WO2023093766A1 - 用于独立制冰器的清洗排出管道 - Google Patents

用于独立制冰器的清洗排出管道 Download PDF

Info

Publication number
WO2023093766A1
WO2023093766A1 PCT/CN2022/133752 CN2022133752W WO2023093766A1 WO 2023093766 A1 WO2023093766 A1 WO 2023093766A1 CN 2022133752 W CN2022133752 W CN 2022133752W WO 2023093766 A1 WO2023093766 A1 WO 2023093766A1
Authority
WO
WIPO (PCT)
Prior art keywords
ice
storage container
ice maker
pump
liquid
Prior art date
Application number
PCT/CN2022/133752
Other languages
English (en)
French (fr)
Inventor
约瑟夫 米切尔艾伦
阿尔登 荣格布伦特
凯里亚库斯蒂芬诺斯
Original Assignee
海尔智家股份有限公司
青岛海尔电冰箱有限公司
海尔美国电器解决方案有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔智家股份有限公司, 青岛海尔电冰箱有限公司, 海尔美国电器解决方案有限公司 filed Critical 海尔智家股份有限公司
Publication of WO2023093766A1 publication Critical patent/WO2023093766A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/04Producing ice by using stationary moulds
    • F25C1/045Producing ice by using stationary moulds with the open end pointing downwards
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/20Distributing ice
    • F25C5/24Distributing ice for storing bins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/18Producing ice of a particular transparency or translucency, e.g. by injecting air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • F25C1/25Filling devices for moulds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/12Means for sanitation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2700/00Sensing or detecting of parameters; Sensors therefor
    • F25C2700/04Level of water

Definitions

  • the present invention relates generally to ice makers, and more particularly to non-drain self-contained ice makers.
  • Ice makers generally include ice makers configured to produce ice.
  • the ice maker inside the ice maker is piped to the water supply and water from the water supply can flow to the ice maker inside the ice maker.
  • the ice maker is usually cooled by a sealed system, and the heat transfer between the liquid water in the ice maker and the refrigerant of the sealed system creates ice.
  • the ice stored in the ice maker melts over time and creates liquid meltwater.
  • the ice maker is piped to an external drain (eg, to a municipal water system) to handle liquid meltwater.
  • a piped drain is used to dispose of the cleaning solution after cleaning operations are performed in the ice maker.
  • external drain piping While effective for managing liquid meltwater, external drain piping has disadvantages. For example, installing external discharge piping can be difficult and expensive. Additionally, cleaning such icemakers can be tedious and time consuming.
  • an ice maker that eliminates one or more of the aforementioned disadvantages would be useful.
  • an ice maker with a more efficient cleaning process would be beneficial.
  • an ice maker may include: a box body forming an ice storage room; an ice maker arranged in the box; a first storage container arranged under the ice maker and used for collecting liquid from the ice maker; a second storage container disposed below the ice storage compartment; and a circulation system in fluid communication with the first storage container and the second storage container.
  • the circulation system may include: a return line conduit; a first pump connected to the return line conduit to pump liquid from the second storage container to the first storage container; and a purge line conduit, the purge line The conduit is in fluid communication with a first pump, and the purge line conduit is disposed downstream of the first pump, wherein the first pump selectively pumps liquid from the second storage container through the purge line conduit.
  • an ice maker may include: a cabinet forming an ice storage compartment; a first storage container disposed within the ice storage compartment, the first storage container configured to receive liquid; a removable grill, the A removable grill is positioned within the ice storage chamber above the first storage container; an ice maker disposed within the ice storage chamber to produce ice; and a circulation system in fluid communication with the first storage container.
  • the circulation system may include: a supply line conduit; a pump connected to the supply line conduit to pump liquid from the first storage container; and a purge line conduit in fluid communication with the pump, the purge line conduit Disposed downstream of the pump, wherein the pump selectively pumps liquid from the first storage container through the purge line tubing.
  • FIG. 1 provides a front perspective view of an ice maker according to an exemplary embodiment of the present invention.
  • FIG. 2 provides a front perspective view of the example ice maker of FIG. 1 with the door of the example ice maker shown in an open position.
  • FIG. 3 provides a schematic side view of the exemplary ice maker of FIG. 1 according to a first embodiment.
  • FIG. 4 provides a schematic side view of the exemplary ice maker of FIG. 1 according to another embodiment.
  • FIG. 1 and 2 provide front perspective views of an ice maker 100 according to an exemplary embodiment of the present invention.
  • ice maker 100 includes features for generating or producing clear ice.
  • a user of the ice maker 100 can consume the transparent ice stored in the ice maker 100 .
  • the ice maker 100 defines a vertical V. As shown in FIG.
  • the ice maker 100 includes a case 110 .
  • the case 110 may be insulated so as to limit heat transfer between the interior volume 111 (FIG. 2) of the case 110 and the surrounding atmosphere.
  • the box 110 extends between a top 112 and a bottom 114 , for example, along a vertical V. As shown in FIG. As such, the top 112 and bottom 114 of the box 110 are spaced apart from each other, for example, along the vertical V.
  • a door body 119 is installed to the front of the box body 110 .
  • Door 119 allows selective access to interior volume 111 of tank 110 .
  • door 119 is shown in a closed position in FIG. 1 and door 119 is shown in an open position in FIG. 2 .
  • a user may rotate the door between an open position and a closed position to gain access to the interior volume 111 of the cabinet 110 .
  • the ice maker 100 includes an ice maker 120 arranged within the inner volume 111 of the bin 110 , for example at the top 112 of the bin 110 .
  • the ice maker 120 is used to produce clear ice. Ice maker 120 may be used to make any suitable type of clear ice.
  • ice maker 120 may be a clear ice cube maker, for example.
  • the ice maker 100 may also include an ice storage compartment or bin 102 .
  • the ice storage compartment 102 may be disposed within the inner volume 111 of the case 110 .
  • the ice storage compartment 102 may be arranged along the vertical V, for example directly below the ice maker 120 .
  • the ice storage compartment 102 is configured to receive clear ice from the ice maker 120 and for storing clear ice therein.
  • ice storage compartment 102 may be maintained at a temperature above the freezing point of water.
  • the transparent ice in the ice storage compartment 102 may melt over time while being stored in the ice storage compartment 102 .
  • Ice maker 100 may include features for recirculating liquid melt water from ice storage compartment 102 to ice maker 120 .
  • FIG. 3 provides a schematic illustration of certain components of ice maker 100 .
  • ice maker 120 may include ice molds 124 and nozzles 126 .
  • ice molds 124 may include multiple ice molds for simultaneously forming multiple ice cubes. Liquid from nozzles 126 may be dispensed toward ice molds 124 .
  • nozzles 126 may be positioned below ice molds 124 within first storage container 128 and may dispense liquid water upwardly toward ice molds 124 .
  • the ice molds 124 are cooled by a refrigerant. As such, liquid water flowing through the ice molds 124 from the nozzles 126 may freeze on the ice molds 124 , for example, to form transparent ice cubes on the ice molds 124 .
  • the ice maker 100 includes a sealing system 170 .
  • Sealing system 170 includes components for implementing a known vapor compression cycle for cooling ice maker 120 and/or air. These components include a compressor 172 connected in series and filled with refrigerant, a condenser 174 , an expansion device (not shown), and an evaporator 176 .
  • the sealing system 170 may include other components, for example, at least one additional evaporator, compressor, expansion device, and/or condenser. Additionally or alternatively, placement of components (eg, compressor 172, condenser 174, etc.) may be adjusted according to the particular implementation. As such, sealing system 170 is provided by way of example only. Other configurations using the sealing system are also within the scope of the invention.
  • refrigerant flows into a compressor 172, which operates to increase the pressure of the refrigerant. This compression of the refrigerant raises its temperature, which is lowered by passing the refrigerant through condenser 174 . In the condenser 174, heat exchange with ambient air is performed to cool the refrigerant. Fan 178 may be operated to blow air across condenser 174 to provide forced convection for faster and efficient heat exchange between the refrigerant within condenser 174 and ambient air.
  • An expansion device receives refrigerant from condenser 174 .
  • Refrigerant enters evaporator 176 from the expansion device.
  • the pressure of the refrigerant drops. Due to the pressure drop and/or phase change of the refrigerant, the evaporator 176 is cold, eg, relative to ambient air and/or liquid water.
  • the evaporator 176 is disposed at and in thermal contact with the ice maker 120 , such as at the ice molds 124 of the ice maker 120 . As such, ice maker 120 may be cooled directly with refrigerant at evaporator 176 .
  • ice maker 120 may be an air cooled ice maker.
  • cooling air from evaporator 176 may cool various components of ice maker 100 , such as ice molds 124 of ice maker 120 .
  • evaporator 176 is a heat exchanger that transfers heat from air passing through evaporator 176 to refrigerant flowing through Evaporator 176 circulates to ice maker 120 .
  • the ice maker 100 may also include a controller 190 that regulates or operates various components of the ice maker 100 .
  • Controller 190 may include memory and one or more microprocessors, CPUs, etc., such as general or special purpose microprocessors, for executing programmed instructions or micro-control codes associated with the operation of ice maker 100 .
  • the memory may mean a random access memory such as DRAM or a read only memory such as ROM or FLASH.
  • a processor executes programmed instructions stored in memory.
  • the memory may be a separate component from the processor, or it may be included on-board within the processor.
  • controller 190 may be implemented without the use of a microprocessor, for example, using a combination of discrete analog and/or digital logic circuits (such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, etc. ) are built to perform control functions rather than relying on software.
  • I/O Input/output
  • signals may be routed between controller 190 and the various operating components of ice maker 100 .
  • various operating components of ice maker 100 may communicate with controller 190 via one or more signal lines or a shared communication bus.
  • the ice maker 100 may include a first storage container 128 .
  • the first storage container 128 may be disposed in the ice storage compartment 102 .
  • the first storage container 128 may be located at or near the top 112 of the interior volume 111 of the ice storage compartment 102 .
  • the first storage container 128 may define a receiving space that holds a liquid (eg, water) to be formed into ice.
  • the inner volume of the first storage container 128 may be smaller than the inner volume 111 of the ice storage compartment 102 .
  • the first storage container 128 can hold other liquids, such as cleaning solutions.
  • the first storage container 128 may be removable (eg, from the ice storage compartment 102 ).
  • the first storage container 128 may include features that are detachable relative to the case 110, such as drawer slides, magnets, clips, and the like. Accordingly, the first storage container 128 is removable from the interior volume 111 of the tank 110 .
  • the ice maker 120 may be disposed within the first storage container 128 .
  • the evaporator 176 and the ice mold 124 may be located within the first storage container 128 .
  • the ice maker 120 is positioned above the first storage container 128 (eg, along vertical V).
  • the first storage container 128 may extend along a vertical V from the bottom end 202 to the top end.
  • the ice maker 120 may be installed at the top of the first storage container 128 .
  • an evaporator 176 may be mounted to the top and ice molds 124 may be connected to the evaporator 176 .
  • the ice molds 124 may be defined by the evaporator 176 .
  • the evaporator 176 is integral with the ice mold 124 such that clear ice is formed directly on the evaporator 176 .
  • the ice maker 100 may include a circulation system 139 .
  • Circulation system 139 may include first pump 142 , supply conduit 140 and nozzle 126 .
  • a first pump 142 may be disposed within the first storage container 128 .
  • the first pump 142 may pump water or liquid stored in the first storage container 128 .
  • the supply pipe 140 may be connected to a first pump 142 such that water or liquid pumped by the first pump 142 circulates through the supply pipe 140 .
  • the supply conduit 140 may comprise a series of tubes or pipes capable of conducting water or liquid pumped by the first pump 142 .
  • the nozzle 126 may be disposed at the downstream end of the supply conduit 140 . Nozzle 126 may dispense water or liquid stored in first storage container 128 toward ice maker 120 (ie, ice molds 124 and/or evaporator 176 ).
  • the nozzle 126 may be located near the bottom end 202 of the first storage container 128 .
  • water or liquid may be sprayed from the nozzle 126 in a generally upward direction toward the ice maker 120 .
  • transparent ice may be formed on the ice maker 120 due to the continuous spraying of water onto the ice maker 120 .
  • the liquid dispensed from the nozzle 126 may be directed toward the ice mold 124 .
  • multiple nozzles 126 may be provided.
  • Each of the plurality of nozzles 126 may be independently connected to the first pump 142 (eg, each nozzle 126 has a dedicated supply conduit 140 ). Additionally or alternatively, each of the plurality of nozzles 126 may be connected to the first pump 142 via combined cycle piping.
  • a first liquid level sensor 134 may be disposed in the first storage container 128 .
  • the first liquid level sensor 134 may sense a liquid level contained within the first storage container 128 .
  • the first level sensor 134 is in operative communication with the controller 190 .
  • first level sensor 134 may communicate with controller 190 via one or more signals.
  • the first level sensor 134 includes a predetermined threshold level (eg, to indicate a need for additional liquid to the first storage vessel 128 ).
  • the first liquid level sensor 134 may detect if or when the liquid in the first storage vessel 128 falls below a predetermined threshold level.
  • the first liquid level sensor 134 may be a dual position sensor. In other words, the first liquid level sensor 134 may be "on" or "off” depending on the liquid level.
  • the first liquid level sensor 134 when the liquid level is below a predetermined threshold level, the first liquid level sensor 134 is "OFF", meaning that it does not send a signal via the controller 190 to the first pump 142 to pass through the first supply conduit 140 from the first storage The container 128 pumps liquid towards the first nozzle 126 .
  • the first liquid level sensor 134 when the liquid level is above a predetermined threshold, the first liquid level sensor 134 is "on”, which means that it sends a signal via the controller 190 to the first pump 142 to operate the first pump 142, thereby passing the first supply line 140 pumps liquid towards first nozzle 126 .
  • the first liquid level sensor 134 may be any suitable sensor capable of determining the liquid level within the first storage container 128 and that the invention is not limited to the examples provided herein.
  • the ice maker 100 can also be operated in a cleaning mode, or a cleaning operation can be performed to clean various pieces in the ice maker 100 that may be contaminated by foreign debris.
  • a cleaning solution or acid may be pumped through first supply conduit 140 and dispensed by nozzle 126 toward ice maker 120 .
  • the cleaning solution or acid may remove foreign contaminants or debris from, for example, the ice mold 124 , nozzle 126 , first storage container 128 , and supply conduit 140 .
  • the ice maker 100 may further include a second storage container 138 .
  • the second storage container 138 may be in fluid communication with the ice storage compartment 102 .
  • the drain conduit 150 may connect the ice storage compartment 102 with the second storage container 138 such that liquid from the ice storage compartment 102 flows into the second storage container 138 .
  • the second storage container 138 is disposed below the ice storage compartment 102 .
  • the second storage container 138 may be located below the ice storage compartment 102 along the vertical direction V. As shown in FIG. Therefore, the liquid from the ice storage compartment 102 can easily flow into the second storage container 138 through the discharge pipe 150 .
  • the second storage container 138 may also be in fluid communication with the first storage container 128 . In other words, liquid from the second storage container 138 may flow to the first storage container 128 .
  • the second storage container 138 is connected to the first storage container 128 via a return line conduit 152 . During use, at least a portion of the meltwater from the second storage container 138 may be pumped to the first storage container to be recirculated through the first supply conduit 140 and redistributed to the ice maker 120 .
  • a second pump 144 may be provided at or in the second storage container 138 .
  • the second pump 144 may selectively pump at least a portion of the meltwater from the second storage container 138 to the first storage container 128 .
  • the second pump 144 can be configured as any suitable fluid pump (eg, a rotary pump, a reciprocating pump, a peristaltic pump, a velocity pump, etc.).
  • the second pump 144 may be a submersible pump and may be located within the second storage container 138 .
  • the second pump 144 may be submersible within the second storage container 138 (ie, within a volume of liquid stored within the second storage container 138 ).
  • the second pump 144 may be located external to the second storage container 138 .
  • the second pump 144 may be outside the boundaries of the second storage container 138 such that the second pump 144 is not in direct contact with the liquid stored within the second storage container 138 .
  • the second pump 144 can assist in recirculating liquid through the ice maker 100 to improve performance and reduce the need for cleaning or maintenance.
  • a second liquid level sensor 136 may be disposed within the second storage container 138 to sense a liquid level contained within the second storage container 138 .
  • the second liquid level sensor 136 may sense the liquid level contained within the second storage container 138 .
  • the second level sensor 136 is in operative communication with the controller 190 .
  • the second level sensor 136 may communicate with the controller 190 via one or more signals.
  • the second liquid level sensor 136 includes a predetermined threshold level (eg, to indicate a need to drain liquid from the second storage container 138 ).
  • the second level sensor 136 may detect if or when the liquid in the second storage container 138 is below or above a predetermined threshold level.
  • the second liquid level sensor 136 may be a dual position sensor. In other words, the second liquid level sensor 136 may be "on" or "off” depending on the water level.
  • the second level sensor 136 when the water level is below a predetermined threshold level, the second level sensor 136 is “off,” meaning it does not send a signal to the second pump 144 via the controller 190 to pump water from the second storage vessel 138 . As another example, when the water level is above a predetermined threshold, the second liquid level sensor 136 is “on,” which means it sends a signal via the controller 190 to the second pump 144 to operate the second pump 144 . It should be understood that the second liquid level sensor 136 may be any suitable sensor capable of determining the liquid level within the second storage container 138 .
  • the ice maker 100 may include an overflow line conduit 230 .
  • Overflow line conduit 230 may fluidly connect first storage container 128 with second storage container 138 .
  • the overflow line conduit 230 may provide a passage for fluid or liquid within the first storage vessel 128 to flow directly into the second storage vessel 138 .
  • the top 232 of the overflow line conduit 230 may be positioned above the normal liquid level within the first storage vessel 128 .
  • a predetermined amount of liquid may be stored in the first storage container 128 to make ice.
  • the top 232 of the overflow line conduit 230 may be positioned such that a liquid volume above the predetermined volume may flow into the top 232 of the overflow line conduit 230 and thereby into the second storage container 138 .
  • the outlet 234 of the overflow line conduit 230 is disposed partially within the discharge conduit 150 .
  • cleaning liquid or solution may flow from the first storage container 128 to the second storage container 138 through the overflow line conduit 210 .
  • the ice maker 100 may further include a cleaning line duct 210 .
  • the purge line conduit 210 may define a first end 212 and a second end 214 . Each of the first end 212 and the second end 214 defines a point along the flow path through the purge line conduit 210.
  • the first end 212 is connected to the return line conduit 152 .
  • the first end 212 may define a branch point of the purge line conduit 210 from the return line conduit 152 .
  • the return line conduit 152 may be fluidly connected to the second storage container 138 . Accordingly, the liquid in the second storage container 138 can flow out of the second storage container and selectively flow through the purge line conduit 210 .
  • fluid from the second storage container 138 is forced through the return line conduit 152 via the second pump 144 .
  • the first end 212 of the purge line conduit 210 may be disposed downstream of the second pump 144 .
  • upstream and downstream refer to relative directions with respect to fluid flow in a fluid pathway. For example, “upstream” refers to where the fluid flow is coming from, while “downstream” refers to the direction the fluid flow is going.
  • the second pump 144 may pump fluid toward the purge line conduit 210 .
  • the second end 214 may be open to the outer region. In other words, the second end 214 may be openly exposed (eg, inside or outside the ice maker 100). Liquid flowing through purge line conduit 210 may be released from ice maker 100 via second end 214 .
  • the second end 214 may be disposed within, for example, the ice storage compartment 102 (eg, may be exposed within the interior volume 111 ).
  • the various components within the ice maker 100 can be easily cleaned by circulating a cleaning fluid therethrough and expelling the cleaning fluid through the cleaning line conduit 210 . Thus, a more thorough cleaning can be performed, which results in cleaner ice, fewer maintenance issues and an overall increase in operability.
  • the purge line conduit 210 may be in fluid communication with the return line conduit 152 via a three-way valve 216 .
  • a three-way valve 216 may fluidly connect the first pump 144 with the return line conduit 152 and the purge line conduit 210 .
  • Three-way valve 216 may be any suitable type of valve. In at least one example, three-way valve 216 is an electromechanical valve.
  • Three-way valve 216 may be in communication with controller 190 .
  • the controller 190 may control the operation of the three-way valve 216 (eg, opening and closing of the three-way valve 216 ).
  • the controller 190 may control the three-way valve 216 and the second pump 144 together, eg, during a cleaning operation or cycle (eg, based on user input).
  • the three-way valve 216 may selectively allow the liquid from the second storage container 138 to flow through one of the return line conduit 152 and the purge line conduit 210 .
  • the controller 190 may determine that the appliance 100 is in a first mode, such as an ice making mode. Accordingly, the controller 190 may control the three-way valve 216 to open the return line conduit 152 and close the purge line conduit 210 .
  • the pump eg, second pump 144
  • the liquid eg, meltwater
  • the controller 190 may determine that the electric appliance 100 is in a second mode, such as a cleaning mode or a washing mode. The controller 190 can thus control the three-way valve 216 to open the purge line conduit 210 and close the return line conduit 152 .
  • the controller 190 may control the electric appliance 100 to perform a washing operation or a cleaning operation.
  • the cleaning liquid eg, cleaning acid
  • the cleaning liquid supplied to the first storage container 128 may be pumped through the supply pipe 140 .
  • cleaning liquid may be supplied via the nozzle 126 to, for example, the ice mold 124 .
  • ice molds 124 may not be cooled (eg, refrigerant is not supplied to evaporator 176 via seal system 170 ).
  • the cleaning liquid may fall from the ice molds 124 into the first storage container 128 and/or the ice storage bin 102, for example due to gravity.
  • the cleaning liquid may then flow into the second storage container 138 (eg, via an overflow tube or drain line 150 described below).
  • Cleaning operations may include recirculation.
  • controller 190 may control three-way valve 216 to open return line conduit 152 and close purge line conduit 210 . Accordingly, cleaning liquid may circulate from the second storage container 138 through the return line conduit 152 and into the first storage container 128 . Thus, various parts of the circulation system receive cleaning liquid.
  • controller 190 may control three-way valve 216 to close return line conduit 152 and open purge line conduit 210 .
  • the second pump 144 can pump cleaning liquid from the second storage container 138 through the cleaning line conduit 210 .
  • the wash line conduit 210 may include a wash tap 218 .
  • a washer spigot 218 may be disposed at the second end 214 of the washer line conduit 210 .
  • Wash tap 218 may selectively release liquid (eg, cleaning liquid) from wash line conduit 210 .
  • washer spigot 218 may selectively open and close second end 214 .
  • Wash faucet 218 may include a valve.
  • the washer spigot 218 may be manually operated (eg, by twisting, pulling, pushing, rotating, or otherwise manipulating a valve) to selectively open and close the second end 214 .
  • a user may release fluid (eg, cleaning fluid) from the cleaning line conduit 210 .
  • the second end 214 may be an unobstructed opening of the cleaning line pipe 210 .
  • the release of liquid (eg, cleaning liquid) from the wash line conduit 210 may be controlled by the three-way valve 216 only.
  • the purge line conduit 210 may be at least partially disposed within the ice storage compartment 102 .
  • the cleaning line pipe 210 may extend into the ice storage compartment 102 .
  • a portion of purge line conduit 210 may pass through the bottom of ice storage compartment 102 .
  • the cleaning line conduit 210 may pass through the sidewall of the ice storage compartment 102 . It should be noted that the precise placement of purge line tubing 210 may vary depending on the particular implementation, and the invention is not limited to the examples provided herein.
  • wash line conduit 210 may extend vertically V and laterally T (eg, toward the front of appliance 100 ).
  • the washer faucet 218 can be arranged near the door body 119 .
  • a user has easy access to washer faucet 216 to complete a wash cycle. Liquid (eg, cleaning liquid) flowing through the wash line conduit 210 may then be disposed of after being released via the wash tap 218 (or through the second end 214 when the wash tap 216 is omitted).
  • a removable container 220 may be selectively positioned below the second end 214 .
  • removable container 220 may resemble a pitcher.
  • removable container 220 may be formed to be removably attached to ice bank 102 . As seen in FIG. 3 , the user can open the door 119 and place the removable container 220 within the ice bank 102 .
  • the removable container 220 includes a support arm 222 .
  • the support arm 222 may be assembled on the front lip of the ice bank 102 . Therefore, when liquid is supplied to the removable container 220, the removable container 220 can be stably held in place.
  • the removable container 220 may be freely disposed within the ice bank 102 .
  • second end 214 may be selectively disposed within interior volume 111 (eg, on a swivel).
  • a user may place the second end 214 at a desired location, thereby placing the removable container 220 at a corresponding location.
  • Removable container 220 may define a volume capable of holding a predetermined amount of cleaning liquid.
  • removable container 220 holds the volume of liquid needed to perform an adequate cleaning operation.
  • the user only needs to perform a single removal action to complete the cleaning cycle.
  • the controller 190 may determine that a removable container 220 is present (eg, within the ice storage compartment 102 ) prior to initiating a cleaning cycle. For example, upon receiving an input signal (eg, from a user) to initiate a cleaning cycle or operation, the controller may perform one or more pre-cycle or pre-operation checks. According to some embodiments, a sensor or switch may be present within the ice storage compartment 102 to sense or confirm the presence of the removable container 220 . The sensor may send a response signal to the controller 190 confirming the presence of the removable container 220 . The controller 190 may then determine the presence of liquid (eg, cleaning acid, cleaning solution, etc.) within the first storage container 128 .
  • liquid eg, cleaning acid, cleaning solution, etc.
  • controller 190 may receive a signal from the first level sensor 134 confirming the presence of liquid within the first storage container 128 . Controller 190 may then initiate a cleaning cycle or operation (eg, activate three-way valve 216, prime second pump 144, etc.)
  • washer faucet 218 may be omitted or modified.
  • washer faucet 216 may be modified to accept a hose or additional tubing to the faucet.
  • the hose may be connected at its first end to the washer spigot 216 (or the second end 214 of the washer line conduit 210) and disposed at, in, or near the drain at its second end.
  • the removable container 220 may also be omitted.
  • a perforated ramp or series of slats 104 may be provided above the first storage container 128 (for example along vertical V).
  • the ramp 104 may be located below the ice maker 120 (eg, below the ice molds 124 or the evaporator 176). In other words, the ramp 104 may be located below the ice maker 120 along the vertical V.
  • the top surface of the ramp 104 (or the top edge of the series of slats) may be angled. In other words, the first end of the ramp 104 may be positioned higher in the vertical V than the second end of the ramp 104 .
  • ramp 104 is angled downward toward the front of case 110 . Accordingly, a channel or hole may be provided on one side of the first storage container 128 through which the ice cubes may drain after sliding down the ramp 104 . Additionally or alternatively, a flapper or swing door 122 may be pivotally connected to the cabinet 110 . In detail, as the harvested ice cubes slide down the ramp 104, they can pass through the channel of the first storage container 128 by pressing against and opening the flap 122.
  • the ice maker 100 may include a water supply pipe 130 and a supply valve 132 .
  • Water supply conduit 130 may be connected to an external pressurized water supply, such as a municipal water system or a well.
  • Supply valve 132 may be coupled to water supply conduit 130 , and supply valve 132 may be operable (eg, openable and closeable) to regulate the flow of liquid water into ice maker 100 through water supply conduit 130 .
  • a water supply conduit 130 is connected to the first storage container 128 .
  • the water supply pipe 130 is in fluid communication with the first storage container 128 to allow external water to be supplied into the first storage container 128 via the water supply pipe 130 .
  • the first storage container 128 can be filled with fresh liquid water from an external pressurized water supply system through the water supply line 130.
  • the water supply pipe 130 may be connected to the bottom of the box body 110 .
  • the water supply pipe 130 is connected to the top of the tank 110 .
  • water introduced through the top of the bin may be released over the top of the ice maker 120 and may assist in the harvesting of ice formed on the ice molds 124 .
  • the ice maker 100 may include a filter 154 .
  • the filter 154 may be nested within the first storage container 128 .
  • filter 154 may rest within first storage container 128 .
  • the filter 154 is suspended within the first storage container 128 .
  • a space for receiving liquid that has passed through the filter 154 may be provided between a lower side of the filter 154 and the bottom of the first storage container 128 .
  • the filter 154 may be located below the ice mold 124 .
  • the filter 154 may be positioned such that unfrozen liquid on the ice molds 124 dispensed from the nozzle 126 may fall on top of the filter 154 .
  • filter 154 may be a gravity filter.
  • liquid may fall onto the top of the filter 154 , permeate through the filter 154 (eg, along the vertical V), and exit through the bottom of the filter 154 .
  • Figure 4 provides a schematic side view of an ice maker according to an alternative embodiment.
  • the same reference numerals as in the embodiment shown in FIG. 3 apply to the same features in the embodiment shown in FIG. 4 . It can be seen that, for the sake of brevity, repeated descriptions of the same features will be omitted.
  • the first storage container 128 may be disposed under the ice storage compartment 102 .
  • the first storage container 128 may be located directly below the ice storage compartment 102 .
  • a grill 180 may be provided to separate the ice storage compartment 102 from the first storage container 128 .
  • the grill 180 may be a removable grill. For example, a user may pull the grill 180 out of the ice storage compartment 102 to gain access to the first storage container 128 .
  • the purge line conduit 210 may be in fluid communication with the supply conduit 140 .
  • the first end 212 of the cleaning line conduit 210 may be attached to the supply conduit 140 downstream of the pump 142 .
  • a three-way valve 216 may be provided on the supply conduit 140 . Accordingly, the first end 212 of the purge line conduit 210 may be in fluid communication with the three-way valve 216 .
  • the ice maker 100 may include a collection tray 182 .
  • a collecting tray 182 may be disposed under the ice molds 124 .
  • the collection tray 182 may collect during ice making operations (e.g., when liquid is dispensed from the nozzles 126 toward the ice molds 124) or cleaning operations or cycles (e.g., when cleaning liquid is dispensed from the nozzles 126 toward the ice molds 124) and The liquid that then drips from the ice mold 124.
  • a return conduit 184 may be provided. Return conduit 184 may be connected to collection tray 182 (eg, at the bottom of collection tray 182 ).
  • the return duct may extend along the vertical V from the collection tray 182 towards the grate 180 .
  • liquid collected in the collection tray 182 may be returned to the first storage container 128 and resupplied to the filter 154 (or pumped out of the appliance 100 via the cleaning line conduit 210).
  • an ice maker having a cleaning duct.
  • the ice maker may not be piped directly to a household drain, thereby allowing for more versatility in placement and use.
  • the ice maker described herein may include a first storage container that stores liquid (such as water) to form ice on the ice mold.
  • the first storage container may also optionally store a cleaning liquid or solution, such as cleaning acid.
  • Liquid stored in the first storage container may be directed to the ice molds. Excess liquid from the ice molds can be returned to the first storage container. In some cases, excess liquid is delivered to a second storage container separate from the first storage container.
  • the second storage container may resupply the collected liquid to the first storage container via a return line conduit.
  • a three-way valve may be included on the return line piping. Branched from the three-way valve may be the purge line piping. Depending on the application, the three-way valve can selectively supply liquid from the second storage container to the return line line or the purge line line.
  • the wash line conduit may include a wash tap at its downstream end. Liquid can be selectively released from the washer tap.
  • the removable container can be placed under the washer tap, for example in the ice storage compartment of the ice maker. The dispensed liquid, such as a cleaning solution, can then be easily disposed of via the removable container.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

一种制冰器包括:箱体,该箱体形成储冰室;制冰机,该制冰机设置在箱体内;第一储存容器,该第一储存容器设置在制冰机下方;第二储存容器,该第二储存容器设置在储冰室下方;以及循环系统,该循环系统与第一储存容器和第二储存容器流体连通。循环系统包括:回流管路管道;第一泵,该第一泵连接到回流管路管道以将液体从第二储存容器泵送到第一储存容器;以及清洗管路管道,该清洗管路管道与第一泵流体连通,其中,第一泵选择性地将液体从第二储存容器泵送通过清洗管路管道。

Description

用于独立制冰器的清洗排出管道 技术领域
本发明总体涉及制冰器,更具体地涉及无排出的独立制冰器。
背景技术
制冰器通常包括构造为产生冰的制冰机。制冰器内的制冰机被管接到供水系统,并且来自供水系统的水可流到制冰器内的制冰机。制冰器通常由密封系统冷却,并且制冰机中的液态水与密封系统的制冷剂之间的热传递产生冰。
在某些制冰器中,储存在制冰器内的冰随着时间的推移而融化并产生液态融水。通常,制冰器被管接到外部排出管(例如,连接到市政水系统)以处理液态融水。而且,在制冰器内执行清洗操作之后,使用管接的排出管来处理清洁溶液。虽然对于管理液态融水是有效的,但是外部排出管道具有缺点。例如,安装外部排出管道可能困难且昂贵。另外,清洁这种制冰器可能繁重且耗时。
最近,已经引入了管接排出管的可选方案。然而,这些可选方案具有某些缺点。例如,手动排出管的位置对于用户来说不方便,从而导致在执行手动排出时的不愉快体验。而且,在执行清洁和排出操作之后收集和处理清洁溶液困难且笨拙。
因此,消除一个或多个上述缺点的制冰器将是有用的。特别地,具有更高效的清洗过程的制冰器将是有益的。
发明内容
本发明的各个方面以及优点将会在下文的描述中进行阐述,或者是通过描述可以显而易见的,或者是可以通过实施本发明而学到。
在本发明的一个示例性方面,提供了一种制冰器。该制冰器可以包括:箱体,该箱体形成储冰室;制冰机,该制冰机设置在箱体内;第一储存容器,该第一储存容器设置在制冰机下方并且用于收集来自制冰机的液体;第二储存容器,该第二储存容器设置在储冰室下方;以及循环系统,该循环系统与第一储存容器和第二储存容器流体连通。循环系统可以包括:回流管路管道;第一泵,该第一泵连接到回流管路管道以将液体从第二储存容器泵送到第一储存容器;以及清洗管路管道,该清洗管路管道与第一泵流体连通,清洗管路管道设置在第一泵的下游,其中,第一泵选择性地将液体从第二储存容器泵送通过清洗管路管道。
在本发明的另一个示例性方面,提供了一种制冰器。该制冰器可以包括:箱体,该箱体形成储冰室;第一储存容器,该第一储存容器设置在储冰室内,第一储存容器被构造为接收液体;可去除格栅,该可去除格栅位于第一储存容器上方的储冰室内;制冰机,该制冰机设置在储冰室内以制冰;以及循环系统,该循环系统与第一储存容器流体连通。循环系统可以包括:供应管路管道;泵,该泵连接到供应管路管道以从第一储存容器泵送液体;以及清洗管路管道,该清洗管路管道与泵流体连通,清洗管路管道设置在泵的下游,其中,泵选择性地将液体从第一储存容器泵送通过清洗管路管道。
参照下文的描述以及所附权利要求,本发明的这些和其它的特征、方面以及优点将变得更容易理解。结合在本说明书中并且构成本说明书一部分的附图显示了本发明的实施方式并且与描述一起用于对本发明的原理进行解释。
附图说明
参照附图,说明书中阐述了面向本领域普通技术人员的本发明的完整公开,这种公开使得本领域普通技术人员能够实现本发明,包括本发明的最佳实施例。
图1提供了根据本发明的示例性实施方式的制冰器的前立体图。
图2提供了图1的示例性制冰器的前立体图,其中示例性制冰器的门体被示出为处于打开位置。
图3提供了根据第一实施方式的图1的示例性制冰器的侧面示意图。
图4提供了根据另一实施方式的图1的示例性制冰器的侧面示意图。
附图标记在本说明书和附图中的重复使用旨在表示本发明的相同或相似的特征或元件。
具体实施方式
现在将详细地参照本发明的实施方式,其中的一个或多个示例示于附图中。每个示例都以对发明进行解释的方式给出,并不对本发明构成限制。实际上,对于本领域技术人员而言显而易见的是,能够在不偏离本发明的范围的前提下对本发明进行多种改型和变型。例如,作为一个实施方式的一部分示出或者进行描述的特征能够用于另一个实施方式,从而产生又一个实施方式。因此,期望的是,本发明覆盖落入所附权利要求及其等同形式的范围内的这些改型以及变型。
图1和图2提供了根据本发明的示例性实施方式的制冰器100的前立体图。如 下面更详细所述,制冰器100包括用于生成或产生透明冰的特征。由此,制冰器100的用户可以消耗在制冰器100内储存的透明冰。如在图1中可以看到的,制冰器100限定竖向V。
制冰器100包括箱体110。箱体110可以是隔热的,以便限制箱体110的内部容积111(图2)与周围大气之间的热传递。箱体110在顶部112与底部114之间延伸,例如,沿着竖向V延伸。由此,箱体110的顶部112和底部114彼此隔开,例如,沿着竖向V隔开。门体119安装到箱体110的前部。门体119允许选择性地进入箱体110的内部容积111。例如,门体119在图1中被示出为处于关闭位置,并且门体119在图2中被示出为处于打开位置。用户可以使门体在打开位置与关闭位置之间旋转,以进入箱体110的内部容积111。
如在图2中可以看到的,制冰器100的各种部件设置于在箱体110的内部容积111内。特别地,制冰器100包括布置在箱体110的内部容积111内的制冰机120,例如布置在箱体110的顶部112处。制冰机120用于产生透明冰。制冰机120可用于制造任何合适类型的透明冰。由此,如将理解的,例如,制冰机120可以是透明冰块制冰机。
制冰器100还可包括储冰室或储冰盒102。储冰室102可以设置在箱体110的内部容积111内。特别地,储冰室102可以沿着竖向V设置在例如制冰机120的正下方。由此,储冰室102被设置为从制冰机120接收透明冰,并且用于在其中储存透明冰。可以理解,储冰室102可以保持在高于水的冰点的温度。由此,储冰室102内的透明冰可能在储存在储冰室102内的同时随着时间的推移而融化。制冰器100可包括用于使液态融水从储冰室102再循环到制冰机120的特征。
图3提供了制冰器100的某些部件的示意图。如在图3中可以看到的,制冰机120可以包括冰模具124和喷嘴126。例如,冰模具124可以包括用于同时形成多个冰块的多个冰模具。来自喷嘴126的液体可以朝向冰模具124分配。例如,喷嘴126可以设置在第一储存容器128内的冰模具124下方,并且可以朝向冰模具124向上分配液态水。如以下更详细所述,冰模具124由制冷剂冷却。由此,来自喷嘴126的流经冰模具124的液态水可以在冰模具124上冻结,例如,以便在冰模具124上形成透明冰块。
为了冷却冰模具124,制冰器100包括密封系统170。密封系统170包括用于执行已知的用于冷却制冰机120和/或空气的蒸汽压缩循环的部件。这些部件包括串联连接并填充有制冷剂的压缩机172、冷凝器174、膨胀装置(未示出)以及蒸发器176。 如本领域技术人员将理解的,密封系统170可以包括其他部件,例如,至少一个额外的蒸发器、压缩机、膨胀装置和/或冷凝器。另外或可选地,可以根据特定实施方式来调节部件(例如,压缩机172、冷凝器174等)的放置。由此,密封系统170仅以示例的方式来提供。使用密封系统的其他构造也在本发明的范围内。
在密封系统170内,制冷剂流入压缩机172中,该压缩机运行为增大制冷剂的压力。制冷剂的该压缩升高其温度,该温度通过使制冷剂穿过冷凝器174来降低。在冷凝器174内,进行与周围空气的热交换,以便冷却制冷剂。风扇178可以运行为将空气吹过冷凝器174,以便提供强制对流,用于冷凝器174内的制冷剂与周围空气之间进行更快且高效的热交换。
膨胀装置(例如,阀、毛细管或其他限制装置)接收来自冷凝器174的制冷剂。制冷剂从膨胀装置进入蒸发器176。在离开膨胀装置并进入蒸发器176时,制冷剂的压力下降。由于制冷剂的压降和/或相变,蒸发器176是冷的,例如,相对于环境空气和/或液态水。蒸发器176设置在制冰机120处并与其热接触,例如设置在制冰机120的冰模具124处。由此,制冰机120可在蒸发器176处用制冷剂直接冷却。
应当理解,在可选示例性实施方式中,制冰机120可以是空气冷却制冰机。由此,例如,来自蒸发器176的冷却空气可对制冰器100的各种部件进行制冷,例如对制冰机120的冰模具124进行制冷。在这种示例性实施方式中,蒸发器176是一种热交换器,该热交换器将热量从经过蒸发器176的空气传递到流经蒸发器176的制冷剂,并且风扇可使冷空气从蒸发器176循环到制冰机120。
制冰器100还可包括控制器190,该控制器调节或操作制冰器100的各种部件。控制器190可以包括存储器和一个或多个微处理器、CPU等,诸如通用或专用微处理器,该微处理器用于执行与制冰器100的运行关联的编程指令或微控制代码。存储器可以表示诸如DRAM的随机存取存储器或诸如ROM或FLASH的只读存储器。在一个实施方式中,处理器执行存储在存储器中的编程指令。存储器可以是与处理器分开的部件,或者可以包含在处理器内的板上。可选地,控制器190可以在不使用微处理器的情况下,例如,使用离散的模拟或/或数字逻辑电路的组合(诸如开关、放大器、积分器、比较器、触发器、与门等)构建为执行控制功能,而不是依靠软件。输入/输出(“I/O”)信号可以在控制器190与制冰器100的各种操作部件之间路由。作为示例,制冰器100的各种操作部件可以经由一条或多条信号线或共享的通信总线与控制器190通信。
制冰器100可以包括第一储存容器128。第一储存容器128可设置在储冰室102 内。例如,第一储存容器128可位于储冰室102的内部容积111的顶部112处或附近。第一储存容器128可限定保持待形成为冰的液体(例如水)的接收空间。例如,第一储存容器128的内部容积可小于储冰室102的内部容积111。在一些实施方式中,第一储存容器128可保持其它液体,例如清洁溶液。如将在下面更详细地解释的,第一储存容器128可为可去除的(例如,从储冰室102去除)。例如,第一储存容器128可包括相对于箱体110可拆卸的特征,诸如抽屉滑轨、磁体、夹子等。因此,第一储存容器128可从箱体110的内部容积111去除。
制冰机120可设置在第一储存容器128内。详细地,蒸发器176和冰模具124可以位于第一储存容器128内。在一些实施方式中,制冰机120设置在第一储存容器128上方(例如,沿着竖向V)。第一储存容器128可沿着竖向V从底端202延伸到顶端。制冰机120可安装在第一储存容器128的顶端处。例如,蒸发器176可以安装到顶端,并且冰模具124可以连接到蒸发器176。在一些实施方式中,冰模具124可由蒸发器176限定。换言之,蒸发器176与冰模具124成一体,使得透明冰直接形成在蒸发器176上。
制冰器100可包括循环系统139。循环系统139可包括第一泵142、供应管道140和喷嘴126。第一泵142可设置在第一储存容器128内。第一泵142可以泵送储存在第一储存容器128中的水或液体。供应管道140可连接到第一泵142,使得由第一泵142泵送的水或液体循环通过供应管道140。供应管道140可包括一系列能够引导由第一泵142泵送的水或液体的管或管道。喷嘴126可设置在供应管道140的下游端。喷嘴126可将储存在第一储存容器128中的水或液体朝向制冰机120(即,冰模具124和/或蒸发器176)分配。
在一个实施方式中,喷嘴126可以位于第一储存容器128的底端202附近。由此可见,水或液体可从喷嘴126沿大体向上的方向朝向制冰机120喷射。因此,在制冰机120由通过密封系统170的制冷剂的循环冷却的同时,由于水持续地喷射到制冰机120上,因此可在制冰机120上形成透明冰。详细地,从喷嘴126分配的液体可以被引向冰模具124。在一些实施方式中,可以提供多个喷嘴126。多个喷嘴126中的每一个可独立地连接到第一泵142(例如,各个喷嘴126具有专用的供应管道140)。另外或可选地,多个喷嘴126中的每一个可经由联合循环管道连接到第一泵142。
第一液位传感器134可设置在第一储存容器128中。通常,第一液位传感器134可感测容纳在第一储存容器128内的液位。在一些实施方式中,第一液位传感器134 与控制器190可操作地通信。比如,第一液位传感器134可经由一个或多个信号与控制器190通信。在某些实施方式中,第一液位传感器134包括预定阈值料位(例如,以指示对第一储存容器128的额外液体的需要)。特别地,第一液位传感器134可检测第一储存容器128的液体是否或何时低于预定阈值料位。可选地,第一液位传感器134可以是双位置传感器。换言之,第一液位传感器134可以是“开”或“关”,这取决于液位。
例如,当液位低于预定阈值料位时,第一液位传感器134“关闭”,这意味着其不经由控制器190向第一泵142发送信号以通过第一供应管道140从第一储存容器128朝向第一喷嘴126泵送液体。再如,当液位高于预定阈值时,第一液位传感器134“开启”,这意味着其经由控制器190向第一泵142发送信号以操作第一泵142,从而通过第一供应管道140朝向第一喷嘴126泵送液体。应当理解,第一液位传感器134可以是能够确定第一储存容器128内的液位的任何合适的传感器,并且本发明不限于本文提供的这些示例。
制冰器100也可以清洁模式操作,或者可以执行清洁操作,以清洁制冰器100中可能被外来碎屑污染的各种件。例如,在一些实施方式中,清洁溶液或酸可被泵送通过第一供应管道140并由喷嘴126朝向制冰机120分配。因此,清洁溶液或酸可以从例如冰模具124、喷嘴126、第一储存容器128和供应管道140去除外来污染物或碎屑。
制冰器100还可包括第二储存容器138。第二储存容器138可与储冰室102流体连通。排出管道150可将储冰室102与第二储存容器138连接,使得来自储冰室102的液体流入第二储存容器138中。在一些示例中,第二储存容器138设置在储冰室102下方。换言之,第二储存容器138可沿竖向V位于储冰室102下方。因此,来自储冰室102的液体可容易地经由排出管道150流入第二储存容器138中。在一个示例中,当储存在储冰室102内的冰融化成水时,融水的至少一部分可从储冰室102通过排出管道150流入第二储存容器138中。第二储存容器138也可与第一储存容器128流体连通。换言之,来自第二储存容器138的液体可流到第一储存容器128。在一个示例中,第二储存容器138经由回流管路管道152连接到第一储存容器128。在使用期间,来自第二储存容器138的融水的至少一部分可被泵送至第一储存容器,以通过第一供应管道140再循环并重新分配到制冰机120上。
第二泵144可以设置在第二储存容器138处或中。在使用期间,第二泵144可以选择性地将融水的至少一部分从第二储存容器138泵送到第一储存容器128。通常, 第二泵144可以被设置为任何合适的流体泵(例如,旋转泵、往复泵、蠕动泵、速度泵等)。可选地,第二泵144可以是潜水泵并且可以位于第二储存容器138内。详细地,第二泵144可以可浸没在第二储存容器138内(即,在储存在第二储存容器138内的一定体积的液体内)。另外或可选地,第二泵144可位于第二储存容器138的外部。换言之,第二泵144可以在第二储存容器138的边界之外,使得第二泵144不与储存在第二储存容器138内的液体直接接触。有利地,第二泵144可以辅助使液体再循环通过制冰器100,以提高性能并减少对清洁或维护的需要。
第二液位传感器136可设置在第二储存容器138内,以感测容纳在第二储存容器138内的液位。通常,第二液位传感器136可感测容纳在第二储存容器138内的液位。在一些实施方式中,第二液位传感器136与控制器190可操作地通信。比如,第二液位传感器136可经由一个或多个信号与控制器190通信。在某些实施方式中,第二液位传感器136包括预定阈值料位(例如,以指示对从第二储存容器138排出液体的需要)。特别地,第二液位传感器136可检测第二储存容器138中的液体是否或何时低于或高于预定阈值料位。可选地,第二液位传感器136可以是双位置传感器。换言之,第二液位传感器136可以是“开”或“关”,这取决于水位。
例如,当水位低于预定阈值料位时,第二液位传感器136“关闭”,这意味着其不经由控制器190向第二泵144发送信号以从第二储存容器138泵送水。再如,当水位高于预定阈值时,第二液位传感器136“开启”,这意味着其经由控制器190向第二泵144发送信号以操作第二泵144。应当理解,第二液位传感器136可以是能够确定第二储存容器138内的液位的任何合适的传感器。
制冰器100可包括溢流管路管道230。溢流管路管道230可将第一储存容器128与第二储存容器138流体连接。例如,溢流管路管道230可提供用于第一储存容器128内的流体或液体直接流入第二储存容器138的通道。溢流管路管道230的顶部232可设置在第一储存容器128内的常规液位线上方。详细地,如上所述,预定量的液体可储存在第一储存容器128内以制冰。溢流管路管道230的顶部232可以定位为使得高于预定体积的液体体积可以流入溢流管路管道230的顶部232中,由此流入第二储存容器138中。在一些实施方式中,溢流管路管道230的出口234部分地设置在排出管道150内。如下面将更详细地解释的,清洁液体或溶液可以从第一储存容器128通过溢流管路管道210流到第二储存容器138。
制冰器100还可包括清洗管路管道210。清洗管路管道210可以限定第一端212和第二端214。第一端212和第二端214中的每一个都限定了沿着通过清洗管路管道 210的流路的点。在一个示例中,第一端212连接到回流管路管道152。例如,第一端212可以限定清洗管路管道210从回流管路管道152的分支点。如上所述,回流管路管道152可以与第二储存容器138流体连接。因此,第二储存容器138内的液体可流出第二储存容器且选择性地流过清洗管路管道210。在一些实施方式中,来自第二储存容器138的流体经由第二泵144被推动通过回流管路管道152。因此,清洗管路管道210的第一端212可以设置在第二泵144的下游。术语“上游”和“下游”是指相对于流体通路中的流体流动的相对方向。例如,“上游”是指流体流动的来向,而“下游”是指流体流动的去向。因此,第二泵144可以将流体朝向清洗管路管道210泵送。
第二端214可以向外部区域敞开。换言之,第二端214可以敞开地露出(例如在制冰器100内或外)。流经清洗管路管道210的液体可经由第二端214从制冰器100释放。第二端214可设置在例如储冰室102内(例如可暴露在内部容积111内)。有利地,制冰器100内的各个部件可通过使清洁流体循环通过其中并通过清洗管路管道210排出清洁流体而容易地清洁。由此,可以执行更彻底的清洁,这导致更干净的冰、更少的维护问题和可操作性的总体增加。
清洗管路管道210可经由三通阀216与回流管路管道152流体连通。如图3所示,三通阀216可将第一泵144与回流管路管道152和清洗管路管道210流体连接。三通阀216可以是任何合适类型的阀。在至少一个示例中,三通阀216是机电阀。三通阀216可以与控制器190通信。例如,控制器190可以控制三通阀216的操作(例如,三通阀216的打开和关闭)。而且,控制器190可以例如在清洁操作或循环期间(例如,根据用户输入)一起控制三通阀216和第二泵144。
详细地,三通阀216可以选择性地允许来自第二储存容器138的液体流过回流管路管道152和清洗管路管道210中的一个。控制器190可以确定电器100处于第一模式,诸如制冰模式。因此,控制器190可以控制三通阀216以打开回流管路管道152并关闭清洗管路管道210。由此,当泵(例如,第二泵144)被启动时,第二储存容器138内的液体(例如,融水)通过回流管路管道152被泵送至第一储存容器128。而且,控制器190可确定电器100处于第二模式,诸如清洁模式或清洗模式。控制器190由此可以控制三通阀216以打开清洗管路管道210并关闭回流管路管道152。
另外或可选地,控制器190可以控制电器100执行清洗操作或清洁操作。根据清洗操作,供应到第一储存容器128的清洁液体(例如,清洁酸)可通过供应管道 140泵送。因此,清洁液体可以经由喷嘴126供应到例如冰模具124。在清洗操作期间,冰模具124可不被冷却(例如,制冷剂不经由密封系统170供应到蒸发器176)。清洁液体可例如由于重力而从冰模具124落入第一储存容器128和/或储冰盒102中。然后,清洁液体可以流入第二储存容器138(例如,经由下述溢流管或排出管道150)。
清洗操作可包括再循环。在再循环期间,控制器190可以控制三通阀216以打开回流管路管道152并关闭清洗管路管道210。因此,清洁液体可从第二储存容器138循环通过回流管路管道152并进入第一储存容器128。由此,循环系统的各个部分接收清洁液体。在执行一个或多个再循环之后,控制器190可以控制三通阀216以关闭回流管路管道152并打开清洗管路管道210。由此,第二泵144可以将清洁液体从第二储存容器138通过清洗管路管道210泵出。
清洗管路管道210可以包括清洗龙头218。清洗龙头218可以设置在清洗管路管道210的第二端214处。清洗龙头218可以选择性地从清洗管路管道210释放液体(例如,清洁液体)。例如,清洗龙头218可以选择性地打开和关闭第二端214。清洗龙头218可以包括阀。清洗龙头218可以手动操作(例如,通过扭转、拉动、推动、旋转或以其他方式操纵阀)以选择性地打开和关闭第二端214。由此,用户可以从清洗管路管道210释放液体(例如,清洁液体)。然而,应当注意,一些实施方式完全省略龙头218。详细地,第二端214可以是清洗管路管道210的无阻碍开口。因此,液体(例如,清洁液体)从清洗管路管道210的释放可以仅由三通阀216控制。
清洗管路管道210可至少部分地布置在储冰室102内。详细地,在从回流管路管道152分支(例如,经由三通阀216)时,清洗管路管道210可延伸到储冰室102中。如在图3中看到的,一部分清洗管路管道210可穿过储冰室102的底部。另外或可选地,清洗管路管道210可穿过储冰室102的侧壁。应当注意,清洗管路管道210的精确放置可以根据具体实施方式而变化,并且本发明不限于本文提供的示例。
例如,清洗管路管道210可沿竖向V和横向T(例如,朝向电器100的前部)延伸。由此,清洗龙头218可以设置在门体119附近。有利地,用户可以容易地接近清洗龙头216以完成清洗循环。然后,流经清洗管路管道210的液体(例如,清洁液体)在经由清洗龙头218(或者当省略清洗龙头216时通过第二端214)释放之后可以被处理。
在至少一个实施方式中,可去除的容器220可以选择性地放置在第二端214下方。例如,可去除的容器220可以类似于水罐。例如,可去除的容器220可形成为可去除地附接到储冰盒102。如在图3中看到的,用户可打开门体119并将可去除容 器220设置在储冰盒102内。在一些实施方式中,可去除的容器220包括支撑臂222。支撑臂222可以装配在储冰盒102的前唇缘上。因此,当液体被供应到可去除的容器220时,可去除的容器220可以被稳定地保持在适当的位置。然而,在其它实施方式中,可去除的容器220可自由地设置在储冰盒102内。例如,第二端214可以选择性地设置在内部容积111内(例如,设置在转环上)。因此,用户可以将第二端214设置在期望的位置,由此将可去除的容器220设置在对应的位置。可去除的容器220可以限定能够保持预定量的清洁液体的容积。在至少一个示例中,可去除的容器220保持执行充分清洁操作所需的液体体积。有利地,用户仅需要进行单个去除动作来完成清洁循环。
通常,控制器190可在发起清洁循环之前确定存在可去除的容器220(例如,在储冰室102内)。例如,在接收到(例如,来自用户的)输入信号以发起清洁循环或操作时,控制器可执行一个或多个预循环或预操作检查。根据一些实施方式,传感器或开关可存在于储冰室102内以感测或确认可去除容器220的存在。传感器可以向控制器190发送响应信号,该信号确认可去除的容器220的存在。控制器190然后可确定第一储存容器128内存在液体(例如,清洁酸、清洁溶液等)。例如,控制器190可以接收来自第一液位传感器134的确认第一储存容器128内存在液体的信号。然后,控制器190可以开始执行清洁循环或操作(例如,启动三通阀216、引导第二泵144等)
根据一些实施方式,可以省略或修改清洗龙头218。例如,可以修改清洗龙头216以将软管或额外管道接纳到龙头。软管可在其第一端处连接到清洗龙头216(或清洗管路管道210的第二端214),并且在其第二端处设置在排出管处、中或附近。因此,也可以省略可去除的容器220。
在第一储存容器128上方(例如沿着竖向V)可设置穿孔的斜坡或一系列板条104。斜坡104可位于制冰机120下方(例如,在冰模具124或蒸发器176下方)。换言之,斜坡104可沿着竖向V位于制冰机120下方。斜坡104的顶面(或一系列板条的顶缘)可以是成角度的。换言之,斜坡104的第一端可在竖向V上设置得比斜坡104的第二端高。由此,当冰在制冰机120上形成并收获时,冰可落到斜坡104上并滑入储冰室102中。在一个示例中,如图3中看到的,斜坡104朝向箱体110的前部向下成角度。因此,可在第一储存容器128的一侧上设置通道或孔,冰块可在滑下斜坡104之后通过该通道或孔排出。另外或可选地,挡板或摆动门122可以与箱体110枢转地连接。详细地,当所收获的冰块滑下斜坡104时,它们可通过压 靠并打开挡板122而穿过第一储存容器128的通道。
制冰器100可包括供水管道130和供应阀132。供水管道130可连接到外部加压供水系统,诸如市政供水系统或井。供应阀132可以联接到供水管道130,并且供应阀132可以是可操作(例如,可打开和可关闭)的,以调节通过供水管道130进入制冰器100的液态水流。在一个实施方式中,供水管道130连接到第一储存容器128。详细地,供水管道130与第一储存容器128流体连通,以允许外部水经由供水管道130被供应到第一储存容器128中。由此,例如,通过打开供应阀132,第一储存容器128可通过供水管道130被填充有来自外部加压供水系统的新鲜液态水。供水管道130可以连接在箱体110的底部。在一些实施方式中,供水管道130连接在箱体110的顶部。根据该实施方式,通过箱体的顶部引入的水可在制冰机120的顶部上方释放,并且可辅助形成在冰模具124上的冰的收获操作。
制冰器100可包括过滤器154。过滤器154可嵌套在第一储存容器128内。例如,过滤器154可搁置在第一储存容器128内。在一些实施方式中,过滤器154悬挂在第一储存容器128内。详细地,可以在过滤器154的下侧与第一储存容器128的底部之间设置用于接收已经通过过滤器154的液体的空间。由此,过滤器154可以位于冰模具124的下方。例如,过滤器154可以设置为使得从喷嘴126分配的在冰模具124上未冻结的液体可以落在过滤器154的顶部上。因此,过滤器154可以是重力式过滤器。详细地,液体可落到过滤器154的顶部上,渗透通过过滤器154(例如,沿着竖向V),并且通过过滤器154的底部离开。
图4提供了根据可选实施方式的制冰器的侧面示意图。与图3所示实施方式相同的附图标记适用于图4所示实施方式中的相同特征。由此可见,为了简洁,将省略对相同特征的重复描述。根据图4,第一储存容器128可设置在储冰室102的下方。例如,第一储存容器128可直接位于储冰室102的下方。可以设置格栅180,以将储冰室102与第一储存容器128分开。格栅180可以是可去除的格栅。例如,用户可将格栅180从储冰室102拉出,以接近第一储存容器128。因此,用户能够容易地从第一储存容器128去除过滤器154。另外或可选地,第二储存容器138和第二泵144中的每一个可被省略。有利地,可以并入更少的零件,并且可以实现储冰空间的增加(例如,更大的储冰室102)。根据该实施方式,清洗管路管道210可与供应管道140流体连通。详细地,清洗管路管道210的第一端212可以在泵142的下游附接至供应管道140。在一些实施方式中,三通阀216可以设置在供应管道140上。因此,清洗管路管道210的第一端212可以与三通阀216流体连通。
进一步地,根据图4的制冰器100可包括收集托盘182。收集托盘182可设置在冰模具124的下方。详细地,收集托盘182可收集在制冰操作(例如,当液体从喷嘴126朝向冰模具124分配时)或清洁操作或循环(例如,当清洁液体从喷嘴126朝向冰模具124分配时)期间和之后从冰模具124滴落的液体。另外或可选地,可以提供回流管道184。回流管道184可连接到收集托盘182(例如,在收集托盘182的底部处)。回流管道可沿着竖向V从收集托盘182朝向格栅180延伸。由此,收集于收集托盘182中的液体可返回到第一储存容器128,并且重新供应到过滤器154(或经由清洗管路管道210泵送出电器100)。
根据本文所述的实施方式,提供了一种具有清洗管道的制冰器。所述制冰器可以不直接管接到家用排出管,由此在放置和使用方面可以更通用。本文所述的制冰器可包括第一储存容器,该第一储存容器储存要在冰模具上形成冰的液体(诸如水)。第一储存容器还可选择性地储存清洁液体或溶液,诸如清洁酸。储存在第一储存容器中的液体可被引向冰模具。来自冰模具的多余液体可返回到第一储存容器。在一些情况下,多余的液体被输送到与第一储存容器分开的第二储存容器。第二储存容器可以经由回流管路管道将收集的液体重新供应到第一储存容器。回流管路管道上可包括三通阀。从三通阀分支的可以是清洗管路管道。根据具体应用,三通阀可以选择性地将液体从第二储存容器供应至回流管路管道或清洗管路管道。清洗管路管道可包括位于其下游端的清洗龙头。液体可以选择性地从清洗龙头释放。可去除的容器可放置在清洗龙头下方,例如在制冰器的储冰室内。然后,可以经由可去除的容器容易地处理分配的液体(诸如清洁溶液)。
本书面描述使用示例对本发明进行了公开(其中包括最佳实施例),并且还使本领域技术人员能够实施本发明(其中包括制造和使用任意装置或系统并且执行所包含的任意方法)。本发明的可专利范围通过权利要求进行限定,并且可以包括本领域技术人员能够想到的其它的示例。如果这种其它的示例包括与权利要求的字面语言没有区别的结构元件,或者如果这种其它的示例包括与权利要求的字面语言没有实质区别的等同结构元件,则期望这种其它的示例落入权利要求的范围中。

Claims (20)

  1. 一种限定竖向、侧向以及横向的制冰器,其特征在于,所述制冰器包括:
    箱体,该箱体形成储冰室;
    制冰机,该制冰机设置在所述箱体内;
    第一储存容器,该第一储存容器设置在所述制冰机下方并且用于收集来自所述制冰机的液体;
    第二储存容器,该第二储存容器设置在所述储冰室下方;以及
    循环系统,该循环系统与所述第一储存容器和所述第二储存容器流体连通,所述循环系统包括:
    回流管路管道;
    第一泵,该第一泵连接到所述回流管路管道以将所述液体从所述第二储存容器泵送到所述第一储存容器;以及
    清洗管路管道,该清洗管路管道与所述第一泵流体连通,所述清洗管路管道设置在所述第一泵的下游,其中,所述第一泵选择性地将所述液体从所述第二储存容器泵送通过所述清洗管路管道。
  2. 根据权利要求1所述的制冰器,其特征在于,所述清洗管路管道布置在所述储冰室内,并且其中,所述清洗管路管道包括:
    清洗龙头,该清洗龙头设置在所述清洗管路管道的出口处。
  3. 根据权利要求2所述的制冰器,其特征在于,还包括三通阀,该三通阀流体地联接到所述回流管路管道和所述清洗管路管道,其中,所述三通阀选择性地打开所述回流管路管道或所述清洗管路管道中的一个。
  4. 根据权利要求3所述的制冰器,其特征在于,所述三通阀为机电阀。
  5. 根据权利要求3所述的制冰器,其特征在于,还包括:
    控制器,该控制器设置在所述箱体内,所述控制器与所述第一泵和所述三通阀可操作地连接,其中,所述控制器根据用户输入选择性地操作所述第一泵和所述三通阀。
  6. 根据权利要求1所述的制冰器,其特征在于,还包括:
    溢流管路管道,该溢流管路管道将所述第一储存容器流体地连接至所述第二储存容器,其中,储存在所述第一储存容器中的流体经由所述溢流管路管道从所述第一储存容器转移至所述第二储存容器。
  7. 根据权利要求1所述的制冰器,其特征在于,还包括:
    可去除的容器,该可去除的容器选择性地设置在所述储冰室内,所述可去除的容器在处于安装位置时位于所述清洗管路管道的出口下方。
  8. 根据权利要求1所述的制冰器,其特征在于,所述制冰机包括:
    冰模具,该冰模具位于所述第一储存容器上方;
    供应管道,该供应管道设置在所述第一储存容器内,所述供应管道包括喷嘴,储存在所述第一储存容器内的液体通过所述喷嘴朝向所述冰模具选择性地分配;以及
    第二泵,该第二泵设置在所述第一储存容器内并且连接至所述供应管道,所述第二泵被配置为将储存在所述第一储存容器内的所述液体泵送通过所述供应管道。
  9. 根据权利要求8所述的制冰器,其特征在于,还包括密封冷却系统,所述密封冷却系统具有设置在所述冰模具处的蒸发器。
  10. 根据权利要求9所述的制冰器,其特征在于,所述第一储存容器是可去除的,并且沿着所述竖向从底端延伸到顶端,并且其中,所述蒸发器安装在所述顶端。
  11. 根据权利要求1所述的制冰器,其特征在于,还包括供水管道和供应阀,所述供水管道可连接到外部供水系统,所述供应阀连接到所述供水管道以调节通过所述供水管道进入所述制冰器中的液态水流。
  12. 根据权利要求1所述的制冰器,其特征在于,还包括设置在所述第一储存容器内的过滤器。
  13. 根据权利要求12所述的制冰器,其特征在于,所述过滤器为重力去离子过滤器,所述液体沿着所述竖向从顶部到底部通过该过滤器过滤。
  14. 一种限定竖向、侧向以及横向的制冰器,其特征在于,所述制冰器包括:
    箱体,该箱体形成储冰室;
    第一储存容器,该第一储存容器设置在所述储冰室内,所述第一储存容器被构造为接收液体;
    可去除格栅,该可去除格栅位于所述第一储存容器上方的所述储冰室内;
    制冰器,该制冰器设置在所述储冰室内以制冰;以及
    循环系统,该循环系统与所述第一储存容器流体连通,所述循环系统包括:
    供应管路管道;
    泵,该泵连接到所述供应管路管道以从所述第一储存容器泵送所述液体;
    以及
    清洗管路管道,该清洗管路管道与所述泵流体连通,所述清洗管路管道设置在所述泵的下游,其中,所述泵选择性地将所述液体从所述第一储存容器泵送通过所述清洗管路管道。
  15. 根据权利要求14所述的制冰器,其特征在于,所述清洗管路管道布置在所述储冰室内,并且其中,所述清洗管路管道包括:
    清洗龙头,该清洗龙头设置在所述清洗管路管道的出口处。
  16. 根据权利要求15所述的制冰器,其特征在于,还包括三通阀,该三通阀流体地联接到所述供应管路管道和所述清洗管路管道,其中,所述三通阀选择性地打开所述供应管路管道或所述清洗管路管道中的一个。
  17. 根据权利要求16所述的制冰器,其特征在于,所述三通阀为机电阀。
  18. 根据权利要求16所述的制冰器,其特征在于,还包括:
    控制器,该控制器设置在所述箱体内,所述控制器与所述泵和所述三通阀可操作地连接,其中,所述控制器根据用户输入选择性地操作所述泵和所述三通阀。
  19. 根据权利要求14所述的制冰器,其特征在于,还包括:
    可去除的容器,该可去除的容器选择性地设置在所述储冰室内,所述可去除的容器在处于安装位置时位于所述清洗管路管道的出口下方。
  20. 根据权利要求14所述的制冰器,其特征在于,还包括供水管道和供应阀,所述供水管道可连接到外部供水系统,所述供应阀连接到所述供水管道以调节通过所述供水管道进入所述制冰器中的液态水流。
PCT/CN2022/133752 2021-11-29 2022-11-23 用于独立制冰器的清洗排出管道 WO2023093766A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/536,371 2021-11-29
US17/536,371 US20230168021A1 (en) 2021-11-29 2021-11-29 Cleanout drain line for a stand-alone icemaker appliance

Publications (1)

Publication Number Publication Date
WO2023093766A1 true WO2023093766A1 (zh) 2023-06-01

Family

ID=86500962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133752 WO2023093766A1 (zh) 2021-11-29 2022-11-23 用于独立制冰器的清洗排出管道

Country Status (2)

Country Link
US (1) US20230168021A1 (zh)
WO (1) WO2023093766A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030010054A1 (en) * 2001-07-13 2003-01-16 Esch Willy Van Ice maker cooler
CN2844803Y (zh) * 2005-05-01 2006-12-06 管红英 制冰机
KR20100082190A (ko) * 2009-01-08 2010-07-16 네오트 주식회사 물낭비가 없는 냉·온수 이동형 생수 제빙기
CN108800691A (zh) * 2018-06-13 2018-11-13 上海电机学院 一种新型耐用式冰模制冰机
CN112432407A (zh) * 2020-11-19 2021-03-02 上海典梵品牌管理有限公司 一种新型制冰机
US20210148622A1 (en) * 2019-11-19 2021-05-20 Yantai United Ozonetec Corporation Ice maker affixed with ozonated water and hypochlorous acid water capable of sterilizing bacteria

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1200006B (it) * 1983-04-18 1989-01-05 Simag Spa Macchina per la produzione di ghiaccio in cubetti
JP2002206827A (ja) * 2001-01-12 2002-07-26 Fuji Electric Co Ltd 製氷装置
ITMI20030465A1 (it) * 2003-03-12 2004-09-13 Castel Mac Spa Fabbricatore di ghiaccio in cubetti.
JP2005274020A (ja) * 2004-03-24 2005-10-06 Hoshizaki Electric Co Ltd 製氷機
WO2008130712A1 (en) * 2007-04-24 2008-10-30 Scotsman Group Llc Ice machine with drain
US9046299B2 (en) * 2009-01-07 2015-06-02 Samsung Electronics Co., Ltd. Water filter device and refrigerator having the same
KR20100082189A (ko) * 2009-01-08 2010-07-16 네오트 주식회사 고온수 사용이 가능한 제빙기
KR101287306B1 (ko) * 2012-10-26 2013-07-17 정윤호 제빙기
US10274238B2 (en) * 2017-06-27 2019-04-30 Haier Us Appliance Solutions, Inc. Drainless icemaker appliance
JP7441651B2 (ja) * 2020-01-08 2024-03-01 ホシザキ株式会社 製氷機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030010054A1 (en) * 2001-07-13 2003-01-16 Esch Willy Van Ice maker cooler
CN2844803Y (zh) * 2005-05-01 2006-12-06 管红英 制冰机
KR20100082190A (ko) * 2009-01-08 2010-07-16 네오트 주식회사 물낭비가 없는 냉·온수 이동형 생수 제빙기
CN108800691A (zh) * 2018-06-13 2018-11-13 上海电机学院 一种新型耐用式冰模制冰机
US20210148622A1 (en) * 2019-11-19 2021-05-20 Yantai United Ozonetec Corporation Ice maker affixed with ozonated water and hypochlorous acid water capable of sterilizing bacteria
CN112432407A (zh) * 2020-11-19 2021-03-02 上海典梵品牌管理有限公司 一种新型制冰机

Also Published As

Publication number Publication date
US20230168021A1 (en) 2023-06-01

Similar Documents

Publication Publication Date Title
US8075652B2 (en) Apparatus and method for a split type water extractor and water dispenser
US20100031675A1 (en) Ice making system and method for ice making of refrigerator
KR101096994B1 (ko) 냉장고
KR101384482B1 (ko) 위생성이 향상된 드럼식 제빙기
JP2009523993A (ja) 冷却冷凍機器用製氷システム
US8695359B2 (en) Water circulation and drainage system for an icemaker
CN107631365A (zh) 改进的空调单元
WO2022073435A1 (zh) 带清洁系统的无排水制冰机
WO2023093766A1 (zh) 用于独立制冰器的清洗排出管道
KR101151630B1 (ko) 폐열회수형 히트펌프의 폐수순환 자동세척식 증발장치
CN112460869B (zh) 制冰机的管路系统
WO2022267952A1 (zh) 具有可更换过滤器的制冰电器
WO2023078298A1 (zh) 用于制造透明冰的方法和设备
WO2022007849A1 (zh) 具有制冰组件的制冷电器及清洁方法
US11867444B2 (en) Drainless clear ice maker for recycling water used to make clear ice
JP7295781B2 (ja) 温湿度調節庫
WO2023083219A1 (zh) 包括用于冰模具外部的副供水系统的自动制冰机
KR101700761B1 (ko) 냉장고
KR20110113299A (ko) 얼음정수기용 취수장치
CN117652986A (zh) 热泵式洗碗机
KR20040085598A (ko) 제빙기의 냉각시스템 및 그 작동제어방법
CN115574521A (zh) 一种自动清洗组件、冰箱和自动清洗组件的控制方法
KR200355286Y1 (ko) 대용량 냉온수기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897849

Country of ref document: EP

Kind code of ref document: A1