WO2019200613A1 - 一种降低电磁辐射比吸收率的方法及设备 - Google Patents

一种降低电磁辐射比吸收率的方法及设备 Download PDF

Info

Publication number
WO2019200613A1
WO2019200613A1 PCT/CN2018/083961 CN2018083961W WO2019200613A1 WO 2019200613 A1 WO2019200613 A1 WO 2019200613A1 CN 2018083961 W CN2018083961 W CN 2018083961W WO 2019200613 A1 WO2019200613 A1 WO 2019200613A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
sar
transmit power
duration
transceiver
Prior art date
Application number
PCT/CN2018/083961
Other languages
English (en)
French (fr)
Inventor
侯猛
周海
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18914981.8A priority Critical patent/EP3758346A4/en
Priority to PCT/CN2018/083961 priority patent/WO2019200613A1/zh
Priority to US17/040,357 priority patent/US11115073B2/en
Priority to CN201880054014.8A priority patent/CN111034162A/zh
Publication of WO2019200613A1 publication Critical patent/WO2019200613A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • H04B1/3833Hand-held transceivers
    • H04B1/3838Arrangements for reducing RF exposure to the user, e.g. by changing the shape of the transceiver while in use
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method and device for reducing electromagnetic radiation specific absorption rate.
  • SAR specific absorption rate
  • SAR is generally reduced by adding a shielding device (such as a conductive foam, a absorbing material, a conductor reflector, and a shield) between the antenna and the human body before the mobile terminal leaves the factory.
  • a shielding device such as a conductive foam, a absorbing material, a conductor reflector, and a shield
  • the embodiment of the present application provides a method and a device for reducing the specific absorption rate of electromagnetic radiation, which are used to solve the problem that the existing method for reducing SAR is less flexible and violates the miniaturization design of the mobile terminal.
  • an embodiment of the present application provides a method for reducing an electromagnetic radiation specific absorption rate, where the method includes: collecting, by the terminal, the emission of the terminal at different time points within a second time period after the first time period from the power-on time Power, obtain at least two transmit powers, calculate an average transmit power of the at least two transmit powers, and determine a SAR corresponding to the average transmit power according to the average transmit power, and if the terminal determines that the SAR is greater than a preset threshold, the terminal decreases The transmit power of the terminal after the second duration.
  • the terminal may count the average transmit power in the second duration after the first duration after the first duration from the booting time, and determine the SAR corresponding to the average transmit power according to the corresponding relationship between the average transmit power and the SAR. And determining that the SAR is greater than the preset threshold, reducing the transmit power of the terminal after the second duration, thereby reducing the SAR value.
  • the value of the SAR can be dynamically adjusted during the process of using the terminal, and the flexibility is high, and the shielding device is not required to be added between the antenna and the human body when the terminal is produced, so that the terminal can be miniaturized; further Since the terminal usually does not immediately enter the call state after the power is turned on, the transmission power of the terminal is usually relatively low for a short period of time after the power is turned on. Therefore, the present application counts the transmission of the terminal after the first time period from the power-on time. Power can save the power consumption of the terminal.
  • the first duration may be an empirical period of time for the terminal to normally enter a call state or a working state, such as 5 seconds.
  • the terminal starts to perform power collection and control after entering the call state, and then adjusts the size of the SAR, thereby further saving power consumption of the terminal.
  • the terminal may, but is not limited to, reduce the transmission power of the terminal after the second duration by using at least one of the following manners:
  • the terminal turns off the wireless-fidelity (WIFI) function
  • the terminal prohibits the establishment of a new radio resource control (RRC) connection and/or an application communication connection
  • the application communication connection refers to a communication connection using an application, and the application communication connection includes an application voice connection, an application data connection, and an application video. connection;
  • the phased array antenna of the terminal control terminal forms a beam that does not point to the human body
  • the terminal control transmits a signal from an antenna remote from the human body among a plurality of antennas installed by itself.
  • the transmit power of the terminal can be reduced at the same time in multiple manners, so that the terminal can flexibly select an implementation method for reducing the transmit power, and the flexibility is high. .
  • reducing the transmit power of the terminal after the second duration may include: the terminal calculating a difference between the preset threshold and the SAR, and determining the second according to the difference.
  • the transmission power after the duration is lowered by the set value, and the transmission power after the second duration is lowered by the set value.
  • the terminal may further determine a difference between the preset threshold and the SAR, so that the terminal may relatively accurately determine a set value that the transmit power needs to be lowered according to the difference, and further reduce the transmit power by a set value. Accurately adjust the value of SAR.
  • the terminal may, but is not limited to, reduce the transmit power after the second duration by a set value as follows:
  • the terminal reduces the maximum transmit power of the physical random access channel (PRACH) by a first preset value.
  • PRACH physical random access channel
  • the terminal will report the power headroom to the network and reduce the second preset value.
  • the terminal adds the third preset value to the number of times of the hybrid automatic repeat request (HARQ) retransmission.
  • HARQ hybrid automatic repeat request
  • the terminal reduces the total number of connections to the network device during soft handover by a fourth preset value.
  • the terminal reduces the codec data rate of the voice connection to a fifth preset value.
  • the terminal can flexibly select an implementation method for reducing the transmission power, has high flexibility, and reduces the transmission power of the terminal by a set value, so as to achieve a relatively accurate adjustment of the SAR value. It should be noted that the foregoing manners of reducing the transmission power after the second duration by the set value may be used at the same time. Thus, the sum of the values of the reduced transmission power using each method is the total value of the terminal to reduce the transmission power.
  • the terminal may determine, according to the average transmit power, a SAR corresponding to the average transmit power according to the average transmit power: the terminal acquires a one-to-one correspondence between at least two average transmit powers and at least two SARs, and according to the correspondence relationship and The average transmit power is used to determine the SAR corresponding to the average transmit power. In this way, the terminal can quickly determine the SAR corresponding to the calculated average transmit power according to the obtained one-to-one correspondence between the at least two average transmit powers and the at least two SARs and the calculated average transmit power.
  • the terminal may receive a one-to-one correspondence between at least two average transmit powers sent by the network device and at least two SARs.
  • the terminal may also acquire at least two average transmit powers pre-stored locally and at least two.
  • One-to-one correspondence of SAR the terminal can obtain the pre-stored correspondence, so that the terminal locally stored in the at least two one-to-one correspondence between the average transmit power and the at least two SARs can further improve the efficiency of controlling the transmit power.
  • the embodiment of the present application provides a device for reducing the specific absorption rate of electromagnetic radiation, and the device has the function of implementing the terminal in the method of the foregoing first aspect, and the function may be implemented by hardware, or the corresponding software may be executed by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the modules can be software and/or hardware.
  • the terminal comprises a transceiver unit, a processing unit and a storage unit, and the units may perform the method involved in the above first aspect or any possible design of the first aspect, as detailed in the method example. Description, no further description here.
  • the terminal includes a processor, a memory, a transceiver, and a bus, wherein the processor, the memory, and the transceiver are connected by the bus; the processor call is stored in the memory
  • the instructions of the first aspect or any of the possible designs of the first aspect are performed.
  • the embodiment of the present application further provides a computer storage medium, where the computer storage medium stores computer executable instructions, when the computer executable instructions are invoked by a computer, causing the computer to perform the first aspect. Or the method provided by any of the above first aspects of the design.
  • a computer program product is further provided in the embodiment of the present application, where the computer program product stores an instruction, when the computer program runs on the computer, causing the computer to perform any of the above first aspect or the first aspect.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a network architecture according to an embodiment of the present application.
  • FIG. 3 is a flowchart of an implementation of a method for reducing electromagnetic radiation specific absorption rate according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of an effect of controlling transmit power according to an embodiment of the present application.
  • FIG. 5 is a flowchart of an implementation of another method for reducing electromagnetic radiation specific absorption rate according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an apparatus for reducing the specific absorption rate of electromagnetic radiation provided by the present application.
  • FIG. 7 is a schematic diagram of another apparatus for reducing the specific absorption rate of electromagnetic radiation provided by the present application.
  • the terminal also known as user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • devices with network access functions for example, handheld devices with wireless connectivity, in-vehicle devices, and the like.
  • terminals are: mobile phones, tablets, laptops, PDAs, mobile internet devices (MIDs), wearable devices, virtual reality (VR) devices, augmented reality.
  • MIDs mobile internet devices
  • VR virtual reality
  • augmented reality, AR augmented reality, AR
  • wireless terminals in industrial control wireless terminals in self driving, wireless terminals in remote medical surgery
  • smart grid Wireless terminals wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and the like.
  • a network device which is a device in a wireless network, for example, may be a radio access network (RAN) node that accesses a terminal to a wireless network, and the RAN node may also be referred to as a base station.
  • RAN nodes are: a continuation of evolved Node B (gNB), a transmission reception point (TRP), an evolved Node B (eNB), and a radio network controller (radio network controller, RNC), Node B (NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB) , a base band unit (BBU), or a wireless fidelity (Wifi) access point (AP).
  • a network device may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node.
  • Multiple means two or more, and other quantifiers are similar. "and/or”, describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • SAR refers to the electromagnetic power absorbed or consumed by human body tissue per unit time in unit time.
  • the unit is W/kg, which is used to characterize the degree of influence of electromagnetic radiation on the human body.
  • the larger the SAR value the greater the SAR value.
  • the greater the impact the smaller the SAR value, indicating that the impact on the human body is smaller.
  • WiFi is a technology that allows direct communication between a terminal and a terminal, or communication under the coordination of a base station/access point (AP).
  • AP base station/access point
  • Phased array antenna refers to an antenna that changes the shape of the pattern by controlling the feeding phase of the radiating elements in the array antenna.
  • the power headroom is the difference between the maximum transmission power allowed by the terminal and the currently estimated physical uplink shared channel (PUSCH) transmission power.
  • Soft handover refers to channel switching between cells when the carrier frequency of the pilot channel is the same.
  • the terminal maintains a communication link with the original base station and the new base station, only when the terminal is established in a new cell. After the communication is stabilized, the connection with the original base station is disconnected.
  • FIG. 1 it is a schematic diagram of a communication system provided by an embodiment of the present application.
  • the terminal 130 accesses a wireless network to acquire a service of an external network (e.g., the Internet) through a wireless network, or communicates with other terminals through a wireless network.
  • the wireless network includes a radio access network (RAN) node 110 and a core network (CN) 120, wherein the RAN 110 is used to connect the terminal 130 to the wireless network, and the CN 120 is used to manage the terminal and provide the external network.
  • the gateway for communication.
  • the network architecture includes a CN device and a RAN device.
  • the RAN device includes a baseband device and a radio frequency device, wherein the baseband device may be implemented by one node or multiple nodes, and the radio frequency device may be independently implemented from the baseband device, or may be integrated into the baseband device, or partially extended.
  • a RAN device evolved Node B (eNB)
  • eNB evolved Node B
  • a RAN device includes a baseband device and a radio frequency device, wherein the radio frequency device can be remotely arranged with respect to the baseband device.
  • a remote radio unit RRU
  • BBU base band unit
  • the control plane protocol layer structure may include a radio resource control (RRC) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a media connection.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RLC radio link control
  • the functions of the protocol layer such as the media access control (MAC) layer and the physical layer.
  • the user plane protocol layer structure may include functions of a protocol layer such as a PDCP layer, an RLC layer, a MAC layer, and a physical layer; in one implementation, the PDCP layer may further include a service data adaptation protocol (SDAP) layer.
  • SDAP service data adaptation protocol
  • the RAN device may implement the functions of protocol layers such as RRC, PDCP, RLC, and MAC by one node; or may implement the functions of these protocol layers by multiple nodes; for example, in an evolved structure, the RAN device may include a centralized unit (centralized) Unit, CU) and distributed unit (DU), multiple DUs can be centrally controlled by one CU. As shown in FIG. 2, the CU and the DU may be divided according to a protocol layer of the wireless network. For example, the functions of the PDCP layer and the foregoing protocol layer are set in the CU, and the protocol layers below the PDCP, for example, the functions of the RLC layer and the MAC layer are set in the DU.
  • protocol layers such as RRC, PDCP, RLC, and MAC
  • the division of the protocol layer is only an example, and can also be divided in other protocol layers, for example, in the RLC layer, the functions of the RLC layer and the above protocol layer are set in the CU, and the functions of the protocol layer below the RLC layer are set in the DU; Alternatively, in a certain protocol layer, for example, a part of the function of the RLC layer and a function of a protocol layer above the RLC layer are set in the CU, and the remaining functions of the RLC layer and the functions of the protocol layer below the RLC layer are set in the DU. In addition, it may be divided in other manners, for example, according to the delay division, the function that needs to meet the delay requirement in the processing time is set in the DU, and the function that does not need to meet the delay requirement is set in the CU.
  • the radio frequency device can be extended, not placed in the DU, or integrated in the DU, or partially extended in the DU, without any limitation.
  • the terminal when the terminal communicates with the terminal or the terminal and the RAN, the terminal transmits electromagnetic waves, and carries messages that need to be sent to other terminals or RANs through electromagnetic waves.
  • the energy of the electromagnetic wave emitted by the terminal during operation is low, the terminal is very close to the human body during work, which may cause an induced electromagnetic field in the human body.
  • the induced electromagnetic field may have a harmful effect on the human body.
  • SAR electromagnetic radiation by SAR.
  • the degree of influence on the human body the greater the SAR value, the greater the impact on the human body.
  • the smaller the SAR value the smaller the impact on the human body. Therefore, how to reduce SAR, and thus reduce the impact of electromagnetic radiation generated by the terminal on the human body is a growing concern of the public.
  • a shielding device is added between the antenna and the human body, for example, a method of adding a conductive foam, a absorbing material, a conductor reflector or a shield between the antenna and the human body to reduce the SAR .
  • the SAR can only be reduced at the production terminal, the SAR cannot be dynamically reduced once the terminal is used, so the method is less flexible, and the shielding device requires a larger space in the assembly process. It violates the original intention of terminal miniaturization design.
  • the embodiment of the present application provides a method for reducing the specific absorption rate of electromagnetic radiation.
  • the terminal can dynamically calculate the average transmission power within a preset duration, and then determine the relationship according to the corresponding relationship between the average transmission power and the SAR.
  • the average transmit power corresponds to the SAR, and when the SAR is determined to be greater than the preset threshold, the transmit power of the terminal is reduced, and the SAR value is reduced, thereby realizing the dynamic adjustment of the SAR value during the use of the terminal, and the flexibility is high.
  • FIG. 3 it is a flowchart of an implementation of a method for reducing electromagnetic radiation specific absorption rate provided by an embodiment of the present application. As shown in FIG. 3, the method may include the following steps:
  • the terminal collects the transmit power of the terminal at different time points in the second time period after the first time period from the start time, and further obtains at least two transmit powers.
  • the terminal can collect the radio frequency of the terminal according to the predetermined acquisition frequency at different time points in ⁇ t2 after the time t0+ ⁇ t1 in S101.
  • the component transmits the transmit power of the wireless signal, so that multiple transmit powers can be obtained.
  • the multiple transmit powers are related to the number of acquisition time points (ie, the acquisition frequency) of the terminal within ⁇ t2, and the more the acquisition time points (ie, the higher the acquisition frequency), the more the corresponding transmit power values are collected, and vice versa.
  • the collected transmit power value is less.
  • the present application can transmit the transmit power of the wireless signal by using the radio frequency component of the terminal after the first time period from the power-on time. Save power consumption of the terminal.
  • the terminal calculates an average transmit power of the plurality of transmit powers obtained as described above. Since one transmitting power cannot accurately represent the transmitting condition of the radio component of the terminal in a period of time, at least two transmitting powers of the terminal may be collected at different time points in the second duration, and at least two are calculated. The average transmit power of the transmit power, and then the SAR value is adjusted more accurately based on the average transmit power.
  • the terminal determines the SAR corresponding to the obtained average transmit power according to the average transmit power calculated by the foregoing.
  • the correspondence between the average transmit power of the terminal and the SAR for a period of time may be obtained according to an experimental measurement. There is no uniform standard for the corresponding relationship in the industry, and the application is not listed one by one.
  • the terminal may obtain a one-to-one correspondence between at least two average transmit powers and at least two SARs in advance, and determine a SAR corresponding to the average transmit power according to the correspondence relationship and the average transmit power.
  • the terminal may obtain a one-to-one correspondence between at least two average transmit powers and at least two SARs in the following two manners.
  • the terminal acquires a one-to-one correspondence between at least two average transmit powers pre-stored locally and at least two SARs.
  • the terminal may pre-store the at least two average transmit powers obtained by the experiment and the one-to-one correspondence between the at least two SARs in a local memory, and obtain the corresponding relationship locally when the terminal is used. In this way, the terminal can quickly determine the SAR corresponding to the calculated average transmit power according to the acquired correspondence and the calculated average transmit power.
  • the terminal receives a one-to-one correspondence between at least two average transmit powers transmitted by the network device (eg, the RAN) and at least two SARs. That is, the terminal can not only obtain the corresponding relationship stored locally, but also obtain the corresponding relationship existing in other network devices. In actual applications, an appropriate implementation manner can be selected according to specific situations. For example, if the local storage space of the terminal is tight, the corresponding relationship may be stored in another network device. When the terminal needs to use the corresponding relationship, the corresponding relationship may be obtained from other network devices, where the corresponding relationship stored by the network device may also be The one-to-one correspondence between the at least two average transmit powers obtained by the experiment and the at least two SARs.
  • the network device eg, the RAN
  • the terminal determines that the SAR obtained by the foregoing is greater than a preset threshold, the terminal selects to reduce the transmit power of the radio signal of the terminal after the second time period, so that the terminal can control the radio frequency component according to the average transmit power of the previous time period.
  • the wireless signal transmission power at the next time or the next time period thereby realizing dynamic control of the SAR, so that the SAR is maintained within a preset threshold.
  • the preset threshold may refer to a current limit of 2.0 W/kg for SAR in Europe, or may be a limit of 1.6 W/kg for the current SAR in the Americas, or may be based on actual application.
  • Other values determined by the scenario that are smaller than the above-mentioned European limit value or smaller than the above-mentioned American limit value are not limited in this application.
  • FIG. 4 it is a schematic diagram of an effect of controlling transmit power provided by an embodiment of the present application.
  • the horizontal axis of the coordinate axis represents time
  • the vertical axis represents the transmission power of the terminal
  • the terminal is powered on at the origin, at seven different time points within the second duration after the first duration from the start-up time, Collecting the transmit power of the terminal separately, and obtaining seven transmit powers
  • the terminal may calculate the average transmit power of the seven transmit powers, and then determine a SAR corresponding to the average transmit power according to the average transmit power, if the SAR is determined to be greater than the pre-determination Taking the threshold, the transmission power after the second duration (the transmission power shown by the broken line) is lowered.
  • the value of the SAR can be dynamically adjusted during the process of using the terminal, and the flexibility is high, and the shielding device is not required to be added between the antenna and the human body when the terminal is produced, so that the terminal can be miniaturized; further Since the terminal usually does not immediately enter the call state after the power is turned on, the present application can save the power consumption of the terminal radio component by counting the first radio transmission time after the power-on time, thereby saving the power consumption of the terminal. It can be the duration value of the terminal determined by the empirical value from the start of the boot to the official entry into the working state, for example, 5 seconds, and the like.
  • the terminal starts to perform power control after entering the call state, and then adjusts the size of the SAR. Since the terminal is closest to the human body during the call, and the contact time is usually long, the damage to the human body is the greatest, therefore, By determining that the terminal enters the call state, it is considered to perform control of the SAR, and other times may reduce or not perform SAR control on the terminal, which may further save power consumption of the terminal.
  • the terminal entering the communication state refers to establishing a connection between the terminal and one or more other terminals, or establishing a connection with one or more network devices.
  • the following takes the terminal as the mobile phone as an example, and the mobile phone enters the call state after the first time period, and the method for reducing the electromagnetic radiation specific absorption rate provided by the embodiment of the present application is described in detail.
  • FIG. 5 it is a flowchart of an implementation of another method for reducing electromagnetic radiation specific absorption rate provided by an embodiment of the present application. As shown in FIG. 5, the method may include:
  • the mobile phone determines to enter a working state after the first time. Specifically, after the mobile phone is powered on, the processor can periodically detect whether the mobile phone enters a working state, wherein the working state refers to that the mobile phone can normally monitor various communication signals of the network, such as sending and receiving short messages and answering calls. If the processor determines that the mobile phone has entered the call state, power control is initiated to implement control of the SAR.
  • the first time here usually refers to the length of time from the start of the phone to the official entry into the working state.
  • the mobile phone collects the transmit power of the wireless signal from the transceiver of the mobile phone at different time points in the second time period after the first time period, thereby obtaining at least two transmit powers.
  • the processor may collect the mobile phone at a preset acquisition frequency, for example, every 2 milliseconds, within a second time period after the first time duration.
  • the transceiver transmits the transmit power of the wireless signal, so that multiple transmit powers can be obtained. For example, if the second duration is 1 minute, the transmit power of the wireless signal transmitted by the transceiver of the mobile phone is collected every 20 milliseconds, and 3000 transmit power can be obtained. .
  • the processor of the mobile phone calculates an average transmit power of the multiple transmit powers collected by the processor after collecting the multiple transmit powers. Since one transmitting power cannot accurately represent the situation in which the transceiver of the mobile phone transmits the wireless signal for a period of time, in the present application, the processor can collect the wireless signal when the transceiver transmits the wireless signal at different time points within the second time period. The transmit power is calculated, and the average transmit power of the multiple transmit powers of the wireless signal transmitted by the transceiver is calculated, and the SAR value is adjusted more accurately according to the average transmit power.
  • the processor of the mobile phone determines the SAR corresponding to the obtained average transmit power according to the average transmit power calculated above.
  • the processor may, but is not limited to, determine the SAR corresponding to the resulting average transmit power in the following manner:
  • a correspondence between a plurality of pairs of transmit power and a SAR is pre-stored in a memory of the mobile phone, wherein the correspondence between the multiple pairs of transmit power and the SAR may be obtained according to experience in advance, or may be manually simulated by multiple times. The obtained, of course, can also be obtained by experimental measurement.
  • the processor can directly query the SAR corresponding to the calculated average transmit power from the correspondence between the pairs of transmit powers stored in the local memory of the mobile phone and the SAR.
  • the processor can control the correspondence between the multiple pairs of transmit powers transmitted by the network transceiver (eg, the RAN) and the SAR, wherein the receiving process can be divided into an active receiving mode and a passive receiving mode, and the active receiving mobile phone can be Sending a request message for requesting a correspondence between the transmit power and the SAR to the network device, and then the network device sends a corresponding relationship between the multiple pairs of transmit power and the SAR according to the request message; the passive receiving manner refers to the case that the mobile phone does not actively request the mobile phone.
  • the network transceiver eg, the RAN
  • the active receiving mobile phone can be Sending a request message for requesting a correspondence between the transmit power and the SAR to the network device, and then the network device sends a corresponding relationship between the multiple pairs of transmit power and the SAR according to the request message
  • the passive receiving manner refers to the case that the mobile phone does not actively request the mobile phone.
  • the network device sends the latest transmission power to the mobile phone according to a certain period according to a certain period; the mobile phone can temporarily store the corresponding relationship sent by the network device through the transceiver, and can temporarily exist in the cache in the mobile phone.
  • the correspondence between the multiple pairs of transmit powers transmitted by the network device and the SAR may also be obtained according to experience training in advance, or may be obtained by artificially performing multiple simulation trainings in advance, or may be experimentally measured. Then, the mobile phone can query the SAR corresponding to the average calculated transmit power calculated in the corresponding relationship cached in the local cache.
  • S205 If the processor of the mobile phone determines that the SAR obtained by the foregoing is greater than a preset threshold, the processor of the mobile phone is selected to reduce the transmit power of the wireless signal after the second time period.
  • the preset threshold may also be determined in advance by an empirical value.
  • S206 After the processor of the mobile phone transmits the transmit power of the wireless signal after the transceiver is in the second time period, if the mobile phone initiates the call process within the second time period, it may be determined whether the initiated call ends when the second time duration ends. . If it is determined that the call is over, then S207 is performed. If it is determined that the initiated call has not ended, the subsequent steps of S202 and S202 described above are repeatedly performed.
  • S207 The processor control of the mobile phone ends the transmission power adjustment triggered by the SAR.
  • the mobile phone performs the control of the SAR from the start of the booting to the working state, and the time between the start of the mobile phone and the time of entering the working state is very low due to the low transmission power of the mobile phone at this time.
  • the human body is extremely harmless, so the control of the SAR can be prevented, thereby reducing the power consumption of the mobile phone.
  • the terminal may, but is not limited to, reduce the transmit power of the terminal after the second duration by using at least one of the following manners:
  • the terminal directly disables the WIFI function. Since the effects of WiFi transmission and mobile communication transmission on the SAR are superimposed, the terminal can reduce the transmission power by turning off the WiFi function, thereby reducing the value of the SAR and controlling it within a preset threshold range.
  • the terminal prohibits the establishment of a new RRC connection and/or application communication connection.
  • the application communication connection refers to a communication connection using an application, and the application communication connection includes an application voice connection, an application data connection, and an application video connection.
  • the application communication connection may be a voice connection, a data connection, or a video connection initiated by WeChat.
  • the terminal prohibits the application communication connection initiated by the application, and also reduces the transmission power of the terminal, thereby reducing the value of the SAR.
  • the third way the terminal controls its own phased array antenna to form a beam that does not point to the human body. Specifically, the position of the human body relative to the terminal can be detected by the built-in sensor of the terminal, and then the phased array antenna of the control terminal forms a beam that does not point to the human body, thereby reducing SAR and reducing radiation to the human body.
  • the fourth mode the terminal control transmits the signal by using an antenna remote from the human body among the plurality of antennas installed by itself.
  • the current terminal usually has multiple antennas installed, such as MIMO antenna technology. If the terminal determines that multiple antennas are installed by itself, the terminal control may use multiple antennas installed by itself when the user communicates with the terminal. The antenna is transmitted away from the human body to transmit signals, thereby reducing SAR and reducing radiation to the human body.
  • the transmit power of the terminal can be simultaneously reduced in multiple manners, so that the terminal can flexibly select an implementation manner of reducing the transmit power, which is flexible. Higher sex.
  • the method for reducing SAR in the present application is mainly described from a qualitative point of view.
  • the method for reducing SAR provided by the present application is mainly described below from a quantitative perspective.
  • the terminal may, but is not limited to, reduce the transmit power of the radio component of the terminal after transmitting the wireless signal after the second duration: the terminal determines the SAR corresponding to the average transmit power measured within the second duration And calculating a difference between the preset threshold and the SAR, and determining, according to the difference, that the transmit power after the second duration is decreased by a set value, and further reducing the transmit power after the second duration by a set value.
  • the terminal can relatively accurately determine the set value that the transmit power needs to be lowered according to the difference, and can further adjust the value of the SAR relatively accurately by lowering the transmit power by a set value.
  • the terminal may be, but is not limited to, adopting one or more of the following manners to reduce the transmit power of the signal transmitted by the radio component of the terminal after the second duration.
  • the transmit power of the terminal is reduced in one of the following manners, the following first preset value, second preset value, third preset value, fourth preset value, and fifth preset value are respectively reduced correspondingly
  • the set value of the transmit power when the transmit power is reduced at the same time in various ways as follows, the sum of the values of the transmit power is reduced by using each method, that is, the total value of the transmit power can be reduced for the terminal, wherein the first first The set value, the second preset value, the third preset value, the fourth preset value, and the fifth preset value may all be determined according to the experimental measurement values, and may be pre-stored in the memory of the terminal.
  • the first mode the terminal reduces the maximum transmit power of the PRACH by a first preset value.
  • the maximum transmit power of the PRACH is generally close to the maximum transmit power of the mobile phone, and reducing the maximum transmit power of the PRACH has little effect on the communication performance, but can greatly reduce the SAR.
  • the second mode the terminal will report the power headroom to the network, and reduce the second preset value.
  • the terminal can report the power headroom to the network side, so that the scheduler on the network side uses the power headroom to estimate the next transmit power of the terminal, thereby better arranging radio resources for each terminal.
  • the power headroom reported by the terminal the data rate of the uplink transmission is reduced, thereby reducing the transmission power and reducing the SAR value.
  • the third mode the terminal increases the number of uplink HARQ retransmissions by a third preset value.
  • the fourth mode the terminal reduces the total number of connections to the network device during soft handover, and reduces the fourth preset value.
  • a terminal when a terminal performs soft handover, it needs to establish a connection with multiple network devices (for example, multiple base stations) at the same time.
  • the number of connected devices in the soft handover is more than two, sometimes 4 or 5, The more the number of network devices connected to the terminal, the higher the transmission power of the terminal.
  • This application can reduce the transmission power of the terminal by reducing the total number of connections with the network device during soft handover of the terminal, thereby achieving the purpose of reducing SAR.
  • the fifth mode the terminal reduces the data rate of the coding decoding (codec) of the voice connection by a fifth preset value.
  • the quality of voice communication is related to the codec data rate of the voice connection. The higher the codec data rate, the better the voice quality and the greater the required transmit power. For example, in narrowband and wideband adaptive multi-data rate systems, the speech de-encoding data rate is at least 4.75 kbps and the highest is 23.85 kbps.
  • the application can also reduce the transmit power of the terminal by a set value by reducing the codec data rate by a fifth preset value, thereby achieving the purpose of reducing the SAR.
  • the terminal can flexibly select an implementation method for reducing the transmission power, has high flexibility, and reduces the transmission power of the terminal by a set value, so as to achieve a relatively accurate adjustment of the SAR value.
  • the embodiment of the present application further provides an apparatus for reducing the specific absorption rate of electromagnetic radiation.
  • the device includes corresponding hardware structures and/or software modules for performing various functions in order to implement the above functions.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the algorithmic steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • FIG. 6 shows a possible structural diagram of an apparatus for reducing the specific absorption rate of electromagnetic radiation according to an embodiment of the present application.
  • the apparatus 600 for reducing electromagnetic radiation specific absorption rate includes a processing unit 601, a storage unit 602, and a transceiver unit 603.
  • the processing unit 601 is configured to perform control management on the actions of the device 600.
  • the processing unit 601 can be used to execute technical processes such as S101-S104 in FIG. 3, and can also perform technical processes such as S201-S207 in FIG.
  • Transceiver unit 603 is used to support communication of device 600 with other network entities.
  • Device 600 may also include a storage unit 602 for storing program code and data for device 600.
  • the processing unit 601 can be a processor or a controller, for example, a general central processing unit (CPU), a general-purpose processor, a digital signal processing (DSP), and an application specific integrated circuit. Circuits, ASICs, field programmable gate arrays (FPGAs) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the transceiver unit 603 can be a radio frequency chip, a radio frequency circuit, or the like.
  • the storage unit 602 may be a memory, and may be a RAM (random-access memory), a ROM (read-only memory), or the like.
  • the device 600 When the processing unit 601 is a processor, the transceiver unit 603 is a transceiver, and the storage unit 602 is a memory, the device 600 according to the embodiment of the present invention may be the device shown in FIG.
  • FIG. 7 is a schematic diagram showing a possible logical structure of a device involved in the foregoing embodiment provided by an embodiment of the present application.
  • the device 700 can include at least one processor 701.
  • the processor 701 is configured to perform control management on the action of the device.
  • the device may further include a memory 702 and a transceiver 703.
  • the processor 701, the memory 702, and the transceiver 703 may be connected to each other or to each other through a bus 704.
  • the memory 702 is configured to store code and data of the device.
  • the transceiver 703 is configured to support the device to communicate with other network devices.
  • the processor 701 is a control center of the device, and may be a processor or a collective name of a plurality of processing elements.
  • the processor 701 is a CPU, which may be implemented by an ASIC, or one or more integrated circuits configured to implement an embodiment of the present invention, such as one or more DSPs, or one or more FPGA.
  • the processor 701 can perform various functions of the device 700 by running or executing a software program stored in the memory 702 and calling data stored in the memory 702.
  • the memory 702 can be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type that can store information and instructions.
  • the dynamic storage device can also be an Electrically Erasable Programmable Read-Only Memory (EEPROM), a Compact Disc Read-Only Memory (CD-ROM) or other optical disc storage, and a disc storage device. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
  • Memory 702 can exist independently and is coupled to processor 701 via communication bus 704. Memory 702 can also be integrated with processor 701.
  • the transceiver 703 is used for communication with other nodes, for example, a network device. It can also be used to communicate with a communication network, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), and the like.
  • a communication network such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), and the like.
  • the communication bus 704 may be an Industry Standard Architecture (ISA) bus, an external UAV, a Peripheral Component (PCI) bus, or an Extended Industry Standard Architecture (EISA) bus. Wait.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 7, but it does not mean that there is only one bus or one type of bus.
  • the device structure illustrated in Figure 7 does not constitute a limitation to an apparatus for reducing the specific absorption of electromagnetic radiation, and may include more or less components than those illustrated, or some components may be combined, or different component arrangements.
  • the processor 701 calls and executes the computer program stored in the memory 702, and the specific process of each embodiment in the foregoing method embodiments can be completed by the transceiver 703, which will not be described in detail herein.
  • the embodiment of the present application further provides a computer storage medium, where the computer storage medium stores computer executable instructions, when the computer executable instructions are called by the computer,
  • the computer readable storage medium is not limited, and may be, for example, a RAM (random-access memory), a ROM (read-only memory), or the like.
  • the embodiment of the present application further provides a computer program product, where the computer program product stores instructions, when executed on a computer, causes the computer to perform any of the above possible designs.
  • the method provided in .
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

一种降低电磁辐射比吸收率的方法及设备,用以解决现有降低SAR的方法灵活性较差,且违背移动终端小型化设计的问题,该方法包括:终端在开机时刻起的第一时长后的第二时长内的不同时间点,分别采集该终端的发射功率,得到至少两个发射功率,计算该至少两个发射功率的平均发射功率,并根据该平均发射功率,确定与该平均发射功率对应的SAR,终端若确定该SAR大于预设阈值,则降低终端在第二时长之后的发射功率。这样,可实现在使用终端的过程中,动态的调整SAR的值,灵活性较高,且,无需在生产终端时在天线与人体之间增加屏蔽器件,故可支持终端小型化设计。

Description

一种降低电磁辐射比吸收率的方法及设备 技术领域
本申请涉及通信技术领域,尤其涉及一种降低电磁辐射比吸收率的方法及设备。
背景技术
随着无线通信技术的发展,能够发射电磁波的设备急剧增长,公众对于安全问题日益关注。虽然手机、平板电脑等移动终端在工作时发射电磁波的能量较低,但是这些移动终端在工作时距离人体非常近,会导致人体内产生感应电磁场。目前,业界引入电磁辐射比吸收率(specific absorption rate,SAR)来表征电磁辐射对人体的影响程度,SAR定义为在单位时间内,单位质量的人体组织所吸收或消耗的电磁功率。在实际应用中,SAR是一个测量值,单位为W/kg,SAR值越大,表示对人体的影响越大,反之,SAR值越小,表示对人体的影响越小。由于SAR值过高可能会对人体有害,因此,许多国家和地区都规定了SAR限值,其中,欧洲限值规定为2.0W/kg,美洲限值规定为1.6W/kg。
现有技术中,通常在移动终端出厂之前,采用在天线与人体之间增加屏蔽器件(如导电泡绵、吸波材料、导体反射器和屏蔽器等)的方法,降低SAR。这样,由于只能在生产移动终端时降低SAR,一旦移动终端出厂使用之后便不可动态的降低SAR,故该方法灵活性较差,且,屏蔽器件在装配过程中,需要更大的位置空间,这也违背了移动终端小型化设计的初衷。
因此,提出一种新型的降低SAR的方法十分必要。
发明内容
本申请实施例提供一种降低电磁辐射比吸收率的方法及设备,用以解决现有降低SAR的方法灵活性较差,且违背移动终端小型化设计的问题。
第一方面,本申请实施例提供一种降低电磁辐射比吸收率的方法,该方法包括,终端在开机时刻起的第一时长后的第二时长内的不同时间点,分别采集该终端的发射功率,得到至少两个发射功率,计算该至少两个发射功率的平均发射功率,并根据该平均发射功率,确定与该平均发射功率对应的SAR,终端若确定该SAR大于预设阈值,则降低终端在第二时长之后的发射功率。
通过上述方法,终端可从开机时刻起的第一时长之后,统计第一时长后的第二时长内的平均发射功率,根据平均发射功率与SAR的对应关系,确定与该平均发射功率对应的SAR,并在确定SAR大于预设阈值时,降低终端在第二时长之后的发射功率,进而减小SAR值。这样,可实现在使用终端的过程中,动态的调整SAR的值,灵活性较高,且,无需在生产终端时在天线与人体之间增加屏蔽器件,故可支持终端小型化设计;进一步的,由于终端在开机之后通常不会立即进入通话状态,所以通常开机后的一小段时长内终端的发射功率也是比较低的,故本申请通过在开机时刻起的第一时长之后再统计终端的发射功率,可以较好的节省终端的功耗。
一种可能的设计中,第一时长可以为终端通常进入通话状态或工作状态的经验时长,比如为5秒钟等。在该种设计中,终端在进入通话状态之后,才开始进行功率采集和控制, 进而调整SAR的大小,可进一步节省终端的功耗。
一种可能的设计中,终端可以但不限于采用如下方式中的至少一项降低终端在第二时长之后的发射功率:
终端关闭无线宽带(wireless-fidelity,WIFI)功能;
终端禁止建立新的无线资源控制(radio resource control,RRC)连接和/或应用通信连接;应用通信连接是指使用应用程序进行的通信连接,应用通信连接包括应用语音连接、应用数据连接以及应用视频连接;
终端控制终端的相控阵天线形成不指向人体的波束;
终端控制采用自身安装的多个天线中的远离人体的天线发射信号。
通过上述方法,若其中一种方式不能将终端的发射功率降低至合适值,则可采用多种方式同时降低终端的发射功率,这样,终端可灵活选取降低发射功率的实施方式,灵活性较高。
一种可能的设计中,终端若确定SAR大于预设阈值,则降低终端在第二时长之后的发射功率,可以包括:终端计算预设阈值与SAR的差值,进而根据差值确定将第二时长之后的发射功率降低设定值,将第二时长之后的发射功率降低设定值。
通过上述方法,终端可进一步确定预设阈值与SAR的差值,这样,终端可根据该差值相对精确的确定出发射功率需要降低的设定值,进而可通过将发射功率降低设定值,准确的调整SAR的值。
一种可能的设计中,终端可以但不限于采用如下方式将第二时长之后的发射功率降低设定值:
终端将物理随机接入信道(physical random access channel,PRACH)的最大发射功率,减小第一预设值。
终端将上报给网络的功率余量,减小第二预设值。
终端将上行混合自动重传请求(hybrid automatic repeat request,HARQ)重传的次数,增加第三预设值。
终端将软切换时与网络设备的连接总数,减小第四预设值。
终端将语音连接的编解码数据率,减小第五预设值。
通过上述方法,终端可灵活选取降低发射功率的实施方式,灵活性较高,并将终端的发射功率降低设定值,可实现相对准确的调整SAR的值。需要说明的是,上述将第二时长之后的发射功率降低设定值的多种方式可同时使用,这样,使用每一种方式降低发射功率的值之和即为终端降低发射功率的总值。
一种可能的设计中,终端可采用如下方式,根据平均发射功率确定与平均发射功率对应的SAR:终端获取至少两个平均发射功率与至少两个SAR的一一对应关系,并根据对应关系以及平均发射功率,确定与平均发射功率对应的SAR。这样,终端可根据获取的至少两个平均发射功率与至少两个SAR的一一对应关系以及计算得到的平均发射功率,较为快速的确定与计算得到的平均发射功率对应的SAR。
一种可能的设计中,终端可以接收网络设备发送的至少两个平均发射功率与至少两个SAR的一一对应关系,当然终端也可以获取本地预先存储的至少两个平均发射功率与至少两个SAR的一一对应关系。通过上述方法,终端可获取预先存储的对应关系,这样,将至少两个平均发射功率与至少两个SAR的一一对应关系预先存储的终端本地,可进一步提升 控制发射功率的效率。
第二方面,本申请实施例提供一种降低电磁辐射比吸收率的设备,该设备具有实现上述第一方面方法中终端的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。所述模块可以是软件和/或硬件。
在一种可能的设计中,所述终端包括收发单元、处理单元和存储单元,这些单元可以执行上述第一方面或第一方面的任意可能的设计中涉及的方法,具体参见方法示例中的详细描述,此处不做赘述。
在一种可能的设计中,所述终端包括处理器、存储器、收发器和总线,其中,所述处理器、存储器以及收发器通过所述总线连接;所述处理器调用存储在所述存储器中的指令,执行上述第一方面或第一方面的任意可能的设计中涉及的方法。
第三方面,本申请实施例中还提供一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令在被计算机调用时,使所述计算机执行上述第一方面或上述第一方面的任意一种设计提供的方法。
第四方面,本申请实施例中还提供一种计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或上述第一方面的任意一种可能的设计中所述的方法。
附图说明
图1为本申请实施例提供的一种通信系统的示意图;
图2为本申请实施例提供的一种网络架构的示意图;
图3为本申请实施例提供的一种降低电磁辐射比吸收率的方法的实施流程图;
图4为本申请实施例提供的一种控制发射功率的效果示意图;
图5为本申请实施例提供的另一种降低电磁辐射比吸收率的方法的实施流程图;
图6为本申请提供的一种降低电磁辐射比吸收率的设备示意图;
图7为本申请提供的另一种降低电磁辐射比吸收率的设备示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
首先,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、终端,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性,并具有网络接入功能的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城 市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
2)、网络设备,是无线网络中的设备,例如可以是将终端接入到无线网络的无线接入网(radio access network,RAN)节点,RAN节点也可以称为基站。目前,一些RAN节点的举例为:继续演进的节点B(gNB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。
3)、“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
4)、SAR,是指在单位时间内,单位质量的人体组织所吸收或消耗的电磁功率,单位为W/kg,用于表征电磁辐射对人体的影响程度,SAR值越大,表示对人体的影响越大,SAR值越小,表示对人体的影响越小。
5)、WiFi,是一种允许终端与终端之间直接通信,或者在基站/访问点(access point,AP)的协调下进行通信的技术。
6)、相控阵天线,是指通过控制阵列天线中辐射单元的馈电相位来改变方向图形状的天线。
7)、功率余量,是指终端允许的最大传输功率与当前评估得到的物理上行共享信道(physical uplink shared channel,PUSCH)传输功率之间的差值。
8)、软切换,是指在导频信道的载波频率相同时小区之间的信道切换,在切换过程中,终端与原基站和新基站都保持通信链路,只有当终端在新的小区建立稳定通信后,才断开与原基站的连接。
参阅图1所示,其为本申请实施例提供的一种通信系统的示意图。如图1所示,终端130接入到无线网络,以通过无线网络获取外网(例如因特网)的服务,或者通过无线网络与其它终端通信。该无线网络包括无线接入网(radio access network,RAN)节点110和核心网(CN)120,其中RAN110用于将终端130接入到无线网络,CN120用于对终端进行管理并提供与外网通信的网关。
参阅图2所示,其为本申请实施例提供的一种网络架构的示意图。如图2所示,该网络架构包括CN设备和RAN设备。其中RAN设备包括基带装置和射频装置,其中基带装置可以由一个节点实现,也可以由多个节点实现,射频装置可以从基带装置拉远独立实现,也可以集成基带装置中,或者部分拉远部分集成在基带装置中。例如,在长期演进(long term evolution,LTE)通信系统中,RAN设备(演进型节点B(evolved Node B,eNB))包括基带装置和射频装置,其中射频装置可以相对于基带装置拉远布置,例如射频拉远单元(remote radio unit,RRU)相对于基带单元(base band unit,BBU)拉远布置。
RAN设备和终端之间的通信遵循一定的协议层结构。例如控制面协议层结构可以包括无线资源控制(radio resource control,RRC)层、分组数据汇聚层协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体接入 控制(media access control,MAC)层和物理层等协议层的功能。用户面协议层结构可以包括PDCP层、RLC层、MAC层和物理层等协议层的功能;在一种实现中,PDCP层之上还可以包括业务数据适配(service data adaptation protocol,SDAP)层。
RAN设备可以由一个节点实现RRC、PDCP、RLC和MAC等协议层的功能;或者可以由多个节点实现这些协议层的功能;例如,在一种演进结构中,RAN设备可以包括集中单元(centralized unit,CU)和分布单元(distributed unit,DU),多个DU可以由一个CU集中控制。如图2所示,CU和DU可以根据无线网络的协议层划分,例如PDCP层及以上协议层的功能设置在CU,PDCP以下的协议层,例如RLC层和MAC层等的功能设置在DU。
这种协议层的划分仅仅是一种举例,还可以在其它协议层划分,例如在RLC层划分,将RLC层及以上协议层的功能设置在CU,RLC层以下协议层的功能设置在DU;或者,在某个协议层中划分,例如将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。此外,也可以按其它方式划分,例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。
此外,射频装置可以拉远,不放在DU中,也可以集成在DU中,或者部分拉远部分集成在DU中,在此不作任何限制。
在图1或图2所示的网络架构中,终端与终端或者终端与RAN进行通信时,终端会发射电磁波,通过电磁波携带需要发送至其他终端或者RAN的消息。虽然终端在工作时发射电磁波的能量较低,但是终端在工作时距离人体非常近,会导致人体内产生感应电磁场,该感应电磁场会对人体产生有害的影响,目前,业界通过SAR来衡量电磁辐射对人体的影响程度,SAR值越大,表示对人体的影响越大,反之,SAR值越小,表示对人体的影响越小。因此,如何降低SAR,进而降低终端所产生的电磁辐射对人体的影响是公众日益关注的问题。
现有技术中,通常在终端出厂之前,采用在天线与人体之间增加屏蔽器件,例如在天线与人体之间增加导电泡绵、吸波材料、导体反射器或者屏蔽器等的方法,降低SAR。这样,由于只能在生产终端时降低SAR,一旦终端出厂使用之后便不可动态的降低SAR,故该方法灵活性较差,且,屏蔽器件在装配过程中,需要更大的位置空间,这也违背了终端小型化设计的初衷。
基于上述存在的问题,本申请实施例提供一种降低电磁辐射比吸收率的方法,终端可动态的统计预设时长内的平均发射功率,进而根据平均发射功率与SAR的对应关系,确定与该平均发射功率对应的SAR,并在确定SAR大于预设阈值时,降低终端的发射功率,进而减小SAR值,进而实现在使用终端的过程中,动态的调整SAR的值,灵活性较高,且无需在生产终端时在天线与人体之间增加屏蔽器件,故可支持终端小型化设计。
参阅图3所示,其为本申请实施例提供的一种降低电磁辐射比吸收率的方法的实施流程图。如图3所示,该方法可以包括如下步骤:
S101:终端在开机时刻起的第一时长后的第二时长内的不同时间点,分别采集终端的发射功率,进而得到至少两个发射功率。
例如,假设终端在t0时刻开机,第一时长为Δt1,第二时长为Δt2,则S101中终端在t0+Δt1时刻之后的Δt2内的不同时间点,可以按照预定的采集频率分别采集终端的射频部 件发送无线信号的发射功率,从而可以得到多个发射功率。可以理解的是,多个发射功率与终端在Δt2内的采集时间点数(即采集频率)相关,采集时间点数越多(即采集频率越高),对应采集到的发射功率值越多,反之,采集到的发射功率值越少。
本申请实施例中,由于终端在开机之后通常不会立即进入通话状态,故,本申请通过在开机时刻起的第一时长之后再行统计终端的射频部件发送无线信号的发射功率,可以较好地节省终端的功耗。
S102:终端计算上述得到的多个发射功率的平均发射功率。由于一个发射功率不能较准确的表征终端的射频部件在一段时间内的发射情况,故本申请中可在第二时长内的不同时间点,采集终端的至少两个发射功率,并计算至少两个发射功率的平均发射功率,进而根据平均发射功率较准确的调整SAR的值。
S103:终端根据上述计算得到的平均发射功率,确定与得到的平均发射功率对应的SAR。本申请实施例中,终端在一段时间内的平均发射功率与SAR之间的对应关系可根据实验测量得到,针对该对应关系业界没有统一的标准,本申请不再一一列举。
本申请实施例中,对终端如何根据平均发射功率确定与平均发射功率对应的SAR,不做限定。一种可能的实现方式中,终端可以预先获取至少两个平均发射功率与至少两个SAR的一一对应关系,并根据对应关系以及平均发射功率,确定与平均发射功率对应的SAR。在该种实现方式中,终端可采用如下两种方式获取至少两个平均发射功率与至少两个SAR的一一对应关系。
一种方式中,终端获取本地预先存储的至少两个平均发射功率与至少两个SAR的一一对应关系。例如,终端可将实验测量得到的至少两个平均发射功率与至少两个SAR的一一对应关系,预先存储在本地存储器中,待终端使用时,从本地获取该对应关系。这样,终端就可根据获取的对应关系以及计算得到的平均发射功率,快速的确定与计算得到的平均发射功率对应的SAR。
另一种方式中,终端接收网络设备(例如,RAN)发送的至少两个平均发射功率与至少两个SAR的一一对应关系。即,终端不仅可获取存储在本地的对应关系,也可获取存在在其它网络设备的对应关系,实际应用中,可根据具体情况选取合适的实施方式。例如,若终端本地存储空间紧张,则可将对应关系存储在其它网络设备,当终端需要使用该对应关系时,可向其它网络设备获取该对应关系,其中,网络设备存储的对应关系也可以是实验测量得到的至少两个平均发射功率与至少两个SAR的一一对应关系。
S104:终端若确定上述得到的SAR大于预设阈值,则选择降低终端的射频部件在第二时长之后发送无线信号的发射功率,这样终端就可以根据前一时间段的平均发射功率来控制射频部件在下一时刻或下一时间段内的无线信号发射功率,进而实现对SAR的动态控制,使得SAR维持在预设阈值之内。
本申请实施例中,预设阈值,可以是指目前欧洲对SAR的规定限值2.0W/kg,也可以是指目前美洲对SAR的规定限值1.6W/kg,当然也可以是根据实际应用场景确定的小于上述欧洲规定限值或小于上述美洲规定限值的其它数值,本申请对此不做限定。
参阅图4所示,其为本申请实施例提供的一种控制发射功率的效果示意图。如图4所示,假设坐标轴的横轴表示时间,纵轴表示终端的发射功率,终端在原点开机,在开机时刻起的第一时长后的第二时长内的七个不同的时间点,分别采集该终端的发射功率,得到七个发射功率,终端可通过计算该七个发射功率的平均发射功率,进而根据该平均发射功 率确定与该平均发射功率对应的SAR,若确定该SAR大于预设阈值,则降低在第二时长之后的发射功率(虚线示出的发射功率)。通过该方法,可实现在使用终端的过程中,动态的调整SAR的值,灵活性较高,且无需在生产终端时在天线与人体之间增加屏蔽器件,故可支持终端小型化设计;进一步的,由于终端在开机之后通常不会立即进入通话状态,故本申请通过在开机时刻起的第一时长之后再统计终端射频部件的发射功率,则可节省终端的功耗,其中,第一时长可以为通过经验值确定出的终端从开机开始到正式进入工作状态的时长值,比如为5秒钟等等。
在该种设计中,终端在进入通话状态之后,才开始进行功率控制,进而调整SAR的大小,由于终端在进行通话时与人体距离最近,且接触时间通常较久,对人体伤害最大,因此,通过确定终端进入通话状态时,再考虑执行对SAR的控制,其它时间可减少或者不对终端执行SAR的控制,可进一步节省终端的功耗。
本申请实施例中,终端进入通信状态是指终端与一个或多个其它终端之间建立连接,或者与一个或多个网络设备之间建立连接。下面以终端为手机为例,对手机在第一时长之后进入通话状态,对本申请实施例提供的降低电磁辐射比吸收率的方法,进行详细说明。
参阅图5所示,其为本申请实施例提供的另一种降低电磁辐射比吸收率的方法的实施流程图。如图5所示,该方法可以包括:
S201:手机确定在第一时长之后进入工作状态。具体地,手机开机之后,处理器可周期性的检测手机是否进入工作状态,其中工作状态是指手机可以正常监控网络的各种通信信号,比如收发短消息和接听电话等。若处理器确定手机已经进入通话状态,则启动功率控制,进而实现对SAR的控制。这里第一时长通常是指手机从开机到正式进入工作状态的时间长度。
S202:手机在第一时长后的第二时长内的不同时间点,通过处理器分别采集手机的收发器发送无线信号的发射功率,从而得到至少两个发射功率。一种可能的实现方式中,处理器若检测到手机在第一时长之后进入工作状态,则可在第一时长之后的第二时长内以预设的采集频率,比如每间隔2毫秒采集一次手机的收发器发送无线信号的发射功率,从而可以得到多个发射功率,比如第二时长是1分钟,则每间隔20毫秒采集一次手机的收发器发送无线信号的发射功率,可以得到3000个发射功率。
S203:手机的处理器在采集到多个发射功率之后,计算上述处理器采集到的多个发射功率的平均发射功率。由于一个发射功率不能较准确的表征手机的收发器在一段时间内发送无线信号的情况,故本申请中可通过处理器在第二时长内的不同时间点,采集收发器发送无线信号时的多个发射功率,并计算收发器发送无线信号的多个发射功率的平均发射功率,进而根据平均发射功率较准确的调整SAR的值。
S204:手机的处理器根据上述计算得到的平均发射功率,确定与得到的平均发射功率对应的SAR。处理器可以但不限于采用如下方式确定与得到的平均发射功率对应的SAR:
例如,手机内部的存储器中预先存储有多对发射功率与SAR的对应关系,其中这多对发射功率与SAR的对应关系可以是预先根据经验训练得到的,也可以是人为预先通过多次模拟训练得到的,当然也可以是通过实验测量得到的。这样处理器可以直接从手机本地的存储器中存储的多对发射功率与SAR的对应关系中,查询上述计算得到的平均发射功率对应的SAR。
又例如,处理器可控制手机收发器接收网络设备(例如,RAN)发送的多对发射功率 与SAR的对应关系,其中这个接收过程可以分为主动接收方式和被动接收方式,主动接收指手机可以向网络设备发送用于请求发射功率与SAR的对应关系的请求消息,然后网络设备根据该请求消息向手机发送多对发射功率与SAR的对应关系;被动接收方式是指不在手机主动请求的情况下,网络设备按照一定周期将最新的发射功率与SAR的对应关系发送给手机;手机通过收发器接收到网络设备每次发送的对应关系后,可以暂存在手机中的缓存中。同样,网络设备发送的多对发射功率与SAR的对应关系也可以是预先根据经验训练得到的,还可以是人为预先通过多次模拟训练得到的,当然也可以是通过实验测量得到的。然后手机可以在本地缓存中缓存的对应关系中查询上述计算得到的平均发射功率对应的SAR。
S205:手机的处理器若确定上述得到的SAR大于预设阈值,则选择降低手机的收发器在第二时长之后发送无线信号的发射功率。其中,这个预设阈值也可以由人为根据经验值预先确定。
S206:手机的处理器在降低收发器在第二时长之后发送无线信号的发射功率之后,如果在第二时长内手机发起了通话过程,则可以判断在第二时长结束时该发起的通话是否结束。若确定通话结束,则执行S207。若确定该发起的通话未结束,则继续重复执行上述S202以及S202的后续步骤。
S207:手机的处理器控制由SAR触发的发射功率调整结束。
通过上述图5所示的方法,手机从开机开始到进入工作状态之后,才执行对SAR的控制,而从开机开始到进入工作状态之间的时间,由于手机这时候的发射功率非常低,对人体危害极小,因此可以不启动对SAR的控制,由此可减少手机的功耗。
本申请实施例中,终端可以但不限于采用如下方式中的至少一项降低终端在第二时长之后的发射功率:
第一种方式:终端直接关闭WIFI功能。由于WiFi发射和手机通信发射对SAR的影响是叠加的,故终端可以通过关闭WiFi功能来降低发射功率,进而降低SAR的值,使其控制在预设阈值范围之内。
第二种方式:终端禁止建立新的RRC连接和/或应用通信连接。由于终端建立的RRC连接越多,需要的发射功率也随之越大,故通过禁止建立新的RRC连接,可降低终端的发射功率,进而降低SAR的值。本申请实施例中,应用通信连接是指使用应用程序进行的通信连接,应用通信连接包括应用语音连接、应用数据连接以及应用视频连接。例如,以应用程序为微信(wechat)为例,应用通信连接可以是通过微信发起的语音连接、数据连接或者视频连接。终端禁止通过应用程序发起的应用通信连接,也可降低终端的发射功率,进而降低SAR的值。
第三种方式:终端控制自身的相控阵天线形成不指向人体的波束。具体地可通过终端内置的传感器检测人体相对终端的位置,进而控制终端的相控阵天线形成不指向人体的波束,进而实现降低SAR,降低对人体的辐射。
第四种方式:终端控制采用自身安装的多个天线中的远离人体的天线来发射信号。具体而言,目前的终端通常会安装有多个天线,比如MIMO天线技术,若终端确定自身安装了多个天线,则可在用户使用终端通信时,终端控制采用自身安装的多个天线中的远离人体的天线来发射信号,进而实现降低SAR,降低对人体的辐射。
通过上述方法,若其中一种方式不能将终端的发射功率降低至预设阈值范围内,则可 采用多种方式同时降低终端的发射功率,这样,终端可灵活选取降低发射功率的实施方式,灵活性较高。
本申请实施例中,上述主要从定性的角度对本申请中降低SAR的方法进行说明,以下主要从定量的角度对本申请提供的降低SAR的方法进行详细说明。
一种可能的设计中,终端可以但不限于采用如下方式降低终端的射频部件在第二时长之后发送无线信号的发射功率:终端在确定出与第二时长内统计的平均发射功率对应的SAR之后,计算预设阈值与SAR的差值,并根据差值确定将第二时长之后的发射功率降低设定值,进而将第二时长之后的发射功率降低设定值。这样,终端可根据该差值相对精确的确定出发射功率需要降低的设定值,进而可通过将发射功率降低设定值,相对准确的调整SAR的值。
本申请实施例中,终端可以但不限于采用如下方式中的一种或者多种将终端的射频部件在第二时长之后发送信号的发射功率降低设定值。当采用如下方式中的其中一种方式降低终端的发射功率时,以下第一预设值、第二预设值、第三预设值、第四预设值以及第五预设值分别对应降低发射功率的设定值,当采用如下方式中的多种方式同时降低发射功率时,使用每一种方式降低发射功率的值之和即可以为终端降低发射功率的总值,其中以下第一预设值、第二预设值、第三预设值、第四预设值以及第五预设值,均可以根据实验测量值确定,并可预先存储在终端的存储器中。
第一种方式:终端将PRACH的最大发射功率,减小第一预设值。以终端为手机为例,通常PRACH的最大发射功率接近手机的最大发射功率,降低PRACH的最大发射功率对通信性能影响不大,但却可大幅度降低SAR。
第二种方式:终端将上报给网络的功率余量(power headroom),减小第二预设值。终端可向网络侧上报功率余量,以便网络侧的调度器使用该功率余量估计终端下一次的发射功率,进而更好的为每个终端安排无线电资源。通过减小终端上报的功率余量,会降低上行传输的数据率,进而可降低发射功率,降低SAR的值。
第三种方式:终端将上行HARQ重传的次数增加第三预设值。由于上行HARQ重传的次数越多,允许终端进行重传的次数越多,这样就允许终端降低发射功率以牺牲一些数据传输失败,故通过将上行HARQ重传的次数增加第三预设值,可实现将终端的发射功率降低设定值,进而达到降SAR的目的。
第四种方式:终端将软切换时与网络设备的连接总数,减小第四预设值。通常终端在进行软切换时,需要与多个网络设备(例如多个基站)同时建立连接,一般情况下终端在软切换时连接设备的个数多于两个,有时可达到4或5个,终端连接的网络设备个数越多,终端的发射功率就会越高,本申请通过减少终端软切换时与网络设备的连接总数,可降低终端的发射功率,进而达到降SAR的目的。
第五种方式:终端将语音连接的编解码(coding decoding,codec)数据率,减小第五预设值。语音通信的质量与语音连接的编解码数据率有关,编解码数据率越高,语音质量越好,需要的发射功率越大。例如,窄带和宽带自适应多数据率系统中,语音解编码的数据率最低在4.75kbps,最高达到23.85kbps。本申请也可以通过将编解码数据率减小第五预设值,来实现将终端的发射功率降低设定值,进而达到降SAR的目的。
通过上述方法,终端可灵活选取降低发射功率的实施方式,灵活性较高,并将终端的发射功率降低设定值,可实现相对准确的调整SAR的值。
基于与方法实施例的同一发明构思,本申请实施例还提供了一种降低电磁辐射比吸收率的设备。可以理解的是,该设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在采用集成单元的情况下,图6示出了本申请实施例涉及的降低电磁辐射比吸收率的设备的一种可能的结构示意图。如图6所示,所述降低电磁辐射比吸收率的设备600包括处理单元601、存储单元602以及收发单元603。处理单元601用于对设备600的动作进行控制管理,例如,处理单元601可用于执行图3中S101-S104等技术过程,还可执行图5中S201-S207等技术过程。收发单元603用于支持设备600与其他网络实体的通信。设备600还可以包括存储单元602,用于存储设备600的程序代码和数据。
其中,处理单元601可以是处理器或控制器,例如可以是通用中央处理器(central processing unit,CPU),通用处理器,数字信号处理(digital signal processing,DSP),专用集成电路(application specific integrated circuits,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。收发单元603可以是射频芯片、射频电路等。存储单元602可以是存储器,可以是RAM(random-access memory,随机存取存储器)、ROM(read-only memory,只读存储器)等。
当处理单元601为处理器,收发单元603为收发器,存储单元602为存储器时,本发明实施例所涉及的设备600可以为图7所示的设备。
图7所示,为本申请的实施例提供的上述实施例中所涉及的设备的一种可能的逻辑结构示意图。如图7所示,该设备700可以包括至少一个处理器701。在本申请的实施例中,处理器701用于对该设备的动作进行控制管理,可选的,设备还可以包括存储器702以及收发器703。处理器701、存储器702以及收发器703可以相互连接或通过总线704相互连接。其中,该存储器702,用于存储设备的代码和数据。收发器703用于支持该设备与其他网络设备进行通信。
下面对该设备的各个构成部件进行具体的介绍:
处理器701是设备的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器701是一个CPU,也可以是通过ASIC的方式实现,或者是被配置成实施本发明实施例的一个或多个集成电路,例如:一个或多个DSP,或,一个或者多个FPGA。
其中,处理器701可以通过运行或执行存储在存储器702内的软件程序,以及调用存储在存储器702内的数据,执行所述设备700的各种功能。
存储器702可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only  Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器702可以是独立存在,通过通信总线704与处理器701相连接。存储器702也可以和处理器701集成在一起。
收发器703,用于与其他节点间的通信,例如,网络设备。还可以用于与通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。
通信总线704,可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部无人机身份识别设备互连(Peripheral Component,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图7中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图7中示出的设备结构并不构成对降低电磁辐射比吸收率的设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
图7所示的设备700中,处理器701调用存储器702中存储的计算机程序并执行,可以通过收发器703完成上述方法实施例中的各个实施例的具体过程,这里不再一一详述。
基于与上述方法实施例相同构思,本申请实施例中还提供一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令在被计算机调用时,使所述计算机执行上述提供的方法实施例中的各个实施例的具体过程。本申请实施例中,对所述计算机可读存储介质不做限定,例如,可以是RAM(random-access memory,随机存取存储器)、ROM(read-only memory,只读存储器)等。
基于与上述方法实施例相同构思,本申请实施例中还提供一种计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述任意一种可能的设计中提供的方法。
本领域内的技术人员应明白,本申请实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个 方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请中一些可能的实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括本申请实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (13)

  1. 一种降低电磁辐射比吸收率的方法,其特征在于,包括:
    终端在开机时刻起的第一时长后的第二时长内的不同时间点,分别采集所述终端的发射功率,得到至少两个发射功率;
    所述终端计算所述至少两个发射功率的平均发射功率;
    所述终端根据所述平均发射功率,确定与所述平均发射功率对应的电磁辐射比吸收率SAR;
    所述终端若确定所述SAR大于预设阈值,则降低所述终端在第二时长之后的发射功率。
  2. 根据权利要求1所述的方法,其特征在于,所述终端采用如下方式中的至少一项降低所述终端在第二时长之后的发射功率:
    所述终端关闭无线宽带WIFI功能;
    所述终端禁止建立新的无线资源控制RRC连接和/或应用通信连接;所述应用通信连接是指使用应用程序进行的通信连接,所述应用通信连接包括应用语音连接、应用数据连接以及应用视频连接;
    所述终端控制所述终端的相控阵天线形成不指向人体的波束;
    所述终端控制采用自身安装的多个天线中的远离人体的天线发射信号。
  3. 根据权利要求1或2所述的方法,其特征在于,所述终端若确定所述SAR大于预设阈值,则降低所述终端在第二时长之后的发射功率,包括:
    所述终端计算所述预设阈值与所述SAR的差值,并根据所述差值确定将所述第二时长之后的发射功率降低设定值;
    所述终端将所述第二时长之后的发射功率降低所述设定值。
  4. 根据权利要求3所述的方法,其特征在于,所述终端将所述第二时长之后的发射功率降低所述设定值,包括:
    所述终端将物理随机接入信道PRACH的最大发射功率,减小第一预设值;或
    所述终端将上报给网络的功率余量,减小第二预设值;或
    所述终端将上行混合自动重传请求HARQ的次数,增加第三预设值;或
    所述终端将软切换时与网络设备的连接总数,减小第四预设值;或
    所述终端将语音连接的编解码数据率,减小第五预设值。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述终端根据所述平均发射功率,确定与所述平均发射功率对应的SAR,包括:
    所述终端获取至少两个平均发射功率与至少两个SAR的一一对应关系,并根据所述对应关系以及所述平均发射功率,确定与所述平均发射功率对应的SAR。
  6. 根据权利要求5所述的方法,其特征在于,所述终端获取至少两个平均发射功率与至少两个SAR的一一对应关系,包括:
    所述终端获取本地预先存储的至少两个平均发射功率与至少两个SAR的一一对应关系;或者,
    所述终端接收网络设备发送的至少两个平均发射功率与至少两个SAR的一一对应关系。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述终端在所述第一时长后,进入通话状态。
  8. 一种终端,其特征在于,包括处理器、存储器和收发器;
    所述收发器,用于无线收发信号;
    所述存储器存储有计算机程序;
    所述处理器,用于调用所述存储器中存储的计算机程序执行:
    在所述终端从开机时刻起的第一时长后的第二时长内的不同时间点,分别采集所述收发器发送信号的发射功率,得到至少两个发射功率,计算所述至少两个发射功率的平均发射功率,根据所述平均发射功率,确定与所述平均发射功率对应的电磁辐射比吸收率SAR,若确定所述SAR大于预设阈值,则降低所述收发器在第二时长之后发送信号的发射功率。
  9. 根据权利要求8所述的终端,其特征在于,所述处理器采用如下方式中的至少一项降低所述收发器在第二时长之后发送信号的发射功率:
    关闭所述终端的无线宽带WIFI功能;
    禁止所述收发器建立新的无线资源控制RRC连接和/或应用通信连接;所述应用通信连接是指使用应用程序进行的通信连接,所述应用通信连接包括应用语音连接、应用数据连接以及应用视频连接;
    控制所述终端的相控阵天线形成不指向人体的波束;
    控制所述收发器采用所述终端中安装的多个天线中的远离人体的天线发射信号。
  10. 根据权利要求8或9所述的终端,其特征在于,所述处理器采用如下方式降低所述收发器在第二时长之后发送信号的发射功率:
    计算所述预设阈值与所述SAR的差值,并根据所述差值确定将所述第二时长之后的发射功率降低设定值;
    将所述收发器在第二时长之后发送信号的发射功率降低所述设定值。
  11. 根据权利要求10所述的终端,其特征在于,所述处理器采用如下方式将所述收发器在第二时长之后发送信号的发射功率降低所述设定值:
    将所述收发器发送的物理随机接入信道PRACH的最大发射功率,减小第一预设值;或
    将所述收发器上报给网络的功率余量,减小第二预设值;或
    将通过所述处理器确定的上行混合自动重传请求HARQ的次数,增加第三预设值;或
    将所述终端软切换时所述收发器与网络设备的连接总数,减小第四预设值;或
    将所述收发器的语音连接的编解码数据率,减小第五预设值。
  12. 根据权利要求8至11任一项所述的终端,其特征在于,所述处理器采用如下方式根据所述平均发射功率,确定与所述平均发射功率对应的SAR:
    获取至少两个平均发射功率与至少两个SAR的一一对应关系,并根据所述对应关系以及所述平均发射功率,确定与所述平均发射功率对应的SAR。
  13. 根据权利要求12所述的终端,其特征在于,所述处理器采用如下方式获取至少两个平均发射功率与至少两个SAR的一一对应关系:
    所述处理器获取本地预先存储的至少两个平均发射功率与至少两个SAR的一一对应关系;或者,
    所述处理器通过所述收发器接收网络设备发送的至少两个平均发射功率与至少两个 SAR的一一对应关系。
PCT/CN2018/083961 2018-04-20 2018-04-20 一种降低电磁辐射比吸收率的方法及设备 WO2019200613A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18914981.8A EP3758346A4 (en) 2018-04-20 2018-04-20 PROCESS AND DEVICE FOR REDUCING THE SPECIFIC ABSORPTION RATE OF ELECTROMAGNETIC RADIATION
PCT/CN2018/083961 WO2019200613A1 (zh) 2018-04-20 2018-04-20 一种降低电磁辐射比吸收率的方法及设备
US17/040,357 US11115073B2 (en) 2018-04-20 2018-04-20 Method and device for decreasing electromagnetic radiation specific absorption rate
CN201880054014.8A CN111034162A (zh) 2018-04-20 2018-04-20 一种降低电磁辐射比吸收率的方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/083961 WO2019200613A1 (zh) 2018-04-20 2018-04-20 一种降低电磁辐射比吸收率的方法及设备

Publications (1)

Publication Number Publication Date
WO2019200613A1 true WO2019200613A1 (zh) 2019-10-24

Family

ID=68240560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083961 WO2019200613A1 (zh) 2018-04-20 2018-04-20 一种降低电磁辐射比吸收率的方法及设备

Country Status (4)

Country Link
US (1) US11115073B2 (zh)
EP (1) EP3758346A4 (zh)
CN (1) CN111034162A (zh)
WO (1) WO2019200613A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114828188A (zh) * 2022-04-22 2022-07-29 Oppo广东移动通信有限公司 控制方法及装置、电子设备及存储介质
CN114812491A (zh) * 2022-01-19 2022-07-29 国网甘肃省电力公司经济技术研究院 基于长时间序列分析的输电线路地表形变预警方法及装置
CN114828190A (zh) * 2022-04-20 2022-07-29 Oppo广东移动通信有限公司 发射功率的控制方法、装置、电子设备以及存储介质
CN114980291A (zh) * 2021-02-20 2022-08-30 深圳市万普拉斯科技有限公司 特定吸收率调整方法、装置、移动终端和存储介质
WO2023160151A1 (zh) * 2022-02-24 2023-08-31 Oppo广东移动通信有限公司 比吸收率的调节方法、天线装置、终端设备及存储介质

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6700403B2 (ja) * 2015-09-29 2020-05-27 華為技術有限公司Huawei Technologies Co.,Ltd. 無線通信端末の送信電力を制御する方法及び無線通信端末
US10652833B2 (en) * 2018-07-05 2020-05-12 Qualcomm Incorporated Evaluating radio frequency (RF) exposure in real time
US11924819B2 (en) * 2019-05-24 2024-03-05 Qualcomm Incorporated Power limits based on signal type for managing maximum permissible exposure
WO2022255664A1 (ko) * 2021-06-03 2022-12-08 삼성전자 주식회사 랜덤 억세스 절차를 수행하는 전자 장치 및 그 동작 방법
CN113765605A (zh) * 2021-07-23 2021-12-07 上海闻泰信息技术有限公司 通信设备的降sar方法、装置、电子设备和存储介质
CN113708809B (zh) * 2021-08-13 2023-08-18 联想(北京)有限公司 一种功率调节方法和设备,及计算机存储介质
CN113783634B (zh) * 2021-08-25 2023-06-06 Oppo广东移动通信有限公司 调整电磁波比吸收率的方法及装置、介质和电子设备
CN113993156B (zh) * 2021-10-21 2023-07-18 中国联合网络通信集团有限公司 基站间的信息确定方法、装置、设备及存储介质
CN114710827A (zh) * 2022-03-30 2022-07-05 Oppo广东移动通信有限公司 功率调整方法、装置、终端、存储介质和计算机程序产品
CN114828186A (zh) * 2022-04-20 2022-07-29 维沃移动通信有限公司 功率调整方法及电子设备
CN114978225B (zh) * 2022-05-09 2023-12-26 Oppo广东移动通信有限公司 控制方法、装置、终端、存储介质和计算机程序产品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103139891A (zh) * 2011-11-24 2013-06-05 联芯科技有限公司 双模终端的控制方法及系统
WO2017034735A1 (en) * 2015-08-26 2017-03-02 Qualcomm Incorporated Real-time specific absorption rate implementation in wireless devices
CN106686238A (zh) * 2016-12-30 2017-05-17 维沃移动通信有限公司 一种终端天线发射功率的设置方法及终端
CN107277909A (zh) * 2017-07-10 2017-10-20 惠州Tcl移动通信有限公司 一种降低移动终端sar值的方法及存储介质、移动终端

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4206625B2 (ja) 2000-09-12 2009-01-14 ソニー株式会社 携帯無線通信端末および制御方法
US20070111681A1 (en) * 2005-11-14 2007-05-17 Alberth William P Jr Transmit power allocation in wireless communication devices
CN201117791Y (zh) 2007-11-22 2008-09-17 宁波萨基姆波导研发有限公司 一种手机的天线结构
WO2010117993A1 (en) 2009-04-07 2010-10-14 Trumpf, Inc. Cutting machine with a cutting head using a beam and a suction duct coupled to the motion unit moving the cutting head
US8798662B2 (en) 2009-08-05 2014-08-05 Blackberry Limited Transmission control for a specific absorption rate compliant communication device
US8358615B2 (en) 2010-03-11 2013-01-22 Research In Motion Limited Modulation and coding scheme selection method for a specific absorption rate compliant communication device
EP2410661B1 (en) 2010-07-20 2014-10-29 BlackBerry Limited Radiation power level control system and method for a wireless communication device based on a tracked radiation history
US8538351B2 (en) 2010-07-20 2013-09-17 Blackberry Limited Radiation power level control system and method for a wireless communication device based on a tracked radiation history
WO2012040346A1 (en) 2010-09-21 2012-03-29 Broadcom Corporation Transmit power management for specific absorption rates
US20120091195A1 (en) 2010-10-14 2012-04-19 Sony Dadc Us Inc. Loss prevention system with covert marks and method of manufacture thereof
US8565205B2 (en) 2010-11-04 2013-10-22 Qualcomm Incorporated Specific absorption rate backoff in power headroom report
US9694125B2 (en) 2010-12-20 2017-07-04 Fresenius Medical Care Holdings, Inc. Medical fluid cassettes and related systems and methods
US8837406B2 (en) 2011-02-21 2014-09-16 Samsung Electronics Co., Ltd. Transmit power control method and apparatus
US8995938B2 (en) 2011-11-14 2015-03-31 Blackberry Limited Radiation power level control system and method for a wireless communication device having tunable elements
US9237531B2 (en) 2013-03-13 2016-01-12 Qualcomm Incorporated Real-time exposure assessment
US10893488B2 (en) * 2013-06-14 2021-01-12 Microsoft Technology Licensing, Llc Radio frequency (RF) power back-off optimization for specific absorption rate (SAR) compliance
WO2016053229A1 (en) 2014-09-29 2016-04-07 Hewlett-Packard Development Company, L.P. Adjusting transmissions from a wireless communications module
CN106538041B (zh) * 2015-05-05 2020-02-14 华为技术有限公司 一种发射功率的调整方法及装置
CN106304142A (zh) 2015-06-12 2017-01-04 杭州萤石网络有限公司 无线通信设备的控制方法和装置
CN106332132B (zh) 2015-07-03 2021-05-04 中兴通讯股份有限公司 一种自适应式蓝牙性能调节的通讯终端及方法
CA2928994C (en) * 2016-05-05 2021-08-10 Ibrahim O. MOHAMED System and method of reducing specific absorption rate from mobile devices
CN106657565A (zh) 2016-09-09 2017-05-10 深圳市金立通信设备有限公司 一种辐射提醒方法及终端
CN106788530B (zh) 2016-12-07 2019-06-14 广东小天才科技有限公司 一种移动设备辐射的控制方法及装置、移动设备
CN106900051B (zh) 2017-02-24 2020-07-07 上海创功通讯技术有限公司 一种降低电磁辐射比吸收率的方法及装置
CN107172702B (zh) 2017-05-17 2021-06-15 奇酷互联网络科技(深圳)有限公司 移动终端及其WiFi发射功率的调整方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103139891A (zh) * 2011-11-24 2013-06-05 联芯科技有限公司 双模终端的控制方法及系统
WO2017034735A1 (en) * 2015-08-26 2017-03-02 Qualcomm Incorporated Real-time specific absorption rate implementation in wireless devices
CN106686238A (zh) * 2016-12-30 2017-05-17 维沃移动通信有限公司 一种终端天线发射功率的设置方法及终端
CN107277909A (zh) * 2017-07-10 2017-10-20 惠州Tcl移动通信有限公司 一种降低移动终端sar值的方法及存储介质、移动终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3758346A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114980291A (zh) * 2021-02-20 2022-08-30 深圳市万普拉斯科技有限公司 特定吸收率调整方法、装置、移动终端和存储介质
CN114812491A (zh) * 2022-01-19 2022-07-29 国网甘肃省电力公司经济技术研究院 基于长时间序列分析的输电线路地表形变预警方法及装置
CN114812491B (zh) * 2022-01-19 2023-10-20 国网甘肃省电力公司经济技术研究院 基于长时间序列分析的输电线路地表形变预警方法及装置
WO2023160151A1 (zh) * 2022-02-24 2023-08-31 Oppo广东移动通信有限公司 比吸收率的调节方法、天线装置、终端设备及存储介质
CN114828190A (zh) * 2022-04-20 2022-07-29 Oppo广东移动通信有限公司 发射功率的控制方法、装置、电子设备以及存储介质
CN114828190B (zh) * 2022-04-20 2023-11-28 Oppo广东移动通信有限公司 发射功率的控制方法、装置、电子设备以及存储介质
CN114828188A (zh) * 2022-04-22 2022-07-29 Oppo广东移动通信有限公司 控制方法及装置、电子设备及存储介质

Also Published As

Publication number Publication date
EP3758346A1 (en) 2020-12-30
CN111034162A (zh) 2020-04-17
US20210058104A1 (en) 2021-02-25
EP3758346A4 (en) 2021-03-17
US11115073B2 (en) 2021-09-07

Similar Documents

Publication Publication Date Title
WO2019200613A1 (zh) 一种降低电磁辐射比吸收率的方法及设备
US11303343B2 (en) Method, terminal device, and network device for beam failure management and beam recovery
US10742300B2 (en) Communication method, network device, and terminal device
US20190104459A1 (en) Dynamic Coverage Mode Switching and Communication Bandwidth Adjustment
WO2018171759A1 (zh) 一种信息传输方法和装置
US11252671B2 (en) Power control method and apparatus
WO2020192408A1 (zh) 通信方法和通信设备
KR101634691B1 (ko) 단말기가 요청하는 기지국 제어 단말기 전송 스로틀링
EP3282811B1 (en) Transmission power adjustment method and apparatus
US20200120612A1 (en) Power determining method, device, and system
US11812255B2 (en) Congestion aware DRX_ON adaptation in sidelink unicast
US20220225258A1 (en) Enhancing timing advance validity in preconfigured uplink resource for wireless networks
CN111919465B (zh) 用于早期传输数据的传输块大小选择
WO2021063071A1 (zh) 无线通信方法和装置
JP2022521719A (ja) 電力制御方法および電力制御装置
CN112867129A (zh) 功率余量上报发送方法和装置
WO2019134668A1 (zh) 信号接收方法、发送方法、用户设备和网络设备
US20200092937A1 (en) Communication method, terminal device and network device
TW201935949A (zh) 無線通訊方法和設備
WO2021092861A1 (zh) 无线通信的方法、终端设备和网络设备
US20240080771A1 (en) Enhanced discontinuous reception and power saving for user equipment
WO2022253150A1 (zh) 数据传输方法及装置
US20220007425A1 (en) Method and apparatus for transmitting a system information request and system
CN108702691B (zh) 一种发送通信消息的方法和装置
US20230353219A1 (en) Beam Selection Method and Communication Apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914981

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018914981

Country of ref document: EP

Effective date: 20200924

NENP Non-entry into the national phase

Ref country code: DE