WO2022073381A1 - 电源电路及电源电路的工作方法 - Google Patents

电源电路及电源电路的工作方法 Download PDF

Info

Publication number
WO2022073381A1
WO2022073381A1 PCT/CN2021/111983 CN2021111983W WO2022073381A1 WO 2022073381 A1 WO2022073381 A1 WO 2022073381A1 CN 2021111983 W CN2021111983 W CN 2021111983W WO 2022073381 A1 WO2022073381 A1 WO 2022073381A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
target voltage
power supply
circuit
supply circuit
Prior art date
Application number
PCT/CN2021/111983
Other languages
English (en)
French (fr)
Inventor
坪田雄介
Original Assignee
海信视像科技股份有限公司
东芝视频解决方案株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海信视像科技股份有限公司, 东芝视频解决方案株式会社 filed Critical 海信视像科技股份有限公司
Priority to CN202180004928.5A priority Critical patent/CN114616751A/zh
Publication of WO2022073381A1 publication Critical patent/WO2022073381A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode

Definitions

  • Embodiments of the present application relate to a power supply circuit and a method of operating the power supply circuit.
  • the power supply circuit for supplying power to the display panel is also increased in power.
  • the power supply circuit includes a step-up switching regulator and an isolated switching regulator using the output voltage of the step-up switching regulator as an input.
  • a boost switching regulator takes time to generate a standard voltage at startup.
  • the startup of the step-up switching regulator and the startup of the isolated switching regulator are performed at the same time, or if the startup sequence is reversed, the input voltage to the isolated switching regulator during startup becomes low. Therefore, it takes time for the output voltage of the isolated switching regulator to rise, and the feedback circuit part of the isolated switching regulator does not operate normally. Therefore, there is a risk of overshoot of the output voltage of the isolated switching regulator.
  • the isolation-type switching regulator is activated, which can solve the above problems.
  • Patent Document 1 Japanese Patent No. 5743244
  • Patent Document 2 Japanese Patent Laid-Open No. 2007-078900
  • An object of the embodiment of the present application is to provide a power supply circuit that can prevent overshoot of an output voltage at the time of startup with a simple structure, and an operating method of the power supply circuit.
  • a power supply circuit includes a step-up switching regulator and an isolated switching regulator having a feedback circuit including a photocoupler and a shunt regulator, the The feedback circuit includes a switch circuit that automatically switches the target voltage of the output voltage of the isolated switching regulator from a first target voltage to a second target voltage higher than the first target voltage.
  • a power supply circuit including a step-up switching regulator and an isolated switching regulator including a feedback circuit including a photocoupler and a shunt regulator when activated, comprising: a first step in which the feedback circuit performs control such that the output voltage of the power supply circuit becomes a first target voltage; and a second step in which a capacitor is included in the second step
  • the delay circuit of the feedback circuit applies a voltage higher than or equal to the threshold voltage to the ON/OFF switch included in the feedback circuit that is turned on at a threshold voltage lower than or equal to the first target voltage, thereby turning the ON/OFF switch into an ON state.
  • the /off switch is turned on and switches the target voltage to a second target voltage higher than the first target voltage; and a third step in which the feedback circuit controls , so that the output voltage becomes the second target voltage.
  • FIG. 1 is a configuration diagram of a television receiver including a power supply circuit according to an embodiment
  • FIG. 2 is a circuit diagram of an existing power supply circuit
  • FIG. 3 is a diagram for explaining the operation of the conventional power supply circuit at the time of startup
  • FIG. 5 is a diagram for explaining the operation of the power supply circuit according to the embodiment at the time of startup.
  • FIG. 1 is a configuration diagram of a television receiver 9 according to an embodiment of the present application.
  • Power is supplied to the television receiver 9 from, for example, a commercial power supply 8 of AC100V.
  • the power is converted into a standard DC voltage by the signal processing power supply circuit 91 and supplied to the signal processing circuit 92 .
  • the signal processing circuit 92 receives television broadcasts received by an antenna (not shown).
  • the signal processing circuit 92 can also receive Internet broadcasting via a network line.
  • the signal processing circuit 92 performs signal processing on the received broadcast signal, and outputs an image signal and a sound signal.
  • the image signal is output to the display panel 94, the audio signal is output to a speaker (not shown), and the viewer watches the program.
  • the display panel 94 is, for example, an OLED panel or a liquid crystal panel.
  • the electric power converted into the standard DC voltage by the panel power supply circuit 1 (hereinafter, referred to as “power supply circuit 1 ”) is supplied to the display panel 94 via the panel control circuit 93 .
  • the power supply circuit 101 shown in FIG. 2 includes a rectifier circuit 2 , a step-up switching regulator 3 , and an isolated switching regulator 104 including a feedback circuit 105 .
  • FIG. 2 etc. are a simple circuit diagram, and not all electronic components are shown.
  • the rectifier circuit 2 includes a diode bridge that rectifies and outputs AC power supplied from a commercial power source, and a capacitor that smoothes the rectified voltage output from the diode bridge.
  • the step-up switching regulator 3 steps up the voltage output from the rectifier circuit 2 to a standard voltage.
  • the control IC ( IC2 ) drives the two switching elements SW-A and SW- based on the feedback voltage Vfb controlled by the feedback circuit 105 . B, thereby applying a rectangular wave signal of a predetermined frequency to the primary side coil of the transformer TR.
  • the induced current generated in the secondary side coil of the transformer TR passes through the two diodes D1 and D2 and the capacitor C0 and becomes an output (OUTPUT) of the output voltage Vout.
  • the drive voltage Vcc is applied from the transformer TR to the control IC ( IC1 ) of the step-up switching regulator 3 and the control IC ( IC2 ) of the isolation switching regulator 104 .
  • the drive voltage Vcc is generated by the internal startup circuit of the control IC (IC2).
  • the feedback circuit 105 includes a photocoupler (PC), a shunt regulator (SR), and resistors R1, R2.
  • the connection point of the two resistors R1 and R2 connected in series is connected to the reference electrode terminal (REF terminal) of the shunt regulator (SR).
  • the feedback circuit 105 uses a photocoupler (PC) to control the FB voltage Vfb applied to the feedback terminal of the control IC (IC2).
  • PC photocoupler
  • the reference potential of the primary side circuit is the ground potential (earth)
  • the reference potential of the secondary side circuit is the ground potential (ground).
  • the target voltage Vt of the power supply circuit 101 automatically controlled by the feedback circuit 105 is represented by the following equation.
  • REF is the reference voltage of the shunt regulator (SR )
  • R1 is the resistance value of resistor R1
  • R2 is the resistance value of resistor R2.
  • Vt REF ⁇ (R 1 +R 2 )/R 2
  • the target voltage Vt can be set to an arbitrary voltage by selecting the resistance values of the two resistors R1 and R2. For example, when the reference voltage REF of the shunt regulator (SR) is 2.5V, the resistor R1 is 9k ⁇ , and the resistor R2 is 1k ⁇ , the target voltage Vt is 25V.
  • SR shunt regulator
  • the output voltage Vout When the output voltage Vout is higher than the target voltage Vt, a voltage higher than the reference voltage REF is applied to the REF terminal of the shunt regulator (SR), and a current Ik flows from the cathode K to the anode A according to the control voltage Vref.
  • the photocoupler PC emits light with an intensity corresponding to the current Ik flowing through the shunt regulator (SR). Therefore, the FB voltage Vfb applied to the FB terminal of the control IC ( IC2 ) decreases according to the light emission intensity of the photocoupler PC. That is, the control IC ( IC2 ) controls the switching elements SW-A and SW-B so as to decrease the output voltage Vout when the FB voltage Vfb decreases.
  • the DC output from the rectifier circuit 2 is input to the boost switching regulator 3 and the isolation switching regulator 104 .
  • the isolated switching regulator 104 starts to switch, and the output voltage Vout starts to rise.
  • the step-up switching regulator 3 that supplies large power requires a predetermined startup time. That is, it takes a predetermined time from the time when power is supplied to the step-up switching regulator 3 until the voltage Vin input to the isolated switching regulator 104 rises to a standard voltage.
  • the output voltage Vout of the isolated switching regulator 104 is lower than the target voltage Vt. Therefore, since the photodiode (PC) of the feedback circuit 105 does not light up, as shown in FIG. 3 , the FB voltage Vfb rises, and the output voltage Vout also rises accordingly.
  • PC photodiode
  • the photodiode (PC) is turned on by the current Ik corresponding to the control voltage Vref of the isolated switching regulator 104.
  • the FB voltage Vfb which has risen greatly, to decrease. Therefore, even if the output voltage Vout becomes higher than the target voltage Vt, the isolated switching regulator 104 operates to increase the output voltage Vout until the time T2.
  • the power supply circuit 101 may adversely affect the display panel 94 having a voltage tolerance.
  • the steady state operation is performed. That is, since the feedback voltage Vfb increases when the output voltage Vout becomes lower than the target voltage Vt, the isolated switching regulator 104 operates to increase the output voltage Vout. Since the feedback voltage Vfb becomes lower when the output voltage Vout becomes higher than the target voltage Vt, the isolated switching regulator 104 operates to lower the output voltage Vout. At this time, although not shown, the photocoupler (PC) may also be turned off.
  • phase compensation capacitor C1 shown in FIG. 2
  • the response of the feedback circuit is deteriorated, the performance of the power supply circuit is degraded.
  • the power supply circuit 1 of the embodiment shown in FIG. 4 includes a rectifier circuit 2 , a step-up switching regulator 3 , and an insulating switching regulator 4 including a feedback circuit 5 .
  • the power supply circuit 1 differs from the power supply circuit 101 only in the feedback circuit of the isolated switching regulator 4 . Therefore, the description of the same configuration as that of the power supply circuit 101 is omitted.
  • the feedback circuit 5 includes a switching circuit that automatically switches the target voltage Vt of the output voltage Vout of the isolated switching regulator 4 from the first target voltage V1 to the second target voltage V2 higher than the first target voltage V1.
  • the feedback circuit 5 includes, in addition to the configuration of the feedback circuit 105 , a switch circuit including resistors R3 , R4 , and R5 , a switch SW, and a capacitor C2 .
  • the resistor R3 whose one end is connected to the reference electrode terminal (REF terminal) of the shunt regulator SR is connected in parallel with the resistor R2 via the switch SW.
  • the switch SW is an ON/OFF switch (hereinafter referred to as an ON/OFF switch) that becomes an ON state (ON) when a voltage equal to or higher than the threshold voltage Vth is applied to the ON terminal.
  • the output voltage Vout of the isolated switching regulator 4 is divided by resistors R4 and R5, and the voltage Vsw is applied to the ON terminal of the switch SW. That is, the voltage Vsw applied to the switch SW is represented by the following equation.
  • R4 is the resistance value of resistor R4 and R5 is the resistance value of resistor R5.
  • Vsw Vout ⁇ (R 4 +R 5 )/R 5
  • the target voltage V1 of the power supply circuit 1 is expressed by the following equation similarly to the target voltage Vt of the power supply circuit 101 .
  • V1 REF ⁇ (R 1 +R 2 )/R 2
  • the resistance R1 is 9 k ⁇
  • the resistance R2 is 2 k ⁇
  • the first target voltage V1 is 13.75V.
  • the switch SW is configured to increase the number of resistors connected to the reference electrode terminal (REF terminal) of the shunt regulator SR when turned ON (conductive state). Therefore, the second target voltage V2 of the power supply circuit 1 in the state where the switch SW is ON is represented by the following equation.
  • R3 is the resistance value of resistor R3.
  • V2 REF ⁇ ((R 1 ⁇ R 2 )+(R 1 ⁇ R 3 )+(R 2 ⁇ R 3 ))/(R 2 ⁇ R 3 )
  • the second target voltage V2 is 25V.
  • the second target voltage V2 is the standard output voltage Vout of the power supply circuit 1 .
  • the switch circuit includes a capacitor C2 for delaying the application speed of the voltage Vsw to the ON terminal of the switch SW.
  • a delay circuit is formed by resistors R4, R5 and capacitor C2.
  • the power supply circuit 1 when power is supplied from a commercial power source at time T0 , the power supply circuit 1 sequentially applies voltage to the boost switching regulator 3 , the isolation switching regulator 4 , and the feedback circuit 5 via the rectifier circuit 2 .
  • the voltage application to the step-up switching regulator 3 starts.
  • the output voltage Vout of the isolated switching regulator 4 is lower than the first target voltage V1. Therefore, since the photodiode (PC) of the feedback circuit 105 does not light up, the FB voltage Vfb rises, and accordingly, the output voltage Vout also rises.
  • the first target voltage V1 is lower than the second target voltage V2, and the time T1 until the output voltage Vout reaches the first target voltage V1 is shorter than the time T1 in the conventional power supply circuit 101 .
  • the FB voltage Vfb at time T1 rises only to Vfb1. Therefore, the FB voltage Vfb is lowered to Vfb2 at time T2 after a predetermined time has elapsed from time T1.
  • the time T2 is the time during which the switch SW performs the ON operation.
  • the target voltage is switched from the first target voltage V1 to the second target voltage V2.
  • the switch SW performs the ON operation at the threshold voltage Vth that is equal to or lower than the first target voltage V1, but there is a predetermined delay time until the ON operation is performed. That is, since the delay circuit composed of the capacitor C2 and the resistors R4 and R5 has a predetermined time constant, the increase speed of the output voltage Vout applied to the switch SW is delayed.
  • the time T2 is the time after the predetermined time period based on the delay time of the delay circuit has elapsed after reaching the first target voltage V1.
  • the time (delay time) from the time T1 to the time T2 according to the specifications of the power supply circuit 1, for example It is set to 10 ⁇ sec or more and 500 msec or less, and can be set to 100 ⁇ sec or more and 20 msec or less.
  • the operation method of the power supply circuit 1 includes: a first step in which control is performed so that the output voltage Vout of the power supply circuit 1 becomes the first target voltage V1; and a second step in which the second step is performed , the ON/OFF switch SW included in the feedback circuit 5, which is turned on when the output voltage Vout is the threshold voltage Vth below the first target voltage V1, is turned on at the output voltage Vout through the delay circuit including the capacitor C1.
  • a voltage equal to or higher than the above-mentioned threshold voltage is applied to enter an on state, and the target voltage Vt is switched to a second target voltage V2 higher than the first target voltage V1; and 3 steps.
  • control is performed so that the output voltage Vout becomes the second target voltage V2.
  • the first target voltage V1 may be 10% or more and 90% or less of the second target voltage V2, and may be 30% or more and 70% or less of the second target voltage V2. If the first target voltage V1 is within the above range, it is easy to design that the output voltage Vout does not overshoot during startup.
  • the threshold voltage Vth of the switch SW may be a threshold voltage that is turned ON at 50% or more of the first target voltage V1. If the threshold voltage Vth is equal to or larger than the above-mentioned range, it is easy to design and execute the switching from the first target voltage V1 to the second target voltage V2.
  • the power supply circuit 1 switches the target voltage at the time of startup from the first target voltage V1 to the second target voltage V2 using a switching circuit having a small number of electronic components.
  • the power supply circuit 1 can prevent overshoot of the output voltage Vout at the time of startup with a simple structure.
  • the power supply circuit may include a switch circuit that controls the target voltage Vt in three or more stages.
  • the power supply circuit may include a switch circuit that automatically switches the target voltage Vt to a third target voltage V3 that is larger than the first target voltage V1 and smaller than the second target voltage V2.
  • This switch circuit has a second switch circuit having a different threshold voltage in parallel with the switch circuit of the power supply circuit 1 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

提供输出电压不会发生过冲的电源电路及电源电路的工作方法。电源电路(1)具备:升压型开关调节器(3)、以及绝缘型开关调节器(4),该绝缘型开关调节器(4)具有包含光电耦合器(PC)和并联调节器(SR)在内的反馈电路(5),所述反馈电路(5)包含开关电路,该开关电路将所述绝缘型开关调节器(4)的输出电压(Vt)的目标电压自动地从第1目标电压(V1)切换到比所述第1目标电压(V1)更高的第2目标电压(V2)。

Description

电源电路及电源电路的工作方法
相关申请交叉引用
本申请要求在2020年10月9日提交日本专利局、申请号为2020-171424、发明名称为“电源电路及电源电路的工作方法”的日本专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请的实施方式涉及电源电路及电源电路的工作方法。
背景技术
伴随电视接收机的显示画面的大型化,向显示面板供给电力的电源电路也大电力化。电源电路具有升压型开关调节器、以及将升压型开关调节器的输出电压用作输入的绝缘型开关调节器。升压型开关调节器在启动时到产生标准电压为止需要时间。
如后所述,若升压型开关调节器的启动与绝缘型开关调节器的启动为同时、或者启动顺序颠倒,则在启动时向绝缘型开关调节器的输入电压会变低。因此,绝缘型开关调节器的输出电压的上升需要时间,绝缘型开关调节器的反馈电路部分不会正常地动作,因此,存在绝缘型开关调节器的输出电压发生过冲(overshoot)的风险。
例如,通过对升压型开关调节器准备专用的电源电路,或者通过从另设单元向绝缘型开关调节器供给电力,从而从使升压型开关调节器启动经过了规定时间之后,再使绝缘型开关调节器启动,由此能够解决上述问题。
然而,在上述解决方法中,因为需要来自专用的电源电路或另设单元的布线电缆及连接器,所以结构会复杂化,电源电路的成本变高。
在先技术文献
专利文献
专利文献1:日本特许第5743244号公报
专利文献2:日本特开2007-078900号公报
发明内容
本申请的实施方式的目的在于,提供以简单的结构来防止启动时的输出电压的过冲的电源电路及上述电源电路的工作方法。
本申请的实施方式的电源电路具备升压型开关调节器、以及绝缘型开关调节器,该绝缘型开关调节器具有包含光电耦合器及并联调节器(Shunt regulator)在内的反馈电路,所述反馈电路包含开关电路,该开关电路将所述绝缘型开关调节器的输出电压的目标电压自动地从第1目标电压切换到比所述第1目标电压更高的第2目标电压。
本申请的另一实施方式的电源电路的工作方法在具备升压型开关调节器、以及具有包含光电耦合器及并联调节器在内的反馈电路的绝缘型开关调节器的电源电路的启动时,具备:第1步骤,在该第1步骤中,所述反馈电路进行控制,使得所述电源电路的输出电压成为第1目标电压;第2步骤,在该第2步骤中,通过包含电容器在内的延迟电路,向所述反馈电路中包含的、在所述第1目标电压以下的阈值电压下成为导通状态的接通/断开开关施加所述阈值电压以上的电压,从而所述接通/断开开关成为导通状态,并且将所述目标电压切换成比所述第1目标电压更高的第2目标电压;以及第3步骤,在该第3步骤中,所述反馈电路进行控制,使得所述输出电压成为所述第2目标电压。
附图说明
图1是包含实施方式的电源电路的电视接收机的构成图;
图2是现有的电源电路的电路图;
图3是用于说明以往的电源电路的启动时的动作的图;
图4是实施方式的电源电路的电路图;
图5是用于说明实施方式的电源电路的启动时的动作的图。
附图标记说明
1、101…电源电路,2…整流电路,3…升压型开关调节器,4、104…绝缘型开关调节器,5、105…反馈电路,9…电视接收机,91…信号处理电源电路,92…信号处理电路,93…面板控制电路,94…显示面板,C0、C1、C2…电容器,D1、D2…二极管,IC1、IC2…控制IC,PC…光电耦合器,R1~R5…电阻,SR…并联调节器,SW…开关,TR…变压器。
具体实施方式
图1是本申请的实施方式的电视接收机9的构成图。例如从AC100V的商用电源8向电视接收机9供给电源。电力由信号处理电源电路91转换成标准的DC电压,并供给到信号处理电路92。信号处理电路92接收利用天线(未图示)接收的电视广播。信号处理电路92也可以经由网络线路来接收互联网广播。信号处理电路92对接收到的广播信号进行信号处理,并输出图像信号和声音信号。图像信号被输出到显示面板94,声音信号被输出到扬声器(未图示),收看者收看节目。显示面板94例如是OLED面板、或液晶面板。
由面板电源电路1(以下,称为“电源电路1”。)转换成标准的DC电压后的电力经由面板控制电路93而供给到显示面板94。
<现有的电源电路>
首先,对于与电源电路1同样用于电视接收机的以往的电源电路101进行说明。图2所示的电源电路101具有整流电路2、升压型开关调节器3、以及包含反馈电路105的绝缘型开关调节器104。此外,图2等是简易电路图,并未图示所有的电子元件。
整流电路2具备:二极管电桥,其对从商用电源供给的交流电力进行整流并输出;以及电容器,其将从二极管电桥输出的整流电压平滑化。
虽然省略详细的说明,但升压型开关调节器3将从整流电路2输出的电压升高到标准的电压。
绝缘型开关调节器104中,基于从升压型开关调节器3施加的输入电压Vin,根据由反馈电路105控制的反馈电压Vfb,控制IC(IC2)驱动2个开关元件SW-A、SW-B,从而向变压器TR的初级侧线圈施加规定的频率的矩形波信号。在变压器TR的次级侧线圈中产生的感应电流通过2个二极管D1、D2及电容器C0成为输出电压Vout的输出(OUTPUT)。
在稳态动作时,从变压器TR向升压型开关调节器3的控制IC(IC1)及绝缘型开关调节器104的控制IC(IC2)施加驱动电压Vcc。虽未图示,但在启动时,利用控制IC(IC2)的内部启动电路生成驱动电压Vcc。
反馈电路105包含光电耦合器(PC)、并联调节器(SR)、以及电阻R1、R2。串联连接起来的2个电阻R1、R2的连接点连接于并联调节器(SR)的基准电极端子(REF端子)。反馈电路105使用光电耦合器(PC)来控制向控制IC(IC2)的反馈端子施加的FB电压Vfb。若光电耦合器(PC)点亮,则施加于反馈端子的FB电压Vfb降低。此外,通过光电耦合器(PC),保证变压器TR的初级侧电路与次级侧电路的绝缘。初级侧电路的基准电位是地线电位(earth),次级侧电路的基准电位是接地电位(ground)。
由反馈电路105自动控制的电源电路101的目标电压Vt由以下的式表示。REF是并联调节器(SR)的基准电压,R 1是电阻R1的电阻值,R 2是电阻R2的电阻值。
Vt=REF×(R 1+R 2)/R 2
即,目标电压Vt能够通过选择2个电阻R1、R2的电阻值来设定为任意的电压。例如,在并联调节器(SR)的基准电压REF为2.5V、电阻R1为9kΩ、电阻R2为1kΩ的情况下,目标电压Vt为25V。
若输出电压Vout比目标电压Vt高,则向并联调节器(SR)的REF端子施加基准电压REF以上的电压,根据控制电压Vref从阴极K向阳极A流动 电流Ik。光电耦合器PC以与流过并联调节器(SR)的电流Ik相应的强度进行发光。因此,施加在控制IC(IC2)的FB端子上的FB电压Vfb根据光电耦合器PC的发光强度而降低。即,控制IC(IC2)以若FB电压Vfb降低则降低输出电压Vout的方式控制开关元件SW-A、SW-B。
<现有的电源电路的动作>
使用图3说明以往的电源电路101的动作。
电源电路101中,若在时间T0(启动时)从商用电源供给电力,则整流电路2输出的直流被输入到升压型开关调节器3及绝缘型开关调节器104。绝缘型开关调节器104开始进行开关动作,输出电压Vout开始上升。
供给大电力的升压型开关调节器3需要规定的启动时间。即,从向升压型开关调节器3供给电力起,到向绝缘型开关调节器104输入的电压Vin上升到标准的电压为止,需要规定的时间。
即,在图3中,从时间T0到时间T1的期间,绝缘型开关调节器104的输出电压Vout比目标电压Vt低。因此,由于反馈电路105的光电二极管(PC)不会点亮,所以如图3所示,FB电压Vfb上升,与此相应地,输出电压Vout也上升。
在时间T1,若输出电压Vout变得比目标电压Vt高,则与绝缘型开关调节器104的控制电压Vref相应的电流Ik使光电二极管(PC)点亮。然而,较大地上升了的FB电压Vfb的降低需要时间。因此,即使输出电压Vout变得比目标电压Vt高,到时间T2为止,绝缘型开关调节器104也以增加输出电压Vout的方式动作。
在电源电路101中,在到FB电压Vfb降低而反馈电路105进行稳态动作为止的期间,会发生输出电压Vout的过冲。因此,电源电路101可能给存在电压公差的显示面板94带来不良影响。
此外,在时间T2之后,在输出电压Vout下降到目标电压Vt之后,成为稳态动作。即,因为若输出电压Vout变得比目标电压Vt低则反馈电压Vfb 变高,所以绝缘型开关调节器104以增大输出电压Vout的方式动作。因为若输出电压Vout变得比目标电压Vt高则反馈电压Vfb变低,所以绝缘型开关调节器104以降低输出电压Vout的方式动作。此时,虽未图示,但有时光电耦合器(PC)也熄灭。
此外,通过增大图2所示的位相补偿用电容器C1的容量,能够防止发生过冲。但是,因为反馈电路的响应变差,所以电源电路的性能下降。
<实施方式的电源电路>
图4所示的实施方式的电源电路1具有整流电路2、升压型开关调节器3、以及包含反馈电路5的绝缘型开关调节器4。电源电路1与电源电路101的不同之处仅在于绝缘型开关调节器4的反馈电路。因此,省略与电源电路101相同的构成的说明。
反馈电路5包括自动地将绝缘型开关调节器4的输出电压Vout的目标电压Vt从第1目标电压V1切换成比第1目标电压V1更高的第2目标电压V2的开关电路。
即,反馈电路5除了包含反馈电路105的构成之外,还包含具有电阻R3、R4、R5、开关SW及电容器C2的开关电路。一端连接在并联调节器SR的基准电极端子(REF端子)上的电阻R3经由开关SW而与电阻R2并联。
开关SW是若在ON端子上施加阈值电压Vth以上的电压则成为导通状态(ON)的接通/断开开关(以下称为ON/OFF开关)。绝缘型开关调节器4的输出电压Vout由电阻R4、R5分压,在开关SW的ON端子上施加电压Vsw。即,施加于开关SW的电压Vsw由以下的式表示。R 4是电阻R4的电阻值,R 5是电阻R5的电阻值。
Vsw=Vout×(R 4+R 5)/R 5
在开关SW为OFF(切断状态)时,电源电路1的目标电压V1与电源电路101的目标电压Vt同样由以下的式表示。
V1=REF×(R 1+R 2)/R 2
例如,在并联调节器(SR)的基准电压REF为2.5V、电阻R1为9kΩ、电阻R2为2kΩ的情况下,第1目标电压V1成为13.75V。
开关SW被构成为,若成为ON(导通状态),则增加与并联调节器SR的基准电极端子(REF端子)连接的电阻的数量。因此,开关SW为ON的状态的电源电路1的第2目标电压V2由以下的式表示。R 3是电阻R3的电阻值。
V2=REF×((R 1×R 2)+(R 1×R 3)+(R 2×R 3))/(R 2×R 3)
例如,在电阻R3为2kΩ的情况下,第2目标电压V2为25V。第2目标电压V2是电源电路1的标准的输出电压Vout。
并且,开关电路具有电容器C2,该电容器C2用于使向开关SW的ON端子的电压Vsw的施加速度延迟。利用电阻R4、R5、电容器C2构成了延迟电路。
<电源电路的动作>
使用图5说明电源电路1的动作。
电源电路1与电源电路101同样地,若在时间T0从商用电源供给电力,则经由整流电路2,向升压型开关调节器3、绝缘型开关调节器4、反馈电路5依次施加电压。
如图5所示,在时间T0,开始向升压型开关调节器3施加电压。然而,到时间T1为止,绝缘型开关调节器4的输出电压Vout比第1目标电压V1低。因此,因为反馈电路105的光电二极管(PC)不会点亮,所以FB电压Vfb上升,与此相应地,输出电压Vout也上升。
在时间T1,若输出电压Vout成为第1目标电压V1,则电流流过光电耦合器(PC),反馈电压Vfb开始降低。
第1目标电压V1是比第2目标电压V2更低的电压,输出电压Vout达到第1目标电压V1为止的时间T1比以往的电源电路101中的时间T1短。在电源电路1中,时间T1处的FB电压Vfb仅上升到Vfb1。因此,在从时间 T1经过了规定时间的时间T2处,FB电压Vfb降低到Vfb2。
时间T2是开关SW进行ON动作的时间。若开关SW进行ON动作,则目标电压从第1目标电压V1切换到第2目标电压V2。
开关SW在第1目标电压V1以下的阈值电压Vth下进行ON动作,但是,到进行ON动作为止,存在规定的延迟时间。即,因为由电容器C2和电阻R4、R5构成的延迟电路具有规定的时间常数,所以使施加于开关SW的输出电压Vout的增加速度延迟。
即,时间T2是在到达了第1目标电压V1之后,经过了基于延迟电路的延迟时间的规定时间后的时间。
关于到将目标电压Vt从第1目标电压V1自动地切换到第2目标电压V2为止的规定时间,即,从时间T1到时间T2为止的时间(延迟时间),根据电源电路1的规格,例如设定为10μ秒以上500m秒以下,可以设定为100μ秒以上20m秒以下。
在时间T3,若输出电压Vout成为目标电压V2(Vt),则电源电路1成为正常状态控制。
如以上说明那样,电源电路1的动作方法具备:第1步骤,在该第1步骤进行控制,使得电源电路1的输出电压Vout成为第1目标电压V1;第2步骤,在该第2步骤中,反馈电路5中包含的、在输出电压Vout为第1目标电压V1以下的阈值电压Vth下成为导通状态的ON/OFF开关SW,在通过包含电容器C1在内的延迟电路而在输出电压Vout成为第1目标电压V1之后经过规定时间后,由于施加上述阈值电压以上的电压而成为导通状态,并将目标电压Vt切换成比第1目标电压V1更高的第2目标电压V2;以及第3步骤,在该第3步骤进行控制,使得输出电压Vout成为第2目标电压V2。
此外,第1目标电压V1可以为第2目标电压V2的10%以上90%以下,可以为第2目标电压V2的30%以上70%以下。如果第1目标电压V1在上述范围内,则容易设计启动时输出电压Vout不会过冲。
另外,开关SW的阈值电压Vth可以为在第1目标电压V1的50%以上时进行ON的阈值电压。如果阈值电压Vth为上述范围以上,则容易设计执行从第1目标电压V1向第2目标电压V2的切换。
电源电路1利用具有少数的电子元件的开关电路,将启动时的目标电压从第1目标电压V1切换到第2目标电压V2。电源电路1能够用简单的结构防止启动时的输出电压Vout的过冲。
此外,本申请实施方式的电源电路也可以具有对目标电压Vt进行3阶段以上地控制的开关电路。例如,电源电路也可以具有将目标电压Vt自动地切换到大于第1目标电压V1且小于第2目标电压V2的第3目标电压V3的开关电路。该开关电路与电源电路1的开关电路并列地具有阈值电压不同的第2开关电路。
说明了本申请的一些实施方式,但是,这些实施方式是作为例子而出示的,并不意图限定发明的范围。这些新的实施方式能够以其它各种各样的形态来实施,在不脱离发明的主旨的范围内,能够进行各种省略、置换、变更。这些实施方式及其变形包含在发明的范围、主旨中,包含在权利要求书所记载的技术方案及其等同的范围中。

Claims (5)

  1. 一种电源电路,其中,
    具备升压型开关调节器、以及绝缘型开关调节器,该绝缘型开关调节器具有包含光电耦合器和并联调节器在内的反馈电路,
    所述反馈电路包含开关电路,该开关电路将所述绝缘型开关调节器的输出电压的目标电压自动地从第1目标电压切换到比所述第1目标电压高的第2目标电压。
  2. 根据权利要求1所述的电源电路,其中,
    所述开关电路具有接通/断开开关,该接通/断开开关构成为,增加与所述并联调节器的基准电极端子连接的电阻的数量,
    所述接通/断开开关在所述输出电压为所述第1目标电压以下的阈值电压下成为导通状态。
  3. 根据权利要求2所述的电源电路,其中,
    所述开关电路包含电容器,通过包含所述电容器在内的延迟电路而使施加于所述接通/断开开关的电压延迟。
  4. 根据权利要求1所述的电源电路,其中,
    所述开关电路将所述绝缘型开关调节器的输出电压的目标电压自动地切换到大于所述第1目标电压且小于所述第2目标电压的第3目标电压。
  5. 一种电源电路的工作方法,其中,
    在具备升压型开关调节器、以及具有包含光电耦合器和并联调节器在内的反馈电路的绝缘型开关调节器的电源电路的启动时,包括:
    第1步骤,在该第1步骤中,通过所述反馈电路控制,使得所述电源电路的输出电压成为第1目标电压;
    第2步骤,在该第2步骤中,通过包含电容器在内的延迟电路,向所述反馈电路中包含的、在所述第1目标电压以下的阈值电压下成为导通状态的接通/断开开关施加所述阈值电压以上的电压,从而所述接通/断开开关成 为导通状态,并且将所述目标电压切换成比所述第1目标电压高的第2目标电压;以及
    第3步骤,在该第3步骤中,通过所述反馈电路控制,使得所述输出电压成为所述第2目标电压。
PCT/CN2021/111983 2020-10-09 2021-08-11 电源电路及电源电路的工作方法 WO2022073381A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180004928.5A CN114616751A (zh) 2020-10-09 2021-08-11 电源电路及电源电路的工作方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020171424A JP7229979B2 (ja) 2020-10-09 2020-10-09 電源回路および電源回路の作動方法
JP2020-171424 2020-10-09

Publications (1)

Publication Number Publication Date
WO2022073381A1 true WO2022073381A1 (zh) 2022-04-14

Family

ID=81125614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111983 WO2022073381A1 (zh) 2020-10-09 2021-08-11 电源电路及电源电路的工作方法

Country Status (3)

Country Link
JP (1) JP7229979B2 (zh)
CN (1) CN114616751A (zh)
WO (1) WO2022073381A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101226775A (zh) * 2006-12-28 2008-07-23 三星电子株式会社 用于减少输出电压过冲的高压生成电路和方法
CN202309501U (zh) * 2011-10-18 2012-07-04 康佳集团股份有限公司 抑制开关电源输出过冲的电路
CN102638184A (zh) * 2012-04-27 2012-08-15 矽力杰半导体技术(杭州)有限公司 一种高效率的交流-直流电压转换电路
CN105553292A (zh) * 2015-12-31 2016-05-04 广州金升阳科技有限公司 一种两级控制方法、两级控制器及ac/dc开关电源

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3809266B2 (ja) * 1997-12-04 2006-08-16 キヤノン株式会社 高圧発生装置
JP5129651B2 (ja) * 2008-05-27 2013-01-30 パナソニック株式会社 高圧放電灯点灯装置及び照明器具
JP6840516B2 (ja) * 2016-11-18 2021-03-10 キヤノン株式会社 電源装置及び画像形成装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101226775A (zh) * 2006-12-28 2008-07-23 三星电子株式会社 用于减少输出电压过冲的高压生成电路和方法
CN202309501U (zh) * 2011-10-18 2012-07-04 康佳集团股份有限公司 抑制开关电源输出过冲的电路
CN102638184A (zh) * 2012-04-27 2012-08-15 矽力杰半导体技术(杭州)有限公司 一种高效率的交流-直流电压转换电路
CN105553292A (zh) * 2015-12-31 2016-05-04 广州金升阳科技有限公司 一种两级控制方法、两级控制器及ac/dc开关电源

Also Published As

Publication number Publication date
JP7229979B2 (ja) 2023-02-28
CN114616751A (zh) 2022-06-10
JP2022063082A (ja) 2022-04-21

Similar Documents

Publication Publication Date Title
US6297976B1 (en) Thin, cascade-connected direct current source circuit
US7525819B2 (en) Switching mode power supply and method for generating a bias voltage
JP3113228U (ja) プラズマテレビジョン
US11783788B2 (en) Display apparatus and display control method
US9172309B2 (en) Switching mode power supply usable in an image forming apparatus, and image forming apparatus and method of supplying power by using the same
TWI590574B (zh) 電源供應裝置
JP5905689B2 (ja) Dc/dcコンバータならびにそれを用いた電源装置および電子機器
JP2012161117A (ja) Dc/dcコンバータならびにそれを用いた電源装置および電子機器
US20110199796A1 (en) Structure of a power supply
US11825577B2 (en) Display apparatus and step power circuit
JP2001197741A (ja) スイッチング電源装置
CN110099234B (zh) 一种电源启动装置及电视机
JP2008141895A (ja) スイッチング電源回路及び空気調和器
KR960011731B1 (ko) 텔레비젼 장치용 전원 공급 장치
US20160315544A1 (en) Power supply circuit for reducing standby power and control method thereof
PL119027B1 (en) Tv receiver supply switching circuit
WO2022073381A1 (zh) 电源电路及电源电路的工作方法
US7638905B2 (en) Voltage for LCD
CN211670787U (zh) 一种反激式变换器
JP6072881B2 (ja) Dc/dcコンバータならびにそれを用いた電源装置および電子機器
JPS63124689A (ja) 映像装置用電源
KR101661319B1 (ko) 스위치 모드 파워 서플라이의 대기전력 저감을 위한 회로 및 그 제어 방법
JP4613531B2 (ja) スイッチング電源装置
US20230253874A1 (en) Electronic apparatus
JP2004304898A (ja) スイッチング電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21876902

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21876902

Country of ref document: EP

Kind code of ref document: A1