WO2022073504A1 - 数据传输方法和装置 - Google Patents

数据传输方法和装置 Download PDF

Info

Publication number
WO2022073504A1
WO2022073504A1 PCT/CN2021/122828 CN2021122828W WO2022073504A1 WO 2022073504 A1 WO2022073504 A1 WO 2022073504A1 CN 2021122828 W CN2021122828 W CN 2021122828W WO 2022073504 A1 WO2022073504 A1 WO 2022073504A1
Authority
WO
WIPO (PCT)
Prior art keywords
time interval
interval parameter
value
values
terminal
Prior art date
Application number
PCT/CN2021/122828
Other languages
English (en)
French (fr)
Inventor
雷珍珠
Original Assignee
展讯半导体(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯半导体(南京)有限公司 filed Critical 展讯半导体(南京)有限公司
Publication of WO2022073504A1 publication Critical patent/WO2022073504A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to, but is not limited to, a data transmission method and apparatus.
  • NTN non-terrestrial network
  • UE user equipment
  • TA timing advance
  • the downlink control information (DCI) in the PDCCH will indicate the UE scheduling
  • the delay value is recorded as K2 in the protocol; the UE determines the position of the PUSCH transmission resource according to K2.
  • the delay enhancement can be: K2+offset, and K2+offset ensures that there is a sufficiently large time interval between the PDCCH reception time and the PUSCH transmission time, so that the UE can be guaranteed to transmit in advance through the large enough time interval.
  • the offset value in the existing scheduling delay enhancement is determined based on the maximum round-trip propagation delay value, that is, the round-trip propagation delay when the satellite is at the position with the smallest elevation angle, it is a fixed value and is a round-trip transmission of the satellite. Therefore, using the offset value in the existing scheduling delay enhancement to determine the scheduling time delay will make the scheduling delay larger, which will result in a larger data transmission delay.
  • the embodiments of the present application provide a data transmission method and device, which reduce the scheduling delay, thereby reducing the data sending delay.
  • an embodiment of the present application provides a data transmission method, and the data transmission method may include:
  • the target value of the time interval parameter is determined from at least two values of the time interval parameter; wherein, the at least two values of the time interval parameter are based on the operation speed and operation speed of the satellite. track is determined;
  • an embodiment of the present application further provides a data transmission method, and the data transmission method may include:
  • the update indication information is used to instruct the terminal to determine the target value of the time interval parameter from at least two values of the time interval parameter according to the update indication information; wherein, the At least two values of the time interval parameter are determined according to the running speed and the running orbit of the satellite.
  • an embodiment of the present application provides a data transmission device, and the data transmission device may include:
  • a receiving unit configured to receive update indication information from a network device.
  • the processing unit is configured to determine the target value of the time interval parameter from at least two values of the time interval parameter according to the update indication information; and determine the target value of the uplink transmission resource according to the target value of the time interval parameter. Resource location; wherein, at least two values of the time interval parameter are determined according to the operating speed and operating orbit of the satellite.
  • a sending unit configured to send data on the resource location; wherein, the data includes uplink data and/or reference signals.
  • an embodiment of the present application further provides a data transmission device, and the data transmission device may include:
  • a sending unit configured to send update indication information to the terminal; the update indication information is used to instruct the terminal to determine the target value of the time interval parameter from at least two values of the time interval parameter according to the update indication information ; wherein, at least two values of the time interval parameter are determined according to the operating speed and operating orbit of the satellite.
  • a receiving unit configured to receive data sent by the terminal at the resource location; wherein the resource location is determined by the terminal according to the target value of the time interval parameter, and the data includes uplink data and/or or reference signal.
  • an embodiment of the present application provides a communication device, the device includes a processor and a memory, the memory stores a computer program, and the processor executes the computer program stored in the memory, so that all
  • the apparatus executes the data transmission method described in any possible implementation manner of the first aspect above; or, the processor executes the computer program stored in the memory, so that the apparatus executes the second aspect described above.
  • an embodiment of the present application provides a readable storage medium for storing instructions, when the instructions are executed, the data transmission as described in any possible implementation manner of the first aspect above is performed. The method is implemented; or, when the instruction is executed, the data transmission method determination method described in any possible implementation manner of the second aspect above is implemented.
  • an embodiment of the present application further provides a computer program product, where the computer program product includes: a computer program, where the computer program is stored in a readable storage medium, and at least one processor of an electronic device can download the computer program from the computer program.
  • a readable storage medium reads the computer program, and the at least one processor executes the computer program to cause the electronic device to execute the data transmission method described in any possible implementation manner of the first aspect; or, the second The data transmission method described in any possible implementation manner of the aspect.
  • the terminal when sending data, the terminal first receives update indication information from the network device; and determines the target value of the time interval parameter from at least two values of the time interval parameter according to the update indication information. value, because at least two values of the update instruction information and the time interval parameter are dynamically determined according to the operating speed and operating orbit of the satellite, so when the resource position of the uplink transmission resource is determined according to the dynamically adjusted target value, The resource position of the uplink transmission resource is also dynamically adjusted, and then the uplink data and/or reference information are sent at the dynamically adjusted resource position of the transmission resource, which is different from the conventional method that is always obtained based on the maximum round-trip propagation delay value. Compared with the fixed time interval parameter to determine the resource location, the scheduling delay is reduced, thereby reducing the data transmission delay.
  • FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a data transmission method according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of another data transmission method provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of another data transmission method provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a data transmission apparatus according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another data transmission apparatus provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • “at least one” refers to one or more, and “a plurality” refers to two or more.
  • “And/or”, which describes the association relationship of the associated objects, means that there can be three kinds of relationships, for example, A and/or B, which can mean that A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • the data transmission method provided in the embodiment of the present application can be applied to a non-terrestrial network (non terrestrial network, NTN) scenario.
  • NTN non terrestrial network
  • the timing advance (TA) value in the NTN scenario is sent in advance, or the random access process in the NTN scenario can be between Msg2 and Msg3 in the random access process; of course, it can also be applied to other similar
  • the embodiment of the present application only takes the application to the TA value sending in advance and the random access process as an example for description, but it does not mean that the embodiment of the present application is limited to this.
  • the downlink control information (DCI) in the PDCCH will indicate the delay value scheduled by the UE, and the delay value is recorded in the protocol as K2; the UE determines the location of the PUSCH transmission resource according to K2.
  • the PDCCH schedules the PUSCH scheduling.
  • the delay enhancement can be: K2+offset, and K2+offset ensures that there is a sufficiently large time interval between the PDCCH reception time and the PUSCH transmission time, so that the UE can be guaranteed to transmit in advance through the large enough time interval.
  • the offset value in the existing scheduling delay enhancement is determined based on the maximum round-trip propagation delay value, that is, the round-trip propagation delay when the satellite is at the position with the smallest elevation angle, it is a fixed value and is a round-trip transmission of the satellite. Therefore, using the offset value in the existing scheduling delay enhancement to determine the scheduling time delay will make the scheduling delay larger, which will result in a larger data transmission delay.
  • the offset value in the scheduling delay enhancement can be dynamically adjusted during the PDCCH scheduling PUSCH process, so that the offset value is not always based on the back and forth of the satellite at the position with the smallest elevation angle.
  • the maximum propagation delay determined by the propagation delay so that the scheduling delay can be reduced by dynamically adjusting the offset value in the scheduling delay enhancement, thereby reducing the data transmission delay. Due to the rapid movement of the satellite relative to the UE (non-geostationary satellite scenario), the propagation delay between the UE and the satellite will change rapidly over time, especially in the earth-fixed beam (earth-fixed beam) scenario.
  • the propagation delay between satellites will change greatly, causing the TA value that the UE needs to pre-compensate (that is, the duration of the advance transmission) will also change, as shown in FIG.
  • the offset value determined by the propagation delay value leads to a larger scheduling delay, which reduces the scheduling delay and thus reduces the data transmission delay.
  • an embodiment of the present application provides a data transmission method.
  • the terminal first receives update indication information from a network device; according to the update indication information, the target value of the time interval parameter is determined from at least two values of the time interval parameter. ; wherein, at least two values of the time interval parameter are determined according to the operating speed and the operating orbit of the satellite; and determine the resource position of the uplink transmission resource according to the target value of the time interval parameter; then send data on the resource position; wherein , the data includes uplink data and/or reference signals.
  • the update indication information may include at least one of a periodic interval, a switching instruction, or a timing advance TA adjustment value.
  • the update interval can be understood as the update duration.
  • the resource location of the uplink transmission resource is determined according to the target value of the time interval parameter, which includes a joint determination according to the target value of the time interval parameter and the scheduling delay value indicated by the DCI.
  • the resource position of the uplink transmission resource is not determined only according to the target value of the time interval parameter. Therefore, in the following description, determining the resource position of the uplink transmission resource according to the target value of the time interval parameter can be understood as determining the uplink transmission resource according to the target value of the time interval parameter and the scheduling delay value indicated by the DCI. resource location.
  • the terminal when sending data, the terminal first receives update indication information from the network device; and determines the target value of the time interval parameter from at least two values of the time interval parameter according to the update indication information , since at least two values of the update instruction information and the time interval parameter are dynamically determined according to the operating speed and operating orbit of the satellite, when determining the resource position of the uplink transmission resource according to the dynamically adjusted target value, the The resource position of the uplink transmission resources is also dynamically adjusted, and then the uplink data and/or reference information are sent at the dynamically adjusted resource position of the transmission resource, which is different from the fixed value obtained based on the maximum round-trip propagation delay value in the prior art. Compared with the time interval parameter to determine the resource location, the scheduling delay is reduced, thereby reducing the data transmission delay.
  • Terminal also known as user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • Devices such as handheld devices with wireless connectivity, or in-vehicle devices, etc.
  • some examples of terminals are: mobile phone (mobile phone), tablet computer, notebook computer, PDA, mobile internet device (MID), wearable device, virtual reality (virtual reality, VR) device, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, and smart grids wireless terminals, wireless terminals in transportation safety, wireless terminals in smart cities, or wireless terminals in smart homes, etc.
  • a network device is a device in a wireless network, such as a radio access network (RAN) node that accesses the terminal to the wireless network.
  • RAN nodes are: gNB, transmission reception point (TRP), evolved Node B (evolved Node B, eNB), radio network controller (RNC), Node B (Node B) B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), base band unit (base band unit) , BBU), or wireless fidelity (wireless fidelity, Wifi) access point (access point, AP), etc.
  • TRP transmission reception point
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station for example, home evolved NodeB, or home Node B, HNB
  • base band unit base band unit
  • the network device may include a centralized unit (centralized unit, CU) node, or a distributed unit (distributed unit, DU) node, or a RAN device including a CU node and a DU node.
  • a centralized unit centralized unit, CU
  • DU distributed unit
  • RAN device including a CU node and a DU node.
  • the data transmission method provided by the embodiment of the present application will be described in detail in combination with the content of the update indication information.
  • the update indication information is an update interval
  • the resource location of the uplink transmission resource can be determined according to the update interval, and data is sent at the location of the transmission resource; in another possible implementation manner
  • the update instruction information is a handover instruction
  • the resource position of the uplink transmission resource can be determined according to the handover instruction, and data is sent at the position of the transmission resource
  • the update instruction information is When the timing advance TA is adjusted, the resource location of the uplink transmission resource can be determined according to the timing advance TA adjustment value, and data is sent at the location of the transmission resource.
  • the target value of the time interval parameter may be determined from at least two values of the time interval parameter according to the update interval, and the target value of the time interval parameter may be determined according to the update interval.
  • the value determines the resource location of the uplink transmission resource, and then sends data on the resource location.
  • FIG. 2 is a schematic flowchart of a data transmission method provided by an embodiment of the present application.
  • the data transmission method may be executed by software and/or hardware devices, and the data transmission method may include:
  • the network device sends an update interval to the terminal.
  • the update interval is determined according to the operation speed and the operation orbit of the satellite. With the change of the operation speed and operation orbit of the satellite, the update interval will also change correspondingly.
  • the unit of the update interval may be milliseconds (ms), subframes (subframes), frames (frames), time slots (slots), PDCCH monitoring periods, etc., which can be set according to actual needs.
  • the specific unit of the update interval is not further limited in this embodiment of the present application.
  • the network device may send the update interval to the terminal through a second message.
  • the second message includes at least one of broadcast message, radio resource control RRC dedicated information, or medium access control layer control element MAC CE.
  • the terminal After receiving the update interval issued by the network device, the terminal determines the target value of the time interval parameter from at least two values of the time interval parameter according to the update interval, that is, executes the following S202:
  • the terminal determines a target value of the time interval parameter from at least two values of the time interval parameter according to the update interval. Wherein, at least two values of the time interval parameter are determined according to the operating speed and the operating orbit of the satellite.
  • the arrangement order of the at least two values of the time interval parameter is associated with the position change during the operation of the satellite.
  • the network device when the terminal updates the value of the time interval parameter for the first time, the network device needs to send at least two values of the time interval parameter to the terminal, so that the terminal can At least two values are used as the update basis to update the value of the time interval parameter.
  • the network device may send a third message to the terminal, where the third message includes a set corresponding to the time interval parameter, and the set includes a set of time interval parameters. At least two values, that is, the at least two values of the time interval parameter can be carried in a third message and sent to the terminal in the form of a set, so that the terminal can obtain the at least two values of the time interval parameter.
  • the third message includes a broadcast message and/or radio resource control RRC dedicated information.
  • the set corresponding to the time interval parameter is updated, so as to avoid the power consumption caused by sending the set corresponding to the time interval parameter for each update; of course, if the power consumption problem is not considered, the second and third At least two values of the time interval parameter are sent to the terminal in the form of a set during the third or subsequent update of the Nth time interval parameter value.
  • the network device needs to update the value of the new time interval parameter.
  • the set corresponding to the time interval parameter is sent to the terminal, so that the terminal can update the value of the time interval parameter based on the acquired set corresponding to the new time interval parameter.
  • the network device when it sends the set corresponding to the time interval parameter and the update interval to the terminal, it can first send the set corresponding to the time interval parameter to the terminal through a broadcast message or RRC dedicated signaling, and then send the set corresponding to the time interval parameter to the terminal through a broadcast message or RRC dedicated signaling.
  • the signaling sends the update interval to the terminal.
  • the set corresponding to the time interval parameter and the update interval can also be sent to the terminal simultaneously through broadcast messages or RRC dedicated signaling, which can be set according to actual needs.
  • the current value of the time interval parameter may be received from the network device first; starting from the effective moment of the current value , when the periodic interval arrives, according to the arrangement order of the at least two values, the next value of the current value among the at least two values of the time interval parameter is determined as the target value of the time interval parameter.
  • the current value is the initial value of the time interval parameter
  • the first message can be received from the network device; the first message includes the index of the initial value of the time interval parameter.
  • the first message includes Radio resource control RRC dedicated information, and/or, medium access control layer control element MAC CE, so that the terminal can be based on the index of the initial value of the time interval parameter, starting from the effective time of the initial value, and arriving at the periodic interval
  • the initial value of the time interval parameter is updated to the second value in the set, that is, the next value of the initial value in the set, thereby completing the first update of the value of the time interval parameter.
  • the terminal obtains the set corresponding to K_offset and the update interval by receiving the broadcast message of the network device
  • the set corresponding to K_offset is ⁇ K1, K2, K3, K4, K5 ⁇
  • the update interval is Xms
  • MAC CE indicates that the index of the initial value of K_offset is 2
  • the terminal starts from the effective moment of the initial value of K_offset indicated by MAC CE, and takes the value K2 of K_offset as the starting point, and automatically updates the value of K_offset to
  • the next value in the set corresponding to K_offset that is, the value of K_offset in the first cycle is K2, and in this cycle, the terminal determines the uplink and downlink timing relationship according to K2; the value of K_offset in the second cycle is K3, In this period, the terminal determines the uplink and downlink timing relationship according to K3; and so on.
  • the scheduling delay may apply the largest K_offset value in the K_offset value set configured by the network, that is, K1.
  • the timing relationship means that the terminal determines the timing/resource location for sending uplink data, the effective time of the MAC CE and the resource location of the CSI-RS according to the value of K_offset.
  • the network device may only send the update interval to the terminal once during the entire time interval parameter update process, and the terminal may, based on the update interval, When each update interval arrives, the value of the time interval parameter is automatically updated, which can reduce network resource consumption.
  • the resource location of the uplink transmission resource can be determined according to the target value of the time interval parameter, that is, the following S203 is performed:
  • the terminal determines the resource position of the uplink transmission resource according to the target value of the time interval parameter.
  • the terminal determines the resource position of the uplink transmission resource according to the target value of the time interval, which includes the terminal jointly determining the uplink transmission according to the target value of the time interval and the scheduling delay value indicated by the DCI.
  • the resource location of the resource includes the terminal jointly determining the uplink transmission according to the target value of the time interval and the scheduling delay value indicated by the DCI.
  • the location of the sending resource may include an opportunity/resource location for sending uplink data, and an opportunity/resource for sending an uplink reference signal; wherein, the uplink reference signal may include: an aperiodic uplink sounding signal (sounding reference signal) triggered by DCI , SRS).
  • the uplink reference signal may include: an aperiodic uplink sounding signal (sounding reference signal) triggered by DCI , SRS).
  • the terminal sends data at the resource location.
  • the data includes uplink data and/or reference signals.
  • the uplink data may include: uplink data scheduled by DCI, uplink data (Msg3) scheduled by random access response (random access response, RAR) authorization, and acknowledgement of hybrid automatic repeat request (RAR)) (ack), which can be specifically set according to actual needs.
  • RAR hybrid automatic repeat request
  • the content of the uplink data is not further limited in this embodiment of the present application.
  • the terminal when sending data, the terminal first receives update indication information from the network device; and determines the target value of the time interval parameter from at least two values of the time interval parameter according to the update indication information , since at least two values of the update instruction information and the time interval parameter are dynamically determined according to the operating speed and operating orbit of the satellite, when determining the resource position of the uplink transmission resource according to the dynamically adjusted target value, the The resource position of the uplink transmission resources is also dynamically adjusted, and then the uplink data and/or reference information are sent at the dynamically adjusted resource position of the transmission resource, which is different from the fixed value obtained based on the maximum round-trip propagation delay value in the prior art. Compared with the time interval parameter to determine the resource location, the scheduling delay is reduced, thereby reducing the data transmission delay.
  • the target value of the time interval parameter can be determined from at least two values of the time interval parameter according to the switching instruction, and the target value of the time interval parameter can be determined according to the switching instruction.
  • the value determines the resource location of the uplink transmission resource, and then sends data on the resource location.
  • FIG. 3 is a schematic flowchart of another data transmission method provided by an embodiment of the present application.
  • the data transmission method may be executed by software and/or hardware devices, and the data transmission method may include:
  • the network device sends a switching instruction to the terminal.
  • the network device Before sending the handover command to the terminal, the network device needs to determine the timing of sending the handover command.
  • the sending timing is determined according to the operating speed and operating orbit of the satellite. As the operating speed and operating orbit of the satellite change, the corresponding , the value of the time interval parameter also needs to be updated. At this time, the network device can send a handover instruction to the terminal.
  • the network device may send the switching instruction to the terminal through the second message.
  • the second message includes at least one of broadcast message, radio resource control RRC dedicated information, or medium access control layer control element MAC CE.
  • the terminal After receiving the handover instruction issued by the network device, the terminal determines the target value of the time interval parameter from at least two values of the time interval parameter according to the handover instruction, that is, executes the following S302:
  • the terminal determines a target value of the time interval parameter from at least two values of the time interval parameter according to the handover instruction. Wherein, at least two values of the time interval parameter are determined according to the operating speed and the operating orbit of the satellite.
  • the arrangement order of the at least two values of the time interval parameter is associated with the position change during the operation of the satellite.
  • the network device when the terminal updates the value of the time interval parameter for the first time, the network device needs to send at least two values of the time interval parameter to the terminal, so that the terminal can obtain the The obtained at least two values are used as the update basis, and the value of the time interval parameter is updated.
  • the network device may send a third message to the terminal, where the third message includes a set corresponding to the time interval parameter, and the set includes a set of time interval parameters.
  • At least two values can be carried in a third message and sent to the terminal in the form of a set, so that the terminal can obtain the at least two values of the time interval parameter.
  • at least two values of the time interval parameter can also be carried in the third message and sent to the terminal in the form of a table, which can be set according to actual needs.
  • At least two values of the time interval parameter are carried in the third message and sent to the terminal as an example for description, but this does not mean that the embodiment of the present application is limited to this.
  • the third message includes a broadcast message and/or radio resource control RRC dedicated information.
  • the set corresponding to the time interval parameter is updated, so as to avoid the power consumption caused by sending the set corresponding to the time interval parameter for each update; of course, if the power consumption problem is not considered, the second and third At least two values of the time interval parameter are sent to the terminal in the form of a set during the third or subsequent update of the Nth time interval parameter value.
  • the network device needs to update the value of the new time interval parameter.
  • the set corresponding to the time interval parameter is sent to the terminal, so that the terminal can update the value of the time interval parameter based on the acquired set corresponding to the new time interval parameter.
  • the network device when it sends the set corresponding to the time interval parameter and the handover command to the terminal, it can first send the set corresponding to the time interval parameter to the terminal through a broadcast message or RRC dedicated signaling, and then send the handover command through the MAC CE.
  • the set corresponding to the time interval parameter can also be sent to the terminal through a broadcast message or RRC dedicated signaling, and at the same time, the handover instruction can be sent to the terminal through the MAC CE, which can be set according to actual needs.
  • the current value of the time interval parameter may be received from the network device first; In the order of the at least two values, the next value of the current value among the at least two values of the time interval parameter is determined as the target value of the time interval parameter. It should be noted that if the current value is the initial value of the time interval parameter, the first message can be received from the network device; the first message includes the index of the initial value of the time interval parameter.
  • the first message includes Radio resource control RRC dedicated information, and/or, medium access control layer control element MAC CE, so that the terminal can use the index of the initial value of the time interval parameter, when the handover command takes effect, the initial value of the time interval parameter It is updated to the second value in the set, that is, the next value of the initial value in the set, thereby completing the first update of the value of the time interval parameter.
  • RRC dedicated information and/or, medium access control layer control element MAC CE
  • K_offset Taking the time interval parameter as K_offset as an example, it is assumed that the terminal obtains the set corresponding to K_offset by receiving the broadcast message of the network device.
  • the index of the initial value of K_offset obtained by signaling is 2.
  • the value of K_offset is updated from K2 to the lower value of K2 in the set corresponding to K_offset.
  • a value, that is, the value of K_offset is K3.
  • the switch command is received for the second time through MAC CE, and when the switch command takes effect, the value of K_offset is updated from K3 to the next value of K3 in the set corresponding to K_offset.
  • the scheduling delay may apply the largest K_offset value in the K_offset value set configured by the network, that is, K1.
  • the timing relationship means that the terminal determines the timing/resource location for sending uplink data, the effective time of the MAC CE and the resource location of the CSI-RS according to the value of K_offset.
  • the network device when the update instruction information is a handover instruction, in the entire time interval parameter update process, the network device needs to send a handover to the terminal every time the value of the time interval parameter is updated.
  • the terminal can update the value of the time interval parameter based on the switching instruction, that is, during the entire time interval parameter update process, the network device needs to send multiple switching instructions to the terminal to instruct the terminal to change the time interval through multiple switching instructions. The value of the parameter is updated.
  • the resource location of the uplink transmission resource can be determined according to the target value of the time interval parameter, that is, the following S303 is performed:
  • the terminal determines the resource position of the uplink transmission resource according to the target value of the time interval parameter.
  • the terminal determines the resource position of the uplink transmission resource according to the target value of the time interval, which includes the terminal jointly determining the uplink transmission resource according to the target value of the time interval and the scheduling delay value indicated by the DCI The resource location where the resource is sent.
  • the terminal sends data at the resource location.
  • the data includes uplink data and/or reference signals.
  • the uplink data may include: uplink data scheduled by DCI, uplink data (Msg3) scheduled by random access response (random access response, RAR) authorization, and acknowledgement of hybrid automatic repeat request (RAR)) (ack), which can be specifically set according to actual needs.
  • RAR hybrid automatic repeat request
  • the content of the uplink data is not further limited in this embodiment of the present application.
  • the terminal when sending data, the terminal first receives a switching instruction from the network device; and determines the target value of the time interval parameter from at least two values of the time interval parameter according to the switching instruction, because At least two values of the handover instruction and the time interval parameter are dynamically determined according to the operating speed and orbit of the satellite, so that when the resource position of the uplink transmission resource is determined according to the dynamically adjusted target value, the uplink transmission resource
  • the resource location of the resource is also dynamically adjusted, and then uplink data and/or reference information are sent at the dynamically adjusted resource location of the sending resource, which is different from the fixed time interval parameter obtained based on the maximum round-trip propagation delay value in the prior art. Compared with determining the resource location, the scheduling delay is reduced, thereby reducing the data transmission delay.
  • the target value of the time interval parameter can be determined from at least two values of the time interval parameter according to the TA adjustment value, and the target value of the time interval parameter can be determined according to the TA adjustment value.
  • the target value of the time interval parameter determines the resource location of the uplink transmission resources, and then transmits data on the resource location.
  • FIG. 4 is a schematic flowchart of another data transmission method provided by an embodiment of the present application.
  • the data transmission method may be executed by software and/or hardware devices, and the data transmission method may include:
  • the network device sends the timing advance TA adjustment value to the terminal.
  • the network device Before sending the adjustment value of the timing advance TA to the terminal, the network device needs to determine the adjustment value of the timing advance TA, and the adjustment value of the timing advance TA is determined according to the operating speed and operating orbit of the satellite. Changes in the speed and the running track, correspondingly, the value of the time interval parameter also needs to be updated. At this time, the network device may send the adjustment value of the timing advance TA to the terminal.
  • the network device may send the timing advance TA adjustment value to the terminal through a second message.
  • the second message includes at least one of broadcast message, radio resource control RRC dedicated information, or medium access control layer control element MAC CE.
  • the terminal After receiving the adjustment value of the timing advance amount TA issued by the network device, the terminal determines the target value of the time interval parameter from at least two values of the time interval parameter according to the adjustment value of the timing advance amount TA, that is, executes the following S402 :
  • the terminal determines a target value of the time interval parameter from at least two values of the time interval parameter according to the adjustment value of the timing advance TA. Wherein, at least two values of the time interval parameter are determined according to the operating speed and the operating orbit of the satellite.
  • the arrangement order of the at least two values of the time interval parameter is associated with the position change during the operation of the satellite.
  • the network device when the terminal updates the value of the time interval parameter for the first time, the network device needs to send at least two values of the time interval parameter to the terminal, so that the terminal can obtain the The obtained at least two values are used as the update basis, and the value of the time interval parameter is updated.
  • the network device may send a third message to the terminal, where the third message includes a set corresponding to the time interval parameter, and the set includes a set of time interval parameters.
  • At least two values that is, the at least two values of the time interval parameter can be carried in a third message and sent to the terminal in the form of a set, so that the terminal can obtain the at least two values of the time interval parameter.
  • at least two values of the time interval parameter can also be carried in the third message and sent to the terminal in the form of a table, which can be set according to actual needs.
  • the at least two values of the time interval parameter are carried in the third message and sent to the terminal as an example for description, but it does not mean that the embodiment of the present application is limited to this.
  • the third message includes a broadcast message and/or radio resource control RRC dedicated information.
  • the set corresponding to the time interval parameter is updated, so as to avoid the power consumption caused by sending the set corresponding to the time interval parameter for each update; of course, if the power consumption problem is not considered, the second and third At least two values of the time interval parameter are sent to the terminal in the form of a set during the third or subsequent update of the Nth time interval parameter value.
  • the network device needs to update the value of the new time interval parameter.
  • the set corresponding to the time interval parameter is sent to the terminal, so that the terminal can update the value of the time interval parameter based on the acquired set corresponding to the new time interval parameter.
  • the network device when it sends the set corresponding to the time interval parameter and the TA adjustment value to the terminal, it can first send the set corresponding to the time interval parameter to the terminal through a broadcast message or RRC dedicated signaling, and then use the MAC CE to send the TA to the terminal.
  • the adjustment value is sent to the terminal.
  • the set corresponding to the time interval parameter can also be sent to the terminal through a broadcast message or RRC dedicated signaling, and the TA adjustment value can be sent to the terminal through the MAC CE, which can be set according to actual needs. .
  • the target reference value of the time interval parameter may be determined first according to the TA adjustment value; For the target reference value, among at least two values of the time interval parameter, the value closest to the target reference value and greater than the target reference value determines the target value of the time interval parameter.
  • the target reference value of the time interval parameter determined according to the TA adjustment value is 5.4, and the three values in the set corresponding to the time interval parameter are: 5, 6, and 7, then the target value of the time interval parameter is 6, and update the value of the time interval parameter to the target value of 6.
  • K_offset Taking the time interval parameter as K_offset as an example, it is assumed that the terminal obtains the set corresponding to K_offset by receiving the broadcast message of the network device, and the set corresponding to K_offset is ⁇ K1, K2, K3, K4, K5 ⁇ .
  • the scheduling delay may apply the largest K_offset value in the K_offset value set configured by the network, that is, K1.
  • the timing relationship means that the terminal determines the timing/resource location for sending uplink data, the effective time of the MAC CE, and the resource location of the CSI-RS according to the value of K_offset.
  • the network device when the update indication information is the TA adjustment value, in the entire time interval parameter update process, the network device needs to send a message to the terminal every time the value of the time interval parameter is updated once.
  • the terminal can update the value of the time interval parameter based on the TA adjustment value, that is, during the entire time interval parameter update process, the network device needs to send the TA adjustment value to the terminal multiple times to pass the multiple TA adjustment values. Instruct the terminal to update the value of the time interval parameter.
  • the resource location of the uplink transmission resource can be determined according to the target value of the time interval parameter, that is, execute The following S403:
  • the terminal determines the resource position of the uplink transmission resource according to the target value of the time interval parameter.
  • the terminal determines the resource position of the uplink transmission resource according to the target value of the time interval, which includes the terminal jointly determining the uplink transmission resource according to the target value of the time interval and the scheduling delay value indicated by the DCI The resource location where the resource is sent.
  • the terminal sends data at the resource location.
  • the data includes uplink data and/or reference signals.
  • the terminal when sending data, the terminal first receives the adjustment value of the timing advance TA from the network device; and determines from at least two values of the time interval parameter according to the adjustment value of the timing advance TA The target value of the time interval parameter, because at least two values of the TA adjustment value and the time interval parameter are dynamically determined according to the operating speed and operating orbit of the satellite, so the target value of the time interval parameter adjusted according to the dynamic adjustment is obtained.
  • the resource location of the transmission resource is also dynamically adjusted, and then the uplink data and/or reference information are sent at the dynamically adjusted resource location of the transmission resource, which is different from the prior art that has always been based on Compared with the fixed time interval parameter obtained from the maximum round-trip propagation delay value to determine the resource location of the transmission resource, the scheduling delay is reduced, thereby reducing the data transmission delay.
  • FIG. 5 is a schematic structural diagram of a data transmission apparatus 50 provided by an embodiment of the present application.
  • the data transmission apparatus 50 may include:
  • the receiving unit 501 is configured to receive update indication information from a network device.
  • the processing unit 502 is configured to determine the target value of the time interval parameter from at least two values of the time interval parameter according to the update indication information; and determine the resource position of the uplink transmission resource according to the target value of the time interval parameter; wherein, At least two values of the time interval parameter are determined according to the running speed and the running orbit of the satellite.
  • the sending unit 503 is configured to send data at the resource location, wherein the data includes uplink data and/or reference signals.
  • the arrangement order of the at least two values of the time interval parameter is associated with the position change of the satellite during operation.
  • the update indication information includes at least one of a periodic interval, a switching instruction, or an adjustment value of the timing advance TA.
  • the update instruction information includes a periodic interval and/or a switching instruction
  • the processing unit 502 is specifically configured to receive the current value of the time interval parameter from the network device; and according to the current value of the time interval parameter and the update instruction information, in the The target value of the time interval parameter is determined from at least two values of the time interval parameter.
  • the update instruction information includes a periodic interval
  • the processing unit 502 is specifically configured to, starting from the effective moment of the current value, when the periodic interval arrives, according to the arrangement order of at least two values, at least two of the time interval parameters are changed. The next value of the current value among the values is determined as the target value of the time interval parameter.
  • the update instruction information includes a switching instruction
  • the processing unit 502 is specifically configured to, when the switching instruction takes effect, according to the arrangement order of the at least two values, change the time interval parameter to the lower one of the current value of the at least two values. A value that is determined as the target value of the interval parameter.
  • the current value is the initial value of the time interval parameter
  • the receiving unit 501 is specifically configured to receive the first message from the network device; the first message includes an index of the initial value of the time interval parameter.
  • the first message includes radio resource control RRC dedicated information, and/or a medium access control layer control element MAC CE.
  • the update indication information includes the TA adjustment value
  • the processing unit 502 is specifically configured to determine the target reference value of the time interval parameter according to the TA adjustment value; and according to the target reference value, set the time interval parameter among at least two values. , the value closest to the target reference value and greater than the target reference value determines the target value of the time interval parameter.
  • the receiving unit 501 is specifically configured to receive a second message from the network device; the second message includes update indication information.
  • the second message includes at least one of broadcast message, radio resource control RRC dedicated information, or medium access control layer control element MAC CE.
  • the receiving unit 501 is further configured to receive a third message from the network device; the third message includes a set corresponding to the time interval parameter, and the set includes at least two values of the time interval parameter.
  • the third message includes a broadcast message and/or radio resource control RRC dedicated information.
  • the data transmission device 50 shown in the embodiment of the present application can execute the data transmission method on the terminal side shown in any of the above embodiments, and its implementation principle and beneficial effects are similar to the implementation principle and beneficial effect of the data transmission method on the terminal side, Reference can be made to the implementation principle and beneficial effects of the data transmission method on the terminal side, which will not be repeated here.
  • FIG. 6 is a schematic structural diagram of another data transmission apparatus 60 provided by an embodiment of the present application.
  • the data transmission apparatus 60 may include:
  • the sending unit 601 is configured to send update indication information to the terminal; the update indication information is used to instruct the terminal to determine the target value of the time interval parameter from at least two values of the time interval parameter according to the update indication information; At least two values are determined according to the speed and orbit of the satellite.
  • the receiving unit 602 is configured to receive data sent by the terminal at the resource location; wherein the resource location is determined by the terminal according to the target value of the time interval parameter, and the data includes uplink data and/or reference signals.
  • the arrangement order of the at least two values of the time interval parameter is associated with the position change of the satellite during operation.
  • the update indication information includes at least one of a periodic interval, a switching instruction, or an adjustment value of the timing advance TA.
  • the update indication information includes a periodic interval and/or a switching instruction
  • the apparatus further includes a processing unit 603 .
  • the processing unit 603 is configured to determine the current value of the time interval parameter.
  • the sending unit 601 is further configured to send the current value of the time interval parameter to the terminal.
  • the current value is used to instruct the terminal to determine the target value of the time interval parameter from at least two values of the time interval parameter according to the current value and the update indication information.
  • the current value is the initial value of the time interval parameter
  • the sending unit 601 is specifically configured to send a first message to the terminal; the first message includes an index of the initial value of the time interval parameter.
  • the first message includes radio resource control RRC dedicated information, and/or a medium access control layer control element MAC CE.
  • the update indication information includes a TA adjustment value
  • the processing unit 603 is configured to determine the TA adjustment value.
  • the sending unit 601 is further configured to send the TA adjustment value to the terminal; the TA adjustment value is used to instruct the terminal to use the target reference value determined according to the TA adjustment value to take at least two values of the time interval parameter, whichever is closest to the target reference value, And the value greater than the target reference value determines the target value of the time interval parameter.
  • the sending unit 601 is specifically configured to send a second message to the terminal; the second message includes update indication information.
  • the second message includes at least one of broadcast message, radio resource control RRC dedicated information, or medium access control layer control element MAC CE.
  • the sending unit 601 is further configured to send a third message to the terminal; the third message includes a set corresponding to the time interval parameter, and the set includes at least two values of the time interval parameter.
  • the third message includes a broadcast message and/or radio resource control RRC dedicated information.
  • the data transmission apparatus 60 shown in this embodiment of the present application can execute the data transmission method on the network device side shown in any of the above-mentioned embodiments, the implementation principle and beneficial effects thereof, and the implementation principle and beneficial effect of the data transmission method on the network device side Similarly, reference can be made to the implementation principle and beneficial effects of the data transmission method on the network device side, which will not be repeated here.
  • FIG. 7 is a schematic structural diagram of a communication apparatus 70 provided by an embodiment of the present application.
  • the communication apparatus 70 may include a processor 701 and a memory 702, where a computer program is stored in the memory 702 , the processor 701 executes the computer program stored in the memory 702, so that the apparatus executes the data transmission method on the terminal side shown in any of the foregoing embodiments; or, the processor 701 executes the memory 702 A computer program stored in a computer program, so that the device executes the data transmission method on the network device side shown in any of the above-mentioned embodiments, and its implementation principle and beneficial effects are the same as the implementation principle and the implementation principle of the data transmission method on the terminal side or the network device side. The beneficial effects are similar and will not be repeated here.
  • Embodiments of the present application further provide a readable storage medium for storing instructions, and when the instructions are executed, the data transmission method on the terminal side shown in any of the foregoing embodiments is implemented; or, when the instructions are executed When the instruction is executed, the data transmission method on the network device side shown in any of the above-mentioned embodiments is realized, and its realization principle and beneficial effects are similar to the realization principle and beneficial effect of the data transmission method on the terminal side or the network device side. , and will not be repeated here.
  • An embodiment of the present application further provides a computer program product, the computer program product includes: a computer program, where the computer program is stored in a readable storage medium, and at least one processor of an electronic device can download the computer program from the readable storage medium The computer program is read, and the at least one processor executes the computer program to cause the electronic device to execute the data transmission method on the network device side shown in any of the foregoing embodiments.
  • the disclosed apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware, or may be implemented in the form of hardware plus software functional units.
  • the above-mentioned integrated modules implemented in the form of software functional modules may be stored in a computer-readable storage medium.
  • the above-mentioned software function modules are stored in a storage medium, and include several instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (English: processor) to execute the methods of the various embodiments of the present application. some steps.
  • processor may be a central processing unit (English: Central Processing Unit, referred to as: CPU), or other general-purpose processors, digital signal processors (English: Digital Signal Processor, referred to as: DSP), dedicated Integrated circuit (English: Application Specific Integrated Circuit, referred to as: ASIC) and so on.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like. The steps of the method disclosed in conjunction with the invention can be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory may include high-speed RAM memory, and may also include non-volatile storage NVM, such as at least one magnetic disk memory, and may also be a U disk, a removable hard disk, a read-only memory, a magnetic disk or an optical disk, and the like.
  • NVM non-volatile storage
  • the bus may be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus, or an Extended Industry Standard Architecture (EISA) bus, or the like.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus and so on.
  • the buses in the drawings of the present application are not limited to only one bus or one type of bus.
  • the above computer-readable storage medium can be implemented by any type of volatile or non-volatile storage device or combination thereof, such as Static Random Access Memory (SRAM), Electrically Erasable Programmable Read-Only Memory (EEPROM) , Erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic Disk or Optical Disk.
  • SRAM Static Random Access Memory
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • EPROM Erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic Disk Magnetic Disk or Optical Disk.
  • a storage medium can be any available medium that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种数据传输方法和装置,终端在发送数据时,先从网络设备接收更新指示信息;并根据更新指示信息在时间间隔参数的至少两个取值中确定时间间隔参数的目标取值,由于该更新指示信息和时间间隔参数的至少两个取值都是根据卫星的运行速度和运行轨道动态确定的,这样在根据该动态调整的目标取值确定上行发送资源的资源位置时,该上行发送资源的资源位置也是动态调整的,再在该动态调整的发送资源的资源位置上发送上行数据和/或参考信息,与现有技术中一直采用基于最大的来回传播时延值得到的固定时间间隔参数确定资源位置相比,降低了调度时延,从而降低了数据的发送时延。

Description

数据传输方法和装置
本申请基于申请号为202011073568.8,申请日为2020年10月09日,申请名称为“数据传输方法和装置”的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及但不限于一种数据传输方法和装置。
背景技术
在非陆地网络(non terrestrial networks,NTN)场景中,用户设备(user equipment,UE)在发送上行数据和/或参考信号时,会基于所获得的定时提前量(timing advance,TA)值进行提前发送,从而补偿电波传输延迟。
例如,在物理下行控制信道(physical downlink control channel,PDCCH)调度物理上行共享信息(physical uplink shared channel,PUSCH)的过程中,PDCCH中的下行控制信息(downlink control information,DCI)会指示UE调度的时延值,协议中将该时延值记为K2;UE根据K2确定PUSCH的发送资源的位置。然而,由于NTN场景中存在较大的传播时延,若UE根据TA值进行提前发送,意味着PDCCH接收时刻与PUSCH发送资源位置之间必须有足够大的时间间隔,因此,PDCCH调度PUSCH的调度时延增强可以为:K2+offset,并通过K2+offset保证PDCCH接收时刻与PUSCH发送时刻之间有足够大的时间间隔,这样可以通过该足够大的时间间隔保证UE进行提前发送。
但是,由于现有的调度时延增强中的offset值是基于最大的来回传播时延值,即卫星处于仰角最小的位置的来回传播时延确定的,是一个固定的值,且为卫星来回传输时的最大传播时延,因此,采用该现有的调度时延增强中的offset值确定调度时延时,会使得调度时延较大,从而导致数据的发送时延较大。
发明内容
本申请实施例提供了一种数据传输方法和装置,降低了调度时延,从而降低了数据的发送时延。
第一方面,本申请实施例提供了一种数据传输方法,该数据传输方法可以包括:
从网络设备接收更新指示信息。
根据所述更新指示信息,在时间间隔参数的至少两个取值中确定所述时间间隔参数的目标取值;其中,所述时间间隔参数的至少两个取值是根据卫星的运行速度和运行轨道确定的;
根据所述时间间隔参数的目标取值确定上行发送资源的资源位置;
在所述资源位置上发送数据;其中,所述数据包括上行数据和/或参考信号。
第二方面,本申请实施例还提供了一种数据传输方法,该数据传输方法可以包括:
向终端发送更新指示信息;所述更新指示信息用于指示所述终端根据所述更新指示信息在时间间隔参数的至少两个取值中确定所述时间间隔参数的目标取值;其中,所述时间间隔参数的至少两个取值是根据卫星的运行速度和运行轨道确定的。
接收所述终端在所述资源位置上发送的数据;其中,所述资源位置为所述终端根据所述时间间隔参数的目标取值确定的,所述数据包括上行数据和/或参考信号。
第三方面,本申请实施例提供了一种数据传输装置,该数据传输装置可以包括:
接收单元,用于从网络设备接收更新指示信息。
处理单元,用于根据所述更新指示信息,在时间间隔参数的至少两个取值中确定所述时间间隔参数的目标取值;并根据所述时间间隔参数的目标取值确定上行发送资源的资源位置;其中,所述时间间隔参数的至少两个取值是根据卫星的运行速度和运行轨道确定的。
发送单元,用于在所述资源位置上发送数据;其中,所述数据包括上行数据和/或参考信号。
第四方面,本申请实施例还提供了一种数据传输装置,该数据传输装置可以包括:
发送单元,用于向终端发送更新指示信息;所述更新指示信息用于指示所述终端根据所述更新指示信息在时间间隔参数的至少两个取值中确定所述时间间隔参数的目标取值;其中,所述时间间隔参数的至少两个取值是根据卫星的运行速度和运行轨道确定的。
接收单元,用于接收所述终端在所述资源位置上发送的数据;其中,所述资源位置为所述终端根据所述时间间隔参数的目标取值确定的,所述数据包括上行数据和/或参考信号。
第五方面,本申请实施例提供了一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如上述第一方面任一种可能的实现方式中所述的数据传输方法;或者,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如上述第二方面任一种可能的实现方式中所述的数据传输方法。
第六方面,本申请实施例提供了一种可读存储介质,用于存储有指令,当所述指令被执行时,使如上述第一方面任一种可能的实现方式中所述的数据传输方法被实现;或者,当所述指令被执行时,使如上述第二方面任一种可能的实现方式中所述的数据传输方法确定方法被实现。
第七方面,本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序,所述计算机程序存储在可读存储介质中,电子设备的至少一个处理器可以从所述可读存储介质读取所述计算机程序,所述至少一个处理器执行所述计算机程序使得电子设备执行上述第一方面任一种可能的实现方式中所述的数据传输方法;或者,上述第二方面任一种可能的实现方式中所述的数据传输方法。
本申请实施例提供的数据传输方法和装置,终端在发送数据时,先从网络设备接收更新指示信息;并根据更新指示信息在时间间隔参数的至少两个取值中确定时间间隔参数的目标取值,由于该更新指示信息和时间间隔参数的至少两个取值都是根据卫星的运行速度和运行轨道动态确定的,这样在根据该动态调整的目标取值确定上行发送资源的资源位置时,该上行发送资源的资源位置也是动态调整的,再在该动态调整的发送资源的资源位置上发送上行数据和/或参考信息,与现有技术中一直采用基于最大的来回传播时延值得到的固定时间间隔参数确定资源位置相比,降低了调度时延,从而降低了 数据的发送时延。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1为本申请实施例提供的一种应用场景的示意图;
图2为本申请实施例提供的一种数据传输方法的流程示意图;
图3为本申请实施例提供的另一种数据传输方法的流程示意图;
图4为本申请实施例提供的又一种数据传输方法的流程示意图;
图5为本申请实施例提供的一种数据传输装置的结构示意图;
图6为本申请实施例提供的另一种数据传输装置的结构示意图;
图7为本申请实施例提供的一种通信装置的结构示意图。
通过上述附图,已示出本公开明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本公开构思的范围,而是通过参考特定实施例为本领域技术人员说明本公开的概念。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本申请的实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”一般表示前后关联对象是一种“或”的关系。
本申请实施例提供的数据传输方法可以应用于非陆地网络(non terrestrial networks,NTN)场景中。例如,NTN场景下的定时提前量(timing advance,TA)值提前发送,或者NTN场景下的随机接入过程,可以为随机接入过程中Msg2与Msg3之间;当然,也可以应用于其它类似的场景,在此,本申请实 施例只是以应用于TA值提前发送和随机接入过程为例进行说明,但并不代表本申请实施例仅局限于此。
以应用在TA值提前发送场景为例,在PDCCH调度PUSCH的过程中,PDCCH中的下行控制信息(downlink control information,DCI)会指示UE调度的时延值,协议中将该时延值记为K2;UE根据K2确定PUSCH的发送资源的位置。然而,由于NTN场景中存在较大的传播时延,若UE根据TA值进行提前发送,意味着PDCCH接收时刻与PUSCH发送资源位置之间必须有足够大的时间间隔,因此,PDCCH调度PUSCH的调度时延增强可以为:K2+offset,并通过K2+offset保证PDCCH接收时刻与PUSCH发送时刻之间有足够大的时间间隔,这样可以通过该足够大的时间间隔保证UE进行提前发送。但是,由于现有的调度时延增强中的offset值是基于最大的来回传播时延值,即卫星处于仰角最小的位置的来回传播时延确定的,是一个固定的值,且为卫星来回传输时的最大传播时延,因此,采用该现有的调度时延增强中的offset值确定调度时延时,会使得调度时延较大,从而导致数据的发送时延较大。
为了降低调度时延,从而降低数据的发送时延,可以在PDCCH调度PUSCH的过程中,动态调整调度时延增强中的offset值,使得该offset值不是一直为基于卫星处于仰角最小的位置的来回传播时延确定的最大传播时延,这样可以通过动态调整调度时延增强中的offset值,降低调度时延,从而降低数据的发送时延。由于卫星相对于UE的快速移动(非同步卫星场景),UE与卫星之间的传播时延会随着时间发生快速的变化,尤其是在地球固定波束(earth-fixed beam)场景下,UE与卫星之间的传播时延会发生巨大的变化,造成UE需要预补偿的TA值(即提前发送的时长)也会发生变化,可参见图1所示,图1为本申请实施例提供的一种应用场景的示意图,因此,可以尝试基于UE与卫星之间的传播时延会随着时间发生快速的变化,动态调整调度时延增强中的offset值,这样可以避免因一直采用基于最大的来回传播时延值确定的offset值导致调度时延较大,降低了调度时延,从而降低了数据的发送时延。
基于上述构思,本申请实施例提供了一种数据传输方法,终端先从网络设备接收更新指示信息;根据更新指示信息,在时间间隔参数的至少两个取值中确定时间间隔参数的目标取值;其中,时间间隔参数的至少两个取值是 根据卫星的运行速度和运行轨道确定的;并根据时间间隔参数的目标取值确定上行发送资源的资源位置;再在资源位置上发送数据;其中,所述数据包括上行数据和/或参考信号。
示例的,在本申请实施例中,更新指示信息可以包括周期间隔、切换指令、或者定时提前量TA调整值中的至少一种。其中,更新间隔可以理解为更新时长。
需要说明的是,在本申请实施例中,根据时间间隔参数的目标取值确定上行发送资源的资源位置,其包含了根据该时间间隔参数的目标取值和DCI指示的调度时延值共同确定上行发送资源的资源位置,而不是仅根据该时间间隔参数的目标取值确定上行发送资源的资源位置。因此,在后续的描述中,根据时间间隔参数的目标取值确定上行发送资源的资源位置,都可以理解为根据该时间间隔参数的目标取值和DCI指示的调度时延值共同确定上行发送资源的资源位置。
可以看出,在本申请实施例中,终端在发送数据时,先从网络设备接收更新指示信息;并根据更新指示信息在时间间隔参数的至少两个取值中确定时间间隔参数的目标取值,由于该更新指示信息和时间间隔参数的至少两个取值都是根据卫星的运行速度和运行轨道动态确定的,这样在根据该动态调整的目标取值确定上行发送资源的资源位置时,该上行发送资源的资源位置也是动态调整的,再在该动态调整的发送资源的资源位置上发送上行数据和/或参考信息,与现有技术中一直采用基于最大的来回传播时延值得到的固定时间间隔参数确定资源位置相比,降低了调度时延,从而降低了数据的发送时延。
其中,1)终端,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、或车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城 市(smart city)中的无线终端、或智慧家庭(smart home)中的无线终端等。
2)网络设备,是无线网络中的设备,例如将终端接入到无线网络的无线接入网(radio access network,RAN)节点。目前,一些RAN节点的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。
下面,将分别结合更新指示信息的内容对本申请实施例提供的数据传输方法进行详细的说明。在一种可能的实现方式中,当更新指示信息为更新间隔时,可以根据该更新间隔确定上行发送资源的资源位置,并在该发送资源的位置上发送数据;在另一种可能的实现方式中,当更新指示信息为切换指令时,可以根据该切换指令确定上行发送资源的资源位置,并在该发送资源的位置上发送数据;在又一种可能的实现方式中,当更新指示信息为定时提前量TA调整值时,可以根据该定时提前量TA调整值确定上行发送资源的资源位置,并在该发送资源的位置上发送数据。可以理解的是,在本申请实施例中,下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。
在一种可能的实现方式,当更新指示信息为更新间隔时,可以根据该更新间隔在时间间隔参数的至少两个取值中确定时间间隔参数的目标取值,并根据时间间隔参数的目标取值确定上行发送资源的资源位置,再在资源位置上发送数据。示例的,请参见图2所示,图2为本申请实施例提供的一种数据传输方法的流程示意图,该数据传输方法可以由软件和/或硬件装置执行,该数据传输方法可以包括:
S201、网络设备向终端发送更新间隔。
其中,更新间隔是根据卫星的运行速度和运行轨道确定的,随着卫星的运行速度和运行轨道的变化,对应的,更新间隔也会发生变化。示例的,示例的,更新间隔的单位可以是毫秒(ms),子帧(subframe),帧(frame), 时隙(slot),PDCCH监听周期等,具体可以根据实际需要进行设置,在此,对于更新间隔的具体单位,本申请实施例不做进一步地限制。
示例的,网络设备在向终端发送更新间隔时,可以通过第二消息将该更新间隔发送给终端。其中,第二消息包括广播消息、无线资源控制RRC专用信息、或者媒体访问控制层控制元素MAC CE中的至少一种。
终端在接收到网络设备下发的更新间隔后,根据该更新间隔在时间间隔参数的至少两个取值中确定时间间隔参数的目标取值,即执行下述S202:
S202、终端根据更新间隔,在时间间隔参数的至少两个取值中确定时间间隔参数的目标取值。其中,时间间隔参数的至少两个取值是根据卫星的运行速度和运行轨道确定的。
其中,时间间隔参数的至少两个取值的排列顺序,与卫星运行时的位置变化相关联。
可以理解的是,在本申请实施例中,当终端进行首次时间间隔参数取值的更新时,网络设备需要将该时间间隔参数的至少两个取值发送给终端,这样终端可以将获取到的至少两个取值作为更新依据,对时间间隔参数的取值进行更新。示例的,网络设备在将该时间间隔参数的至少两个取值发送给终端时,可以向终端发送第三消息,该第三消息中包括时间间隔参数对应的集合,集合中包括时间间隔参数的至少两个取值,即可以通过集合的形式将时间间隔参数的至少两个取值携带在第三消息中发送给终端,以使终端获取到该时间间隔参数的至少两个取值。当然,也可以通过表格的形式将时间间隔参数的至少两个取值携带在第三消息中发送给终端,具体可以根据实际需要进行设置,在此,本申请实施例只是以通过集合的形式将时间间隔参数的至少两个取值携带在第三消息中发送给终端为例进行说明,但并不代表本申请实施例仅局限于此。示例的,第三消息包括广播消息和/或无线资源控制RRC专用信息。
以通过集合的形式将时间间隔参数的至少两个取值发送给终端为例,需要说明的是,当终端进行第二次、第三次或者后续的第N次时间间隔参数取值的更新时,在一种场景下,若时间间隔参数的取值范围未发生变化,则网络设备无需将该时间间隔参数对应的集合发送给终端,终端可以继续基于首次时间间隔参数取值的更新时获取到的时间间隔参数对应的集合进行更新,这样可以避免因每次更新均发送时间间隔参数对应的集合而产生的功耗;当 然,若不考虑功耗问题,也可以在终端进行第二次、第三次或者后续的第N次时间间隔参数取值的更新时,通过集合的形式将时间间隔参数的至少两个取值发送给终端。在另一种场景下,若时间间隔参数的取值范围发生变化,即使终端进行第二次、第三次或者后续的第N次时间间隔参数取值的更新,网络设备也需要将该新的时间间隔参数对应的集合发送给终端,这样终端可以基于获取到的新的时间间隔参数对应的集合对时间间隔参数的取值进行更新。
需要说明的是,当网络设备向终端发送时间间隔参数对应的集合和更新间隔时,可以先通过广播消息或者RRC专用信令将时间间隔参数对应的集合发送给终端,再通过广播消息或者RRC专用信令将更新间隔发送给终端,当然,也可以一并通过广播消息或者RRC专用信令将时间间隔参数对应的集合和更新间隔同时发送给终端,具体可以根据实际需要进行设置。
示例的,在根据更新间隔在时间间隔参数的至少两个取值中确定时间间隔参数的目标取值时,可以先从网络设备接收时间间隔参数的当前取值;从当前取值的生效时刻开始,在周期间隔到达时,按照至少两个取值的排列顺序,将时间间隔参数的至少两个取值中当前取值的下一个取值,确定为时间间隔参数的目标取值。需要说明的是,若当前取值为时间间隔参数的初始取值,则可以从网络设备接收第一消息;第一消息中包括时间间隔参数的初始取值的索引,示例的,第一消息包括无线资源控制RRC专用信息,和/或者,媒体访问控制层控制元素MAC CE,这样终端就可以基于该时间间隔参数的初始取值的索引,从该初始取值的生效时刻开始,在周期间隔到达时,将时间间隔参数的初始取值更新为集合中的第二个取值,即集合中初始取值的下一个取值,从而完成时间间隔参数的取值的首次更新。
以时间间隔参数为K_offset为例,假设终端通过接收网络设备的广播消息获取到K_offset对应的集合以及更新间隔,K_offset对应的集合为{K1,K2,K3,K4,K5},更新间隔为Xms,且MAC CE指示K_offset初始取值的索引为2,则终端从MAC CE指示的K_offset初始取值的生效时刻起,以K_offset的取值K2为起点,每隔Xms,自动将K_offset的取值更新为K_offset对应的集合中的下一个取值,即第一个周期内的K_offset取值为K2,在该周期内,终端根据K2确定上下行定时关系;第二个周期内的K_offset取值为K3,在该周期内,终端根据K3确定上下行定时关系;以此类推。特别地,RAR调 度PUSCH(即Msg3)时,调度时延可以应用网络配置的K_offset取值集合中最大的K_offset取值,即K1。其中,定时关系是指终端根据K_offset取值确定发送上行数据的时机/资源位置,MAC CE的生效时刻以及CSI-RS的资源位置。
可以看出,在该种可能的实现方式中,当更新指示信息为更新间隔时,在整个时间间隔参数更新过程中,网络设备可以仅向终端发送一次更新间隔,终端就可以基于该更新间隔,在每一个更新间隔到达时,自动对时间间隔参数的取值进行更新,这样可以降低网络资源消耗。
在根据更新间隔,在时间间隔参数的至少两个取值中确定时间间隔参数的目标取值后,就可以根据时间间隔参数的目标取值确定上行发送资源的资源位置,即执行下述S203:
S203、终端根据时间间隔参数的目标取值确定上行发送资源的资源位置。
可以理解的是,在本申请实施例中,终端根据时间间隔的目标取值确定上行发送资源的资源位置,包含了终端根据时间间隔的目标取值和DCI指示的调度时延值共同确定上行发送资源的资源位置。
示例的,发送资源的位置可以包括发送上行数据的时机/资源位置,以及上行参考信号发送的时机/资源;其中,上行参考信号可以包括:由DCI触发的非周期的上行探测信号(sounding reference signal,SRS)。
S204、终端在资源位置上发送数据。
其中,数据包括上行数据和/或参考信号。示例的,上行数据可以包括:DCI调度的上行数据,随机接入响应(random access response,RAR)授权调度的上行数据(Msg3),混合式自动重传请求(hybrid automatic repeat request,RAR))确认(ack),具体可以根据实际需要进行设置,在此,对于上行数据的内容,本申请实施例不做进一步地限制。
可以看出,在本申请实施例中,终端在发送数据时,先从网络设备接收更新指示信息;并根据更新指示信息在时间间隔参数的至少两个取值中确定时间间隔参数的目标取值,由于该更新指示信息和时间间隔参数的至少两个取值都是根据卫星的运行速度和运行轨道动态确定的,这样在根据该动态调整的目标取值确定上行发送资源的资源位置时,该上行发送资源的资源位置也是动态调整的,再在该动态调整的发送资源的资源位置上发送上行数据和/或参考信息,与现有技术中一直采用基于最大的来回传播时延值得到的固定 时间间隔参数确定资源位置相比,降低了调度时延,从而降低了数据的发送时延。
在另一种可能的实现方式,当更新指示信息为切换指令时,可以根据该切换指令在时间间隔参数的至少两个取值中确定时间间隔参数的目标取值,并根据时间间隔参数的目标取值确定上行发送资源的资源位置,再在资源位置上发送数据。示例的,请参见图3所示,图3为本申请实施例提供的另一种数据传输方法的流程示意图,该数据传输方法可以由软件和/或硬件装置执行,该数据传输方法可以包括:
S301、网络设备向终端发送切换指令。
示例的,网络设备在向终端发送切换指令之前,需要确定切换指令的发送时机,该发送时机是根据卫星的运行速度和运行轨道确定的,随着卫星的运行速度和运行轨道的变化,对应的,时间间隔参数的取值也需要更新,此时网络设备可以向终端发送切换指令。
示例的,网络设备在向终端发送切换指令时,可以通过第二消息将该切换指令发送给终端。其中,第二消息包括广播消息、无线资源控制RRC专用信息、或者媒体访问控制层控制元素MAC CE中的至少一种。
终端在接收到网络设备下发的切换指令后,根据切换指令,在时间间隔参数的至少两个取值中确定时间间隔参数的目标取值,即执行下述S302:
S302、终端根据切换指令,在时间间隔参数的至少两个取值中确定时间间隔参数的目标取值。其中,时间间隔参数的至少两个取值是根据卫星的运行速度和运行轨道确定的。
其中,时间间隔参数的至少两个取值的排列顺序,与卫星运行时的位置变化相关联。
结合上述S202中的描述,在本申请实施例中,当终端进行首次时间间隔参数取值的更新时,网络设备需要将该时间间隔参数的至少两个取值发送给终端,这样终端可以将获取到的至少两个取值作为更新依据,对时间间隔参数的取值进行更新。示例的,网络设备在将该时间间隔参数的至少两个取值发送给终端时,可以向终端发送第三消息,该第三消息中包括时间间隔参数对应的集合,集合中包括时间间隔参数的至少两个取值,即可以通过集合的形式将时间间隔参数的至少两个取值携带在第三消息中发送给终端,以使终端获取到该时间间隔参数的至少两个取值。当然,也可以通过表格的形式将 时间间隔参数的至少两个取值携带在第三消息中发送给终端,具体可以根据实际需要进行设置,在此,本申请实施例只是以通过集合的形式将时间间隔参数的至少两个取值携带在第三消息中发送给终端为例进行说明,但并不代表本申请实施例仅局限于此。示例的,第三消息包括广播消息和/或无线资源控制RRC专用信息。
以通过集合的形式将时间间隔参数的至少两个取值发送给终端为例,需要说明的是,当终端进行第二次、第三次或者后续的第N次时间间隔参数取值的更新时,在一种场景下,若时间间隔参数的取值范围未发生变化,则网络设备无需将该时间间隔参数对应的集合发送给终端,终端可以继续基于首次时间间隔参数取值的更新时获取到的时间间隔参数对应的集合进行更新,这样可以避免因每次更新均发送时间间隔参数对应的集合而产生的功耗;当然,若不考虑功耗问题,也可以在终端进行第二次、第三次或者后续的第N次时间间隔参数取值的更新时,通过集合的形式将时间间隔参数的至少两个取值发送给终端。在另一种场景下,若时间间隔参数的取值范围发生变化,即使终端进行第二次、第三次或者后续的第N次时间间隔参数取值的更新,网络设备也需要将该新的时间间隔参数对应的集合发送给终端,这样终端可以基于获取到的新的时间间隔参数对应的集合对时间间隔参数的取值进行更新。
需要说明的是,当网络设备向终端发送时间间隔参数对应的集合和切换指令时,可以先通过广播消息或者RRC专用信令将时间间隔参数对应的集合发送给终端,再通过MAC CE将切换指令发送给终端,当然,也可以在通过广播消息或者RRC专用信令将时间间隔参数对应的集合发送给终端的同时,通过MAC CE将切换指令发送给终端,具体可以根据实际需要进行设置。
示例的,在根据切换指令在时间间隔参数的至少两个取值中确定时间间隔参数的目标取值时,可以先可以从网络设备接收时间间隔参数的当前取值;在切换指令生效时,按照至少两个取值的排列顺序,将时间间隔参数的至少两个取值中当前取值的下一个取值,确定为时间间隔参数的目标取值。需要说明的是,若当前取值为时间间隔参数的初始取值,则可以从网络设备接收第一消息;第一消息中包括时间间隔参数的初始取值的索引,示例的,第一消息包括无线资源控制RRC专用信息,和/或者,媒体访问控制层控制元素MAC CE,这样终端就可以基于该时间间隔参数的初始取值的索引,在切换指 令生效时,将时间间隔参数的初始取值更新为集合中的第二个取值,即集合中初始取值的下一个取值,从而完成时间间隔参数的取值的首次更新。
以时间间隔参数为K_offset为例,假设终端通过接收网络设备的广播消息获取到K_offset对应的集合,K_offset对应的集合为{K1,K2,K3,K4,K5},且通过接收网络设备的RRC专用信令获取到K_offset初始取值的索引为2,在通过MAC CE第一次接收到切换指令,且在该切换指令生效时,将K_offset的取值由K2更新为K_offset对应的集合中K2的下一个取值,即K_offset取值为K3,在通过MAC CE第二次接收到切换指令,且在该切换指令生效时,将K_offset的取值由K3更新为K_offset对应的集合中K3的下一个取值,即K_offset取值为K4,以此类推。特别地,RAR调度PUSCH(即Msg3)时,调度时延可以应用网络配置的K_offset取值集合中最大的K_offset取值,即K1。其中,定时关系是指终端根据K_offset取值确定发送上行数据的时机/资源位置,MAC CE的生效时刻以及CSI-RS的资源位置。
可以看出,在该种可能的实现方式中,当更新指示信息为切换指令时,在整个时间间隔参数更新过程中,时间间隔参数的取值每更新一次,网络设备就需要向终端发送一次切换指令,终端可以基于该切换指令对时间间隔参数的取值进行更新,即在整个时间间隔参数更新过程中,网络设备需要向终端发送多次切换指令,以通过多次切换指令指示终端对时间间隔参数的取值进行更新。
在根据切换指令,在时间间隔参数的至少两个取值中确定时间间隔参数的目标取值后,就可以根据时间间隔参数的目标取值确定上行发送资源的资源位置,即执行下述S303:
S303、终端根据时间间隔参数的目标取值确定上行发送资源的资源位置。
同样可以理解的是,在本申请实施例中,终端根据时间间隔的目标取值确定上行发送资源的资源位置,包含了终端根据时间间隔的目标取值和DCI指示的调度时延值共同确定上行发送资源的资源位置。
S304、终端在资源位置上发送数据。
其中,数据包括上行数据和/或参考信号。示例的,上行数据可以包括:DCI调度的上行数据,随机接入响应(random access response,RAR)授权调度的上行数据(Msg3),混合式自动重传请求(hybrid automatic repeat request,RAR))确认(ack),具体可以根据实际需要进行设置,在此,对于上行数 据的内容,本申请实施例不做进一步地限制。
可以看出,在本申请实施例中,终端在发送数据时,先从网络设备接收切换指令;并根据切换指令在时间间隔参数的至少两个取值中确定时间间隔参数的目标取值,由于该切换指令和时间间隔参数的至少两个取值都是根据卫星的运行速度和运行轨道动态确定的,这样在根据该动态调整的目标取值确定上行发送资源的资源位置时,该上行发送资源的资源位置也是动态调整的,再在该动态调整的发送资源的资源位置上发送上行数据和/或参考信息,与现有技术中一直采用基于最大的来回传播时延值得到的固定时间间隔参数确定资源位置相比,降低了调度时延,从而降低了数据的发送时延。
在又一种可能的实现方式,当更新指示信息为定时提前量TA调整值时,可以根据该TA调整值在时间间隔参数的至少两个取值中确定时间间隔参数的目标取值,并根据时间间隔参数的目标取值确定上行发送资源的资源位置,再在资源位置上发送数据。示例的,请参见图4所示,图4为本申请实施例提供的又一种数据传输方法的流程示意图,该数据传输方法可以由软件和/或硬件装置执行,该数据传输方法可以包括:
S401、网络设备向终端发送定时提前量TA调整值。
示例的,网络设备在向终端发送定时提前量TA调整值之前,需要确定定时提前量TA调整值,该定时提前量TA调整值是根据卫星的运行速度和运行轨道确定的,随着卫星的运行速度和运行轨道的变化,对应的,时间间隔参数的取值也需要更新,此时网络设备可以向终端发送该定时提前量TA调整值。
示例的,网络设备在向终端发送定时提前量TA调整值时,可以通过第二消息将该定时提前量TA调整值发送给终端。其中,第二消息包括广播消息、无线资源控制RRC专用信息、或者媒体访问控制层控制元素MAC CE中的至少一种。
终端在接收到网络设备下发的定时提前量TA调整值后,根据定时提前量TA调整值,在时间间隔参数的至少两个取值中确定时间间隔参数的目标取值,即执行下述S402:
S402、终端根据定时提前量TA调整值,在时间间隔参数的至少两个取值中确定时间间隔参数的目标取值。其中,时间间隔参数的至少两个取值是根据卫星的运行速度和运行轨道确定的。
其中,时间间隔参数的至少两个取值的排列顺序,与卫星运行时的位置变化相关联。
结合上述S202中的描述,在本申请实施例中,当终端进行首次时间间隔参数取值的更新时,网络设备需要将该时间间隔参数的至少两个取值发送给终端,这样终端可以将获取到的至少两个取值作为更新依据,对时间间隔参数的取值进行更新。示例的,网络设备在将该时间间隔参数的至少两个取值发送给终端时,可以向终端发送第三消息,该第三消息中包括时间间隔参数对应的集合,集合中包括时间间隔参数的至少两个取值,即可以通过集合的形式将时间间隔参数的至少两个取值携带在第三消息中发送给终端,以使终端获取到该时间间隔参数的至少两个取值。当然,也可以通过表格的形式将时间间隔参数的至少两个取值携带在第三消息中发送给终端,具体可以根据实际需要进行设置,在此,本申请实施例只是以通过集合的形式将时间间隔参数的至少两个取值携带在第三消息中发送给终端为例进行说明,但并不代表本申请实施例仅局限于此。示例的,第三消息包括广播消息和/或无线资源控制RRC专用信息。
以通过集合的形式将时间间隔参数的至少两个取值发送给终端为例,需要说明的是,当终端进行第二次、第三次或者后续的第N次时间间隔参数取值的更新时,在一种场景下,若时间间隔参数的取值范围未发生变化,则网络设备无需将该时间间隔参数对应的集合发送给终端,终端可以继续基于首次时间间隔参数取值的更新时获取到的时间间隔参数对应的集合进行更新,这样可以避免因每次更新均发送时间间隔参数对应的集合而产生的功耗;当然,若不考虑功耗问题,也可以在终端进行第二次、第三次或者后续的第N次时间间隔参数取值的更新时,通过集合的形式将时间间隔参数的至少两个取值发送给终端。在另一种场景下,若时间间隔参数的取值范围发生变化,即使终端进行第二次、第三次或者后续的第N次时间间隔参数取值的更新,网络设备也需要将该新的时间间隔参数对应的集合发送给终端,这样终端可以基于获取到的新的时间间隔参数对应的集合对时间间隔参数的取值进行更新。
需要说明的是,当网络设备向终端发送时间间隔参数对应的集合和TA调整值时,可以先通过广播消息或者RRC专用信令将时间间隔参数对应的集合发送给终端,再通过MAC CE将TA调整值发送给终端,当然,也可以在通 过广播消息或者RRC专用信令将时间间隔参数对应的集合发送给终端的同时,通过MAC CE将TA调整值发送给终端,具体可以根据实际需要进行设置。
示例的,在根据定时提前量TA调整值,在时间间隔参数的至少两个取值中确定时间间隔参数的目标取值时,可以先根据TA调整值,确定时间间隔参数的目标参考值;根据目标参考值,将时间间隔参数的至少两个取值中,与目标参考值最接近的,且大于目标参考值的取值确定时间间隔参数的目标取值。例如,根据TA调整值确定出的时间间隔参数的目标参考值为5.4,时间间隔参数对应的集合中的三个取值分别为:5,6,以及7,则时间间隔参数的目标取值为6,并将时间间隔参数的取值更新为该目标取值6。
以时间间隔参数为K_offset为例,假设终端通过接收网络设备的广播消息获取到K_offset对应的集合,K_offset对应的集合为{K1,K2,K3,K4,K5},在通过MAC CE第一次接收到TA调整值,且在该TA调整值生效时,先根据该TA调整值计算得到一个K_offset的目标参考值,将K_offset对应的集合中,与K_offset的目标参考值最接近的,且大于目标参考值的取值确K_offset的目标取值,并将K_offset的取值更新为K_offset对应的集合中的目标取值;在通过MAC CE第二次接收到TA调整值,且在该TA调整值生效时,先根据该TA调整值计算得到一个K_offset的目标参考值,将K_offset对应的集合中,与K_offset的目标参考值最接近的,且大于目标参考值的取值确K_offset的目标取值,并将K_offset的取值更新为K_offset对应的集合中的目标取值;以此类推。特别地,RAR调度PUSCH(即Msg3)时,调度时延可以应用网络配置的K_offset取值集合中最大的K_offset取值,即K1。其中,定时关系是指终端根据K_offset取值确定发送上行数据的时机/资源位置,MAC CE的生效时刻以及CSI-RS的资源位置。
可以看出,在该种可能的实现方式中,当更新指示信息为TA调整值时,在整个时间间隔参数更新过程中,时间间隔参数的取值每更新一次,网络设备就需要向终端发送一次TA调整值,终端可以基于该TA调整值对时间间隔参数的取值进行更新,即在整个时间间隔参数更新过程中,网络设备需要向终端发送多次TA调整值,以通过多次TA调整值指示终端对时间间隔参数的取值进行更新。
在根据定时提前量TA调整值,在时间间隔参数的至少两个取值中确定时 间间隔参数的目标取值后,就可以根据时间间隔参数的目标取值确定上行发送资源的资源位置,即执行下述S403:
S403、终端根据时间间隔参数的目标取值确定上行发送资源的资源位置。
同样可以理解的是,在本申请实施例中,终端根据时间间隔的目标取值确定上行发送资源的资源位置,包含了终端根据时间间隔的目标取值和DCI指示的调度时延值共同确定上行发送资源的资源位置。
S404、终端在资源位置上发送数据。
其中,数据包括上行数据和/或参考信号。
可以看出,在本申请实施例中,终端在发送数据时,先从网络设备接收定时提前量TA调整值;并根据定时提前量TA调整值,在时间间隔参数的至少两个取值中确定时间间隔参数的目标取值,由于该TA调整值和时间间隔参数的至少两个取值都是根据卫星的运行速度和运行轨道动态确定的,这样在根据该动态调整的时间间隔参数的目标取值确定上行发送资源的资源位置时,该发送资源的资源位置也是动态调整的,再在该动态调整的发送资源的资源位置上发送上行数据和/或参考信息,与现有技术中一直采用基于最大的来回传播时延值得到的固定时间间隔参数确定发送资源的资源位置相比,降低了调度时延,从而降低了数据的发送时延。
图5为本申请实施例提供的一种数据传输装置50的结构示意图,示例的,请参见图5所示,该数据传输装置50可以包括:
接收单元501,用于从网络设备接收更新指示信息。
处理单元502,用于根据更新指示信息,在时间间隔参数的至少两个取值中确定时间间隔参数的目标取值;并根据时间间隔参数的目标取值确定上行发送资源的资源位置;其中,时间间隔参数的至少两个取值是根据卫星的运行速度和运行轨道确定的。
发送单元503,用于在资源位置上发送数据;其中,数据包括上行数据和/或参考信号。
可选的,时间间隔参数的至少两个取值的排列顺序,与卫星运行时的位置变化相关联。
可选的,更新指示信息包括周期间隔、切换指令、或者定时提前量TA调整值中的至少一种。
可选的,更新指示信息包括周期间隔和/或切换指令,处理单元502,具 体用于从网络设备接收时间间隔参数的当前取值;并根据时间间隔参数的当前取值和更新指示信息,在时间间隔参数的至少两个取值中确定时间间隔参数的目标取值。
可选的,更新指示信息包括周期间隔,处理单元502,具体用于从当前取值的生效时刻开始,在周期间隔到达时,按照至少两个取值的排列顺序,将时间间隔参数的至少两个取值中当前取值的下一个取值,确定为时间间隔参数的目标取值。
可选的,更新指示信息包括切换指令,处理单元502,具体用于在切换指令生效时,按照至少两个取值的排列顺序,将时间间隔参数的至少两个取值中当前取值的下一个取值,确定为时间间隔参数的目标取值。
可选的,当前取值为时间间隔参数的初始取值,接收单元501,具体用于从网络设备接收第一消息;第一消息中包括时间间隔参数的初始取值的索引。
其中,第一消息包括无线资源控制RRC专用信息,和/或者,媒体访问控制层控制元素MAC CE。
可选的,更新指示信息包括TA调整值,处理单元502,具体用于根据TA调整值,确定时间间隔参数的目标参考值;并根据目标参考值,将时间间隔参数的至少两个取值中,与目标参考值最接近的,且大于目标参考值的取值确定时间间隔参数的目标取值。
可选的,接收单元501,具体用于从网络设备接收第二消息;第二消息中包括更新指示信息。
其中,第二消息包括广播消息、无线资源控制RRC专用信息、或者媒体访问控制层控制元素MAC CE中的至少一种。
可选的,接收单元501,还用于从网络设备接收第三消息;第三消息中包括时间间隔参数对应的集合,集合中包括时间间隔参数的至少两个取值。
其中,第三消息包括广播消息和/或无线资源控制RRC专用信息。
本申请实施例所示的数据传输装置50,可以执行上述任一实施例所示的终端侧的数据传输方法,其实现原理以及有益效果与终端侧的数据传输方法的实现原理及有益效果类似,可参见终端侧的数据传输方法的实现原理及有益效果,此处不再进行赘述。
图6为本申请实施例提供的另一种数据传输装置60的结构示意图,示例的,请参见图6所示,该数据传输装置60可以包括:
发送单元601,用于向终端发送更新指示信息;更新指示信息用于指示终端根据更新指示信息在时间间隔参数的至少两个取值中确定时间间隔参数的目标取值;其中,时间间隔参数的至少两个取值是根据卫星的运行速度和运行轨道确定的.
接收单元602,用于接收终端在资源位置上发送数据;其中,资源位置为终端根据时间间隔参数的目标取值确定的,数据包括上行数据和/或参考信号。
可选的,时间间隔参数的至少两个取值的排列顺序,与卫星运行时的位置变化相关联。
可选的,更新指示信息包括周期间隔、切换指令、或者定时提前量TA调整值中的至少一种。
可选的,更新指示信息包括周期间隔和/或切换指令,装置还包括处理单元603。
处理单元603,用于确定时间间隔参数的当前取值。
发送单元601,还用于向终端发送时间间隔参数的当前取值。当前取值用于指示终端根据当前取值和更新指示信息在时间间隔参数的至少两个取值中确定时间间隔参数的目标取值。
可选的,当前取值为时间间隔参数的初始取值,发送单元601,具体用于向终端发送第一消息;第一消息中包括时间间隔参数的初始取值的索引。
其中,第一消息包括无线资源控制RRC专用信息,和/或者,媒体访问控制层控制元素MAC CE。
可选的,更新指示信息包括TA调整值,处理单元603,用于确定TA调整值。
发送单元601,还用于向终端发送TA调整值;TA调整值用于指示终端根据TA调整值确定的目标参考值将时间间隔参数的至少两个取值中,与目标参考值最接近的,且大于目标参考值的取值确定时间间隔参数的目标取值。
可选的,发送单元601,具体用于向终端发送第二消息;第二消息中包括更新指示信息。
其中,第二消息包括广播消息、无线资源控制RRC专用信息、或者媒体访问控制层控制元素MAC CE中的至少一种。
可选的,发送单元601,还用于向终端发送第三消息;第三消息中包括时间间隔参数对应的集合,集合中包括时间间隔参数的至少两个取值。
其中,第三消息包括广播消息和/或无线资源控制RRC专用信息。
本申请实施例所示的数据传输装置60,可以执行上述任一实施例所示的网络设备侧的数据传输方法,其实现原理以及有益效果与网络设备侧的数据传输方法的实现原理及有益效果类似,可参见网络设备侧的数据传输方法的实现原理及有益效果,此处不再进行赘述。
图7为本申请实施例提供的一种通信装置70的结构示意图,示例的,请参见图7所示,该通信装置70可以包括处理器701和存储器702,所述存储器702中存储有计算机程序,所述处理器701执行所述存储器702中存储的计算机程序,以使所述装置执行上述任一实施例所示的终端侧的数据传输方法;或者,所述处理器701执行所述存储器702中存储的计算机程序,以使所述装置执行上述任一实施例所示的网络设备侧的数据传输方法,其实现原理以及有益效果与终端侧的或者网络设备侧的数据传输方法的实现原理及有益效果类似,此处不再进行赘述。
本申请实施例还提供了一种可读存储介质,用于存储有指令,当所述指令被执行时,使上述任一实施例所示的终端侧的数据传输方法被实现;或者,当所述指令被执行时,使上述任一实施例所示的网络设备侧的数据传输方法被实现,其实现原理以及有益效果与终端侧的或者网络设备侧的数据传输方法的实现原理及有益效果类似,此处不再进行赘述。
本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序,所述计算机程序存储在可读存储介质中,电子设备的至少一个处理器可以从所述可读存储介质读取所述计算机程序,所述至少一个处理器执行所述计算机程序使得电子设备执行上述任一实施例所示的网络设备侧的数据传输方法。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所展示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作 为单元展示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能模块的形式实现的集成的模块,可以存储在一个计算机可读取存储介质中。上述软件功能模块存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(英文:processor)执行本申请各个实施例方法的部分步骤。
应理解的是,上述处理器可以是中央处理单元(英文:Central Processing Unit,简称:CPU),还可以是其他通用处理器、数字信号处理器(英文:Digital Signal Processor,简称:DSP)、专用集成电路(英文:Application Specific Integrated Circuit,简称:ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合发明所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
存储器可能包含高速RAM存储器,也可能还包括非易失性存储NVM,例如至少一个磁盘存储器,还可以为U盘、移动硬盘、只读存储器、磁盘或光盘等。
总线可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,本申请附图中的总线并不限定仅有一根总线或一种类型的总线。
上述计算机可读存储介质可以是由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。存储介质可以是通用或专用计算机能够存取的任何可用介质。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (23)

  1. 一种数据传输方法,包括:
    从网络设备接收更新指示信息;
    根据所述更新指示信息,在时间间隔参数的至少两个取值中确定所述时间间隔参数的目标取值;其中,所述时间间隔参数的至少两个取值是根据卫星的运行速度和运行轨道确定的;
    根据所述时间间隔参数的目标取值确定上行发送资源的资源位置;
    在所述资源位置上发送数据;其中,所述数据包括上行数据和/或参考信号。
  2. 根据权利要求1所述的方法,其中,所述时间间隔参数的至少两个取值的排列顺序,与卫星运行时的位置变化相关联。
  3. 根据权利要求1所述的方法,其中,所述更新指示信息包括周期间隔、切换指令、或者定时提前量TA调整值中的至少一种。
  4. 根据权利要求3所述的方法,其中,所述更新指示信息包括周期间隔和/或切换指令,所述根据所述更新指示信息,在时间间隔参数的至少两个取值中确定所述时间间隔参数的目标取值,包括:
    从所述网络设备接收所述时间间隔参数的当前取值;
    根据所述时间间隔参数的当前取值和所述更新指示信息,在所述时间间隔参数的至少两个取值中确定所述时间间隔参数的目标取值。
  5. 根据权利要求4所述的方法,其中,所述更新指示信息包括周期间隔,所述根据所述时间间隔参数的当前取值和所述更新指示信息,在所述时间间隔参数的至少两个取值中确定所述时间间隔参数的目标取值,包括:
    从所述当前取值的生效时刻开始,在所述周期间隔到达时,按照所述至少两个取值的排列顺序,将所述时间间隔参数的至少两个取值中所述当前取值的下一个取值,确定为所述时间间隔参数的目标取值。
  6. 根据权利要求4所述的方法,其中,所述更新指示信息包括切换指令,所述根据所述时间间隔参数的当前取值和所述更新指示信息,在所述时间间隔参数的至少两个取值中确定所述时间间隔参数的目标取值,包括:
    在所述切换指令生效时,按照所述至少两个取值的排列顺序,将所述时间间隔参数的至少两个取值中所述当前取值的下一个取值,确定为所述时间 间隔参数的目标取值。
  7. 根据权利要求4所述的方法,其中,所述当前取值为所述时间间隔参数的初始取值,所述从所述网络设备接收所述时间间隔参数的当前取值,包括:
    从所述网络设备接收第一消息;所述第一消息中包括所述时间间隔参数的初始取值的索引;
    其中,所述第一消息包括无线资源控制RRC专用信息,和/或者,媒体访问控制层控制元素MAC CE。
  8. 根据权利要求3所述的方法,其中,所述更新指示信息包括所述TA调整值,所述根据所述更新指示信息,在时间间隔参数的至少两个取值中确定所述时间间隔参数的目标取值,包括:
    根据所述TA调整值,确定所述时间间隔参数的目标参考值;
    根据所述目标参考值,将所述时间间隔参数的至少两个取值中,与所述目标参考值最接近的,且大于所述目标参考值的取值确定所述时间间隔参数的目标取值。
  9. 根据权利要求1-8任一项所述的方法,其中,所述从网络设备接收更新指示信息,包括:
    从所述网络设备接收第二消息;所述第二消息中包括所述更新指示信息;
    其中,所述第二消息包括广播消息、无线资源控制RRC专用信息、或者媒体访问控制层控制元素MAC CE中的至少一种。
  10. 根据权利要求1-8任一项所述的方法,所述根据所述更新指示信息,在时间间隔参数的至少两个取值中确定所述时间间隔参数的目标取值之前,还包括:
    从所述网络设备接收第三消息;所述第三消息中包括所述时间间隔参数对应的集合,所述集合中包括所述时间间隔参数的至少两个取值;
    其中,所述第三消息包括广播消息和/或无线资源控制RRC专用信息。
  11. 一种数据传输方法,包括:
    向终端发送更新指示信息;所述更新指示信息用于指示所述终端根据所述更新指示信息在时间间隔参数的至少两个取值中确定所述时间间隔参数的目标取值;其中,所述时间间隔参数的至少两个取值是根据卫星的运行速度和运行轨道确定的;
    接收所述终端在资源位置上发送的数据;其中,所述资源位置为所述终端根据所述时间间隔参数的目标取值确定的,所述数据包括上行数据和/或参考信号。
  12. 根据权利要求11所述的方法,其中,所述时间间隔参数的至少两个取值的排列顺序,与卫星运行时的位置变化相关联。
  13. 根据权利要求11所述的方法,其中,所述更新指示信息包括周期间隔、切换指令、或者定时提前量TA调整值中的至少一种。
  14. 根据权利要求13所述的方法,所述更新指示信息包括周期间隔和/或切换指令,所述方法还包括:
    确定所述时间间隔参数的当前取值;
    向所述终端发送所述时间间隔参数的当前取值;所述当前取值用于指示所述终端根据所述当前取值和所述更新指示信息在所述时间间隔参数的至少两个取值中确定所述时间间隔参数的目标取值。
  15. 根据权利要求14所述的方法,其中,所述当前取值为所述时间间隔参数的初始取值,所述向所述终端发送所述时间间隔参数的当前取值,包括:
    向所述终端发送第一消息;所述第一消息中包括所述时间间隔参数的初始取值的索引;
    其中,所述第一消息包括无线资源控制RRC专用信息,和/或者,媒体访问控制层控制元素MAC CE。
  16. 根据权利要求13所述的方法,所述更新指示信息包括所述TA调整值,所述方法还包括:
    确定所述TA调整值;
    向所述终端发送所述TA调整值;所述TA调整值用于指示所述终端根据所述TA调整值确定的目标参考值将所述时间间隔参数的至少两个取值中,与所述目标参考值最接近的,且大于所述目标参考值的取值确定所述时间间隔参数的目标取值。
  17. 根据权利要求11-16任一项所述的方法,其中,所述向终端发送所述更新指示信息,包括:
    向所述终端发送第二消息;所述第二消息中包括所述更新指示信息;
    其中,所述第二消息包括广播消息、无线资源控制RRC专用信息、或者媒体访问控制层控制元素MAC CE中的至少一种。
  18. 根据权利要求11-16任一项所述的方法,所述接收所述终端在资源位置上发送的上行数据之前,还包括:
    向所述终端发送第三消息;所述第三消息中包括所述时间间隔参数对应的集合,所述集合中包括所述时间间隔参数的至少两个取值;
    其中,所述第三消息包括广播消息和/或无线资源控制RRC专用信息。
  19. 一种数据传输装置,包括:
    接收单元,用于从网络设备接收更新指示信息;
    处理单元,用于根据所述更新指示信息,在时间间隔参数的至少两个取值中确定所述时间间隔参数的目标取值;并根据所述时间间隔参数的目标取值确定上行发送资源的资源位置;其中,所述时间间隔参数的至少两个取值是根据卫星的运行速度和运行轨道确定的;
    发送单元,用于在所述资源位置上发送数据;其中,所述数据包括上行数据和/或参考信号。
  20. 一种数据传输装置,包括:
    发送单元,用于向终端发送更新指示信息;所述更新指示信息用于指示所述终端根据所述更新指示信息在时间间隔参数的至少两个取值中确定所述时间间隔参数的目标取值;其中,所述时间间隔参数的至少两个取值是根据卫星的运行速度和运行轨道确定的;
    接收单元,用于接收所述终端在资源位置上发送的数据;其中,所述资源位置为所述终端根据所述时间间隔参数的目标取值确定的,所述数据包括上行数据和/或参考信号。
  21. 一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如上述权利要求1-10任一项所述的数据传输方法;或者,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如上述权利要求11-18任一项所述的数据传输方法。
  22. 一种可读存储介质,用于存储有指令,当所述指令被执行时,使如上述权利要求1-10任一项所述的数据传输方法被实现;或者,当所述指令被执行时,使如上述权利要求11-18任一项所述的数据传输方法确定方法被实现。
  23. 一种计算机程序产品,包括计算机程序,所述计算机程序在被处理 器执行时,实现如上述权利要求1-10任一项所述的数据传输方法;或者,实现如上述权利要求11-18任一项所述的数据传输方法。
PCT/CN2021/122828 2020-10-09 2021-10-09 数据传输方法和装置 WO2022073504A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011073568.8A CN114337772B (zh) 2020-10-09 2020-10-09 数据传输方法和装置
CN202011073568.8 2020-10-09

Publications (1)

Publication Number Publication Date
WO2022073504A1 true WO2022073504A1 (zh) 2022-04-14

Family

ID=81032342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122828 WO2022073504A1 (zh) 2020-10-09 2021-10-09 数据传输方法和装置

Country Status (2)

Country Link
CN (1) CN114337772B (zh)
WO (1) WO2022073504A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11997629B2 (en) 2021-05-11 2024-05-28 Qualcomm Incorporated Timing offset selection in non-terrestrial network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019193891A1 (ja) * 2018-04-04 2019-10-10 ソニー株式会社 通信装置、基地局装置、通信方法、通信プログラム及び通信システム
US20200196263A1 (en) * 2017-08-22 2020-06-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Wireless communication system, base-station and user-side-device
CN111565472A (zh) * 2019-02-14 2020-08-21 电信科学技术研究院有限公司 一种确定定时提前量的方法及设备
CN111615186A (zh) * 2019-02-23 2020-09-01 华为技术有限公司 一种更新定时提前的方法、终端及网络设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10547374B1 (en) * 2017-02-13 2020-01-28 Lockheed Martin Corporation Random access for LTE over satellite
CN111263390B (zh) * 2018-11-30 2021-08-13 华为技术有限公司 往返时延的处理方法、相关装置及可读存储介质
CN111526576B (zh) * 2019-02-01 2021-10-26 华为技术有限公司 定时提前的更新方法、装置、设备与存储介质
CN110611949B (zh) * 2019-09-12 2021-06-08 成都天奥集团有限公司 一种卫通系统上行定时提前量信关站预测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200196263A1 (en) * 2017-08-22 2020-06-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Wireless communication system, base-station and user-side-device
WO2019193891A1 (ja) * 2018-04-04 2019-10-10 ソニー株式会社 通信装置、基地局装置、通信方法、通信プログラム及び通信システム
CN111565472A (zh) * 2019-02-14 2020-08-21 电信科学技术研究院有限公司 一种确定定时提前量的方法及设备
CN111615186A (zh) * 2019-02-23 2020-09-01 华为技术有限公司 一种更新定时提前的方法、终端及网络设备

Also Published As

Publication number Publication date
CN114337772A (zh) 2022-04-12
CN114337772B (zh) 2023-06-20

Similar Documents

Publication Publication Date Title
US11147048B2 (en) Method for resource scheduling and related devices
US11109395B2 (en) Data transmission preemption
US10917834B2 (en) Method for transmitting system information and related devices
WO2019200613A1 (zh) 一种降低电磁辐射比吸收率的方法及设备
US11109392B2 (en) Communication method, network device, and relay device
US11974175B2 (en) Handover control method and communications device
US10779225B2 (en) Methods, network nodes and wireless device for handling access information
US11076422B2 (en) Random access responding method and device, and random access method and device
JP2011030197A (ja) スケジューリングリクエストの方法及び通信装置
US20220132613A1 (en) Communication method and apparatus
WO2022116839A1 (zh) 通信方法、装置、设备、存储介质及程序产品
WO2022073504A1 (zh) 数据传输方法和装置
WO2021062680A1 (zh) 数据传输方法及相关设备
WO2022056854A1 (zh) 无线通信方法和设备
WO2021169380A1 (zh) 一种测量配置方法及设备
WO2021168665A1 (zh) 通信方法及装置
US20230224843A1 (en) Timing offset parameter update method, device, and system
WO2023078385A1 (zh) 数据传输方法及相关产品
WO2020030062A1 (zh) 一种通信方法及装置
US20230054066A1 (en) Harq rtt timer adjustment for multi-tb scheduling
RU2755472C1 (ru) Способ, устройство и компьютерная программа
WO2018024096A1 (zh) 一种分配资源和随机接入的方法及设备
WO2023078186A1 (zh) 一种无线通信的方法和装置
WO2023169398A1 (zh) 网络确定方法、网络接入方法、数据传输方法及相关设备
RU2788679C1 (ru) Приоритетное прерывание передачи данных

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877021

Country of ref document: EP

Kind code of ref document: A1