WO2019029462A1 - 一种干扰测量方法及装置 - Google Patents

一种干扰测量方法及装置 Download PDF

Info

Publication number
WO2019029462A1
WO2019029462A1 PCT/CN2018/098686 CN2018098686W WO2019029462A1 WO 2019029462 A1 WO2019029462 A1 WO 2019029462A1 CN 2018098686 W CN2018098686 W CN 2018098686W WO 2019029462 A1 WO2019029462 A1 WO 2019029462A1
Authority
WO
WIPO (PCT)
Prior art keywords
configuration information
reference signal
reference signals
relay node
base station
Prior art date
Application number
PCT/CN2018/098686
Other languages
English (en)
French (fr)
Inventor
任毅
秦熠
栗忠峰
卓义斌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019029462A1 publication Critical patent/WO2019029462A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • the present application relates to the field of communications technologies, and in particular, to an interference measurement method and apparatus.
  • a relay transmission is introduced: one or more relay nodes (RNs) are added between the base station and the user equipment, and the wireless signal is performed once or Multiple forwarding, that is, the wireless signal has to go through multiple hops to reach the user equipment.
  • RNs relay nodes
  • the connection relationship between the three types of network elements can be as shown in Figure 1.
  • the link between the base station and the relay node is called a backhaul link (BL), and the link between the relay node and the user equipment is called an access link (AL).
  • BL backhaul link
  • AL access link
  • the embodiment of the present application provides an interference measurement method and apparatus for measuring interference of an access link in a relay system to a backhaul link.
  • an embodiment of the present application provides an interference measurement method, where the method includes the following steps:
  • the first device sends the first configuration information to the second device, or the first device receives the second configuration information sent by the second device, where the first configuration information and the second configuration information are N references sent by the second device to the third device.
  • the configuration information of the signal, the second device is the first device and the second device of the third device, N ⁇ 1.
  • the configuration information of the N reference signals includes at least one of the following information: a transmission time of the N reference signals; a carrier frequency of the N reference signals; a sequence of the N reference signals; and a subcarrier spacing of the N reference signals; Port information of N reference signals; reference signal index of N reference signals.
  • the first device may be a network device
  • the third device may be a user device
  • the second device is a relay node of the network device and the user device.
  • the first device may also be a relay node in the relay system
  • the third device may also be another relay node other than the second device.
  • only the second device is a relay node of the first device and the third device, and the device types of the first device and the second device are not limited.
  • the first device is a network device
  • the second device is a relay node
  • the third device is also a relay node
  • the second device and the third device are both regarded as a relay between the network device and the user device.
  • both the first device and the second device can be regarded as a relay node between the network device and the user device.
  • the first device sends the first configuration information to the second device (ie, the second device of the first device and the third device), and the first configuration information is the N devices sent by the second device to the third device.
  • the configuration information of the reference signal that is, the second device may send N reference signals to the third device according to the first configuration information. Since the first configuration information is known to the first device, the first device may perform interference measurement on the N reference signals sent by the second device to the third device based on the first configuration information, so that the first device may learn The link between the second device and the third device (ie, the access link) interferes with the link between the first device and the second device (ie, the backhaul link).
  • the method further includes: the first device measuring the N reference signals according to the first configuration information or the second configuration information.
  • the first device may perform measurement on the N reference signals according to the first configuration information, so as to determine, according to the measurement result, a link between the second device and the third device (ie, an access link) to the first device and the first device. Interference between the two devices (ie, the backhaul link).
  • the method further includes: the first device sending, to the second device, third configuration information, where the third configuration information is configuration information of the at least one of the N reference signals;
  • the configuration information of the at least one reference signal comprises at least one of: a transmission time of the at least one reference signal; a carrier frequency of the at least one reference signal; a sequence of the at least one reference signal; a subcarrier spacing of the at least one reference signal; Port information of at least one reference signal; reference signal index of at least one reference signal.
  • the second device may send a signal to the third device according to the third configuration information, so as to reduce interference of the access link to the backhaul link.
  • the method further includes: the first device transmitting, to the second device, a measurement result of the at least one of the N reference signals.
  • the second device may be configured to determine, according to the measurement result of the at least one reference signal, which configuration to transmit according to the subsequent process of transmitting the signal to the third device.
  • the measurement result of the at least one reference signal comprises at least one of: identification or configuration information of the at least one reference signal; reference signal received power RSRP of the at least one reference signal; channel quality indication of the at least one reference signal CQI; signal to interference ratio SIR of at least one reference signal; signal to interference plus noise ratio SINR of at least one reference signal.
  • the embodiment of the present application provides an interference measurement method, where the method includes the following steps: the second device receives the first configuration information sent by the first device, or the second device sends the second configuration information to the first device, where The configuration information and the second configuration information are configuration information of the N reference signals sent by the second device to the third device, where the second device is the second device of the first device and the third device, where N ⁇ 1;
  • the configuration information of the reference signal includes at least one of the following information: transmission time of N reference signals; carrier frequency of N reference signals; sequence of N reference signals; subcarrier spacing of N reference signals; N reference signals Port information; reference signal index of N reference signals.
  • the first device sends the first configuration information to the second device (ie, the second device of the first device and the third device), and the first configuration information is the N devices sent by the second device to the third device.
  • the configuration information of the reference signal that is, the second device may send N reference signals to the third device according to the first configuration information. Since the first configuration information is known to the first device, the first device may perform interference measurement on the N reference signals sent by the second device to the third device based on the first configuration information, so that the first device may learn The link between the second device and the third device (ie, the access link) interferes with the link between the first device and the second device (ie, the backhaul link).
  • the method further includes: the second device sending the N reference signals to the third device according to the first configuration information or the second configuration information.
  • the first device may perform measurement on the N reference signals according to the first configuration information, so as to determine, according to the measurement result, a link between the second device and the third device (ie, an access link) to the first device and the first device. Interference between the two devices (ie, the backhaul link).
  • the method further includes: receiving, by the second device, third configuration information sent by the first device, where the third configuration information is configuration information of at least one of the N reference signals;
  • the configuration information of a reference signal includes at least one of: a transmission time of at least one reference signal; a carrier frequency of at least one reference signal; a sequence of at least one reference signal; a subcarrier spacing of at least one reference signal; at least one reference Port information of the signal; reference signal index of at least one reference signal.
  • the second device may send a signal to the third device according to the third configuration information, so as to reduce interference of the access link to the backhaul link.
  • the method further includes: the second device receiving the measurement result of the at least one of the N reference signals sent by the first device.
  • the second device may be configured to determine, according to the measurement result of the at least one reference signal, which configuration to transmit according to the subsequent process of transmitting the signal to the third device.
  • the measurement result of the at least one reference signal comprises at least one of: identification or configuration information of at least one reference signal; RSRP of at least one reference signal; CQI of at least one reference signal; at least one reference signal SIR; SINR of at least one reference signal.
  • the embodiment of the present application provides an interference measurement method, where the method includes the following steps: the first device receives the measurement result sent by the second device, and the measurement result is the N reference signals sent by the third device to the second device.
  • the first device may be a network device
  • the third device may be a user device
  • the second device is a relay node of the network device and the user device.
  • the first device may also be a relay node in the relay system
  • the third device may also be another relay node other than the second device.
  • only the second device is a relay node of the first device and the third device, and the device types of the first device and the second device are not limited.
  • the first device is a network device
  • the second device is a relay node
  • the third device is also a relay node
  • the second device and the third device are both regarded as a relay between the network device and the user device.
  • both the first device and the second device can be regarded as a relay node between the network device and the user device.
  • the second device sends the measurement result of the at least one reference signal to the first device, where the at least one reference signal is at least one of the N reference signals sent by the third device to the second device.
  • the first device may filter all or part of the reference signals from the at least one reference signal according to the measurement result of the at least one reference signal, and send configuration information of all or part of the reference signals to the second device.
  • the reference signal that is selected by the first device may be a reference signal that is sent by the third device when the interference of the access link is small.
  • the third device may send the signal according to the configuration information of all or part of the reference signal when transmitting the signal to the second device, thereby reducing the access chain.
  • the method before the first device receives the measurement result sent by the second device, the method further includes: the first device sends the first configuration information to the second device, where the first configuration information is configuration information of the N reference signals.
  • the configuration information of the N reference signals includes at least one of the following: transmission time of the N reference signals; carrier frequency of the N reference signals; sequence of N reference signals; subcarrier spacing of the N reference signals Port information of N reference signals; reference index of N reference signals.
  • the second device may send the first configuration information to the third device, where the third device sends the N reference signals to the second device. , can be sent based on the first configuration information. While the third device sends the reference signal to the second device, the second device may also measure the N reference signals according to the first configuration information.
  • the method before the first device receives the measurement result sent by the second device, the method further includes: the first device sends the resource configuration information to the second device, where the resource configuration information is used to indicate that the second device sends the measurement result The resources used.
  • the second device may send the measurement result to the first device on the resource indicated by the resource configuration information.
  • the method further includes: the first device sends the second configuration information to the second device, where the second configuration information is configuration information of all or part of the reference signals in the at least one reference signal;
  • the configuration information of the partial reference signal includes at least one of the following: a transmission time of all or part of the reference signals; a carrier frequency of all or part of the reference signals; a sequence of all or part of the reference signals, all or part of the subcarrier spacing of the reference signals; Port information for all or part of the reference signal; reference signal index for all or part of the reference signal.
  • the second device may send the second configuration information to the third device after receiving the second configuration information, and the third device may subsequently send a signal to the second device based on the second configuration information to reduce the access chain.
  • the measurement result signal comprises at least one of: identification or configuration information of at least one reference signal; RSRP of at least one reference signal; CQI of at least one reference signal; SIR of at least one reference signal; at least one The SINR of the reference signal.
  • the embodiment of the present application provides an interference measurement method, where the method includes the following steps: the second device sends a measurement result to the first device, where the measurement result is the N reference signals sent by the third device to the second device.
  • the second device sends the measurement result of the at least one reference signal to the first device, where the at least one reference signal is at least one of the N reference signals sent by the third device to the second device.
  • the first device may filter all or part of the reference signals from the at least one reference signal according to the measurement result of the at least one reference signal, and send configuration information of all or part of the reference signals to the second device.
  • the reference signal that is selected by the first device may be a reference signal that is sent by the third device when the interference of the access link is small.
  • the third device may send the signal according to the configuration information of all or part of the reference signal when transmitting the signal to the second device, thereby reducing the access chain.
  • the method before the second device sends the measurement result to the first device, the method further includes: the second device receiving the first configuration information sent by the first device, where the first configuration information is configuration information of the N reference signals
  • the configuration information of the N reference signals includes at least one of the following: transmission time of the N reference signals; carrier frequency of the N reference signals; sequence of N reference signals; subcarrier spacing of the N reference signals ; port information of N reference signals; reference signal index of N reference signals.
  • the second device may send the first configuration information to the third device, where the third device sends the N reference signals to the second device. , can be sent based on the first configuration information. While the third device sends the reference signal to the second device, the second device may also measure the N reference signals according to the first configuration information.
  • the method before the second device sends the measurement result to the first device, the method further includes: the second device receiving the resource configuration information sent by the first device, where the resource configuration information is used to instruct the second device to send the measurement result information The resources used at the time.
  • the second device may send the measurement result to the first device on the resource indicated by the resource configuration information.
  • the method further includes: receiving, by the second device, second configuration information sent by the first device, where the second configuration information is configuration information of all or part of the reference signals in the at least one reference signal;
  • the configuration information of the partial reference signal includes at least one of the following: the transmission time of all or part of the reference signal; the carrier frequency of all or part of the reference signal; the sequence of all or part of the reference signal; the subcarrier of all or part of the reference signal Interval; port information for all or part of the reference signal; reference signal index for all or part of the reference signal.
  • the second device may send the second configuration information to the third device after receiving the second configuration information, and the third device may subsequently send a signal to the second device based on the second configuration information to reduce the access chain.
  • the measurement result comprises at least one of: identification or configuration information of at least one reference signal; RSRP of at least one reference signal; CQI of at least one reference signal; SIR of at least one reference signal; at least one reference The ratio of the signal to the SINR.
  • the embodiment of the present application further provides a first device, where the first device has a function of implementing the behavior of the first device in the interference measurement method provided by the foregoing first aspect and/or the third aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the first device includes a transmitting unit, a receiving unit, and a processing unit, and the units may perform the functions of corresponding actions in the interference measurement method provided by the first aspect and/or the third aspect,
  • the units may perform the functions of corresponding actions in the interference measurement method provided by the first aspect and/or the third aspect,
  • the structures of the first device includes a transmitting unit, a receiving unit, and a processing unit, and the units may perform the functions of corresponding actions in the interference measurement method provided by the first aspect and/or the third aspect,
  • the units may perform the functions of corresponding actions in the interference measurement method provided by the first aspect and/or the third aspect,
  • the units may perform the functions of corresponding actions in the interference measurement method provided by the first aspect and/or the third aspect,
  • the detailed description in the interference measurement method provided by the first aspect and/or the third aspect which is not described herein.
  • the structure of the first device includes a transmitter, a receiver, a processor, and a memory, and the transmitter and the receiver are used for other devices in the relay system (for example, the second device, The third device) performs a communication interaction, the processor being configured to support the first device to perform a corresponding function in the interference measurement method provided by the first aspect and/or the third aspect described above.
  • the memory is coupled to the processor, which stores program instructions and data necessary for the first device.
  • the embodiment of the present application further provides a second device, where the second device has a function of implementing the behavior of the second device in the example of the interference measurement method provided by the foregoing second aspect and/or the fourth aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the second device includes a transmitting unit, a receiving unit, and a processing unit, and the units may perform corresponding functions in the interference measurement method example provided by the second aspect and/or the fourth aspect described above.
  • the units may perform corresponding functions in the interference measurement method example provided by the second aspect and/or the fourth aspect described above.
  • the structures of the second device includes a transmitting unit, a receiving unit, and a processing unit, and the units may perform corresponding functions in the interference measurement method example provided by the second aspect and/or the fourth aspect described above.
  • the units may perform corresponding functions in the interference measurement method example provided by the second aspect and/or the fourth aspect described above.
  • the structure of the second device includes a transmitter, a receiver, a processor, and a memory, and the transmitter and the receiver are used for other devices in the relay system (for example, the first device, The third device) performs a communication interaction, the processor being configured to support the second device to perform a corresponding function in the interference measurement method provided by the second aspect and/or the fourth aspect described above.
  • the memory is coupled to the processor, which stores program instructions and data necessary for the second device.
  • the embodiment of the present application further provides a communication system, where the communication system includes the first device provided in the foregoing fifth aspect and the second device provided in the foregoing sixth aspect.
  • the embodiment of the present application provides a computer program product, where the computer program product includes a computer program stored on the first non-transitory computer storage medium, where the computer program includes program instructions, when When the program instructions are executed by the computer, causing the computer to perform the method provided by any one of the first aspect or the first aspect, or to perform the method provided by any one of the second aspect or the second aspect, or to perform The method provided by the third aspect or any one of the above third aspects, or the method provided by the fourth aspect or any one of the above fourth aspects.
  • the embodiment of the present application provides a computer storage medium, where the computer storage medium stores computer executable instructions, when the computer executable instructions are invoked by a computer, causing the computer to perform the first aspect or the foregoing
  • FIG. 1 is a schematic diagram of a connection relationship between three types of network elements in a relay system according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a first interference measurement method according to an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a second interference measurement method according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a third interference measurement method according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart diagram of a fourth interference measurement method according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart diagram of a fifth interference measurement method according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart diagram of a sixth interference measurement method according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a first first device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a second first device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a first type of second device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a second second device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a third first device according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a fourth first device according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a third second device according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a fourth second device according to an embodiment of the present application.
  • the relay system in order to reduce the interference between the backhaul link and the access link, it is first necessary to measure the interference between the two links, thereby changing each of the relay systems according to the interference situation between the two links.
  • the relay system shown in FIG. 1 is an example in which a wireless signal arrives at the user equipment through two hops.
  • the wireless signal reaches the user equipment after two hops or more. At this time, the user in FIG. The device can be replaced with another relay node.
  • the first device First, the first device, the second device, and the third device
  • the first device may be a network device
  • the third device may be a user device
  • the second device is a relay node of the network device and the user device.
  • the first device may also be a relay node in the relay system
  • the third device may also be another relay node other than the second device.
  • only the second device is a relay node of the first device and the third device, and the device types of the first device and the second device are not limited.
  • the first device is a network device
  • the second device is a relay node
  • the third device is also a relay node
  • the second device and the third device are both regarded as a relay between the network device and the user device.
  • both the first device and the second device can be regarded as a relay node between the network device and the user device.
  • the network device may be a global system for mobile communications (GSM) or a code division multiple access (CDMA) network device (base transceiver station, BTS), which may also be a network device (NodeB) in wide-band code division multiple access (WCDMA), or an evolved network in a long term evolution (LTE) system.
  • GSM global system for mobile communications
  • BTS base transceiver station
  • NodeB network device
  • WCDMA wide-band code division multiple access
  • LTE long term evolution
  • a device evolutional node B, eNB or e-NodeB
  • gNB 5G base station
  • HeNB home evolved node B
  • Femto home base station
  • pico The type of the network device is not specifically limited in the embodiment of the present application.
  • the user equipment may be a device that provides voice and/or data connectivity to the user, a handheld device corresponding to the wireless connection function, or other processing device connected to the wireless modem.
  • the user equipment can communicate with one or more core networks via a radio access network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer corresponding to the mobile terminal.
  • RAN radio access network
  • it may be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with a wireless access network.
  • PCS personal communication service
  • SIP session initiated protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • User equipment may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile, a remote station, an access point, Remote terminal, access terminal, user terminal, customer premise equipment (CPE), user agent or user equipment, implemented in the present application
  • CPE customer premise equipment
  • the reference signal includes, but is not limited to, a channel status information reference signal (CSI RS), a synchronization signal (SS), and a sounding reference signal (SRS).
  • CSI RS channel status information reference signal
  • SS synchronization signal
  • SRS sounding reference signal
  • the present application provides an interference measurement method and apparatus for measuring interference between a backhaul link and an access link in a relay system.
  • the method and the device are based on the same inventive concept. Since the principles of the method and the device for solving the problem are similar, the implementation of the device and the method can be referred to each other, and the repeated description is not repeated.
  • the plurality referred to in the present application refers to two or more; in the description of the present application, the terms “first” and “second” are used only to distinguish the purpose of description, and It is not to be understood as indicating or implying relative importance, nor as an indication or implied order.
  • the interference measurement method provided by the present application will be described below through three embodiments.
  • an interference measurement method according to an embodiment of the present application is provided.
  • the method comprises the following steps:
  • the base station sends the first configuration information to the relay node, and correspondingly, the relay node receives the first configuration information sent by the base station.
  • the first configuration information is configuration information of N reference signals sent by the relay node to the user equipment, where N ⁇ 1.
  • the configuration information of the N reference signals includes at least one of the following information: a transmission time of the N reference signals; a carrier frequency of the N reference signals; a sequence of the N reference signals; and a subcarrier spacing of the N reference signals; Port information of N reference signals; reference signal index of N reference signals.
  • the base station may be the foregoing first device
  • the relay node may be the foregoing second device
  • the user equipment may be the foregoing third device.
  • the foregoing first device may be another relay node other than the second device in the relay system
  • the third device may be another relay node other than the second device in the relay system. This is not limited in the embodiment.
  • the base station may send the first configuration information to the relay node, or may send the first configuration information to the relay node according to the request of the relay node, which is not limited in this embodiment.
  • the first configuration information sent by the base station to the relay node may also indicate which one the relay node is based on when transmitting the reference signal to the user equipment. The numerology is sent.
  • the relay node may send N reference signals to the user equipment according to the first configuration information, where the base station may use the first configuration information to the N reference signals.
  • the measurement is performed to determine the interference of the link between the relay node and the user equipment (ie, the access link) to the link between the base station and the relay node (ie, the backhaul link) according to the measurement result.
  • the N reference signals sent by the relay node to the user equipment may be sent by using different shaped beams.
  • the relay node may send N reference signals to the user equipment by using the N shaped beams.
  • the first configuration information may be used to indicate which shaping beam is used by the relay node when transmitting the reference signal.
  • the base station may measure, according to the first configuration information, a link between the base station and the relay node (ie, a backhaul link) between the link between the relay node and the user equipment (ie, the access link) under the N shaped beams. Interference.
  • the base station After the base station performs interference measurement on the N reference signals, the base station needs to indicate, according to the measurement result, the configuration of the relay node based on the configuration when transmitting the signal to the user equipment, so as to reduce the access link to the backhaul link. interference. There are many ways to indicate this, and two of them are listed below.
  • the base station may send third configuration information to the relay node, where the third configuration information is configuration information of at least one of the N reference signals, so that the relay node can be configured according to
  • the third configuration information sends a signal to the user equipment to reduce interference of the access link to the backhaul link.
  • the configuration information of the at least one reference signal comprises at least one of: a transmission time of the at least one reference signal; a carrier frequency of the at least one reference signal; a sequence of the at least one reference signal; a subcarrier spacing of the at least one reference signal; Port information of at least one reference signal; reference signal index of at least one reference signal.
  • the base station may filter at least one of the N reference signals according to the measurement result, and send configuration information of the at least one reference signal to the relay node.
  • the measurement result referred to herein may include at least one of the following: reference signal receiving power (RSRP) of N reference signals, channel quality indicator (CQI) of N reference signals, The signal-to-interference rate (SIR) of the N reference signals, and the signal to interference plus noise ratio (SINR) of the N reference signals.
  • RSRP reference signal receiving power
  • CQI channel quality indicator
  • SIR signal-to-interference rate
  • SINR signal to interference plus noise ratio
  • the base station may measure one or more of the RSRP, CQI, SIR, or SINR parameters of the reference signal, and then determine the location of the reference signal according to the measurement result.
  • the at least one reference signal that is filtered by the base station may be a reference signal that is sent by the relay node when the interference of the access link is small.
  • the relay node sends N reference signals to the user equipment by using the N shaped beams
  • the at least one reference signal selected by the base station is in one-to-one correspondence with the at least one shaped beam, that is, the base station sends the relay node to the relay node.
  • the third configuration information indicates that when the relay node sends the at least one reference signal to the user equipment by using the at least one shaped beam, the interference of the access link to the backhaul link is small.
  • the relay node can learn that: when the signal is sent to the user equipment, the at least one shaped beam can be used to transmit, thereby reducing interference of the access link to the backhaul link. .
  • the information types included in the first configuration information and the third configuration information may be different.
  • the first configuration information may include a transmission time and a carrier frequency of the N reference signals
  • the third configuration information may include port information and a reference signal index of the at least one reference signal; or the first configuration information may include N reference signals.
  • the sequence and carrier frequency, the third configuration information may include a subcarrier spacing and a carrier frequency of the at least one reference signal.
  • the base station may send, to the relay node, a measurement result of at least one of the N reference signals; correspondingly, the relay node receives at least at least N of the N reference signals sent by the base station.
  • a measurement result of the reference signal such that the relay node determines, based on the measurement result of the at least one reference signal, which configuration to transmit based on the subsequent transmission of the signal to the user equipment.
  • the measurement result of the at least one reference signal includes at least one of the following: identification or configuration information of the at least one reference signal; RSRP of the at least one reference signal; CQI of the at least one reference signal; SIR of the at least one reference signal; at least one reference signal SINR.
  • the measurement result of the at least one reference signal may include not only parameters of the at least one reference signal, such as RSRP, CQI, SIR, and SINR, but also identifier and configuration information of the at least one reference signal. This is because if the base station transmits only one or more of the RSRP, CQI, SIR, and SINR parameters of the at least one reference signal to the relay node, it is difficult for the relay node to recognize that the at least one reference signal is the relay node to the user. Which of the N reference signals transmitted by the device are reference signals.
  • the base station may send the identifier and configuration information of the at least one reference signal in the measurement result, so that the relay node identifies the at least one reference signal.
  • the configuration information of the at least one reference signal comprises at least one of: a transmission time of the at least one reference signal; a carrier frequency of the at least one reference signal; a sequence of the at least one reference signal; a subcarrier spacing of the at least one reference signal; Port information of at least one reference signal; reference signal index of at least one reference signal.
  • the second method differs from the first method in that, in the first method, the at least one reference signal is selected by the base station according to the measurement result of the N reference signals, and the base station sends the configuration information of the at least one reference signal to the relay node (That is, the third configuration information), the relay node may transmit based on the configuration information of the at least one reference signal (ie, the third configuration information) when the signal is subsequently sent to the user equipment; and the at least one reference signal in the second mode may be the base station according to the base station.
  • the measurement result is initially selected from the N reference signals, or may be N reference signals that have not been filtered, and the base station sends the measurement result of the at least one reference signal to the relay node, and the relay node receives at least one reference signal.
  • the at least one reference signal may be further filtered, and may be sent based on configuration information of all or part of the reference signals in the at least one reference signal when subsequently transmitting the signal to the user equipment.
  • the relay node may send the reference signal to the base station on the same time-frequency resource each time the reference signal is sent to the user equipment.
  • the reference signal sent by the relay node to the base station in the embodiment of the present application is referred to as a “second reference signal”.
  • the second reference signal sent by the relay node to the base station may be a zero power reference signal (ZP RS).
  • the relay node sends a reference signal for interference measurement to the user equipment on the same time-frequency resource and sends a ZP RS to the base station.
  • both the access link and the backhaul link occupy the time-frequency.
  • the reference signal transmission on the time-frequency resource is not interfered by other signals, and the base station measures the reference signal on the time-frequency resource, and the measurement result is more accurate.
  • the first configuration information is configuration information of the N reference signals that the relay node sends to the user equipment, that is, The relay node may send N reference signals to the user equipment according to the first configuration information. Since the first configuration information is known to the base station, the base station may perform interference measurement on the N reference signals sent by the relay node to the user equipment based on the first configuration information, so that the base station can learn between the relay node and the user equipment.
  • the link ie, the access link
  • the embodiment of the present application further provides an interference measurement method, which can be regarded as a specific example of the method shown in FIG. 2, and the method and the method shown in FIG. 2 can be referred to each other.
  • the method includes the following steps:
  • the relay node sends a request message to the base station, and requests the base station to configure a time-frequency resource used by the relay node to send the reference signal to the user equipment.
  • the time-frequency resource used by the relay node to send the reference signal to the user equipment may be regarded as a specific example of the first configuration information in the method shown in FIG. 2 .
  • the first configuration information is configuration information of N reference signals that the relay node sends to the user equipment.
  • the configuration information of the N reference signals includes at least one of the following: transmission time of N reference signals; carrier frequency of N reference signals; sequence of N reference signals; subcarrier spacing of N reference signals; N Port information of the reference signal; reference signal index of the N reference signals.
  • the base station sends a response message to the relay node to configure a time-frequency resource used by the relay node to send the reference signal to the user equipment.
  • the base station may further configure the relay node to send N ZP RSs to the base station on the time-frequency resource.
  • ZP RS is a specific example of the second reference signal in the method shown in FIG. 2. Since the power of the ZP RS is zero, the relay node does not actually transmit the reference signal to the base station, but only occupies the time-frequency resources between the base station and the relay node. The advantage of this is that the relay node sends N reference signals for interference measurement to the user equipment on the same time-frequency resource and sends N ZP RSs to the base station. At this time, the reference signal sent on the time-frequency resource Without interference from other signals, the base station can measure the reference signal on the time-frequency resource to accurately determine the interference of the access link to the backhaul link.
  • the response message sent by the base station to the relay node may be high layer signaling or downlink control information (DCI).
  • the high layer signaling includes, but is not limited to, a radio resource control (RRC) message, a media access control control element (MAC CE), a broadcast message, a system message, and the like.
  • RRC radio resource control
  • MAC CE media access control control element
  • the relay node sends a reference signal to the user equipment by using one of the N shaped beams on the time-frequency resource.
  • S304 The base station measures interference of the access link to the backhaul link under the shaped beam.
  • the base station may measure parameters such as RSRP, CQI, SIR, and SIN of the reference signal on the time-frequency resources occupied by the ZP RS, thereby determining interference of the access link to the backhaul link under the shaped beam.
  • parameters such as RSRP, CQI, SIR, and SIN of the reference signal on the time-frequency resources occupied by the ZP RS, thereby determining interference of the access link to the backhaul link under the shaped beam.
  • S303 ⁇ S304 are performed N times: that is, each time S303 is executed, the relay node sends a parameter signal to the user equipment by using different shaped beams, and each time the S304 is executed, the base station measures the access link pair of each shaped beam. The interference of the transmission link. Then, by performing S303 to S304 N times, the base station can determine the interference of the access link to the backhaul link under the N shaped beams.
  • the base station sends a notification message to the relay node to notify the relay node of the set of shaped beams that can be used when transmitting the signal to the user equipment.
  • the shaping beam included in the shaped beam set that the relay node can use when transmitting the signal to the user equipment is at least one of the N shaped beams.
  • the set of shaped beams indicated by the base station to the relay node by using the notification message may be regarded as a specific example of the third configuration information in the method shown in FIG. 2.
  • the third configuration information is configuration information of at least one of the N reference signals that are filtered by the base station according to the measurement result, and in the method shown in FIG. 3, the shaped beam set is filtered by the base station.
  • At least one of the N shaped beams is shaped by a beam; since the N shaped beams and the N reference signals are in one-to-one correspondence in the method shown in FIG.
  • the base station indicates, by using a notification message, that the relay node adopts N At least one of the shaped beams transmits a signal to the user equipment, that is, the configuration information corresponding to the at least one reference signal of the N reference signals sent by the base station to the relay node in the method shown in FIG. 2 (ie, the third configuration) information).
  • the notification message sent by the base station to the relay node may be high layer signaling or DCI.
  • the high layer signaling includes, but is not limited to, an RRC message, a MAC CE, a broadcast message, a system message, and the like.
  • the shaped beams included in the shaped beam set transmitted by the base station to the relay node in S305 may be the same. , can also be different.
  • the shaped beam set sent by the base station to the relay node in S305 The shaping beam 1 includes the shaped beam 2 and the shaped beam 3; then, when the relay node sends the request message to the base station by using the shaped beam C in S301, the base station sends the shaped beam D to the relay node in S302.
  • the shaped beam included in the set of shaped beams sent by the base station to the relay node in S305 may be the shaped beam 1, the shaped beam 2, and the shaped beam 3, or may be the shaped beam 4, shaped Beam 5 and shaped beam 6.
  • the base station can configure the set of shaped beams used by the relay node to send signals to the user equipment, thereby reducing interference of the access link to the backhaul link.
  • an interference measurement method according to an embodiment of the present application is provided.
  • the method comprises the following steps:
  • the relay node sends the second configuration information to the base station, and correspondingly, the base station receives the second configuration information sent by the relay node.
  • the second configuration information is configuration information of N reference signals sent by the relay node to the user equipment, where N ⁇ 1.
  • the configuration information of the N reference signals includes at least one of the following information: a transmission time of the N reference signals; a carrier frequency of the N reference signals; a sequence of the N reference signals; and a subcarrier spacing of the N reference signals; Port information of N reference signals; reference signal index of N reference signals.
  • the base station may be the foregoing first device
  • the relay node may be the foregoing second device
  • the user equipment may be the foregoing third device.
  • the foregoing first device may be another relay node other than the second device in the relay system
  • the third device may be another relay node other than the second device in the relay system. This is not limited in the embodiment.
  • the second configuration information may also indicate which numerology the relay node transmits based on when sending the reference signal to the user equipment.
  • the configuration information (first configuration information) of the N reference signals is determined by the base station and then sent to the relay node, and the relay node may send the base station according to the base station.
  • the first configuration information is sent to the user equipment by the N reference signals, and the base station may perform interference measurement according to the first configuration information determined by the base station.
  • the configuration information of the N reference signals is After the node determines to send to the base station, the relay node may send N reference signals to the user equipment based on the second configuration information determined by itself, and the base station may also perform interference measurement based on the second configuration information received from the relay node.
  • the relay node may send N reference signals to the user equipment according to the second configuration information, where the base station may use the second configuration information to the N reference signals.
  • the measurement is performed to determine the interference of the link between the relay node and the user equipment (ie, the access link) to the link between the base station and the relay node (ie, the backhaul link) according to the measurement result.
  • the N reference signals sent by the relay node to the user equipment may be sent by using different shaped beams.
  • the relay node may send N reference signals to the user equipment by using the N shaped beams.
  • the second configuration information may be used to indicate which shaping beam the relay node uses when transmitting the reference signal.
  • the base station may measure, according to the second configuration information, a link between the base station and the relay node (ie, a backhaul link) between the link between the relay node and the user equipment (ie, the access link) under the N shaped beams. Interference.
  • the base station After the base station performs interference measurement on the N reference signals, the base station needs to indicate, according to the measurement result, the configuration of the relay node based on the configuration when transmitting the signal to the user equipment, so as to reduce the access link to the backhaul link. interference. There are many ways to indicate this, and two of them are listed below.
  • the base station may send third configuration information to the relay node, where the third configuration information is configuration information of at least one of the N reference signals, so that the relay node can be configured according to
  • the third configuration information sends a signal to the user equipment to reduce interference of the access link to the backhaul link.
  • the configuration information of the at least one reference signal comprises at least one of: a transmission time of the at least one reference signal; a carrier frequency of the at least one reference signal; a sequence of the at least one reference signal; a subcarrier spacing of the at least one reference signal; Port information of at least one reference signal; reference signal index of at least one reference signal.
  • the base station may filter at least one of the N reference signals according to the measurement result, and send configuration information of the at least one reference signal to the relay node.
  • the measurement result referred to herein may include at least one of the following: RSRP of N reference signals, CQI of N reference signals, SIR of N reference signals, SINR of N reference signals. That is, when the relay node sends the reference signal to the user equipment, the base station may measure one or more of the RSRP, CQI, SIR, or SINR parameters of the reference signal, and then determine the location of the reference signal according to the measurement result.
  • the at least one reference signal that is filtered by the base station may be a reference signal that is sent by the relay node when the interference of the access link is small.
  • the relay node sends N reference signals to the user equipment by using the N shaped beams
  • the at least one reference signal selected by the base station is in one-to-one correspondence with the at least one shaped beam, that is, the base station sends the relay node to the relay node.
  • the third configuration information indicates that when the relay node sends the at least one reference signal to the user equipment by using the at least one shaped beam, the interference of the access link to the backhaul link is small.
  • the relay node can learn that: when the signal is sent to the user equipment, the at least one shaped beam can be used to transmit, thereby reducing interference of the access link to the backhaul link. .
  • the second configuration information and the third configuration information may include different types of information.
  • the second configuration information may include a transmission time and a carrier frequency of the N reference signals
  • the third configuration information may include port information and a reference signal index of the at least one reference signal; or the second configuration information may include N reference signals.
  • the sequence and carrier frequency, the third configuration information may include a subcarrier spacing and a carrier frequency of the at least one reference signal.
  • the base station may send, to the relay node, a measurement result of at least one of the N reference signals; correspondingly, the relay node receives at least at least N of the N reference signals sent by the base station.
  • a measurement result of the reference signal such that the relay node determines, based on the measurement result of the at least one reference signal, which configuration to transmit based on the subsequent transmission of the signal to the user equipment.
  • the measurement result of the at least one reference signal includes at least one of the following: identification or configuration information of the at least one reference signal; RSRP of the at least one reference signal; CQI of the at least one reference signal; SIR of the at least one reference signal; at least one reference signal SINR.
  • the measurement result of the at least one reference signal may include not only parameters of the at least one reference signal, such as RSRP, CQI, SIR, and SINR, but also identifier and configuration information of the at least one reference signal. This is because if the base station transmits only one or more of the RSRP, CQI, SIR, and SINR parameters of the at least one reference signal to the relay node, it is difficult for the relay node to recognize that the at least one reference signal is the relay node to the user. Which of the N reference signals transmitted by the device are reference signals.
  • the base station may send the identifier and configuration information of the at least one reference signal in the measurement result, so that the relay node identifies the at least one reference signal.
  • the configuration information of the at least one reference signal comprises at least one of: a transmission time of the at least one reference signal; a carrier frequency of the at least one reference signal; a sequence of the at least one reference signal; a subcarrier spacing of the at least one reference signal; Port information of at least one reference signal; reference signal index of at least one reference signal.
  • the second method differs from the first method in that, in the first method, the at least one reference signal is selected by the base station according to the measurement result of the N reference signals, and the base station sends the configuration information of the at least one reference signal to the relay node (That is, the third configuration information), the relay node may transmit based on the configuration information of the at least one reference signal (ie, the third configuration information) when the signal is subsequently sent to the user equipment; and the at least one reference signal in the second mode may be the base station according to the base station.
  • the measurement result is initially selected from the N reference signals, or may be N reference signals that have not been filtered, and the base station sends the measurement result of the at least one reference signal to the relay node, and the relay node receives at least one reference signal.
  • the at least one reference signal may be further filtered, and may be sent based on configuration information of all or part of the reference signals in the at least one reference signal when subsequently transmitting the signal to the user equipment.
  • the relay node may send a reference signal to the base station on the same time-frequency resource each time the reference signal is sent to the user equipment.
  • the reference signal sent by the relay node to the base station in the embodiment of the present application is referred to as a “second reference signal”.
  • the relay node sends reference signals to the user equipment and the base station on the same time-frequency resource, data transmission exists in both the access link and the backhaul link, so the measurement result in this case is more accurate.
  • the second reference signal transmitted by the relay node to the base station may be a ZP RS.
  • the relay node sends a reference signal for interference measurement to the user equipment on the same time-frequency resource and sends a ZP RS to the base station.
  • both the access link and the backhaul link occupy the time-frequency.
  • the reference signal transmission on the time-frequency resource is not interfered by other signals, and the base station measures the reference signal on the time-frequency resource, and the measurement result is more accurate.
  • the relay node sends the second configuration information to the base station, and the second configuration information is the configuration information of the N reference signals sent by the relay node to the user equipment, that is,
  • the relay node may send N reference signals to the user equipment according to the second configuration information, and the base station may perform interference measurement on the N reference signals sent by the relay node to the user equipment based on the second configuration information, so that the base station may learn the relay node.
  • the link between the user equipment and the user equipment ie, the access link
  • interferes with the link between the base station and the relay node ie, the backhaul link).
  • the embodiment of the present application further provides an interference measurement method, which can be regarded as a specific example of the method shown in FIG. 4, and the method and the method shown in FIG. 4 can refer to each other.
  • the method includes the following steps:
  • the relay node sends a first message to the base station, where the time-frequency resource used by the relay node when the reference signal is sent to the user equipment is used.
  • the time-frequency resource used by the relay node to send the reference signal to the user equipment may be regarded as a specific example of the second configuration information in the method shown in FIG. 4 .
  • the second configuration information is configuration information of N reference signals that the relay node sends to the user equipment.
  • the configuration information of the N reference signals includes at least one of the following: transmission time of N reference signals; carrier frequency of N reference signals; sequence of N reference signals; subcarrier spacing of N reference signals; N Port information of the reference signal; reference signal index of the N reference signals.
  • the relay node sends a reference signal to the user equipment by using one of the N shaped beams on the time-frequency resource.
  • the relay node may also send N ZP RSs to the base station on the time-frequency resource.
  • ZP RS is a specific example of the second reference signal in the method shown in FIG. Since the power of the ZP RS is zero, the relay node does not actually transmit the reference signal to the base station, but only occupies the time-frequency resources between the base station and the relay node. The advantage of this is that the relay node sends N reference signals for interference measurement to the user equipment on the same time-frequency resource and sends N ZP RSs to the base station. At this time, the reference signal sent on the time-frequency resource Without interference from other signals, the base station can measure the reference signal on the time-frequency resource to accurately determine the interference of the access link to the backhaul link.
  • S503 The base station measures interference of the access link to the backhaul link under the shaped beam.
  • the base station may measure parameters such as RSRP, CQI, SIR, and SIN of the reference signal on the time-frequency resources occupied by the ZP RS, thereby determining interference of the access link to the backhaul link under the shaped beam.
  • parameters such as RSRP, CQI, SIR, and SIN of the reference signal on the time-frequency resources occupied by the ZP RS, thereby determining interference of the access link to the backhaul link under the shaped beam.
  • S502 to S503 are performed N times: that is, each time the S502 is executed, the relay node sends a parameter signal to the user equipment by using different shaping beams, and each time the S503 is executed, the base station measures the access link of each of the shaped beams. The interference of the transmission link. Then, by performing S502 to S503 N times, the base station can determine the interference of the access link to the backhaul link under the N shaped beams.
  • the base station sends a notification message to the relay node to notify the relay node of the set of shaped beams that can be used when transmitting the signal to the user equipment.
  • the shaping beam included in the shaped beam set that the relay node can use when transmitting the signal to the user equipment is at least one of the N shaped beams.
  • the set of shaped beams indicated by the base station to the relay node by using the notification message may be regarded as a specific example of the third configuration information in the method shown in FIG. 4.
  • the third configuration information is configuration information of at least one of the N reference signals that are filtered by the base station according to the measurement result, and in the method shown in FIG. 5, the shaped beam set is filtered by the base station.
  • At least one of the N shaped beams is shaped by a beam; since the N shaped beams and the N reference signals are in one-to-one correspondence in the method shown in FIG.
  • the base station indicates, by using a notification message, that the relay node adopts N At least one of the shaped beams transmits a signal to the user equipment, that is, the configuration information corresponding to the at least one reference signal of the N reference signals sent by the base station to the relay node in the method shown in FIG. 4 (ie, the third configuration) information).
  • the notification message sent by the base station to the relay node may be high layer signaling or DCI.
  • the high layer signaling includes, but is not limited to, an RRC message, a MAC CE, a broadcast message, a system message, and the like.
  • the shaped beams included in the shaped beam set transmitted by the base station to the relay node in S504 may be the same. , can also be different.
  • the set of shaped beams sent by the base station to the relay node in S504 includes the shaped beam 1, the shaped beam 2, and the shaped beam 3
  • the shaped beam included in the shaped beam set sent by the base station to the relay node in S504 may be the shaped beam 1 and the shaped Beam 2 and shaped beam 3 may also be shaped beam 4, shaped beam 5 and shaped beam 6.
  • the base station can configure the set of shaped beams used by the relay node to send signals to the user equipment, thereby reducing the interference of the access link to the backhaul link.
  • an interference measurement method according to an embodiment of the present application is provided.
  • the method comprises the following steps:
  • the relay node sends the measurement result to the base station; accordingly, the base station receives the measurement result sent by the relay node.
  • the measurement result is a measurement result of at least one of the N reference signals sent by the user equipment to the relay node, where N ⁇ 1.
  • the base station may be the foregoing first device
  • the relay node may be the foregoing second device
  • the user equipment may be the foregoing third device.
  • the foregoing first device may be another relay node other than the second device in the relay system
  • the third device may be another relay node other than the second device in the relay system. This is not limited in the embodiment.
  • the relay node when the relay node sends the measurement result to the base station, different reporting manners may be adopted: the relay node may report the measurement result of the at least one reference signal one by one, or the relay node may uniformly report the measurement result of the at least one reference signal; In addition, the relay node may report the order of the measurement results of the at least one reference signal while reporting the measurement result of the at least one reference signal.
  • the measurement result of the at least one reference signal may include at least one of: identifier or configuration information of the at least one reference signal; RSRP of the at least one reference signal; CQI of the at least one reference signal; SIR of the at least one reference signal ; SINR of at least one reference signal. That is, when the user equipment sends the reference signal to the relay node, the relay node may measure one or more of the RSRP, CQI, SIR, or SINR parameters of the reference signal, and then determine the reference signal according to the measurement result. The interference of the access link to the backhaul link; when the relay node completes the measurement of the N reference signals, the measurement results of the N reference signals can be determined.
  • the relay node when the relay node reports the measurement result of at least one of the N reference signals to the base station, there are two cases: in the first case, the relay node selects at least one reference according to the measurement result of the N reference signals. a signal, and the measurement result of the at least one reference signal is reported to the base station, where the at least one reference signal that is filtered by the relay node may be a reference signal that is sent by the user equipment when the interference of the access link is small to the backhaul link; In either case, the relay node does not perform the filtering action, and directly reports the measurement result of the N reference signals to the base station.
  • the measurement result of the at least one reference signal may include not only parameters of at least one reference signal, such as RSRP, CQI, SIR, and SINR, but also identifier and configuration information of at least one reference signal, because:
  • the relay node sends only one or more of the RSRP, CQI, SIR, and SINR parameters of the at least one reference signal to the base station, and the base station is difficult to recognize that the at least one reference signal is the N reference signals sent by the user equipment to the relay node. Which reference signals. Therefore, the relay node may send the identification and configuration information of the at least one reference signal in the measurement result, so that the base station identifies the at least one reference signal.
  • the configuration information of the at least one reference signal comprises at least one of: a transmission time of the at least one reference signal; a carrier frequency of the at least one reference signal; a sequence of the at least one reference signal; a subcarrier spacing of the at least one reference signal; Port information of at least one reference signal; reference signal index of at least one reference signal.
  • the base station may send, to the relay node, resource configuration information, where the resource configuration information is used to indicate that the relay node sends the measurement result of the at least one reference signal. H. Then, after receiving the resource configuration information, the relay node may send the measurement result to the base station on the resource indicated by the resource configuration information.
  • the base station may send the first configuration information to the relay node, where the first configuration information is configuration information of the N reference signals.
  • the configuration information of the N reference signals includes at least one of the following information: a transmission time of the N reference signals; a carrier frequency of the N reference signals; a sequence of the N reference signals; and a subcarrier spacing of the N reference signals; Port information of N reference signals; reference index of N reference signals.
  • the base station may send the first configuration information to the relay node, or may send the first configuration information to the relay node based on the request of the relay node, which is not limited in this embodiment.
  • the first configuration information sent by the base station to the relay node may also indicate which one the user equipment is based on when transmitting the reference signal to the relay node. The numerology is sent.
  • the relay node may send the first configuration information to the user equipment, and when the user equipment sends the N reference signals to the relay node, the user equipment may perform the first configuration information. send. While the user equipment sends the reference signal to the relay node, the relay node may also measure the N reference signals according to the first configuration information.
  • the N reference signals sent by the user equipment to the relay node may be sent by using different shaped beams.
  • the user equipment may send N reference signals to the relay node by using the N shaped beams, and the first configuration information may be used to indicate which shaping beam is used by the user equipment when transmitting the reference signal.
  • the relay node may measure, according to the first configuration information, a link between the base station and the relay node (ie, a backhaul chain) between the link between the relay node and the user equipment (ie, the access link) under the N shaped beams. Road) interference.
  • the base station may further filter the at least one reference signal according to the measurement result, and after filtering, to the relay node.
  • the second configuration information is configuration information of all or part of the reference signals in the at least one reference signal.
  • the configuration information of all or part of the reference signals includes at least one of: a transmission time of all or part of the reference signals; a carrier frequency of all or part of the reference signals; a sequence of all or part of the reference signals, all or part of the reference signals Subcarrier spacing; port information for all or part of the reference signal; reference signal index for all or part of the reference signal.
  • the reference signal that is selected by the base station may be a reference signal that is sent by the user equipment when the interference of the access link is small.
  • the at least one reference signal filtered by the relay node is in one-to-one correspondence with the at least one shaped beam.
  • the number of all or part of the reference signals selected by the base station is M, M ⁇ 1, then there are also M shaped beams corresponding to the M reference signals. That is, the second configuration information sent by the base station to the relay node indicates that the user equipment interferes with the backhaul link when the M equipment sends the M reference signals to the relay node by using the M shaped beams. small.
  • the relay node may notify the user equipment after receiving the second configuration information: when the signal is sent to the relay node, the M shaped beams may be used for sending, thereby reducing the access link back transmission. Link interference.
  • the second configuration information sent by the base station to the relay node may also indicate a measurement ordering condition of all or part of the reference signals.
  • the measurement result of the at least one reference signal sent by the relay node to the base station in S601 is the RSRP of the at least one reference signal, and then the base station selects all or part of the reference signal from the at least one reference signal, and then forwards to the relay node.
  • the RSRP of all or part of the reference signals may be instructed in order of high to low or low to high in the second configuration information.
  • the base station may also send the reference signal to the relay node at the same time time, and the base station may also send the same to the relay node on the same time-frequency resource.
  • the reference signal transmitted by the base station to the relay node in the third embodiment is referred to as a “second reference signal”.
  • the second reference signal sent by the base station to the relay node may be a ZP RS.
  • the relay node receives the reference signal for interference measurement sent by the user equipment on the same time-frequency resource, and receives the ZP RS sent by the base station.
  • the path occupies the time-frequency resource, so the reference signal transmission on the time-frequency resource is not interfered by other signals, and the relay node can measure the reference signal on the time-frequency resource, and the measurement result is more accurate.
  • the relay node transmits a measurement result of at least one reference signal to the base station, wherein the at least one reference signal is at least one of the N reference signals transmitted by the user equipment to the relay node.
  • the base station may select all or part of the reference signals from the at least one reference signal according to the measurement result of the at least one reference signal, and send configuration information of all or part of the reference signals to the relay node.
  • the reference signal that is filtered by the base station may be a reference signal that is sent by the user equipment when the interference of the access link is small.
  • the user equipment may send the signal according to the configuration information of all or part of the reference signal when transmitting the signal to the relay node, thereby reducing the access link pair.
  • the interference of the backhaul link may be used to reduce the access link pair.
  • the embodiment of the present application further provides an interference measurement method, which can be regarded as a specific example of the method shown in FIG. 6, and the method and the method shown in FIG. 6 can refer to each other.
  • the method includes the following steps:
  • S701 The user equipment sends a request message to the relay node, requesting the base station to configure a time-frequency resource used by the user equipment to send the reference signal to the relay node.
  • the time-frequency resource used by the user equipment to send the reference signal to the relay node may be regarded as a specific example of the first configuration information in the method shown in FIG. 6.
  • the first configuration information is configuration information of N reference signals that are sent by the user equipment to the relay node.
  • the configuration information of the N reference signals includes at least one of the following: transmission time of N reference signals; carrier frequency of N reference signals; sequence of N reference signals; subcarrier spacing of N reference signals; N Port information of the reference signal; reference signal index of the N reference signals.
  • S702 The relay node forwards the request message sent by the user equipment to the base station.
  • the base station sends a response message to the relay node to configure a time-frequency resource used by the user equipment to send the reference signal to the relay node.
  • the base station may further configure itself to send N ZP RSs to the relay node on the time-frequency resource.
  • ZP RS is a specific example of the second reference signal in the method shown in FIG. 6. Since the power of the ZP RS is zero, the base station does not actually transmit the reference signal to the relay node, but only occupies the time-frequency resource between the base station and the relay node.
  • the advantage of this is that the relay node receives N reference signals from the user equipment for interference measurement on the same time-frequency resource, and receives N ZP RSs from the base station, and at this time, the time-frequency resource The transmitted reference signal is not interfered by other signals, and the relay node measures the reference signal on the time-frequency resource, and the measurement result is more accurate.
  • the response message sent by the base station to the relay node may be high layer signaling or DCI.
  • the high layer signaling includes, but is not limited to, an RRC message, a MAC CE, a broadcast message, a system message, and the like.
  • S704 The user equipment sends a reference signal to the relay node by using one of the N shaped beams on the time-frequency resource.
  • S705 The relay node measures interference of the access link to the backhaul link under the shaped beam.
  • the relay node may measure parameters such as RSRP, CQI, SIR, and SIN of the reference signal on the time-frequency resources occupied by the ZP RS, thereby determining interference of the access link to the backhaul link under the shaped beam.
  • S704 to S705 are performed N times: that is, each time the S704 is executed, the user equipment sends a parameter signal to the relay node by using different shaping beams, and each time the S705 is executed, the relay node measures the access link of each of the shaped beams. Interference on the backhaul link. Then, by performing S704 to S705 N times, the relay node can determine the interference of the access link to the backhaul link under the N shaped beams.
  • S706 The relay node reports the measurement result to the base station.
  • the measurement result reported by the relay node to the base station is a measurement result of at least one of the N reference signals.
  • the relay node filters out at least one reference signal according to the measurement result of the N reference signals, and reports the measurement result of the at least one reference signal to the base station, where the relay node selects
  • the at least one reference signal may be a reference signal that is sent by the user equipment when the interference of the access link is small to the backhaul link.
  • the relay node does not perform the filtering action, and directly reports the measurement result of the N reference signals to the Base station.
  • the base station sends a notification message to the relay node to notify the user equipment of the set of shaped beams that can be used when transmitting the signal to the relay node.
  • the set of shaped beams indicated by the base station by the notification message may be a single shaped beam or a set of shaped beams.
  • the base station after receiving the measurement result of the at least one reference signal reported by the relay node, the base station selects all or part of the reference signal from the at least one reference signal, where all or part of the reference signals selected by the base station may be accessed.
  • the reference signal sent by the user equipment when the link has less interference to the backhaul link.
  • the N reference signals are in one-to-one correspondence with the N shaped beams, and the at least one reference signal and the at least one shaped beam are also one by one.
  • the same reason assuming that the number of all or part of the reference signals selected by the base station is M, M ⁇ 1, then there are also M shaped beams corresponding to the M reference signals. That is, the set of shaped beams indicated by the base station in the notification message includes M shaped beams that correspond one-to-one with the M reference signals.
  • the relay node may forward the notification message to the user equipment, and the user equipment may use the shaped beam in the shaped beam set to transmit when subsequently transmitting the signal to the relay node, to reduce The interference of the small access link to the backhaul link.
  • the set of shaped beams indicated by the base station to the relay node by using the notification message may be regarded as a specific example of the second configuration information in the method shown in FIG. 6.
  • the second configuration information is configuration information of all or part of the reference signals in the at least one reference signal
  • the shaped beam set is at least one shaped beam selected by the base station. All or part of the shaped beam in the method; since the N shaped beams and the N reference signals are in one-to-one correspondence in the method shown in FIG. 7, the base station instructs the user equipment to adopt all of the at least one shaped beam by using a notification message.
  • partially shaped beam transmitting signal that is, corresponding to the configuration information (ie, second configuration information) of the base station transmitting all or part of the reference signals in the at least one reference signal to the relay node in the method shown in FIG. 6.
  • the notification message sent by the base station to the relay node may be high layer signaling or DCI.
  • the high layer signaling includes, but is not limited to, an RRC message, a MAC CE, a broadcast message, a system message, and the like.
  • the shaped beams included in the shaped beam set transmitted by the base station to the relay node in S707 may be the same. , can also be different.
  • the relay node when the relay node sends a request message to the base station by using the shaped beam A in S702, and the base station sends a response message to the relay node by using the shaped beam B in S703, the shaped beam set transmitted by the base station to the relay node in S707
  • the shaping beam 1 includes the shaped beam 2 and the shaped beam 3; then, when the relay node sends the request message to the base station by using the shaped beam C in S702, the base station sends the shaped beam D to the relay node in S703.
  • the shaped beam included in the set of shaped beams transmitted by the base station to the relay node in S707 may be the shaped beam 1, the shaped beam 2, and the shaped beam 3, or may be the shaped beam 4, shaped Beam 5 and shaped beam 6.
  • the base station can configure the set of shaped beams used by the user equipment to transmit signals to the relay node, thereby reducing the interference of the access link to the backhaul link.
  • the present application further provides a first device, which can be used to perform operations performed by a base station in any of the interference measurement methods shown in FIG. 2 to FIG. 5.
  • the first device 800 includes a transmitting unit 801 and a receiving unit 802.
  • the sending unit 801 is configured to send the first configuration information to the second device, or the receiving unit 802 is configured to receive the second configuration information that is sent by the second device, where the first configuration information and the second configuration information are the third device to the third device.
  • the configuration information of the N reference signals includes at least one of the following information: a transmission time of the N reference signals; a carrier frequency of the N reference signals; a sequence of the N reference signals; and a subcarrier spacing of the N reference signals; Port information of N reference signals; reference signal index of N reference signals.
  • the first device 800 further includes a processing unit 803, configured to measure N reference signals according to the first configuration information or the second configuration information.
  • the sending unit 801 is further configured to: send, to the second device, third configuration information, where the third configuration information is configuration information of the at least one of the N reference signals, where the configuration information of the at least one reference signal includes At least one of the following: a transmission time of at least one reference signal; a carrier frequency of at least one reference signal; a sequence of at least one reference signal; a subcarrier spacing of at least one reference signal; port information of at least one reference signal; at least one Reference signal index of the reference signal.
  • the sending unit 801 is further configured to: send, to the second device, a measurement result of the at least one of the N reference signals.
  • the measurement result of the at least one reference signal comprises at least one of: identification or configuration information of the at least one reference signal; RSRP of the at least one reference signal; CQI of the at least one reference signal; SIR of the at least one reference signal; at least one The SINR of the reference signal.
  • the first device 800 can be used to perform the operations performed by the base station in any of the interference measurement methods shown in FIG. 2 to FIG. 5, and the implementation manners not described in detail in the first device 800 can be seen in FIG. 2 to FIG. A related description in any of the interference measurement methods shown in 5.
  • the embodiment of the present application further provides a first device.
  • the first device may be used to perform operations performed by the base station in any of the interference measurement methods illustrated in FIG. 2 to FIG. 5, and may be the same device as the first device 800 illustrated in FIG. 8.
  • the first device 900 includes at least one processor 901, a memory 902, and a communication interface 903; the at least one processor 901, the memory 902, and the communication interface 903 are all connected by a bus 904;
  • the memory 902 is configured to store a computer execution instruction
  • the at least one processor 901 is configured to execute a computer execution instruction stored by the memory 902, so that the first device 900 passes through the communication interface 903 and other devices in the communication system (such as a relay node, a user equipment). Performing data interaction to perform the interference measurement method provided by the foregoing embodiment, or causing the first device 900 to perform data communication through the communication interface 903 with other devices in the communication system (such as a relay node, a user equipment) to implement communication. Part or all of the functionality of the system.
  • the at least one processor 901 may include different types of processors 901, or include the same type of processor 901; the processor 901 may be any one of the following: a central processing unit (CPU), an ARM processor, Field programmable gate array (FPGA), dedicated processor and other devices with computational processing capabilities. In an optional implementation manner, the at least one processor 901 may also be integrated into a many-core processor.
  • processors 901 may include different types of processors 901, or include the same type of processor 901; the processor 901 may be any one of the following: a central processing unit (CPU), an ARM processor, Field programmable gate array (FPGA), dedicated processor and other devices with computational processing capabilities.
  • the at least one processor 901 may also be integrated into a many-core processor.
  • the memory 902 may be any one or any combination of the following: a random access memory (RAM), a read only memory (ROM), a non-volatile memory (NVM). ), solid state drives (SSD), mechanical hard drives, disks, disk arrays and other storage media.
  • RAM random access memory
  • ROM read only memory
  • NVM non-volatile memory
  • SSD solid state drives
  • the communication interface 903 is used by the first device 900 to perform data interaction with other devices (eg, relay nodes, user devices in the communication system).
  • the communication interface 903 may be any one or any combination of the following: a network interface (such as an Ethernet interface), a wireless network card, or the like having a network access function.
  • the bus 904 can include an address bus, a data bus, a control bus, etc., for ease of representation, Figure 9 shows the bus with a thick line.
  • the bus 904 can be any one or any combination of the following: an industry standard architecture (ISA) bus, a peripheral component interconnect (PCI) bus, and an extended industry standard structure (extended industry).
  • Standard architecture, EISA A device for wired data transmission such as a bus.
  • the present application further provides a second device, which can be used to perform operations performed by the relay node in any of the interference measurement methods shown in FIG. 2 to FIG.
  • the second device 1000 includes a receiving unit 1001 and a transmitting unit 1002.
  • the receiving unit 1001 is configured to receive the first configuration information that is sent by the first device, or the sending unit 1002 is configured to send the second configuration information to the first device, where the first configuration information and the second configuration information are
  • the configuration information of the N reference signals sent by the third device, the second device 1000 is a relay node of the first device and the third device, N ⁇ 1; wherein the configuration information of the N reference signals includes at least one of the following information Kind: transmission time of N reference signals; carrier frequency of N reference signals; sequence of N reference signals; subcarrier spacing of N reference signals; port information of N reference signals; reference signal index of N reference signals .
  • the sending unit 1002 is further configured to: send the N reference signals to the third device according to the first configuration information or the second configuration information.
  • the receiving unit 1001 is further configured to: receive third configuration information that is sent by the first device, where the third configuration information is configuration information of at least one of the N reference signals; where, configuration information of the at least one reference signal Included in at least one of the following: a transmission time of at least one reference signal; a carrier frequency of at least one reference signal; a sequence of at least one reference signal; a subcarrier spacing of at least one reference signal; port information of at least one reference signal; The reference signal index of a reference signal.
  • the receiving unit 1001 is further configured to: receive a measurement result of at least one of the N reference signals sent by the first device.
  • the measurement result of the at least one reference signal comprises at least one of: identification or configuration information of the at least one reference signal; RSRP of the at least one reference signal; CQI of the at least one reference signal; SIR of the at least one reference signal; at least one The SINR of the reference signal.
  • the second device 1000 can be used to perform the operations performed by the relay node in any of the interference measurement methods shown in FIG. 2 to FIG. 5, and the implementation manner not described in detail in the second device 1000 can be seen in FIG. 2 . - A related description in any of the interference measurement methods shown in FIG. 5.
  • the embodiment of the present application further provides a second device.
  • the second device may be used to perform operations performed by the relay node in any of the interference measurement methods illustrated in FIGS. 2 to 5, and may be the same device as the second device 1000 illustrated in FIG.
  • the second device 1100 includes at least one processor 1101, a memory 1102, and a communication interface 1103; the at least one processor 1101, the memory 1102, and the communication interface 1103 are all connected by a bus 1104;
  • the memory 1102 is configured to store a computer execution instruction
  • the at least one processor 1101 is configured to execute a computer executed instruction stored by the memory 1102, so that the second device 1100 passes through the communication interface 1103 with other devices in a communication system (such as a base station, a user equipment, or the like). Performing data interaction to perform the interference measurement method provided by the foregoing embodiment, or causing the second device 1100 to pass through the communication interface 1103 with other devices in the communication system (such as a base station, a user equipment, or other relay nodes) Data interaction is performed to implement some or all of the functions of the communication system.
  • a communication system such as a base station, a user equipment, or the like.
  • the at least one processor 1101 may include a different type of processor 1101, or include the same type of processor 1101; the processor 1101 may be any of the following: a CPU, an ARM processor, an FPGA, a dedicated processor, etc. having a processing process Capable device. In an optional implementation manner, the at least one processor 1101 may also be integrated into a many-core processor.
  • the memory 1102 may be any one or any combination of the following: a storage medium such as a RAM, a ROM, an NVM, an SSD, a mechanical hard disk, a magnetic disk, a disk array, or the like.
  • a storage medium such as a RAM, a ROM, an NVM, an SSD, a mechanical hard disk, a magnetic disk, a disk array, or the like.
  • the communication interface 1103 is used for the second device 1100 to perform data interaction with other devices, such as base stations, user equipment, or other relay nodes in the communication system.
  • the communication interface 1103 may be any one or any combination of the following: a network interface (such as an Ethernet interface), a wireless network card, or the like having a network access function.
  • the bus 1104 can include an address bus, a data bus, a control bus, etc., for ease of representation, Figure 11 shows the bus with a thick line.
  • the bus 1104 may be any one or any combination of the following: a device for wired data transmission such as an ISA bus, a PCI bus, or an EISA bus.
  • the present application further provides a first device, which can be used to perform operations performed by a base station in the interference measurement method shown in FIG. 6 or FIG. 7.
  • the first device 1200 includes a receiving unit 1201.
  • the receiving unit 1201 is configured to receive a measurement result sent by the second device, where the measurement result is a measurement result of at least one of the N reference signals sent by the third device to the second device, where the second device is the first device 1200 and The relay node of the third device, N ⁇ 1.
  • the first device 1200 further includes a first sending unit 1202, where the first sending unit 1202 is configured to send the first configuration information to the second device, before the receiving unit 1201 receives the measurement result sent by the second device, the first configuration.
  • the information is configuration information of the N reference signals; wherein the configuration information of the N reference signals includes at least one of: a transmission time of the N reference signals; a carrier frequency of the N reference signals; a sequence of the N reference signals ; subcarrier spacing of N reference signals; port information of N reference signals; reference index of N reference signals.
  • the first device 1200 further includes a second sending unit 1203, where the second sending unit 1203 is configured to send resource configuration information to the second device, where the resource configuration information is used, before the receiving unit 1201 receives the measurement result sent by the second device.
  • the resource used to instruct the second device to send the measurement result is not limited to a second sending unit 1203, where the second sending unit 1203 is configured to send resource configuration information to the second device, where the resource configuration information is used, before the receiving unit 1201 receives the measurement result sent by the second device.
  • the resource used to instruct the second device to send the measurement result is used.
  • the first device 1200 further includes a third sending unit 1204, where the third sending unit 1204 is configured to send, to the second device, second configuration information, where the second configuration information is all or part of the at least one reference signal.
  • Configuration information wherein the configuration information of all or part of the reference signals includes at least one of: a transmission time of all or part of the reference signals; a carrier frequency of all or part of the reference signals; all or part of the sequence of all or part of the reference signals Subcarrier spacing of the reference signal; port information for all or part of the reference signal; reference signal index for all or part of the reference signal.
  • first sending unit 1202, the second sending unit 1203, and the third sending unit 1204 may be the same unit in the first device 1200.
  • the measurement result signal includes at least one of the following: identification or configuration information of the at least one reference signal; RSRP of the at least one reference signal; CQI of the at least one reference signal; SIR of the at least one reference signal; SINR of the at least one reference signal .
  • the first device 1200 can be used to perform the operations performed by the base station in the interference measurement method shown in FIG. 6 or FIG. 7.
  • the implementation manner not described in detail in the first device 1200 can be seen in FIG. 6 or FIG. 7. A description of the interference measurement method.
  • the embodiment of the present application further provides a first device.
  • the first device may be used to perform operations performed by the base station in any of the interference measurement methods illustrated in FIG. 2 to FIG. 5, and may be the same device as the first device 1200 illustrated in FIG.
  • the first device 1300 includes at least one processor 1301, a memory 1302, and a communication interface 1303; the at least one processor 1301, the memory 1302, and the communication interface 1303 are all connected by a bus 1304;
  • the memory 1302 is configured to store a computer execution instruction
  • the at least one processor 1301 is configured to execute a computer executed instruction stored by the memory 1302, so that the first device 1300 passes through the communication interface 1303 with other devices in the communication system (such as a relay node, a user equipment). Performing data interaction to perform the interference measurement method provided by the foregoing embodiment, or enabling the first device 1300 to perform data communication through the communication interface 1303 to perform data interaction with other devices (such as a relay node, a user equipment) in the communication system. Part or all of the functionality of the system.
  • the at least one processor 1301 may include different types of processors 1301, or include the same type of processor 1301; the processor 1301 may be any one of the following: a CPU, an ARM processor, an FPGA, a dedicated processor, etc. having a processing process Capable device. In an optional implementation manner, the at least one processor 1301 may also be integrated into a many-core processor.
  • the memory 1302 may be any one or any combination of the following: a storage medium such as a RAM, a ROM, an NVM, an SSD, a mechanical hard disk, a magnetic disk, a disk array, or the like.
  • a storage medium such as a RAM, a ROM, an NVM, an SSD, a mechanical hard disk, a magnetic disk, a disk array, or the like.
  • the communication interface 1303 is used by the first device 1300 to perform data interaction with other devices (eg, relay nodes, user devices in the communication system).
  • the communication interface 1303 may be any one or any combination of the following: a network interface (such as an Ethernet interface), a wireless network card, and the like having a network access function.
  • the bus 1304 can include an address bus, a data bus, a control bus, etc., for ease of representation, Figure 13 shows the bus with a thick line.
  • the bus 1304 may be any one or any combination of the following: a device for wired data transmission such as an ISA bus, a PCI bus, or an EISA bus.
  • the present application further provides a second device, which can be used to perform an operation performed by a relay node in the interference measurement method shown in FIG. 6 or FIG. 7.
  • the second device 1400 includes a transmitting unit 1401.
  • the sending unit 1401 is configured to send a measurement result to the first device, where the measurement result is a measurement result of at least one of the N reference signals sent by the third device to the second device 1400, where the second device 1400 is the first device. And the relay node of the third device, N ⁇ 1.
  • the second device 1400 further includes a first receiving unit 1402, where the first receiving unit 1402 is configured to receive the first configuration information sent by the first device, before the sending unit 1401 sends the measurement result to the first device, where the first configuration is performed.
  • the information is configuration information of the N reference signals; wherein the configuration information of the N reference signals includes at least one of: a transmission time of the N reference signals; a carrier frequency of the N reference signals; a sequence of the N reference signals ; subcarrier spacing of N reference signals; port information of N reference signals; reference signal index of N reference signals.
  • the second device 1400 further includes a second receiving unit 1403, where the second receiving unit 1403 is configured to receive resource configuration information sent by the first device, where the resource configuration information is used, before the sending unit 1401 sends the measurement result to the first device.
  • the second device 1400 further includes a third receiving unit 1404, where the third receiving unit 1404 is configured to receive second configuration information that is sent by the first device, where the second configuration information is all or part of the reference signals in the at least one reference signal.
  • Configuration information wherein the configuration information of all or part of the reference signals includes at least one of: a transmission time of all or part of the reference signals; a carrier frequency of all or part of the reference signals; a sequence of all or part of the reference signals; Or subcarrier spacing of partial reference signals; port information of all or part of the reference signal; reference signal index of all or part of the reference signal.
  • the measurement result includes at least one of the following: identification or configuration information of the at least one reference signal; RSRP of the at least one reference signal; CQI of the at least one reference signal; SIR of the at least one reference signal; ratio SINR of the at least one reference signal .
  • first receiving unit 1402, the second receiving unit 1403, and the third receiving unit 1404 may be the same unit in the second device 1400.
  • the second device 1400 can be used to perform the operations performed by the relay node in the interference measurement method shown in FIG. 6 or FIG. 7.
  • the implementation manner not described in detail in the second device 1400 can be seen in FIG. 6 or FIG. 7. A description of the interference measurement method shown.
  • the embodiment of the present application further provides a second device.
  • the second device may be used to perform operations performed by the relay node in any of the interference measurement methods illustrated in FIG. 6 or FIG. 7, and may be the same device as the second device 1400 illustrated in FIG.
  • the second device 1500 includes at least one processor 1501, a memory 1502, and a communication interface 1503; the at least one processor 1501, the memory 1502, and the communication interface 1503 are each connected by a bus 1504;
  • the memory 1502 is configured to store a computer execution instruction
  • the at least one processor 1501 is configured to execute a computer executed instruction stored by the memory 1502, so that the second device 1500 passes through the communication interface 1503 and other devices in the communication system (such as a base station, a user equipment, or the like) Performing data interaction to perform the interference measurement method provided by the foregoing embodiment, or causing the second device 1500 to pass through the communication interface 1503 with other devices in the communication system (such as a base station, a user equipment, or other relay node) Data interaction is performed to implement some or all of the functions of the communication system.
  • the at least one processor 1501 may include different types of processors 1501 or include the same type of processor 1501; the processor 1501 may be any one of the following: a CPU, an ARM processor, an FPGA, a dedicated processor, etc. having a processing process Capable device. In an optional implementation manner, the at least one processor 1501 may also be integrated into a many-core processor.
  • the memory 1502 may be any one or any combination of the following: a storage medium such as a RAM, a ROM, an NVM, an SSD, a mechanical hard disk, a magnetic disk, a disk array, or the like.
  • a storage medium such as a RAM, a ROM, an NVM, an SSD, a mechanical hard disk, a magnetic disk, a disk array, or the like.
  • the communication interface 1503 is used by the second device 1500 to perform data interaction with other devices, such as base stations, user equipment, or other relay nodes in the communication system.
  • the communication interface 1503 may be any one or any combination of the following: a network interface (such as an Ethernet interface), a wireless network card, and the like having a network access function.
  • the bus 1504 can include an address bus, a data bus, a control bus, etc., for ease of representation, Figure 15 shows the bus with a thick line.
  • the bus 1504 may be any one or any combination of the following: a device for wired data transmission such as an ISA bus, a PCI bus, or an EISA bus.
  • the embodiment of the present application provides an interference measurement method and apparatus.
  • the solution provided by the embodiment of the present application can measure interference of an access link in a relay system to a backhaul link, thereby reducing two links. Interference, improve communication quality.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种干扰测量方法及装置,用以测量中继系统中的干扰。方法包括:第一设备向第二设备发送第一配置信息,或者第一设备接收第二设备发送的第二配置信息,第一配置信息和第二配置信息为第二设备向第三设备发送的N个参考信号的配置信息,第二设备为第一设备和第三设备的中继节点,N≥1;其中,N个参考信号的配置信息包括以下信息中的至少一种:N个参考信号的发送时间;N个参考信号的载波频率;N个参考信号的序列;N个参考信号的子载波间隔;N个参考信号的端口信息;N个参考信号的参考信号索引。

Description

一种干扰测量方法及装置
本申请要求于2017年08月11日提交中国专利局、申请号为201710686723.5、发明名称为“一种干扰测量方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种干扰测量方法及装置。
背景技术
在通信系统中,为了提升基站的覆盖范围引入了中继(relay)传输:在基站与用户设备之间增加了一个或多个中继节点(relay node,RN),负责对无线信号进行一次或者多次的转发,即无线信号要经过多跳才能到达用户设备。在中继系统中存在三类网元:基站、中继节点及用户设备,三类网元之间的连接关系可如图1所示。其中,基站和中继节点间的链路称为回传链路(backhaul link,BL),中继节点和用户设备间的链路称为接入链路(access link,AL)。
在中继通信系统中,由于存在两个链路(回传链路和接入链路)的数据传输,因而两个链路间的干扰会导致系统性能降低。
因此,如何测量两个链路间的干扰成为一个亟需解决的问题。
发明内容
本申请实施例提供一种干扰测量方法及装置,用以测量中继系统中接入链路对回传链路的干扰。
第一方面,本申请实施例提供一种干扰测量方法,该方法包括如下步骤:
第一设备向第二设备发送第一配置信息,或者第一设备接收第二设备发送的第二配置信息,第一配置信息和第二配置信息为第二设备向第三设备发送的N个参考信号的配置信息,第二设备为第一设备和第三设备的第二设备,N≥1。其中,N个参考信号的配置信息包括以下信息中的至少一种:N个参考信号的发送时间;N个参考信号的载波频率;N个参考信号的序列;N个参考信号的子载波间隔;N个参考信号的端口信息;N个参考信号的参考信号索引。
其中,第一设备可以是网络设备,第三设备可以是用户设备,第二设备为网络设备和用户设备的中继节点。此外,第一设备也可以是中继系统中的中继节点,第三设备也可以是除第二设备之外的另一个中继节点。本申请实施例中仅限定第二设备为第一设备和第三设备的中继节点,对此第一设备和第二设备的设备类型不做限定。例如,当第一设备为网络设备、第二设备为中继节点、第三设备也为中继节点时,第二设备和第三设备均为可视为网络设备和用户设备之间的中继节点;当第一设备为中继节点、第二设备为中继节点、第三设备为用户设备时,第一设备和第二设备均为可视为网络设备和用户设备之间的中继节点。
采用上述方案,由于第一设备向第二设备(即第一设备与第三设备的第二设备) 发送了第一配置信息,而第一配置信息是第二设备向第三设备发送的N个参考信号的配置信息,也就是说,第二设备可以根据第一配置信息向第三设备发送N个参考信号。由于第一配置信息对于第一设备来说是已知的,因而第一设备可以基于第一配置信息对第二设备向第三设备发送的N个参考信号进行干扰测量,从而第一设备可以获知第二设备和第三设备间的链路(即接入链路)对第一设备和第二设备间的链路(即回传链路)的干扰。
在一种可能的设计中,该方法还包括:第一设备根据第一配置信息或第二配置信息对N个参考信号进行测量。
采用上述方案,第一设备可根据第一配置信息对N个参考信号进行测量,从而根据测量结果确定第二设备和第三设备间的链路(即接入链路)对第一设备和第二设备间的链路(即回传链路)的干扰。
在一种可能的设计中,该方法还包括:第一设备向第二设备发送第三配置信息,第三配置信息为N个参考信号中的至少一个参考信号的配置信息;
其中,至少一个参考信号的配置信息包括以下信息中的至少一种:至少一个参考信号的发送时间;至少一个参考信号的载波频率;至少一个参考信号的序列;至少一个参考信号的子载波间隔;至少一个参考信号的端口信息;至少一个参考信号的参考信号索引。
采用上述方案,第二设备可根据第三配置信息向第三设备发送信号,以减小接入链路对回传链路的干扰。
在一种可能的设计中,该方法还包括:第一设备向第二设备发送N个参考信号中的至少一个参考信号的测量结果。
采用上述方案,可以使得第二设备根据至少一个参考信号的测量结果确定在后续向第三设备发送信号的过程中基于何种配置进行发送。
在一种可能的设计中,至少一个参考信号的测量结果包含以下至少一种:至少一个参考信号的标识或配置信息;至少一个参考信号的参考信号接收功率RSRP;至少一个参考信号的信道质量指示CQI;至少一个参考信号的信号干扰比SIR;至少一个参考信号的信号与干扰加噪声比SINR。
第二方面,本申请实施例提供一种干扰测量方法,该方法包括如下步骤:第二设备接收第一设备发送的第一配置信息,或者第二设备向第一设备发送第二配置信息,第一配置信息和第二配置信息为第二设备向第三设备发送的N个参考信号的配置信息,第二设备为第一设备和第三设备的第二设备,N≥1;其中,N个参考信号的配置信息包括以下信息中的至少一种:N个参考信号的发送时间;N个参考信号的载波频率;N个参考信号的序列;N个参考信号的子载波间隔;N个参考信号的端口信息;N个参考信号的参考信号索引。
采用上述方案,由于第一设备向第二设备(即第一设备与第三设备的第二设备)发送了第一配置信息,而第一配置信息是第二设备向第三设备发送的N个参考信号的配置信息,也就是说,第二设备可以根据第一配置信息向第三设备发送N个参考信号。由于第一配置信息对于第一设备来说是已知的,因而第一设备可以基于第一配置信息对第二设备向第三设备发送的N个参考信号进行干扰测量,从而第一设备可以获知第二设备和第三设备间的链路(即接入链路)对第一设备和第二设备间的链路(即回传 链路)的干扰。
在一种可能的设计中,该方法还包括:第二设备根据第一配置信息或第二配置信息向第三设备发送N个参考信号。
采用上述方案,第一设备可根据第一配置信息对N个参考信号进行测量,从而根据测量结果确定第二设备和第三设备间的链路(即接入链路)对第一设备和第二设备间的链路(即回传链路)的干扰。
在一种可能的设计中,该方法还包括:第二设备接收第一设备发送的第三配置信息,该第三配置信息为N个参考信号中的至少一个参考信号的配置信息;其中,至少一个参考信号的配置信息包括以下信息中的至少一种:至少一个参考信号的发送时间;至少一个参考信号的载波频率;至少一个参考信号的序列;至少一个参考信号的子载波间隔;至少一个参考信号的端口信息;至少一个参考信号的参考信号索引。
采用上述方案,第二设备可根据第三配置信息向第三设备发送信号,以减小接入链路对回传链路的干扰。
在一种可能的设计中,该方法还包括:第二设备接收第一设备发送的N个参考信号中的至少一个参考信号的测量结果。
采用上述方案,可以使得第二设备根据至少一个参考信号的测量结果确定在后续向第三设备发送信号的过程中基于何种配置进行发送。
在一种可能的设计中,至少一个参考信号的测量结果包含以下至少一种:至少一个参考信号的标识或配置信息;至少一个参考信号的RSRP;至少一个参考信号的CQI;至少一个参考信号的SIR;至少一个参考信号的SINR。
第三方面,本申请实施例提供一种干扰测量方法,该方法包括如下步骤:第一设备接收第二设备发送的测量结果,测量结果为第三设备向第二设备发送的N个参考信号中的至少一个参考信号的测量结果,第二设备为第一设备和第三设备的第二设备,N≥1。
其中,第一设备可以是网络设备,第三设备可以是用户设备,第二设备为网络设备和用户设备的中继节点。此外,第一设备也可以是中继系统中的中继节点,第三设备也可以是除第二设备之外的另一个中继节点。本申请实施例中仅限定第二设备为第一设备和第三设备的中继节点,对此第一设备和第二设备的设备类型不做限定。例如,当第一设备为网络设备、第二设备为中继节点、第三设备也为中继节点时,第二设备和第三设备均为可视为网络设备和用户设备之间的中继节点;当第一设备为中继节点、第二设备为中继节点、第三设备为用户设备时,第一设备和第二设备均为可视为网络设备和用户设备之间的中继节点。
采用上述方案,第二设备向第一设备发送至少一个参考信号的测量结果,其中,至少一个参考信号为第三设备向第二设备发送的N个参考信号中的至少一个参考信号。第一设备可根据至少一个参考信号的测量结果从至少一个参考信号中筛选出全部或部分参考信号,并将全部或部分参考信号的配置信息发送给第二设备。其中,第一设备筛选出的全部或部分参考信号可以是接入链路对回传链路干扰较小时第三设备对应发送的参考信号。第二设备将全部或部分参考信号的配置信息发送给第三设备后,第三设备在后续向第二设备发送信号时可以基于该全部或部分参考信号的配置信息发送,从而减小接入链路对回传链路的干扰。
在一种可能的设计中,在第一设备接收第二设备发送的测量结果之前,还包括:第一设备向第二设备发送第一配置信息,第一配置信息为N个参考信号的配置信息;其中,N个参考信号的配置信息包括以下信息中的至少一种:N个参考信号的发送时间;N个参考信号的载波频率;N个参考信号的序列;N个参考信号的子载波间隔;N个参考信号的端口信息;N个参考信号的参考索引。
采用上述方案,在第一设备向第二设备发送第一配置信息之后,第二设备可将第一配置信息发送给第三设备,那么第三设备在向第二设备发送上述N个参考信号时,可以基于第一配置信息进行发送。在第三设备向第二设备发送参考信号的同时,第二设备也可以根据第一配置信息对N个参考信号进行测量。
在一种可能的设计中,在第一设备接收第二设备发送的测量结果之前,还包括:第一设备向第二设备发送资源配置信息,资源配置信息用于指示第二设备发送测量结果时所使用的资源。
采用上述方案,第二设备在接收到资源配置信息后即可在资源配置信息指示的资源上向第一设备发送测量结果。
在一种可能的设计中,该方法还包括:第一设备向第二设备发送第二配置信息,第二配置信息为至少一个参考信号中的全部或部分参考信号的配置信息;其中,全部或部分参考信号的配置信息包括以下信息中的至少一种:全部或部分参考信号的发送时间;全部或部分参考信号的载波频率;全部或部分参考信号的序列全部或部分参考信号的子载波间隔;全部或部分参考信号的端口信息;全部或部分参考信号的参考信号索引。
采用上述方案,第二设备在接收到第二配置信息后可将第二配置信息发送给第三设备,第三设备后续可基于第二配置信息向第二设备发送信号,以减小接入链路对回传链路的干扰。
在一种可能的设计中,测量结果信包含以下至少一种:至少一个参考信号的标识或配置信息;至少一个参考信号的RSRP;至少一个参考信号的CQI;至少一个参考信号的SIR;至少一个参考信号的SINR。
第四方面,本申请实施例提供一种干扰测量方法,该方法包括如下步骤:第二设备向第一设备发送测量结果,测量结果为第三设备向第二设备发送的N个参考信号中的至少一个参考信号的测量结果,第二设备为第一设备和第三设备的第二设备,N≥1。
采用上述方案,采用上述方案,第二设备向第一设备发送至少一个参考信号的测量结果,其中,至少一个参考信号为第三设备向第二设备发送的N个参考信号中的至少一个参考信号。第一设备可根据至少一个参考信号的测量结果从至少一个参考信号中筛选出全部或部分参考信号,并将全部或部分参考信号的配置信息发送给第二设备。其中,第一设备筛选出的全部或部分参考信号可以是接入链路对回传链路干扰较小时第三设备对应发送的参考信号。第二设备将全部或部分参考信号的配置信息发送给第三设备后,第三设备在后续向第二设备发送信号时可以基于该全部或部分参考信号的配置信息发送,从而减小接入链路对回传链路的干扰。
在一种可能的设计中,在第二设备向第一设备发送测量结果之前,还包括:第二设备接收第一设备发送的第一配置信息,第一配置信息为N个参考信号的配置信息;其中,N个参考信号的配置信息包括以下信息中的至少一种:N个参考信号的发送时 间;N个参考信号的载波频率;N个参考信号的序列;N个参考信号的子载波间隔;N个参考信号的端口信息;N个参考信号的参考信号索引。
采用上述方案,在第一设备向第二设备发送第一配置信息之后,第二设备可将第一配置信息发送给第三设备,那么第三设备在向第二设备发送上述N个参考信号时,可以基于第一配置信息进行发送。在第三设备向第二设备发送参考信号的同时,第二设备也可以根据第一配置信息对N个参考信号进行测量。
在一种可能的设计中,在第二设备向第一设备发送测量结果之前,还包括:第二设备接收第一设备发送的资源配置信息,资源配置信息用于指示第二设备发送测量结果信息时所使用的资源。
采用上述方案,第二设备在接收到资源配置信息后即可在资源配置信息指示的资源上向第一设备发送测量结果。
在一种可能的设计中,该方法还包括:第二设备接收第一设备发送的第二配置信息,第二配置信息为至少一个参考信号中的全部或部分参考信号的配置信息;其中,全部或部分参考信号的配置信息包括以下信息中的至少一种:全部或部分参考信号的发送时间;全部或部分参考信号的载波频率;全部或部分参考信号的序列;全部或部分参考信号的子载波间隔;全部或部分参考信号的端口信息;全部或部分参考信号的参考信号索引。
采用上述方案,第二设备在接收到第二配置信息后可将第二配置信息发送给第三设备,第三设备后续可基于第二配置信息向第二设备发送信号,以减小接入链路对回传链路的干扰。
在一种可能的设计中,测量结果包含以下至少一种:至少一个参考信号的标识或配置信息;至少一个参考信号的RSRP;至少一个参考信号的CQI;至少一个参考信号的SIR;至少一个参考信号的比SINR。
第五方面,本申请实施例还提供了一种第一设备,该第一设备具有实现上述第一方面和/或第三方面提供的干扰测量方法中第一设备的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,所述第一设备的结构中包括发送单元、接收单元和处理单元,这些单元可以执行第一方面和/或第三方面提供的干扰测量方法中相应行为的功能,具体参见第一方面和/或第三方面提供的干扰测量方法中的详细描述,此处不做赘述。
在一种可能的设计中,所述第一设备的结构中包括发送器、接收器、处理器以及存储器,所述发送器和接收器用于与中继系统中的其他设备(例如第二设备、第三设备)进行通信交互,所述处理器被配置为支持第一设备执行上述第一方面和/或第三方面提供的干扰测量方法中相应的功能。所述存储器与所述处理器耦合,其保存所述第一设备必要的程序指令和数据。
第六方面,本申请实施例还提供了一种第二设备,该第二设备具有实现上述第二方面和/或第四方面提供的干扰测量方法实例中第二设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,所述第二设备的结构中包括发送单元、接收单元和处理单元,这些单元可以执行上述第二方面和/或第四方面提供的干扰测量方法示例中的相应功能,具体参见第二方面和/或第四方面提供的干扰测量方法示例中的详细描述,此处不做赘述。
在一种可能的设计中,所述第二设备的结构中包括发送器、接收器、处理器以及存储器,所述发送器和接收器用于与中继系统中的其他设备(例如第一设备、第三设备)进行通信交互,所述处理器被配置为支持第二设备执行上述第二方面和/或第四方面提供的干扰测量方法中相应的功能。所述存储器与所述处理器耦合,其保存所述第二设备必要的程序指令和数据。
第七方面,本申请实施例还提供了一种通信系统,该通信系统包括上述第五方面提供的第一设备和上述第六方面提供的第二设备。
第八方面,本申请实施例提供一种计算机程序产品,所述计算机程序产品包括存储在上述第一种非暂态性计算机存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行第一方面或上述第一方面的任意一种设计提供的方法,或者执行第二方面或上述第二方面的任意一种设计提供的方法,或者执行第三方面或上述第三方面的任意一种设计提供的方法,或者执行第四方面或上述第四方面的任意一种设计提供的方法。
第九方面,本申请实施例提供一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令在被计算机调用时,使所述计算机执行第一方面或上述第一方面的任意一种设计提供的方法,或者执行第二方面或上述第二方面的任意一种设计提供的方法,或者执行第三方面或上述第三方面的任意一种设计提供的方法,或者执行第四方面或上述第四方面的任意一种设计提供的方法。
附图说明
图1为本申请实施例提供的一种中继系统中三类网元之间的连接关系的示意图;
图2为本申请实施例提供的第一种干扰测量方法的流程示意图;
图3为本申请实施例提供的第二种干扰测量方法的流程示意图;
图4为本申请实施例提供的第三种干扰测量方法的流程示意图;
图5为本申请实施例提供的第四种干扰测量方法的流程示意图;
图6为本申请实施例提供的第五种干扰测量方法的流程示意图;
图7为本申请实施例提供的第六种干扰测量方法的流程示意图;
图8为本申请实施例提供的第一种第一设备的结构示意图;
图9为本申请实施例提供的第二种第一设备的结构示意图;
图10为本申请实施例提供的第一种第二设备的结构示意图;
图11为本申请实施例提供的第二种第二设备的结构示意图;
图12为本申请实施例提供的第三种第一设备的结构示意图;
图13为本申请实施例提供的第四种第一设备的结构示意图;
图14为本申请实施例提供的第三种第二设备的结构示意图;
图15为本申请实施例提供的第四种第二设备的结构示意图。
具体实施方式
在通信系统中,由于高频通信的引入,由遮挡引起的覆盖范围问题和覆盖空洞问题成为了无线通信系统设计的挑战。为了提升基站等网络设备的覆盖范围,引入了中继(realy)传输。
在中继系统中,为了减小回传链路和接入链路之间的干扰,首先需要测量两个链路间的干扰,从而根据两个链路间的干扰情况改变中继系统中各个网元的配置,从而减小两个链路间的干扰。
下面对本申请实施例的应用场景加以介绍。
如图1所示,本申请实施例中,中继系统中存在三类网元:基站、中继节点及用户设备。当然,图1所示的中继系统是以无线信号经过两跳到达用户设备的场景为例,具体实现时还存在无线信号经过两跳以上到达用户设备的场景,此时,图1中的用户设备可以替换为另一个中继节点。
为了使本申请更容易被理解,下面首先对本申请实施例涉及的一些基本概念进行解释。需要说明的是,这些解释是为了让本申请实施例更容易被理解,而不应该视为对本申请所要求的保护范围的限定。
一、第一设备、第二设备和第三设备
本申请实施例中,第一设备可以是网络设备,第三设备可以是用户设备,第二设备为网络设备和用户设备的中继节点。此外,第一设备也可以是中继系统中的中继节点,第三设备也可以是除第二设备之外的另一个中继节点。本申请实施例中仅限定第二设备为第一设备和第三设备的中继节点,对此第一设备和第二设备的设备类型不做限定。例如,当第一设备为网络设备、第二设备为中继节点、第三设备也为中继节点时,第二设备和第三设备均为可视为网络设备和用户设备之间的中继节点;当第一设备为中继节点、第二设备为中继节点、第三设备为用户设备时,第一设备和第二设备均为可视为网络设备和用户设备之间的中继节点。
具体地,本申请实施例中,网络设备可以是全球移动通信系统(global system for mobile communications,GSM)或码分多址接入(code division multiple access,CDMA)中的网络设备(base transceiver station,BTS),也可以是带宽码分多址接入(wide-band code division multiple access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可是家庭演进基站(home evolved node B,HeNB)、家庭基站(femto)、微微基站(pico)等,本申请实施例中对网络设备的类型不做具体限定。
具体地,本申请实施例中,用户设备可以是向用户提供语音和/或数据连通性的设备,对应无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。用户设备可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信,用户设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和对应移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiated protocol,SIP)话机、无线本地环路(wireless local  loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备。用户设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户终端设备(customer premise equipment,CPE)、用户代理(user agent)或用户装备(user equipment),本申请实施例中并不限定。
二、参考信号
本申请实施例中,参考信号包括但不限于信道状态信息参考信号(channel status information reference signal,CSI RS)、同步信号(synchronization signal,SS)、信道探测参考信号(sounding reference signal,SRS),本申请实施例中对参考信号的具体类型不做限定。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
本申请提供一种干扰测量方法及装置,用以测量中继系统中回传链路和接入链路之间的干扰。其中,方法和装置是基于同一发明构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
需要说的是,本申请中所涉及的多个是指两个或两个以上;在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
下面将分别通过三个实施例对本申请提供的干扰测量方法加以说明。
实施例一
参见图2,为本申请实施例提供的一种干扰测量方法。该方法包括如下步骤:
S201:基站向中继节点发送第一配置信息,相应地,中继节点接收基站发送的第一配置信息。
S201中,第一配置信息为中继节点向用户设备发送的N个参考信号的配置信息,N≥1。
其中,N个参考信号的配置信息包括以下信息中的至少一种:N个参考信号的发送时间;N个参考信号的载波频率;N个参考信号的序列;N个参考信号的子载波间隔;N个参考信号的端口信息;N个参考信号的参考信号索引。
在图2所示的干扰测量方法中,基站可以是前述的第一设备,中继节点可以是前述的第二设备,用户设备可以是前述的第三设备。当然,前述第一设备也可以是中继系统中除第二设备以外的另一个中继节点,前述第三设备也可以是中继系统中除第二设备以外的另一个中继节点,本申请实施例中对此不做限定。
需要说明的是,S201中,基站可以主动向中继节点发送第一配置信息,也可以基于中继节点的请求向中继节点发送第一配置信息,本申请实施例中对此不做限定。此外,由于中继节点在向用户设备发送参考信号时可以基于不同的numerology发送,因而基站向中继节点发送的第一配置信息中还可指示中继节点在向用户设备发送参考信号时基于哪个numerology进行发送。
可选地,在S201中基站向中继节点发送第一配置信息后中继节点可根据第一配置信息向用户设备发送N个参考信号,那么,基站可根据第一配置信息对N个参考信号进行测量,从而根据测量结果确定中继节点和用户设备间的链路(即接入链路)对基站和中继节点间的链路(即回传链路)的干扰。
具体地,中继节点向用户设备发送的N个参考信号可以采用不同的赋形波束发送。例如,中继节点可采用N个赋形波束分别向用户设备发送N个参考信号,此时,第一配置信息即可用于指示中继节点在发送参考信号时采用的是哪个赋形波束。那么,基站可根据第一配置信息测量N个赋形波束下中继节点和用户设备间的链路(即接入链路)对基站和中继节点间的链路(即回传链路)的干扰。
在基站对N个参考信号进行干扰测量之后,基站需要根据测量结果来指示中继节点在后续向用户设备发送信号时基于何种配置进行发送,以减小接入链路对回传链路的干扰。该指示方式可以有多种,下面列举其中两种方式。
方式一
在基站对N个参考信号进行干扰测量之后,基站可向中继节点发送第三配置信息,第三配置信息为N个参考信号中的至少一个参考信号的配置信息,从而使得中继节点可根据第三配置信息向用户设备发送信号,以减小接入链路对回传链路的干扰。
其中,至少一个参考信号的配置信息包括以下信息中的至少一种:至少一个参考信号的发送时间;至少一个参考信号的载波频率;至少一个参考信号的序列;至少一个参考信号的子载波间隔;至少一个参考信号的端口信息;至少一个参考信号的参考信号索引。
在方式一中,基站在对N个参考信号进行干扰测量以后,基站可以根据测量结果筛选出N个参考信号中的至少一个参考信号,并将该至少一个参考信号的配置信息发送给中继节点。这里所说的测量结果可以包含如下信息中的至少一种:N个参考信号的参考信号接收功率(reference signal receiving power,RSRP)、N个参考信号的信道质量指示(channel quality indicator,CQI)、N个参考信号的信号干扰比(signal-to-interference rate,SIR)、N个参考信号的信号与干扰加噪声比(signal to interference plus noise ratio,SINR)。也就是说,在中继节点向用户设备发送参考信号时,基站可以测量该参考信号的RSRP、CQI、SIR或SINR等参数中的一种或几种,然后根据测量结果确定该参考信号所在的接入链路对回传链路的干扰;当基站完成对N个参考信号的测量后,即可根据N个参考信号的测量结果筛选出至少一个参考信号,将该至少一个参考信号的配置信息(第三配置信息)发送给中继节点。
其中,基站筛选出的至少一个参考信号可以是接入链路对回传链路干扰较小时中继节点对应发送的参考信号。特别地,当中继节点采用N个赋形波束分别向用户设备发送N个参考信号时,基站选择的至少一个参考信号与至少一个赋形波束一一对应,也就是说,基站向中继节点发送的第三配置信息指示了中继节点在采用上述至少一个赋形波束向用户设备发送至少一个参考信号时,接入链路对回传链路的干扰较小。那么,中继节点在接收到第三配置信息后即可获知:在后续向用户设备发送信号时,可采用上述至少一个赋形波束发送,从而减小接入链路对回传链路的干扰。
需要说明的是,本申请实施例中,第一配置信息和第三配置信息包括的信息类型可以不同。例如,第一配置信息可以包含N个参考信号的发送时间和载波频率,第三 配置信息可以包含至少一个参考信号的端口信息和参考信号索引;或者,第一配置信息可以包含N个参考信号的序列和载波频率,第三配置信息可以包含至少一个参考信号的子载波间隔和载波频率。
方式二
在基站对N个参考信号进行干扰测量之后,基站可向中继节点发送N个参考信号中的至少一个参考信号的测量结果;相应地,中继节点接收基站发送的N个参考信号中的至少一个参考信号的测量结果,从而使得中继节点根据至少一个参考信号的测量结果确定在后续向用户设备发送信号的过程中基于何种配置进行发送。
其中,至少一个参考信号的测量结果包含以下至少一种:至少一个参考信号的标识或配置信息;至少一个参考信号的RSRP;至少一个参考信号的CQI;至少一个参考信号的SIR;至少一个参考信号的SINR。
需要说明的是,在方式二中,至少一个参考信号的测量结果中不仅可以包含至少一个参考信号的参数,例如RSRP、CQI、SIR和SINR,还可以包括至少一个参考信号的标识和配置信息,这是因为:如果基站仅向中继节点发送至少一个参考信号的RSRP、CQI、SIR和SINR等参数中的一个或多个,中继节点难以辨识出这至少一个参考信号是中继节点向用户设备发送的N个参考信号中的哪些参考信号。因此,基站可在测量结果中发送该至少一个参考信号的标识和配置信息,从而用于中继节点辨识该至少一个参考信号。其中,至少一个参考信号的配置信息包括以下信息中的至少一种:至少一个参考信号的发送时间;至少一个参考信号的载波频率;至少一个参考信号的序列;至少一个参考信号的子载波间隔;至少一个参考信号的端口信息;至少一个参考信号的参考信号索引。
方式二与方式一的不同之处在于:方式一中,至少一个参考信号是基站根据N个参考信号的测量结果筛选出的,且基站向中继节点发送的是至少一个参考信号的配置信息(即第三配置信息),中继节点在后续向用户设备发送信号时可基于至少一个参考信号的配置信息(即第三配置信息)进行发送;而方式二中的至少一个参考信号可以是基站根据测量结果从N个参考信号中初步筛选出的,也可以是没有经过筛选的N个参考信号,且基站向中继节点发送的是至少一个参考信号的测量结果,中继节点在接收到至少一个参考信号的测量结果后,可进一步对至少一个参考信号进行筛选,在后续向用户设备发送信号时可基于至少一个参考信号中的全部或部分参考信号的配置信息进行发送。
此外,在图2所示的干扰测量方法中,为了使得测量结果更为准确,中继节点每次向用户设备发送参考信号的同时,也可在同一个时频资源上向基站发送参考信号,为了便于区分,本申请实施例中将中继节点发送给基站的参考信号称为“第二参考信号”。当中继节点在同一个时频资源上向用户设备和基站发送参考信号时,接入链路和回传链路中同时存在数据传输,因而这种情况下的测量结果会更为准确。特别地,在上述过程中,中继节点向基站发送的第二参考信号可以是零功率参考信号(zero power reference signal,ZP RS)。也就是说,中继节点在同一个时频资源上向用户设备发送用于干扰测量的参考信号并向基站发送ZP RS,此时,由于接入链路和回传链路均占用该时频资源,因而在该时频资源上的参考信号传输不会受到其他信号的干扰,基站在该时频资源上对参考信号进行测量,测量结果更为准确。
在图2所示的干扰测量方法中,由于基站向中继节点发送了第一配置信息,而第一配置信息是中继节点向用户设备发送的N个参考信号的配置信息,也就是说,中继节点可以根据第一配置信息向用户设备发送N个参考信号。由于第一配置信息对于基站来说是已知的,因而基站可以基于第一配置信息对中继节点向用户设备发送的N个参考信号进行干扰测量,从而基站可以获知中继节点和用户设备间的链路(即接入链路)对基站和中继节点间的链路(即回传链路)的干扰。
基于以上对实施例一的描述,本申请实施例还提供一种干扰测量方法,该干扰测量方法可视为图2所示方法的一个具体示例,该方法和图2所示方法可相互参见。参见图3,该方法包括如下步骤:
S301:中继节点向基站发送请求消息,请求基站配置中继节点向用户设备发送参考信号时所使用的时频资源。
其中,中继节点向用户设备发送参考信号时所使用的时频资源可视为图2所示方法中第一配置信息的一个具体示例。
如前所述,第一配置信息为中继节点向用户设备发送的N个参考信号的配置信息。N个参考信号的配置信息包括以下信息中的至少一种:N个参考信号的发送时间;N个参考信号的载波频率;N个参考信号的序列;N个参考信号的子载波间隔;N个参考信号的端口信息;N个参考信号的参考信号索引。那么,在图3所示方法中,中继节点向用户设备发送参考信号时所使用的时频资源可视为N个参考信号的发送时间和N个参考信号的载波频率。
S302:基站向中继节点发送响应消息,以配置中继节点向用户设备发送参考信号时所使用的时频资源。
此外,S302中,基站还可配置中继节点在上述时频资源上向基站发送N个ZP RS。其中,ZP RS为图2所示方法中第二参考信号的一个具体示例。由于ZP RS的功率为零,因而中继节点实际上并没有向基站发送参考信号,而只是占用了基站和中继节点之间的时频资源。这样做的好处是:中继节点在同一个时频资源上向用户设备发送用于干扰测量的N个参考信号并向基站发送N个ZP RS,此时,该时频资源上发送的参考信号不会受到其他信号的干扰,基站可在该时频资源上对参考信号进行测量,从而准确地确定接入链路对回传链路的干扰。
S302中,基站向中继节点发送的响应消息可以是高层信令或下行控制消息(downlink control information,DCI)。其中,高层信令包括但不限于:无线资源控制(radio resource control,RRC)消息、媒体介入控制层控制元素(media access control control element,MAC CE)、广播消息、系统消息等。
S303:中继节点在上述时频资源上采用N个赋形波束中的一个赋形波束向用户设备发送参考信号。
S304:基站测量该赋形波束下接入链路对回传链路的干扰。
具体地,基站可在ZP RS所占用的时频资源上测量参考信号的RSRP、CQI、SIR和SIN等参数,从而确定该赋形波束下接入链路对回传链路的干扰。
将S303~S304执行N次:即每次执行S303时中继节点均采用不同的赋形波束向用户设备发送参数信号,每次执行S304时基站测量每个赋形波束下接入链路对回传链路的干扰。那么,通过将S303~S304执行N次,基站可确定N个赋形波束下接入链路 对回传链路的干扰。
S305:基站向中继节点发送通知消息,以通知中继节点在向用户设备发送信号时可以使用的赋形波束集合。
S305中,中继节点在向用户设备发送信号时可以采用的赋形波束集合中包含的赋形波束为前述N个赋形波束中的至少一个赋形波束。
S305中,基站通过通知消息向中继节点指示的赋形波束集合可视为图2所示方法中的第三配置信息的一个具体示例。图2所示方法中,第三配置信息为基站根据测量结果筛选出的、N个参考信号中的至少一个参考信号的配置信息,而图3所示方法中,赋形波束集合为基站筛选出的、N个赋形波束中的至少一个赋形波束;由于图3所示方法中,N个赋形波束和N个参考信号是一一对应的,因而基站通过通知消息指示中继节点采用N个赋形波束中的至少一个赋形波束向用户设备发送信号,即相当于图2所示方法中基站向中继节点发送N个参考信号中的至少一个参考信号的配置信息(即第三配置信息)。
S305中,基站向中继节点发送的通知消息可以是高层信令或DCI。其中,高层信令包括但不限于:RRC消息、MAC CE、广播消息、系统消息等。
此外,在图3所示方法中,中继节点和基站间进行信号传输所使用的赋形波束不同时,基站在S305中向中继节点发送的赋形波束集合中包含的赋形波束可以相同,也可以不同。例如,当中继节点在S301中采用赋形波束A向基站发送请求消息、基站在S302中采用赋形波束B向中继节点发送响应消息时,S305中基站向中继节点发送的赋形波束集合中包含赋形波束1、赋形波束2和赋形波束3;那么,当中继节点在S301中采用赋形波束C向基站发送请求消息、基站在S302中采用赋形波束D向中继节点发送响应消息时,S305中基站向中继节点发送的赋形波束集合中包含的赋形波束可以是赋形波束1、赋形波束2和赋形波束3,也可以是赋形波束4、赋形波束5和赋形波束6。
通过图3所示方法,基站可以配置中继节点向用户设备发送信号时所使用的赋形波束集合,从而减小接入链路对回传链路的干扰。
实施例二
参见图4,为本申请实施例提供的一种干扰测量方法。该方法包括如下步骤:
S401:中继节点向基站发送第二配置信息,相应地,基站接收中继节点发送的第二配置信息。
S401中,第二配置信息为中继节点向用户设备发送的N个参考信号的配置信息,N≥1。
其中,N个参考信号的配置信息包括以下信息中的至少一种:N个参考信号的发送时间;N个参考信号的载波频率;N个参考信号的序列;N个参考信号的子载波间隔;N个参考信号的端口信息;N个参考信号的参考信号索引。
在图2所示的干扰测量方法中,基站可以是前述的第一设备,中继节点可以是前述的第二设备,用户设备可以是前述的第三设备。当然,前述第一设备也可以是中继系统中除第二设备以外的另一个中继节点,前述第三设备也可以是中继系统中除第二设备以外的另一个中继节点,本申请实施例中对此不做限定。
需要说明的是,由于中继节点在向用户设备发送参考信号时可以基于不同的numerology发送,因而第二配置信息中还可指示中继节点在向用户设备发送参考信号时基于哪个numerology进行发送。
实施例二与实施例一的不同指出在于:实施例一中,N个参考信号的配置信息(第一配置信息)是由基站确定后发送给中继节点的,中继节点可基于基站发送的第一配置信息向用户设备发送N个参考信号,基站可根据自身确定的第一配置信息进行干扰测量;而实施例二中,N个参考信号的配置信息(即第二配置信息)是由中继节点确定后发送给基站的,中继节点可基于自身确定的第二配置信息向用户设备发送N个参考信号,而基站也可以基于从中继节点接收到的第二配置信息进行干扰测量。
可选地,在S401中中继节点向基站发送第二配置信息后中继节点可根据第二配置信息向用户设备发送N个参考信号,那么,基站可根据第二配置信息对N个参考信号进行测量,从而根据测量结果确定中继节点和用户设备间的链路(即接入链路)对基站和中继节点间的链路(即回传链路)的干扰。
具体地,中继节点向用户设备发送的N个参考信号可以是采用不同的赋形波束发送的。例如,中继节点可采用N个赋形波束分别向用户设备发送N个参考信号,此时,第二配置信息即可用于指示中继节点在发送参考信号时采用的是哪个赋形波束。那么,基站可根据第二配置信息测量N个赋形波束下中继节点和用户设备间的链路(即接入链路)对基站和中继节点间的链路(即回传链路)的干扰。
在基站对N个参考信号进行干扰测量之后,基站需要根据测量结果来指示中继节点在后续向用户设备发送信号时基于何种配置进行发送,以减小接入链路对回传链路的干扰。该指示方式可以有多种,下面列举其中两种方式。
方式一
在基站对N个参考信号进行干扰测量之后,基站可向中继节点发送第三配置信息,第三配置信息为N个参考信号中的至少一个参考信号的配置信息,从而使得中继节点可根据第三配置信息向用户设备发送信号,以减小接入链路对回传链路的干扰。
其中,至少一个参考信号的配置信息包括以下信息中的至少一种:至少一个参考信号的发送时间;至少一个参考信号的载波频率;至少一个参考信号的序列;至少一个参考信号的子载波间隔;至少一个参考信号的端口信息;至少一个参考信号的参考信号索引。
在方式一中,基站在对N个参考信号进行干扰测量以后,基站可以根据测量结果筛选出N个参考信号中的至少一个参考信号,并将该至少一个参考信号的配置信息发送给中继节点。这里所说的测量结果可以包含如下信息中的至少一种:N个参考信号的RSRP、N个参考信号的CQI、N个参考信号的SIR、N个参考信号的SINR。也就是说,在中继节点向用户设备发送参考信号时,基站可以测量该参考信号的RSRP、CQI、SIR或SINR等参数中的一种或几种,然后根据测量结果确定该参考信号所在的接入链路对回传链路的干扰;当基站完成对N个参考信号的测量后,即可根据N个参考信号的测量结果筛选出至少一个参考信号,将该至少一个参考信号的配置信息(第三配置信息)发送给中继节点。
其中,基站筛选出的至少一个参考信号可以是接入链路对回传链路干扰较小时中继节点对应发送的参考信号。特别地,当中继节点采用N个赋形波束分别向用户设备 发送N个参考信号时,基站选择的至少一个参考信号与至少一个赋形波束一一对应,也就是说,基站向中继节点发送的第三配置信息指示了中继节点在采用上述至少一个赋形波束向用户设备发送至少一个参考信号时,接入链路对回传链路的干扰较小。那么,中继节点在接收到第三配置信息后即可获知:在后续向用户设备发送信号时,可采用上述至少一个赋形波束发送,从而减小接入链路对回传链路的干扰。
需要说明的是,本申请实施例中,第二配置信息和第三配置信息包括的信息类型可以不同。例如,第二配置信息可以包含N个参考信号的发送时间和载波频率,第三配置信息可以包含至少一个参考信号的端口信息和参考信号索引;或者,第二配置信息可以包含N个参考信号的序列和载波频率,第三配置信息可以包含至少一个参考信号的子载波间隔和载波频率。
方式二
在基站对N个参考信号进行干扰测量之后,基站可向中继节点发送N个参考信号中的至少一个参考信号的测量结果;相应地,中继节点接收基站发送的N个参考信号中的至少一个参考信号的测量结果,从而使得中继节点根据至少一个参考信号的测量结果确定在后续向用户设备发送信号的过程中基于何种配置进行发送。
其中,至少一个参考信号的测量结果包含以下至少一种:至少一个参考信号的标识或配置信息;至少一个参考信号的RSRP;至少一个参考信号的CQI;至少一个参考信号的SIR;至少一个参考信号的SINR。
需要说明的是,在方式二中,至少一个参考信号的测量结果中不仅可以包含至少一个参考信号的参数,例如RSRP、CQI、SIR和SINR,还可以包括至少一个参考信号的标识和配置信息,这是因为:如果基站仅向中继节点发送至少一个参考信号的RSRP、CQI、SIR和SINR等参数中的一个或多个,中继节点难以辨识出这至少一个参考信号是中继节点向用户设备发送的N个参考信号中的哪些参考信号。因此,基站可在测量结果中发送该至少一个参考信号的标识和配置信息,从而用于中继节点辨识该至少一个参考信号。其中,至少一个参考信号的配置信息包括以下信息中的至少一种:至少一个参考信号的发送时间;至少一个参考信号的载波频率;至少一个参考信号的序列;至少一个参考信号的子载波间隔;至少一个参考信号的端口信息;至少一个参考信号的参考信号索引。
方式二与方式一的不同之处在于:方式一中,至少一个参考信号是基站根据N个参考信号的测量结果筛选出的,且基站向中继节点发送的是至少一个参考信号的配置信息(即第三配置信息),中继节点在后续向用户设备发送信号时可基于至少一个参考信号的配置信息(即第三配置信息)进行发送;而方式二中的至少一个参考信号可以是基站根据测量结果从N个参考信号中初步筛选出的,也可以是没有经过筛选的N个参考信号,且基站向中继节点发送的是至少一个参考信号的测量结果,中继节点在接收到至少一个参考信号的测量结果后,可进一步对至少一个参考信号进行筛选,在后续向用户设备发送信号时可基于至少一个参考信号中的全部或部分参考信号的配置信息进行发送。
此外,在图4所示的干扰测量方法中,为了使得测量结果更为准确,中继节点每次向用户设备发送参考信号的同时,也可在同一个时频资源上向基站发送参考信号,为了便于区分,本申请实施例中将中继节点发送给基站的参考信号称为“第二参考信 号”。当中继节点在同一个时频资源上向用户设备和基站发送参考信号时,接入链路和回传链路中同时存在数据传输,因而这种情况下的测量结果会更为准确。特别地,在上述过程中,中继节点向基站发送的第二参考信号可以是ZP RS。也就是说,中继节点在同一个时频资源上向用户设备发送用于干扰测量的参考信号并向基站发送ZP RS,此时,由于接入链路和回传链路均占用该时频资源,因而在该时频资源上的参考信号传输不会受到其他信号的干扰,基站在该时频资源上对参考信号进行测量,测量结果更为准确。
在图4所示的干扰测量方法中,由于中继节点向基站发送了第二配置信息,而第二配置信息是中继节点向用户设备发送的N个参考信号的配置信息,也就是说,中继节点可以根据第二配置信息向用户设备发送N个参考信号,基站也可以基于第二配置信息对中继节点向用户设备发送的N个参考信号进行干扰测量,从而基站可以获知中继节点和用户设备间的链路(即接入链路)对基站和中继节点间的链路(即回传链路)的干扰。
基于以上对实施例二的描述,本申请实施例还提供一种干扰测量方法,该干扰测量方法可视为图4所示方法的一个具体示例,该方法和图4所示方法可相互参见。参见图5,该方法包括如下步骤:
S501:中继节点向基站发送第一消息,用于指示中继节点向用户设备发送参考信号时所述使用的时频资源。
其中,中继节点向用户设备发送参考信号时所使用的时频资源可视为图4所示方法中第二配置信息的一个具体示例。
如前所述,第二配置信息为中继节点向用户设备发送的N个参考信号的配置信息。N个参考信号的配置信息包括以下信息中的至少一种:N个参考信号的发送时间;N个参考信号的载波频率;N个参考信号的序列;N个参考信号的子载波间隔;N个参考信号的端口信息;N个参考信号的参考信号索引。那么,在图5所示方法中,中继节点向用户设备发送参考信号时所使用的时频资源可视为N个参考信号的发送时间和N个参考信号的载波频率。
S502:中继节点在上述时频资源上采用N个赋形波束中的一个赋形波束向用户设备发送参考信号。
此外,S502中,中继节点还可在上述时频资源上向基站发送N个ZP RS。其中,ZP RS为图4所示方法中第二参考信号的一个具体示例。由于ZP RS的功率为零,因而中继节点实际上并没有向基站发送参考信号,而只是占用了基站和中继节点之间的时频资源。这样做的好处是:中继节点在同一个时频资源上向用户设备发送用于干扰测量的N个参考信号并向基站发送N个ZP RS,此时,该时频资源上发送的参考信号不会受到其他信号的干扰,基站可在该时频资源上对参考信号进行测量,从而准确地确定接入链路对回传链路的干扰。
S503:基站测量该赋形波束下接入链路对回传链路的干扰。
具体地,基站可在ZP RS所占用的时频资源上测量参考信号的RSRP、CQI、SIR和SIN等参数,从而确定该赋形波束下接入链路对回传链路的干扰。
将S502~S503执行N次:即每次执行S502时中继节点均采用不同的赋形波束向用户设备发送参数信号,每次执行S503时基站测量每个赋形波束下接入链路对回传链 路的干扰。那么,通过将S502~S503执行N次,基站可确定N个赋形波束下接入链路对回传链路的干扰。
S504:基站向中继节点发送通知消息,以通知中继节点在向用户设备发送信号时可以使用的赋形波束集合。
S504中,中继节点在向用户设备发送信号时可以采用的赋形波束集合中包含的赋形波束为前述N个赋形波束中的至少一个赋形波束。
S504中,基站通过通知消息向中继节点指示的赋形波束集合可视为图4所示方法中的第三配置信息的一个具体示例。图4所示方法中,第三配置信息为基站根据测量结果筛选出的、N个参考信号中的至少一个参考信号的配置信息,而图5所示方法中,赋形波束集合为基站筛选出的、N个赋形波束中的至少一个赋形波束;由于图5所示方法中,N个赋形波束和N个参考信号是一一对应的,因而基站通过通知消息指示中继节点采用N个赋形波束中的至少一个赋形波束向用户设备发送信号,即相当于图4所示方法中基站向中继节点发送N个参考信号中的至少一个参考信号的配置信息(即第三配置信息)。
S504中,基站向中继节点发送的通知消息可以是高层信令或DCI。其中,高层信令包括但不限于:RRC消息、MAC CE、广播消息、系统消息等。
此外,在图5所示方法中,中继节点和基站间进行信号传输所使用的赋形波束不同时,基站在S504中向中继节点发送的赋形波束集合中包含的赋形波束可以相同,也可以不同。例如,当中继节点在S501中采用赋形波束A向基站发送第一消息时,S504中基站向中继节点发送的赋形波束集合中包含赋形波束1、赋形波束2和赋形波束3;那么,当中继节点在S501中采用赋形波束C向基站发送第一消息时,S504中基站向中继节点发送的赋形波束集合中包含的赋形波束可以是赋形波束1、赋形波束2和赋形波束3,也可以是赋形波束4、赋形波束5和赋形波束6。
通过图5所示方法,基站可以配置中继节点向用户设备发送信号时所使用的赋形波束集合,从而减小接入链路对回传链路的干扰。
实施例三
参见图6,为本申请实施例提供的一种干扰测量方法。该方法包括如下步骤:
S601:中继节点向基站发送测量结果;相应地,基站接收中继节点发送的测量结果。
其中,测量结果为用户设备向中继节点发送的N个参考信号中的至少一个参考信号的测量结果,N≥1。
在图6所示的干扰测量方法中,基站可以是前述的第一设备,中继节点可以是前述的第二设备,用户设备可以是前述的第三设备。当然,前述第一设备也可以是中继系统中除第二设备以外的另一个中继节点,前述第三设备也可以是中继系统中除第二设备以外的另一个中继节点,本申请实施例中对此不做限定。
S601中,中继节点向基站发送测量结果时,可采用不同的上报方式:中继节点可以逐个上报至少一个参考信号的测量结果,或者中继节点可以将至少一个参考信号的测量结果统一上报;此外,中继节点在上报至少一个参考信号的测量结果的同时,还可上报至少一个参考信号的测量结果的排序情况。
具体地,S601中,至少一个参考信号的测量结果可包含以下至少一种:至少一个参考信号的标识或配置信息;至少一个参考信号的RSRP;至少一个参考信号的CQI;至少一个参考信号的SIR;至少一个参考信号的SINR。也就是说,在用户设备向中继节点发送参考信号时,中继节点可以测量该参考信号的RSRP、CQI、SIR或SINR等参数中的一种或几种,然后根据测量结果确定该参考信号所在的接入链路对回传链路的干扰;当中继节点完成对N个参考信号的测量后,即可确定N个参考信号的测量结果。那么S601中,中继节点向基站上报N个参考信号中的至少一个参考信号的测量结果时包含两种情况:第一种情况,中继节点根据N个参考信号的测量结果筛选出至少一个参考信号,并将至少一个参考信号的测量结果上报给基站,这里,中继节点筛选出的至少一个参考信号可以是接入链路对回传链路干扰较小时用户设备对应发送的参考信号;第二种情况,中继节点不执行筛选动作,直接将N个参考信号的测量结果上报给基站。
需要说明的是,至少一个参考信号的测量结果中不仅可以包含至少一个参考信号的参数,例如RSRP、CQI、SIR和SINR,还可以包括至少一个参考信号的标识和配置信息,这是因为:如果中继节点仅向基站发送至少一个参考信号的RSRP、CQI、SIR和SINR等参数中的一个或多个,基站难以辨识出至少一个参考信号是用户设备向中继节点发送的N个参考信号中的哪些参考信号。因此,中继节点可在测量结果中发送该至少一个参考信号的标识和配置信息,从而用于基站辨识该至少一个参考信号。其中,至少一个参考信号的配置信息包括以下信息中的至少一种:至少一个参考信号的发送时间;至少一个参考信号的载波频率;至少一个参考信号的序列;至少一个参考信号的子载波间隔;至少一个参考信号的端口信息;至少一个参考信号的参考信号索引。
此外,在中继节点向基站发送至少一个参考信号的测量结果之前,基站可向中继节点发送资源配置信息,该资源配置信息用于指示中继节点发送至少一个参考信号的测量结果时所使用的资源。那么,中继节点在接收到资源配置信息后即可在资源配置信息指示的资源上向基站发送测量结果。
可选地,在中继节点向基站发送测量结果之前,基站可以向中继节点发送第一配置信息,第一配置信息为N个参考信号的配置信息。其中,N个参考信号的配置信息包括以下信息中的至少一种:N个参考信号的发送时间;N个参考信号的载波频率;N个参考信号的序列;N个参考信号的子载波间隔;N个参考信号的端口信息;N个参考信号的参考索引。
需要说明的是,基站可以主动向中继节点发送第一配置信息,也可以基于中继节点的请求向中继节点发送第一配置信息,本申请实施例中对此不做限定。此外,由于用户设备在向中继节点发送参考信号时可以基于不同的numerology发送,因而基站向中继节点发送的第一配置信息中还可指示用户设备在向中继节点发送参考信号时基于哪个numerology进行发送。
在基站向中继节点发送第一配置信息之后,中继节点可将第一配置信息发送给用户设备,那么用户设备在向中继节点发送上述N个参考信号时,可以基于第一配置信息进行发送。在用户设备向中继节点发送参考信号的同时,中继节点也可以根据第一配置信息对N个参考信号进行测量。
具体地,用户设备向中继节点发送的N个参考信号可以采用不同的赋形波束进行发送。例如,用户设备可分别采用N个赋形波束向中继节点发送N个参考信号,此时,第一配置信息即可用于指示用户设备在发送参考信号时采用的是哪个赋形波束。那么,中继节点可根据第一配置信息测量N个赋形波束下中继节点和用户设备间的链路(即接入链路)对基站和中继节点间的链路(即回传链路)的干扰。
此外,在图6所示方法中,基站在接收到中继节点发送的至少一个参考信号的测量结果后,可根据该测量结果进一步对至少一个参考信号进行筛选,并在筛选后向中继节点发送第二配置信息,第二配置信息为至少一个参考信号中的全部或部分参考信号的配置信息。其中,全部或部分参考信号的配置信息包括以下信息中的至少一种:全部或部分参考信号的发送时间;全部或部分参考信号的载波频率;全部或部分参考信号的序列全部或部分参考信号的子载波间隔;全部或部分参考信号的端口信息;全部或部分参考信号的参考信号索引。
其中,基站筛选出的全部或部分参考信号可以是接入链路对回传链路干扰较小时用户设备对应发送的参考信号。特别地,当用户设备分别采用N个赋形波束向中继节点发送N个参考信号时,中继节点筛选出的至少一个参考信号与至少一个赋形波束一一对应。假设基站筛选出的全部或部分参考信号的数量为M,M≥1,那么也有M个赋形波束与该M个参考信号一一对应。也就是说,基站向中继节点发送的第二配置信息指示了用户设备在采用上述M个赋形波束向中继节点发送M个参考信号时,接入链路对回传链路的干扰较小。那么,中继节点在接收到第二配置信息后即可通知用户设备:在后续向中继节点发送信号时,可采用上述M个赋形波束进行发送,从而减小接入链路对回传链路的干扰。
可选地,基站向中继节点发送的第二配置信息还可指示全部或部分参考信号的测量结果排序情况。例如,中继节点在S601中向基站发送的至少一个参考信号的测量结果为至少一个参考信号的RSRP,那么基站在从至少一个参考信号中筛选出全部或部分参考信号后、在向中继节点发送第二配置信息时,还可在第二配置信息中指示全部或部分参考信号的RSRP按照从高到低或者从低到高的排序情况。
此外,在图6所示的干扰测量方法中,为了使得测量结果更为准确,用户设备每次向中继节点发送参考信号的同时,基站也可在同一个时频资源上向中继节点发送参考信号,为了便于区分,实施例三中将基站发送给中继节点的参考信号称为“第二参考信号”。当用户设备和基站在同一个时频资源上向中继节点发送参考信号时,接入链路和回传链路中同时存在数据传输,因而这种情况下中继节点对N个参考信号的测量结果会更为准确。特别地,在上述过程中,基站向中继节点发送的第二参考信号可以是ZP RS。也就是说,中继节点会在同一个时频资源上接收到用户设备发送的、用于干扰测量的参考信号,以及接收基站发送的ZP RS,此时,由于接入链路和回传链路均占用该时频资源,因而在该时频资源上的参考信号传输不会受到其他信号的干扰,中继节点可在该时频资源上对参考信号进行测量,测量结果更为准确。
在图6所示的干扰测量方法中,中继节点向基站发送至少一个参考信号的测量结果,其中,至少一个参考信号为用户设备向中继节点发送的N个参考信号中的至少一个参考信号。基站可根据至少一个参考信号的测量结果从至少一个参考信号中筛选出全部或部分参考信号,并将全部或部分参考信号的配置信息发送给中继节点。其中, 基站筛选出的全部或部分参考信号可以是接入链路对回传链路干扰较小时用户设备对应发送的参考信号。中继节点将全部或部分参考信号的配置信息发送给用户设备后,用户设备在后续向中继节点发送信号时可以基于该全部或部分参考信号的配置信息发送,从而减小接入链路对回传链路的干扰。
基于以上对实施例三的描述,本申请实施例还提供一种干扰测量方法,该干扰测量方法可视为图6所示方法的一个具体示例,该方法和图6所示方法可相互参见。参见图7,该方法包括如下步骤:
S701:用户设备向中继节点发送请求消息,请求基站配置用户设备向中继节点发送参考信号时所使用的时频资源。
其中,用户设备向中继节点发送参考信号时所使用的时频资源可视为图6所示方法中第一配置信息的一个具体示例。
如前所述,第一配置信息为用户设备向中继节点发送的N个参考信号的配置信息。N个参考信号的配置信息包括以下信息中的至少一种:N个参考信号的发送时间;N个参考信号的载波频率;N个参考信号的序列;N个参考信号的子载波间隔;N个参考信号的端口信息;N个参考信号的参考信号索引。那么,在图7所示方法中,用户设备向中继节点发送参考信号时所使用的时频资源可视为N个参考信号的发送时间和N个参考信号的载波频率。
S702:中继节点将用户设备发送的请求消息转发给基站。
S703:基站向中继节点发送响应消息,以配置用户设备向中继节点发送参考信号时所使用的时频资源。
此外,S703中,基站还可配置自身在上述时频资源上向中继节点发送N个ZP RS。其中,ZP RS为图6所示方法中第二参考信号的一个具体示例。由于ZP RS的功率为零,因而基站实际上并没有向中继节点发送参考信号,而只是占用了基站和中继节点之间的时频资源。这样做的好处是:中继节点在同一个时频资源上接收来自用户设备的、用于干扰测量的N个参考信号,以及接收来自基站的N个ZP RS,此时,该时频资源上发送的参考信号不会受到其他信号的干扰,中继节点在该时频资源上对参考信号进行测量,测量结果更为准确。
S703中,基站向中继节点发送的响应消息可以是高层信令或DCI。其中,高层信令包括但不限于:RRC消息、MAC CE、广播消息、系统消息等。
S704:用户设备在上述时频资源上采用N个赋形波束中的一个赋形波束向中继节点发送参考信号。
S705:中继节点测量该赋形波束下接入链路对回传链路的干扰。
具体地,中继节点可在ZP RS所占用的时频资源上测量参考信号的RSRP、CQI、SIR和SIN等参数,从而确定该赋形波束下接入链路对回传链路的干扰。
将S704~S705执行N次:即每次执行S704时用户设备均采用不同的赋形波束向中继节点发送参数信号,每次执行S705时中继节点测量每个赋形波束下接入链路对回传链路的干扰。那么,通过将S704~S705执行N次,中继节点可确定N个赋形波束下接入链路对回传链路的干扰。
S706:中继节点向基站上报测量结果。
其中,中继节点向基站上报的测量结果为N个参考信号中的至少一个参考信号的 测量结果。这里包含两种情况:第一种情况,中继节点根据N个参考信号的测量结果筛选出至少一个参考信号,并将至少一个参考信号的测量结果上报给基站,这里,中继节点筛选出的至少一个参考信号可以是接入链路对回传链路干扰较小时用户设备对应发送的参考信号;第二种情况,中继节点不执行筛选动作,直接将N个参考信号的测量结果上报给基站。
S707:基站向中继节点发送通知消息,以通知用户设备在向中继节点发送信号时可以使用的赋形波束集合。
其中,基站通过通知消息指示的赋形波束集合可以是单个的赋形波束,也可以是一组赋形波束的集合。
S707中,基站在接收到中继节点上报的至少一个参考信号的测量结果后,从至少一个参考信号中筛选出全部或部分参考信号,这里,基站筛选出的全部或部分参考信号可以是接入链路对回传链路干扰较小时用户设备对应发送的参考信号。
由于用户设备分别采用N个赋形波束向中继节点发送N个参考信号,因而N个参考信号与N个赋形波束是一一对应的,至少一个参考信号与至少一个赋形波束也是一一对应的,同样道理,假设基站筛选出的全部或部分参考信号的数量为M,M≥1,那么也有M个赋形波束与该M个参考信号一一对应。也就是说,基站在通知消息中指示的赋形波束集合包含与M个参考信号一一对应的M个赋形波束。
显然,中继节点在接收到上述通知消息后可将该通知消息转发给用户设备,用户设备可在后续向中继节点发送信号时采用该赋形波束集合中的赋形波束进行发送,以减小接入链路对回传链路的干扰。
S707中,基站通过通知消息向中继节点指示的赋形波束集合可视为图6所示方法中的第二配置信息的一个具体示例。图6所示方法中,第二配置信息为至少一个参考信号中的全部或部分参考信号的配置信息,而图7所示方法中,赋形波束集合为基站筛选出的、至少一个赋形波束中的全部或部分赋形波束;由于图7所示方法中,N个赋形波束和N个参考信号是一一对应的,因而基站通过通知消息指示用户设备采用至少一个赋形波束中的全部或部分赋形波束发送信号,即相当于图6所示方法中基站向中继节点发送至少一个参考信号中的全部或部分参考信号的配置信息(即第二配置信息)。
S707中,基站向中继节点发送的通知消息可以是高层信令或DCI。其中,高层信令包括但不限于:RRC消息、MAC CE、广播消息、系统消息等。
此外,在图7所示方法中,中继节点和基站间进行信号传输所使用的赋形波束不同时,基站在S707中向中继节点发送的赋形波束集合中包含的赋形波束可以相同,也可以不同。例如,当中继节点在S702中采用赋形波束A向基站发送请求消息、基站在S703中采用赋形波束B向中继节点发送响应消息时,S707中基站向中继节点发送的赋形波束集合中包含赋形波束1、赋形波束2和赋形波束3;那么,当中继节点在S702中采用赋形波束C向基站发送请求消息、基站在S703中采用赋形波束D向中继节点发送响应消息时,S707中基站向中继节点发送的赋形波束集合中包含的赋形波束可以是赋形波束1、赋形波束2和赋形波束3,也可以是赋形波束4、赋形波束5和赋形波束6。
通过图7所示方法,基站可以配置用户设备向中继节点发送信号时所使用的赋形 波束集合,从而减小接入链路对回传链路的干扰。
基于以上实施例,本申请还提供一种第一设备,该第一设备可用于执行图2~图5所示的任一种干扰测量方法中基站所执行的操作。参见图8,该第一设备800包括发送单元801和接收单元802。
其中,发送单元801用于向第二设备发送第一配置信息,或者接收单元802用于接收第二设备发送的第二配置信息,第一配置信息和第二配置信息为第二设备向第三设备发送的N个参考信号的配置信息,第二设备为第一设备800和第三设备的中继节点,N≥1。其中,N个参考信号的配置信息包括以下信息中的至少一种:N个参考信号的发送时间;N个参考信号的载波频率;N个参考信号的序列;N个参考信号的子载波间隔;N个参考信号的端口信息;N个参考信号的参考信号索引。
可选地,第一设备800还包括处理单元803,处理单元803用于根据第一配置信息或第二配置信息对N个参考信号进行测量。
可选地,发送单元801还用于:向第二设备发送第三配置信息,第三配置信息为N个参考信号中的至少一个参考信号的配置信息;其中,至少一个参考信号的配置信息包括以下信息中的至少一种:至少一个参考信号的发送时间;至少一个参考信号的载波频率;至少一个参考信号的序列;至少一个参考信号的子载波间隔;至少一个参考信号的端口信息;至少一个参考信号的参考信号索引。
可选地,发送单元801还用于:向第二设备发送N个参考信号中的至少一个参考信号的测量结果。
可选地,至少一个参考信号的测量结果包含以下至少一种:至少一个参考信号的标识或配置信息;至少一个参考信号的RSRP;至少一个参考信号的CQI;至少一个参考信号的SIR;至少一个参考信号的SINR。
需要说明的是,第一设备800可用于执行图2~图5所示的任一种干扰测量方法中基站所执行的操作,第一设备800中未详尽描述的实现方式可参见图2~图5所示的任一种干扰测量方法中的相关描述。
基于以上实施例,本申请实施例还提供了一种第一设备。该第一设备可用于执行图2~图5所示的任一种干扰测量方法中基站所执行的操作,可以是与图8所示的第一设备800相同的设备。
参见图9,第一设备900包括至少一个处理器901、存储器902和通信接口903;所述至少一个处理器901、所述存储器902和所述通信接口903均通过总线904连接;
所述存储器902,用于存储计算机执行指令;
所述至少一个处理器901,用于执行所述存储器902存储的计算机执行指令,使得所述第一设备900通过所述通信接口903与通信系统中的其它设备(比如中继节点、用户设备)进行数据交互来执行上述实施例提供的干扰测量方法,或者使得所述第一设备900通过所述通信接口903与通信系统中的其它设备(比如中继节点、用户设备)进行数据交互来实现通信系统的部分或者全部功能。
至少一个处理器901,可以包括不同类型的处理器901,或者包括相同类型的处理器901;处理器901可以是以下的任一种:中央处理器(central processing unit,CPU)、ARM处理器、现场可编程门阵列(field programmable gate array,FPGA)、专用处理器等具有计 算处理能力的器件。一种可选实施方式,所述至少一个处理器901还可以集成为众核处理器。
存储器902可以是以下的任一种或任一种组合:随机存取存储器(random access memory,RAM)、只读存储器(read only memory,ROM)、非易失性存储器(non-volatile memory,NVM)、固态硬盘(solid state drives,SSD)、机械硬盘、磁盘、磁盘阵列等存储介质。
通信接口903用于第一设备900与其他设备(例如通信系统中的中继节点、用户设备)进行数据交互。通信接口903可以是以下的任一种或任一种组合:网络接口(例如以太网接口)、无线网卡等具有网络接入功能的器件。
该总线904可以包括地址总线、数据总线、控制总线等,为便于表示,图9用一条粗线表示该总线。总线904可以是以下的任一种或任一种组合:工业标准体系结构(industry standard architecture,ISA)总线、外设组件互连标准(peripheral component interconnect,PCI)总线、扩展工业标准结构(extended industry standard architecture,EISA)总线等有线数据传输的器件。
基于以上实施例,本申请还提供一种第二设备,该第二设备可用于执行图2~图5所示的任一种干扰测量方法中中继节点所执行的操作。参见图10,该第二设备1000包括接收单元1001和发送单元1002。
接收单元1001用于接收第一设备发送的第一配置信息,或者,发送单元1002用于向第一设备发送第二配置信息;其中,第一配置信息和第二配置信息为第二设备1000向第三设备发送的N个参考信号的配置信息,第二设备1000为第一设备和第三设备的中继节点,N≥1;其中,N个参考信号的配置信息包括以下信息中的至少一种:N个参考信号的发送时间;N个参考信号的载波频率;N个参考信号的序列;N个参考信号的子载波间隔;N个参考信号的端口信息;N个参考信号的参考信号索引。
可选地,发送单元1002还用于:根据第一配置信息或第二配置信息向第三设备发送N个参考信号。
可选地,接收单元1001还用于:接收第一设备发送的第三配置信息,第三配置信息为N个参考信号中的至少一个参考信号的配置信息;其中,至少一个参考信号的配置信息包括以下信息中的至少一种:至少一个参考信号的发送时间;至少一个参考信号的载波频率;至少一个参考信号的序列;至少一个参考信号的子载波间隔;至少一个参考信号的端口信息;至少一个参考信号的参考信号索引。
可选地,接收单元1001还用于:接收第一设备发送的N个参考信号中的至少一个参考信号的测量结果。
可选地,至少一个参考信号的测量结果包含以下至少一种:至少一个参考信号的标识或配置信息;至少一个参考信号的RSRP;至少一个参考信号的CQI;至少一个参考信号的SIR;至少一个参考信号的SINR。
需要说明的是,第二设备1000可用于执行图2~图5所示的任一种干扰测量方法中中继节点所执行的操作,第二设备1000中未详尽描述的实现方式可参见图2~图5所示的任一种干扰测量方法中的相关描述。
基于以上实施例,本申请实施例还提供了一种第二设备。该第二设备可用于执行图 2~图5所示的任一种干扰测量方法中中继节点所执行的操作,可以是与图10所示的第二设备1000相同的设备。
参见图11,第二设备1100包括至少一个处理器1101、存储器1102和通信接口1103;所述至少一个处理器1101、所述存储器1102和所述通信接口1103均通过总线1104连接;
所述存储器1102,用于存储计算机执行指令;
所述至少一个处理器1101,用于执行所述存储器1102存储的计算机执行指令,使得所述第二设备1100通过所述通信接口1103与通信系统中的其它设备(比如基站、用户设备或其他中继节点)进行数据交互来执行上述实施例提供的干扰测量方法,或者使得所述第二设备1100通过所述通信接口1103与通信系统中的其它设备(比如基站、用户设备或其他中继节点)进行数据交互来实现通信系统的部分或者全部功能。
至少一个处理器1101,可以包括不同类型的处理器1101,或者包括相同类型的处理器1101;处理器1101可以是以下的任一种:CPU、ARM处理器、FPGA、专用处理器等具有计算处理能力的器件。一种可选实施方式,所述至少一个处理器1101还可以集成为众核处理器。
存储器1102可以是以下的任一种或任一种组合:RAM、ROM、NVM、SSD、机械硬盘、磁盘、磁盘阵列等存储介质。
通信接口1103用于第二设备1100与其他设备(例如通信系统中的基站、用户设备或其他中继节点)进行数据交互。通信接口1103可以是以下的任一种或任一种组合:网络接口(例如以太网接口)、无线网卡等具有网络接入功能的器件。
该总线1104可以包括地址总线、数据总线、控制总线等,为便于表示,图11用一条粗线表示该总线。总线1104可以是以下的任一种或任一种组合:ISA总线、PCI总线、EISA总线等有线数据传输的器件。
基于以上实施例,本申请还提供一种第一设备,该第一设备可用于执行图6或图7所示的干扰测量方法中基站所执行的操作。参见图12,该第一设备1200包括接收单元1201。
接收单元1201,用于接收第二设备发送的测量结果,测量结果为第三设备向第二设备发送的N个参考信号中的至少一个参考信号的测量结果,第二设备为第一设备1200和第三设备的中继节点,N≥1。
可选地,第一设备1200还包括第一发送单元1202,第一发送单元1202用于在接收单元1201接收第二设备发送的测量结果之前,向第二设备发送第一配置信息,第一配置信息为N个参考信号的配置信息;其中,N个参考信号的配置信息包括以下信息中的至少一种:N个参考信号的发送时间;N个参考信号的载波频率;N个参考信号的序列;N个参考信号的子载波间隔;N个参考信号的端口信息;N个参考信号的参考索引。
可选地,第一设备1200还包括第二发送单元1203,第二发送单元1203用于在接收单元1201接收第二设备发送的测量结果之前,向第二设备发送资源配置信息,资源配置信息用于指示第二设备发送测量结果时所使用的资源。
可选地,第一设备1200还包括第三发送单元1204,第三发送单元1204用于向第二设备发送第二配置信息,第二配置信息为至少一个参考信号中的全部或部分参考信 号的配置信息;其中,全部或部分参考信号的配置信息包括以下信息中的至少一种:全部或部分参考信号的发送时间;全部或部分参考信号的载波频率;全部或部分参考信号的序列全部或部分参考信号的子载波间隔;全部或部分参考信号的端口信息;全部或部分参考信号的参考信号索引。
需要说明的是,第一发送单元1202、第二发送单元1203和第三发送单元1204可以是第一设备1200中的同一个单元。
可选地,测量结果信包含以下至少一种:至少一个参考信号的标识或配置信息;至少一个参考信号的RSRP;至少一个参考信号的CQI;至少一个参考信号的SIR;至少一个参考信号的SINR。
需要说明的是,第一设备1200可用于执行图6或图7所示的干扰测量方法中基站所执行的操作,第一设备1200中未详尽描述的实现方式可参见图6或图7所示的干扰测量方法中的相关描述。
基于以上实施例,本申请实施例还提供了一种第一设备。该第一设备可用于执行图2~图5所示的任一种干扰测量方法中基站所执行的操作,可以是与图12所示的第一设备1200相同的设备。
参见图13,第一设备1300包括至少一个处理器1301、存储器1302和通信接口1303;所述至少一个处理器1301、所述存储器1302和所述通信接口1303均通过总线1304连接;
所述存储器1302,用于存储计算机执行指令;
所述至少一个处理器1301,用于执行所述存储器1302存储的计算机执行指令,使得所述第一设备1300通过所述通信接口1303与通信系统中的其它设备(比如中继节点、用户设备)进行数据交互来执行上述实施例提供的干扰测量方法,或者使得所述第一设备1300通过所述通信接口1303与通信系统中的其它设备(比如中继节点、用户设备)进行数据交互来实现通信系统的部分或者全部功能。
至少一个处理器1301,可以包括不同类型的处理器1301,或者包括相同类型的处理器1301;处理器1301可以是以下的任一种:CPU、ARM处理器、FPGA、专用处理器等具有计算处理能力的器件。一种可选实施方式,所述至少一个处理器1301还可以集成为众核处理器。
存储器1302可以是以下的任一种或任一种组合:RAM、ROM、NVM、SSD、机械硬盘、磁盘、磁盘阵列等存储介质。
通信接口1303用于第一设备1300与其他设备(例如通信系统中的中继节点、用户设备)进行数据交互。通信接口1303可以是以下的任一种或任一种组合:网络接口(例如以太网接口)、无线网卡等具有网络接入功能的器件。
该总线1304可以包括地址总线、数据总线、控制总线等,为便于表示,图13用一条粗线表示该总线。总线1304可以是以下的任一种或任一种组合:ISA总线、PCI总线、EISA总线等有线数据传输的器件。
基于以上实施例,本申请还提供一种第二设备,该第二设备可用于执行图6或图7所示的干扰测量方法中中继节点所执行的操作。参见图14,该第二设备1400包括发送单元1401。
其中,发送单元1401用于向第一设备发送测量结果,测量结果为第三设备向第二 设备1400发送的N个参考信号中的至少一个参考信号的测量结果,第二设备1400为第一设备和第三设备的中继节点,N≥1。
可选地,第二设备1400还包括第一接收单元1402,第一接收单元1402用于在发送单元1401向第一设备发送测量结果之前,接收第一设备发送的第一配置信息,第一配置信息为N个参考信号的配置信息;其中,N个参考信号的配置信息包括以下信息中的至少一种:N个参考信号的发送时间;N个参考信号的载波频率;N个参考信号的序列;N个参考信号的子载波间隔;N个参考信号的端口信息;N个参考信号的参考信号索引。
可选地,第二设备1400还包括第二接收单元1403,第二接收单元1403用于在发送单元1401向第一设备发送测量结果之前,接收第一设备发送的资源配置信息,资源配置信息用于指示第二设备1400发送测量结果信息时所使用的资源。
可选地,第二设备1400还包括第三接收单元1404,第三接收单元1404用于接收第一设备发送的第二配置信息,第二配置信息为至少一个参考信号中的全部或部分参考信号的配置信息;其中,全部或部分参考信号的配置信息包括以下信息中的至少一种:全部或部分参考信号的发送时间;全部或部分参考信号的载波频率;全部或部分参考信号的序列;全部或部分参考信号的子载波间隔;全部或部分参考信号的端口信息;全部或部分参考信号的参考信号索引。
可选地,测量结果包含以下至少一种:至少一个参考信号的标识或配置信息;至少一个参考信号的RSRP;至少一个参考信号的CQI;至少一个参考信号的SIR;至少一个参考信号的比SINR。
需要说明的是,第一接收单元1402、第二接收单元1403和第三接收单元1404可以是第二设备1400中的同一个单元。
需要说明的是,第二设备1400可用于执行图6或图7所示的干扰测量方法中中继节点所执行的操作,第二设备1400中未详尽描述的实现方式可参见图6或图7所示的干扰测量方法中的相关描述。
基于以上实施例,本申请实施例还提供了一种第二设备。该第二设备可用于执行图6或图7所示的任一种干扰测量方法中中继节点所执行的操作,可以是与图14所示的第二设备1400相同的设备。
参见图15,第二设备1500包括至少一个处理器1501、存储器1502和通信接口1503;所述至少一个处理器1501、所述存储器1502和所述通信接口1503均通过总线1504连接;
所述存储器1502,用于存储计算机执行指令;
所述至少一个处理器1501,用于执行所述存储器1502存储的计算机执行指令,使得所述第二设备1500通过所述通信接口1503与通信系统中的其它设备(比如基站、用户设备或其他中继节点)进行数据交互来执行上述实施例提供的干扰测量方法,或者使得所述第二设备1500通过所述通信接口1503与通信系统中的其它设备(比如基站、用户设备或其他中继节点)进行数据交互来实现通信系统的部分或者全部功能。
至少一个处理器1501,可以包括不同类型的处理器1501,或者包括相同类型的处理器1501;处理器1501可以是以下的任一种:CPU、ARM处理器、FPGA、专用处理器等具有计算处理能力的器件。一种可选实施方式,所述至少一个处理器1501还可以集成为众核处理器。
存储器1502可以是以下的任一种或任一种组合:RAM、ROM、NVM、SSD、机械硬盘、磁盘、磁盘阵列等存储介质。
通信接口1503用于第二设备1500与其他设备(例如通信系统中的基站、用户设备或其他中继节点)进行数据交互。通信接口1503可以是以下的任一种或任一种组合:网络接口(例如以太网接口)、无线网卡等具有网络接入功能的器件。
该总线1504可以包括地址总线、数据总线、控制总线等,为便于表示,图15用一条粗线表示该总线。总线1504可以是以下的任一种或任一种组合:ISA总线、PCI总线、EISA总线等有线数据传输的器件。
综上,本申请实施例提供一种干扰测量方法及装置,采用本申请实施例提供的方案,可以测量中继系统中接入链路对回传链路的干扰,从而减小两个链路间的干扰,提高通信质量。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (28)

  1. 一种干扰测量方法,其特征在于,包括:
    第一设备向第二设备发送第一配置信息,或者所述第一设备接收所述第二设备发送的第二配置信息,所述第一配置信息和所述第二配置信息为所述第二设备向第三设备发送的N个参考信号的配置信息,所述第二设备为所述第一设备和所述第三设备的中继节点,N≥1;
    其中,所述N个参考信号的配置信息包括以下信息中的至少一种:所述N个参考信号的发送时间;所述N个参考信号的载波频率;所述N个参考信号的序列;所述N个参考信号的子载波间隔;所述N个参考信号的端口信息;所述N个参考信号的参考信号索引。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    所述第一设备根据所述第一配置信息或所述第二配置信息对所述N个参考信号进行测量。
  3. 根据权利要求2所述的方法,其特征在于,还包括:
    所述第一设备向所述第二设备发送第三配置信息,所述第三配置信息为所述N个参考信号中的至少一个参考信号的配置信息;
    其中,所述至少一个参考信号的配置信息包括以下信息中的至少一种:所述至少一个参考信号的发送时间;所述至少一个参考信号的载波频率;所述至少一个参考信号的序列;所述至少一个参考信号的子载波间隔;所述至少一个参考信号的端口信息;所述至少一个参考信号的参考信号索引。
  4. 一种干扰测量方法,其特征在于,包括:
    第二设备接收第一设备发送的第一配置信息,或者所述第二设备向所述第一设备发送第二配置信息,所述第一配置信息和所述第二配置信息为所述第二设备向第三设备发送的N个参考信号的配置信息,所述第二设备为所述第一设备和所述第三设备的中继节点,N≥1;
    其中,所述N个参考信号的配置信息包括以下信息中的至少一种:所述N个参考信号的发送时间;所述N个参考信号的载波频率;所述N个参考信号的序列;所述N个参考信号的子载波间隔;所述N个参考信号的端口信息;所述N个参考信号的参考信号索引。
  5. 根据权利要求4所述的方法,其特征在于,还包括:
    所述第二设备根据所述第一配置信息或所述第二配置信息向所述第三设备发送所述N个参考信号。
  6. 根据权利要求5所述的方法,其特征在于,还包括:
    所述第二设备接收所述第一设备发送的第三配置信息,所述第三配置信息为所述N个参考信号中的至少一个参考信号的配置信息;
    其中,所述至少一个参考信号的配置信息包括以下信息中的至少一种:所述至少一个参考信号的发送时间;所述至少一个参考信号的载波频率;所述至少一个参考信号的序列;所述至少一个参考信号的子载波间隔;所述至少一个参考信号的端口信息;所述至少一个参考信号的参考信号索引。
  7. 一种干扰测量方法,其特征在于,包括:
    第一设备接收第二设备发送的测量结果,所述测量结果为第三设备向所述第二设备发送的N个参考信号中的至少一个参考信号的测量结果,所述第二设备为所述第一设备和所述第三设备的中继节点,N≥1。
  8. 根据权利要求7所述的方法,其特征在于,在第一设备接收第二设备发送的测量结果之前,还包括:
    所述第一设备向所述第二设备发送第一配置信息,所述第一配置信息为所述N个参考信号的配置信息;
    其中,所述N个参考信号的配置信息包括以下信息中的至少一种:所述N个参考信号的发送时间;所述N个参考信号的载波频率;所述N个参考信号的序列;所述N个参考信号的子载波间隔;所述N个参考信号的端口信息;所述N个参考信号的参考索引。
  9. 根据权利要求7或8所述的方法,其特征在于,还包括:
    所述第一设备向所述第二设备发送第二配置信息,所述第二配置信息为所述至少一个参考信号中的全部或部分参考信号的配置信息;
    其中,所述全部或部分参考信号的配置信息包括以下信息中的至少一种:所述全部或部分参考信号的发送时间;所述全部或部分参考信号的载波频率;所述全部或部分参考信号的序列所述全部或部分参考信号的子载波间隔;所述全部或部分参考信号的端口信息;所述全部或部分参考信号的参考信号索引。
  10. 根据权利要求7~9任一项所述的方法,其特征在于,所述测量结果信包含以下至少一种:
    所述至少一个参考信号的标识或配置信息;
    所述至少一个参考信号的RSRP;
    所述至少一个参考信号的CQI;
    所述至少一个参考信号的SIR;
    所述至少一个参考信号的SINR。
  11. 一种干扰测量方法,其特征在于,包括:
    第二设备向第一设备发送测量结果,所述测量结果为第三设备向所述第二设备发送的N个参考信号中的至少一个参考信号的测量结果,所述第二设备为所述第一设备和所述第三设备的中继节点,N≥1。
  12. 根据权利要求11所述的方法,其特征在于,在第二设备向第一设备发送测量结果之前,还包括:
    所述第二设备接收所述第一设备发送的第一配置信息,所述第一配置信息为所述N个参考信号的配置信息;
    其中,所述N个参考信号的配置信息包括以下信息中的至少一种:所述N个参考信号的发送时间;所述N个参考信号的载波频率;所述N个参考信号的序列;所述N个参考信号的子载波间隔;所述N个参考信号的端口信息;所述N个参考信号的参考信号索引。
  13. 根据权利要求11或12所述的方法,其特征在于,还包括:
    所述第二设备接收所述第一设备发送的第二配置信息,所述第二配置信息为所述 至少一个参考信号中的全部或部分参考信号的配置信息;
    其中,所述全部或部分参考信号的配置信息包括以下信息中的至少一种:所述全部或部分参考信号的发送时间;所述全部或部分参考信号的载波频率;所述全部或部分参考信号的序列;所述全部或部分参考信号的子载波间隔;所述全部或部分参考信号的端口信息;所述全部或部分参考信号的参考信号索引。
  14. 根据权利要求11~13任一项所述的方法,其特征在于,所述测量结果包含以下至少一种:
    所述至少一个参考信号的标识或配置信息;
    所述至少一个参考信号的RSRP;
    所述至少一个参考信号的CQI;
    所述至少一个参考信号的SIR;
    所述至少一个参考信号的比SINR。
  15. 一种第一设备,其特征在于,包括发送单元和接收单元;
    所述发送单元,用于向第二设备发送第一配置信息,或者
    所述接收单元,用于接收所述第二设备发送的第二配置信息;
    所述第一配置信息和所述第二配置信息为所述第二设备向第三设备发送的N个参考信号的配置信息,所述第二设备为所述第一设备和所述第三设备的中继节点,N≥1;
    其中,所述N个参考信号的配置信息包括以下信息中的至少一种:所述N个参考信号的发送时间;所述N个参考信号的载波频率;所述N个参考信号的序列;所述N个参考信号的子载波间隔;所述N个参考信号的端口信息;所述N个参考信号的参考信号索引。
  16. 根据权利要求15所述的第一设备,其特征在于,还包括:
    处理单元,用于根据所述第一配置信息或所述第二配置信息对所述N个参考信号进行测量。
  17. 根据权利要求16所述的第一设备,其特征在于,所述发送单元还用于:
    向所述第二设备发送第三配置信息,所述第三配置信息为所述N个参考信号中的至少一个参考信号的配置信息;
    其中,所述至少一个参考信号的配置信息包括以下信息中的至少一种:所述至少一个参考信号的发送时间;所述至少一个参考信号的载波频率;所述至少一个参考信号的序列;所述至少一个参考信号的子载波间隔;所述至少一个参考信号的端口信息;所述至少一个参考信号的参考信号索引。
  18. 一种第二设备,其特征在于,包括接收单元和发送单元;其中,
    所述接收单元,用于接收第一设备发送的第一配置信息;或者,
    所述发送单元,用于向所述第一设备发送第二配置信息;
    其中,所述第一配置信息和所述第二配置信息为所述第二设备向第三设备发送的N个参考信号的配置信息,所述第二设备为所述第一设备和所述第三设备的中继节点,N≥1;
    其中,所述N个参考信号的配置信息包括以下信息中的至少一种:所述N个参考信号的发送时间;所述N个参考信号的载波频率;所述N个参考信号的序列;所述N个参考信号的子载波间隔;所述N个参考信号的端口信息;所述N个参考信号的参考 信号索引。
  19. 根据权利要求18所述的第二设备,其特征在于,所述发送单元还用于:
    根据所述第一配置信息或所述第二配置信息向所述第三设备发送所述N个参考信号。
  20. 根据权利要求19所述的第二设备,其特征在于,所述接收单元还用于:
    接收所述第一设备发送的第三配置信息,所述第三配置信息为所述N个参考信号中的至少一个参考信号的配置信息;
    其中,所述至少一个参考信号的配置信息包括以下信息中的至少一种:所述至少一个参考信号的发送时间;所述至少一个参考信号的载波频率;所述至少一个参考信号的序列;所述至少一个参考信号的子载波间隔;所述至少一个参考信号的端口信息;所述至少一个参考信号的参考信号索引。
  21. 一种第一设备,其特征在于,包括:
    接收单元,用于接收第二设备发送的测量结果,所述测量结果为第三设备向所述第二设备发送的N个参考信号中的至少一个参考信号的测量结果,所述第二设备为所述第一设备和所述第三设备的中继节点,N≥1。
  22. 根据权利要求21所述的第一设备,其特征在于,还包括:
    第一发送单元,用于在所述接收单元接收第二设备发送的测量结果之前,向所述第二设备发送第一配置信息,所述第一配置信息为所述N个参考信号的配置信息;
    其中,所述N个参考信号的配置信息包括以下信息中的至少一种:所述N个参考信号的发送时间;所述N个参考信号的载波频率;所述N个参考信号的序列;所述N个参考信号的子载波间隔;所述N个参考信号的端口信息;所述N个参考信号的参考索引。
  23. 根据权利要求21或22所述的第一设备,其特征在于,还包括:
    第三发送单元,用于向所述第二设备发送第二配置信息,所述第二配置信息为所述至少一个参考信号中的全部或部分参考信号的配置信息;
    其中,所述全部或部分参考信号的配置信息包括以下信息中的至少一种:所述全部或部分参考信号的发送时间;所述全部或部分参考信号的载波频率;所述全部或部分参考信号的序列所述全部或部分参考信号的子载波间隔;所述全部或部分参考信号的端口信息;所述全部或部分参考信号的参考信号索引。
  24. 根据权利要求21~23任一项所述的第一设备,其特征在于,所述测量结果信包含以下至少一种:
    所述至少一个参考信号的标识或配置信息;
    所述至少一个参考信号的RSRP;
    所述至少一个参考信号的CQI;
    所述至少一个参考信号的SIR;
    所述至少一个参考信号的SINR。
  25. 一种第二设备,其特征在于,包括:
    发送单元,用于向第一设备发送测量结果,所述测量结果为第三设备向所述第二设备发送的N个参考信号中的至少一个参考信号的测量结果,所述第二设备为所述第一设备和所述第三设备的中继节点,N≥1。
  26. 根据权利要求25所述的第二设备,其特征在于,还包括:
    第一接收单元,用于在所述发送单元向第一设备发送测量结果之前,接收所述第一设备发送的第一配置信息,所述第一配置信息为所述N个参考信号的配置信息;
    其中,所述N个参考信号的配置信息包括以下信息中的至少一种:所述N个参考信号的发送时间;所述N个参考信号的载波频率;所述N个参考信号的序列;所述N个参考信号的子载波间隔;所述N个参考信号的端口信息;所述N个参考信号的参考信号索引。
  27. 根据权利要求25或26所述的第二设备,其特征在于,还包括:
    第三接收单元,用于接收所述第一设备发送的第二配置信息,所述第二配置信息为所述至少一个参考信号中的全部或部分参考信号的配置信息;
    其中,所述全部或部分参考信号的配置信息包括以下信息中的至少一种:所述全部或部分参考信号的发送时间;所述全部或部分参考信号的载波频率;所述全部或部分参考信号的序列;所述全部或部分参考信号的子载波间隔;所述全部或部分参考信号的端口信息;所述全部或部分参考信号的参考信号索引。
  28. 根据权利要求25~27任一项所述的第二设备,其特征在于,所述测量结果包含以下至少一种:
    所述至少一个参考信号的标识或配置信息;
    所述至少一个参考信号的RSRP;
    所述至少一个参考信号的CQI;
    所述至少一个参考信号的SIR;
    所述至少一个参考信号的比SINR。
PCT/CN2018/098686 2017-08-11 2018-08-03 一种干扰测量方法及装置 WO2019029462A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710686723.5 2017-08-11
CN201710686723.5A CN109391338B (zh) 2017-08-11 2017-08-11 一种干扰测量方法及装置

Publications (1)

Publication Number Publication Date
WO2019029462A1 true WO2019029462A1 (zh) 2019-02-14

Family

ID=65273323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098686 WO2019029462A1 (zh) 2017-08-11 2018-08-03 一种干扰测量方法及装置

Country Status (2)

Country Link
CN (1) CN109391338B (zh)
WO (1) WO2019029462A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116017492A (zh) * 2021-10-21 2023-04-25 中国移动通信有限公司研究院 测量方法、网络设备、中继设备及终端设备
CN116193460A (zh) * 2021-11-29 2023-05-30 华为技术有限公司 通信方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102918788A (zh) * 2010-09-30 2013-02-06 Lg电子株式会社 用于在无线通信系统中通过中继节点报告信道质量指示符的方法及其装置
CN103138869A (zh) * 2011-11-22 2013-06-05 中国移动通信集团公司 信道状态信息参考信号的发送方法、基站及中继
CN103392375A (zh) * 2011-02-16 2013-11-13 瑞典爱立信有限公司 无线网络节点及其中的方法
US20140016580A1 (en) * 2012-07-10 2014-01-16 Electronics And Telecommunications Research Institute Method and apparatus for managing resource

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102918788A (zh) * 2010-09-30 2013-02-06 Lg电子株式会社 用于在无线通信系统中通过中继节点报告信道质量指示符的方法及其装置
CN103392375A (zh) * 2011-02-16 2013-11-13 瑞典爱立信有限公司 无线网络节点及其中的方法
CN103138869A (zh) * 2011-11-22 2013-06-05 中国移动通信集团公司 信道状态信息参考信号的发送方法、基站及中继
US20140016580A1 (en) * 2012-07-10 2014-01-16 Electronics And Telecommunications Research Institute Method and apparatus for managing resource

Also Published As

Publication number Publication date
CN109391338A (zh) 2019-02-26
CN109391338B (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
JP7379612B2 (ja) 端末、無線通信方法、基地局及びシステム
TWI727042B (zh) 終端、無線基地台及無線通訊方法
WO2018228270A1 (zh) 测量方法、测量配置方法和相关设备
WO2018228293A1 (zh) 一种信号传输的方法、设备和系统
EP3065427B1 (en) Radio base station, user terminal, and radio communication method
JP7204746B2 (ja) 端末、無線通信方法及びシステム
US8638679B2 (en) Method and apparatus that facilitates automatic assistance for positioning of access point base stations
JP6178153B2 (ja) ユーザ端末、無線基地局及び通信制御方法
WO2017110961A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JP5989904B2 (ja) キャリアアグリゲーション処理方法及び装置
WO2016182046A1 (ja) ユーザ端末および無線通信方法
US10117255B2 (en) Neighboring cell load information
WO2017051726A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2015045773A1 (ja) 無線基地局、ユーザ端末及び通信制御方法
WO2020029276A1 (zh) 干扰检测方法、装置及存储介质
JP7279028B2 (ja) 端末、無線通信方法及びシステム
JP6435399B2 (ja) 参照信号を用いるセルラ通信リンクと装置間(d2d)通信リンクとの間の選択
WO2018086549A1 (zh) 一种信息冲突处理方法及终端
WO2019159243A1 (ja) ユーザ端末及び無線通信方法
CN110831140A (zh) 一种功率确定方法和装置
US20210345319A1 (en) Methods of signaling reserved resources for ultra-reliable low latency communication (urllc) traffic
WO2019029462A1 (zh) 一种干扰测量方法及装置
JP7144420B2 (ja) 端末、無線通信方法及びシステム
JP2023154007A (ja) 端末デバイス及び方法
WO2022012396A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18843569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18843569

Country of ref document: EP

Kind code of ref document: A1