WO2022073435A1 - 带清洁系统的无排水制冰机 - Google Patents

带清洁系统的无排水制冰机 Download PDF

Info

Publication number
WO2022073435A1
WO2022073435A1 PCT/CN2021/120999 CN2021120999W WO2022073435A1 WO 2022073435 A1 WO2022073435 A1 WO 2022073435A1 CN 2021120999 W CN2021120999 W CN 2021120999W WO 2022073435 A1 WO2022073435 A1 WO 2022073435A1
Authority
WO
WIPO (PCT)
Prior art keywords
ice
ice maker
storage container
conduit
pump
Prior art date
Application number
PCT/CN2021/120999
Other languages
English (en)
French (fr)
Inventor
米切尔·艾伦·约瑟夫
荣格·布伦特·阿尔登
基里亚科·斯特法诺斯
Original Assignee
海尔智家股份有限公司
青岛海尔电冰箱有限公司
海尔美国电器解决方案有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔智家股份有限公司, 青岛海尔电冰箱有限公司, 海尔美国电器解决方案有限公司 filed Critical 海尔智家股份有限公司
Priority to CN202180068480.3A priority Critical patent/CN116368336A/zh
Priority to EP21876953.7A priority patent/EP4206567A4/en
Priority to AU2021358230A priority patent/AU2021358230B2/en
Publication of WO2022073435A1 publication Critical patent/WO2022073435A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/18Storing ice
    • F25C5/182Ice bins therefor
    • F25C5/185Ice bins therefor with freezing trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • F25C1/25Filling devices for moulds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/20Distributing ice
    • F25C5/24Distributing ice for storing bins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/04Ice guide, e.g. for guiding ice blocks to storage tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/10Refrigerator units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/12Means for sanitation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/14Water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2600/00Control issues
    • F25C2600/04Control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays

Definitions

  • the present invention relates generally to ice makers, and more particularly to self-contained ice makers that produce clear ice.
  • An ice maker typically includes an ice maker configured to produce ice.
  • the ice maker within the ice maker is piped to a water supply, and water from the water supply can flow to the ice maker within the ice maker.
  • the ice maker is typically cooled by a sealed system, and the heat transfer between the liquid water in the ice maker and the refrigerant of the sealed system produces ice.
  • the ice stored in the icemaker melts over time and produces liquid meltwater.
  • ice makers are piped to an external drain (eg, to a municipal water system) to handle liquid meltwater.
  • an external drain eg, to a municipal water system
  • external drains While effective for managing liquid meltwater, external drains have disadvantages. For example, installing external drains can be expensive. Also, external drains can be difficult to install in certain locations. Additionally, cleaning such ice makers can be tedious and time consuming.
  • an ice maker may include: a box body forming an ice storage compartment; a first storage container disposed in the ice storage compartment; and a circulation system disposed in the first storage container.
  • the circulation system may include: a first circulation pipe; a first pump connected to the first circulation pipe to pump liquid through the first circulation pipe; and a nozzle downstream of the first circulation pipe to circulate from the first circulation Pipes dispense liquids.
  • the ice maker may further include: an ice maker disposed within the first storage container to dispense ice into the ice storage compartment; and a second storage container in fluid communication with the ice storage compartment a return line pipe, which is connected to the second storage container and the first storage container to guide the melted water from the second storage container to the first storage container; a second pump, the second pump is arranged in the first storage container a second storage vessel for pumping molten water through a return line conduit; and a cleaning conduit having a first end connected to the second storage vessel and a second end exposed outside the tank.
  • an ice maker may include: a case forming an ice storage compartment; a first storage container disposed within the ice storage compartment; and a circulation system disposed within the first storage container.
  • the circulation system may include: a first circulation pipe; a first pump connected to the first circulation pipe to pump liquid through the first circulation pipe; and a nozzle downstream of the first circulation pipe to circulate from the first circulation Pipes dispense liquids.
  • the ice maker may further include: an ice maker disposed in the first storage container to distribute ice into the ice storage compartment; a return line pipe connected to the ice storage compartment and a first storage container to direct melt water from the ice storage compartment to the first storage container; a second pump disposed in the ice storage compartment to pump melt water through the return line conduit; and a cleaning conduit , the cleaning pipe has a first end connected to the second storage container and a second end exposed outside the tank.
  • FIG. 1 provides a front perspective view of an ice maker according to an exemplary embodiment of the present invention.
  • FIG. 2 provides a front perspective view of the example ice maker of FIG. 1 with a door of the example ice maker shown in an open position.
  • FIG. 3 provides a side schematic view of certain components of the exemplary ice maker of FIG. 1 .
  • FIG. 4 provides a side schematic view of certain components of another exemplary ice maker of FIG. 1 .
  • FIG. 1 and 2 provide front perspective views of an ice maker 100 according to an exemplary embodiment of the present invention.
  • ice maker 100 includes features for generating or producing clear ice.
  • the user of the ice maker 100 can consume the transparent ice stored in the ice maker 100 .
  • the ice maker 100 defines a vertical V.
  • the ice maker 100 includes a case 110 .
  • the tank 110 may be insulated to limit heat transfer between the interior volume 111 ( FIG. 2 ) of the tank 110 and the surrounding ambient atmosphere.
  • the box 110 extends between the top 112 and the bottom 114 , eg, along the vertical V direction. As such, the top 112 and bottom 114 of the box 110 are spaced apart from each other, eg, along the vertical V.
  • the door body 119 is mounted to the front of the box body 110 . Door 119 allows selective access to interior volume 111 of tank 110 . For example, door 119 is shown in a closed position in FIG. 1 and door 119 is shown in an open position in FIG. 2 . The user may rotate the door between the open and closed positions to gain access to the interior volume 111 of the case 110 .
  • the various components of the ice maker 100 are disposed within the interior volume 111 of the case 110 .
  • the ice maker 100 includes an ice maker 120 disposed within the interior volume 111 of the case 110 , eg, at the top 112 of the case 110 .
  • the ice maker 120 is configured to manufacture transparent ice I. Ice maker 120 may be configured to make any suitable type of clear ice. Thus, as will be appreciated, for example, the ice maker 120 may be a clear ice cube ice maker.
  • the ice making assembly 100 also includes an ice storage compartment or storage box 102 .
  • the storage box 102 is arranged within the interior volume 111 of the case 110 .
  • the storage box 102 may be disposed in the vertical direction V, for example, directly below the ice maker 120 .
  • the storage bin 102 is configured to receive the transparent ice I from the ice maker 120 and is configured to store the transparent ice I therein.
  • the storage box 102 may be maintained at a temperature above the freezing point of water. Thereby, the transparent ice I in the storage box 102 is melted over time while being stored in the storage box 102.
  • ice maker 100 includes features for recirculating liquid melt water from storage bin 102 to ice maker 120 .
  • FIG. 3 provides a schematic view of certain components of ice maker 100 .
  • the ice maker 120 may include an ice mold 124 and a nozzle 126 .
  • Liquid water from nozzle 126 may be dispensed toward ice mold 124 .
  • the nozzle 126 may be positioned below the ice mold 124 within the first storage container 128 and may dispense liquid water upward toward the ice mold 124 .
  • the ice molds 124 are cooled by the refrigerant.
  • the liquid water flowing through the ice molds 124 from the nozzles 126 may freeze on the ice molds 124 , eg, to form transparent ice cubes on the ice molds 124 .
  • the ice making assembly 100 includes a sealing system 170 .
  • Sealing system 170 includes components for implementing a known vapor compression cycle for cooling ice maker 120 and/or air. These components include a compressor 172 connected in series and filled with refrigerant, a condenser 174 , an expansion device (not shown), and an evaporator 176 .
  • the sealing system 170 may include other components, eg, at least one additional evaporator, compressor, expansion device, and/or condenser.
  • the sealing system 170 is provided by way of example only. Other configurations using sealing systems are also within the scope of the present invention.
  • the refrigerant flows into compressor 172, which operates to increase the pressure of the refrigerant.
  • the compressed refrigerant increases its temperature, which is lowered by passing the refrigerant through condenser 174 .
  • the refrigerant undergoes heat exchange with ambient air in order to cool the refrigerant.
  • Fan 118 may operate to blow air through condenser 174 to provide forced convection for faster and efficient heat exchange between the refrigerant within condenser 174 and the ambient air.
  • An expansion device receives refrigerant from condenser 174 .
  • Refrigerant enters evaporator 176 from the expansion device.
  • the pressure of the refrigerant drops.
  • Evaporator 176 is cold due to the pressure drop and/or phase change of the refrigerant, eg, relative to ambient air and/or liquid water.
  • Evaporator 176 is disposed at and in thermal contact with ice maker 120 , such as at ice mold 124 of ice maker 120 . Thus, the ice maker 120 may be cooled directly with refrigerant at the evaporator 176 .
  • the first ice maker 120 may be an air-cooled ice maker.
  • cooling air from evaporator 176 may cool various components of ice maker 100 , such as ice molds 124 of ice maker 120 .
  • the evaporator 176 is a heat exchanger that transfers heat from the air passing through the evaporator 176 to the refrigerant flowing through the evaporator 176 , and the fan moves the cool air from the Evaporator 176 is circulated to ice maker 120 .
  • the ice maker 100 also includes a controller 190 that regulates or operates various components of the ice maker 100 .
  • the controller 190 may include memory and one or more microprocessors, CPUs, etc., such as a general-purpose or special-purpose microprocessor, for executing programmed instructions or micro-control code associated with the operation of the ice maker 100 .
  • the memory may represent random access memory such as DRAM or read only memory such as ROM or FLASH.
  • the processor executes programming instructions stored in the memory.
  • the memory may be a separate component from the processor, or may be contained on a board within the processor.
  • the controller 190 may use a combination of discrete analog or/or digital logic circuits (such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, etc.) without the use of a microprocessor, for example ) are built to perform control functions rather than relying on software.
  • I/O Input/output
  • signals may be transmitted between the controller 190 and various operating components of the ice maker 100 .
  • the various operating components of ice maker 100 may communicate with controller 190 via one or more signal lines or a shared communication bus.
  • the ice maker 100 includes a first storage container 128 .
  • the first storage container 128 may be disposed in the ice storage compartment 102 .
  • the first storage container 128 may be located at or near the top 112 of the interior volume 111 of the ice storage compartment 102 .
  • the first storage container 128 may define a receiving space for containing water to be formed into ice.
  • the inner volume of the first storage container 128 may be smaller than the inner volume 111 of the ice storage compartment 102 .
  • the first storage container 128 may hold other liquids, such as cleaning solutions.
  • the ice maker 120 may be disposed within the first storage container 128 .
  • the evaporator 176 and the ice mold 124 are located in the first storage container 128 .
  • the first storage container 128 may extend along the vertical direction V from the bottom end 202 to the top end 204 .
  • the ice maker 120 may be mounted at the top end 204 of the first storage container 128 .
  • evaporator 176 may be mounted to tip 204 and ice mold 124 may be connected to evaporator 176 .
  • ice mold 124 may be defined by evaporator 176 .
  • the evaporator 176 is integrated with the ice mold 124 so that the transparent ice I is formed directly on the evaporator 176 .
  • the first pump 142 may be disposed within the first storage container 128 .
  • the first pump 142 may pump water or liquid stored in the first storage container 128 .
  • the first circulation pipe 140 may be connected to the first pump 142 such that the water or liquid pumped by the first pump 142 is circulated through the first circulation pipe 140 .
  • the first circulation conduit may comprise a series of pipes or conduits capable of conducting the water or liquid pumped by the first pump 142 .
  • the nozzle 126 may be disposed at the downstream end of the first circulation pipe 140 . The nozzles 126 may distribute the water or liquid stored in the first storage container 128 toward the ice maker 120 (ie, the ice molds 124 and/or the evaporator 176).
  • the nozzle 126 may be located near the bottom end 202 of the first storage container 128 .
  • water or liquid may be sprayed from nozzle 126 toward ice maker 120 in a generally upward direction. Therefore, transparent ice I may be formed on the ice maker 120 as the water is continuously sprayed onto the ice maker 120 while the ice maker is cooled by the circulation of the refrigerant through the sealing system 170 .
  • the ice maker 100 may also operate in a cleaning mode, or a cleaning operation may be performed to clean various pieces of the ice maker 100 that may be contaminated with foreign debris.
  • a cleaning solution or acid may be pumped through the first circulation conduit 140 and dispensed by the nozzle 126 toward the ice maker 120 .
  • the cleaning solution or acid may remove foreign contaminants or debris from, for example, the ice mold 124 , the nozzle 126 , the first storage container 128 , and the return line conduit 152 .
  • the first liquid level sensor 134 may be disposed in the first storage container 128 . Typically, the first liquid level sensor 134 may sense the liquid level contained within the first storage container 128 . In some embodiments, the first liquid level sensor 134 is in operative communication with the controller 190 . For example, the first liquid level sensor 134 may communicate with the controller 190 via one or more signals. In certain embodiments, the first liquid level sensor 134 includes a predetermined threshold liquid level (eg, to indicate a need for additional liquid in the first storage container 128). In particular, the first liquid level sensor 134 may detect whether or when the liquid in the first storage container 128 is below a predetermined threshold liquid level. Alternatively, the first liquid level sensor 134 may be a dual position sensor.
  • the first liquid level sensor 134 may be "on” or “off” depending on the water level.
  • the first level sensor 134 is “off” when the water level is below a predetermined threshold level, meaning it no longer signals the first pump 142 through the controller 190 to pump water from the first storage container 128 .
  • the first level sensor 134 is "on” when the water level is above a predetermined threshold level, which means it sends a signal to the first pump 142 via the controller 190 to operate the first pump 142 .
  • the first liquid level sensor 134 may be any suitable sensor capable of determining the liquid level within the first storage container 128 and that the present invention is not limited to the examples provided herein.
  • a filter 154 may be connected to the first circulation conduit 140 .
  • the filter 154 may filter solid contaminants from the water in the first storage vessel 128 .
  • a filter 154 may be positioned downstream of the first pump 142 . Additionally or alternatively, filter 154 may be positioned upstream of nozzle 126 . In some such embodiments, the filter 154 is positioned along the flow path between the first pump 142 and the nozzle 126 such that water flows from the first storage container 142 through the filter 154 before being dispensed by the nozzle 126 .
  • Filter 154 may include filter media 156 that performs the actual filtering.
  • filter media 156 may be a deionization filter. It should be understood, however, that various additional or alternative suitable filter media or devices may be incorporated as filter media 156 .
  • a perforated ramp or series of slats 104 may be provided within the first storage container 128 .
  • the ramp 104 may be located below the ice maker 102 (eg, below the ice mold 124 or the evaporator 176).
  • the slope 104 may be located below the ice maker 102 in the vertical V direction.
  • the top surface of the ramp 104 (or the top edge of the series of slats) may be sloped.
  • the first end of the ramp 104 may be set higher than the second end of the ramp 104 .
  • the ramp 104 slopes downward toward the front of the case 110 . Accordingly, a channel or hole may be provided on one side of the first storage container 128 through which the ice cubes may be drained after sliding down the ramp 104 .
  • the ice maker 102 may also include a heater disposed at or near the ice mold 124 .
  • the heater may be activated to heat the ice molds 124 and then the ice cubes are released from the ice molds 124 .
  • the sealing system 170 may be turned off (ie, no refrigerant is supplied to the evaporator 176), and the heater may be turned on for a predetermined time. Then, the ice molds are temporarily heated by a heater to release or harvest the ice cubes.
  • the heater may be an electric heater. It should be understood, however, that various types of heaters may be used to heat the ice mold 124, including reverse flow of refrigerant through the sealing system 170, and that the present invention is not limited to the examples provided herein.
  • the ice maker 100 may also include a second storage container 138 .
  • the second storage container 138 may be in fluid communication with the ice storage compartment 102 .
  • the drain line 150 may connect the ice storage compartment 102 with the second storage container 138 so that liquid from the ice storage compartment 102 flows into the second storage container 138 .
  • the second storage container 138 is disposed below the ice storage compartment 102 .
  • the second storage container 138 may be located below the ice storage compartment 102 in the vertical direction V. As shown in FIG. Therefore, the liquid from the ice storage compartment 102 can easily flow into the second storage container 138 via the drain pipe 150 .
  • the second storage vessel 138 may also be in fluid communication with the first storage vessel 128 . In other words, liquid from the second storage vessel 138 may flow to the first storage vessel 128 .
  • the second storage vessel 138 is connected to the first storage vessel 128 via the return line conduit 152 . During use, at least a portion of the meltwater from the second storage vessel 138 may be pumped to the first storage vessel for recirculation through the first circulation conduit 140 and redistribution onto the ice maker 120 .
  • the second pump 144 may be provided at or in the second storage container 138 . During use, the second pump 144 may selectively pump at least a portion of the meltwater from the second storage vessel 138 to the first storage vessel 128 .
  • the second pump 144 may be configured as any suitable fluid pump (eg, a rotary pump, a reciprocating pump, a peristaltic pump, a velocity pump, etc.).
  • the second pump 144 may be a submersible pump and may be located within the second storage vessel 138 .
  • the second pump 144 may be submersible within the second storage container 138 (ie, within a volume of liquid stored within the second storage container 138).
  • the second pump 144 may be located outside the second storage container 138 .
  • the second pump 144 may be outside the boundaries of the second storage container 138 such that the second pump 144 is not in direct contact with the liquid stored within the second storage container 138 .
  • the second pump 144 may assist in recirculating liquid through the ice maker 100 to improve performance and reduce the need for cleaning or maintenance.
  • the second liquid level sensor 136 may be disposed in the second storage container 138 to sense the liquid level contained in the second storage container 138 .
  • the second liquid level sensor 136 may sense the liquid level contained within the second storage container 138 .
  • the second liquid level sensor 136 is in operative communication with the controller 190 .
  • the second level sensor 136 may communicate with the controller 190 via one or more signals.
  • the second liquid level sensor 136 includes a predetermined threshold liquid level (eg, to indicate a need to drain liquid from the second storage container 138).
  • the second liquid level sensor 136 may detect whether or when the liquid in the second storage container 138 is below or above a predetermined threshold liquid level.
  • the second liquid level sensor 136 may be a dual position sensor.
  • the second liquid level sensor 136 may be “on” or “off” depending on the water level.
  • the second level sensor 136 is “off” when the water level is below a predetermined threshold level, meaning it does not send a signal to the second pump 144 via the controller 190 to pump water from the second storage container 138 .
  • the second level sensor 136 is "on” when the water level is above a predetermined threshold level, which means it sends a signal to the second pump 144 via the controller 190 to operate the second pump 144 .
  • the second liquid level sensor 136 may be any suitable sensor capable of determining the liquid level within the second storage container 138 .
  • the ice maker 100 may also include a cleaning conduit 162 .
  • the cleaning conduit 162 may define a first end 164 and a second end 166 . Each of the first end 164 and the second end 166 defines a point along the flow path through the purge conduit 162 .
  • the first end 164 is connected to the second storage container 138 .
  • the first end 164 defines an outlet for the second storage vessel 138 in which the liquid exits the second storage vessel 138 and enters the cleaning conduit 162 .
  • the first end 164 is defined at one side of the second storage container 138 .
  • the first end 164 may be connected to or defined at the bottom, front or rear of the second storage container 138 .
  • the second end 166 may be open to the outer region. In other words, the second end 166 may be exposed outside the ice maker 100 . Liquid flowing through wash conduit 162 may be released from ice maker 100 via second end 166 .
  • the second end 166 may be provided at the front panel of the case 110 . In other words, the second end 166 may be exposed at the front of the ice maker 100 (eg, below the door body 119).
  • the various components within ice maker 100 can be easily cleaned by circulating cleaning fluid therethrough and draining the cleaning fluid through wash conduit 162 . Thereby, more thorough cleaning can be performed, which results in cleaner ice, fewer maintenance problems and an overall increase in operability.
  • an access panel 106 may be provided on the case 110 .
  • Access panel 106 may provide selective access to the interior of ice maker 100 .
  • a user may remove or open access panel 106 to gain access to components of ice maker 100 (eg, sealing system 170, cleaning conduit 162, etc.).
  • the access panel 106 may be located at the front of the case 110 .
  • the access panel 106 may be located below the door body 119 .
  • the access panel 106 may be attached to the case 110 via a hinge.
  • the access panel 106 can be opened to allow access to the second end 166 of the cleaning conduit 162 .
  • the access panel 106 may be removable from the case 110 .
  • a user can completely remove the access panel 106 from the bin 110 to expose the second end 166 to the ambient atmosphere outside the ice maker 100 .
  • Valve 108 may be connected to purge line 162 .
  • Valve 108 may be fluidly coupled to purge line 162 to allow purge line 162 to open (eg, to allow fluid to flow through purge line 162 ) or to close (eg, to restrict fluid flow through purge line 162 ).
  • Valve 108 can be selectively opened and closed to allow liquid to be released from second storage container 138 .
  • Valve 108 may be any suitable valve, such as a mechanical valve or an electromechanical valve.
  • valve 162 may be in operative communication with controller 190 . In some such embodiments, valve 108 is selectively controlled by controller 190 (eg, opened or closed according to a signal received from controller 190).
  • the user may select an operation in which the controller 190 instructs the valve 162 to open to release liquid from the second storage container 138 .
  • a user may manually open valve 162 and place a tray or bucket in front of second end 166 of wash conduit 162 to collect liquid released from second storage container 138 .
  • the ice maker 100 may include a water supply conduit 130 and a supply valve 132 .
  • the water supply line 130 may be connected to an external pressurized water supply system, such as a municipal water supply system or a well.
  • Supply valve 132 is coupled to water supply conduit 130 and is operable (eg, openable and closeable) to regulate the flow of liquid water into ice maker 100 through water supply conduit 130 .
  • the water supply conduit 130 is connected to the first storage container 128 .
  • the water supply pipe 130 is in fluid communication with the first storage container 128 to allow external water to be supplied into the first storage container 128 via the water supply pipe 130 .
  • the first storage container 128 may be filled with fresh liquid water from an external pressurized water supply through the water supply conduit 130.
  • FIG. 4 provides a schematic side view of certain components of ice maker 100 according to another embodiment.
  • the same reference numerals refer to the same features, and thus, repeated descriptions will be omitted.
  • the second pump 144 may be disposed within the ice storage compartment 102 .
  • the second pump 144 may be a submersible pump, such as a sewage pump.
  • the second pump 144 may be submerged within the ice storage compartment 102 (ie, within a volume of liquid stored within the ice storage compartment 102).
  • the second storage container is omitted entirely.
  • Return line conduit 152 may connect ice storage compartment 102 (via second pump 144 ) to first storage vessel 128 .
  • the second pump 144 is activated, the liquid in the ice storage compartment 102 can be pumped to the first storage container 128 through the return line conduit 152 .
  • the second pump 144 may include the second level sensor 136 .
  • the second liquid level sensor 136 may be a float sensor. Therefore, the second liquid level sensor 136 may be attached directly to the second pump 144 . Additionally or alternatively, the second liquid level sensor 136 may be disposed within the ice storage compartment 102 separately from the second pump 144 . The second level sensor 136 may determine the level of liquid (eg, melt water, cleaning solution) within the ice storage compartment 102 and transmit the reading to the controller 190 . The controller 190 may then activate the second pump 144 to pump liquid from the ice storage compartment 102 up through the return line conduit 152 to the first storage container 128 .
  • liquid eg, melt water, cleaning solution
  • the first end 164 of the cleaning conduit 162 may be directly connected to the ice storage compartment 102 .
  • the first end 164 may be connected to the bottom of the ice storage compartment 102 so that the liquid within the ice storage compartment 102 may easily flow into the cleaning conduit 162 .
  • the first end 164 may be connected to the drain pipe 150 .
  • the first end 164 may be in fluid communication with the drain conduit 150 , which in turn is in fluid communication with the ice storage compartment 102 . Accordingly, liquid may flow from the ice storage compartment 102 through the drain conduit 150 into the wash conduit 162 via the first end 164 .
  • the ice maker 100 may include a venturi device in addition to or instead of the second pump 144 .
  • a venturi device may be disposed within the first storage container 128 and may be operable to draw liquid from the ice storage compartment 102 into the first storage container 128 . Therefore, the liquid from the ice storage compartment 102 can be recirculated into the first storage container 128 without the need for an additional pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)
  • Beverage Vending Machines With Cups, And Gas Or Electricity Vending Machines (AREA)

Abstract

一种制冰器包括:箱体,该箱体形成储冰间室;第一储存容器,该第一储存容器设置在储冰间室内;循环系统,该循环系统布置在第一储存容器内;制冰机,该制冰机设置在第一储存容器内以将冰分配到储冰间室中;第二储存容器,该第二储存容器连接到储冰间室;回流管路管道,该回流管路管道连接到第二储存容器和第一储存容器,以将融水从第二储存容器引导到第一储存容器;第二泵,该第二泵设置在第二储存容器处以将融水泵送通过回流管路管道;以及清洗管道,该清洗管道具有连接到第二储存容器的第一端和暴露在箱体外部的第二端。

Description

带清洁系统的无排水制冰机 技术领域
本发明总体涉及制冰器,更具体地涉及产生透明冰的独立制冰器。
背景技术
制冰器通常包括构造为产生冰的制冰机。制冰器内的制冰机被管接到供水系统,并且来自供水系统的水可流到制冰器内的制冰机。制冰器通常由密封系统冷却,并且制冰机中的液态水与密封系统的制冷剂之间的热传递产生冰。
在某些制冰器中,储存在制冰器内的冰随着时间的推移而融化并产生液态融水。通常,制冰器被管接到外部排水管(例如,连接到市政水系统)以处理液态融水。虽然对于管理液态融水是有效的,但是外部排水管道具有缺点。例如,安装外部排水管道可能昂贵。另外,外部排水管道可能难以安装在某些位置。另外,清洁这种制冰器可能繁重且耗时。
因此,具有无需外部排水管道而运行的制冰器将是有用的。特别地,具有清洁系统的制冰器将是有用的。
发明内容
本发明的各个方面以及优点将会在下文的描述中进行阐述,或者是通过描述可以显而易见的,或者是可以通过实施本发明而学到。
在本发明的一个示例性方面,提供了一种制冰器。制冰器可包括:箱体,该箱体形成储冰间室;第一储存容器,该第一储存容器设置在储冰间室内;以及循环系统,该循环系统设置在第一储存容器内。循环系统可包括:第一循环管道;第一泵,该第一泵连接到第一循环管道以泵送液体通过第一循环管道;以及喷嘴,该喷嘴在第一循环管道下游以从第一循环管道分配液体。制冰器还可包括:制冰机,该制冰机设置在第一储存容器内以将冰分配到储冰间室中;第二储存容器,该第二储存容器与储冰间室流体连通;回流管路管道,该回流管路管道连接到第二储存容器和第一储存容器,以将融水从第二储存容器引导到第一储存容器;第二泵,该第二泵设置在第二储存容器处以将融水泵送通过回流管路管道;以及清洗管道,该清洗管道具有连接到第二储存容器的第一端和暴露在箱体外部的第二端。
根据本发明的另一示例性方面,提供了一种制冰器。制冰器可包括:箱体,该 箱体形成储冰间室;第一储存容器,该第一储存容器设置在储冰间室内;以及循环系统,该循环系统布置在第一储存容器内。循环系统可包括:第一循环管道;第一泵,该第一泵连接到第一循环管道以泵送液体通过第一循环管道;以及喷嘴,该喷嘴在第一循环管道下游以从第一循环管道分配液体。制冰器还可包括:制冰机,该制冰机设置在第一储存容器内以将冰分配到储冰间室中;回流管路管道,该回流管路管道连接到储冰间室和第一储存容器,以将融水从储冰间室引导到第一储存容器;第二泵,该第二泵设置在储冰间室中以将融水泵送通过回流管路管道;以及清洗管道,该清洗管道具有连接到第二储存容器的第一端和暴露在箱体外部的第二端。
参照下文的描述以及所附权利要求,本发明的这些和其它的特征、方面以及优点将变得更容易理解。结合在本说明书中并且构成本说明书一部分的附图显示了本发明的实施方式并且与描述一起用于对本发明的原理进行解释。
附图说明
参照附图,说明书中阐述了面向本领域普通技术人员的本发明的完整公开,这种公开使得本领域普通技术人员能够实现本发明,包括本发明的最佳实施例。
图1提供了根据本发明的示例性实施方式的制冰器的前立体图。
图2提供了图1的示例性制冰器的前立体图,其中示例性制冰器的门体被示出为处于打开位置。
图3提供了图1的示例性制冰器的某些部件的侧面示意图。
图4提供了图1的另一示例性制冰器的某些部件的侧面示意图。
具体实施方式
现在将详细地参照本发明的实施方式,其中的一个或多个示例示于附图中。每个示例都以对发明进行解释的方式给出,并不对本发明构成限制。实际上,对于本领域技术人员而言显而易见的是,能够在不偏离本发明的范围的前提下对本发明进行多种改型和变型。例如,作为一个实施方式的一部分示出或者进行描述的特征能够用于另一个实施方式,从而产生又一个实施方式。因此,期望的是,本发明覆盖落入所附权利要求及其等同形式的范围内的这些改型以及变型。
图1和图2提供了根据本发明的示例性实施方式的制冰器100的前立体图。如下面更详细所述,制冰器100包括用于生成或产生透明冰的特征。由此,制冰器100的用户可以消耗在制冰器100内储存的透明冰。如在图1中可以看到的,制冰器100 限定竖向V。
制冰器100包括箱体110。箱体110可以是隔热的,以便限制箱体110的内部容积111(图2)与周围环境大气之间的热传递。箱体110在顶部112与底部114之间延伸,例如,沿着竖向V延伸。由此,箱体110的顶部112和底部114彼此隔开,例如,沿着竖向V隔开。门体119安装到箱体110的前部。门体119允许选择性地进入箱体110的内部容积111。例如,门体119在图1中被示出为处于关闭位置,并且门体119在图2中被示出为处于打开位置。用户可以使门体在打开位置与关闭位置之间旋转,以进入箱体110的内部容积111。
如在图2中可以看到的,制冰器100的各种部件设置于在箱体110的内部容积111内。特别地,制冰器100包括布置在箱体110的内部容积111内的制冰机120,例如布置在箱体110的顶部112处。制冰机120被构造为制造透明冰I。制冰机120可以被构造为制造任何合适类型的透明冰。由此,如将理解的,例如,制冰机120可以是透明冰块制冰机。
制冰组件100还包括储冰间室或储存盒102。储存盒102布置在箱体110的内部容积111内。特别地,储存盒102可以沿着竖向V设置在例如制冰机120的正下方。由此,储存盒102被设置为从制冰机120接收透明冰I,并且被构造为在其中储存透明冰I。可以理解,储存盒102可能保持在高于水的冰点的温度。由此,储存盒102内的透明冰I在储存在储存盒102内的同时随着时间融化。如以下更详细所述,制冰器100包括用于使液态融水从储存盒102再循环到制冰机120的特征。
图3提供了制冰器100的某些部件的示意图。如在图3中可以看到的,制冰机120可以包括冰模具124和喷嘴126。来自喷嘴126的液态水可以朝向冰模具124分配。例如,喷嘴126可以设置在第一储存容器128内的冰模具124下方,并且可以向上朝向冰模具124分配液态水。如以下更详细所述,冰模具124由制冷剂冷却。由此,来自喷嘴126的流经冰模具124的液态水可以在冰模具124上冻结,例如,以便在冰模具124上形成透明冰块。
为了冷却冰模具124,制冰组件100包括密封系统170。密封系统170包括用于执行已知的用于冷却制冰机120和/或空气的蒸汽压缩循环的部件。这些部件包括串联连接并填充有制冷剂的压缩机172、冷凝器174、膨胀装置(未示出)以及蒸发器176。如本领域技术人员将理解的,密封系统170可以包括其他部件,例如,至少一个额外的蒸发器、压缩机、膨胀装置和/或冷凝器。由此,密封系统170仅以示例的方式来提供。使用密封系统的其他构造也在本发明的范围内。
在密封系统170内,制冷剂流入压缩机172中,该压缩机运行为增大制冷剂的压力。压缩制冷剂升高其温度,该温度通过使制冷剂穿过冷凝器174来降低。在冷凝器174内,制冷剂进行与周围空气的热交换,以便冷却制冷剂。风扇118可以运行为将空气吹过冷凝器174,以便提供强制对流,用于冷凝器174内的制冷剂与周围空气之间进行更快且高效的热交换。
膨胀装置(例如,阀、毛细管或其他限制装置)接收来自冷凝器174的制冷剂。制冷剂从膨胀装置进入蒸发器176。在离开膨胀装置并进入蒸发器176时,制冷剂的压力下降。由于制冷剂的压降和/或相变,蒸发器176是冷的,例如,相对于环境空气和/或液态水。蒸发器176设置在制冰机120处并与其热接触,例如设置在制冰机120的冰模具124处。由此,制冰机120可在蒸发器176处用制冷剂直接冷却。
应当理解,在可选示例性实施方式中,第一制冰机120可以是风冷制冰机。由此,例如,来自蒸发器176的冷却空气可对制冰器100的各种部件进行制冷,例如对制冰机120的冰模具124进行制冷。在这种示例性实施方式中,蒸发器176是一种热交换器,该热交换器将热量从经过蒸发器176的空气传递到流经蒸发器176的制冷剂,并且风扇可使冷空气从蒸发器176循环到制冰机120。
制冰器100还包括控制器190,该控制器调节或操作制冰器100的各种部件。控制器190可以包括存储器和一个或多个微处理器、CPU等,诸如通用或专用微处理器,该微处理器用于执行与制冰器100的运行关联的编程指令或微控制代码。存储器可以表示诸如DRAM的随机存取存储器或诸如ROM或FLASH的只读存储器。在一个实施方式中,处理器执行存储在存储器中的编程指令。存储器可以是与处理器分开的部件,或者可以包含在处理器内的板上。可选地,控制器190可以在不使用微处理器的情况下,例如,使用离散的模拟或/或数字逻辑电路的组合(诸如开关、放大器、积分器、比较器、触发器、与门等)构建为执行控制功能,而不是依靠软件。输入/输出(“I/O”)信号可以在控制器190与制冰器100的各种操作部件之间传输。作为示例,制冰器100的各种操作部件可以经由一条或多条信号线或共享的通信总线与控制器190通信。
制冰器100包括第一储存容器128。第一储存容器128可设置在储冰间室102内。例如,第一储存容器128可位于储冰间室102的内部容积111的顶部112处或顶部112附近。第一储存容器128可限定有容纳待形成冰的水的接收空间。例如,第一储存容器128的内部容积可小于储冰间室102的内部容积111。在一些实施方式中,第一储存容器128可保持其它液体,例如清洁溶液。
制冰机120可设置在第一储存容器128内。详细地,蒸发器176和冰模具124位于第一储存容器128中。第一储存容器128可沿着竖向V从底端202延伸到顶端204。制冰机120可安装在第一储存容器128的顶端204处。例如,蒸发器176可以安装到顶端204,并且冰模具124可以连接到蒸发器176。在一些实施方式中,冰模具124可由蒸发器176限定。换言之,蒸发器176与冰模具124成一体,使得透明冰I直接形成在蒸发器176上。
第一泵142可设置在第一储存容器128内。第一泵142可以泵送储存在第一储存容器128中的水或液体。第一循环管道140可连接到第一泵142,使得由第一泵142泵送的水或液体循环通过第一循环管道140。第一循环管道可包括一系列能够引导由第一泵142泵送的水或液体的管或管道。喷嘴126可设置在第一循环管道140的下游端。喷嘴126可将储存在第一储存容器128中的水或液体朝向制冰机120(即,冰模具124和/或蒸发器176)分配。在一个实施方式中,喷嘴126可以位于第一储存容器128的底端202附近。由此可见,水或液体可从喷嘴126沿大体向上的方向朝向制冰机120喷射。因此,在制冰机由通过密封系统170的制冷剂的循环冷却的同时,由于水持续地喷射到制冰机120上,因此可在制冰机120上形成透明冰I。
制冰器100也可以清洁模式操作,或者可以执行清洁操作,以清洁制冰器100中可能被外来碎屑污染的各种件。例如,在一些实施方式中,清洁溶液或酸可被泵送通过第一循环管道140并由喷嘴126朝向制冰机120分配。因此,清洁溶液或酸可以从例如冰模具124、喷嘴126、第一储存容器128和回流管路管道152去除外来污染物或碎屑。
第一液位传感器134可设置在第一储存容器128中。通常,第一液位传感器134可感测容纳在第一储存容器128内的液位。在一些实施方式中,第一液位传感器134与控制器190可操作地通信。比如,第一液位传感器134可经由一个或多个信号与控制器190通信。在某些实施方式中,第一液位传感器134包括预定阈值液位(例如,以指示对第一储存容器128的额外液体的需要)。特别地,第一液位传感器134可检测第一储存容器128的液体是否或何时低于预定阈值液位。可选地,第一液位传感器134可以是双位置传感器。换言之,第一液位传感器134可以是“开”或“关”,这取决于水位。例如,当水位低于预定阈值液位时,第一液位传感器134“关闭”,这意味着其不再通过控制器190向第一泵142发送信号以从第一储存容器128泵送水。再如,当水位高于预定阈值液位时,第一液位传感器134“开启”,这意味着其经由控制器190向第一泵142发送信号以操作第一泵142。应当理解,第一液位传感 器134可以是能够确定第一储存容器128内的液位的任何合适的传感器,并且本发明不限于本文提供的这些示例。
过滤器154可连接到第一循环管道140。过滤器154可从第一储存容器128中的水中滤除固体污染物。过滤器154可以设置在第一泵142的下游。另外或可选地,过滤器154可设置在喷嘴126的上游。在一些这样的实施方式中,过滤器154沿着第一泵142与喷嘴126之间的流路设置,使得水在被喷嘴126分配之前从第一储存容器142流经过滤器154。过滤器154可以包括执行实际过滤的过滤介质156。例如,过滤介质156可以是去离子过滤器。然而,应当理解,可以并入各种另外的或可选的合适过滤介质或装置作为过滤介质156。
在第一储存容器128内可设置穿孔的斜坡或一系列板条104。斜坡104可位于制冰机102下方(例如,在冰模具124或蒸发器176下方)。换言之,斜坡104可沿竖向V位于制冰机102下方。斜坡104的顶面(或一系列板条的顶缘)可以是倾斜的。换言之,在竖向V上,斜坡104的第一端可设置得比斜坡104的第二端高。由此,当冰在制冰机102上形成并收获时,冰可落到斜坡104上并滑入储冰间室102中。在一个示例中,如图3中看到的,斜坡104朝向箱体110的前部向下倾斜。因此,可在第一储存容器128的一侧上设置通道或孔,冰块可在滑下斜坡104之后通过该通道或孔排出。
制冰机102还可包括设置在冰模具124处或附近的加热器。在收获形成在冰模具124上的冰块期间,可以启动加热器以加热冰模具124,随后从冰模具124释放冰块。在一个实施方式中,可以关闭密封系统170(即,没有制冷剂被供应到蒸发器176),并且可以将加热器打开预定的时间。然后,通过加热器临时加热冰模具以释放或收获冰块。例如,加热器可以是电加热器。然而,应当理解,各种类型的加热器可用于加热冰模具124,包括通过密封系统170的制冷剂的反向流动,并且本发明不限于本文提供的这些示例。
制冰器100还可包括第二储存容器138。第二储存容器138可与储冰间室102流体连通。排水管道150可将储冰间室102与第二储存容器138连接,使得来自储冰间室102的液体流入第二储存容器138中。在一些示例中,第二储存容器138设置在储冰间室102下方。换言之,第二储存容器138可沿竖向V位于储冰间室102下方。因此,来自储冰间室102的液体可容易地经由排水管道150流入第二储存容器138中。在一个示例中,当储存在储冰间室102内的冰融化成水时,融水的至少一部分可从储冰间室102通过排水管道150流入第二储存容器138中。第二储存容器138 也可与第一储存容器128流体连通。换言之,来自第二储存容器138的液体可流到第一储存容器128。在一个示例中,第二储存容器138经由回流管路管道152连接到第一储存容器128。在使用期间,来自第二储存容器138的融水的至少一部分可被泵送至第一储存容器,以通过第一循环管道140再循环并重新分配到制冰机120上。
第二泵144可以设置在第二储存容器138处或中。在使用期间,第二泵144可以选择性地将融水的至少一部分从第二储存容器138泵送到第一储存容器128。通常,第二泵144可以被设置为任何合适的流体泵(例如,旋转泵、往复泵、蠕动泵、速度泵等)。可选地,第二泵144可以是潜水泵并且可以位于第二储存容器138内。详细地,第二泵144可以可浸没在第二储存容器138内(即,在储存在第二储存容器138内的一定体积的液体内)。另外或可选地,第二泵144可位于第二储存容器138的外部。换言之,第二泵144可以在第二储存容器138的边界之外,使得第二泵144不与储存在第二储存容器138内的液体直接接触。有利地,第二泵144可以辅助使液体再循环通过制冰器100,以提高性能并减少对清洁或维护的需要。
第二液位传感器136可设置在第二储存容器138内,以感测容纳在第二储存容器138内的液位。通常,第二液位传感器136可感测容纳在第二储存容器138内的液位。在一些实施方式中,第二液位传感器136与控制器190可操作地通信。比如,第二液位传感器136可经由一个或多个信号与控制器190通信。在某些实施方式中,第二液位传感器136包括预定阈值液位(例如,以指示对从第二储存容器138排出液体的需要)。特别地,第二液位传感器136可检测第二储存容器138中的液体是否或何时低于或高于预定阈值液位。可选地,第二液位传感器136可以是双位置传感器。换言之,第二液位传感器136可以是“开”或“关”,这取决于水位。例如,当水位低于预定阈值液位时,第二液位传感器136“关闭”,这意味着其不经由控制器190向第二泵144发送信号以从第二储存容器138泵送水。再如,当水位高于预定阈值液位时,第二液位传感器136“开启”,这意味着其经由控制器190向第二泵144发送信号以操作第二泵144。应当理解,第二液位传感器136可以是能够确定第二储存容器138内的液位的任何合适的传感器。
制冰器100还可包括清洗管道162。清洗管道162可以限定有第一端164和第二端166。第一端164和第二端166中的每一个都限定了沿着通过清洗管道162的流路的点。在一个示例中,第一端164连接到第二储存容器138。比如,第一端164限定第二储存容器138的出口,在该出口中,液体离开第二储存容器138并进入清洗管道162。在一些实施方式中,第一端164限定在第二储存容器138的一侧处。然而, 第一端164可连接到或限定在第二储存容器138的底部、前部或后部处。因此,第二储存容器138内的液体可以通过清洗管道162流出第二储存容器。第二端166可以向外部区域敞开。换言之,第二端166可暴露在制冰器100的外部。流经清洗管道162的液体可经由第二端166从制冰器100释放。第二端166可以设置在箱体110的前面板处。换言之,第二端166可暴露在制冰器100的前部处(例如,在门体119下方)。有利地,制冰器100内的各个部件可通过使清洁流体循环通过其中并通过清洗管道162排出清洁流体而容易地清洁。由此,可以执行更彻底的清洁,这导致更干净的冰、更少的维护问题和可操作性的总体增加。
在一些实施方式中,可以在箱体110上设置进入面板106。进入面板106可提供选择性到达制冰器100内部的途径。比如,用户可以移除或打开进入面板106以接近制冰器100的部件(例如,密封系统170、清洗管道162等)。进入面板106可以位于箱体110的前部。例如,进入面板106可以位于门体119下方。进入面板106可经由铰链附接到箱体110。因此,进入面板106可以打开,以允许接近清洗管道162的第二端166。另外或可选地,进入面板106可从箱体110移除。用户能够从箱体110完全移除进入面板106,以便将第二端166暴露于制冰器100外部的环境大气。
阀108可连接到清洗管道162。阀108可流体地联接到清洗管道162以允许清洗管道162打开(例如,允许流体流过清洗管道162)或关闭(例如,限制流体流过清洗管道162)。阀108可以选择性地打开和关闭以允许液体从第二储存容器138释放。阀108可以是任何合适的阀,例如机械阀或机电阀。可选地,阀162可以与控制器190可操作地连通。在一些这样的实施方式中,阀108由控制器190选择性地控制(例如,根据从控制器190接收的信号打开或关闭)。例如,用户可以选择操作,在该操作中,控制器190指示阀162打开,以便从第二储存容器138释放液体。另外或可选地,用户可手动打开阀162并将托盘或桶放置在清洗管道162的第二端166的前面,以收集从第二储存容器138释放的液体。
制冰器100可包括供水管道130和供应阀132。供水管道130可连接到外部加压供水系统,诸如市政供水系统或井。供应阀132联接到供水管道130,并且供应阀132可操作(例如,可打开和可关闭)以调节通过供水管道130进入制冰器100的液态水流。在一个实施方式中,供水管道130连接到第一储存容器128。详细地,供水管道130与第一储存容器128流体连通,以允许外部水经由供水管道130被供应到第一储存容器128中。由此,例如,通过打开供应阀132,第一储存容器128可通过供水管道130被填充有来自外部加压供水系统的新鲜液态水。
图4提供了根据另一实施方式的制冰器100的某些部件的侧面示意图。同样的附图标记指代同样的特征,由此,将省略重复的描述。根据可选实施方式,第二泵144可设置在储冰间室102内。第二泵144可以是潜水型泵,例如污水泵。详细地,第二泵144可浸没在储冰间室102内(即,在储存在储冰间室102内的一定体积的液体内)。在一些这样的实施方式中,第二储存容器被完全省略。回流管路管道152可将储冰间室102(经由第二泵144)连接到第一储存容器128。由此,在第二泵144启动时,储冰间室102中的液体可通过回流管路管道152泵送到第一储存容器128。
如图所示,第二泵144可包括第二液位传感器136。在该实施方式中,第二液位传感器136可以是浮子式传感器。因此,第二液位传感器136可以直接附接到第二泵144。另外或可选地,第二液位传感器136可与第二泵144分开地设置在储冰间室102内。第二液位传感器136可确定储冰间室102内的液体(例如,融水、清洁溶液)的液位,并将读数传输至控制器190。控制器190然后可启动第二泵144,以将液体从储冰间室102通过回流管路管道152向上泵送至第一储存容器128。清洗管道162的第一端164可直接连接至储冰间室102。例如,第一端164可连接到储冰间室102的底部,使得储冰间室102内的液体可容易地流入清洗管道162。对于另一示例,第一端164可以连接到排水管道150。详细地,第一端164可与排水管道150流体连通,该排水管道又与储冰间室102流体连通。因此,液体可从储冰间室102通过排水管道150经由第一端164流入清洗管道162。
根据又一实施方式,除了第二泵144之外或代替第二泵,制冰器100可包括文丘里装置。文丘里装置可设置在第一储存容器128内,并可运行为将液体从储冰间室102抽入第一储存容器128中。因此,来自储冰间室102的液体可被再循环到第一储存容器128中而不需要额外的泵。
本书面描述使用示例对本发明进行了公开(其中包括最佳实施例),并且还使本领域技术人员能够实施本发明(其中包括制造和使用任意装置或系统并且执行所包含的任意方法)。本发明的可专利范围通过权利要求进行限定,并且可以包括本领域技术人员能够想到的其它的示例。如果这种其它的示例包括与权利要求的字面语言没有区别的结构元件,或者如果这种其它的示例包括与权利要求的字面语言没有实质区别的等同结构元件,则期望这种其它的示例落入权利要求的范围中。

Claims (20)

  1. 一种制冰器,其特征在于,该制冰器包括:
    箱体,所述箱体形成储冰间室;
    第一储存容器,所述第一储存容器设置在所述储冰间室内;
    循环系统,所述循环系统设置在所述第一储存容器内,所述循环系统包括:
    第一循环管道;
    第一泵,所述第一泵连接到所述第一循环管道以泵送液体通过所述第一循环管道;以及
    喷嘴,所述喷嘴在所述第一循环管道下游以从所述第一循环管道分配所述液体;
    制冰机,所述制冰机设置在所述第一储存容器内以将冰分配到所述储冰间室中;
    第二储存容器,所述第二储存容器与所述储冰间室流体连通;
    回流管路管道,所述回流管路管道连接到所述第二储存容器和所述第一储存容器,以将融水从所述第二储存容器引导到所述第一储存容器;
    第二泵,所述第二泵设置在所述第二储存容器处以将融水泵送通过所述回流管路管道;以及
    清洗管道,所述清洗管道具有连接到所述第二储存容器的第一端和暴露在所述箱体外部的第二端。
  2. 根据权利要求1所述的制冰器,其特征在于,还包括在所述第二储存容器中的液位传感器。
  3. 根据权利要求1所述的制冰器,其特征在于,所述制冰机包括密封冷却系统和冰模具,所述密封冷却系统具有定位于所述制冰机处的蒸发器。
  4. 根据权利要求3所述的制冰器,其特征在于,所述第一储存容器沿着竖向从底端延伸到顶端,所述蒸发器安装在所述顶端。
  5. 根据权利要求1所述的制冰器,其特征在于,还包括阀,所述阀设置在所述清洗管道上以选择性地从所述第二储存容器释放液体。
  6. 根据权利要求5所述的制冰器,其特征在于,所述阀为机电阀。
  7. 根据权利要求1所述的制冰器,其特征在于,还包括进入面板,所述进入面板可移除地附接至所述箱体的前部,所述清洗管道的所述第二端设置在所述进入面板的后面。
  8. 根据权利要求1所述的制冰器,其特征在于,还包括供水管道和供应阀,所 述供水管道可连接到外部供水系统,所述供应阀连接到所述供水管道以调节通过所述供水管道进入所述制冰器中的液态水流。
  9. 根据权利要求8所述的制冰器,其特征在于,所述供水管道连接到所述第一储存容器。
  10. 根据权利要求1所述的制冰器,其特征在于,还包括连接到所述第一循环管道的去离子过滤器。
  11. 一种制冰器,其特征在于,该制冰器包括:
    箱体,所述箱体形成储冰间室;
    第一储存容器,所述第一储存容器设置在所述储冰间室内;
    循环系统,所述循环系统设置在所述第一储存容器内,所述循环系统包括:
    第一循环管道;
    第一泵,所述第一泵连接到所述第一循环管道以泵送液体通过所述第一循环管道;以及
    喷嘴,所述喷嘴在所述第一循环管道下游以从所述第一循环管道分配所述液体;
    制冰机,所述制冰机设置在所述第一储存容器内以将冰分配到所述储冰间室中;
    回流管路管道,所述回流管路管道连接到所述储冰间室和所述第一储存容器,以将融水从所述储冰间室引导到所述第一储存容器;
    第二泵,所述第二泵设置在所述储冰间室处以将所述融水泵送通过所述回流管路管道;以及
    清洗管道,所述清洗管道具有连接到所述储冰间室的第一端和暴露在所述箱体外部的第二端。
  12. 根据权利要求11所述的制冰器,其特征在于,还包括在所述第二泵中的浮动开关,当所述融水达到预定液位时,所述浮动开关启动所述第二泵。
  13. 根据权利要求11所述的制冰器,其特征在于,所述制冰机包括密封冷却系统和冰模具,所述密封冷却系统具有设置于所述制冰机处的蒸发器。
  14. 根据权利要求11所述的制冰器,其特征在于,所述第一储存容器沿着竖向从底端延伸到顶端,蒸发器安装在所述顶端。
  15. 根据权利要求11所述的制冰器,其特征在于,还包括阀,所述阀设置在所述清洗管道上以选择性地从所述储冰间室释放液体。
  16. 根据权利要求15所述的制冰器,其特征在于,所述阀为机电阀。
  17. 根据权利要求11所述的制冰器,其特征在于,还包括进入面板,所述进入 面板可移除地附接至所述箱体的前部,所述清洗管道的所述第二端设置在所述进入面板的后面。
  18. 根据权利要求11所述的制冰器,其特征在于,还包括供水管道和供应阀,所述供水管道可连接到外部供水系统,所述供应阀连接到所述供水管道以调节通过所述供水管道进入所述制冰器中的液态水流。
  19. 根据权利要求18所述的制冰器,其特征在于,所述供水管道连接到所述第一储存容器。
  20. 根据权利要求11所述的制冰器,其特征在于,还包括连接到所述第一循环管道的去离子过滤器。
PCT/CN2021/120999 2020-10-07 2021-09-27 带清洁系统的无排水制冰机 WO2022073435A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180068480.3A CN116368336A (zh) 2020-10-07 2021-09-27 带清洁系统的无排水制冰机
EP21876953.7A EP4206567A4 (en) 2020-10-07 2021-09-27 DRAIN-FREE ICE MAKER WITH CLEANING SYSTEM
AU2021358230A AU2021358230B2 (en) 2020-10-07 2021-09-27 Drainage-free ice maker having cleaning system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/064,753 2020-10-07
US17/064,753 US11460232B2 (en) 2020-10-07 2020-10-07 Drainless ice machine with cleaning system

Publications (1)

Publication Number Publication Date
WO2022073435A1 true WO2022073435A1 (zh) 2022-04-14

Family

ID=80932307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120999 WO2022073435A1 (zh) 2020-10-07 2021-09-27 带清洁系统的无排水制冰机

Country Status (5)

Country Link
US (1) US11460232B2 (zh)
EP (1) EP4206567A4 (zh)
CN (1) CN116368336A (zh)
AU (1) AU2021358230B2 (zh)
WO (1) WO2022073435A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11662129B2 (en) * 2021-11-03 2023-05-30 Haier Us Appliance Solutions, Inc. Method and apparatus for making clear ice

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11148751A (ja) * 1997-11-19 1999-06-02 Toshiba Eng & Constr Co Ltd 製氷装置
CN2844803Y (zh) * 2005-05-01 2006-12-06 管红英 制冰机
KR20100082190A (ko) * 2009-01-08 2010-07-16 네오트 주식회사 물낭비가 없는 냉·온수 이동형 생수 제빙기
CN102316954A (zh) * 2008-04-22 2012-01-11 熊津豪威株式会社 制冰器和具有该制冰器的净水器
CN206192007U (zh) * 2016-09-28 2017-05-24 合肥华凌股份有限公司 一种制冷系统及冰箱
CN111207544A (zh) * 2020-01-16 2020-05-29 六安索伊电器制造有限公司 一种节水式制冰机的水路系统

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3744263A (en) 1970-11-09 1973-07-10 D Corley Recirculation system for meltdown water from an ice storage compartment
US5289691A (en) 1992-12-11 1994-03-01 The Manitowoc Company, Inc. Self-cleaning self-sterilizing ice making machine
US6109043A (en) * 1998-05-15 2000-08-29 Imi Cornelius Inc. Low profile ice maker
US6153105A (en) 1999-04-05 2000-11-28 United States Filter Corporation Ice-maker treatment system
JP2001289542A (ja) 2000-04-10 2001-10-19 Sanyo Electric Co Ltd 製氷装置及びそれを備えた冷凍冷蔵庫
JP3665260B2 (ja) 2000-08-07 2005-06-29 株式会社日立製作所 冷蔵庫
US20030010054A1 (en) * 2001-07-13 2003-01-16 Esch Willy Van Ice maker cooler
JP4400068B2 (ja) 2003-03-07 2010-01-20 パナソニック株式会社 自動製氷装置
EP1798501A1 (en) * 2005-12-15 2007-06-20 Electrolux Home Products Corporation N.V. Ice maker integrated with drink dispenser
US7841198B2 (en) * 2006-07-18 2010-11-30 Whirpool Corporation Ice maker with water quantity sensing
WO2008061179A2 (en) 2006-11-15 2008-05-22 Tiax Llc Devices and methods for making ice
KR20100082189A (ko) * 2009-01-08 2010-07-16 네오트 주식회사 고온수 사용이 가능한 제빙기
US8756950B2 (en) 2009-08-20 2014-06-24 Follett Corporation Dispenser device for ice and water, components thereof and process of cleaning same
KR20120110736A (ko) * 2011-03-30 2012-10-10 정휘동 순환 펌프가 냉수 탱크에 수납된 얼음 정수기 및 얼음 냉온수기
KR101287306B1 (ko) * 2012-10-26 2013-07-17 정윤호 제빙기
US9593870B2 (en) * 2012-12-03 2017-03-14 Whirlpool Corporation Refrigerator with thermoelectric device for ice making
US9303903B2 (en) 2012-12-13 2016-04-05 Whirlpool Corporation Cooling system for ice maker
US10317122B2 (en) * 2015-04-06 2019-06-11 True Manufacturing Co., Inc. Ice maker with automatic descale and sanitize feature
WO2016210071A1 (en) 2015-06-23 2016-12-29 Robert Almblad Clean in place ice making system
US10274328B2 (en) 2016-08-22 2019-04-30 Microsoft Technology Licensing, Llc Generating personalized routes with route deviation information
US10274238B2 (en) * 2017-06-27 2019-04-30 Haier Us Appliance Solutions, Inc. Drainless icemaker appliance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11148751A (ja) * 1997-11-19 1999-06-02 Toshiba Eng & Constr Co Ltd 製氷装置
CN2844803Y (zh) * 2005-05-01 2006-12-06 管红英 制冰机
CN102316954A (zh) * 2008-04-22 2012-01-11 熊津豪威株式会社 制冰器和具有该制冰器的净水器
KR20100082190A (ko) * 2009-01-08 2010-07-16 네오트 주식회사 물낭비가 없는 냉·온수 이동형 생수 제빙기
CN206192007U (zh) * 2016-09-28 2017-05-24 合肥华凌股份有限公司 一种制冷系统及冰箱
CN111207544A (zh) * 2020-01-16 2020-05-29 六安索伊电器制造有限公司 一种节水式制冰机的水路系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4206567A4 *

Also Published As

Publication number Publication date
AU2021358230A1 (en) 2023-05-18
EP4206567A4 (en) 2024-01-17
CN116368336A (zh) 2023-06-30
US20220107127A1 (en) 2022-04-07
AU2021358230B2 (en) 2024-05-30
EP4206567A1 (en) 2023-07-05
AU2021358230A9 (en) 2024-09-05
US11460232B2 (en) 2022-10-04

Similar Documents

Publication Publication Date Title
US20180128530A1 (en) Refrigerator appliance and ice-making assembly therefor
AU2022204813B2 (en) Clear barrel ice maker
WO2022073435A1 (zh) 带清洁系统的无排水制冰机
KR102392190B1 (ko) 구형 또는 다면체 형상의 얼음 제빙기, 이를 구비하는 음용수 공급장치 및 냉장고
KR101343462B1 (ko) 제빙 및 냉각 시스템
CN113286975A (zh) 具有制冰组件的冷藏器具
WO2023093766A1 (zh) 用于独立制冰器的清洗排出管道
WO2022267952A1 (zh) 具有可更换过滤器的制冰电器
US11867444B2 (en) Drainless clear ice maker for recycling water used to make clear ice
KR101665138B1 (ko) 얼음정수기용 취수장치
WO2023078298A1 (zh) 用于制造透明冰的方法和设备
WO2022007849A1 (zh) 具有制冰组件的制冷电器及清洁方法
KR20210112131A (ko) 정수기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21876953

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021876953

Country of ref document: EP

Effective date: 20230328

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021358230

Country of ref document: AU

Date of ref document: 20210927

Kind code of ref document: A