another overhead symbol 2 is used for synchronization or data transmission.
  • the overhead symbol 1 used to carry the ranging information 1 and the overhead symbol 1 used for synchronization or data transmission can be arranged in a comb-tooth manner (i.e., the domain positions are adjacent).
  • the overhead symbols 2 used to carry the ranging information 2 and the overhead symbols 2 used for synchronization or data transmission can be arranged in a comb-tooth manner.
  • the comb method can maintain the synchronization performance of the communication system. While ensuring the communication performance of the communication system, the synchronization accuracy of communication symbols (that is, overhead symbols used for data transmission) is used to improve the accuracy of ranging.
  • the overhead symbols in a superframe are extracted, and the ranging frame 4 sent by the G node contains 1 overhead for carrying the ranging information 1 Symbol 1
  • the ranging frame 4 sent by the T node contains J overhead symbols 1 used to carry the ranging information 2 as an example.
  • SG represents G overhead symbols
  • ST represents T overhead symbols
  • the first K+1 G overhead symbols that is, overhead symbols numbered from 0 to K
  • the G overhead symbols numbered K+1 to K2 The symbol is used to carry ranging information 1
  • the T overhead symbols numbered K2+1 to K3 are used to carry ranging information 2.
  • the difference may be an absolute value, and the first threshold may be 1; the difference may also be a relative value, and the first threshold may be ⁇ 1.
  • the last X overhead symbols 1 of at least one overhead symbol 1 are inverted with other overhead symbols 1 used to carry ranging information 1
  • the inverted last The last Y overhead symbols 2 of an overhead symbol 2 are inverted with other overhead symbols 2 used to carry ranging information 2.
  • the inverted last Y overhead symbols 2 indicate channel switching; where X is a positive integer and Y is a positive integer.
  • ranging frame 4 uses some overhead symbols in the superframe to carry ranging information 1, and uses some overhead symbols in the superframe to carry ranging information 2.
  • the G node uses reference signals such as FTS or STS at the beginning of the first superframe for timing and frequency synchronization of the T node, and inserts synchronization signals in each superframe to maintain timing and frequency.
  • the frequency is synchronized so that overhead symbols and/or link symbols in subsequent superframes can be used to carry ranging information.
  • the above ranging frame 1 to ranging frame 4 can be understood as ranging frames of four different frame types.
  • Ranging frame 1 and ranging frame 2 can be applied to the initial channel or frequency hopping channel of frequency hopping ranging.
  • the ranging frame 3 and ranging frame 4 can be applied to the initial channel of frequency hopping ranging.
  • ranging frame 3 and ranging frame 4 may be called first-type ranging frames, and ranging frame 1 and ranging frame 2 may be called second-type ranging frames.
  • the name ranging frame is used as an example, and can also be described as a positioning frame, a measurement frame, a sensing frame, etc. Other names may be adopted as the standard evolves.
  • Frequency hopping ranging refers to ranging interaction on multiple channels (for example, it at least includes: G node sends ranging frame 1 once, and T node receives ranging frame 1 from G node. And measure, send ranging frame 1 to G node, G node receives ranging frame 1 from T node and measure), and in a certain channel (the channel can be the same as or partially overlap with the initial channel of frequency hopping ranging) Feedback of channel status information.
  • the initial channel of frequency hopping ranging represents the working channel (group) after the G node and T node complete the association, that is, the channel (group) where the ranging negotiation is performed.
  • the switching duration T0 the radio frequency (RF) switching stable duration (T RF ) + the listen-before-talk (LBT) duration (T LBT ).
  • T RF can take the stable duration of PLL phase locked loop (PLL) as an example.
  • the initiator and/or responder node must wait until T RF ends before they can start LBT operation or clear channel assessment (CCA). or carrier sense multiple access.
  • CCA clear channel assessment
  • the initial channel for frequency hopping ranging is channel 3. After ranging interaction 1 is completed on channel 3, within the time window of LBT, if channel 2 indicates idle, ranging will be started on channel 2.
  • channel state information feedback can be performed on channel 3.
  • the channel state information fed back on channel 3 can be obtained based on the channel state information of channel 3, channel 2, and channel 1.
  • the channel state information fed back on channel 3 may also be called ranging results or positioning results, etc.
  • the ranging method provided by this application is introduced below based on the ranging frame provided by this application.
  • Figure 9 is a schematic flow chart of a ranging method provided by this application.
  • the method may include but is not limited to the following steps:
  • the first node sends the first ranging frame to the second node.
  • the second node receives the first ranging frame from the first node.
  • the first ranging frame carries the first ranging information through at least one first symbol.
  • the second node determines first channel state information corresponding to the first channel based on at least one first symbol.
  • the second node On the first channel, the second node sends the second ranging frame to the first node. Correspondingly, on the first channel, the first node receives the second ranging frame from the second node. Wherein, the second ranging frame carries the second ranging information through at least one second symbol.
  • the second node sends the first channel status information to the first node.
  • the first node receives the first channel state information from the second node.
  • the first node determines second channel state information corresponding to the first channel based on at least one second symbol.
  • the first node determines the channel state information of the first channel based on the first channel state information and the second channel state information.
  • the channel state information of the first channel is used to measure the distance between the first node and the second node.
  • the execution order of the above-mentioned steps S901, S902, S903, S904, S905 and S906 is used as an example.
  • the embodiment of the present application does not limit this, and it shall be subject to the actual scene interaction.
  • S902, S904, S905 and S906 may or may not be executed on the first channel.
  • the first channel can be the initial channel (group) for frequency hopping ranging, or it can be the frequency hopping channel (group) for frequency hopping ranging.
  • the first channel is the initial channel (group) for frequency hopping ranging. For example.
  • steps S901 and S903 can be understood as the first node and the second node perform ranging frame transmission on the first channel, and the number of first ranging frames sent by the first node to the second node may be one or more, The number of second ranging frames sent by the second node to the first node may be one or more.
  • the first ranging frame carries the first ranging information through at least one first symbol, which can be understood as at least one first symbol in the first ranging frame is used to carry the first ranging information.
  • the second ranging frame carries the second ranging information through at least one second symbol, which can be understood as at least one second symbol in the second ranging frame is used to carry the second ranging information.
  • first ranging information refer to the detailed description of ranging information 1 in the above ranging frame 1
  • the second ranging information refer to the detailed description of ranging information 2 in the above ranging frame 1, which will not be described again here.
  • the first ranging frame and the second ranging frame have the same frame structure, so using ranging frames with the same frame structure on the first channel helps improve the stability of ranging frame transmission.
  • the frame structure of the first ranging frame may be any one of the above ranging frames 1 to 4, and the frame structure of the second ranging frame is the same as the frame structure of the first ranging frame.
  • the first ranging frame includes at least one first wireless frame
  • the second ranging frame includes at least one second wireless frame
  • Optional mode 1 The symbols in the at least one first radio frame are all used to carry the first ranging information, the symbols in the at least one second radio frame are all used to carry the second ranging information, the first radio frame and There is a switching gap (GAP) between the second radio frames.
  • GAP switching gap
  • Optional mode 1 may correspond to the frame structure of the above ranging frame 1. For details, please refer to the description of the above ranging frame 1.
  • Optional method 2 For any one of the above at least one first radio frame: the first radio frame contains GAP, and each symbol except GAP is used to carry the first ranging information, and , the GAP is located in time after the symbol used to carry the first ranging information, that is to say, the GAP occupies the duration of one symbol in the first radio frame; for any second radio frame of the above-mentioned at least one second radio frame : The second radio frame contains GAP. Each symbol except GAP is used to carry the second ranging information, and the GAP is located after the symbol used to carry the second ranging information in time, that is to say, the GAP occupies The duration of one symbol in the second radio frame.
  • Optional mode 2 may correspond to the frame structure of the above ranging frame 2. For details, please refer to the description of the above ranging frame 2.
  • the first wireless frame includes a GAP, a first overhead symbol and a first link symbol, the first overhead symbol and a first link symbol Road symbols are used to carry the first ranging information;
  • the second wireless frame includes a GAP, a second overhead symbol and a second link symbol.
  • the overhead symbols and the second link symbols are used to carry the second ranging information.
  • the transmission directions of the first link and the second link are different.
  • the first link is the G link (i.e., the direction in which the G node sends data or information to the T node)
  • the second link is the T link (i.e., the T node The direction in which the node sends data or information to the G node).
  • the first link symbol and the second link symbol are used to carry information in different transmission directions
  • the first overhead symbol and the second overhead symbol are used to carry information in different transmission directions.
  • the first overhead symbol and the first link symbol are used to carry information in different transmission directions.
  • the information carried by the symbols has the same transmission direction
  • the information carried by the second overhead symbol and the second link symbol have the same transmission direction.
  • the first overhead symbol is a G overhead symbol, and the first link symbol is a G link symbol;
  • the second overhead symbol is a T overhead symbol, and the first link symbol is a T link symbol.
  • Optional mode 3 may correspond to the frame structure of the above ranging frame 3. For details, please refer to the description of the above ranging frame 3.
  • the first node may send the first configuration information to the second node, so that the second node receives the first ranging frame according to the first configuration information.
  • the first configuration information may include one or more of the following:
  • the first bit map is used to indicate at least one first radio frame used for ranging within a superframe, that is, indicating which radio frames within a superframe can be used as the first radio frame used for ranging.
  • the first bitmap is a 48-bit bitmap, corresponding to 48 wireless frames in a superframe.
  • the value of a bit indicates whether the radio frame corresponding to the bit is the first radio frame. For example, when the value of a bit is 1, it indicates that the wireless frame corresponding to the bit is the first wireless frame; when the value of the bit is 0, it indicates that the wireless frame corresponding to the bit is not the first wireless frame.
  • first radio frames within a superframe may constitute a first ranging frame, or a first radio frame within a superframe may be a first ranging frame.
  • a superframe may include one or more the first ranging frame.
  • the second node can determine which symbol or symbols in the radio frame within a superframe carry the first ranging information.
  • the first bit may be 48-bit indication information, and the value of one bit in the indication information indicates whether the radio frame corresponding to the bit is the first radio frame.
  • the first configuration information may also include a third bitmap used to indicate at least one second wireless frame used for ranging within a superframe, that is, indicating which wireless frames within a superframe can be used as ranging. the second radio frame.
  • the third bitmap is a 48-bit bitmap, corresponding to 48 wireless frames in a superframe. The value of one bit indicates whether the radio frame corresponding to the bit is the second radio frame. Multiple second radio frames within a superframe may constitute a second ranging frame, or a second radio frame within a superframe may be a second ranging frame. In other words, a superframe may include one or more second ranging frame.
  • the second node may determine which symbol or symbols in the radio frame are used to carry the second ranging information within a superframe.
  • the number of superframes is L1, that is, L1 superframes. These L1 superframes are continuous in the time domain.
  • Each of the L1 superframes includes a first ranging frame, or may be described as each of the L1 superframes includes a first wireless frame for ranging. Among them, L1 is a positive integer.
  • the superframe number L1 can also be described as the superframe number L1 corresponding to the first ranging frame.
  • the second node may determine the time-frequency resource for transmitting the first ranging frame according to the superframe number L1 and the first bit map.
  • the first configuration information may also include the number of superframes L2, that is, L2 superframes, and these L2 superframes are continuous in the time domain.
  • Each of the L2 superframes includes a second ranging frame, or may be described as each of the L2 superframes includes a second wireless frame for ranging.
  • L2 is a positive integer.
  • the specific value of L2 can be the same as the specific value of L1, or the difference between the two can be less than ⁇ 1. If the default specific value of L2 is the same as the specific value of L1, the first configuration information only needs to include the superframe number L1.
  • the first node and the second node perform ranging interaction within a superframe, for example, within each of L1 superframes, the first configuration information only needs to include the superframe number L1.
  • the first indication information is used to indicate whether the first bit image corresponding to each of the L1 superframes is the same.
  • the first indication information may use a 1-bit indication. When the value of this bit is 1, it means that the first bit image corresponding to each superframe in the L1 superframes is the same. When the value of this bit is 0, it means that the L1 superframes The first bit image corresponding to each superframe is different.
  • a superframe can correspond to a first-bit image.
  • superframe #1 corresponds to first-bit image #1.
  • First-bit image #1 is a 48-bit bitmap, corresponding to the 48 wireless frames of superframe #1.
  • the first-order image corresponding to each superframe in L1 superframes is different.
  • superframe #1 corresponds to the first-order image #1
  • superframe #2 corresponds to the first-order image #2
  • the first-order image #1 and The first picture #2 is different.
  • the first configuration information may include a first bit image, and the first bit image is applicable to each of the L1 superframes. superframes, and each superframe within the L1 superframes contains the same number of the first wireless frame used for ranging. That is to say, the first ranging frame repeatedly appears in L1 consecutive superframes. Further, the second node may determine the time-frequency resource for transmitting the first ranging frame based on the first bit map and the L1 superframes. If the first indication information indicates that the first bit images corresponding to each of the L1 superframes are different, then the first configuration information may include at most L1 first bit images, any two of the L1 first bit images.
  • One-bit map #1 determines the time-frequency resource for transmitting the first ranging frame in superframe #1.
  • the first-bit map #2 corresponding to superframe #2 determines the time-frequency resource for transmitting the first ranging frame in superframe #2. Time and frequency resources.
  • the first configuration information may also include second indication information, used to indicate whether the third bitmap corresponding to each superframe in the L2 superframes is the same.
  • the second indication information may use a 1-bit indication. When the value of this bit is 1, it indicates that the third bitmap corresponding to each superframe in the L2 superframes is the same. When the value of this bit is 0, it indicates that the L2 superframes The third bitmap corresponding to each superframe in is different.
  • the number of ranging interactions (or measurement interactions) for frequency hopping ranging can be 1 to 256 times.
  • the specific value can be indicated by, for example, an 8-bit field.
  • a ranging interaction may be that the first node sends a first ranging frame once, the second node receives the first ranging frame, and sends a second ranging frame to the first node once, and the first node receives the second ranging frame frame.
  • the third indication information is used to indicate whether the number of first ranging frames and the number of second ranging frames on the first channel are the same. For example, a 1-bit indication can be used. When the value of this bit is 1, it means they are the same. When the value of this bit is 0, it means they are not the same. If they are different, the first configuration information may also include the number of second ranging frames on the first channel.
  • the above-mentioned first configuration information may be determined by the first node or preconfigured by the first node.
  • the second node may also send the second configuration information to the first node, so that the first node receives the second ranging frame.
  • the content included in the second configuration information is similar to the content included in the first configuration information.
  • the second configuration information includes a third bitmap, so that the first node determines which second radio frame or frames within a superframe carry the third bitmap according to the third bitmap.
  • the second ranging information is obtained.
  • the second configuration information may be determined by the second node or preconfigured by the second node.
  • the first node and the second node within the superframe For ranging interaction, please refer to Figure 9-1 and Figure 9-2.
  • wireless frames #0 to #11 are used to transmit control information.
  • the first node continuously sends two first ranging frames to the second node. These two first ranging frames carry the first ranging information through the symbols in wireless frame #12 and wireless frame #13. ;
  • the second node continuously sends two second ranging frames to the first node, and these two second ranging frames carry the second ranging information through symbols in wireless frame #14 and wireless frame #15.
  • the first node sends a first ranging frame to the second node.
  • This first ranging frame carries the first ranging information through the symbols in wireless frame #12; the second node sends Send a second ranging frame, this second ranging frame carries the second ranging information through the symbols in wireless frame #13; the first node then sends a first ranging frame to the second node, this first ranging frame
  • the ranging frame carries the first ranging information through the symbols in wireless frame #14; the second node then sends a second ranging frame to the first node, and this second ranging frame is carried through the symbols in wireless frame #15 Second ranging information. It can be understood that in Figure 9-1, the first node and the second node perform a ranging interaction.
  • the first node and the second node each send 2 consecutive ranging frames; in Figure 9-2
  • the first node and the second node perform two ranging interactions.
  • the first node and the second node each send one ranging frame.
  • the first ranging frame consists of at least one first overhead symbol, the at least one first overhead symbol is all or part of the overhead symbol of the at least one first wireless frame, and the at least one first overhead symbol is used for Carrying the first ranging information;
  • the second ranging frame consists of at least one second overhead symbol, the at least one second overhead symbol is all or part of the overhead symbol of at least one second wireless frame, and the at least one second overhead symbol is used to carry Second ranging information.
  • the second implementation manner may correspond to the frame structure of the above-mentioned ranging frame 4. For details, please refer to the description of the above-mentioned ranging frame 4.
  • the difference between the number of symbols used to carry the first ranging information in the first ranging frame and the number of symbols used to carry the second ranging information in the second ranging frame is less than the first threshold, so that the SNRs of the first channel state information and the second channel state information are the same or similar.
  • the difference may be an absolute value, and the first threshold may be 1; the difference may also be a relative value, and the first threshold may be ⁇ 1.
  • the first node may send a second bitmap to the second node, where the second bitmap is used to indicate overhead symbols used to carry the first ranging information in a superframe.
  • the second bitmap is a 96-bit bitmap, corresponding to 96 overhead symbols in a superframe.
  • the value of one bit indicates whether the overhead symbol corresponding to the bit carries the first ranging information. For example, when the value of a bit is 1, it means that the overhead symbol corresponding to the bit carries the first ranging information, and when the value of the bit is 0, it means that the overhead symbol corresponding to the bit carries the first ranging information.
  • the third bitmap may be 96-bit indication information, and the value of one bit in the indication information indicates whether the overhead symbol corresponding to the bit carries the first ranging information.
  • the second bitmap may be carried in the configuration information sent by the first node to the second node, such as third configuration information.
  • the third configuration information may also include: a fourth bitmap, the fourth bitmap is used to indicate overhead symbols used to carry the second ranging information within a superframe.
  • the fourth bitmap is a 96-bit bitmap, corresponding to 96 overhead symbols in a superframe. The value of one bit indicates whether the overhead symbol corresponding to the bit carries second ranging information. For example, when the value of a bit is 1, it means that the overhead symbol corresponding to the bit carries the second ranging information, and when the value of the bit is 0, it means that the overhead symbol corresponding to the bit does not carry the first ranging information.
  • the second node sends the fourth bitmap to the first node, so that the first node determines which overhead symbols in a superframe carry the second ranging information.
  • the above third configuration information may be determined by the first node or preconfigured by the first node.
  • the first ranging frame consists of I first overhead symbols and the second ranging frame consists of J second overhead symbols.
  • the first node Perform a ranging interaction with the second node.
  • the difference between I and J is less than the above-mentioned first threshold.
  • I and J are both positive integers.
  • the above steps S902, S904, S905 and S906 can be understood as: the first node and the second node perform ranging based on the ranging information carried by the ranging frame to determine the corresponding channel state information, and the first node performs ranging based on the first channel state information and The second channel state information determines the channel state information of the first channel.
  • the channel state information of the first channel is used to measure the distance between the first node and the second node, thereby achieving inter-node ranging for the first channel, Helps improve ranging accuracy.
  • the first channel state information refers to the subcarrier measurement information of the first ranging frame or the arrival time of the first ranging frame, which can be understood as the first node to second node measured by the second node on the first channel.
  • the channel state information that is, the distance from the first node to the second node.
  • the second channel state information refers to the subcarrier measurement information of the second ranging frame or the arrival time of the second ranging frame, which can be understood as the distance between the second node and the first measured by the first node on the first channel.
  • the channel state information of the node that is, the distance from the second node to the first node.
  • the channel state information of the first channel refers to the channel state information obtained by integrating the first channel state information and the second channel state information, and is used to measure the distance between the first node and the second node.
  • the subcarrier measurement information refers to the measured value of the frequency corresponding to the subcarrier determined by receiving the PRS symbol, demodulating the known ranging OFDM symbol, and performing frequency domain channel estimation (i.e., frequency domain channel state information ).
  • the transmission of the ranging frame for the first channel can be implemented.
  • the ranging frame carries the ranging information through at least one symbol, which can realize the transmission of the ranging information.
  • the channel state information of the first channel can be determined, thereby realizing inter-node ranging for the first channel and helping to improve the ranging accuracy.
  • the communication mode between the first node and the second node is unicast, and the ranging frame provided by this application can also be applied to the multicast communication mode.
  • Figure 10 is a schematic flow chart of another ranging method provided by this application. This method may include but is not limited to the following steps:
  • the first node broadcasts the first ranging frame.
  • the first node broadcasts the first ranging frame to the second node in its communication domain, and accordingly, the second node in the communication domain receives the first ranging frame from the first node. frame.
  • the first channel and the first ranging frame reference may be made to the detailed description thereof in the embodiment shown in FIG. 9 , which will not be described again here.
  • the communication domain of the first node can be understood as a ranging group formed during the ranging negotiation process.
  • the ranging group includes at least a first node and a second node, such as at least a G node and a T node.
  • This application does not limit the number of second nodes in the communication domain of the first node.
  • Figure 10 takes the communication domain including two T nodes, namely second node #1 and second node #2 as an example.
  • the first node broadcasts the first ranging frame
  • the second node #1 can receive the first ranging frame
  • the second node #2 can also receive the first ranging frame.
  • the second node #1 when the second node #1 receives the first ranging frame, it can determine the channel state information 1 corresponding to the first channel based on the first ranging frame. Specifically, it can determine the channel state information 1 corresponding to the first channel based on at least one first symbol. Channel status information1.
  • the second node #2 may determine the channel state information 2 corresponding to the first channel according to the first ranging frame. It can be understood that the second node in the communication domain performs ranging on the first ranging frame broadcast by the first node.
  • the second node #1 sends the second ranging frame to the first node.
  • the first node receives the second ranging frame from the second node #1.
  • the second node #2 sends the third ranging frame to the first node.
  • the first node receives the third ranging frame from the second node #2.
  • the second ranging frame carries the second ranging information through at least one second symbol
  • the third ranging frame carries the second ranging information through at least one second symbol.
  • the frame structures of the first ranging frame, the second ranging frame and the third ranging frame are all the same, for example, they are all the above ranging frame 1.
  • the preset setting may be the order of the sizes of the identifiers of the multiple second nodes in the communication domain.
  • the identifier of the second node #1 in the communication domain is node 1
  • the identifier of the second node #2 in the communication domain is node 1.
  • the identifier in the domain is node 2. If the identifiers are in the order from small to large, then the second ranging frame is before the third ranging frame in the time domain; if the identifiers are in the order from large to small, then the second ranging frame in the time domain is The ranging frame follows the third ranging frame.
  • the preset settings may be the order of multiple second nodes determined during the ranging negotiation process. For example, during the ranging negotiation process, it is determined that the second node #1 is before the second node #2. Then the second ranging frame is before the third ranging frame in the time domain; for another example, it is determined that the second node #2 is before the second node #1 during the ranging negotiation process, then the third ranging frame is before the second ranging frame in the time domain. The distance frame is before the second ranging frame.
  • the first ranging frame includes a first wireless frame
  • the second ranging frame and the third ranging frame respectively include a second wireless frame.
  • wireless frames #0 to #11 are used to transmit control information
  • the second ranging frame precedes the third ranging frame.
  • Figure 10 takes the first node broadcasting the first ranging frame to two second nodes on the first channel as an example. Further, on the first channel, the first node broadcasts the first ranging frame and receives the first ranging frame from the second node. The second ranging frame of the node receives P third ranging frames from P third nodes (taking a third node sending a third ranging frame as an example), and the P third ranging frames are connected to the second ranging frame. The order of ranging frames in the time domain meets the preset settings. Among them, the second node and the third node are both T nodes.
  • the first node broadcasts the first ranging frame, receives multiple second ranging frames from multiple second nodes (taking one second node sending one second ranging frame as an example), and multiple second ranging frames.
  • the order of ranging frames in the time domain meets the preset settings.
  • the first node broadcasts the first ranging frame, which can save overhead and reduce power consumption of the first node.
  • Figure 9 and Figure 10 take the first channel as the initial channel (group) of frequency hopping ranging as an example to perform ranging interaction. If the initial channel is switched to the frequency hopping channel (or described as frequency hopping from the initial channel to another channel) , the ranging interaction on the frequency hopping channel is similar to the ranging interaction on the first channel. For example, the frequency hopping channel is called the second channel.
  • Figure 11 is a schematic flow chart of another ranging method provided by this application. The method may include but is not limited to the following steps:
  • the first node sends a fourth ranging frame to the second node.
  • the second node receives the fourth ranging frame from the first node.
  • the fourth ranging frame carries the first ranging information through at least one first symbol.
  • the fourth ranging frame has the same or different frame structure as the first ranging frame.
  • the first ranging frame is the above-mentioned ranging frame 4
  • the fourth ranging frame is the above-mentioned ranging frame 1; for another example, the first ranging frame and the fourth ranging frame are both the above-mentioned ranging frame 1.
  • the second node determines third channel state information corresponding to the second channel according to the fourth ranging frame.
  • the second node sends the fifth ranging frame to the first node.
  • the first node receives the fifth ranging frame from the second node.
  • the fifth ranging frame carries the second ranging information through at least one second symbol.
  • the frame structures of the fifth ranging frame and the second ranging frame are the same or different.
  • the fifth ranging frame is the above-mentioned ranging frame 4
  • the second ranging frame is the above-mentioned ranging frame 1
  • the fifth ranging frame and the second ranging frame are both the above-mentioned ranging frame 1.
  • the second node sends third channel status information to the first node.
  • the first node receives the third channel state information from the second node.
  • S1105 The first node determines fourth channel state information corresponding to the second channel according to the fifth ranging frame.
  • the first node determines the channel state information of the second channel based on the third channel state information and the fourth channel state information.
  • the channel state information of the second channel is used to measure the distance between the first node and the second node.
  • the first node determines the distance between the first node and the second node according to the channel state information of the first channel and the channel state information of the second channel. That is to say, the first node determines the final distance between the first node and the second node based on the channel state information of multiple channels. For example, in a vehicle positioning scenario, it can represent the distance between the car key and a certain positioning node. Frequency hopping can expand the measurement bandwidth of frequency hopping ranging and help improve the accuracy and precision of ranging. The distance between the first node and the second node in this application is determined through the ranging interaction of multiple channels. , with high accuracy and precision.
  • the first node may send the distance between the first node and the second node to the second node, so that the second node can learn the distance from the first node.
  • Channel switching can be implemented through the following method 1 and/or method 2.
  • Method 1 the first node and/or the second node can perform channel switching based on the first information.
  • the first information is used to indicate channel switching or frequency hopping.
  • the first information may be preconfigured frequency hopping information, such as a preconfigured timer. When the timer times out, channel switching may be performed.
  • Method 2 can be divided into two types according to the frame structure of the ranging frame, as follows: method 2.1 and method 2.2.
  • the first ranging frame and the second ranging frame are the above-mentioned ranging frame 1 or ranging frame 2 or ranging frame 3.
  • the first ranging frame includes at least one first wireless frame
  • the second ranging frame includes At least one second radio frame.
  • the last second radio frame among the at least one second radio frame it receives if the last M symbols used to carry the second ranging information contained in the last second radio frame are the same as the last If other symbols used to carry second ranging information in a second radio frame are inverted, then the last second radio frame may indicate channel switching.
  • the first node may perform channel switching.
  • the last first radio frame among the at least one first radio frame it receives if the last N symbols used to carry the first ranging information contained in the last first radio frame are the same as the last If other symbols used to carry the first ranging information in a first radio frame are inverted, then the last first radio frame may indicate channel switching.
  • the second node may perform channel switching when the transmission of the second ranging frame is completed.
  • the first ranging frame and the second ranging frame are the above ranging frames 4.
  • the first ranging frame consists of at least one first overhead symbol
  • the second ranging frame consists of at least one second overhead symbol.
  • the last Y second overhead symbols among the at least one second overhead symbol it receives are inverted with other second overhead symbols used to carry the second ranging information, then the inverted The last Y second overhead symbols may indicate channel switching, or the first radio frame in which the inverted last Y second overhead symbols are located may indicate channel switching.
  • the first node may perform channel switching.
  • the inverted The last X first overhead symbols may indicate channel switching, or the first radio frame in which the inverted last X first overhead symbols are located may indicate channel switching.
  • the second node may perform channel switching when the transmission of the second ranging frame is completed.
  • Mode 1 and Mode 2 are used as examples and do not constitute a limitation of the present application. It should be noted that when the timer in Mode 1 has not expired and Mode 2 indicates channel switching, Mode 2 can be used directly to perform channel switching, that is, regardless of whether the timer times out.
  • the number of the above-mentioned fourth ranging frames and/or the number of the fifth ranging frames may be indicated by the second information.
  • the second information is used to indicate the number of fourth ranging frames transmitted continuously in time and/or the number of fifth ranging frames transmitted continuously in time.
  • continuous transmission of ranging frames is beneficial to improving the accuracy and precision of ranging.
  • the first node may send the second information to the second node so that the second node receives the fourth ranging frame and/or sends the fifth ranging frame.
  • the second information may be carried in the above-mentioned first configuration information, or in the above-mentioned third configuration information.
  • the difference between the number of symbols used to carry the first ranging information included in the fourth ranging frame and the number of symbols used to carry the first ranging information included in the first ranging frame is smaller than the second Threshold; and/or, the difference between the number of symbols contained in the fifth ranging frame for carrying the second ranging information and the number of symbols contained in the second ranging frame for carrying the second ranging information. is less than the second threshold, so as to maintain the same or similar SNR on different channels.
  • the difference may be an absolute value, and the second threshold may be 1; the difference may also be a relative value, and the second threshold may be ⁇ 1.
  • the fourth ranging frame is the above-mentioned ranging frame 1
  • the first ranging frame is the above-mentioned ranging frame 4
  • the number of overhead symbols included in the ranging frame 4 for carrying the ranging information 1 is the same as the ranging frame
  • the difference between the number of symbols included in 4 for carrying ranging information 1 is less than the second threshold.
  • the first node when hopping from the first channel to the second channel, the first node sends preamble information to the second node before sending the above ranging frame 1 or ranging frame 2 to the second node, and the preamble information is used Retiming and frequency synchronization between the first node and the second node.
  • the second node sends preamble information to the first node before sending the above ranging frame 1 or ranging frame 2 to the first node may be indicated by the preamble information sent by the first node to the second node.
  • the first node when hopping from the first channel to the second channel, the first node broadcasts preamble information before broadcasting the above ranging frame 1 or ranging frame 2, and the preamble information is used for the first The node retimes and frequency synchronizes with multiple second nodes.
  • the preamble information is also used to indicate that the ranging interaction mode is multicast.
  • the ranging interaction between the first node and three second nodes can be referred to Figure 11-1.
  • the first node after passing T RF , the first node performs CCA and accesses the second channel; after sending the preamble information, the first node sends ranging frame 1 (carried by all symbols in wireless frame #13);
  • the three second nodes send the ranging frame 1 according to the preset settings.
  • the ranging frame 1 sent by the second node 1 is carried by all symbols in the wireless frame #14, and the ranging frame 1 sent by the second node 2 is carried by the wireless frame. All symbols in #15 are carried, and ranging frame 1 sent by the second node 3 is carried by all symbols in radio frame #16.
  • the second channel is a frequency hopping channel.
  • Frequency hopping is used to expand the measurement bandwidth of frequency hopping ranging, which helps to improve the accuracy and precision of ranging.
  • a wireless frame can be a frame format in which OFDM symbol parameters are preconfigured by the G node (the frame length can be less than 640 ⁇ Ts), and a wireless frame can contain preconfigured Q OFDM symbols, where Q is a positive integer, and Q is The value size is configurable based on the desired SNR.
  • the pre-configured OFDM symbol parameters include at least one of the following: with or without CP, extended CP or conventional CP, carrying CSI-RS or SRS or FTS or STS, etc.
  • a device for implementing any method in the embodiment of the present application.
  • a device is provided that includes a device for implementing each of the steps executed by a node in any of the above methods.
  • FIG. 12 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 120 may include a communication unit 1201 and a processing unit 1202 .
  • the communication unit 1201 and the processing unit 1202 may be software, hardware, or a combination of software and hardware.
  • the communication unit 1201 can implement a sending function and/or a receiving function, and the communication unit 1201 can also be described as a transceiver unit, an acquisition unit or a sending unit.
  • the communication unit 1201 may also be a unit that integrates an acquisition unit and a sending unit, where the acquisition unit is used to implement the receiving function and the sending unit is used to implement the sending function.
  • the communication unit 1201 can be used to receive information sent by other devices, and can also be used to send information to other devices.
  • the communication device 120 may correspond to the first node in the above method embodiment.
  • the communication device 120 may be the first node or a chip in the first node.
  • the communication device 120 may include a unit for performing the operations performed by the first node in the above method embodiment, and each unit in the communication device 120 is respectively used to implement the operations performed by the first node in the above method embodiment. operate. Among them, the descriptions of each unit are as follows:
  • the communication unit 1201 is configured to send a first ranging frame on the first channel, and the first ranging frame carries the first ranging information through at least a first symbol; and on the first channel, receive the first ranging frame from the second node.
  • Two ranging frames, the second ranging frame carries second ranging information through at least one second symbol; receiving first channel state information, the first channel state information is channel state information from the second node corresponding to the first channel ;
  • the processing unit 1202 is configured to determine the second channel state information corresponding to the first channel based on at least one second symbol; determine the channel state information of the first channel based on the first channel state information and the second channel state information.
  • the channel state information is used to measure the distance between the sender of the first ranging frame and the second node.
  • the first ranging frame includes at least one first wireless frame
  • the second ranging frame includes at least one second wireless frame
  • Optional mode 1 The symbols in the at least one first radio frame are all used to carry the first ranging information, the symbols in the at least one second radio frame are all used to carry the second ranging information, the first radio frame and There is a switching interval between the second wireless frames, and the switching interval is used to perform transceiver switching.
  • Optional method 2 For any one of the above at least one first radio frame: the first radio frame includes a switching interval, and each symbol except the switching interval is used to carry the first ranging information. , and the switching interval is located in time after the symbol used to carry the first ranging information; for any second radio frame of the at least one second radio frame: the second radio frame includes the switching interval, except for the switching interval Each symbol other than the symbol used to carry the second ranging information is used to carry the second ranging information, and the switching interval is located in time after the symbol used to carry the second ranging information. Among them, the switching interval is used to perform sending and receiving switching.
  • the first radio frame includes a switching interval, a first overhead symbol and a first link symbol, a first overhead symbol and a first link symbol.
  • Link symbols are used to carry first ranging information;
  • the second wireless frame includes a switching interval, a second overhead symbol and a second link symbol, The second overhead symbol and the second link symbol are used to carry second ranging information.
  • the switching interval is used to perform sending and receiving switching.
  • the first link symbol and the second link symbol are used to carry information in different transmission directions.
  • the communication unit 1201 is also configured to send a first bit image, where the first bit image is used to indicate the above-mentioned first wireless frame within a superframe.
  • the last N symbols contained in it for carrying the first ranging information are the same as the other ones in the last first radio frame used for carrying the first ranging information.
  • the sign of the ranging information is inverted, and the last first wireless frame indicates channel switching; where N is a positive integer;
  • the last M symbols used to carry the second ranging information contained therein are the same as the other ones in the last second radio frame used to carry the second ranging information.
  • the sign of the ranging information is inverted, and the last second wireless frame indicates channel switching; where M is a positive integer.
  • the first ranging frame consists of at least one first overhead symbol, and the at least one first overhead symbol is all or part of the overhead symbol of the at least one first wireless frame, and the at least one first overhead symbol Used to carry the first ranging information;
  • the second ranging frame consists of at least one second overhead symbol, the at least one second overhead symbol is all or part of the overhead symbol of at least one second wireless frame, and the at least one second overhead symbol is To carry the second ranging information.
  • the at least one first overhead symbol is a partial overhead symbol of at least one first radio frame
  • the at least one third overhead symbol of at least one first radio frame is a first link system overhead symbol or a second link system overhead symbol.
  • Overhead symbols; the above-mentioned at least one second overhead symbol is a partial overhead symbol of at least one second wireless frame, and at least one fourth overhead symbol of at least one second wireless frame is a first link system overhead symbol or a second link system overhead symbol.
  • the difference between the number of symbols used to carry the first ranging information in the first ranging frame and the number of symbols used to carry the second ranging information in the second ranging frame less than the first threshold.
  • the communication unit is also configured to send a second bitmap, where the second bitmap is used to indicate overhead symbols used to carry the first ranging information within a superframe.
  • the last X first overhead symbols of the above-mentioned at least one first overhead symbol are inverted with other first overhead symbols used to carry the first ranging information, and the inverted last X is a positive integer;
  • the last Y second overhead symbols of the at least one second overhead symbol are inverted with other second overhead symbols used to carry the second ranging information, and the inverted last Y second overhead symbols indicate channel switching. ; Among them, Y is a positive integer.
  • the number of the first wireless frame included in the first ranging frame is greater than K, and the overhead symbols in the first wireless frame to the wireless frame numbered K in the superframe are Used to transmit control information, K is a positive integer greater than 1.
  • the communication unit 1201 is also configured to receive P third ranging frames from P third nodes on the first channel, where the third ranging frames are carried by at least one second symbol.
  • the second ranging information, the third ranging frame and the second ranging frame have the same frame structure, and P is a positive integer.
  • the order of the P third ranging frames and the second ranging frames in the time domain satisfies the preset settings.
  • the communication unit 1201 is further configured to send a fourth ranging frame on the second channel according to the first information used to indicate channel switching, and the fourth ranging frame passes through at least one first The symbol carries the first ranging information; the frame structure of the fourth ranging frame is the same as or different from the first ranging frame; on the second channel, the fifth ranging frame is received from the second node, and the fifth ranging frame passes At least one second symbol carries second ranging information; the fifth ranging frame has the same frame structure as the fourth ranging frame; third channel state information is received, and the third channel state information is from the second node and corresponds to the second Channel status information of the channel;
  • the processing unit 1202 is also configured to determine the fourth channel state information corresponding to the second channel according to the fifth ranging frame; determine the channel state information of the second channel according to the third channel state information and the fourth channel state information.
  • the second channel The channel state information is used to measure the distance between the sender of the fourth ranging frame and the second node.
  • processing unit 1202 is also configured to determine the distance between the sender of the first ranging frame and the second node according to the channel state information of the first channel and the channel state information of the second channel.
  • the communication unit 1201 is also configured to receive second information, and the second information is used to indicate the number of fourth ranging frames that are continuously transmitted in time and/or the number of fifth ranging frames that are continuously transmitted in time.
  • the difference between the number of symbols used to carry the first ranging information included in the fourth ranging frame and the number of symbols used to carry the first ranging information included in the first ranging frame is less than the Two thresholds; and/or, the difference between the number of symbols used to carry the second ranging information contained in the fifth ranging frame and the number of symbols used to carry the second ranging information contained in the second ranging frame The value is less than the second threshold.
  • the communication device 120 may correspond to the second node in the above method embodiment.
  • the communication device 120 may be the second node or a chip in the second node.
  • the communication device 120 may include units for performing the operations performed by the second node in the above method embodiment, and each unit in the communication device 120 is respectively used to implement the operations performed by the second node in the above method embodiment. operate. Among them, the descriptions of each unit are as follows:
  • the communication unit 1201 is configured to receive the first ranging frame from the first node on the first channel, where the first ranging frame carries the first ranging information through at least one first symbol; on the first channel, send the first ranging frame to the first ranging frame.
  • a node sends a second ranging frame, and the second ranging frame carries second ranging information through at least one second symbol;
  • the processing unit 1202 is configured to determine the first channel state information corresponding to the first channel according to at least one first symbol;
  • the communication unit 1201 is also configured to send first channel state information to the first node, where the first channel state information is used to measure the distance between the first node and the receiver of the first ranging frame.
  • the communication unit 1201 is also configured to receive the first bit image, which is used to indicate the first wireless frame within a superframe; the symbols in the first wireless frame are used to carry First ranging information; or, the first wireless frame includes a switching interval, each symbol except the switching interval is used to carry the first ranging information, and the switching interval is located in time for carrying the first ranging information After the symbol of the message, the switching interval is used to perform transceiver switching.
  • the communication unit 1201 is also configured to receive a second bitmap, where the second bitmap is used to indicate overhead symbols used to carry the first ranging information within a superframe.
  • the communication unit 1201 is also configured to receive a fourth ranging frame from the first node on the second channel according to the first information, where the fourth ranging frame carries the first ranging information through at least one first symbol. ;
  • the frame structure of the fourth ranging frame is the same as or different from the first ranging frame; the first information is used to indicate channel switching; on the second channel, the fifth ranging frame is sent to the first node, and the fifth ranging frame
  • the second ranging information is carried through at least one second symbol; the fifth ranging frame and the fourth ranging frame have the same frame structure;
  • the processing unit 1202 is also configured to determine the third channel state information corresponding to the second channel according to the fifth ranging frame;
  • the communication unit 1201 is also configured to send third channel state information to the first node, where the third channel state information is used to measure the distance between the first node and the receiver of the fourth ranging frame.
  • the communication unit 1201 is also configured to receive the distance between the recipient of the first ranging frame from the first node and the first node.
  • each unit in the device shown in Figure 12 can be separately or entirely combined into one or several additional units, or one (some) of the units can be further split into functionally more advanced units. It is composed of multiple small units, which can achieve the same operation without affecting the realization of the technical effects of the embodiments of the present application.
  • the above units are divided based on logical functions. In practical applications, the function of one unit can also be realized by multiple units, or the functions of multiple units can be realized by one unit. In other embodiments of the present application, the node-based system may also include other units. In practical applications, these functions may also be implemented with the assistance of other units, and may be implemented by multiple units in collaboration.
  • each unit may also refer to the corresponding descriptions of the method embodiments shown in FIG. 9, FIG. 10, and FIG. 12.
  • the transmission of the ranging frame for the first channel between nodes can be realized.
  • the ranging frame carries the ranging information through at least one symbol, which can realize the transmission of the ranging information.
  • the channel state information of the first channel can be determined, thereby realizing ranging interaction for the first channel and helping to improve the ranging accuracy.
  • FIG. 13 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 130 shown in FIG. 13 is only an example.
  • the communication device in the embodiment of the present application may also include other components, or components with similar functions to the components in FIG. 13 , or is not intended to include the components in FIG. 13 . All parts.
  • the communication device 130 includes a communication interface 1301 and at least one processor 1302.
  • the communication device 130 may correspond to the first node or the second node.
  • the communication interface 1301 is used to send and receive information, and at least one processor 1302 executes program instructions, so that the communication device 130 implements the corresponding process of the method executed by the corresponding node in the above method embodiment.
  • the communication device 130 may correspond to the first node in the method embodiment shown in FIG. 3.
  • the communication device 130 may be the first node or a chip in the first node.
  • the communication device 130 may include components for performing the operations performed by the first node in the above method embodiment, and each component in the communication device 130 is respectively used to implement the operations performed by the first node in the above method embodiment.
  • the operation may specifically correspond to the corresponding description of the first node in the method embodiment shown in FIG. 9, FIG. 10, and FIG. 11.
  • the communication device 130 may correspond to the second node in the method embodiment shown in FIG. 3.
  • the communication device 130 may be the second node, or may be a second node in the second node. chip.
  • the communication device 130 may include components for performing the operations performed by the second node in the above method embodiment, and each component in the communication device 130 is respectively used to implement the operations performed by the second node in the above method embodiment.
  • the operation may specifically correspond to the corresponding description of the second node in the method embodiment shown in FIG. 9, FIG. 10, and FIG. 11.
  • the communication device may be a chip or a chip system
  • the communication device may be a chip or a chip system
  • the chip 140 includes a processor 1401 and an interface 1402.
  • the number of processors 1401 may be one or more, and the number of interfaces 1402 may be multiple. It should be noted that the corresponding functions of the processor 1401 and the interface 1402 can be realized through hardware design, software design, or a combination of software and hardware, which are not limited here.
  • the chip 140 may also include a memory 1403, which is used to store necessary program instructions and data.
  • the processor 1401 can be used to call the implementation program of the communication method provided by one or more embodiments of this application on the first node or the second node from the memory 1403, and execute the instructions contained in the program.
  • the interface 1402 may be used to output execution results of the processor 1401. In this application, the interface 1402 may be specifically used to output various messages or information from the processor 1401.
  • the processor in the embodiment of the present application can be a central processing unit (Central Processing Unit, CPU).
  • the processor can also be other general-purpose processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits (application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the memory in the embodiment of the present application is used to provide storage space, and data such as operating systems and computer programs can be stored in the storage space.
  • Memory includes but is not limited to random access memory (RAM), read-only memory (ROM), erasable programmable read only memory (EPROM), or portable Read-only memory (compact disc read-only memory, CD-ROM).
  • the embodiment of the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the embodiment of the present application also provides a computer program product.
  • the above-mentioned computer program product includes a computer program.
  • the above-mentioned computer program is run on a processor, the above-mentioned Figures 9, 10, and The method shown in 11.
  • An embodiment of the present application provides a terminal device, which includes at least one communication device 120, communication device 130, or chip 140 as described above.
  • Embodiments of the present application also provide a system, which includes a terminal device and at least one communication device 120 or communication device 130 or chip 140 as described above, for executing the corresponding steps in any one of the embodiments of FIG. 9, FIG. 10, and FIG. 11. The steps the node performs.
  • An embodiment of the present application also provides a processing device, including a processor and an interface; the processor is configured to execute the method in any of the above method embodiments.
  • the processing device may be a chip.
  • the processing device can be a field programmable gate array (FPGA), a general processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC) , off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, system on chip (SoC), or central processing unit
  • FPGA field programmable gate array
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processor
  • MCU microcontroller
  • PLD programmable logic device
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory. Volatile memory can be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the usable media may be magnetic media (e.g., floppy disks, hard disks, tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks, SSD)) etc.
  • magnetic media e.g., floppy disks, hard disks, tapes
  • optical media e.g., high-density digital video discs (DVD)
  • DVD digital video discs
  • semiconductor media e.g., solid state disks, SSD
  • the units in each of the above device embodiments correspond completely to the electronic equipment in the method embodiments, and the corresponding modules or units perform corresponding steps.
  • the communication unit transmits the steps of receiving or sending in the method embodiments, except for sending.
  • other steps besides receiving may be performed by the processing unit (processor).
  • the processing unit processor
  • the electronic device can perform some or all of the steps in the embodiments of the present application. These steps or operations are only examples. The embodiments of the present application can also perform other operations or variations of various operations. In addition, various steps may be performed in a different order than those presented in the embodiments of the present application, and it may not be necessary to perform all operations in the embodiments of the present application.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory ROM, random access memory RAM, magnetic disk or optical disk and other various media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种测距方法及装置,可应用于车载定位和室内定位的场景。其中,该方法可包括:在第一信道上,发送第一测距帧,第一测距帧通过至少一个第一符号承载第一测距信息;在第一信道上,接收来自第二节点的第二测距帧,第二测距帧通过至少一个第二符号承载第二测距信息,从而实现针对第一信道的测距帧的传输;接收来自第二节点的、对应第一信道的第一信道状态信息;根据至少一个第二符号确定对应第一信道的第二信道状态信息;根据第一信道状态信息和第二信道状态信息,确定第一信道的信道状态信息,第一信道的信道状态信息用于测量第一测距帧的发送方与第二节点之间的距离,从而实现针对第一信道的节点间测距,有助于提高测距精度。

Description

测距方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种测距方法及装置。
背景技术
随着无线通信技术的不断发展,智能家居、智能座舱、智能驾驶、智能制造、智能运输等智能应用场景应运而生。基于无线通信技术,可以实现无线测距和/或定位,例如应用于室内定位、无钥匙进入和启动(passive entry passive start,PEPS)、资产管理、物流管理等方面。
以智能座舱为例,车内存在多个通信域,一个通信域包括一个主节点和至少一个从节点,其中主节点调度从节点的时频资源,实现节点间的数据传输。例如,在主节点可以使用的一个载波(例如带宽为20MHz的信道)上,主节点可以调度用于从节点通信的时频资源。
目前,针对节点间的数据传输定义了通信帧,但是针对节点间测距(ranging)未定义测距帧,因此如何实现节点间测距是亟待解决的技术问题。
发明内容
本申请提供一种测距方法及装置,可以实现节点间测距,有助于提高测距精度。
第一方面,本申请提供一种测距方法,该方法可以包括:在第一信道上,发送第一测距帧,第一测距帧通过至少一个第一符号承载第一测距信息;在第一信道上,接收来自第二节点的第二测距帧,第二测距帧通过至少一个第二符号承载第二测距信息;接收第一信道状态信息,第一信道状态信息是来自第二节点的、对应第一信道的信道状态信息;根据至少一个第二符号确定对应第一信道的第二信道状态信息;根据第一信道状态信息和第二信道状态信息,确定第一信道的信道状态信息,第一信道的信道状态信息用于测量第一测距帧的发送方与第二节点之间的距离。
可见,在第一信道上,通过发送第一测距帧和接收第二测距帧,可实现针对第一信道的测距帧的传输。测距帧通过至少一个符号承载测距信息,可实现测距信息的传输。根据对应第一信道的第一信道状态信息和第二信道状态信息,可确定出第一信道的信道状态信息,从而实现针对第一信道的节点间测距,有助于提高测距精度。
可选的,第一测距帧与第二测距帧的帧结构相同,以在第一信道上采用相同帧结构的测距帧,有助于提高测距帧传输的稳定性。
在一种可能的实现方式中,第一测距帧包括至少一个第一无线帧,第二测距帧包括至少一个第二无线帧。
可选方式1:上述至少一个第一无线帧中的符号均用于承载第一测距信息,上述至少一个第二无线帧中的符号均用于承载第二测距信息,第一无线帧与第二无线帧之间存在切换间隔,切换间隔用于执行收发切换。可选方式1下,切换间隔不占用第一无线帧的时长,也不占用第二无线帧的时长,从而可以节省开销;第一无线帧中的符号均用于承载第一测距信息,第二无线帧中的符号均用于承载第二测距信息,提高了测距信息的传输量,从而提高传输效率和测距准确度。可选方式1可以适用于第一信道为跳频测距的初始信道或跳频信道的情况。
可选方式2:对于上述至少一个第一无线帧中的任意一个第一无线帧而言:第一无线帧包含切换间隔,除切换间隔之外的每个符号均用于承载第一测距信息,并且,切换间隔在时间上位于用于承载第一测距信息的符号之后,也就是说切换间隔占用第一无线帧中一个符号 的时长;对于上述至少一个第二无线帧的任意一个第二无线帧而言:第二无线帧包含切换间隔,除切换间隔之外的每个符号均用于承载第二测距信息,并且,切换间隔在时间上位于用于承载第二测距信息的符号之后,也就是说切换间隔占用第二无线帧中一个符号的时长。其中,切换间隔用于执行收发切换。第一无线帧中的切换间隔在时间上位于用于承载第一测距信息的符号之后,第二无线帧中的切换间隔在时间上位于用于承载第二测距信息的符号之后,减少了上下行切换间隔,从而可节省开销。除切换间隔之外的符号均用于承载测距信息,提高了测距信息的传输量,从而提高传输效率和测距准确度。可选方式2可以适用于第一信道为跳频测距的初始信道或跳频信道的情况。
可选方式3:对于上述至少一个第一无线帧中的任意一个第一无线帧而言:第一无线帧包括切换间隔、第一开销符号和第一链路符号,第一开销符号和第一链路符号用于承载第一测距信息;对于上述至少一个第二无线帧中的任意一个第二无线帧而言:第二无线帧包括切换间隔、第二开销符号和第二链路符号,第二开销符号和第二链路符号用于承载第二测距信息。其中,切换间隔用于执行收发切换。第一链路符号为向第二节点发送的链路符号,第二链路符号为第二节点发送的链路符号。可选方式3可以兼容包括切换间隔、开销符号和链路符号的无线帧,提高了测距信息的传输量,从而提高传输效率和测距准确度。可选方式3可以适用于第一信道为跳频测距的初始信道的情况。
其中,第一无线帧和/或第二无线帧包含的切换间隔的个数为2个,进一步的,第一无线帧还包括至少一个第二链路符号,和/或,第二无线帧还包括至少一个第一链路符号,可以实现测距信息和数据的并行传输。其中,第一链路符号与第二链路符号用于承载不同传输方向的信息。
可选的,上述方法还包括:发送第一位图,第一位图用于指示一个超帧内的上述第一无线帧,以便第二节点确定在一个超帧内哪些无线帧为第一无线帧。可选的,第一位图为48比特的位图,一个比特的取值指示该比特对应的无线帧是否为第一无线帧。
可选的,上述第一位图可携带在向第二节点发送的第一配置信息中,第一配置信息还可包括超帧数量L1和/或第一指示信息,L1为正整数。超帧数量L1,即L1个超帧,这L1个超帧在时域上连续。L1个超帧中的每个超帧均包含第一测距帧,第二节点可根据超帧数量L1和第一位图确定传输第一测距帧的时频资源。
第一指示信息用于指示L1个超帧中每个超帧对应的第一位图是否相同。若指示相同,那么第一配置信息可包括一个第一位图,该第一位图适用于L1个超帧中的每个超帧,进而第二节点可根据该第一位图和L1个超帧,确定传输第一测距帧的时频资源。若指示不相同,那么第一配置信息可最多包括L1个第一位图,第二节点可根据L1个超帧中每个超帧对应的第一位图,分别确定传输第一测距帧的时频资源。
可选的,对于上述至少一个第一无线帧中的最后一个第一无线帧,其包含的用于承载第一测距信息的最后N个符号与最后一个第一无线帧中其它用于承载第一测距信息的符号反相,最后一个第一无线帧指示信道切换;其中,N为正整数;
和/或,对于至少一个第二无线帧中的最后一个第二无线帧,其包含的用于承载第二测距信息的最后M个符号与最后一个第二无线帧中其它用于承载第二测距信息的符号反相,最后一个第二无线帧指示信道切换;其中,M为正整数。
可见,通过最后一个第一无线帧和/或最后一个第二无线帧,可指示信道切换,以从第一信道跳频至另一个信道,进而便于在另一个信道上进行测距交互。
在另一种可能的实现方式中,第一测距帧由至少一个第一开销符号组成,至少一个第一 开销符号为至少一个第一无线帧的全部或部分开销符号,至少一个第一开销符号用于承载第一测距信息;第二测距帧由至少一个第二开销符号组成,至少一个第二开销符号为至少一个第二无线帧的全部或部分开销符号,至少一个第二开销符号用于承载第二测距信息。该方式可以兼容包括开销符号和链路符号的无线帧,使用开销符号承载测距信息,可以提高开销符号的利用率。该方式可以适用于第一信道为跳频测距的初始信道的情况。
可选的,上述至少一个第一开销符号为至少一个第一无线帧的部分开销符号,至少一个第一无线帧的至少一个第三开销符号为第一链路系统开销符号或第二链路系统开销符号;上述至少一个第二开销符号为至少一个第二无线帧的部分开销符号,至少一个第二无线帧的至少一个第四开销符号为第一链路系统开销符号或第二链路系统开销符号。第一链路系统开销符号和第二链路系统开销符号用于保障数据通信,至少一个第一无线帧的部分开销符号用于承载测距信息,另一部分开销符号用于保障数据通信,从而可以实现测距信息和数据的并行传输。
进一步的,同一第一无线帧中的第一开销符号与第三开销符号可以梳齿方式排列,梳齿方式可以维持通信系统的同步性能,在保障通信系统的通信性能的同时,利用通信符号的同步精度提升测距的精度。和/或,同一第二无线帧中的第二开销符号与第四开销符号可以梳齿方式排列,梳齿方式可以维持通信系统的同步性能,在保障通信系统的通信性能的同时,利用通信符号的同步精度提升测距的精度。
可选的,上述至少一个第一开销符号为至少一个第一无线帧的全部开销符号,上述至少一个第二开销符号为至少一个第二无线帧的全部开销符号,有助于扩大多普勒(Doppler)频移的估计范围,可适用于高速移动场景下的测距。
可选的,在第一信道上,第一测距帧中用于承载第一测距信息的符号数量与第二测距帧中用于承载第二测距信息的符号数量之间的差值小于第一阈值,以使确定第一信道状态信息时的信噪比(signal-to-noise ratio,SNR)与确定第二信道状态信息时的SNR相同或相近,从而得到具有相同或相近准确度的第一信道状态信息和第二信道状态信息,从而根据第一信道状态信息和第二信道状态信息确定得到更高准确度的第一信道上的信道状态信息。
可选的,上述方法还包括:发送第二位图,第二位图用于指示一个超帧内用于承载第一测距信息的开销符号,以便第二节点确定在一个超帧内哪些开销符号承载了第一测距信息。可选的,第二位图为96比特的位图,一个比特的取值指示该比特对应的开销符号是否承载第一测距信息。
可选的,上述至少一个第一开销符号的最后X个第一开销符号与其它用于承载第一测距信息的第一开销符号反相,反相的最后X个符号指示信道切换,以实现从第一信道跳频至另一个信道,进而便于在另一个信道上进行测距交互;其中,X为正整数;
和/或,上述至少一个第二开销符号的最后Y个第二开销符号与其它用于承载第二测距信息的第二开销符号反相,反相的最后Y个第二开销符号指示信道切换,以实现从第一信道跳频至另一个信道,进而便于在另一个信道上进行测距交互;其中,Y为正整数。
可选的,在一个超帧内,第一测距帧包含的第一个第一无线帧的编号大于K,该超帧内的第1个无线帧至编号为K的无线帧中的开销符号用于传输控制信息,K为大于1的正整数。用于传输控制信息的开销符号不用于测距,即不承载测距信息。
在一种可能的实现方式中,上述方法还包括:在第一信道上,接收来自P个第三节点的P个第三测距帧,第三测距帧通过至少一个第二符号承载第二测距信息,第三测距帧与第二测距帧的帧结构相同,P为正整数。第三节点与第二节点的节点类型相同。也就是说,在第 一信道上,广播第一测距帧,接收来自多个第二节点的多个第二测距帧,从而实现在第一信道上的组播测距交互。
进一步的,P个第三测距帧和第二测距帧在时域上的顺序满足预先的设置,也就是说多个第二节点按照预先设置的顺序发送第二测距帧。
在一种可能的实现方式中,上述方法还包括:根据用于指示信道切换的第一信息,在第二信道上,发送第四测距帧,第四测距帧通过至少一个第一符号承载第一测距信息;第四测距帧与第一测距帧的帧结构相同或不同,也就是说在第一信道上传输的测距帧与在第二信道上传输的测距帧的帧结构可以相同或不同;在第二信道上,接收来自第二节点的第五测距帧,第五测距帧通过至少一个第二符号承载第二测距信息;第五测距帧与第四测距帧的帧结构相同;接收第三信道状态信息,第三信道状态信息是来自第二节点的、对应第二信道的信道状态信息;根据第五测距帧确定对应第二信道的第四信道状态信息;根据第三信道状态信息和第四信道状态信息,确定第二信道的信道状态信息,第二信道的信道状态信息用于测量第四测距帧的发送方与第二节点之间的距离,从而实现针对第二信道的节点间测距。可见,通过跳频可以提高测距的准确性和精度。
进一步的,上述方法还包括:根据第一信道的信道状态信息和第二信道的信道状态信息,确定第一测距帧的发送方与第二节点之间的距离。也就是,根据跳频测距的多个信道(包括跳频测距的初始信道和跳频测距的跳频信道)的信道状态信息,确定第一测距帧的发送方与第二节点之间的距离,从而得到的距离具有较高准确性和精度。进一步的,上述方法还包括:向第二节点发送第一测距帧的发送方与第二节点之间的距离,以便第二节点获知与第一测距帧的发送方之间的距离。
可选的,上述方法还包括:发送第二信息,第二信息用于指示时间上连续传输的第四测距帧的数量和/或时间上连续传输的第五测距帧的数量,以在跳频测距的跳频信道上连续传输测距帧,有利于提高测距的准确性和精度。
可选的,第四测距帧包含的用于承载第一测距信息的符号的数量与第一测距帧包含的用于承载第一测距信息的符号的数量之间的差值小于第二阈值;和/或,第五测距帧包含的用于承载第二测距信息的符号的数量与第二测距帧包含的用于承载第二测距信息的符号的数量之间的差值小于第二阈值,以使在不同信道上的信道状态信息保持相同或相近的SNR。
可选的,第一方面提供的方法可以由第一节点执行,也可以由第一节点中的模块执行,例如由第一节点中的芯片执行等。
第二方面,本申请提供一种测距方法,该方法可以包括:在第一信道上,接收来自第一节点的第一测距帧,第一测距帧通过至少一个第一符号承载第一测距信息;在第一信道上,向第一节点发送第二测距帧,第二测距帧通过至少一个第二符号承载第二测距信息;根据至少一个第一符号确定对应第一信道的第一信道状态信息;向第一节点发送第一信道状态信息,第一信道状态信息用于测量第一节点与第一测距帧的接收方之间的距离。
可见,在第一信道上,通过接收第一测距帧和发送第二测距帧,可实现针对第一信道的测距帧的传输。测距帧通过至少一个符号承载测距信息,可实现测距信息的传输。向第一节点发送第一信道状态信息,以便第一节点确定第一信道的信道状态信息,从而实现针对第一信道的节点间测距,有助于提高测距精度。
可选的,第一测距帧与第二测距帧的帧结构相同,以在第一信道上采用相同帧结构的测距帧,有助于提高测距帧传输的稳定性。
在一种可能的实现方式中,第一测距帧包括至少一个第一无线帧,第二测距帧包括至少一个第二无线帧。
可选方式1:上述至少一个第一无线帧中的符号均用于承载第一测距信息,上述至少一个第二无线帧中的符号均用于承载第二测距信息,第一无线帧与第二无线帧之间存在切换间隔,切换间隔用于执行收发切换。该方式下,切换间隔不占用第一无线帧的时长,也不占用第二无线帧的时长,从而可以节省开销;第一无线帧中的符号均用于承载第一测距信息,第二无线帧中的符号均用于承载第二测距信息,提高了测距信息的传输量,从而提高传输效率和测距准确度。可选方式1可以适用于第一信道为跳频测距的初始信道或跳频信道的情况。
可选方式2:对于上述至少一个第一无线帧中的任意一个第一无线帧而言:第一无线帧包含切换间隔,除切换间隔之外的每个符号均用于承载第一测距信息,并且,切换间隔在时间上位于用于承载第一测距信息的符号之后,也就是说切换间隔占用第一无线帧中一个符号的时长;对于上述至少一个第二无线帧的任意一个第二无线帧而言:第二无线帧包含切换间隔,除切换间隔之外的每个符号均用于承载第二测距信息,并且,切换间隔在时间上位于用于承载第二测距信息的符号之后,也就是说切换间隔占用第二无线帧。其中,切换间隔用于执行收发切换。第一无线帧中的切换间隔在时间上位于用于承载第一测距信息的符号之后,第二无线帧中的切换间隔在时间上位于用于承载第二测距信息的符号之后,减少了切换间隔的数量,从而可节省开销。除切换间隔之外的符号均用于承载测距信息,提高了测距信息的传输量,从而提高传输效率和测距准确度。可选方式2可以适用于第一信道为跳频测距的初始信道或跳频信道的情况。
可选方式3:对于上述至少一个第一无线帧中的任意一个第一无线帧而言:第一无线帧包括切换间隔、第一开销符号和第一链路符号,第一开销符号和第一链路符号用于承载第一测距信息;对于上述至少一个第二无线帧中的任意一个第二无线帧而言:第二无线帧包括切换间隔、第二开销符号和第二链路符号,第二开销符号和第二链路符号用于承载第二测距信息。其中,切换间隔用于执行收发切换。第一链路符号为向第二节点发送的链路符号,第二链路符号为第二节点发送的链路符号。可选方式3可以兼容包括切换间隔、开销符号和链路符号的无线帧,提高了测距信息的传输量,从而提高传输效率和测距准确度。可选方式3可以适用于第一信道为跳频测距的初始信道的情况。
其中,第一无线帧和/或第二无线帧包含的切换间隔的个数为2个,进一步的,第一无线帧还包括至少一个第二链路符号,和/或,第二无线帧还包括至少一个第一链路符号,可以实现测距信息和数据的并行传输。
可选的,上述方法还包括:接收第一位图,第一位图用于指示一个超帧内的上述第一无线帧,进而确定在一个超帧内的第一无线帧。可选的,第一位图为48比特的位图,一个比特的取值指示该比特对应的无线帧是否为第一无线帧。
可选的,上述第一位图可携带在第一节点发送的第一配置信息中,第一配置信息还可包括超帧数量L1和/或第一指示信息,L1为正整数。超帧数量L1,即L1个超帧,这L1个超帧在时域上连续。L1个超帧中的每个超帧均包含第一测距帧,进而可根据超帧数量L1和第一位图确定传输第一测距帧的时频资源。
第一指示信息用于指示L1个超帧中每个超帧对应的第一位图是否相同。若指示相同,那么第一配置信息可包括一个第一位图,该第一位图适用于L1个超帧中的每个超帧,进而可根据该第一位图和L1个超帧,确定传输第一测距帧的时频资源。若指示不相同,那么第一配置信息可最多包括L1个第一位图,进而可根据L1个超帧中每个超帧对应的第一位图,分别确 定传输第一测距帧的时频资源。
可选的,对于上述至少一个第一无线帧中的最后一个第一无线帧,其包含的用于承载第一测距信息的最后N个符号与最后一个第一无线帧中其它用于承载第一测距信息的符号反相,最后一个第一无线帧指示信道切换;其中,N为正整数;
和/或,对于至少一个第二无线帧中的最后一个第二无线帧,其包含的用于承载第二测距信息的最后M个符号与最后一个第二无线帧中其它用于承载第二测距信息的符号反相,最后一个第二无线帧指示信道切换;其中,M为正整数。
可见,通过最后一个第一无线帧和/或最后一个第二无线帧,可指示信道切换,以从第一信道跳频至另一个信道,进而便于在另一个信道上进行测距交互。
在另一种可能的实现方式中,第一测距帧由至少一个第一开销符号组成,至少一个第一开销符号为至少一个第一无线帧的全部或部分开销符号,至少一个第一开销符号用于承载第一测距信息;第二测距帧由至少一个第二开销符号组成,至少一个第二开销符号为至少一个第二无线帧的全部或部分开销符号,至少一个第二开销符号用于承载第二测距信息。该方式可以兼容包括开销符号和链路符号的无线帧,使用开销符号承载测距信息,可以提高开销符号的利用率。该方式可以适用于第一信道为跳频测距的初始信道的情况。
可选的,上述至少一个第一开销符号为至少一个第一无线帧的部分开销符号,至少一个第一无线帧的至少一个第三开销符号为第一链路系统开销符号或第二链路系统开销符号;上述至少一个第二开销符号为至少一个第二无线帧的部分开销符号,至少一个第二无线帧的至少一个第四开销符号为第一链路系统开销符号或第二链路系统开销符号。第一链路系统开销符号和第二链路系统开销符号用于保障数据通信,至少一个第一无线帧的部分开销符号用于承载测距信息,另一部分开销符号用于保障数据通信,从而可以实现测距信息和数据的并行传输。
进一步的,同一第一无线帧中的第一开销符号与第三开销符号可以梳齿方式排列,梳齿方式可以维持通信系统的同步性能,在保障通信系统的通信性能的同时,利用通信符号的同步精度提升测距的精度。和/或,同一第二无线帧中的第二开销符号与第四开销符号可以梳齿方式排列,梳齿方式可以维持通信系统的同步性能,在保障通信系统的通信性能的同时,利用通信符号的同步精度提升测距的精度。
可选的,上述至少一个第一开销符号为至少一个第一无线帧的全部开销符号,上述至少一个第二开销符号为至少一个第二无线帧的全部开销符号,有助于扩大多普勒(Doppler)频移的估计范围,可适用于高速移动场景下的测距。
可选的,在第一信道上,第一测距帧中用于承载第一测距信息的符号数量与第二测距帧中用于承载第二测距信息的符号数量之间的差值小于第一阈值,以使确定第一信道状态信息时的SNR与确定第二信道状态信息时的SNR相同或相近,从而得到具有相同或相近准确度的第一信道状态信息和第二信道状态信息,从而根据第一信道状态信息和第二信道状态信息确定得到更高准确度的第一信道上的信道状态信息。
可选的,上述方法还包括:接收第二位图,第二位图用于指示一个超帧内用于承载第一测距信息的开销符号,进而确定在一个超帧内承载第一测距信息的开销符号。可选的,第二位图为96比特的位图,一个比特的取值指示该比特对应的开销符号是否承载第一测距信息。
可选的,上述至少一个第一开销符号的最后X个第一开销符号与其它用于承载第一测距信息的第一开销符号反相,反相的最后X个第一开销符号指示信道切换,以实现从第一信道跳频至另一个信道,进而便于在另一个信道上进行测距交互;其中,X为正整数;
和/或,上述至少一个第二开销符号的最后Y个第二开销符号与其它用于承载第二测距信息的第二开销符号反相,反相的最后Y个第二开销符号指示信道切换,以实现从第一信道跳频至另一个信道,进而便于在另一个信道上进行测距交互;其中,Y为正整数。
可选的,在一个超帧内,第一测距帧包含的第一个第一无线帧的编号大于K,该超帧内的第1个无线帧至编号为K的无线帧中的开销符号用于传输控制信息,K为大于1的正整数。用于传输控制信息的开销符号不用于测距,即不承载测距信息。
在一种可能的实现方式中,上述方法还包括:根据用于指示信道切换的第一信息,在第二信道上,接收来自第一节点的第四测距帧,第四测距帧通过至少一个第一符号承载第一测距信息;第四测距帧与第一测距帧的帧结构相同或不同,也就是说在第一信道上传输的测距帧与在第二信道上传输的测距帧的帧结构可以相同或不同;在第二信道上,向第一节点发送第五测距帧,第五测距帧通过至少一个第二符号承载第二测距信息;第五测距帧与第四测距帧的帧结构相同;根据第五测距帧确定对应第二信道的第三信道状态信息,向第一节点发送第三信道状态信息,第三信道状态信息用于测量第一节点与第四测距帧的接收方之间的距离,以便第一节点实现针对第二信道的节点间测距。可见,通过跳频可以提高测距的准确性和精度。
进一步的,上述方法还包括:接收来自第一节点的第一测距帧的接收方与第一节点之间的距离,即获知与第一节点之间的距离,该距离具有较高准确性和精度。
可选的,上述方法还包括:接收第二信息,第二信息用于指示时间上连续传输的第四测距帧的数量和/或时间上连续传输的第五测距帧的数量,以在跳频测距的跳频信道上连续传输测距帧,有利于提高测距的准确性和精度。
可选的,第四测距帧包含的用于承载第一测距信息的符号的数量与第一测距帧包含的用于承载第一测距信息的符号的数量之间的差值小于第二阈值;和/或,第五测距帧包含的用于承载第二测距信息的符号的数量与第二测距帧包含的用于承载第二测距信息的符号的数量之间的差值小于第二阈值,以使在不同信道上的信道状态信息保持相同或相近的SNR。
可选的,第二方面提供的方法可以由第二节点执行,也可以由第二节点中的模块执行,例如由第二节点中的芯片执行等。
第三方面,本申请提供一种通信装置,该通信装置包括用于执行如第一方面或者如第二方面中任一项所述方法的模块或单元。
在一种可能的设计中,该通信装置包括:
通信单元,用于在第一信道上,发送第一测距帧,第一测距帧通过至少一个第一符号承载第一测距信息;在第一信道上,接收来自第二节点的第二测距帧,第二测距帧通过至少一个第二符号承载第二测距信息;接收第一信道状态信息,第一信道状态信息是来自第二节点的、对应第一信道的信道状态信息;
处理单元,用于根据至少一个第二符号确定对应第一信道的第二信道状态信息;根据第一信道状态信息和第二信道状态信息,确定第一信道的信道状态信息,第一信道的信道状态信息用于测量第一测距帧的发送方与第二节点之间的距离。
在一种可能的实现方式中,第一测距帧包括至少一个第一无线帧,第二测距帧包括至少一个第二无线帧。
可选方式1:上述至少一个第一无线帧中的符号均用于承载第一测距信息,上述至少一个第二无线帧中的符号均用于承载第二测距信息,第一无线帧与第二无线帧之间存在切换间 隔,切换间隔用于执行收发切换。
可选方式2:对于上述至少一个第一无线帧中的任意一个第一无线帧而言:第一无线帧包含切换间隔,除切换间隔之外的每个符号均用于承载第一测距信息,并且,切换间隔在时间上位于用于承载第一测距信息的符号之后;对于上述至少一个第二无线帧的任意一个第二无线帧而言:第二无线帧包含切换间隔,除切换间隔之外的每个符号均用于承载第二测距信息,并且,切换间隔在时间上位于用于承载第二测距信息的符号之后。其中,切换间隔用于执行收发切换。
可选方式3:对于上述至少一个第一无线帧中的任意一个第一无线帧而言:第一无线帧包括切换间隔、第一开销符号和第一链路符号,第一开销符号和第一链路符号用于承载第一测距信息;对于上述至少一个第二无线帧中的任意一个第二无线帧而言:第二无线帧包括切换间隔、第二开销符号和第二链路符号,第二开销符号和第二链路符号用于承载第二测距信息。其中,切换间隔用于执行收发切换。
可选的,通信单元,还用于发送第一位图,第一位图用于指示一个超帧内的上述第一无线帧。
可选的,对于上述至少一个第一无线帧中的最后一个第一无线帧,其包含的用于承载第一测距信息的最后N个符号与最后一个第一无线帧中其它用于承载第一测距信息的符号反相,最后一个第一无线帧指示信道切换;其中,N为正整数;
和/或,对于至少一个第二无线帧中的最后一个第二无线帧,其包含的用于承载第二测距信息的最后M个符号与最后一个第二无线帧中其它用于承载第二测距信息的符号反相,最后一个第二无线帧指示信道切换;其中,M为正整数。
在另一种可能的实现方式中,第一测距帧由至少一个第一开销符号组成,至少一个第一开销符号为至少一个第一无线帧的全部或部分开销符号,至少一个第一开销符号用于承载第一测距信息;第二测距帧由至少一个第二开销符号组成,至少一个第二开销符号为至少一个第二无线帧的全部或部分开销符号,至少一个第二开销符号用于承载第二测距信息。
可选的,上述至少一个第一开销符号为至少一个第一无线帧的部分开销符号,至少一个第一无线帧的至少一个第三开销符号为第一链路系统开销符号或第二链路系统开销符号;上述至少一个第二开销符号为至少一个第二无线帧的部分开销符号,至少一个第二无线帧的至少一个第四开销符号为第一链路系统开销符号或第二链路系统开销符号。
可选的,在第一信道上,第一测距帧中用于承载第一测距信息的符号数量与第二测距帧中用于承载第二测距信息的符号数量之间的差值小于第一阈值。
可选的,通信单元,还用于发送第二位图,第二位图用于指示一个超帧内用于承载第一测距信息的开销符号。
可选的,上述至少一个第一开销符号的最后X个第一开销符号与其它用于承载第一测距信息的第一开销符号反相,反相的最后X个符号指示信道切换;其中,X为正整数;
和/或,上述至少一个第二开销符号的最后Y个第二开销符号与其它用于承载第二测距信息的第二开销符号反相,反相的最后Y个第二开销符号指示信道切换;其中,Y为正整数。
可选的,在一个超帧内,第一测距帧包含的第一个第一无线帧的编号大于K,该超帧内的第1个无线帧至编号为K的无线帧中的开销符号用于传输控制信息,K为大于1的正整数。
在一种可能的实现方式中,通信单元,还用于在第一信道上,接收来自P个第三节点的P个第三测距帧,第三测距帧通过至少一个第二符号承载第二测距信息,第三测距帧与第二测距帧的帧结构相同,P为正整数。
进一步的,P个第三测距帧和第二测距帧在时域上的顺序满足预先的设置。
在一种可能的实现方式中,通信单元,还用于根据用于指示信道切换的第一信息,在第二信道上,发送第四测距帧,第四测距帧通过至少一个第一符号承载第一测距信息;第四测距帧与第一测距帧的帧结构相同或不同;在第二信道上,接收来自第二节点的第五测距帧,第五测距帧通过至少一个第二符号承载第二测距信息;第五测距帧与第四测距帧的帧结构相同;接收第三信道状态信息,第三信道状态信息是来自第二节点的、对应第二信道的信道状态信息;
处理单元,还用于根据第五测距帧确定对应第二信道的第四信道状态信息;根据第三信道状态信息和第四信道状态信息,确定第二信道的信道状态信息,第二信道的信道状态信息用于测量第四测距帧的发送方与第二节点之间的距离。
进一步的,处理单元,还用于根据第一信道的信道状态信息和第二信道的信道状态信息,确定第一测距帧的发送方与第二节点之间的距离。
可选的,通信单元,还用于发送第二信息,第二信息用于指示时间上连续传输的第四测距帧的数量和/或时间上连续传输的第五测距帧的数量。
可选的,第四测距帧包含的用于承载第一测距信息的符号的数量与第一测距帧包含的用于承载第一测距信息的符号的数量之间的差值小于第二阈值;和/或,第五测距帧包含的用于承载第二测距信息的符号的数量与第二测距帧包含的用于承载第二测距信息的符号的数量之间的差值小于第二阈值。
关于第三方面以及任一项可能的实施方式所带来的技术效果,可参考对应于第一方面以及相应的实施方式的技术效果的介绍。
在另一种可能的设计中,该通信装置包括:
通信单元,用于在第一信道上,接收来自第一节点的第一测距帧,第一测距帧通过至少一个第一符号承载第一测距信息;在第一信道上,向第一节点发送第二测距帧,第二测距帧通过至少一个第二符号承载第二测距信息;
处理单元,用于根据至少一个第一符号确定对应第一信道的第一信道状态信息;
通信单元,还用于向第一节点发送第一信道状态信息,第一信道状态信息用于测量第一节点与第一测距帧的接收方之间的距离。
在一种可能的实现方式中,通信单元,还用于接收第一位图,第一位图用于指示一个超帧内的第一无线帧;第一无线帧中的符号均用于承载第一测距信息;或,第一无线帧包括切换间隔,除切换间隔之外的每个符号均用于承载第一测距信息,并且,切换间隔在时间上位于用于承载第一测距信息的符号之后,切换间隔用于执行收发切换。
在另一种可能的实现方式中,通信单元,还用于接收第二位图,第二位图用于指示一个超帧内用于承载第一测距信息的开销符号。
可选的,通信单元还用于根据第一信息,在第二信道上,接收来自第一节点的第四测距帧,第四测距帧通过至少一个第一符号承载第一测距信息;第四测距帧与第一测距帧的帧结构相同或不同;第一信息用于指示信道切换;在第二信道上,向第一节点发送第五测距帧,第五测距帧通过至少一个第二符号承载第二测距信息;第五测距帧与第四测距帧的帧结构相同;
处理单元,还用于根据第五测距帧确定对应第二信道的第三信道状态信息;
通信单元,还用于向第一节点发送第三信道状态信息,第三信道状态信息用于测量第一节点与第四测距帧的接收方之间的距离。
进一步的,通信单元,还用于接收来自所述第一节点的第一测距帧的接收方与第一节点之间的距离。
关于第三方面以及任一项可能的实施方式所带来的技术效果,可参考对应于第二方面以及相应的实施方式的技术效果的介绍。
第四方面,本申请实施例提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面至第二方面任一方面以及任一项可能的实施方式的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
第五方面,本申请实施例提供了一种通信装置,包括:逻辑电路和通信接口。所述通信接口,用于接收信息或者发送信息;所述逻辑电路,用于通过所述通信接口接收信息或者发送信息,使得所述通信装置执行上述第一方面至第二方面任一方面以及任一项可能的实施方式的方法。
第六方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序(也可以称为代码,或指令);当所述计算机程序在计算机上运行时,使得上述第一方面至第二方面任一方面以及任一项可能的实施方式的方法被实现。
第七方面,本申请实施例提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令);当所述计算机程序被运行时,使得计算机执行上述第一方面至第二方面任一方面以及任一项可能的实施方式的方法。
第八方面,本申请实施例提供一种芯片,该芯片包括处理器,所述处理器用于执行指令,当该处理器执行所述指令时,使得该芯片执行上述第一方面至第二方面任一方面以及任一项可能的实施方式的方法。可选的,该芯片还包括通信接口,所述通信接口用于接收信号或发送信号。
第九方面,本申请实施例提供一种终端设备,所述终端设备包括至少一个如第三方面所述的通信装置,或第四方面所述的通信装置,或第五方面所述的通信装置,或第八方面所述的芯片。
第十方面,本申请实施例提供一种系统,所述系统包括终端设备以及至少一个如第三方面所述的通信装置,或第四方面所述的通信装置,或第五方面所述的通信装置,或第八方面所述的芯片。
此外,在执行上述第一方面以及任一项可能的实施方式所述的方法,或第二方面以及任一项可能的实施方式所述的方法的过程中,上述方法中有关发送信息和/或接收信息等的过程,可以理解为由处理器输出信息的过程,和/或,处理器接收输入的信息的过程。在输出信息时,处理器可以将信息输出给收发器(或者通信接口、或发送模块),以便由收发器进行发射。信息在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,处理器接收输入的信息时,收发器(或者通信接口、或发送模块)接收信息,并将其输入处理器。更进一步的,在收发器收到该信息之后,该信息可能需要进行其他的处理,然后才输入处理器。
基于上述原理,举例来说,前述方法中提及的发送信息可以理解为处理器输出信息。又例如,接收信息可以理解为处理器接收输入的信息。
可选的,对于处理器所涉及的发射、发送和接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和接收、输入等操作。
可选的,在执行上述第一方面以及任一项可能的实施方式所述的方法,或第二方面以及任一项可能的实施方式所述的方法的过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是通过执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器。上述存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
在一种可能的实施方式中,上述至少一个存储器位于装置之外。
在又一种可能的实施方式中,上述至少一个存储器位于装置之内。
在又一种可能的实施方式之中,上述至少一个存储器的部分存储器位于装置之内,另一部分存储器位于装置之外。
本申请中,处理器和存储器还可能集成于一个器件中,即处理器和存储器还可以被集成在一起。
在本申请中,在第一信道上通过传输测距帧,可实现节点间针对第一信道的测距帧的传输。测距帧通过至少一个符号承载测距信息,可实现测距信息的传输。根据对应第一信道的第一信道状态信息和第二信道状态信息,可确定出第一信道的信道状态信息,从而实现针对第一信道的节点间测距,有助于提高测距精度。
附图说明
图1是一种超帧的结构示例图;
图2是一种车载定位场景的示意图;
图3是本申请提供的一种可能的无线通信系统的示意图;
图4是本申请提供的测距帧1的帧结构示例图;
图5是本申请提供的测距帧2的帧结构示例图;
图6是本申请提供的测距帧3的帧结构示例图;
图7是本申请提供的测距帧4的帧结构示例图;
图8是一种跳频测距的示例图;
图9是本申请提供的一种测距方法的流程示意图;
图9-1是本申请提供的一种测距交互的示例图;
图9-2是本申请提供的另一种测距交互的示例图;
图10是本申请提供的另一种测距方法的流程示意图;
图10-1是本申请提供的又一种测距交互的示例图;
图11是本申请提供的又一种测距方法的流程示意图;
图11-1是本申请提供的又一种测距交互的示例图;
图12为本申请实施例提供的一种通信装置的结构示意图;
图13为本申请实施例提供的一种通信装置的结构示意图;
图14为本申请实施例提供的一种芯片的结构示意图。
具体实施方式
在本申请中,“第一”、“第二”等字样用于对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B 这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
应当理解,本申请中,“至少一个”指的是一个或多个;“多个”是指两个或两个以上。此外,本申请的“等于”可以与“大于”连用,也可以与“小于”连用。在“等于”与“大于”连用的情况下,采用“大于”的技术方案;在“等于”与“小于”连用的情况下,采用“小于”的技术方案。
下面先对本申请涉及的相关名称或术语进行阐述,以便于本领域技术人员理解。
1.节点(node)
节点是具有通信能力的电子设备,也称为通信节点。例如,节点可以包括手持终端、车辆、车载设备、或网络侧设备、用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、无线通信设备、用户代理或用户装置等独立设备,也可以是包含在独立设备中的部件(例如芯片或集成电路)。节点可以为任一可能的智能终端设备(如手机)、智能运输设备(如车辆、无人机等)、智能制造设备、智能家居设备(例如大屏、音箱等)等。
示例性地,当节点为车载设备时,可以是汽车座舱(cockpit domain)设备,或者汽车座舱设备中的一个模块,例如:座舱域控制器(cockpit domain controller,CDC)、摄像头、屏幕、麦克风、音响、电子钥匙、无钥匙进入和启动系统控制器等模块中的一个或者多个。在车辆内,节点还可以为电池管理系统和电池包中的电池。
示例性地,当节点为手持终端时,可以是手机(mobile phone)、可穿戴设备、平板电脑(pad)、或带数据收发功能的电脑(如笔记本电脑、掌上电脑等)等。
本申请实施例中的节点可以应用于多种应用场景中,例如以下应用场景:移动互联网(m obile internet,MI)、工业控制(industrial control)、无人驾驶(self driving)、运输安全(tra nsportation safety)、物联网(internet of things,IoT)、智慧城市(smart city)、或智慧家庭(smart home)等。
本申请中的节点可以应用于多种网络类型中,例如应用于以下一种或者多种网络类型中:星闪(SparkLink)、长期演进(long term evolution,LTE)网络、第五代移动通信技术(5 th-generation mobile communication technology,5G)、无线局域网(例如,Wi-Fi)、蓝牙(Blu etooth,BT)、紫峰(Zigbee)、或车载短距无线通信网络等。
在某些应用场景、或某些网络类型中,具备类似通信能力的设备的名称也可能不称为节点,但是为了方便描述,本申请实施例中将具有通信能力的设备统称为节点。
2.超帧
超帧是时域上的概念,超帧由多个无线帧组成,一个无线帧由多个符号组成,符号例如可以是正交频分复用(orthogonalfrequency-division multiplexing,OFDM)符号。
目前,星闪联盟涉及的星闪基础版(SparkLink basic,SLB)标准规定了超帧和无线帧的帧结构。超帧周期为1毫秒(ms),即超帧的时长为1ms,一个超帧包含48个无线帧,每个无线帧的时长为1/48=20.833微秒(us)。在一种示例中,如图1所示,一个超帧包括48个无线帧,该48个无线帧的编号依次为无线帧#0至无线帧#47。每个无线帧包含若干下行符号、若干上行符号、开销符号和切换间隔(gap,GAP)。下行符号用于下行传输,上行符号用于上行传输。开销符号也可以描述为灵活符号或特定符号等,用于进行同步、信道探测、下行控制信息(downlink control information,DCI)传输等,开销符号可分为下行开销符号和上行开销符号。切换间隔用于执行上下行切换,无线帧中的一个切换间隔的时长例如为无线帧中的一个符号的时长,一个下行符号的时长=一个上行符号的时长=一个开销符号的时长。
如在车载(或者非车载)无线短距通信系统中,上行通常是指终端(terminal,T)节点向管理(grant,G)节点发送数据或信息的方向,可用“T”表示。下行通常是指G节点向T 节点发送数据或信息的方向,可用“G”表示。图1中,下行符号表示为G符号,G符号也可以描述为G链路符号或G链路数据符号等;上行符号表示为T符号,T符号也描述为T链路符号或T链路数据符号等。由于在车载无线短距通信系统中,不同T节点之间,或者不同G节点间通常也存在通信需求,不同T节点之间,或者不同G节点之间的通信可占用上述开销符号。图1中,下行开销符号表示为特殊管理(special grant,SG)符号,SG符号也可以描述为G开销符号或开销G符号或G链路开销符号等;上行开销符号表示为特殊终端(special terminal,ST)符号,ST符号也可以描述为T开销符号或开销T符号或T链路开销符号等。在不区分传输方向时,G开销符号和T开销符号可统称为系统开销符号。
每个无线帧可包含1个或2个开销符号,一个超帧可最多包含96个开销符号。在一种示例中,如图1所示的超帧,该超帧的每个无线帧包含一个开销符号,该超帧包含48个开销符号,例如无线帧#0包含的开销符号为SG符号#0,无线帧#46包含的开销符号为ST符号#46。需要说明的是,图1中将开销符号从0开始连续编号,而不是将SG符号从0开始编号,将ST符号从0开始编号。
3.OFDM
OFDM技术是一种多载波的频分复用(frequency division multiplexing,FDM)技术,有多个载波(carrier)同时工作,这些载波在FDM技术中可以称为子载波(subcarrier)。OFDM技术又称为离散多载波调制(discrete multitone modulation,DMT)技术,具备高速率传输的能力,并且能有效对抗频率选择性衰减。OFDM中,多个子载波是正交的,故称为正交频分复用。其中,子载波的工作频率对应频点,从频谱看,每一个子载波以各自的频点为中心频率,占据一定的频带宽度。
通过调整子载波数量,OFDM可以灵活的改变工作带宽,满足了大带宽的需求,扩容效果更好。
OFDM技术通过OFDM符号来承载信号,一个OFDM符号可以对应一个或者多个子载波。在OFDM符号中添加循环前缀(cyclic prefix,CP)可以避免符号间干扰,添加有CP的OFDM符号称为CP-OFDM符号,CP-OFDM符号可分为常规(normal)CP-OFDM符号和扩展(extended)CP-OFDM符号。也就是说,OFDM符号的CP类型可分为无CP,常规CP和扩展CP。本申请涉及的符号可以是OFDM符号。
在SLB技术中,采用OFDM符号作为通信符号。SLB技术中的物理带宽约为20MHz的OFDM符号称为一个载波,20MHz的OFDM符号的中心频点(即直流(direct current,DC)子载波)称为载波频率。即SLB的一个载波由连续39个子载波组成,39个子载波按照对应频率从低到高的顺序依次编号为#0,#1,…,#38,其中#19子载波为直流(DC)子载波,除DC子载波外,其它38个子载波称为有效子载波。G节点和T节点可能工作在多个载波上,多个载波构成一个载波组。
4.跳频
跳频是指设备通过改变设备的射频通道中心频率(例如改变本振信号的载频)或者通过数字方式改变生成的发送信号的中心频率,实现切换发送信号的中心频率。跳频可以是指基于OFDM信号的跳频。OFDM跳频的定义为,OFDM符号的DC子载波从一个载波信道的中心频点切换到另一个载波信道的中心频点。对于单个载波的跳频切换,指的是DC子载波从一个载波信道切换至另一个载波信道;对于多个载波的跳频切换,指的是多个载波对应的载波信道组,切换至另一个载波信道组。例如,G节点和T节点原来工作在载波信道组1~4上,跳频后切换至载波信道组5~8。载波信道组1~4称为初始载波信道组或初始信道组,载波信 道组5~8称为跳频载波信道组或跳频信道组。在本申请中,为了描述方便,将载波信道简称为信道,“信道”与“载波信道”术语可互换。
在本申请中,不同节点的跳频方式可以相同(例如均为射频跳频或数字跳频),也可以不同(例如第一节点的跳频方式为射频跳频,第二节点的跳频方式为数字跳频),本申请不做限制。
5.测距
测距是通过至少2个节点之间互相发送测距无线信号,实现相互之间距离的测量。例如,G节点与T节点之间互相发送测距无线信号,实现G节点与T节点之间的距离的测量。再例如,G节点与T节点#1之间互相发送测距无线信号,实现G节点与T节点#1之间的距离的测量;G节点与T节点#2之间互相发送测距无线信号,实现G节点与T节点#2之间的距离的测量;T节点#1与T节点#2之间互相发送测距无线信号,实现T节点#1与T节点#2之间的距离的测量。
可以理解的是,在本申请实施例中,实现测距、定位、测角、感知等具有类似的步骤,因而可以将“测距”替代为“定位”、“测角”、“感知”等。
下面对本申请实施例应用的场景和系统架构进行介绍。
通信系统通常包含多个节点,节点之间可以通信,以传输数据。以车载通信系统为例,车辆内可以存在多个通信域,通信域是指由一组具有通信关系的节点以及信节点之间的通信连接关系(即通信链路)组成的系统,通常用于完成一种特定的功能。示例性地,一个通信域可以包括一个主节点和至少一个从节点,主从节点间、或主节点与主节点间、或从节点与从节点间可以互相通信。其中主节点可以管理从节点,具有分配资源的功能,负责为从节点分配资源;从节点听从主节点的调度,使用主节点分配的资源与主节点、和/或与其他节点进行通信。
在一些具体的实施场景中,主节点也可以称为G节点、管理节点或者控制节点,从节点也可以称为T节点或者终端。G节点向T节点的通信链路可以称为G链路或者下行链路,T节点向G节点的通信链路可以称为T链路或者上行链路。
本申请可以应用于车载无线定位场景(例如PEPS)和室内定位场景,也可以应用于其它广域无线通信或局域无线通信场景。
如车载定位场景中,车外的4个车角部署定位节点,车内的中控台/后视镜/天花板(车顶内部)部署PEPS定位节点,车内的显示屏、麦克风、扬声器、摄像头、T-BOX等车载无线通信设备也可以作为定位节点。定位节点和/或PEPS定位节点可用于对车钥匙/手机进行定位。车钥匙/手机表示被定位节点进行定位的电子设备,可以是具有定位功能的传统的车钥匙,也可以是具有定位功能的手机或可穿戴设备。图2示出了一种车载定位场景的示意图,其中车钥匙/手机可作为G节点,车上的所有定位节点(包括PEPS定位节点)可作为T节点;或者,PEPS定位节点作为G节点,其余设备作为T节点。
本领域技术人员应当理解,图2所示的应用场景仅是本申请的方案可以适用的其中一个示例性场景。除了图2所示的应用场景之外,本申请的方案还可以适用于其它任何合适的应用场景,例如但不局限于家居、办公、展厅、生产等场景。
示例性地,以通信的节点包含第一节点与第二节点为例。图3是本申请提供的一种可能的无线通信系统的示意图,该无线通信系统包括第一节点301和第二节点302。第一节点301可以是G节点或主节点,第二节点302可以是T节点或从节点。
应理解,该通信系统中包括的节点还可以为更多个,此处为了便于描述故示出为第一节点和第二节点,例如在组播场景下,第二节点的数量可以是多个。
图1所示的帧是一种通信帧,基于通信帧可以实现节点间的数据传输,但不能实现节点间测距,因此本申请提供一种测距方法,可以实现节点间测距。为了实现节点间测距,本申请可提供测距帧的帧结构。下面以第一节点为G节点,第二节点为T节点为例,对本申请提供的几种测距帧的帧结构进行介绍。
测距帧1:对G节点发送的测距帧1而言,测距帧1包含至少一个无线帧1,至少一个无线帧1中的符号均用于承载测距信息1;对T节点发送的测距帧1而言,测距帧1包含至少一个无线帧2,至少一个无线帧2中的符号均用于承载测距信息2;G节点发送的测距帧1与T节点发送的测距帧1之间存在切换间隔(GAP),该切换间隔用于执行收发切换。
其中,至少一个无线帧1中的符号均用于承载测距信息1,即对于任意一个无线帧1而言,其包含的符号均用于承载测距信息1。测距信息1可以是G节点向T节点发送的定位参考信号(positioning reference signal,PRS),该PRS例如可以是信道状态信息参考信号(channel state information reference signal,CSI-RS)或第一训练信号(first training signal,FTS)或第二训练信号(second training signal,STS)。换句话说,任意一个无线帧1的符号类型为CSI-RS符号或FTS符号或STS符号;或任意一个无线帧1的全部符号被配置为CSI-RS符号或FTS符号或STS符号;其中,CSI-RS为G节点发送的信道状态信息参考信号,用于其它节点测量该G节点到该其它节点的传输信道特性(即信道状态信息);FTS为车载无线短距通信系统中用作时间和频率同步的信号,具体例如星闪联盟基础(SparkLink Basic,SLB)标准中用作时间和频率同步的信号,FTS为在时间域上先出现的信号,也可用于传输信道特性(即信道状态信息);STS为车载无线短距通信系统中用作时间和频率同步的信号,具体例如星闪联盟基础(SparkLink Basic,SLB)标准中用作时间和频率同步的信号,STS为在时间域上后出现的信号,也可用于传输信道特性(即信道状态信息)。可以理解的,无线短距通信系统中,同步信号成对出现,即两个同步信号理解为一组同步信号,一组同步信号中,在时间域上先出现的OFDM符号称为FTS,在时间域上先出现的OFDM符号称为STS。
相应的,至少一个无线帧2中的符号均用于承载测距信息2,即对于任意一个无线帧2而言,其包含的符号均用于承载测距信息2。测距信息2可以是T节点向G节点发送的PRS,该PRS例如可以是信道探测信号(sounding reference signal,SRS)或第二训练信号(STS)或第一训练信号(FTS)。换句话说,任意一个无线帧2的符号类型为SRS符号或STS符号或FTS符号;或任意一个无线帧2的全部符号被配置为SRS符号或STS符号或FTS符号;其中,SRS为G节点在接收其他节点发送的信道探测信号,用于该G节点测量其他节点到该G节点的传输信道特性(即信道状态信息)。
无线帧1中的符号均用于承载测距信息1,无线帧2中的符号均用于承载测距信息2,提高了承载测距信息的连续传输符号的传输数量,从而提高传输效率和测距准确度,连续传输也可便于测距信息的集中处理。G节点发送的测距帧1与T节点发送的测距帧1之间存在GAP,即GAP不占用无线帧1的时长,也不占用无线帧2的时长。GAP用于执行收发切换,收发切换也可以描述为上下行切换。无线帧1和无线帧2相比图1所示的无线帧,消除了图1所示无线帧中的所有GAP,改为无线帧1与无线帧2之间的GAP,可以减少切换次数,从而节省开销。例如,图1所示的无线帧#0和无线帧#1共包括4个GAP,而无线帧1与无线帧2之间存在1个GAP。
需要说明的是,本申请不具体限制无线帧1和无线帧2的帧格式。以SLB为例,无线帧在SLB标准中,是一个包含多个带循环前缀(CP)的OFDM(CP-OFDM)的帧格式,时间长度为640×Ts,其中Ts为基带的采样时间间隔。但是,在本申请中,无线帧1和无线帧2可以是一个由G节点预先配置OFDM符号参数的帧格式(帧长度可以小于640×Ts),且一个无线帧可以包含预先配置的Q个OFDM符号,其中Q为正整数,Q取值大小可根据期望的SNR进行配置。预先配置OFDM符号参数包括以下至少一种:有CP或无CP,扩展CP或常规CP,承载CSI-RS或SRS或FTS或STS等。例如,无线帧1和无线帧2包含的符号的CP类型为无CP,那么无线帧1包含10个CSI-RS符号/FTS符号,无线帧2包含10个SRS符号/STS符号;再例如,无线帧1和无线帧2包含的符号的CP类型为常规CP,那么无线帧1包含8个CSI-RS符号,无线帧2包含8个SRS符号;又例如,无线帧1和无线帧2包含的符号的CP类型为扩展CP,那么无线帧1包含7个CSI-RS符号,无线帧2包含7个SRS符号。又例如,当Q为1时,表示一个测距帧1(或一个无线帧)包含1个OFDM符号;也即测距帧1对应的无线帧1和无线帧2分别仅包含1个OFDM符号。其中,按照G节点配置无线帧1和无线帧2的OFDM符号个数,G节点和T节点使用相应OFDM符号个数的测距帧1进行测距交互测量。
示例性的,如图4所示的测距帧1的帧结构,以G节点发送的测距帧1包含1个无线帧1,T节点发送的测距帧1包含1个无线帧2为例,无线帧1和无线帧2包含的符号的CP类型为无CP。图4中的G表示G链路符号,G链路符号可被配置为CSI-RS符号或FTS符号;图4中的T表示T链路符号,T链路符号可被配置为SRS符号或STS符号。
可选的,无线帧1中某个或某些承载测距信息1的符号与其它承载测距信息1的符号反相,可指示信道切换,信道切换也可以描述为跳频,或跳转至其它信道;和/或,无线帧2中某个或某些承载测距信息2的符号与其它承载测距信息2的符号反相,可指示信道切换。其中,某些可以是前多少个,或后多少个,或指定的,或预设的,等等。
在一种实现方式中,对于至少一个无线帧1中的最后一个无线帧1,其包含的用于承载测距信息1的最后N个符号与最后一个无线帧1中其它用于承载测距信息1的符号反相,最后一个无线帧1可指示信道切换,T节点可根据最后一个无线帧1进行信道切换;和/或,对于至少一个无线帧2中的最后一个无线帧2,其包含的用于承载测距信息2的最后M个符号与最后一个无线帧2中其它用于承载测距信息2的符号反相,最后一个无线帧2可指示信道切换,G节点可根据最后一个无线帧2进行信道切换。其中,N和M为正整数,N和M可以相同或不相同,例如N=2,M=2;再例如,N=1,M=2。在另一种实现方式中,对于至少一个无线帧1中的最后一个无线帧1,其包含的用于承载测距信息1的前N’个符号与最后一个无线帧1中其它用于承载测距信息1的符号反相,最后一个无线帧1可指示信道切换,T节点可根据最后一个无线帧3进行信道切换;和/或,对于至少一个无线帧2中的最后一个无线帧2,其包含的用于承载测距信息2的前M’个符号与最后一个无线帧2中其它用于承载测距信息2的符号反相,最后一个无线帧2可指示信道切换,G节点可根据最后一个无线帧2进行信道切换。其中,N’和M’为正整数,N’和M’可以相同或不相同。
示例性的,N=2,M=2,若无线帧1和无线帧2包含的符号的CP类型为无CP,最后一个无线帧1和最后一个无线帧2的帧结构可如下表1所示;若无线帧1和无线帧2包含的符号的CP类型为常规CP,最后一个无线帧1和最后一个无线帧2的帧结构可如下表2所示。若无线帧1和无线帧2包含的符号的CP类型为扩展CP,最后一个无线帧1和最后一个无线帧2的帧结构可如下表3所示。
表1
Figure PCTCN2022100571-appb-000001
表2
Figure PCTCN2022100571-appb-000002
表3
Figure PCTCN2022100571-appb-000003
表1至表3中,G表示G链路符号,G链路符号可被配置为CSI-RS符号或FTS符号;T表示T链路符号,T链路符号可被配置为SRS符号或STS符号;-G表示反相的CSI-RS符号或FTS符号;-T表示反相的SRS符号或STS符号。表1至表3中的无线帧结构的序号用于举例,并不构成对本申请的限定。
测距帧2:对G节点发送的测距帧2而言,测距帧2包含至少一个无线帧3,每个无线帧3包含切换间隔(GAP),除GAP之外的每个符号均用于承载测距信息1,并且GAP在时间上位于用于承载测距信息1的符号之后;对T节点发送的测距帧2而言,测距帧2包含至少一个无线帧4,每个无线帧4包含切换间隔(GAP),除GAP之外的每个符号均用于承载测距信息2,并且GAP在时间上位于用于承载测距信息2的符号之后。其中,切换间隔用于执行收发切换。测距信息1和测距信息2可参考测距帧1中对测距信息1和测距信息2的描述。
可选的,无线帧3中的GAP的数量为1个,占用无线帧3中一个符号的时长;无线帧4中的GAP的数量为1个,占用无线帧4中一个符号的时长。无线帧3和无线帧4相比图1所示的无线帧,消除了图1所示无线帧中的部分GAP,可以减少切换次数,从而节省开销。例如,图1所示的无线帧#0和无线帧#1共包括4个GAP,而一个无线帧3和一个无线帧4分别包含一个GAP,并且无线帧3中的GAP位于承载测距信息1的符号之后,无线帧4中的GAP位于承载测距信息2的符号之后。
需要说明的是,本申请不具体限制无线帧3和无线帧4的帧格式。在本申请中,无线帧3和无线帧4可以是一个由G节点预先配置OFDM符号参数的帧格式(帧长度可以小于640×Ts),且一个无线帧可以包含预先配置的Q个OFDM符号,其中Q为正整数,Q的取值大小可根据期望的SNR进行配置。预先配置OFDM符号参数包括以下至少一种:有CP或无CP,扩展CP或常规CP,承载CSI-RS或SRS或FTS或STS等。例如,无线帧3和无线帧4包含的符号的CP类型为无CP,那么无线帧3包含9个CSI-RS符号和1个GAP(在时间上位于9个CSI-RS符号之后),无线帧2包含9个SRS符号和1个GAP(在时间上位于9个SRS符号之后);再例如,无线帧1和无线帧2包含的符号的CP类型为常规CP,那么无线 帧3包含7个CSI-RS符号和1个GAP(在时间上位于7个CSI-RS符号之后),无线帧4包含7个SRS符号和1个GAP(在时间上位于7个SRS符号之后)。
示例性的,如图5所示的测距帧2的帧结构,以G节点发送的测距帧2包含1个无线帧3,T节点发送的测距帧2包含1个无线帧4为例,无线帧3和无线帧4包含的符号的CP类型为无CP。图5中的G表示G链路符号,G链路符号可被配置为CSI-RS符号或FTS符号;图5中的T表示T链路符号,T链路符号可被配置为SRS符号或STS符号。
可选的,无线帧3中某个或某些承载测距信息1的符号与其它承载测距信息1的符号反相,可指示信道切换;和/或,无线帧4中某个或某些承载测距信息2的符号与其它承载测距信息2的符号反相,可指示信道切换。通过反相指示信道切换可参考测距帧1对其的具体描述,在此不再赘述。
示例性的,N=2,M=2,若无线帧3和无线帧4包含的符号的CP类型为无CP,最后一个无线帧3和最后一个无线帧4的帧结构可如下表4所示。表4中的无线帧结构的序号用于举例,并不构成对本申请的限定。
表4
Figure PCTCN2022100571-appb-000004
测距帧2与测距帧1的不同之处在于:测距帧1中无线帧1与无线帧2之间存在GAP,GAP不占用无线帧1的时长,也不占用无线帧2的时长;测距帧2中无线帧3和无线帧4分别包含一个GAP,并且无线帧3中的GAP位于承载测距信息1的符号之后,无线帧4中的GAP位于承载测距信息2的符号之后。
测距帧3:对G节点发送的测距帧3而言,测距帧3包含至少一个无线帧5,每个无线帧5包含切换间隔(GAP)、G开销符号和G链路符号,G开销符号和G链路符号用于承载测距信息1;对T节点发送的测距帧3而言,测距帧3包含至少一个无线帧6,每个无线帧6包含GAP、T开销符号和T链路符号,T开销符号和T链路符号用于承载测距信息2。其中,切换间隔用于执行收发切换。测距信息1和测距信息2可参考测距帧1中对测距信息1和测距信息2的描述。
其中,无线帧5和无线帧6包含的GAP的数量可以是1个或2个。若无线帧5包含的切换间隔GAP的个数为2个,进一步的,无线帧5还包括至少一个T链路符号;和/或,若无线帧6包含的切换间隔的个数为2个,进一步的,无线帧6还包括至少一个G链路符号。
需要说明的是,本申请不具体限制无线帧5和无线帧6的帧格式。在本申请中,无线帧5和无线帧6可以是一个由G节点预先配置OFDM符号参数的帧格式(帧长度可以小于640×Ts),且一个无线帧可以包含预先配置的Q个OFDM符号,其中Q为正整数,Q的取值大小可根据期望的SNR进行配置。预先配置OFDM符号参数包括以下至少一种:有CP或无CP,扩展CP或常规CP,承载CSI-RS或SRS或FTS或STS等。例如,基于图1所示的无线帧#0,将无线帧#0中的G开销符号和G链路符号用于承载测距信息1,即将无线帧#0中的G开销符号和G链路符号配置为CSI-RS符号或FTS符号,从而可得到无线帧5。再例如,基于图1所示的无线帧#46,将无线帧#46中的T开销符号和T链路符号用于承载测距信息2,即将无线帧#46中的T开销符号和T链路符号配置为SRS符号或STS符号,从而可得到无线帧6。
示例性的,如图6所示的测距帧3的帧结构,以G节点发送的测距帧3包含1个无线帧5,T节点发送的测距帧3包含1个无线帧6为例。图6中,无线帧5中的G表示G链路符号,G(SG)表示G链路符号被配置为G开销符号,G链路符号和G开销符号可进一步被配置为CSI-RS符号或FTS符号;无线帧6中的T表示T链路符号,G(ST)表示G链路符号被配置为T开销符号,T链路符号和T开销符号可进一步被配置为SRS符号或STS符号。图6中的无线帧5和无线帧6可以是如下表5所示的无线帧结构。
表5
Figure PCTCN2022100571-appb-000005
表5中,G表示G链路符号,T表示T链路符号。
可选的,无线帧5中某个或某些承载测距信息1的符号与其它承载测距信息1的符号反相,可指示信道切换;和/或,无线帧6中某个或某些承载测距信息2的符号与其它承载测距信息2的符号反相,可指示信道切换。通过反相指示信道切换可参考测距帧1对其的具体描述,在此不再赘述。
与表5所示的无线帧结构类似,测距帧3还可使用其它序号的无线帧结构。其中,符号配置中的G链路符号可使用CSI-RS符号,而T链路符号可使用SRS符号。
测距帧4:对G节点发送的测距帧4而言,测距帧4由至少一个开销符号1组成,至少一个开销符号1为至少一个无线帧7的全部或部分开销符号,至少一个开销符号1均用于承载测距信息1;对T节点发送的测距帧4而言,测距帧4由至少一个开销符号2组成,至少一个开销符号2为至少一个无线帧8的全部或部分开销符号,至少一个开销符号2均用于承载测距信息2。测距信息1和测距信息2可参考测距帧1中对测距信息1和测距信息2的描述。开销符号1为G开销符号或T开销符号,开销符号2为G开销符号或T开销符号。
可选的,至少一个无线帧7和至少一个无线帧8位于同一超帧内,那么用于承载测距信息1的至少一个开销符号1和用于承载测距信息2的至少一个开销符号2位于同一超帧内。在一种实现方式,在一个超帧内,前K+1个无线帧(即编号从0至K的无线帧)中的开销符号用于传输控制信息(例如G链路系统信息等),也就说前K+1个无线帧中的开销符号不能承载测距信息1或测距信息2,K为大于1的正整数,K的具体数值可以预先设置或预先定义。在另一种实现方式中,在一个超帧内,前K个开销符号用于传输控制信息,不能承载测距信息1或测距信息2。可选的,用于承载测距信息1的至少一个开销符号1的数量可以预先设置或预先定义的,用于承载测距信息2的至少一个开销符号2的数量可以预先设置或预先定义的。
对于一个无线帧7包含1个开销符号1,一个无线帧8包含1个开销符号2的情况:
至少一个无线帧7的所有开销符号1用于承载测距信息1,至少一个无线帧8的所有开销符号2用于承载测距信息2。相邻两个用于承载测距信息的开销符号间隔较大(20.83us),导致能估计的多普勒频移较低。
对于一个无线帧7包含2个开销符号1,一个无线帧8包含2个开销符号2的情况:
在一种方式下,至少一个无线帧7的所有开销符号1用于承载测距信息1,至少一个无线帧8的所有开销符号2用于承载测距信息2,可扩大多普勒频移的估计范围,可适用于高 速移动场景下的测距。可选的,一个无线帧7包含的用于承载测距信息1的2个开销符号1在时间上连续(即时域位置相邻),无线帧8包含的用于承载测距信息2的2个开销符号2在时间上连续,以减少干扰。
在另一种方式下,至少一个无线帧7的一部分开销符号1用于承载测距信息1,另一部分开销符号1即为G开销符号或T开销符号,用于同步或数据传输;至少一个无线帧8的一部分开销符号2用于承载测距信息2,另一部分开销符号2即为G开销符号或T开销符号,用于同步或数据传输。也就是说,任意一个无线帧7中的1个开销符号1用于承载测距信息1,另一个开销符号1用于同步或数据传输;任意一个无线帧8中的1个开销符号1用于承载测距信息1,另一个开销符号2用于同步或数据传输。进一步的,任意一个无线帧7中,用于承载测距信息1的开销符号1与用于同步或数据传输的开销符号1可以梳齿方式排列(即时域位置相邻)。和/或,任意一个无线帧8中,用于承载测距信息2的开销符号2与用于同步或数据传输的开销符号2可以梳齿方式排列。其中,梳齿方式可以维持通信系统的同步性能,在保障通信系统的通信性能的同时,利用通信符号(即用于数据传输的开销符号)的同步精度提升测距的精度。
示例性的,如图7所示的测距帧4的帧结构,将一个超帧内的开销符号抽取出来,以G节点发送的测距帧4包含I个用于承载测距信息1的开销符号1,T节点发送的测距帧4包含J个用于承载测距信息2的开销符号1为例。图7中,SG表示G开销符号,ST表示T开销符号,前K+1个G开销符号(即编号从0至K的开销符号)用于传输控制信息,编号K+1至K2的G开销符号用于承载测距信息1,编号K2+1至K3的T开销符号用于承载测距信息2。其中,I=K2-K1-1,J=K3-K2-1,I与J之间的差值小于第一阈值。其中,差值可以是绝对值,第一阈值可以是1;差值也可以是相对值,第一阈值可以是±1。
可选的,至少一个开销符号1的最后X个开销符号1与其它用于承载测距信息1的开销符号1反相,反相的最后X个开销符号1指示信道切换;和/或,至少一个开销符号2的最后Y个开销符号2与其它用于承载测距信息2的开销符号2反相,反相的最后Y个开销符号2指示信道切换;其中,X为正整数,Y为正整数。X和Y可以相同或不相同,例如X=2,Y=2。
可以理解的是,测距帧4将超帧内的一些开销符号用于承载测距信息1,将超帧内的一些开销符号用于承载测距信息2。
周期性超帧传输中,G节点在第一个超帧的前部使用FTS或STS等参考信号用于T节点的定时和频率同步,并且在每个超帧内插入同步信号用于维护定时和频率同步,因此后续的超帧内的开销符号和/或链路符号可用于承载测距信息。
上述测距帧1至测距帧4可以理解为4种不同帧类型的测距帧,测距帧1和测距帧2可适用于跳频测距的初始信道或跳频信道,测距帧3和测距帧4可适用于跳频测距的初始信道。可选的,根据适用的信道,可将测距帧3和测距帧4称为第一类测距帧,将测距帧1和测距帧2称为第二类测距帧。需要说明的是,测距帧这个名称用于举例,也可以描述为定位帧或测量帧或感知帧等,随着标准的演进可能采用其他名称。
本申请涉及跳频测距,跳频测距指的是在多个信道上进行测距交互(例如至少包括:G节点发一次测距帧1,T节点接收到来自G节点的测距帧1并测量,向G节点发送测距帧1,G节点接收到来自T节点的测距帧1并测量),并在某个信道(该信道可以与跳频测距的初始信道相同或部分重叠)上进行信道状态信息反馈。跳频测距的初始信道表示G节点和T节点完成关联后的工作信道(组),也即进行测距协商所在的信道(组)。
示例性的,如图8所示的跳频测距的示例图。图8中,切换时长T0=射频(radio frequency,RF)切换稳定时长(T RF)+先听后说(listen-before-talk,LBT)时长(T LBT)。T RF可以PLL锁相环(phase locked loop,PLL)的稳定时长为例,发起者和/或响应者节点必须在T RF结束后,才能开始LBT操作或空闲信道评估(clear channel assess,CCA)或载波侦听多路访问。LBT的时间窗内,如果信道指示空闲,则开始在该信道上进行测距交互。如图8所示,跳频测距的初始信道为信道3,在信道3上完成测距交互1之后,在LBT的时间窗内,如果信道2指示空闲,则开始在信道2上进行测距交互。最后可在信道3上进行信道状态信息反馈,信道3上反馈的信道状态信息可以是基于信道3、信道2以及信道1的信道状态信息得到的。信道3上反馈的信道状态信息也可以称为测距结果或定位结果等。
下面基于本申请提供的测距帧,对本申请提供的测距方法进行介绍。
请参见图9,是本申请提供的一种测距方法的流程示意图,该方法可以包括但不限于如下步骤:
S901,在第一信道上,第一节点向第二节点发送第一测距帧。相应的,在第一信道上,第二节点接收来自第一节点的第一测距帧。其中,第一测距帧通过至少一个第一符号承载第一测距信息。
S902,第二节点根据至少一个第一符号确定对应第一信道的第一信道状态信息。
S903,在第一信道上,第二节点向第一节点发送第二测距帧。相应的,在第一信道上,第一节点接收来自第二节点的第二测距帧。其中,第二测距帧通过至少一个第二符号承载第二测距信息。
S904,第二节点向第一节点发送第一信道状态信息。相应的,第一节点接收来自第二节点的第一信道状态信息。
S905,第一节点根据至少一个第二符号确定对应第一信道的第二信道状态信息。
S906,第一节点根据第一信道状态信息和第二信道状态信息,确定第一信道的信道状态信息。第一信道的信道状态信息用于测量第一节点与第二节点之间的距离。
需要说明的是,上述步骤S901、S902、S903、S904、S905以及S906的执行顺序用于举例,本申请实施例对此不作限制,以符合实际的场景交互为准。S902、S904、S905以及S906可以在第一信道上执行,也可以不在第一信道上执行。其中,第一信道可以是跳频测距的初始信道(组),也可以是跳频测距的跳频信道(组),图9以第一信道是跳频测距的初始信道(组)为例。
上述步骤S901和S903可以理解为,第一节点和第二节点在第一信道上进行测距帧传输,第一节点向第二节点发送的第一测距帧的数量可以是一个或多个,第二节点向第一节点发送的第二测距帧的数量可以是一个或多个。
第一测距帧通过至少一个第一符号承载第一测距信息,可以理解为第一测距帧中的至少一个第一符号用于承载第一测距信息。第二测距帧通过至少一个第二符号承载第二测距信息,可以理解为第二测距帧中的至少一个第二符号用于承载第二测距信息。第一测距信息可参考上述测距帧1中对测距信息1的具体描述,第二测距信息可参考上述测距帧1中对测距信息2的具体描述,在此不再赘述。
第一测距帧与第二测距帧的帧结构相同,以在第一信道上采用相同帧结构的测距帧,有助于提高测距帧传输的稳定性。例如第一测距帧的帧结构可以是上述测距帧1至测距帧4中的任一种,第二测距帧的帧结构与第一测距帧的帧结构相同。
在第一种实现方式中,第一测距帧包括至少一个第一无线帧,第二测距帧包括至少一个第二无线帧。
可选方式1:上述至少一个第一无线帧中的符号均用于承载第一测距信息,上述至少一个第二无线帧中的符号均用于承载第二测距信息,第一无线帧与第二无线帧之间存在切换间隔(GAP)。可选方式1可对应上述测距帧1的帧结构,具体可参考上述测距帧1的描述。
可选方式2:对于上述至少一个第一无线帧中的任意一个第一无线帧而言:第一无线帧包含GAP,除GAP之外的每个符号均用于承载第一测距信息,并且,GAP在时间上位于用于承载第一测距信息的符号之后,也就是说GAP占用第一无线帧中一个符号的时长;对于上述至少一个第二无线帧的任意一个第二无线帧而言:第二无线帧包含GAP,除GAP之外的每个符号均用于承载第二测距信息,并且,GAP在时间上位于用于承载第二测距信息的符号之后,也就是说GAP占用第二无线帧中一个符号的时长。可选方式2可对应上述测距帧2的帧结构,具体可参考上述测距帧2的描述。
可选方式3:对于上述至少一个第一无线帧中的任意一个第一无线帧而言:第一无线帧包括GAP、第一开销符号和第一链路符号,第一开销符号和第一链路符号用于承载第一测距信息;对于上述至少一个第二无线帧中的任意一个第二无线帧而言:第二无线帧包括GAP、第二开销符号和第二链路符号,第二开销符号和第二链路符号用于承载第二测距信息。第一链路与第二链路的传输方向不同,例如,第一链路为G链路(即G节点向T节点发送数据或信息的方向),第二链路为T链路(即T节点向G节点发送数据或信息的方向)。进而,第一链路符号与第二链路符号用于承载不同传输方向的信息,第一开销符号与第二开销符号用于承载不同传输方向的信息,但是第一开销符号与第一链路符号承载的信息的传输方向相同,第二开销符号与第二链路符号承载的信息的传输方向相同,例如,第一开销符号为G开销符号,第一链路符号为G链路符号;第二开销符号为T开销符号,第一链路符号为T链路符号。可选方式3可对应上述测距帧3的帧结构,具体可参考上述测距帧3的描述。
可选的,针对上述第一种实现方式,第一节点可向第二节点发送第一配置信息,以便第二节点根据第一配置信息接收第一测距帧。其中,第一配置信息可包括如下一项或多项:
1)第一位图,用于指示一个超帧内用于测距的至少一个第一无线帧,即指示一个超帧内哪些无线帧可作为用于测距的第一无线帧。可选的,第一位图为48比特(bit)的位图,分别对应一个超帧内的48个无线帧。一个比特的取值指示该比特对应的无线帧是否为第一无线帧。例如一个比特的取值为1时表示该比特对应的无线帧为第一无线帧,该比特的取值为0时表示该比特对应的无线帧不为第一无线帧。一个超帧内的多个第一无线帧可构成第一测距帧,或一个超帧内的一个第一无线帧即为第一测距帧,换句话说,一个超帧可包含一个或多个第一测距帧。第二节点根据第一位图,可确定出在一个超帧内哪个或哪些无线帧中的符号承载了第一测距信息。第一位图可以为48bit的指示信息,该指示信息中的一个比特的取值指示该比特对应的无线帧是否为第一无线帧。
可选的,第一配置信息还可包括第三位图,用于指示一个超帧内用于测距的至少一个第二无线帧,即指示一个超帧内哪些无线帧可作为用于测距的第二无线帧。可选的,第三位图为48比特的位图,分别对应一个超帧内的48个无线帧。一个比特的取值指示该比特对应的无线帧是否为第二无线帧。一个超帧内的多个第二无线帧可构成第二测距帧,或一个超帧内的一个第二无线帧即为第二测距帧,换句话说,一个超帧可包含一个或多个第二测距帧。第二节点根据第三位图,可确定在一个超帧内使用哪个或哪些无线帧中的符号承载第二测距信息。
2)超帧数量L1,即L1个超帧,这L1个超帧在时域上连续。L1个超帧中的每个超帧均包含第一测距帧,或描述为L1个超帧中每个超帧均包含用于测距的第一无线帧。其中,L1为正整数。超帧数量L1也可以描述为第一测距帧对应的超帧数量L1。第二节点可根据超帧数量L1和第一位图确定传输第一测距帧的时频资源。
可选的,第一配置信息还可包括超帧数量L2,即L2个超帧,这L2个超帧在时域上连续。L2个超帧中的每个超帧均包含第二测距帧,或描述为L2个超帧中每个超帧均包含用于测距的第二无线帧。其中,L2为正整数。L2的具体数值与L1的具体数值可以相同,或两者之间的差值小于±1。若默认L2的具体数值与L1的具体数值相同,第一配置信息包括超帧数量L1即可。第一节点与第二节点在超帧内进行测距交互,例如在L1个超帧中的每个超帧内进行测距交互,第一配置信息包括超帧数量L1即可。
3)第一指示信息,用于指示L1个超帧中每个超帧对应的第一位图是否相同。例如,第一指示信息可采用1bit指示,该比特的取值为1时表示L1个超帧中每个超帧对应的第一位图相同,该比特的取值为0时表示L1个超帧中每个超帧对应的第一位图不相同。一个超帧可对应一个第一位图,例如超帧#1对应第一位图#1,第一位图#1为48bit的位图,分别对应超帧#1的48个无线帧。L1个超帧中每个超帧对应的第一位图不相同,例如超帧#1对应第一位图#1,超帧#2对应第一位图#2,第一位图#1与第一位图#2不相同。
如果第一指示信息指示L1个超帧中每个超帧对应的第一位图相同,那么第一配置信息可包括一个第一位图,该第一位图适用于L1个超帧中的每个超帧,进而L1个超帧内每个超帧包含的用于测距的第一无线帧的编号相同,也就是说,第一测距帧重复出现在L1个连续的超帧中。进一步的,第二节点可根据该第一位图和L1个超帧,确定传输第一测距帧的时频资源。如果第一指示信息指示L1个超帧中每个超帧对应的第一位图不相同,那么第一配置信息可最多包括L1个第一位图,L1个第一位图中任意两个第一位图不相同。进一步的,第二节点可根据L1个超帧中每个超帧对应的第一位图,分别确定传输第一测距帧的时频资源,例如L1=2,根据超帧#1对应的第一位图#1,确定超帧#1内传输第一测距帧的时频资源,根据超帧#2对应的第一位图#2,确定超帧#2内传输第一测距帧的时频资源。
可选的,第一配置信息还可包括第二指示信息,用于指示L2个超帧中每个超帧对应的第三位图是否相同。例如,第二指示信息可采用1bit指示,该比特的取值为1时表示L2个超帧中每个超帧对应的第三位图相同,该比特的取值为0时表示L2个超帧中每个超帧对应的第三位图不相同。
4)跳频测距的测距交互(或称为测量交互)次数,其数值可以是1~256次,具体数值可采用例如8bit的字段指示。一次测距交互可以是,第一节点发送一次第一测距帧,第二节点接收到第一测距帧,向第一节点发送一次第二测距帧,第一节点接收到第二测距帧。
5)第一信道上的第一测距帧的数量。
6)第三指示信息,用于指示第一信道上的第一测距帧的数量与第二测距帧的数量是否相同,例如可采用1bit指示,该比特的取值为1时表示相同,该比特的取值为0时表示不相同。若不相同,那么第一配置信息还可包括第一信道上的第二测距帧的数量。
上述第一配置信息可以是第一节点确定的或第一节点预先配置的。可选的,第二节点也可以向第一节点发送第二配置信息,以便第一节点接收第二测距帧。第二配置信息包括的内容与第一配置信息包括的内容类似,例如第二配置信息包括第三位图,以便第一节点根据第三位图确定一个超帧内哪个或哪些第二无线帧承载了第二测距信息。第二配置信息可以是第二节点确定的或第二节点预先配置的。
示例性的,在一个超帧内,以第一测距帧包含一个第一无线帧,第二测距帧包含一个第二无线帧为例,第一节点与第二节点在该超帧内的测距交互可参考图9-1和图9-2。图9-1和图9-2中,无线帧#0至无线帧#11用于传输控制信息。图9-1中,第一节点向第二节点连续发2个第一测距帧,这2个第一测距帧通过无线帧#12和无线帧#13中的符号承载第一测距信息;第二节点向第一节点连续发送2个第二测距帧,这2个第二测距帧通过无线帧#14和无线帧#15中的符号承载第二测距信息。图9-2中,第一节点向第二节点发送1个第一测距帧,这个第一测距帧通过无线帧#12中的符号承载第一测距信息;第二节点向第一节点发送1个第二测距帧,这个第二测距帧通过无线帧#13中的符号承载第二测距信息;第一节点再向第二节点发送1个第一测距帧,这个第一测距帧通过无线帧#14中的符号承载第一测距信息;第二节点再向第一节点发送1个第二测距帧,这个第二测距帧通过无线帧#15中的符号承载第二测距信息。可以理解的是,图9-1中第一节点和第二节点进行一次测距交互,一次测距交互中第一节点和第二节点各发送2个连续的测距帧;图9-2中第一节点和第二节点进行2次测距交互,一次测距交互中第一节点和第二节点各发送1个测距帧。
在第二种实现方式中,第一测距帧由至少一个第一开销符号组成,至少一个第一开销符号为至少一个第一无线帧的全部或部分开销符号,至少一个第一开销符号用于承载第一测距信息;第二测距帧由至少一个第二开销符号组成,至少一个第二开销符号为至少一个第二无线帧的全部或部分开销符号,至少一个第二开销符号用于承载第二测距信息。第二种实现方式可对应上述测距帧4的帧结构,具体可参考上述测距帧4的描述。
可选的,在第一信道上,第一测距帧中用于承载第一测距信息的符号数量与第二测距帧中用于承载第二测距信息的符号数量之间的差值小于第一阈值,以使第一信道状态信息与第二信道状态信息的SNR相同或相近。其中,差值可以是绝对值,第一阈值可以是1;差值也可以是相对值,第一阈值可以是±1。
可选的,针对上述第二种实现方式,第一节点可向第二节点发送第二位图,第二位图用于指示一个超帧内用于承载第一测距信息的开销符号。可选的,第二位图为96比特的位图,分别对应一个超帧内的96个开销符号。一个比特的取值指示该比特对应的开销符号是否承载第一测距信息。例如一个比特的取值为1时表示该比特对应的开销符号承载第一测距信息,该比特的取值为0时表示该比特对应的开销符号承载第一测距信息。第三位图可以为96bit的指示信息,该指示信息中的一个比特的取值指示该比特对应的开销符号是否承载第一测距信息。第二位图可携带在第一节点向第二节点发送的配置信息中,例如第三配置信息。
可选的,第三配置信息还可包括:第四位图,第四位图用于指示一个超帧内用于承载第二测距信息的开销符号。可选的,第四位图为96比特的位图,分别对应一个超帧内的96个开销符号。一个比特的取值指示该比特对应的开销符号是否承载第二测距信息。例如一个比特的取值为1时表示该比特对应的开销符号承载第二测距信息,该比特的取值为0时表示该比特对应的开销符号不承载第一测距信息。或者,第二节点向第一节点发送第四位图,以便第一节点确定一个超帧内的哪些开销符号承载了第二测距信息。
上述第三配置信息可以是第一节点确定的或第一节点预先配置的。
示例性的,在一个超帧内,以第一测距帧由I个第一开销符号组成,第二测距帧由J个第二开销符号组成为例,在该超帧内,第一节点和第二节点进行一次测距交互。I与J的差值小于上述第一阈值。I、J均为正整数。
上述步骤S902、S904、S905以及S906可以理解为,第一节点和第二节点根据测距帧承载的测距信息进行测距以确定对应的信道状态信息,第一节点基于第一信道状态信息和第二 信道状态信息,确定出第一信道的信道状态信息,第一信道的信道状态信息用于测量第一节点与第二节点之间的距离,从而实现针对第一信道的节点间测距,有助于提高测距精度。
其中,第一信道状态信息是指第一测距帧的子载波测量信息或第一测距帧的到达时刻,可以理解为第二节点在第一信道上测量得到的第一节点到第二节点的信道状态信息,即第一节点到第二节点的距离。相应的,第二信道状态信息是指第二测距帧的子载波测量信息或第二测距帧的到达时刻,可以理解为第一节点在第一信道上测量得到的第二节点到第一节点的信道状态信息,即第二节点到第一节点的距离。第一信道的信道状态信息是指综合第一信道状态信息和第二信道状态信息,得到的信道状态信息,用于测量第一节点与第二节点之间的距离。其中,子载波测量信息是指通过接收PRS符号,针对已知的测距OFDM符号进行解调后,以及进行频域信道估计所确定的子载波对应的频率的测量值(即频域信道状态信息)。
在图9所示的实施例中,在第一信道上,通过发送第一测距帧和接收第二测距帧,可实现针对第一信道的测距帧的传输。测距帧通过至少一个符号承载测距信息,可实现测距信息的传输。根据对应第一信道的第一信道状态信息和第二信道状态信息,可确定出第一信道的信道状态信息,从而实现针对第一信道的节点间测距,有助于提高测距精度。
图9中第一节点与第二节点之间的通信方式为单播,本申请提供的测距帧也可以应用于组播通信方式。
请参见图10,是本申请提供的另一种测距方法的流程示意图,该方法可以包括但不限于如下步骤:
S1001,在第一信道上,第一节点广播第一测距帧。
可选的,在第一信道上,第一节点向其通信域中的第二节点广播第一测距帧,相应的,该通信域中的第二节点接收来自第一节点的第一测距帧。第一信道和第一测距帧可参考图9所示实施例中对其的具体描述,在此不再赘述。
第一节点的通信域可以理解为在测距协商过程中形成的测距组,测距组至少包括一个第一节点和一个第二节点,例如至少包括一个G节点和一个T节点。本申请不限定第一节点的通信域中的第二节点的数量,图10以通信域包括2个T节点,即第二节点#1和第二节点#2为例,在第一信道上,第一节点广播第一测距帧,第二节点#1可接收到第一测距帧,第二节点#2也可接收到第一测距帧。
进一步的,第二节点#1在接收到第一测距帧时,可根据第一测距帧确定第一信道对应的信道状态信息1,具体可根据至少一个第一符号确定第一信道对应的信道状态信息1。第二节点#2在接收到第一测距帧时,可根据第一测距帧确定第一信道对应的信道状态信息2。可以理解的是,通信域中的第二节点对第一节点广播的第一测距帧进行测距。
S1002,在第一信道上,第二节点#1向第一节点发送第二测距帧。相应的,第一节点接收来自第二节点#1的第二测距帧。
S1003,在第一信道上,第二节点#2向第一节点发送第三测距帧。相应的,第一节点接收来自第二节点#2的第三测距帧。
其中,第二测距帧通过至少一个第二符号承载第二测距信息,第三测距帧通过至少一个第二符号承载第二测距信息。第一测距帧、第二测距帧以及第三测距帧的帧结构均相同,例如均为上述测距帧1。
第三测距帧与第二测距帧在时域上的顺序满足预先的设置。在一种实现方式中,预先的设置可以是多个第二节点在通信域中的标识的大小顺序,例如第二节点#1在通信域中的标识为node 1,第二节点#2在通信域中的标识为node 2,若是标识从小到大的顺序,那么在时域 上第二测距帧在第三测距帧之前;若是标识从大到小的顺序,那么在时域上第二测距帧在第三测距帧之后。在另一种实现方式中,预先的设置可以是多个第二节点在测距协商过程中确定的顺序,例如在测距协商过程中确定出第二节点#1在第二节点#2之前,那么在时域上第二测距帧在第三测距帧之前;再例如,在测距协商过程中确定出第二节点#2在第二节点#1之前,那么在时域上第三测距帧在第二测距帧之前。这两种实现方式用于举例,并不构成对本申请的限定。
示例性的,在一个超帧内,以第一测距帧包含一个第一无线帧,第二测距帧和第三测距帧分别包含一个第二无线帧为例,在该超帧内的测距交互可参考图10-1。图10-1中,无线帧#0至无线帧#11用于传输控制信息,第二测距帧在第三测距帧之前。
图10以在第一信道上,第一节点向2个第二节点广播第一测距帧为例,进一步的,在第一信道上,第一节点广播第一测距帧,接收来自第二节点的第二测距帧,接收来自P个第三节点的P个第三测距帧(以一个第三节点发送一个第三测距帧为例),P个第三测距帧与第二测距帧在时域上的顺序满足预先的设置。其中,第二节点和第三节点均为T节点。也就是说,第一节点广播第一测距帧,接收来自多个第二节点的多个第二测距帧(以一个第二节点发送一个第二测距帧为例),多个第二测距帧在时域上的顺序满足预先的设置。
在图10所示的实施例中,第一节点广播第一测距帧,可节省开销并降低第一节点的功耗。
图9和图10以第一信道为跳频测距的初始信道(组)为例进行测距交互,若从初始信道切换至跳频信道(或描述为从初始信道跳频至另一个信道),在跳频信道上的测距交互与在第一信道上的测距交互类似。例如,将跳频信道称为第二信道,请参见图11,是本申请提供的又一种测距方法的流程示意图,该方法可以包括但不限于如下步骤:
S1101,在第二信道上,第一节点向第二节点发送第四测距帧。相应的,第二节点接收来自第一节点的第四测距帧。
其中,第四测距帧通过至少一个第一符号承载第一测距信息。第四测距帧与第一测距帧的帧结构相同或不同。例如,第一测距帧为上述测距帧4,第四测距帧为上述测距帧1;再例如,第一测距帧和第四测距帧均为上述测距帧1。
S1102,第二节点根据第四测距帧确定对应第二信道的第三信道状态信息。
S1103,在第二信道上,第二节点向第一节点发送第五测距帧。相应的,在第二信道上,第一节点接收来自第二节点的第五测距帧。
其中,第五测距帧通过至少一个第二符号承载第二测距信息。第五测距帧与第二测距帧的帧结构相同或不同。例如,第五测距帧为上述测距帧4,第二测距帧为上述测距帧1;再例如,第五测距帧和第二测距帧均为上述测距帧1。
S1104,第二节点向第一节点发送第三信道状态信息。相应的,第一节点接收来自第二节点的第三信道状态信息。
S1105,第一节点根据第五测距帧确定对应第二信道的第四信道状态信息。
S1106,第一节点根据第三信道状态信息和第四信道状态信息,确定第二信道的信道状态信息。第二信道的信道状态信息用于测量第一节点与第二节点之间的距离。
图11所示实施例中,与图9所示实施例相同或类似的部分可参考图9的描述,在此不再赘述。
进一步的,第一节点根据第一信道的信道状态信息和第二信道的信道状态信息,确定第一节点与第二节点之间的距离。也就是说,第一节点根据多个信道的信道状态信息,确定最 终的第一节点与第二节点之间的距离。例如在车载定位场景下,可表示车钥匙与某个定位节点之间的距离。跳频可扩大跳频测距的测量带宽,有助于提高测距的准确性和精度,本申请中的第一节点与第二节点之间的距离是通过多个信道的测距交互确定的,具有较高的准确性和精度。
可选的,第一节点可以将第一节点与第二节点之间的距离发送至第二节点,以便第二节点获知与第一节点之间的距离。
信道切换,可通过如下方式1和/或方式2实现。
方式1,第一节点和/或第二节点,可根据第一信息,进行信道切换。第一信息用于指示信道切换或跳频。第一信息可以是预配置的跳频信息,例如预配置的定时器,在该定时器超时的情况下,可进行信道切换。
方式2,反相符号所在的无线帧指示信道切换。方式2根据测距帧的帧结构可分为2两种,如下方式2.1和方式2.2。
方式2.1,第一测距帧和第二测距帧为上述测距帧1或测距帧2或测距帧3,第一测距帧包含至少一个第一无线帧,第二测距帧包含至少一个第二无线帧。
对第一节点而言,其接收到的至少一个第二无线帧中的最后一个第二无线帧,若最后一个第二无线帧包含的用于承载第二测距信息的最后M个符号与最后一个第二无线帧中其它用于承载第二测距信息的符号反相,那么最后一个第二无线帧可指示信道切换。第一节点在接收到最后一个第二无线帧时,可进行信道切换。
对第二节点而言,其接收到的至少一个第一无线帧中的最后一个第一无线帧,若最后一个第一无线帧包含的用于承载第一测距信息的最后N个符号与最后一个第一无线帧中其它用于承载第一测距信息的符号反相,那么最后一个第一无线帧可指示信道切换。第二节点在接收到最后一个第一无线帧的情况下,可在第二测距帧发送完成时,进行信道切换。
方式2.2,第一测距帧和第二测距帧为上述测距帧4,第一测距帧由至少一个第一开销符号构成,第二测距帧由至少一个第二开销符号构成。
对第一节点而言,其接收到的至少一个第二开销符号中的最后Y个第二开销符号与其它用于承载所述第二测距信息的第二开销符号反相,那么反相的最后Y个第二开销符号可指示信道切换,或反相的最后Y个第二开销符号所在的第一无线帧可指示信道切换。第一节点在接收到反相的最后Y个第二开销符号时,可进行信道切换。
对第二节点而言,其接收到的至少一个第一开销符号中的最后X个第一开销符号与其它用于承载所述第一测距信息的第一开销符号反相,那么反相的最后X个第一开销符号可指示信道切换,或反相的最后X个第一开销符号所在的第一无线帧可指示信道切换。第二节点在接收到反相的最后Y个第一开销符号的情况下,可在第二测距帧发送完成时,进行信道切换。
上述方式1和方式2用于举例,并不构成对本申请的限定。需要说明的是,在方式1的定时器未超时,而方式2指示信道切换的情况下,可以直接采用方式2进行信道切换,即不管定时器是否超时。
上述第四测距帧的数量和/或第五测距帧的数量可由第二信息指示。例如,第二信息用于指示时间上连续传输的第四测距帧的数量和/或时间上连续传输的第五测距帧的数量。在跳频信道上,连续传输测距帧有利于提高测距的准确性和精度。第一节点可向第二节点发送第二信息,以便第二节点接收第四测距帧和/或发送第五测距帧。第二信息可携带在上述第一配置信息中,或上述第三配置信息中。
进一步的,第四测距帧包含的用于承载第一测距信息的符号的数量与第一测距帧包含的 用于承载第一测距信息的符号的数量之间的差值小于第二阈值;和/或,第五测距帧包含的用于承载第二测距信息的符号的数量与第二测距帧包含的用于承载第二测距信息的符号的数量之间的差值小于第二阈值,以使在不同信道上保持相同或相近的SNR。其中,差值可以是绝对值,第二阈值可以是1;差值也可以是相对值,第二阈值可以是±1。例如,第四测距帧为上述测距帧1,第一测距帧为上述测距帧4,那么测距帧4包含的用于承载测距信息1的开销符号的数量,与测距帧4包含的用于承载测距信息1的符号的数量之间的差值小于第二阈值。
可选的,在从第一信道跳频至第二信道时,第一节点在向第二节点发送上述测距帧1或测距帧2之前,向第二节点发送前导信息,该前导信息用于第一节点和第二节点重新定时和频率同步。第二节点在向第一节点发送上述测距帧1或测距帧2之前,是否向第一节点发送前导信息,可由第一节点向第二节点发送的前导信息指示。
进一步的,对于组播通信方式,在从第一信道跳频至第二信道时,第一节点在广播上述测距帧1或测距帧2之前,广播前导信息,该前导信息用于第一节点和多个第二节点重新定时和频率同步。可选的,该前导信息还用于指示测距交互模式为组播。
示例性的,对于组播通信方式,以在第二信道上采用上述测距帧1为例,第一节点与三个第二节点的测距交互可参考图11-1。图11-1中,第一节点在经过T RF后,执行CCA并接入第二信道;第一节点发送前导信息之后,发送测距帧1(通过无线帧#13中的全部符号承载);三个第二节点按照预先的设置发送测距帧1,例如第二节点1发送的测距帧1通过无线帧#14中的全部符号承载,第二节点2发送的测距帧1通过无线帧#15中的全部符号承载,第二节点3发送的测距帧1通过无线帧#16中的全部符号承载。
在图11所示的实施例中,第二信道为跳频信道,通过跳频扩大跳频测距的测量带宽,有助于提高测距的准确性和精度。
在以上实施例中,不具体限制无线帧的帧格式。一个无线帧可以是一个由G节点预先配置OFDM符号参数的帧格式(帧长度可以小于640×Ts),且一个无线帧可以包含预先配置的Q个OFDM符号,其中Q为正整数,Q的取值大小可根据期望的SNR进行配置。预先配置OFDM符号参数包括以下至少一种:有CP或无CP,扩展CP或常规CP,承载CSI-RS或SRS或FTS或STS等。一个无线帧包含较少的OFDM符号个数时,可以在满足测距精度的前提下,减小测距帧的时间长度,提高测距的效率和节省测距节点的功耗。
上述详细阐述了本申请实施例提供的方法,下面提供用于实现本申请实施例中任一种方法的装置,例如,提供一种装置包括用以实现以上任一种方法中节点所执行的各步骤的单元(或手段)。
请参阅图12,图12为本申请实施例提供的一种通信装置的结构示意图。
如图12所示,该通信装置120可以包括通信单元1201以及处理单元1202。通信单元1201以及处理单元1202可以是软件,也可以是硬件,或者是软件和硬件结合。
其中,通信单元1201可以实现发送功能和/或接收功能,通信单元1201也可以描述为收发单元、获取单元或发送单元。通信单元1201还可以是集成了获取单元和发送单元的单元,其中,获取单元用于实现接收功能,发送单元用于实现发送功能。可选的,通信单元1201可以用于接收其他装置发送的信息,还可以用于向其他装置发送信息。
在一种可能的设计中,该通信装置120可对应于上述方法实施例中的第一节点,如该通信装置120可以是第一节点,也可以是第一节点中的芯片。该通信装置120可以包括用于执行上述方法实施例中由第一节点所执行的操作的单元,并且,该通信装置120中的各单元分别为了实现上述方法实施例中由第一节点所执行的操作。其中,各个单元的描述如下:
通信单元1201,用于在第一信道上,发送第一测距帧,第一测距帧通过至少一个第一符号承载第一测距信息;在第一信道上,接收来自第二节点的第二测距帧,第二测距帧通过至少一个第二符号承载第二测距信息;接收第一信道状态信息,第一信道状态信息是来自第二节点的、对应第一信道的信道状态信息;
处理单元1202,用于根据至少一个第二符号确定对应第一信道的第二信道状态信息;根据第一信道状态信息和第二信道状态信息,确定第一信道的信道状态信息,第一信道的信道状态信息用于测量第一测距帧的发送方与第二节点之间的距离。
在一种可能的实现方式中,第一测距帧包括至少一个第一无线帧,第二测距帧包括至少一个第二无线帧。
可选方式1:上述至少一个第一无线帧中的符号均用于承载第一测距信息,上述至少一个第二无线帧中的符号均用于承载第二测距信息,第一无线帧与第二无线帧之间存在切换间隔,切换间隔用于执行收发切换。
可选方式2:对于上述至少一个第一无线帧中的任意一个第一无线帧而言:第一无线帧包含切换间隔,除切换间隔之外的每个符号均用于承载第一测距信息,并且,切换间隔在时间上位于用于承载第一测距信息的符号之后;对于上述至少一个第二无线帧的任意一个第二无线帧而言:第二无线帧包含切换间隔,除切换间隔之外的每个符号均用于承载第二测距信息,并且,切换间隔在时间上位于用于承载第二测距信息的符号之后。其中,切换间隔用于执行收发切换。
可选方式3:对于上述至少一个第一无线帧中的任意一个第一无线帧而言:第一无线帧包括切换间隔、第一开销符号和第一链路符号,第一开销符号和第一链路符号用于承载第一测距信息;对于上述至少一个第二无线帧中的任意一个第二无线帧而言:第二无线帧包括切换间隔、第二开销符号和第二链路符号,第二开销符号和第二链路符号用于承载第二测距信息。其中,切换间隔用于执行收发切换。其中,第一链路符号与第二链路符号用于承载不同传输方向的信息。
可选的,通信单元1201,还用于发送第一位图,第一位图用于指示一个超帧内的上述第一无线帧。
可选的,对于上述至少一个第一无线帧中的最后一个第一无线帧,其包含的用于承载第一测距信息的最后N个符号与最后一个第一无线帧中其它用于承载第一测距信息的符号反相,最后一个第一无线帧指示信道切换;其中,N为正整数;
和/或,对于至少一个第二无线帧中的最后一个第二无线帧,其包含的用于承载第二测距信息的最后M个符号与最后一个第二无线帧中其它用于承载第二测距信息的符号反相,最后一个第二无线帧指示信道切换;其中,M为正整数。
在另一种可能的实现方式中,第一测距帧由至少一个第一开销符号组成,至少一个第一开销符号为至少一个第一无线帧的全部或部分开销符号,至少一个第一开销符号用于承载第一测距信息;第二测距帧由至少一个第二开销符号组成,至少一个第二开销符号为至少一个第二无线帧的全部或部分开销符号,至少一个第二开销符号用于承载第二测距信息。
可选的,上述至少一个第一开销符号为至少一个第一无线帧的部分开销符号,至少一个第一无线帧的至少一个第三开销符号为第一链路系统开销符号或第二链路系统开销符号;上述至少一个第二开销符号为至少一个第二无线帧的部分开销符号,至少一个第二无线帧的至少一个第四开销符号为第一链路系统开销符号或第二链路系统开销符号。
可选的,在第一信道上,第一测距帧中用于承载第一测距信息的符号数量与第二测距帧 中用于承载第二测距信息的符号数量之间的差值小于第一阈值。
可选的,通信单元,还用于发送第二位图,第二位图用于指示一个超帧内用于承载第一测距信息的开销符号。
可选的,上述至少一个第一开销符号的最后X个第一开销符号与其它用于承载第一测距信息的第一开销符号反相,反相的最后X个符号指示信道切换;其中,X为正整数;
和/或,上述至少一个第二开销符号的最后Y个第二开销符号与其它用于承载第二测距信息的第二开销符号反相,反相的最后Y个第二开销符号指示信道切换;其中,Y为正整数。
可选的,在一个超帧内,第一测距帧包含的第一个第一无线帧的编号大于K,该超帧内的第1个无线帧至编号为K的无线帧中的开销符号用于传输控制信息,K为大于1的正整数。
在一种可能的实现方式中,通信单元1201,还用于在第一信道上,接收来自P个第三节点的P个第三测距帧,第三测距帧通过至少一个第二符号承载第二测距信息,第三测距帧与第二测距帧的帧结构相同,P为正整数。
进一步的,P个第三测距帧和第二测距帧在时域上的顺序满足预先的设置。
在一种可能的实现方式中,通信单元1201,还用于根据用于指示信道切换的第一信息,在第二信道上,发送第四测距帧,第四测距帧通过至少一个第一符号承载第一测距信息;第四测距帧与第一测距帧的帧结构相同或不同;在第二信道上,接收来自第二节点的第五测距帧,第五测距帧通过至少一个第二符号承载第二测距信息;第五测距帧与第四测距帧的帧结构相同;接收第三信道状态信息,第三信道状态信息是来自第二节点的、对应第二信道的信道状态信息;
处理单元1202,还用于根据第五测距帧确定对应第二信道的第四信道状态信息;根据第三信道状态信息和第四信道状态信息,确定第二信道的信道状态信息,第二信道的信道状态信息用于测量第四测距帧的发送方与第二节点之间的距离。
进一步的,处理单元1202,还用于根据第一信道的信道状态信息和第二信道的信道状态信息,确定第一测距帧的发送方与第二节点之间的距离。
可选的,通信单元1201,还用于接收第二信息,第二信息用于指示时间上连续传输的第四测距帧的数量和/或时间上连续传输的第五测距帧的数量。
可选的,第四测距帧包含的用于承载第一测距信息的符号的数量与第一测距帧包含的用于承载第一测距信息的符号的数量之间的差值小于第二阈值;和/或,第五测距帧包含的用于承载第二测距信息的符号的数量与第二测距帧包含的用于承载第二测距信息的符号的数量之间的差值小于第二阈值。
在另一种可能的设计中,该通信装置120可对应于上述方法实施例中的第二节点,如该通信装置120可以是第二节点,也可以是第二节点中的芯片。该通信装置120可以包括用于执行上述方法实施例中由第二节点所执行的操作的单元,并且,该通信装置120中的各单元分别为了实现上述方法实施例中由第二节点所执行的操作。其中,各个单元的描述如下:
通信单元1201,用于在第一信道上,接收来自第一节点的第一测距帧,第一测距帧通过至少一个第一符号承载第一测距信息;在第一信道上,向第一节点发送第二测距帧,第二测距帧通过至少一个第二符号承载第二测距信息;
处理单元1202,用于根据至少一个第一符号确定对应第一信道的第一信道状态信息;
通信单元1201,还用于向第一节点发送第一信道状态信息,第一信道状态信息用于测量第一节点与第一测距帧的接收方之间的距离。
在一种可能的实现方式中,通信单元1201,还用于接收第一位图,第一位图用于指示一 个超帧内的第一无线帧;第一无线帧中的符号均用于承载第一测距信息;或,第一无线帧包括切换间隔,除切换间隔之外的每个符号均用于承载第一测距信息,并且,切换间隔在时间上位于用于承载第一测距信息的符号之后,切换间隔用于执行收发切换。
在另一种可能的实现方式中,通信单元1201,还用于接收第二位图,第二位图用于指示一个超帧内用于承载第一测距信息的开销符号。
可选的,通信单元1201还用于根据第一信息,在第二信道上,接收来自第一节点的第四测距帧,第四测距帧通过至少一个第一符号承载第一测距信息;第四测距帧与第一测距帧的帧结构相同或不同;第一信息用于指示信道切换;在第二信道上,向第一节点发送第五测距帧,第五测距帧通过至少一个第二符号承载第二测距信息;第五测距帧与第四测距帧的帧结构相同;
处理单元1202,还用于根据第五测距帧确定对应第二信道的第三信道状态信息;
通信单元1201,还用于向第一节点发送第三信道状态信息,第三信道状态信息用于测量第一节点与第四测距帧的接收方之间的距离。
进一步的,通信单元1201,还用于接收来自所述第一节点的第一测距帧的接收方与第一节点之间的距离。
根据本申请实施例,图12所示的装置中的各个单元可以分别或全部合并为一个或若干个另外的单元来构成,或者其中的某个(些)单元还可以再拆分为功能上更小的多个单元来构成,这可以实现同样的操作,而不影响本申请的实施例的技术效果的实现。上述单元是基于逻辑功能划分的,在实际应用中,一个单元的功能也可以由多个单元来实现,或者多个单元的功能由一个单元实现。在本申请的其它实施例中,基于节点也可以包括其它单元,在实际应用中,这些功能也可以由其它单元协助实现,并且可以由多个单元协作实现。
需要说明的是,各个单元的实现还可以对应参照上述图9、图10、图12所示的方法实施例的相应描述。
在图12所描述的通信装置120中,在第一信道上通过传输测距帧,可实现节点间针对第一信道的测距帧的传输。测距帧通过至少一个符号承载测距信息,可实现测距信息的传输。根据对应第一信道的第一信道状态信息和第二信道状态信息,可确定出第一信道的信道状态信息,从而实现针对第一信道的测距交互,有助于提高测距精度。
请参阅图13,图13为本申请实施例提供的一种通信装置的结构示意图。
应理解,图13示出的通信装置130仅是示例,本申请实施例的通信装置还可包括其他部件,或者包括与图13中的各个部件的功能相似的部件,或者并非要包括图13中所有部件。
通信装置130包括通信接口1301和至少一个处理器1302。
该通信装置130可以对应第一节点或第二节点。通信接口1301用于收发信息,至少一个处理器1302执行程序指令,使得通信装置130实现上述方法实施例中由对应节点所执行的方法的相应流程。
在一种可能的设计中,该通信装置130可对应于上述图3所示的方法实施例中的第一节点,如该通信装置130可以是第一节点,也可以是第一节点中的芯片。该通信装置130可以包括用于执行上述方法实施例中由第一节点所执行的操作的部件,并且,该通信装置130中的各部件分别为了实现上述方法实施例中由第一节点所执行的操作,具体可以对应参照上述图9、图10、图11所示的方法实施例的第一节点的相应描述。
在另一种可能的设计中,该通信装置130可对应于上述图3所示的方法实施例中的第二 节点,如该通信装置130可以是第二节点,也可以是第二节点中的芯片。该通信装置130可以包括用于执行上述方法实施例中由第二节点所执行的操作的部件,并且,该通信装置130中的各部件分别为了实现上述方法实施例中由第二节点所执行的操作,具体可以对应参照上述图9、图10、图11所示的方法实施例的第二节点的相应描述。
对于通信装置可以是芯片或芯片系统的情况,可参阅图14所示的芯片的结构示意图。
如图14所示,芯片140包括处理器1401和接口1402。其中,处理器1401的数量可以是一个或多个,接口1402的数量可以是多个。需要说明的是,处理器1401、接口1402各自对应的功能既可以通过硬件设计实现,也可以通过软件设计来实现,还可以通过软硬件结合的方式来实现,这里不作限制。
可选的,芯片140还可以包括存储器1403,存储器1403用于存储必要的程序指令和数据。
本申请中,处理器1401可用于从存储器1403中调用本申请的一个或多个实施例提供的通信方法在第一节点或第二节点的实现程序,并执行该程序包含的指令。接口1402可用于输出处理器1401的执行结果。本申请中,接口1402可具体用于输出处理器1401的各个消息或信息。
关于本申请的一个或多个实施例提供的通信方法可参考前述图9、图10、图11所示各个实施例,这里不再赘述。
本申请实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
本申请实施例中的存储器用于提供存储空间,存储空间中可以存储操作系统和计算机程序等数据。存储器包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM)。
根据本申请实施例提供的方法,本申请实施例还提供一种计算机可读存储介质,上述计算机可读存储介质中存储有计算机程序,当上述计算机程序在一个或多个处理器上运行时,可以实现上述图9、图10、图11所示的方法。
根据本申请实施例提供的方法,本申请实施例还提供一种计算机程序产品,上述计算机程序产品包括计算机程序,当上述计算机程序在处理器上运行时,可以实现上述图9、图10、图11所示的方法。
本申请实施例提供一种终端设备,该终端设备包括至少一个如上述通信装置120或通信装置130或芯片140。
本申请实施例还提供了一种系统,该系统包括终端设备以及至少一个如上述通信装置120或通信装置130或芯片140,用于执行上述图9、图10、图11任一实施例中相应节点执行的步骤。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器用于执行上述任一方法实施例中的方法。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(field  programmable gate array,FPGA),可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中的单元和方法实施例中的电子设备完全对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
可以理解的,本申请实施例中,电子设备可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。

Claims (32)

  1. 一种测距方法,其特征在于,包括:
    在第一信道上,发送第一测距帧,所述第一测距帧通过至少一个第一符号承载第一测距信息;
    在所述第一信道上,接收来自第二节点的第二测距帧,所述第二测距帧通过至少一个第二符号承载第二测距信息;
    接收第一信道状态信息,所述第一信道状态信息是来自所述第二节点的、对应所述第一信道的信道状态信息;
    根据所述至少一个第二符号确定对应所述第一信道的第二信道状态信息;
    根据所述第一信道状态信息和所述第二信道状态信息,确定所述第一信道的信道状态信息,所述第一信道的信道状态信息用于测量所述第一测距帧的发送方与所述第二节点之间的距离。
  2. 根据权利要求1所述的方法,其特征在于,所述第一测距帧包括至少一个第一无线帧,所述第二测距帧包括至少一个第二无线帧。
  3. 根据权利要求2所述的方法,其特征在于,所述至少一个第一无线帧中的符号均用于承载所述第一测距信息,所述至少一个第二无线帧中的符号均用于承载所述第二测距信息,所述第一无线帧与所述第二无线帧之间存在切换间隔,所述切换间隔用于执行收发切换。
  4. 根据权利要求2所述的方法,其特征在于,
    对于所述至少一个第一无线帧中的每个第一无线帧:所述第一无线帧包含切换间隔,除所述切换间隔之外的每个符号均用于承载所述第一测距信息,并且,所述切换间隔在时间上位于所述用于承载第一测距信息的符号之后,所述切换间隔用于执行收发切换;
    对于所述至少一个第二无线帧的每个第二无线帧:所述第二无线帧包含切换间隔,除所述切换间隔之外的每个符号均用于承载所述第二测距信息,并且,所述切换间隔在时间上位于所述用于承载第二测距信息的符号之后,所述切换间隔用于执行收发切换。
  5. 根据权利要求2所述的方法,其特征在于,
    对于所述至少一个第一无线帧中的每个第一无线帧:所述第一无线帧包括切换间隔、第一开销符号和第一链路符号,所述第一开销符号和所述第一链路符号用于承载所述第一测距信息;所述切换间隔用于执行收发切换;
    对于所述至少一个第二无线帧中的每个第二无线帧:所述第二无线帧包括切换间隔、第二开销符号和第二链路符号,所述第二开销符号和所述第二链路符号用于承载所述第二测距信息;所述切换间隔用于执行收发切换。
  6. 根据权利要求5所述的方法,其特征在于,所述第一无线帧和/或所述第二无线帧包含的切换间隔的个数为2个;
    其中,所述第一无线帧还包括至少一个第二链路符号,和/或,所述第二无线帧还包括至少一个第一链路符号;所述第二链路符号与所述第一链路符号用于承载不同传输方向的信息。
  7. 根据权利要求2至6任一项所述的方法,其特征在于,所述方法还包括:
    发送第一位图,所述第一位图用于指示一个超帧内的所述第一无线帧。
  8. 根据权利要求2至6任一项所述的方法,其特征在于,
    对于所述至少一个第一无线帧中的最后一个第一无线帧,其包含的用于承载所述第一测距信息的最后N个符号与所述最后一个第一无线帧中其它用于承载所述第一测距信息的符号反相,所述最后一个第一无线帧指示信道切换;其中,N为正整数;
    和/或,对于所述至少一个第二无线帧中的最后一个第二无线帧,其包含的用于承载所述第二测距信息的最后M个符号与所述最后一个第二无线帧中其它用于承载所述第二测距信息的符号反相,所述最后一个第二无线帧指示信道切换;其中,M为正整数。
  9. 根据权利要求1所述的方法,其特征在于,
    所述第一测距帧由至少一个第一开销符号组成,所述至少一个第一开销符号为至少一个第一无线帧的全部或部分开销符号,所述至少一个第一开销符号均用于承载所述第一测距信息;
    所述第二测距帧由至少一个第二开销符号组成,所述至少一个第二开销符号为至少一个第二无线帧的全部或部分开销符号,所述至少一个第二开销符号均用于承载所述第二测距信息。
  10. 根据权利要求9所述的方法,其特征在于,
    所述至少一个第一开销符号为所述至少一个第一无线帧的部分开销符号,所述至少一个第一无线帧的至少一个第三开销符号为第一链路系统开销符号或第二链路系统开销符号;
    所述至少一个第二开销符号为所述至少一个第二无线帧的部分开销符号,所述至少一个第二无线帧的至少一个第四开销符号为第一链路系统开销符号或第二链路系统开销符号。
  11. 根据权利要求9所述的方法,其特征在于,在所述第一信道上,所述第一测距帧中用于承载第一测距信息的符号数量与所述第二测距帧中用于承载第二测距信息的符号数量之间的差值小于第一阈值。
  12. 根据权利要求9至11任一项所述的方法,其特征在于,所述方法还包括:
    发送第二位图,所述第二位图用于指示一个超帧内用于承载所述第一测距信息的开销符号。
  13. 根据权利要求9或10所述的方法,其特征在于,
    所述至少一个第一开销符号的最后X个第一开销符号与其它用于承载所述第一测距信息的第一开销符号反相,反相的所述最后X个第一开销符号指示信道切换;其中,X为正整数;
    和/或,所述至少一个第二开销符号的最后Y个第二开销符号与其它用于承载所述第二测距信息的第二开销符号反相,反相的所述最后Y个第二开销符号指示信道切换;其中,Y为正整数。
  14. 根据权利要求9或10所述的方法,其特征在于,在一个超帧内,所述第一测距帧包 含的第一个第一无线帧的编号大于K,所述超帧内的第1个无线帧至编号为K的无线帧中的开销符号用于传输控制信息,K为大于1的正整数。
  15. 根据权利要求1至14任一项所述的方法,其特征在于,所述方法还包括:
    在所述第一信道上,接收来自P个第三节点的P个第三测距帧,所述第三测距帧通过所述至少一个第二符号承载所述第二测距信息;所述第三测距帧与所述第二测距帧的帧结构相同,P为正整数。
  16. 根据权利要求15所述的方法,其特征在于,所述P个第三测距帧与所述第二测距帧在时域上的顺序满足预先的设置。
  17. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据第一信息,在第二信道上,发送第四测距帧,所述第四测距帧通过所述至少一个第一符号承载所述第一测距信息;所述第四测距帧与所述第一测距帧的帧结构相同或不同;所述第一信息用于指示信道切换;
    在所述第二信道上,接收来自所述第二节点的第五测距帧,所述第五测距帧通过所述至少一个第二符号承载所述第二测距信息;所述第五测距帧与所述第四测距帧的帧结构相同;
    接收第三信道状态信息,所述第三信道状态信息是来自所述第二节点的、对应所述第二信道的信道状态信息;
    根据所述第五测距帧确定对应所述第二信道的第四信道状态信息;
    根据所述第三信道状态信息和所述第四信道状态信息,确定所述第二信道的信道状态信息,所述第二信道的信道状态信息用于测量所述第四测距帧的发送方与所述第二节点之间的距离。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    根据所述第一信道的信道状态信息和所述第二信道的信道状态信息,确定所述第一测距帧的发送方与所述第二节点之间的距离。
  19. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    发送第二信息,所述第二信息用于指示时间上连续传输的所述第四测距帧的数量和/或时间上连续传输的所述第五测距帧的数量。
  20. 根据权利要求18所述的方法,其特征在于,所述第四测距帧包含的用于承载所述第一测距信息的符号的数量与所述第一测距帧包含的用于承载所述第一测距信息的符号的数量之间的差值小于第二阈值;和/或,所述第五测距帧包含的用于承载所述第二测距信息的符号的数量与所述第二测距帧包含的用于承载所述第二测距信息的符号的数量之间的差值小于第二阈值。
  21. 一种测距方法,其特征在于,包括:
    在第一信道上,接收来自第一节点的第一测距帧,所述第一测距帧通过至少一个第一符号承载第一测距信息;
    在所述第一信道上,向所述第一节点发送第二测距帧,所述第二测距帧通过至少一个第二符号承载第二测距信息;
    根据所述至少一个第一符号确定对应所述第一信道的第一信道状态信息;
    向所述第一节点发送所述第一信道状态信息,所述第一信道状态信息用于测量所述第一节点与所述第一测距帧的接收方之间的距离。
  22. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    接收第一位图,所述第一位图用于指示一个超帧内的第一无线帧;所述第一无线帧中的符号均用于承载所述第一测距信息;或,所述第一无线帧包括切换间隔,除所述切换间隔之外的每个符号均用于承载所述第一测距信息,并且,所述切换间隔在时间上位于所述用于承载第一测距信息的符号之后,所述切换间隔用于执行收发切换。
  23. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    接收第二位图,所述第二位图用于指示一个超帧内用于承载所述第一测距信息的开销符号。
  24. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    根据第一信息,在第二信道上,接收来自所述第一节点的第四测距帧,所述第四测距帧通过所述至少一个第一符号承载所述第一测距信息;所述第四测距帧与所述第一测距帧的帧结构相同或不同;所述第一信息用于指示信道切换;
    在所述第二信道上,向所述第一节点发送第五测距帧,所述第五测距帧通过所述至少一个第二符号承载所述第二测距信息;所述第五测距帧与所述第四测距帧的帧结构相同;
    根据所述第五测距帧确定对应所述第二信道的第三信道状态信息;
    向所述第一节点发送所述第三信道状态信息,所述第三信道状态信息用于测量所述第一节点与所述第四测距帧的接收方之间的距离。
  25. 根据权利要求24所述的方法,其特征在于,所述方法还包括:
    接收来自所述第一节点的所述第一测距帧的接收方与所述第一节点之间的距离。
  26. 一种通信装置,其特征在于,所述通信装置包括通信单元和处理单元;
    所述通信单元,用于在第一信道上,发送第一测距帧,所述第一测距帧通过至少一个第一符号承载第一测距信息;在所述第一信道上,接收来自第二节点的第二测距帧,所述第二测距帧通过至少一个第二符号承载第二测距信息;接收第一信道状态信息,所述第一信道状态信息是来自所述第二节点的、对应所述第一信道的信道状态信息;
    所述处理单元,用于根据所述至少一个第二符号确定对应所述第一信道的第二信道状态信息;根据所述第一信道状态信息和所述第二信道状态信息,确定所述第一信道的信道状态信息,所述第一信道的信道状态信息用于测量所述第一测距帧的发送方与所述第二节点之间的距离。
  27. 一种通信装置,其特征在于,所述通信装置包括通信单元和处理单元;
    所述通信单元,用于在第一信道上,接收来自第一节点的第一测距帧,所述第一测距帧 通过至少一个第一符号承载第一测距信息;在所述第一信道上,向所述第一节点发送第二测距帧,所述第二测距帧通过至少一个第二符号承载第二测距信息;
    所述处理单元,用于根据所述至少一个第一符号确定对应所述第一信道的第一信道状态信息;
    所述通信单元,还用于向所述第一节点发送所述第一信道状态信息,所述第一信道状态信息用于测量所述第一节点与所述第一测距帧的接收方之间的距离。
  28. 一种通信装置,其特征在于,包括:处理器;
    当所述处理器调用存储器中的计算机程序或指令时,使如权利要求1至20中任一项所述的方法被执行,或权利要求21至25中任一项所述的方法被执行。
  29. 一种通信装置,其特征在于,包括:逻辑电路和通信接口;
    所述通信接口,用于接收信息或者发送信息;
    所述逻辑电路,用于通过所述通信接口接收信息或者发送信息,使如权利要求1至20中任一项所述的方法被执行,或权利要求21至25中任一项所述的方法被执行。
  30. 一种终端设备,其特征在于,包括如权利要求26或27所述的通信装置,或如权利要求28所述的通信装置,或如权利要求29所述的通信装置。
  31. 一种计算机可读存储介质,其特征在于,包括:
    所述计算机可读存储介质用于存储指令或计算机程序;当所述指令或所述计算机程序被执行时,使如权利要求1至20中任一项所述的方法被实现,或权利要求21至25中任一项所述的方法被实现。
  32. 一种计算机程序产品,其特征在于,包括:指令或计算机程序;
    所述指令或所述计算机程序被执行时,使如权利要求1至20中任一项所述的方法被实现,或权利要求21至25中任一项所述的方法被实现。
PCT/CN2022/100571 2022-06-22 2022-06-22 测距方法及装置 WO2023245518A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/100571 WO2023245518A1 (zh) 2022-06-22 2022-06-22 测距方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/100571 WO2023245518A1 (zh) 2022-06-22 2022-06-22 测距方法及装置

Publications (1)

Publication Number Publication Date
WO2023245518A1 true WO2023245518A1 (zh) 2023-12-28

Family

ID=89378882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100571 WO2023245518A1 (zh) 2022-06-22 2022-06-22 测距方法及装置

Country Status (1)

Country Link
WO (1) WO2023245518A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117498523A (zh) * 2024-01-03 2024-02-02 深圳市创诺新电子科技有限公司 应急储能电源系统及应急储能电源

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102006665A (zh) * 2009-08-28 2011-04-06 Lg电子株式会社 在无线通信系统中分配测距信道的方法和装置
CN103053125A (zh) * 2010-08-12 2013-04-17 三星电子株式会社 用于在无线通信系统中发送测距信号的方法和装置
CN105099635A (zh) * 2014-05-13 2015-11-25 北京三星通信技术研究有限公司 基于ofdm的帧配置的方法和设备
CN112995081A (zh) * 2019-12-12 2021-06-18 华为技术有限公司 一种测距的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102006665A (zh) * 2009-08-28 2011-04-06 Lg电子株式会社 在无线通信系统中分配测距信道的方法和装置
CN103053125A (zh) * 2010-08-12 2013-04-17 三星电子株式会社 用于在无线通信系统中发送测距信号的方法和装置
CN105099635A (zh) * 2014-05-13 2015-11-25 北京三星通信技术研究有限公司 基于ofdm的帧配置的方法和设备
CN112995081A (zh) * 2019-12-12 2021-06-18 华为技术有限公司 一种测距的方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117498523A (zh) * 2024-01-03 2024-02-02 深圳市创诺新电子科技有限公司 应急储能电源系统及应急储能电源
CN117498523B (zh) * 2024-01-03 2024-05-14 深圳市创诺新电子科技有限公司 应急储能电源系统及应急储能电源

Similar Documents

Publication Publication Date Title
WO2020029283A1 (zh) 发送、接收参考信号的方法、装置、车载设备及终端
CN105594269B (zh) 系统信息的获取方法、装置、基站以及系统
JP7453422B2 (ja) 無線通信方法及び装置、端末及び記憶媒体
WO2017016216A1 (zh) 一种非授权载波的同步信号的发送方法和基站、存储介质
US20230292364A1 (en) Bandwidth resource multiplexing method and apparatus, communication device and storage medium
US9049694B2 (en) Methods and apparatus for distributed medium access in wireless peer-to-peer networks
US20230224889A1 (en) Wireless communication method and apparatus, wireless communication system, and device and terminal
US20220353875A1 (en) Coexistence interference reporting method and apparatus, mobile terminal, and storage medium
WO2022087980A1 (zh) 信息传输方法、装置及通信设备
WO2023245518A1 (zh) 测距方法及装置
US11212806B2 (en) NAN fine-grained availability schedule indications
WO2021027806A1 (zh) 信息传输的方法和装置
US20220279553A1 (en) Method and apparatus for information processing
CN113950025B (zh) 数据传输方法和装置
WO2022198666A1 (zh) 一种通信方法、终端装置及系统
WO2022082590A1 (en) Systems and methods for handling collisions between aperiodic channel state information reference signal (ap-csi-rs) and periodic reference signal (rs) measurements
US20230239834A1 (en) Sidelink Paging for a Wireless Device
CN114041312A (zh) 一种资源指示和确定方法及相关装置
WO2024171413A1 (ja) 端末及び通信方法
EP4387357A1 (en) Communication method and device
WO2024171415A1 (ja) 端末及び通信方法
WO2024044996A1 (zh) 一种测量方法及相关装置
WO2024174942A1 (zh) 一种通信方法及装置
WO2024164897A1 (zh) 处理探测参考信号的方法、终端及网络侧设备
JP7425885B2 (ja) 無線通信における物理ブロードキャストチャネル拡張

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947295

Country of ref document: EP

Kind code of ref document: A1