WO2022071375A1 - Agricultural work machine, agricultural work machine control program, and recording medium in which agricultural work machine control program is recorded - Google Patents

Agricultural work machine, agricultural work machine control program, and recording medium in which agricultural work machine control program is recorded Download PDF

Info

Publication number
WO2022071375A1
WO2022071375A1 PCT/JP2021/035805 JP2021035805W WO2022071375A1 WO 2022071375 A1 WO2022071375 A1 WO 2022071375A1 JP 2021035805 W JP2021035805 W JP 2021035805W WO 2022071375 A1 WO2022071375 A1 WO 2022071375A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
unit
travel
steering
control
Prior art date
Application number
PCT/JP2021/035805
Other languages
French (fr)
Japanese (ja)
Inventor
中林隆志
渡邉俊樹
佐野友彦
吉田脩
川畑翔太郎
堀内真幸
齊藤直
山岡京介
奥平淳人
松永俊
藤本淳
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021030138A external-priority patent/JP2022060134A/en
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to CN202180067691.5A priority Critical patent/CN116437796A/en
Priority to KR1020237010239A priority patent/KR20230079061A/en
Publication of WO2022071375A1 publication Critical patent/WO2022071375A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/02Self-propelled combines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/007Switching between manual and automatic parameter input, and vice versa

Definitions

  • the present invention relates to an agricultural work machine provided with a steering operation tool for steering.
  • Patent Document 1 As the above-mentioned agricultural work machine, for example, the one described in Patent Document 1 is already known.
  • This agricultural work machine (“rice transplanter” in Patent Document 1) runs in the first mode (“automatic straight-ahead mode” in Patent Document 1) and in the second mode (“manual mode” in Patent Document 1). It is configured to be able to run.
  • this agricultural work machine performs automatic steering running. Further, in the traveling in the second mode, the agricultural work machine travels by manual steering.
  • the agricultural work machine described in Patent Document 1 calculates a traveling route based on a determined reference direction. Then, automatic steering is performed along this travel path.
  • the operator needs to register two points by operating the first registration button and the second registration button in order to determine the reference direction.
  • the reference direction is determined based on the positions of these two points.
  • the traveling route is calculated based on this reference direction.
  • An object of the present invention is to provide an agricultural work machine capable of changing the traveling direction in the automatic steering running during the automatic steering running.
  • the feature of the present invention is that the steering operation tool for steering, the traveling control unit that controls the traveling of the aircraft having the traveling device, and the control mode of the traveling control unit are switched between the first mode and the second mode.
  • a mode switching unit and an orientation determining unit for determining a reference direction for automatic steering are provided, and when the control mode of the traveling control unit is the first mode, the traveling control unit has the reference orientation or the reference direction.
  • the traveling of the aircraft is controlled based on the traveling route calculated based on the reference direction and the control mode of the traveling control unit is the second mode, the aircraft operates the steering operation tool.
  • the direction determination unit changes the reference direction or the direction of the travel route according to the operation of the artificial operating tool. It is to execute the direction change process which is a process.
  • the aircraft when the control mode of the travel control unit is the first mode, the aircraft will perform automatic steering travel. Then, when the operator operates the artificial operating tool during the automatic steering running, the directional change process is executed. As a result, the reference direction or the direction of the traveling route is changed. As a result, the traveling direction in the automatic steering running changes.
  • the artificial operating tool is the steering operating tool.
  • the traveling direction of the aircraft in both the first mode and the second mode, the traveling direction of the aircraft can be changed according to the operation of the steering operation tool. That is, in both the automatic steering running and the manual steering running, the traveling direction of the aircraft can be changed according to the operation of the steering operating tool.
  • the movable range of the steering operating tool is set so that the steering operating tool can be operated larger than the second operating amount, which is a larger operating amount than the first operating amount.
  • the control mode of the traveling control unit is the first mode
  • the directional determination unit does not execute the directional change process and the directional direction when the operation amount of the steering operating tool is less than the first operation amount.
  • the determination unit performs the direction change process when the operation amount of the steering operating tool is equal to or more than the first operation amount and equal to or less than the second operation amount.
  • the mode switching unit sets the control mode of the travel control unit. It is preferable to switch to the second mode.
  • the range in which the operating amount is less than the first operating amount is a dead zone.
  • both the execution of the directional change process and the switching from the first mode to the second mode can be performed by operating the steering operation tool.
  • the operability is improved as compared with the configuration in which different operating tools need to be operated for executing the direction changing process and switching from the first mode to the second mode.
  • the travel control unit when the control mode of the travel control unit is the first mode, the travel control unit temporarily operates the artificial operation tool in the operation direction in response to the operation of the artificial operation tool. It is preferable to be able to execute response turning control that controls the traveling of the aircraft so that the turning operation is performed.
  • the reference it is possible to realize a configuration in which a temporary turning operation is performed in the direction in which the direction is changed or in the direction in which the direction of the traveling path is changed. As a result, the operator can surely recognize that the directional change process has been executed in response to the operation of the artificial operating tool.
  • a straight-ahead determination unit for determining whether or not the aircraft has traveled straight for a predetermined distance or a predetermined time is provided, and the direction determination is determined.
  • the straight-ahead determination unit determines whether or not the aircraft has traveled straight over the predetermined distance or the predetermined time.
  • the unit is based on the direction of the straight-ahead performed over the predetermined distance or the predetermined time. It is preferable to determine the orientation.
  • the operator causes the aircraft to go straight for a predetermined distance or a predetermined time by manual steering, so that the reference direction is automatically set based on the direction of the straight movement for a predetermined distance or a predetermined time. Will be decided.
  • the operator does not need to operate a dedicated button or the like in order to determine the reference direction.
  • a setting unit that accepts an artificial operation input and can set the amount of change in the reference direction or the direction of the traveling route in the direction change process by the operation input.
  • the operator can set the amount of change in the reference direction or the direction of the traveling route in the direction change process by performing an artificial operation input. This makes it possible to realize an agricultural work machine in which the operator can arbitrarily set the amount of change in the reference direction or the direction of the traveling route in the direction change process.
  • control mode of the direction changing unit can be switched between a permission mode in which the execution of the direction change process is permitted and a prohibition mode in which the execution of the direction change process is prohibited. It is preferable that the setting unit is configured so that the control mode of the direction determination unit can be switched by the operation input.
  • the operator when the direction change process is unnecessary, the operator can switch the control mode of the direction determination unit to the prohibition mode by performing an artificial operation input. This makes it easy to avoid a situation in which the directional change process is executed in response to the operation of the artificial operating tool when the directional change process is unnecessary.
  • the setting unit is configured so that the change amount can be changed in predetermined angle increments by the operation input.
  • this configuration it is easier to simplify the configuration of the part that accepts the operation input in the setting unit, as compared with the configuration in which the change amount can be changed steplessly. This makes it easier for the operator to understand the method of inputting an operation to the setting unit, as compared with the case where the configuration of the portion accepting the operation input in the setting unit is complicated. Therefore, according to this configuration, it is possible to realize a farm work machine in which the operator can easily understand the method of inputting an operation to the setting unit.
  • the setting unit is configured not to accept the operation input for setting the change amount while the machine is traveling.
  • the operator when setting the change amount, the operator inputs the operation to the setting unit with the running of the aircraft stopped. As a result, the operator will input the operation to the setting unit in a state where the vibration of the machine body is reduced as compared with the case where the machine body is running. As a result, it is easier for the operator to perform the operation input with high accuracy as compared with the case where the operation input is performed in a state where the vibration of the machine is large.
  • another feature of the present invention is a running control program for controlling a farming machine including a steering operating tool for steering and a machine having a traveling device, which controls traveling of the machine.
  • the computer is realized with a function, a mode switching function for switching the control mode of the traveling control function between the first mode and the second mode, and a direction determining function for determining a reference direction for automatic steering.
  • the control mode of the travel control function is the first mode
  • the travel control function controls the travel of the aircraft based on the reference direction or the travel route calculated based on the reference direction, and the operation is described.
  • the aircraft travels in response to the operation of the steering operating tool, and in the directional determination function, the control mode of the travel control function is the first mode.
  • the directional change process which is a process of changing the reference direction or the direction of the traveling route, is executed according to the operation of the artificial operation tool.
  • another feature of the present invention is a recording medium recording a farm work machine control program for controlling a farm work machine including a steering operation tool for steering and a machine having a traveling device, and the traveling of the machine.
  • a computer that controls the driving control function, the mode switching function that switches the control mode of the driving control function between the first mode and the second mode, and the directional determination function that determines the reference direction for automatic steering.
  • the control mode of the travel control function is the first mode
  • the travel control function performs the travel of the aircraft based on the reference direction or the travel route calculated based on the reference direction.
  • the control mode of the travel control function is the second mode
  • the aircraft travels in response to the operation of the steering operating tool, and the directional determination function is performed by the control mode of the travel control function.
  • the agricultural work machine control program that executes the direction change process, which is the process of changing the reference direction or the direction of the travel route, is recorded according to the operation of the artificial operation tool. It is in.
  • the direction of arrow N shown in FIGS. 8 to 14 is “north”, the direction of arrow S is “south”, the direction of arrow E is “east”, and arrow W.
  • the direction of is "west”.
  • the ordinary combine 1 (corresponding to the "agricultural work machine” according to the present invention) includes a machine body 10, a harvesting section H, a threshing device 13, a grain tank 14, a transport section 16, and a grain discharging device. 18. It is equipped with a satellite positioning module 80. Further, the machine body 10 has a crawler type traveling device 11, a driving unit 12, and an engine EG.
  • the traveling device 11 is provided at the lower part of the combine 1. Further, the traveling device 11 is driven by the power from the engine EG. Then, the combine 1 can self-propell by the traveling device 11.
  • the operation unit 12, the threshing device 13, and the grain tank 14 are provided on the upper side of the traveling device 11. An operator who monitors the work of the combine 1 can be boarded on the driving unit 12.
  • the grain discharge device 18 is provided on the upper side of the grain tank 14. Further, the satellite positioning module 80 is attached to the upper surface of the operating unit 12.
  • the cutting section H is provided in the front portion of the combine 1.
  • the transport unit 16 is provided on the rear side of the cutting unit H. Further, the cutting unit H includes a cutting blade 15 and a reel 17.
  • the cutting blade 15 cuts the planted culm in the field. Further, the reel 17 is driven to rotate around the reel shaft core 17b along the left-right direction of the machine body to scrape the planted grain culm to be harvested. The cut grain culm cut by the cutting blade 15 is sent to the transport unit 16.
  • the harvesting unit H harvests the grain in the field. Then, the combine 1 can be cut and run by the running device 11 while cutting the planted culm in the field by the cutting blade 15.
  • the harvested grain culm harvested by the harvesting unit H is transported to the rear of the machine by the transport unit 16. As a result, the harvested grain culm is transported to the threshing device 13.
  • the harvested grain culm is threshed.
  • the grains obtained by the threshing treatment are stored in the grain tank 14.
  • the grains stored in the grain tank 14 are discharged to the outside of the machine by the grain discharging device 18 as needed.
  • the combine 1 is provided with a grain tank 14 for storing the grains harvested by the harvesting unit H.
  • a communication terminal 4 (corresponding to the "setting unit” according to the present invention) is arranged in the operation unit 12.
  • the communication terminal 4 is configured to be able to display various information.
  • the communication terminal 4 is fixed to the driving unit 12.
  • the present invention is not limited to this, and the communication terminal 4 may be configured to be detachable from the driving unit 12, and the communication terminal 4 may be located outside the combine 1. ..
  • the combine 1 is configured to be able to perform manual steering running and automatic steering running.
  • Manual steering running means running by manual steering of the operator.
  • automatic steering running means that the forward running is automatically performed.
  • the automatic steering running means that the forward running without a large change of direction such as an ⁇ turn or a U turn is automatically performed.
  • the driving unit 12 is provided with a main shift lever 19.
  • the vehicle speed of the combine 1 changes. That is, when the combine 1 is performing manual steering or automatic steering, the operator can change the vehicle speed of the combine 1 by operating the main shift lever 19.
  • the driving unit 12 is provided with a steering operating tool 41.
  • a steering operating tool 41 When the combine 1 is manually steering and traveling, when the operator operates the steering operating tool 41, a speed difference is generated between the left and right crawlers in the traveling device 11. As a result, the combine 1 turns. That is, when the combine 1 is manually steering and traveling, the operator can steer the combine 1 by operating the steering operating tool 41.
  • the combine 1 is provided with a steering operating tool 41 for steering.
  • the combine 1 is configured so that the operating force to the steering operating tool 41 is not transmitted to the traveling device 11. That is, the steering operation tool 41 is not mechanically interlocked with the traveling device 11.
  • the movement of the steering operation tool 41 is electrically detected, and the left and right crawlers in the traveling device 11 are controlled based on this detection.
  • the combine 1 turns. Further, when there is no speed difference between the left and right crawlers, the combine 1 goes straight.
  • the combine 1 includes a threshing clutch C1 and a harvesting clutch C2.
  • the power output from the engine EG is distributed to the traveling device 11 and the threshing clutch C1.
  • the traveling device 11 has a main transmission device 11a and an auxiliary transmission device 11b.
  • the main transmission 11a is configured by a hydrostatic continuously variable transmission.
  • the auxiliary transmission 11b is configured by a gear switching type transmission, and is configured to be switchable between a high speed state and a low speed state.
  • the high-speed state is a shift state for movement (non-working), and the low-speed state is a shift state for work.
  • the power input from the engine EG to the traveling device 11 is changed by the main transmission device 11a and the auxiliary transmission device 11b. Then, the combine 1 travels by driving the crawler of the traveling device 11 by the speed-shifted power.
  • the main shift lever 19 is configured to be swingable in the front-rear direction.
  • the range of motion of the main shift lever 19 is divided into three, a forward operation position FP, a neutral position NP, and a reverse operation position RP. Then, by operating the main shift lever 19, the shift state of the main shift device 11a changes.
  • the main speed change lever 19 When the main speed change lever 19 is located at the neutral position NP, the main speed change device 11a is in the neutral state. At this time, the main transmission 11a does not output power.
  • the main shift lever 19 When the main shift lever 19 is located at the reverse operation position RP, the main shift device 11a is in the reverse shift state. At this time, the more the main speed change lever 19 is tilted to the rear side, the higher the power output from the main speed change device 11a becomes.
  • the main shift lever 19 is provided with an auxiliary shift switch 42.
  • the auxiliary transmission switch 42 Each time the auxiliary transmission switch 42 is pressed, the transmission state of the auxiliary transmission device 11b is switched between a high speed state and a low speed state.
  • the threshing clutch C1 shown in FIG. 2 is configured so that the state can be changed between an on state in which power is transmitted and an off state in which power is not transmitted.
  • the threshing clutch C1 When the threshing clutch C1 is in the engaged state, the power from the engine EG is transmitted to the threshing device 13 and the cutting clutch C2. As a result, the threshing device 13 is driven.
  • the threshing clutch C1 when the threshing clutch C1 is in the off state, the power from the engine EG is not transmitted to either the threshing device 13 or the cutting clutch C2. At this time, the threshing device 13 is not driven.
  • the cutting clutch C2 is configured so that the state can be changed between the on state in which power is transmitted and the off state in which power is not transmitted.
  • the combine 1 includes a harvesting threshing lever 43.
  • the harvesting threshing lever 43 is provided in the driving unit 12.
  • the cutting and threshing lever 43 is configured to be swingable in the front-rear direction.
  • the harvesting threshing lever 43 is configured so that the operation position can be selectively switched between the first operation position M1, the second operation position M2, and the third operation position M3.
  • both the threshing clutch C1 and the cutting clutch C2 are in the engaged state.
  • the threshing clutch C1 When the operating position of the cutting threshing lever 43 is the second operating position M2, the threshing clutch C1 is in the on state and the cutting clutch C2 is in the off state.
  • both the threshing clutch C1 and the cutting clutch C2 are in the off state.
  • the combine 1 includes an artificial operation tool 45.
  • the artificial operating tool 45 is a steering operating tool 41.
  • the steering operating tool 41 is configured to be swingable in the left-right direction between the right third operating position R3 and the left third operating position L3.
  • the central operation position CP is located in the center of the movable range of the steering control tool 41.
  • the right first operation position R1 and the right second operation position R2 are located between the center operation position CP and the right third operation position R3.
  • the right second operation position R2 is located on the right side of the right first operation position R1.
  • the left first operation position L1 and the left second operation position L2 are located between the central operation position CP and the left third operation position L3.
  • the left second operation position L2 is located on the left side of the left first operation position L1.
  • the operating amount of the steering operating tool 41 is the swing angle from the central operating position CP.
  • the operation amount from the center operation position CP to the right first operation position R1 is the first operation amount A1. Further, the operation amount from the center operation position CP to the right second operation position R2 is the second operation amount A2. Then, as described above, the steering operating tool 41 can be operated to the right up to the third operating position R3 on the right. That is, the steering operation tool 41 can be operated to the right side more than the second operation amount A2.
  • the operation amount from the central operation position CP to the left first operation position L1 is the first operation amount A1.
  • the operation amount from the central operation position CP to the left second operation position L2 is the second operation amount A2.
  • the movable range of the steering operating tool 41 is set so that the steering operating tool 41 can be operated larger than the second operating amount A2, which is a larger operating amount than the first operating amount A1.
  • the combine 1 includes a control unit 20.
  • the control unit 20 has a vehicle position calculation unit 21 and a travel control unit 24.
  • RTK-GPS Real Time Kinetic GPS
  • the satellite positioning module 80 shown in FIG. 1 includes GPS signals from the artificial satellite GS used in GPS (Global Positioning System), positioning data transmitted from a reference station (not shown) installed at a known position, and positioning data. To receive. Then, as shown in FIG. 2, the satellite positioning module 80 sends the positioning data based on the received GPS signal and the positioning data received from the reference station to the own vehicle position calculation unit 21.
  • the vehicle position calculation unit 21 calculates the position coordinates of the combine 1 over time based on the positioning data received from the satellite positioning module 80. The calculated position coordinates of the combine 1 over time are sent to the traveling control unit 24.
  • the distance between the GPS satellite and the GPS receiver is N ⁇ ⁇ + ⁇ ⁇ ⁇ + c ⁇ dT + c ⁇ dt, and N called an integer value bias is obtained.
  • N is the wavelength of the carrier wave.
  • is a fractional part of the wave number between the GPS satellite and the GPS receiver.
  • c is the radio wave propagation speed
  • dT is the clock error of the GPS satellite
  • dt is the clock error of the GPS receiver.
  • the state where N is not determined as an integer solution is called FLOAT.
  • the positioning result at this time is called an FLOAT solution.
  • the FIX solution has a centimeter accuracy, while the FLOAT solution has an accuracy of several tens of centimeters to several meters.
  • the present invention is not limited to this.
  • the satellite positioning module 80 does not have to use GPS.
  • the satellite positioning module 80 may use GNSS (GLONASS, Galileo, Michibiki, BeiDou, etc.) other than GPS.
  • the combine 1 is provided with an inertial measurement unit 81. Further, the control unit 20 has a vehicle direction calculation unit 25.
  • the inertial measurement unit 81 detects the angular velocity of the yaw angle of the airframe 10 and the acceleration in the three axial directions orthogonal to each other over time. The detection result by the inertial measurement unit 81 is sent to the own vehicle direction calculation unit 25.
  • the vehicle direction calculation unit 25 receives the position coordinates of the combine 1 from the vehicle position calculation unit 21. Then, the own vehicle direction calculation unit 25 calculates the attitude direction of the combine 1 based on the detection result by the inertial measurement unit 81 and the position coordinates of the combine 1.
  • the heading vehicle direction calculation unit 25 determines the position coordinates of the current combine 1 and the position coordinates of the combine 1 at the point where the combine 1 was traveling immediately before. Calculate the initial posture orientation.
  • the own vehicle direction calculation unit 25 integrates the angular velocity detected by the inertial measurement unit 81 during the operation for the fixed time. , Calculate the amount of change in posture and orientation.
  • the own vehicle orientation calculation unit 25 updates the calculation result of the attitude orientation. After that, the amount of change in the posture direction is calculated in the same manner at regular time intervals, and the calculation result of the posture direction is sequentially updated.
  • the angular velocity detected by the inertial measurement unit 81 includes a measurement error (drift). Since this measurement error increases with the passage of time, the error included in the calculated change in posture and orientation increases each time the amount of change in posture and orientation is calculated.
  • drift measurement error
  • the own vehicle direction calculation unit 25 is configured to correct the attitude direction calculated based on the detection result by the inertial measurement unit 81 by the direction information calculated based on the change in the position coordinates of the combine 1. ..
  • the directional information calculated based on the change in the position coordinates of the combine 1 has a FIX solution obtained by RTK-GPS positioning by the satellite positioning module 80 and the own vehicle position calculation unit 21, and the combine 1 is several meters. High accuracy is achieved when going straight over the above. Therefore, the own vehicle orientation calculation unit 25 obtains a FIX solution in RTK-GPS positioning by the satellite positioning module 80 and the own vehicle position calculation unit 21 for correction based on the orientation information calculated based on the change in the position coordinates of the combine 1. And only when the combine 1 goes straight for several meters or more.
  • the FIX solution is obtained in the RTK-GPS positioning by the satellite positioning module 80 and the own vehicle position calculation unit 21, and the combine 1 has traveled straight for several meters or more, and the combine.
  • a state in which highly accurate directional information is calculated based on a change in the position coordinates of 1 is referred to as a high-precision directional calculation state.
  • the vehicle direction calculation unit 25 can calculate the attitude direction of the combine 1 with high accuracy.
  • the attitude direction of the combine 1 calculated by the own vehicle direction calculation unit 25 is sent to the traveling control unit 24.
  • the travel control unit 24 is configured to be able to control the travel device 11.
  • the travel control unit 24 controls the travel of the machine body 10 by controlling the travel device 11.
  • the combine 1 includes a travel control unit 24 that controls the travel of the machine body 10 having the travel device 11.
  • Each element such as the control unit 20 and the own vehicle position calculation unit 21 included in the control unit 20 may be a physical device such as a microcomputer or a functional unit in software. ..
  • the communication terminal 4 receives the position coordinates of the combine 1 from the own vehicle position calculation unit 21. As a result, the communication terminal 4 can display the current position of the combine 1 on the display 4b of the communication terminal 4.
  • the combine 1 includes a cutting cylinder 15A. Further, as shown in FIG. 2, the combine 1 is provided with a cutting elevating operation tool 44.
  • the cutting elevating operation tool 44 is provided in the driving unit 12.
  • the control unit 20 is configured to control the expansion and contraction of the cutting cylinder 15A in response to the operation of the cutting raising / lowering operation tool 44 by the operator.
  • the operator can perform the raising / lowering operation of the cutting unit H by operating the cutting raising / lowering operation tool 44.
  • the control unit 20 has an automatic steering control unit 30.
  • the automatic steering control unit 30 is configured to be able to switch the control mode of the travel control unit 24 between the first mode and the second mode.
  • the travel control unit 24 controls the travel device 11 so that the combine 1 performs automatic steering travel.
  • the travel control unit 24 controls the travel of the aircraft 10 in response to this signal.
  • the travel control unit 24 controls the travel of the aircraft 10 according to the operation of the steering operation tool 41.
  • the aircraft 10 travels in response to the operation of the steering operation tool 41.
  • the combine 1 performs manual steering traveling when the control mode of the traveling control unit 24 is the second mode.
  • the automatic steering control unit 30 includes a direction determination unit 31, a route calculation unit 32, a mode switching unit 33, and a straight-ahead determination unit 34.
  • the straight-ahead determination unit 34 determines whether or not the aircraft 10 has traveled straight over a predetermined distance D1 when the control mode of the travel control unit 24 is the second mode.
  • a signal indicating the operating state of the steering operating tool 41 is sent from the steering operating tool 41 to the automatic steering control unit 30. Based on this signal, the straight-ahead determination unit 34 determines whether or not the steering operation tool 41 is being operated over time.
  • the straight-ahead determination unit 34 calculates the moving distance of the combine 1 while the steering operation tool 41 is not operated, based on the position coordinates of the combine 1 received from the own vehicle position calculation unit 21. When the calculated travel distance reaches the predetermined distance D1, the straight-ahead determination unit 34 determines that the aircraft 10 has traveled straight over the predetermined distance D1. Further, when the calculated movement distance does not reach the predetermined distance D1, the straight-ahead determination unit 34 determines that the aircraft 10 has not traveled straight over the predetermined distance D1.
  • the direction determination unit 31 is performed over the predetermined distance D1.
  • the reference direction TA (see FIG. 8) is determined based on the straight direction.
  • the directional determination unit 31 stores the transition of the position coordinates of the combine 1 while the steering operation tool 41 is not operated, based on the position coordinates of the combine 1 received from the own vehicle position calculation unit 21. do. Then, when the straight-ahead determination unit 34 determines that the aircraft 10 has traveled straight over a predetermined distance D1, the directional determination unit 31 sets two points of the stored position coordinates as the first registration point Q1 and the first registration point Q1. Determined as the second registration point Q2.
  • the direction determination unit 31 determines the position coordinates of the combine 1 at the time when the straight-ahead determination unit 34 determines that the aircraft 10 has traveled straight over a predetermined distance D1 as the second registration point Q2. Further, the position coordinates of the combine 1 at the start of the straight movement performed over the predetermined distance D1 are determined as the first registration point Q1.
  • the start point and the end point of going straight over the predetermined distance D1 are determined as the first registration point Q1 and the second registration point Q2, respectively.
  • the directional determination unit 31 determines the reference directional TA for automatic steering based on the first registration point Q1 and the second registration point Q2. More specifically, the orientation determination unit 31 calculates the direction of a straight line from the first registration point Q1 to the second registration point Q2.
  • the direction of the straight line from the first registration point Q1 to the second registration point Q2 is equal to the direction of the straight line made over the predetermined distance D1. That is, the directional determination unit 31 calculates the direction of straight travel performed over the predetermined distance D1. Then, the direction determination unit 31 determines the calculated direction as the reference direction TA.
  • the format of the reference direction TA is not particularly limited, but may be, for example, a format based on north, south, east, or west (for example, "north" or "27 degrees east"), or is a unit vector in the coordinate system. May be.
  • the reference direction TA does not have to have a direction from one to the other.
  • the reference direction TA may indicate the slope of a straight line in the coordinate system (for example, the slope of the straight line passing through the first registration point Q1 and the second registration point Q2), or the straight line itself in the coordinate system (for example.
  • it may indicate the straight line itself passing through the first registration point Q1 and the second registration point Q2, or indicate the direction with respect to the north, south, east, and west (for example, "north-south direction" or "east-west direction”. Etc.).
  • the direction determination unit 31 determines the reference direction TA based on the direction of straight travel performed over the predetermined distance D1.
  • the straight-ahead determination unit 34 may be configured to determine whether or not the aircraft 10 has traveled straight for a predetermined time when the control mode of the travel control unit 24 is the second mode. In this case, if the orientation determination unit 31 satisfies the predetermined start condition and the straight-ahead determination unit 34 determines that the aircraft 10 has traveled straight for a predetermined time, the direction determination unit 31 will go straight for a predetermined time. It may be configured to determine the reference directional TA based on the straight-ahead direction.
  • the combine 1 includes a straight-ahead determination unit 34 that determines whether or not the aircraft 10 has traveled straight over a predetermined distance D1 or a predetermined time when the control mode of the travel control unit 24 is the second mode. Further, when the straight-ahead determination unit 34 determines that the aircraft 10 has traveled straight over a predetermined distance D1 or a predetermined time, the directional determination unit 31 is based on the straight-ahead direction performed over the predetermined distance D1 or the predetermined time. The reference direction TA is determined.
  • the predetermined distance D1 is not particularly limited, but may be, for example, 1 meter.
  • the predetermined time is not particularly limited, but may be, for example, 1 second.
  • the route calculation unit 32 passes through the position of the satellite positioning module 80 in a plan view and constantly calculates a traveling line in the direction along the reference directional TA. That is, this traveling line is calculated based on the reference direction TA.
  • the traveling line calculated by the route calculation unit 32 may be calculated so as to pass through the center of the cutting width of the cutting unit H.
  • the mode switching unit 33 switches the control mode of the traveling control unit 24 from the second mode to the first mode.
  • the route calculation unit 32 fixes the travel line calculated at the time when the control mode is switched from the second mode to the first mode.
  • the fixed travel line becomes an automatic steering target line GL (corresponding to the “travel path” according to the present invention) (see FIG. 8), and is sent from the automatic steering control unit 30 to the travel control unit 24. That is, at the timing when the control mode is switched from the second mode to the first mode, the route calculation unit 32 determines the traveling line calculated at that time as the automatic steering target line GL.
  • the travel control unit 24 When the control mode of the travel control unit 24 is the first mode, the travel control unit 24 has the position coordinates of the combine 1 received from the vehicle position calculation unit 21 and the attitude of the combine 1 received from the vehicle orientation calculation unit 25. The traveling of the combine 1 is controlled based on the direction and the automatic steering target line GL received from the automatic steering control unit 30. More specifically, the travel control unit 24 controls the travel of the machine body 10 so that the cutting travel is performed by the automatic steering travel along the automatic steering target line GL.
  • the reference directional TA is for automatic steering. That is, the combine 1 includes an azimuth determining unit 31 that determines a reference azimuth TA for automatic steering.
  • the present invention is not limited to the configuration described above.
  • the travel control unit 24 may control the travel of the aircraft 10 based on the reference direction TA instead of the automatic steering target line GL.
  • the traveling control unit 24 may control the aircraft orientation so that the attitude orientation of the combine 1 matches the reference orientation TA or is parallel to the reference orientation TA.
  • the travel control unit 24 travels the aircraft 10 based on the reference direction TA or the automatic steering target line GL calculated based on the reference direction TA. To control.
  • the mode switching unit 33 sets the control mode of the travel control unit 24 to the first mode. To switch to the second mode.
  • the combine 1 includes a mode switching unit 33 that switches the control mode of the traveling control unit 24 between the first mode and the second mode.
  • the combine 1 includes a notification unit 53.
  • the automatic steering control unit 30 sends a predetermined signal to the notification unit 53.
  • the notification unit 53 notifies the operator that the control mode of the travel control unit 24 has been switched from the second mode to the first mode.
  • the automatic steering control unit 30 sends a predetermined signal to the notification unit 53.
  • the notification unit 53 notifies the operator that the control mode of the travel control unit 24 has been switched from the first mode to the second mode.
  • the notification unit 53 is a speaker that outputs voice.
  • the present invention is not limited to this, and the notification unit 53 may be a lamp, a display device, or the like.
  • the mode switching unit 33 switches the control mode of the traveling control unit 24 between the first mode and the second mode in response to the operator operating the automatic steering start / end button.
  • the mode switching unit 33 automatically switches the control mode of the traveling control unit 24 between the first mode and the second mode according to the situation even if the automatic steering start / end button is not operated. It is configured. In the following, the automatic switching of the control mode will be described in detail.
  • the mode switching unit 33 When the mode switching unit 33 satisfies the predetermined start condition and the straight-ahead determination unit 34 determines that the aircraft 10 has traveled straight over a predetermined distance D1, the mode switching unit 33 sets the control mode of the travel control unit 24 to the first. It is configured to switch to mode. Further, the mode switching unit 33 is configured not to switch the control mode of the traveling control unit 24 to the first mode when the start condition is not satisfied.
  • the mode switching unit 33 When the mode switching unit 33 satisfies the predetermined start condition and the straight-ahead determination unit 34 determines that the aircraft 10 has traveled straight for a predetermined time, the mode switching unit 33 sets the control mode of the travel control unit 24 to the first mode. It may be configured to switch to.
  • the travel control unit 24 It is configured to switch the control mode to the first mode, and is configured not to switch the control mode of the traveling control unit 24 to the first mode when the start condition is not satisfied.
  • This first determination routine is stored in the automatic steering control unit 30.
  • the automatic steering control unit 30 repeatedly executes this first determination routine at regular time intervals when the control mode of the travel control unit 24 is the second mode.
  • step S01 When the first determination routine is started, the process of step S01 is executed first.
  • step S01 as shown in FIG. 2, the automatic steering control unit 30 acquires information indicating the operation position of the main shift lever 19. Then, based on the acquired information, it is determined whether or not the main shift lever 19 is located at the forward operation position FP.
  • step S01 If the main shift lever 19 is not located at the forward operation position FP, it is determined as No in step S01, and the process ends once. Further, when the main shift lever 19 is located at the forward operation position FP, it is determined as Yes in step S01, and the process proceeds to step S02.
  • the automatic steering control unit 30 is configured to receive an operation signal of the auxiliary shift switch 42. Then, the automatic steering control unit 30 is configured to be able to determine the shift state of the auxiliary transmission device 11b based on this operation signal.
  • step S02 it is determined whether or not the auxiliary transmission 11b is in a shift state for work. More specifically, it is determined whether or not the auxiliary transmission 11b is in a low speed state.
  • step S02 If the auxiliary transmission 11b is not in the low speed state, it is determined as No in step S02, and the process ends once. Further, when the auxiliary transmission 11b is in the low speed state, it is determined as Yes in step S02, and the process proceeds to step S03.
  • step S03 the automatic steering control unit 30 acquires information indicating whether or not the above-mentioned FIX solution is obtained from the own vehicle position calculation unit 21. Then, based on the acquired information, it is determined whether or not the positioning state of the aircraft position is a predetermined high-precision state. More specifically, it is determined whether or not the FIX solution is obtained in the RTK-GPS positioning by the satellite positioning module 80 and the own vehicle position calculation unit 21.
  • step S03 If the FIX solution is not obtained in the RTK-GPS positioning by the satellite positioning module 80 and the own vehicle position calculation unit 21, it is determined as No in step S03, and the process is temporarily terminated. Further, when the FIX solution is obtained in the RTK-GPS positioning by the satellite positioning module 80 and the own vehicle position calculation unit 21, it is determined as Yes in step S03, and the process proceeds to step S04.
  • step S04 the automatic steering control unit 30 acquires information indicating the operation position of the cutting and threshing lever 43. Then, based on the acquired information, it is determined whether or not the cutting clutch C2 is in the engaged state.
  • step S04 When the operation position of the harvesting threshing lever 43 is the second operation position M2 or the third operation position M3, No is determined in step S04, and the process is temporarily terminated. Further, when the operation position of the cutting and threshing lever 43 is the first operation position M1, it is determined as Yes in step S04, and the process proceeds to step S05.
  • the combine 1 includes an elevating detection unit 54.
  • the elevating detection unit 54 detects the expansion / contraction state of the cutting cylinder 15A.
  • the detection result by the elevating detection unit 54 is sent to the automatic steering control unit 30.
  • the automatic steering control unit 30 is configured to be able to determine whether or not the cutting unit H is located at the working position based on the detection result by the elevating detection unit 54.
  • the amount of descent from the highest rising position of the cutting section H is equal to or more than a predetermined value, which corresponds to the position of the cutting section H at the working position.
  • step S05 it is determined whether or not the cutting unit H is located at the working position. If the cutting unit H is not located at the working position, it is determined as No in step S05, and the process ends once. Further, when the cutting unit H is located at the working position, it is determined as Yes in step S05, and the process proceeds to step S06.
  • step S06 it is determined whether or not the aircraft 10 has traveled straight over a predetermined distance D1. As described above, this determination is performed by the straight-ahead determination unit 34.
  • step S06 If the aircraft 10 has not traveled straight over the predetermined distance D1, it is determined as No in step S06, and the process is temporarily terminated. Further, when the aircraft 10 travels straight over a predetermined distance D1, it is determined as Yes in step S06, and the process proceeds to step S07.
  • step S07 the reference direction TA is determined based on the direction of straight travel performed over the predetermined distance D1. This determination is made by the orientation determination unit 31 as described above. Then, the process proceeds to step S08.
  • step S08 the mode switching unit 33 switches the control mode of the traveling control unit 24 from the second mode to the first mode. Then, the process proceeds to step S09.
  • step S09 the notification unit 53 notifies the operator that the control mode of the travel control unit 24 has been switched from the second mode to the first mode. After that, the process ends once.
  • the above-mentioned start condition includes that all of steps S01 to S05 are determined to be Yes.
  • the present invention is not limited to this, and a part of steps S01 to S05 may not be provided.
  • the start conditions are that the main shift lever 19 is located at the forward operation position FP, the auxiliary transmission 11b is in the shift state for work, and the positioning state of the aircraft position is in a predetermined high accuracy state. At least one of the fact that the clutch for power transmission to the cutting section H is engaged and that the cutting section H is located at the working position is included.
  • the orientation determination unit 31 determines that the predetermined start condition is satisfied and the straight-ahead determination unit 34 determines that the aircraft 10 has traveled straight over the predetermined distance D1. If so, the reference direction TA is determined based on the direction of straight travel performed over the predetermined distance D1. Further, the direction determination unit 31 does not determine the reference direction TA when the start condition is not satisfied.
  • the present invention is not limited to this, and the directional determination unit 31 causes the aircraft 10 to travel straight for a predetermined distance D1 or a predetermined time by the straight-ahead determination unit 34 regardless of whether or not a predetermined start condition is satisfied. If it is determined that the reference direction TA has been determined, the reference direction TA may be determined based on the direction of straight travel performed over a predetermined distance D1 or a predetermined time.
  • the mode switching unit 33 is configured to switch the control mode of the travel control unit 24 to the second mode when a predetermined release condition is satisfied when the control mode of the travel control unit 24 is the first mode. There is.
  • This second determination routine is stored in the automatic steering control unit 30.
  • the automatic steering control unit 30 repeatedly executes this second determination routine at regular time intervals when the control mode of the travel control unit 24 is the first mode.
  • step S11 As shown in FIG. 2, the automatic steering control unit 30 acquires information indicating the operation position of the main shift lever 19. Then, based on the acquired information, it is determined whether or not the main shift lever 19 is operated to an operation position other than the forward operation position FP. More specifically, it is determined whether or not the main shift lever 19 is located at the neutral position NP or the reverse operation position RP.
  • step S11 When the main shift lever 19 is located at the neutral position NP or the reverse operation position RP, it is determined as Yes in step S11, and the process proceeds to step S19. If the main shift lever 19 is not located at the neutral position NP or the reverse operation position RP, it is determined as No in step S11, and the process proceeds to step S12.
  • step S12 it is determined whether or not the auxiliary transmission 11b is no longer in the working shift state. More specifically, it is determined whether or not the auxiliary transmission 11b is in the high speed state.
  • step S12 When the auxiliary transmission 11b is in the high speed state, it is determined as Yes in step S12, and the process proceeds to step S19. If the auxiliary transmission 11b is not in the high speed state, it is determined as No in step S12, and the process proceeds to step S13.
  • step S13 the automatic steering control unit 30 acquires information indicating whether or not the above-mentioned FIX solution is obtained from the own vehicle position calculation unit 21. Then, based on the acquired information, it is determined whether or not the positioning state of the aircraft position is no longer a predetermined high-precision state. More specifically, it is determined whether or not the FIX solution cannot be obtained in the RTK-GPS positioning by the satellite positioning module 80 and the own vehicle position calculation unit 21. In other words, it is determined whether or not the RTK-GPS positioning state by the satellite positioning module 80 and the own vehicle position calculation unit 21 is FLOAT.
  • step S13 If the FIX solution is not obtained in the RTK-GPS positioning by the satellite positioning module 80 and the own vehicle position calculation unit 21, it is determined as Yes in step S13, and the process proceeds to step S19. Further, when the FIX solution is obtained in the RTK-GPS positioning by the satellite positioning module 80 and the own vehicle position calculation unit 21, it is determined as No in step S13, and the process proceeds to step S14.
  • step S14 the automatic steering control unit 30 acquires information indicating the operation position of the cutting and threshing lever 43. Then, based on the acquired information, it is determined whether or not the cutting clutch C2 is in the disengaged state.
  • step S14 When the operation position of the harvesting threshing lever 43 is the second operation position M2 or the third operation position M3, it is determined as Yes in step S14, and the process proceeds to step S19. Further, when the operation position of the cutting and threshing lever 43 is the first operation position M1, it is determined as No in step S14, and the process proceeds to step S15.
  • step S15 it is determined whether or not the cutting unit H has moved to the non-working position.
  • the amount of descent from the highest rising position of the cutting section H is equal to or less than a predetermined value, which corresponds to the position of the cutting section H in the non-working position.
  • the automatic steering control unit 30 is configured to receive an operation signal of the cutting elevating operation tool 44. Then, the automatic steering control unit 30 is configured to be able to determine whether or not an operation for moving the cutting unit H to a non-working position has been performed based on this operation signal.
  • step S16 it is determined whether or not an operation for moving the cutting unit H to a non-working position has been performed. More specifically, it is determined whether or not the cutting unit H has been raised.
  • step S16 When the cutting unit H is raised, it is determined to be Yes in step S16, and the process proceeds to step S19. Further, when the cutting unit H is not raised, it is determined as No in step S16, and the process proceeds to step S17.
  • step S17 whether or not the steering operation tool 41 is operated larger than the second operation amount A2 based on the signal indicating the operation state of the steering operation tool 41 sent from the steering operation tool 41 to the automatic steering control unit 30. It is judged.
  • the steering operating tool 41 is operated larger than the second operation amount A2, it is determined as Yes in step S17, and the process proceeds to step S19. Further, when the steering operation tool 41 is not operated larger than the second operation amount A2, it is determined as No in step S17, and the process is temporarily terminated.
  • step S19 the control mode of the travel control unit 24 is switched from the first mode to the second mode by the mode switching unit 33. After that, the process ends once.
  • the mode switching unit 33 sets the control mode of the travel control unit 24 to the second when the operation amount of the steering operating tool 41 is larger than the second operation amount A2. Switch to mode.
  • the notification unit 53 may notify the operator that the control mode of the travel control unit 24 has been switched from the first mode to the second mode. ..
  • the above-mentioned cancellation condition is determined to be Yes in any of steps S11 to S17.
  • the present invention is not limited to this, and a part of steps S11 to S17 may not be provided.
  • the release conditions are that the main shift lever 19 is operated to an operation position other than the forward operation position FP, the auxiliary transmission 11b is no longer in the shift state for work, and the positioning state of the aircraft position is predetermined. Operation for moving the cutting section H to a non-working position, moving the cutting section H to a non-working position, and disengaging the clutch for power transmission to the cutting section H. Is performed, and at least one of the steering operation tool 41 being operated larger than the second operation amount A2 is included.
  • the mode switching unit 33 switches the control mode of the traveling control unit 24 to the second mode when at least one of the plurality of conditions included in the release condition is satisfied. It is configured.
  • the mode switching unit 33 is configured to switch the control mode of the traveling control unit 24 to the second mode when two or more predetermined number of conditions are satisfied among the plurality of conditions included in the release condition. Is also good.
  • the combine 1 runs on the outer peripheral side of the field.
  • the combine 1 first enters the field from the first point P1 in the northeastern part of the field.
  • the control mode of the traveling control unit 24 is the second mode.
  • the reference direction TA it is assumed that the reference direction TA has not been determined yet. Then, the combine 1 travels toward the west at the northern end of the field.
  • combine 1 passes through the second point P2. At this point, it is assumed that the operator operates the steering operation tool 41 in a straight-ahead state. As a result, the combine 1 goes straight from the second point P2.
  • step S06 of the first determination routine determines the direction determination unit 31.
  • the orientation determination unit 31 determines the second point P2 as the first registration point Q1. Further, the orientation determination unit 31 determines the third point P3 as the second registration point Q2. Then, the direction determination unit 31 calculates the direction of the straight line from the first registration point Q1 to the second registration point Q2, and determines this direction as the reference direction TA. In FIG. 8, the reference direction TA coincides with the west direction.
  • the route calculation unit 32 constantly calculates the traveling line in the direction along the reference direction TA while passing through the position of the satellite positioning module 80 in a plan view. In this example, the route calculation unit 32 calculates a traveling line extending in the east-west direction.
  • the control mode of the traveling control unit 24 is switched from the second mode to the first mode immediately after the reference direction TA is calculated. Therefore, immediately after the reference direction TA is calculated, the traveling line is fixed and becomes the automatic steering target line GL. Further, this automatic steering target line GL passes through the second point P2 and the third point P3. Further, this automatic steering target line GL extends in the east-west direction at the northern end of the field.
  • the combine 1 starts the automatic steering running from the third point P3.
  • the combine 1 automatically steers toward the west at the northern end of the field.
  • step S17 of the second determination routine shown in FIG. 7 the control mode of the traveling control unit 24 is switched from the first mode to the second mode.
  • the route calculation unit 32 constantly calculates a traveling line in the direction along the reference direction TA while passing through the position of the satellite positioning module 80 in a plan view. In this example, the route calculation unit 32 calculates a traveling line extending in the east-west direction.
  • the combine 1 passes through the fourth point P4.
  • the operator operates the steering operation tool 41 in a straight-ahead state.
  • the combine 1 goes straight from the fourth point P4.
  • the direction determination unit 31 updates the reference direction TA by determining a new reference direction TA.
  • the direction determination unit 31 discards the already determined reference direction TA. That is, the westward reference direction TA shown in FIG. 8 is discarded at this point. Then, the direction determination unit 31 determines the fourth point P4 as the first registration point Q1. Further, the orientation determination unit 31 determines the fifth point P5 as the second registration point Q2. Then, the direction determination unit 31 calculates the direction of the straight line from the first registration point Q1 to the second registration point Q2, and determines this direction as the reference direction TA. In FIG. 9, the reference directional TA coincides with the south direction.
  • the route calculation unit 32 constantly calculates the traveling line in the direction along the reference direction TA while passing through the position of the satellite positioning module 80 in a plan view. In this example, the route calculation unit 32 calculates a traveling line extending in the north-south direction.
  • the control mode of the traveling control unit 24 is switched from the second mode to the first mode immediately after the reference direction TA is calculated. Therefore, immediately after the reference direction TA is calculated, the traveling line is fixed and becomes the automatic steering target line GL. Further, this automatic steering target line GL will pass through the fourth point P4 and the fifth point P5. Further, this automatic steering target line GL extends in the north-south direction at the western end of the field.
  • the combine 1 starts the automatic steering running from the fifth point P5. As a result, the combine 1 automatically steers toward the south at the western end of the field.
  • the direction determination unit 31 is configured to be able to execute the direction change process.
  • the direction change process is a process of changing the direction of the reference direction TA or the automatic steering target line GL according to the operation of the artificial operation tool 45 when the control mode of the travel control unit 24 is the first mode. ..
  • the directional determination unit 31 changes the direction of the reference directional direction TA or the automatic steering target line GL according to the operation of the artificial operating tool 45 when the control mode of the traveling control unit 24 is the first mode. Executes the direction change process.
  • the combine 1 is traveling northward at the eastern end of the field. Further, the boundary OB at the eastern end of this field is bent at the sixth point P6 shown in FIG. Of the boundary OB of the field, the part on the south side of the sixth point P6 extends in the north-south direction. Further, the portion of the boundary OB of the field on the north side of the sixth point P6 extends in the northeast direction from the sixth point P6.
  • the combine 1 is automatically steering along the first target line GL1 extending in the north-south direction.
  • the first target line GL1 is an automatic steering target line GL.
  • the control mode of the traveling control unit 24 is the first mode. Further, the reference directional TA at this time is assumed to be facing north.
  • the direction determination unit 31 executes the direction change process.
  • the direction of the automatic steering target line GL is changed according to the operation direction of the steering operation tool 41.
  • the direction of the automatic steering target line GL is changed clockwise by a predetermined angle in a plan view.
  • the second target line GL2 which is a new automatic steering target line GL, is calculated.
  • the direction determination unit 31 determines that the operation amount of the steering operation tool 41 is the first operation amount A1 or more and the second operation amount A2 or less. Execute the direction change process.
  • the direction of the automatic steering target line GL is determined counterclockwise in a plan view. Only the angle is changed.
  • the predetermined angle at this time can be set arbitrarily.
  • the predetermined angle is, for example, 0.5 degrees.
  • the directional determination unit 31 does not execute the directional change process.
  • the directional determination unit 31 does not execute the directional change process when the operation amount of the steering operation tool 41 is less than the first operation amount A1.
  • the automatic steering target line GL after the direction is changed by the directional change process may be calculated so as to pass the position of the satellite positioning module 80 in a plan view, or may be determined in advance from the satellite positioning module 80 in front of the aircraft. It may be calculated so as to pass through a position separated by a specified distance, or it may be calculated to pass through the center of the cutting width of the cutting portion H.
  • the second target line GL2, which is the new automatic steering target line GL is calculated, and at the same time, the first target line GL1 which is the old automatic steering target line GL is discarded.
  • the present invention is not limited to this.
  • the new automatic steering target line GL is calculated, the old automatic steering target line GL may not be discarded and may be stored.
  • the combine 1 automatically steers along the second target line GL2. From the state shown in FIG. 10 to the state shown in FIG. 12, the control mode of the traveling control unit 24 continues to be the first mode.
  • the direction of the automatic steering target line GL is changed by the direction change process, but the present invention is not limited to this.
  • the reference directional TA may be changed by the directional change process.
  • the north-facing reference direction TA may be changed to the northeast-facing reference direction TA by the direction change process.
  • the route calculation unit 32 calculates the automatic steering target line GL along the changed reference direction TA, so that a new automatic steering target line GL is calculated.
  • the automatic steering control unit 30 sends a predetermined signal to the notification unit 53 when the direction change process is executed.
  • the notification unit 53 notifies the operator of the execution of the direction change process.
  • this notification may be performed before the execution of the direction change process, at the same time as the execution of the direction change process, or after the execution of the direction change process.
  • the traveling control unit 24 shows in FIG. As such, the response turning control is executed.
  • the response turning control means that when the control mode of the traveling control unit 24 is the first mode, a temporary turning operation in the operation direction of the artificial operating tool 45 is performed in response to the operation of the artificial operating tool 45. It is to control the traveling of the machine body 10.
  • the travel control unit 24 when the control mode of the travel control unit 24 is the first mode, the travel control unit 24 performs a temporary turning operation in the operation direction of the artificial operation tool 45 in response to the operation of the artificial operation tool 45. As described above, it is possible to execute response turning control for controlling the traveling of the aircraft 10.
  • FIG. 14 shows an example of response turning control.
  • the travel control unit 24 controls the travel of the aircraft 10 so that a temporary turning operation to the right side is performed.
  • the combine 1 temporarily turns to the right with respect to the second target line GL2.
  • the travel control unit 24 controls the travel of the aircraft 10 so that the automatic steering travel along the second target line GL2 is performed.
  • this temporary turning motion is a minute turning motion. Therefore, in the example shown in FIG. 14, this temporary turning motion hardly moves to the right with respect to the second target line GL2.
  • the aircraft 10 when the control mode of the travel control unit 24 is the first mode, the aircraft 10 will perform automatic steering travel. Then, when the operator operates the artificial operating tool 45 during the automatic steering running, the directional change process is executed. As a result, the direction of the reference direction TA or the automatic steering target line GL is changed. As a result, the traveling direction in the automatic steering running changes.
  • the communication terminal 4 provided in the combine 1 is configured to be able to display an angle shift amount setting screen on the display 4b.
  • the angle shift amount setting screen is displayed on the display 4b of the communication terminal 4 shown in FIGS. 16 and 17.
  • the communication terminal 4 is configured to accept artificial operation input. More specifically, the display 4b is configured to be touch-operable. The operator can perform an operation input to the communication terminal 4 by performing a touch operation on the display 4b.
  • the angle shift amount display unit 70 As shown in FIG. 16, the angle shift amount display unit 70, the plus button 71, and the minus button 72 are displayed on the angle shift amount setting screen.
  • the angle shift amount display unit 70 displays the angle shift amount.
  • the angle shift amount is the amount of change in the direction of the reference direction TA or the automatic steering target line GL in the direction change process.
  • the angle shift amount setting screen may be provided with one or more display units for displaying various parameters in addition to the angle shift amount display unit 70.
  • a display unit is provided below the angle shift amount display unit 70.
  • the plus button 71 and the minus button 72 are touch-operable buttons. Every time the operator touches the plus button 71, a predetermined signal is sent to the direction determination unit 31. This signal is a signal indicating that the plus button 71 has been touch-operated.
  • the direction determination unit 31 stores the currently set angle shift amount. Then, when the directional determination unit 31 receives a signal indicating that the plus button 71 has been touch-operated, the azimuth determination unit 31 increases the angle shift amount by a predetermined angle. Then, the directional determination unit 31 stores the angle shift amount after the increase.
  • the angle shift amount increases in predetermined angle increments each time the operator touches the plus button 71.
  • a predetermined signal is sent to the direction determination unit 31. This signal is a signal indicating that the minus button 72 has been touch-operated.
  • the azimuth determination unit 31 When the directional determination unit 31 receives a signal indicating that the minus button 72 has been touch-operated, the azimuth determination unit 31 reduces the angle shift amount by a predetermined angle. Then, the directional determination unit 31 stores the angle shift amount after the decrease.
  • the communication terminal 4 is configured to be able to change the amount of change in the direction of the reference direction TA or the automatic steering target line GL in the direction change process in a predetermined angle step by the operation input. Further, the combine 1 is provided with a communication terminal 4 that accepts an artificial operation input and can set the amount of change in the direction of the reference direction TA or the automatic steering target line GL in the direction change process by the operation input.
  • this predetermined angle is 0.1 °. That is, the communication terminal 4 is configured to be able to change the amount of change in the direction of the reference direction TA or the automatic steering target line GL in the direction change process in increments of 0.1 ° by the operation input.
  • the present invention is not limited to this, and the predetermined angle may be any angle other than 0.1 °.
  • the communication terminal 4 is configured not to display the angle shift amount setting screen on the display 4b while the machine body 10 is traveling. Further, when the machine body 10 starts traveling while the angle shift amount setting screen is displayed on the display 4b, the plus button 71 and the minus button 72 are in a state of not accepting the touch operation.
  • the communication terminal 4 is configured not to accept the operation input for setting the change amount of the direction of the reference direction TA or the automatic steering target line GL while the aircraft 10 is traveling.
  • An upper limit may be set for the angle shift amount.
  • the upper limit of the angle shift amount is not particularly limited, but may be, for example, 2.0 °.
  • the communication terminal 4 is configured so that the control mode of the direction determination unit 31 can be switched between the allow mode and the prohibition mode.
  • the permission mode is a mode in which execution of the direction change process is permitted.
  • the prohibition mode is a mode in which the execution of the direction change process is prohibited.
  • control mode of the directional control unit 31 can be switched between a permission mode in which the execution of the directional change process is permitted and a prohibition mode in which the execution of the directional change process is prohibited.
  • the communication terminal 4 switches the control mode of the directional determination unit 31 from the permit mode to the prohibit mode in response to the operation input for reducing the angle shift amount. More specifically, when the operator touches the minus button 72 while the angle shift amount is set to 0.1 °, the communication terminal 4 prohibits the control mode of the direction determination unit 31 from the permission mode. Switch to mode. When the control mode of the directional determination unit 31 is the prohibition mode, “None” is displayed on the angle shift amount display unit 70 as shown in FIG.
  • the communication terminal 4 switches the control mode of the directional determination unit 31 from the prohibition mode to the permission mode in response to the operation input for increasing the angle shift amount. More specifically, when the operator touches the plus button 71 while the control mode of the directional determination unit 31 is the prohibited mode, the communication terminal 4 changes the control mode of the directional determination unit 31 from the prohibited mode to the permitted mode. Switch to.
  • the control mode of the azimuth determination unit 31 is the permission mode, as shown in FIG. 16, the angle shift amount display unit 70 displays the currently set angle shift amount.
  • the communication terminal 4 is configured so that the control mode of the direction determination unit 31 can be switched by the operation input.
  • the automatic steering control unit 30 determines whether or not to execute the directional change process according to the third determination routine shown in FIG. 18 when the control mode of the travel control unit 24 is the first mode. decide.
  • This third determination routine is stored in the automatic steering control unit 30.
  • the automatic steering control unit 30 repeatedly executes this third determination routine at regular time intervals when the control mode of the travel control unit 24 is the first mode.
  • step S21 it is determined whether or not the steering operation tool 41 has been operated based on the signal indicating the operation state of the steering operation tool 41 sent from the steering operation tool 41 to the automatic steering control unit 30. If the steering operating tool 41 is not operated, it is determined as No in step S21, and the process ends once. Further, when the steering operation tool 41 is operated, it is determined as Yes in step S21, and the process proceeds to step S22.
  • step S22 it is determined whether or not the operation amount of the steering operation tool 41 is smaller than the first operation amount A1.
  • the operation amount of the steering operation tool 41 is smaller than the first operation amount A1, it is determined as Yes in step S22, and the process is temporarily terminated. Further, when the operation amount of the steering operation tool 41 is equal to or more than the first operation amount A1, it is determined as No in step S22, and the process proceeds to step S23.
  • the present invention is not limited to this, and when the operation amount of the steering operation tool 41 is smaller than the first operation amount A1, the signal by the operation of the steering operation tool 41 is sent to the traveling control unit 24 and the automatic steering control unit 30. It may be configured not to be sent.
  • the combine 1 may be configured to be in the same state as when the steering operation tool 41 is not operated when the operation amount of the steering operation tool 41 is smaller than the first operation amount A1. In this case, if step S22 is not provided and the operation amount of the steering operation tool 41 is smaller than the first operation amount A1 in step S21, it is determined as No, and the operation amount of the steering operation tool 41 is the first. When one operation amount is A1 or more, the configuration may be determined as Yes.
  • step S23 it is determined whether or not the operation amount of the steering operation tool 41 is equal to or less than the second operation amount A2.
  • the operation amount of the steering operation tool 41 is larger than the second operation amount A2, it is determined as No in step S23, and the process is temporarily terminated. Further, when the operation amount of the steering operation tool 41 is equal to or less than the second operation amount A2, it is determined as Yes in step S23, and the process proceeds to step S24.
  • step S23 Yes is determined in step S17 of the above-mentioned second determination routine (see FIG. 7).
  • the mode switching unit 33 switches the control mode of the traveling control unit 24 from the first mode to the second mode.
  • step S24 it is determined whether or not the control mode of the direction determination unit 31 is the permission mode.
  • the control mode of the direction determination unit 31 is the prohibition mode, No is determined in step S24, and the process ends once.
  • the directional determination unit 31 is oriented even if the operation amount of the steering operation tool 41 is the first operation amount A1 or more and the second operation amount A2 or less.
  • the control mode of the determination unit 31 is the prohibition mode, the direction change process is not executed.
  • the mode switching unit 33 may be configured to switch the control mode of the traveling control unit 24 from the first mode to the second mode.
  • control mode of the direction determination unit 31 is the permission mode, it is determined as Yes in step S24, and the process proceeds to step S25.
  • step S25 the above-mentioned response turning control is executed.
  • the response turning control "when a new automatic steering target line GL is calculated by the direction change process, if the direction of the aircraft 10 is already along the automatic steering target line GL, the vehicle travels. As shown in FIG. 14, the control unit 24 executes the response turning control. ”However, this is merely an example, and the present invention is not limited thereto.
  • the response turning control may be performed before the execution of the direction change process, or may be performed at the same time as the execution of the direction change process.
  • the response turning control may be executed regardless of whether or not the direction of the aircraft 10 is along the automatic steering target line GL.
  • step S25 the process proceeds to step S26.
  • step S26 the above-mentioned direction change process is executed. After that, the process ends once.
  • the traveling device 11 may be a wheel type or a semi-crawler type.
  • the artificial operating tool 45 may be a member different from the steering operating tool 41.
  • the steering wheel 51 may be provided, and the steering wheel 51 may be provided with left and right artificial operating tools 45.
  • the artificial operating tool 45 is a button.
  • the steering wheel 51 corresponds to the "steering operation tool" according to the present invention.
  • the operating amount of the steering wheel 51 in this case is the rotation angle of the steering wheel 51.
  • the travel control unit 24 the own vehicle orientation calculation unit 25
  • the automatic steering control unit 30 the orientation determination unit 31, the route calculation unit 32, the mode switching unit 33, and the straight-ahead determination unit 34.
  • a part or all of them may be provided outside the combine 1, and may be provided, for example, in a management facility or a management server provided outside the combine 1.
  • the directional control unit 31 may execute the directional change process when the control mode of the travel control unit 24 is the first mode and the operation amount of the steering operation tool 41 is larger than the second operation amount A2. .. Further, the directional control unit 31 may execute the directional change process when the control mode of the travel control unit 24 is the first mode and the operation amount of the steering operation tool 41 is less than the first operation amount A1. ..
  • the steering operation tool 41 and the cutting elevating operation tool 44 may be the same operation tool, and may be, for example, an operation lever.
  • the above-mentioned start condition may include that the calculated state of the aircraft orientation is a predetermined high-precision state. More specifically, the start condition may include a high-precision directional calculation state.
  • the above-mentioned start condition states that "the aircraft orientation is within a predetermined angle with respect to the reference direction TA, or the aircraft orientation is within a predetermined angle with respect to the orientation obtained by adding 180 ° to the reference direction TA. May be included.
  • the straight-ahead determination unit 34 is configured to determine whether or not the aircraft 10 has traveled straight over a predetermined distance D1 and also to determine whether or not the aircraft 10 has traveled straight over a predetermined time. Is also good.
  • the first registration point Q1 and the second registration point Q2 can be manually determined, and the function of determining the reference direction TA by the process described in the above embodiment can be switched between valid and invalid. It may be configured in.
  • the combine 1 is provided with a first registration button (not shown) and a second registration button (not shown), and the position coordinates of the combine 1 at the time when the first registration button is operated are the first registration points Q1.
  • the position coordinates of the combine 1 at the time when the second registration button is operated may be determined as the second registration point Q2.
  • the direction determination unit 31 may determine the direction of the straight line from the first registration point Q1 to the second registration point Q2 as the reference direction TA, as in the above embodiment.
  • the mode switching unit 33 may be configured so that the control mode of the traveling control unit 24 cannot be automatically switched from the second mode to the first mode.
  • the reference direction TA is determined when the aircraft 10 is determined to have traveled straight for a predetermined distance D1 or a predetermined time by the straight-ahead determination unit 34, and the second mode is switched to the first mode. It may not have a configuration.
  • the mode switching unit 33 may be configured so that the control mode of the traveling control unit 24 cannot be automatically switched from the first mode to the second mode.
  • the mode switching unit 33 is a travel control unit regardless of whether or not the start condition is satisfied.
  • the 24 control modes may be configured to switch to the first mode.
  • It may be configured as an agricultural work machine control program that realizes the function of each member in the above embodiment on a computer. Further, it may be configured as a recording medium in which an agricultural work machine control program that realizes the functions of each member in the above embodiment on a computer is recorded.
  • the present invention can be used not only for ordinary combine harvesters but also for various agricultural work machines such as self-removing combine harvesters, tractors, rice transplanters, corn harvesters, potato harvesters, and carrot harvesters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Environmental Sciences (AREA)
  • Soil Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Transportation (AREA)
  • Guiding Agricultural Machines (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)

Abstract

This agricultural work machine comprises: a steering operation tool 41 for steering; a traveling control unit that controls traveling of an airframe having a traveling device; a mode switching unit that switches a control mode of the traveling control unit between a first mode and a second mode; and an orientation determination unit that determines a reference orientation for automatic steering. When the control mode of the traveling control unit is the first mode, the traveling control unit controls the traveling of the airframe on the basis of the reference orientation or a traveling path GL calculated on the basis of the reference orientation. When the control mode of the traveling control unit is the second mode, the airframe travels according to an operation of the steering operation tool 41. When the control mode of the traveling control unit is the first mode, the orientation determination unit executes an orientation change process that is a process of changing the reference orientation or a direction of the traveling path GL according to an operation of an artificial operation tool 45.

Description

農作業機、農作業機制御プログラム、農作業機制御プログラムを記録した記録媒体A recording medium that records agricultural work machines, agricultural work machine control programs, and agricultural work machine control programs.
 本発明は、操舵のための操舵操作具を備える農作業機に関する。 The present invention relates to an agricultural work machine provided with a steering operation tool for steering.
 上記のような農作業機として、例えば、特許文献1に記載のものが既に知られている。この農作業機(特許文献1では「田植機」)は、第1モード(特許文献1では「自動直進モード」)での走行、及び、第2モード(特許文献1では「手動モード」)での走行を行うことができるように構成されている。 As the above-mentioned agricultural work machine, for example, the one described in Patent Document 1 is already known. This agricultural work machine (“rice transplanter” in Patent Document 1) runs in the first mode (“automatic straight-ahead mode” in Patent Document 1) and in the second mode (“manual mode” in Patent Document 1). It is configured to be able to run.
 そして、第1モードでの走行において、この農作業機は、自動操舵走行を行う。また、第2モードでの走行において、この農作業機は、手動操舵によって走行する。 Then, in the running in the first mode, this agricultural work machine performs automatic steering running. Further, in the traveling in the second mode, the agricultural work machine travels by manual steering.
特開2017-136015号公報Japanese Unexamined Patent Publication No. 2017-136015
 特許文献1に記載の農作業機は、決定された基準方位に基づいて、走行経路を算出する。そして、この走行経路に沿って自動操舵走行を行う。 The agricultural work machine described in Patent Document 1 calculates a traveling route based on a determined reference direction. Then, automatic steering is performed along this travel path.
 ここで、自動操舵走行に先立って、基準方位の決定のために、オペレータは、第一登録ボタンと、第二登録ボタンと、を操作することによって、2つの地点を登録する必要がある。これら2つの地点の位置に基づいて、基準方位が決定される。そして、この基準方位に基づいて、走行経路が算出される。 Here, prior to the automatic steering running, the operator needs to register two points by operating the first registration button and the second registration button in order to determine the reference direction. The reference direction is determined based on the positions of these two points. Then, the traveling route is calculated based on this reference direction.
 走行経路が算出された後、自動操舵走行での進行方向を変更するためには、一旦、手動操舵走行に切り替え、2つの地点を再度登録し、走行経路を改めて算出することが必要となる。即ち、特許文献1に記載の農作業機においては、自動操舵走行中に、自動操舵走行での進行方向を変更することはできない。 After the travel route is calculated, in order to change the direction of travel in automatic steering travel, it is necessary to temporarily switch to manual steering travel, register the two points again, and calculate the travel route again. That is, in the agricultural work machine described in Patent Document 1, the traveling direction in the automatic steering running cannot be changed during the automatic steering running.
 本発明の目的は、自動操舵走行中に、自動操舵走行での進行方向を変更可能な農作業機を提供することである。 An object of the present invention is to provide an agricultural work machine capable of changing the traveling direction in the automatic steering running during the automatic steering running.
 本発明の特徴は、操舵のための操舵操作具と、走行装置を有する機体の走行を制御する走行制御部と、前記走行制御部の制御モードを第1モードと第2モードとの間で切り替えるモード切替部と、自動操舵のための基準方位を決定する方位決定部と、を備え、前記走行制御部の制御モードが前記第1モードであるとき、前記走行制御部は、前記基準方位、または、前記基準方位に基づいて算出された走行経路に基づいて前記機体の走行を制御し、前記走行制御部の制御モードが前記第2モードであるとき、前記機体は、前記操舵操作具の操作に応じて走行し、前記方位決定部は、前記走行制御部の制御モードが前記第1モードであるとき、人為操作具の操作に応じて、前記基準方位、または、前記走行経路の方向を変更する処理である方位変更処理を実行することにある。 The feature of the present invention is that the steering operation tool for steering, the traveling control unit that controls the traveling of the aircraft having the traveling device, and the control mode of the traveling control unit are switched between the first mode and the second mode. A mode switching unit and an orientation determining unit for determining a reference direction for automatic steering are provided, and when the control mode of the traveling control unit is the first mode, the traveling control unit has the reference orientation or the reference direction. When the traveling of the aircraft is controlled based on the traveling route calculated based on the reference direction and the control mode of the traveling control unit is the second mode, the aircraft operates the steering operation tool. When the control mode of the travel control unit is the first mode, the direction determination unit changes the reference direction or the direction of the travel route according to the operation of the artificial operating tool. It is to execute the direction change process which is a process.
 本発明であれば、走行制御部の制御モードが第1モードであるとき、機体は自動操舵走行を行うこととなる。そして、自動操舵走行中に、オペレータが人為操作具を操作すると、方位変更処理が実行される。これにより、基準方位、または、走行経路の方向が変更される。その結果、自動操舵走行での進行方向が変化することとなる。 According to the present invention, when the control mode of the travel control unit is the first mode, the aircraft will perform automatic steering travel. Then, when the operator operates the artificial operating tool during the automatic steering running, the directional change process is executed. As a result, the reference direction or the direction of the traveling route is changed. As a result, the traveling direction in the automatic steering running changes.
 従って、本発明であれば、自動操舵走行中に、自動操舵走行での進行方向を変更可能な農作業機を実現できる。 Therefore, according to the present invention, it is possible to realize an agricultural work machine capable of changing the traveling direction in the automatic steering running during the automatic steering running.
 さらに、本発明において、前記人為操作具は、前記操舵操作具であると好適である。 Further, in the present invention, it is preferable that the artificial operating tool is the steering operating tool.
 この構成によれば、第1モードと第2モードとの何れにおいても、操舵操作具の操作に応じて機体の進行方向を変更することができる。即ち、自動操舵走行と手動操舵走行との何れにおいても、操舵操作具の操作に応じて機体の進行方向を変更することができる。 According to this configuration, in both the first mode and the second mode, the traveling direction of the aircraft can be changed according to the operation of the steering operation tool. That is, in both the automatic steering running and the manual steering running, the traveling direction of the aircraft can be changed according to the operation of the steering operating tool.
 これにより、人為操作具が操舵操作具とは別に設けられる構成に比べて、機体の進行方向の変更のための操作がシンプルになる。その結果、オペレータの操作負担を軽減することが可能となる。 This makes the operation for changing the traveling direction of the aircraft simpler than the configuration in which the artificial operation tool is provided separately from the steering operation tool. As a result, it is possible to reduce the operational burden on the operator.
 さらに、本発明において、前記操舵操作具の可動範囲は、第1操作量よりも大きな操作量である第2操作量よりも大きく前記操舵操作具を操作可能であるように設定されており、前記方位決定部は、前記走行制御部の制御モードが前記第1モードであるとき、前記操舵操作具の操作量が前記第1操作量未満である場合、前記方位変更処理を実行せず、前記方位決定部は、前記走行制御部の制御モードが前記第1モードであるとき、前記操舵操作具の操作量が前記第1操作量以上且つ前記第2操作量以下である場合、前記方位変更処理を実行し、前記モード切替部は、前記走行制御部の制御モードが前記第1モードであるとき、前記操舵操作具の操作量が前記第2操作量より大きい場合、前記走行制御部の制御モードを前記第2モードに切り替えると好適である。 Further, in the present invention, the movable range of the steering operating tool is set so that the steering operating tool can be operated larger than the second operating amount, which is a larger operating amount than the first operating amount. When the control mode of the traveling control unit is the first mode, the directional determination unit does not execute the directional change process and the directional direction when the operation amount of the steering operating tool is less than the first operation amount. When the control mode of the traveling control unit is the first mode, the determination unit performs the direction change process when the operation amount of the steering operating tool is equal to or more than the first operation amount and equal to or less than the second operation amount. When the control mode of the travel control unit is the first mode and the operation amount of the steering operating tool is larger than the second operation amount, the mode switching unit sets the control mode of the travel control unit. It is preferable to switch to the second mode.
 この構成によれば、操舵操作具の可動範囲のうち、操作量が第1操作量未満の範囲は不感帯となる。これにより、オペレータが操舵操作具を意図せず操作しても、操作量が比較的小さい場合は、機体の制御や進行方向に影響が生じることを回避できる。 According to this configuration, in the movable range of the steering operating tool, the range in which the operating amount is less than the first operating amount is a dead zone. As a result, even if the operator unintentionally operates the steering operation tool, if the operation amount is relatively small, it is possible to avoid affecting the control of the aircraft and the traveling direction.
 しかも、この構成によれば、操舵操作具を操作することにより、方位変更処理を実行させることが可能である。また、操舵操作具を操作することにより、第1モードから第2モードへの切り替えを行うことも可能である。 Moreover, according to this configuration, it is possible to execute the directional change process by operating the steering operation tool. It is also possible to switch from the first mode to the second mode by operating the steering control tool.
 即ち、方位変更処理の実行、及び、第1モードから第2モードへの切り替えを、何れも操舵操作具の操作により行うことができる。これにより、方位変更処理の実行、及び、第1モードから第2モードへの切り替えのために、それぞれ異なる操作具を操作する必要のある構成に比べて、操作性が良好となる。 That is, both the execution of the directional change process and the switching from the first mode to the second mode can be performed by operating the steering operation tool. As a result, the operability is improved as compared with the configuration in which different operating tools need to be operated for executing the direction changing process and switching from the first mode to the second mode.
 さらに、本発明において、前記走行制御部は、前記走行制御部の制御モードが前記第1モードであるとき、前記人為操作具の操作に応じて、前記人為操作具の操作方向への一時的な旋回動作が行われるように前記機体の走行を制御する応答旋回制御を実行可能であると好適である。 Further, in the present invention, when the control mode of the travel control unit is the first mode, the travel control unit temporarily operates the artificial operation tool in the operation direction in response to the operation of the artificial operation tool. It is preferable to be able to execute response turning control that controls the traveling of the aircraft so that the turning operation is performed.
 方位変更処理が実行された時点で、機体の向きが、変更後の基準方位または変更後の走行経路の方向に既に沿っている場合、機体の向きを変更する必要がないため、機体がそのまま直進することとなる。この場合、人為操作具の操作の前後で機体の向きが変化しないため、オペレータは、方位変更処理が実行されたか否かを判別することができない。 If the direction of the aircraft is already along the changed reference direction or the direction of the changed travel route when the direction change process is executed, it is not necessary to change the direction of the aircraft, so the aircraft goes straight ahead. Will be done. In this case, since the orientation of the aircraft does not change before and after the operation of the artificial operation tool, the operator cannot determine whether or not the directional change process has been executed.
 ここで、上記の構成によれば、方位変更処理が実行された時点で、機体の向きが、変更後の基準方位または変更後の走行経路の方向に既に沿っている場合であっても、基準方位の変更された方向、または、走行経路の方向の変更された方向へ一時的な旋回動作が行われる構成を実現できる。これにより、オペレータは、人為操作具の操作に応じて方位変更処理が実行されたことを確実に認識することができる。 Here, according to the above configuration, even if the direction of the aircraft is already along the changed reference direction or the direction of the changed travel route at the time when the direction change process is executed, the reference It is possible to realize a configuration in which a temporary turning operation is performed in the direction in which the direction is changed or in the direction in which the direction of the traveling path is changed. As a result, the operator can surely recognize that the directional change process has been executed in response to the operation of the artificial operating tool.
 さらに、本発明において、前記走行制御部の制御モードが前記第2モードであるとき、前記機体が所定距離または所定時間に亘って直進したか否かを判定する直進判定部を備え、前記方位決定部は、前記直進判定部により前記機体が前記所定距離または前記所定時間に亘って直進したと判定された場合、前記所定距離または前記所定時間に亘って行われた直進の方向に基づいて前記基準方位を決定すると好適である。 Further, in the present invention, when the control mode of the traveling control unit is the second mode, a straight-ahead determination unit for determining whether or not the aircraft has traveled straight for a predetermined distance or a predetermined time is provided, and the direction determination is determined. When it is determined by the straight-ahead determination unit that the aircraft has traveled straight over the predetermined distance or the predetermined time, the unit is based on the direction of the straight-ahead performed over the predetermined distance or the predetermined time. It is preferable to determine the orientation.
 この構成によれば、オペレータが、手動操舵によって機体を所定距離または所定時間に亘って直進させることにより、所定距離または所定時間に亘って行われた直進の方向に基づいて、基準方位が自動的に決定されることとなる。 According to this configuration, the operator causes the aircraft to go straight for a predetermined distance or a predetermined time by manual steering, so that the reference direction is automatically set based on the direction of the straight movement for a predetermined distance or a predetermined time. Will be decided.
 即ち、この構成によれば、オペレータは、基準方位を決定するために、専用のボタン等を操作する必要がない。これにより、基準方位の決定のために要する労力を軽減可能な農作業機を実現できる。 That is, according to this configuration, the operator does not need to operate a dedicated button or the like in order to determine the reference direction. As a result, it is possible to realize an agricultural work machine that can reduce the labor required for determining the reference direction.
 さらに、本発明において、人為的な操作入力を受け付けると共に、前記方位変更処理における前記基準方位または前記走行経路の方向の変更量を、前記操作入力によって設定可能な設定部を備えると好適である。 Further, in the present invention, it is preferable to include a setting unit that accepts an artificial operation input and can set the amount of change in the reference direction or the direction of the traveling route in the direction change process by the operation input.
 この構成によれば、オペレータは、人為的な操作入力を行うことにより、方位変更処理における基準方位または走行経路の方向の変更量を設定できる。これにより、方位変更処理における基準方位または走行経路の方向の変更量をオペレータが任意に設定可能な農作業機を実現できる。 According to this configuration, the operator can set the amount of change in the reference direction or the direction of the traveling route in the direction change process by performing an artificial operation input. This makes it possible to realize an agricultural work machine in which the operator can arbitrarily set the amount of change in the reference direction or the direction of the traveling route in the direction change process.
 さらに、本発明において、前記方位決定部の制御モードは、前記方位変更処理の実行が許可される許可モードと、前記方位変更処理の実行が禁止される禁止モードと、の間で切り替え可能であり、前記設定部は、前記操作入力によって前記方位決定部の制御モードを切り替え可能に構成されていると好適である。 Further, in the present invention, the control mode of the direction changing unit can be switched between a permission mode in which the execution of the direction change process is permitted and a prohibition mode in which the execution of the direction change process is prohibited. It is preferable that the setting unit is configured so that the control mode of the direction determination unit can be switched by the operation input.
 この構成によれば、方位変更処理が不要である場合に、オペレータは、人為的な操作入力を行うことにより、方位決定部の制御モードを禁止モードに切り替えることができる。これにより、方位変更処理が不要である場合に、人為操作具の操作に応じて方位変更処理が実行されてしまう事態を回避しやすい。 According to this configuration, when the direction change process is unnecessary, the operator can switch the control mode of the direction determination unit to the prohibition mode by performing an artificial operation input. This makes it easy to avoid a situation in which the directional change process is executed in response to the operation of the artificial operating tool when the directional change process is unnecessary.
 さらに、本発明において、前記設定部は、前記操作入力によって、前記変更量を所定角度刻みで変更可能に構成されていると好適である。 Further, in the present invention, it is preferable that the setting unit is configured so that the change amount can be changed in predetermined angle increments by the operation input.
 この構成によれば、変更量が無段階に変更可能である構成に比べて、設定部における操作入力を受け付ける部分の構成を簡素化しやすい。これにより、設定部における操作入力を受け付ける部分の構成が複雑である場合に比べて、オペレータが、設定部への操作入力の方法を理解しやすい。従って、この構成によれば、オペレータが設定部への操作入力の方法を理解しやすい農作業機を実現できる。 According to this configuration, it is easier to simplify the configuration of the part that accepts the operation input in the setting unit, as compared with the configuration in which the change amount can be changed steplessly. This makes it easier for the operator to understand the method of inputting an operation to the setting unit, as compared with the case where the configuration of the portion accepting the operation input in the setting unit is complicated. Therefore, according to this configuration, it is possible to realize a farm work machine in which the operator can easily understand the method of inputting an operation to the setting unit.
 さらに、本発明において、前記設定部は、前記機体の走行中には、前記変更量を設定するための前記操作入力を受け付けないように構成されていると好適である。 Further, in the present invention, it is preferable that the setting unit is configured not to accept the operation input for setting the change amount while the machine is traveling.
 この構成によれば、オペレータは、変更量を設定する際、機体の走行を停止させた状態で、設定部への操作入力を行うこととなる。これにより、オペレータは、機体の走行中に比べて機体の振動が低減された状態で、設定部への操作入力を行うこととなる。その結果、機体の振動が大きい状態で操作入力を行う場合に比べて、オペレータが操作入力を精度良く行いやすい。 According to this configuration, when setting the change amount, the operator inputs the operation to the setting unit with the running of the aircraft stopped. As a result, the operator will input the operation to the setting unit in a state where the vibration of the machine body is reduced as compared with the case where the machine body is running. As a result, it is easier for the operator to perform the operation input with high accuracy as compared with the case where the operation input is performed in a state where the vibration of the machine is large.
 従って、この構成によれば、オペレータが設定部への操作入力を精度良く行いやすい農作業機を実現できる。 Therefore, according to this configuration, it is possible to realize an agricultural work machine that makes it easy for the operator to accurately input operations to the setting unit.
 また、本発明の別の特徴は、操舵のための操舵操作具と、走行装置を有する機体と、を備える農作業機を制御する農作業機制御プログラムであって、前記機体の走行を制御する走行制御機能と、前記走行制御機能の制御モードを第1モードと第2モードとの間で切り替えるモード切替機能と、自動操舵のための基準方位を決定する方位決定機能と、をコンピュータに実現させ、前記走行制御機能の制御モードが前記第1モードであるとき、前記走行制御機能は、前記基準方位、または、前記基準方位に基づいて算出された走行経路に基づいて前記機体の走行を制御し、前記走行制御機能の制御モードが前記第2モードであるとき、前記機体は、前記操舵操作具の操作に応じて走行し、前記方位決定機能は、前記走行制御機能の制御モードが前記第1モードであるとき、人為操作具の操作に応じて、前記基準方位、または、前記走行経路の方向を変更する処理である方位変更処理を実行することにある。 Further, another feature of the present invention is a running control program for controlling a farming machine including a steering operating tool for steering and a machine having a traveling device, which controls traveling of the machine. The computer is realized with a function, a mode switching function for switching the control mode of the traveling control function between the first mode and the second mode, and a direction determining function for determining a reference direction for automatic steering. When the control mode of the travel control function is the first mode, the travel control function controls the travel of the aircraft based on the reference direction or the travel route calculated based on the reference direction, and the operation is described. When the control mode of the travel control function is the second mode, the aircraft travels in response to the operation of the steering operating tool, and in the directional determination function, the control mode of the travel control function is the first mode. At one point, the directional change process, which is a process of changing the reference direction or the direction of the traveling route, is executed according to the operation of the artificial operation tool.
 また、本発明の別の特徴は、操舵のための操舵操作具と、走行装置を有する機体と、を備える農作業機を制御する農作業機制御プログラムを記録した記録媒体であって、前記機体の走行を制御する走行制御機能と、前記走行制御機能の制御モードを第1モードと第2モードとの間で切り替えるモード切替機能と、自動操舵のための基準方位を決定する方位決定機能と、をコンピュータに実現させ、前記走行制御機能の制御モードが前記第1モードであるとき、前記走行制御機能は、前記基準方位、または、前記基準方位に基づいて算出された走行経路に基づいて前記機体の走行を制御し、前記走行制御機能の制御モードが前記第2モードであるとき、前記機体は、前記操舵操作具の操作に応じて走行し、前記方位決定機能は、前記走行制御機能の制御モードが前記第1モードであるとき、人為操作具の操作に応じて、前記基準方位、または、前記走行経路の方向を変更する処理である方位変更処理を実行する農作業機制御プログラムを記録していることにある。 Further, another feature of the present invention is a recording medium recording a farm work machine control program for controlling a farm work machine including a steering operation tool for steering and a machine having a traveling device, and the traveling of the machine. A computer that controls the driving control function, the mode switching function that switches the control mode of the driving control function between the first mode and the second mode, and the directional determination function that determines the reference direction for automatic steering. When the control mode of the travel control function is the first mode, the travel control function performs the travel of the aircraft based on the reference direction or the travel route calculated based on the reference direction. When the control mode of the travel control function is the second mode, the aircraft travels in response to the operation of the steering operating tool, and the directional determination function is performed by the control mode of the travel control function. In the first mode, the agricultural work machine control program that executes the direction change process, which is the process of changing the reference direction or the direction of the travel route, is recorded according to the operation of the artificial operation tool. It is in.
コンバインの左側面図である。It is a left side view of the combine. 制御部に関する構成を示すブロック図である。It is a block diagram which shows the structure about the control part. 主変速レバーの構成を示す図である。It is a figure which shows the structure of the main shift lever. 刈取脱穀レバーの構成を示す図である。It is a figure which shows the structure of the cutting threshing lever. 操舵操作具の構成を示す図である。It is a figure which shows the structure of the steering operation tool. 第1判定ルーチンのフローチャートである。It is a flowchart of the 1st determination routine. 第2判定ルーチンのフローチャートである。It is a flowchart of the 2nd determination routine. 基準方位が自動的に決定される場合の例を示す図である。It is a figure which shows the example of the case where a reference direction is automatically determined. 基準方位が自動的に決定される場合の例を示す図である。It is a figure which shows the example of the case where a reference direction is automatically determined. 方位変更処理が実行される前の状態を示す図である。It is a figure which shows the state before the direction change process is executed. 方位変更処理を説明する図である。It is a figure explaining the direction change process. 方位変更処理が実行された後の状態を示す図である。It is a figure which shows the state after the direction change process is executed. 応答旋回制御が実行される場合の例を示す図である。It is a figure which shows the example of the case where the response turning control is executed. 応答旋回制御が実行される場合の例を示す図である。It is a figure which shows the example of the case where the response turning control is executed. その他の実施形態(2)における人為操作具の構成を示す図である。It is a figure which shows the structure of the artificial operation tool in another embodiment (2). 角度シフト量設定画面等を示す図である。It is a figure which shows the angle shift amount setting screen and the like. 角度シフト量設定画面等を示す図である。It is a figure which shows the angle shift amount setting screen and the like. 第3判定ルーチンのフローチャートである。It is a flowchart of the 3rd determination routine.
 本発明を実施するための形態について、図面に基づき説明する。尚、以下の説明においては、特に断りがない限り、図1、図3、図4に示す矢印Fの方向を「前」、矢印Bの方向を「後」とする。また、図5に示す矢印Lの方向を「左」、矢印Rの方向を「右」とする。また、図1に示す矢印Uの方向を「上」、矢印Dの方向を「下」とする。 The embodiment for carrying out the present invention will be described with reference to the drawings. In the following description, unless otherwise specified, the direction of the arrow F shown in FIGS. 1, 3 and 4 is referred to as “front” and the direction of arrow B is referred to as “rear”. Further, the direction of the arrow L shown in FIG. 5 is "left", and the direction of the arrow R is "right". Further, the direction of the arrow U shown in FIG. 1 is "up", and the direction of the arrow D is "down".
 また、以下の説明においては、特に断りがない限り、図8~図14に示す矢印Nの方向を「北」、矢印Sの方向を「南」、矢印Eの方向を「東」、矢印Wの方向を「西」とする。 Further, in the following description, unless otherwise specified, the direction of arrow N shown in FIGS. 8 to 14 is “north”, the direction of arrow S is “south”, the direction of arrow E is “east”, and arrow W. The direction of is "west".
 〔コンバインの全体構成〕
 図1に示すように、普通型のコンバイン1(本発明に係る「農作業機」に相当)は、機体10、刈取部H、脱穀装置13、穀粒タンク14、搬送部16、穀粒排出装置18、衛星測位モジュール80を備えている。また、機体10は、クローラ式の走行装置11、運転部12、エンジンEGを有している。
[Overall composition of combine harvester]
As shown in FIG. 1, the ordinary combine 1 (corresponding to the "agricultural work machine" according to the present invention) includes a machine body 10, a harvesting section H, a threshing device 13, a grain tank 14, a transport section 16, and a grain discharging device. 18. It is equipped with a satellite positioning module 80. Further, the machine body 10 has a crawler type traveling device 11, a driving unit 12, and an engine EG.
 走行装置11は、コンバイン1における下部に備えられている。また、走行装置11は、エンジンEGからの動力によって駆動する。そして、コンバイン1は、走行装置11によって自走可能である。 The traveling device 11 is provided at the lower part of the combine 1. Further, the traveling device 11 is driven by the power from the engine EG. Then, the combine 1 can self-propell by the traveling device 11.
 また、運転部12、脱穀装置13、穀粒タンク14は、走行装置11の上側に備えられている。運転部12には、コンバイン1の作業を監視するオペレータが搭乗可能である。 Further, the operation unit 12, the threshing device 13, and the grain tank 14 are provided on the upper side of the traveling device 11. An operator who monitors the work of the combine 1 can be boarded on the driving unit 12.
 穀粒排出装置18は、穀粒タンク14の上側に設けられている。また、衛星測位モジュール80は、運転部12の上面に取り付けられている。 The grain discharge device 18 is provided on the upper side of the grain tank 14. Further, the satellite positioning module 80 is attached to the upper surface of the operating unit 12.
 刈取部Hは、コンバイン1における前部に備えられている。そして、搬送部16は、刈取部Hの後側に設けられている。また、刈取部Hは、刈刃15及びリール17を含んでいる。 The cutting section H is provided in the front portion of the combine 1. The transport unit 16 is provided on the rear side of the cutting unit H. Further, the cutting unit H includes a cutting blade 15 and a reel 17.
 刈刃15は、圃場の植立穀稈を刈り取る。また、リール17は、機体左右方向に沿うリール軸芯17b周りに回転駆動しながら収穫対象の植立穀稈を掻き込む。刈刃15により刈り取られた刈取穀稈は、搬送部16へ送られる。 The cutting blade 15 cuts the planted culm in the field. Further, the reel 17 is driven to rotate around the reel shaft core 17b along the left-right direction of the machine body to scrape the planted grain culm to be harvested. The cut grain culm cut by the cutting blade 15 is sent to the transport unit 16.
 この構成により、刈取部Hは、圃場の穀物を収穫する。そして、コンバイン1は、刈刃15によって圃場の植立穀稈を刈り取りながら走行装置11によって走行する刈取走行が可能である。 With this configuration, the harvesting unit H harvests the grain in the field. Then, the combine 1 can be cut and run by the running device 11 while cutting the planted culm in the field by the cutting blade 15.
 刈取部Hにより収穫された刈取穀稈は、搬送部16によって機体後方へ搬送される。これにより、刈取穀稈は脱穀装置13へ搬送される。 The harvested grain culm harvested by the harvesting unit H is transported to the rear of the machine by the transport unit 16. As a result, the harvested grain culm is transported to the threshing device 13.
 脱穀装置13において、刈取穀稈は脱穀処理される。脱穀処理により得られた穀粒は、穀粒タンク14に貯留される。穀粒タンク14に貯留された穀粒は、必要に応じて、穀粒排出装置18によって機外に排出される。 In the threshing device 13, the harvested grain culm is threshed. The grains obtained by the threshing treatment are stored in the grain tank 14. The grains stored in the grain tank 14 are discharged to the outside of the machine by the grain discharging device 18 as needed.
 即ち、コンバイン1は、刈取部Hによって収穫された穀物を貯留する穀粒タンク14を備えている。 That is, the combine 1 is provided with a grain tank 14 for storing the grains harvested by the harvesting unit H.
 また、図1に示すように、運転部12には、通信端末4(本発明に係る「設定部」に相当)が配置されている。通信端末4は、種々の情報を表示可能に構成されている。本実施形態において、通信端末4は、運転部12に固定されている。しかしながら、本発明はこれに限定されず、通信端末4は、運転部12に対して着脱可能に構成されていても良いし、通信端末4は、コンバイン1の機外に位置していても良い。 Further, as shown in FIG. 1, a communication terminal 4 (corresponding to the "setting unit" according to the present invention) is arranged in the operation unit 12. The communication terminal 4 is configured to be able to display various information. In the present embodiment, the communication terminal 4 is fixed to the driving unit 12. However, the present invention is not limited to this, and the communication terminal 4 may be configured to be detachable from the driving unit 12, and the communication terminal 4 may be located outside the combine 1. ..
 ここで、コンバイン1は、手動操舵走行及び自動操舵走行を行うことができるように構成されている。手動操舵走行とは、オペレータの手動操舵によって走行を行うことを意味する。また、自動操舵走行とは、前進走行を自動で行うことを意味する。特に、本実施形態において、自動操舵走行とは、αターンやUターン等の大きな方向転換のない前進走行を自動で行うことを意味する。 Here, the combine 1 is configured to be able to perform manual steering running and automatic steering running. Manual steering running means running by manual steering of the operator. Further, the automatic steering running means that the forward running is automatically performed. In particular, in the present embodiment, the automatic steering running means that the forward running without a large change of direction such as an α turn or a U turn is automatically performed.
 また、運転部12には、主変速レバー19が設けられている。コンバイン1が手動操舵走行または自動操舵走行を行っているとき、オペレータが主変速レバー19を操作すると、コンバイン1の車速が変化する。即ち、コンバイン1が手動操舵走行または自動操舵走行を行っているとき、オペレータは、主変速レバー19を操作することにより、コンバイン1の車速を変更することができる。 Further, the driving unit 12 is provided with a main shift lever 19. When the operator operates the main shift lever 19 while the combine 1 is performing manual steering or automatic steering, the vehicle speed of the combine 1 changes. That is, when the combine 1 is performing manual steering or automatic steering, the operator can change the vehicle speed of the combine 1 by operating the main shift lever 19.
 また、運転部12には、操舵操作具41が設けられている。コンバイン1が手動操舵走行を行っているとき、オペレータが操舵操作具41を操作すると、走行装置11における左右のクローラの間に速度差が生じるように構成されている。これにより、コンバイン1が旋回する。即ち、コンバイン1が手動操舵走行を行っているとき、オペレータは、操舵操作具41を操作することにより、コンバイン1の操舵を行うことができる。 Further, the driving unit 12 is provided with a steering operating tool 41. When the combine 1 is manually steering and traveling, when the operator operates the steering operating tool 41, a speed difference is generated between the left and right crawlers in the traveling device 11. As a result, the combine 1 turns. That is, when the combine 1 is manually steering and traveling, the operator can steer the combine 1 by operating the steering operating tool 41.
 即ち、コンバイン1は、操舵のための操舵操作具41を備えている。 That is, the combine 1 is provided with a steering operating tool 41 for steering.
 尚、コンバイン1は、操舵操作具41への操作力が走行装置11へ伝達されないように構成されている。即ち、操舵操作具41は、走行装置11に機械的に連動するものではない。オペレータが操舵操作具41を操作すると、操舵操作具41の動きが電気的に検知され、この検知に基づいて、走行装置11における左右のクローラが制御される。これにより、左右のクローラの間に速度差が生じると、コンバイン1は旋回する。また、左右のクローラの間に速度差がない状態では、コンバイン1は直進する。 The combine 1 is configured so that the operating force to the steering operating tool 41 is not transmitted to the traveling device 11. That is, the steering operation tool 41 is not mechanically interlocked with the traveling device 11. When the operator operates the steering operation tool 41, the movement of the steering operation tool 41 is electrically detected, and the left and right crawlers in the traveling device 11 are controlled based on this detection. As a result, when a speed difference occurs between the left and right crawlers, the combine 1 turns. Further, when there is no speed difference between the left and right crawlers, the combine 1 goes straight.
 〔動力伝達に関する構成〕
 図2に示すように、コンバイン1は、脱穀クラッチC1及び刈取クラッチC2を備えている。エンジンEGから出力された動力は、走行装置11及び脱穀クラッチC1に分配される。
[Structure related to power transmission]
As shown in FIG. 2, the combine 1 includes a threshing clutch C1 and a harvesting clutch C2. The power output from the engine EG is distributed to the traveling device 11 and the threshing clutch C1.
 走行装置11は、主変速装置11a及び副変速装置11bを有している。本実施形態において、主変速装置11aは、静油圧式無段変速装置により構成されている。また、副変速装置11bは、ギヤ切替式の変速装置により構成されており、高速状態と低速状態との間で切替可能に構成されている。尚、高速状態は移動用(非作業用)の変速状態であり、低速状態は作業用の変速状態である。 The traveling device 11 has a main transmission device 11a and an auxiliary transmission device 11b. In the present embodiment, the main transmission 11a is configured by a hydrostatic continuously variable transmission. Further, the auxiliary transmission 11b is configured by a gear switching type transmission, and is configured to be switchable between a high speed state and a low speed state. The high-speed state is a shift state for movement (non-working), and the low-speed state is a shift state for work.
 エンジンEGから走行装置11に入力された動力は、主変速装置11a及び副変速装置11bにより変速される。そして、変速された動力によって、走行装置11のクローラが駆動することにより、コンバイン1が走行する。 The power input from the engine EG to the traveling device 11 is changed by the main transmission device 11a and the auxiliary transmission device 11b. Then, the combine 1 travels by driving the crawler of the traveling device 11 by the speed-shifted power.
 図3に示すように、主変速レバー19は、前後方向に揺動操作可能に構成されている。主変速レバー19の可動域は、前進用操作位置FP、中立位置NP、後進用操作位置RPの3つに区画されている。そして、主変速レバー19が操作されることにより、主変速装置11aの変速状態が変化する。 As shown in FIG. 3, the main shift lever 19 is configured to be swingable in the front-rear direction. The range of motion of the main shift lever 19 is divided into three, a forward operation position FP, a neutral position NP, and a reverse operation position RP. Then, by operating the main shift lever 19, the shift state of the main shift device 11a changes.
 主変速レバー19が前進用操作位置FPに位置しているとき、主変速装置11aは、前進用の変速状態である。このとき、主変速レバー19を前側に倒すほど、主変速装置11aから出力される動力は高速となる。 When the main shift lever 19 is located at the forward operation position FP, the main shift device 11a is in the forward shift state. At this time, the more the main speed change lever 19 is tilted forward, the higher the power output from the main speed change device 11a becomes.
 主変速レバー19が中立位置NPに位置しているとき、主変速装置11aは、中立状態である。このとき、主変速装置11aは、動力を出力しない。 When the main speed change lever 19 is located at the neutral position NP, the main speed change device 11a is in the neutral state. At this time, the main transmission 11a does not output power.
 主変速レバー19が後進用操作位置RPに位置しているとき、主変速装置11aは、後進用の変速状態である。このとき、主変速レバー19を後側に倒すほど、主変速装置11aから出力される動力は高速となる。 When the main shift lever 19 is located at the reverse operation position RP, the main shift device 11a is in the reverse shift state. At this time, the more the main speed change lever 19 is tilted to the rear side, the higher the power output from the main speed change device 11a becomes.
 また、図3に示すように、主変速レバー19に、副変速スイッチ42が設けられている。副変速スイッチ42が押し操作されるたびに、副変速装置11bの変速状態は、高速状態と低速状態との間で切り替わる。 Further, as shown in FIG. 3, the main shift lever 19 is provided with an auxiliary shift switch 42. Each time the auxiliary transmission switch 42 is pressed, the transmission state of the auxiliary transmission device 11b is switched between a high speed state and a low speed state.
 図2に示す脱穀クラッチC1は、動力を伝達する入状態と、動力を伝達しない切状態と、の間で状態変更可能に構成されている。 The threshing clutch C1 shown in FIG. 2 is configured so that the state can be changed between an on state in which power is transmitted and an off state in which power is not transmitted.
 脱穀クラッチC1が入状態であるとき、エンジンEGからの動力は、脱穀装置13及び刈取クラッチC2へ伝達される。これにより、脱穀装置13は駆動する。 When the threshing clutch C1 is in the engaged state, the power from the engine EG is transmitted to the threshing device 13 and the cutting clutch C2. As a result, the threshing device 13 is driven.
 また、脱穀クラッチC1が切状態であるとき、エンジンEGからの動力は、脱穀装置13及び刈取クラッチC2の何れにも伝達されない。このとき、脱穀装置13は駆動しない。 Further, when the threshing clutch C1 is in the off state, the power from the engine EG is not transmitted to either the threshing device 13 or the cutting clutch C2. At this time, the threshing device 13 is not driven.
 また、刈取クラッチC2は、動力を伝達する入状態と、動力を伝達しない切状態と、の間で状態変更可能に構成されている。 Further, the cutting clutch C2 is configured so that the state can be changed between the on state in which power is transmitted and the off state in which power is not transmitted.
 脱穀クラッチC1と刈取クラッチC2との両方が入状態であるとき、エンジンEGからの動力は、刈取部Hへ伝達される。これにより、刈取部Hは駆動する。 When both the threshing clutch C1 and the cutting clutch C2 are in the engaged state, the power from the engine EG is transmitted to the cutting unit H. As a result, the cutting unit H is driven.
 また、刈取クラッチC2が切状態であるとき、エンジンEGからの動力は、刈取部Hへ伝達されない。このとき、刈取部Hは駆動しない。 Further, when the cutting clutch C2 is in the disengaged state, the power from the engine EG is not transmitted to the cutting unit H. At this time, the cutting unit H is not driven.
 また、脱穀クラッチC1が切状態であるときも、エンジンEGからの動力は、刈取部Hへ伝達されない。このとき、刈取部Hは駆動しない。 Further, even when the threshing clutch C1 is in the disengaged state, the power from the engine EG is not transmitted to the cutting section H. At this time, the cutting unit H is not driven.
 図2及び図4に示すように、コンバイン1は、刈取脱穀レバー43を備えている。刈取脱穀レバー43は、運転部12に設けられている。図4に示すように、刈取脱穀レバー43は、前後方向に揺動操作可能に構成されている。そして、刈取脱穀レバー43は、第1操作位置M1、第2操作位置M2、第3操作位置M3の間で、操作位置を択一的に切り替えることができるように構成されている。刈取脱穀レバー43が操作されることにより、脱穀クラッチC1及び刈取クラッチC2の入切状態が変化する。 As shown in FIGS. 2 and 4, the combine 1 includes a harvesting threshing lever 43. The harvesting threshing lever 43 is provided in the driving unit 12. As shown in FIG. 4, the cutting and threshing lever 43 is configured to be swingable in the front-rear direction. The harvesting threshing lever 43 is configured so that the operation position can be selectively switched between the first operation position M1, the second operation position M2, and the third operation position M3. By operating the harvesting threshing lever 43, the on / off state of the threshing clutch C1 and the harvesting clutch C2 changes.
 刈取脱穀レバー43の操作位置が第1操作位置M1であるとき、脱穀クラッチC1及び刈取クラッチC2は、何れも入状態である。 When the operating position of the cutting threshing lever 43 is the first operating position M1, both the threshing clutch C1 and the cutting clutch C2 are in the engaged state.
 刈取脱穀レバー43の操作位置が第2操作位置M2であるとき、脱穀クラッチC1は入状態であり、刈取クラッチC2は切状態である。 When the operating position of the cutting threshing lever 43 is the second operating position M2, the threshing clutch C1 is in the on state and the cutting clutch C2 is in the off state.
 刈取脱穀レバー43の操作位置が第3操作位置M3であるとき、脱穀クラッチC1及び刈取クラッチC2は、何れも切状態である。 When the operating position of the cutting threshing lever 43 is the third operating position M3, both the threshing clutch C1 and the cutting clutch C2 are in the off state.
 〔操舵操作具の構成〕
 図2及び図5に示すように、コンバイン1は、人為操作具45を備えている。本実施形態において、人為操作具45は、操舵操作具41である。
[Structure of steering control tool]
As shown in FIGS. 2 and 5, the combine 1 includes an artificial operation tool 45. In the present embodiment, the artificial operating tool 45 is a steering operating tool 41.
 図5に示すように、操舵操作具41は、右第3操作位置R3と左第3操作位置L3との間で、左右方向に揺動操作可能に構成されている。操舵操作具41の可動範囲の中央に、中央操作位置CPが位置している。 As shown in FIG. 5, the steering operating tool 41 is configured to be swingable in the left-right direction between the right third operating position R3 and the left third operating position L3. The central operation position CP is located in the center of the movable range of the steering control tool 41.
 中央操作位置CPと右第3操作位置R3との間に、右第1操作位置R1及び右第2操作位置R2が位置している。右第2操作位置R2は、右第1操作位置R1よりも右側に位置している。 The right first operation position R1 and the right second operation position R2 are located between the center operation position CP and the right third operation position R3. The right second operation position R2 is located on the right side of the right first operation position R1.
 中央操作位置CPと左第3操作位置L3との間に、左第1操作位置L1及び左第2操作位置L2が位置している。左第2操作位置L2は、左第1操作位置L1よりも左側に位置している。 The left first operation position L1 and the left second operation position L2 are located between the central operation position CP and the left third operation position L3. The left second operation position L2 is located on the left side of the left first operation position L1.
 本実施形態において、操舵操作具41の操作量は、中央操作位置CPからの揺動角度である。 In the present embodiment, the operating amount of the steering operating tool 41 is the swing angle from the central operating position CP.
 中央操作位置CPから右第1操作位置R1までの操作量は、第1操作量A1である。また、中央操作位置CPから右第2操作位置R2までの操作量は、第2操作量A2である。そして、上述の通り、操舵操作具41は、右側へ右第3操作位置R3まで操作可能である。即ち、操舵操作具41は、右側へ第2操作量A2よりも大きく操作可能である。 The operation amount from the center operation position CP to the right first operation position R1 is the first operation amount A1. Further, the operation amount from the center operation position CP to the right second operation position R2 is the second operation amount A2. Then, as described above, the steering operating tool 41 can be operated to the right up to the third operating position R3 on the right. That is, the steering operation tool 41 can be operated to the right side more than the second operation amount A2.
 また、図5には図示されていないが、左側についても同様である。即ち、中央操作位置CPから左第1操作位置L1までの操作量は、第1操作量A1である。また、中央操作位置CPから左第2操作位置L2までの操作量は、第2操作量A2である。そして、上述の通り、操舵操作具41は、左側へ左第3操作位置L3まで操作可能である。即ち、操舵操作具41は、左側へ第2操作量A2よりも大きく操作可能である。 Although not shown in FIG. 5, the same applies to the left side. That is, the operation amount from the central operation position CP to the left first operation position L1 is the first operation amount A1. Further, the operation amount from the central operation position CP to the left second operation position L2 is the second operation amount A2. Then, as described above, the steering operation tool 41 can be operated to the left up to the left third operation position L3. That is, the steering operation tool 41 can be operated to the left side more than the second operation amount A2.
 このように、操舵操作具41の可動範囲は、第1操作量A1よりも大きな操作量である第2操作量A2よりも大きく操舵操作具41を操作可能であるように設定されている。 As described above, the movable range of the steering operating tool 41 is set so that the steering operating tool 41 can be operated larger than the second operating amount A2, which is a larger operating amount than the first operating amount A1.
 〔制御部に関する構成〕
 図2に示すように、コンバイン1は、制御部20を備えている。制御部20は、自車位置算出部21及び走行制御部24を有している。
[Structure related to control unit]
As shown in FIG. 2, the combine 1 includes a control unit 20. The control unit 20 has a vehicle position calculation unit 21 and a travel control unit 24.
 ここで、本実施形態においては、RTK-GPS(Real Time Kinematic GPS)が採用されている。図1に示す衛星測位モジュール80は、GPS(グローバル・ポジショニング・システム)で用いられる人工衛星GSからのGPS信号と、既知位置に設置された基準局(図示せず)から送信された測位データと、を受信する。そして、図2に示すように、衛星測位モジュール80は、受信したGPS信号に基づく測位データと、基準局から受け取った測位データと、を自車位置算出部21へ送る。 Here, in this embodiment, RTK-GPS (Real Time Kinetic GPS) is adopted. The satellite positioning module 80 shown in FIG. 1 includes GPS signals from the artificial satellite GS used in GPS (Global Positioning System), positioning data transmitted from a reference station (not shown) installed at a known position, and positioning data. To receive. Then, as shown in FIG. 2, the satellite positioning module 80 sends the positioning data based on the received GPS signal and the positioning data received from the reference station to the own vehicle position calculation unit 21.
 自車位置算出部21は、衛星測位モジュール80から受け取った測位データに基づいて、コンバイン1の位置座標を経時的に算出する。算出されたコンバイン1の経時的な位置座標は、走行制御部24へ送られる。 The vehicle position calculation unit 21 calculates the position coordinates of the combine 1 over time based on the positioning data received from the satellite positioning module 80. The calculated position coordinates of the combine 1 over time are sent to the traveling control unit 24.
 一般に、RTK-GPS測位においては、GPS衛星とGPS受信機との距離をN×λ+φ×λ+c×dT+c×dtとして、整数値バイアスと呼ばれるNを求める。これにより、高精度な測位が可能となる。尚、λは搬送波の波長である。また、φはGPS衛星とGPS受信機との間の波数の小数部である。また、cは電波伝搬速度、dTはGPS衛星の時計誤差、dtはGPS受信機の時計誤差である。 Generally, in RTK-GPS positioning, the distance between the GPS satellite and the GPS receiver is N × λ + φ × λ + c × dT + c × dt, and N called an integer value bias is obtained. This enables highly accurate positioning. Note that λ is the wavelength of the carrier wave. Further, φ is a fractional part of the wave number between the GPS satellite and the GPS receiver. Further, c is the radio wave propagation speed, dT is the clock error of the GPS satellite, and dt is the clock error of the GPS receiver.
 そして、このNが整数解として定まった状態は、FIXと呼ばれる。また、このときの測位結果は、FIX解と呼ばれる。 And the state where this N is determined as an integer solution is called FIX. The positioning result at this time is called a FIX solution.
 また、Nが整数解として定まっていない状態は、FLOATと呼ばれる。このときの測位結果は、FLOAT解と呼ばれる。FIX解はセンチメータ精度であるのに対して、FLOAT解は数十センチから数メータの精度となる。 The state where N is not determined as an integer solution is called FLOAT. The positioning result at this time is called an FLOAT solution. The FIX solution has a centimeter accuracy, while the FLOAT solution has an accuracy of several tens of centimeters to several meters.
 尚、本発明はこれに限定されない。衛星測位モジュール80は、GPSを利用するものでなくても良い。例えば、衛星測位モジュール80は、GPS以外のGNSS(GLONASS、Galileo、みちびき、BeiDou等)を利用するものであっても良い。 The present invention is not limited to this. The satellite positioning module 80 does not have to use GPS. For example, the satellite positioning module 80 may use GNSS (GLONASS, Galileo, Michibiki, BeiDou, etc.) other than GPS.
 また、図2に示すように、コンバイン1は、慣性計測装置81を備えている。また、制御部20は、自車方位算出部25を有している。 Further, as shown in FIG. 2, the combine 1 is provided with an inertial measurement unit 81. Further, the control unit 20 has a vehicle direction calculation unit 25.
 慣性計測装置81は、機体10のヨー角度の角速度、及び、互いに直交する3軸方向の加速度を経時的に検知する。慣性計測装置81による検知結果は、自車方位算出部25へ送られる。 The inertial measurement unit 81 detects the angular velocity of the yaw angle of the airframe 10 and the acceleration in the three axial directions orthogonal to each other over time. The detection result by the inertial measurement unit 81 is sent to the own vehicle direction calculation unit 25.
 自車方位算出部25は、自車位置算出部21から、コンバイン1の位置座標を受け取る。そして、自車方位算出部25は、慣性計測装置81による検知結果と、コンバイン1の位置座標と、に基づいて、コンバイン1の姿勢方位を算出する。 The vehicle direction calculation unit 25 receives the position coordinates of the combine 1 from the vehicle position calculation unit 21. Then, the own vehicle direction calculation unit 25 calculates the attitude direction of the combine 1 based on the detection result by the inertial measurement unit 81 and the position coordinates of the combine 1.
 より具体的には、まず、コンバイン1の走行中に、現在のコンバイン1の位置座標、及び、直前に走行していた地点におけるコンバイン1の位置座標に基づいて、自車方位算出部25は、初期姿勢方位を算出する。次に、初期姿勢方位が算出されてからコンバイン1が一定時間走行すると、自車方位算出部25は、その一定時間の走行の間に慣性計測装置81により検知された角速度を積分処理することにより、姿勢方位の変化量を算出する。 More specifically, first, while the combine 1 is traveling, the heading vehicle direction calculation unit 25 determines the position coordinates of the current combine 1 and the position coordinates of the combine 1 at the point where the combine 1 was traveling immediately before. Calculate the initial posture orientation. Next, when the combine 1 travels for a certain period of time after the initial attitude direction is calculated, the own vehicle direction calculation unit 25 integrates the angular velocity detected by the inertial measurement unit 81 during the operation for the fixed time. , Calculate the amount of change in posture and orientation.
 そして、このように算出された姿勢方位の変化量を初期姿勢方位に足し合わせることによって、自車方位算出部25は、姿勢方位の算出結果を更新する。その後、一定時間毎に、姿勢方位の変化量が同様に算出されると共に、順次、姿勢方位の算出結果が更新されていく。 Then, by adding the amount of change in the posture orientation calculated in this way to the initial attitude orientation, the own vehicle orientation calculation unit 25 updates the calculation result of the attitude orientation. After that, the amount of change in the posture direction is calculated in the same manner at regular time intervals, and the calculation result of the posture direction is sequentially updated.
 ところで、慣性計測装置81により検知される角速度には、計測誤差(ドリフト)が含まれている。この計測誤差は時間経過と共に増大していくため、姿勢方位の変化量を算出する度に、算出された姿勢方位の変化量に含まれる誤差が大きくなっていく。 By the way, the angular velocity detected by the inertial measurement unit 81 includes a measurement error (drift). Since this measurement error increases with the passage of time, the error included in the calculated change in posture and orientation increases each time the amount of change in posture and orientation is calculated.
 そこで、自車方位算出部25は、慣性計測装置81による検知結果に基づいて算出された姿勢方位を、コンバイン1の位置座標の変化に基づき算出される方位情報によって補正するように構成されている。尚、コンバイン1の位置座標の変化に基づき算出される方位情報は、衛星測位モジュール80及び自車位置算出部21によるRTK-GPS測位においてFIX解が得られており、且つ、コンバイン1が数メートル以上に亘って直進した場合に、高精度となる。そのため、自車方位算出部25は、コンバイン1の位置座標の変化に基づき算出される方位情報による補正を、衛星測位モジュール80及び自車位置算出部21によるRTK-GPS測位においてFIX解が得られており、且つ、コンバイン1が数メートル以上に亘って直進した場合にのみ行う。 Therefore, the own vehicle direction calculation unit 25 is configured to correct the attitude direction calculated based on the detection result by the inertial measurement unit 81 by the direction information calculated based on the change in the position coordinates of the combine 1. .. The directional information calculated based on the change in the position coordinates of the combine 1 has a FIX solution obtained by RTK-GPS positioning by the satellite positioning module 80 and the own vehicle position calculation unit 21, and the combine 1 is several meters. High accuracy is achieved when going straight over the above. Therefore, the own vehicle orientation calculation unit 25 obtains a FIX solution in RTK-GPS positioning by the satellite positioning module 80 and the own vehicle position calculation unit 21 for correction based on the orientation information calculated based on the change in the position coordinates of the combine 1. And only when the combine 1 goes straight for several meters or more.
 尚、本明細書において、衛星測位モジュール80及び自車位置算出部21によるRTK-GPS測位においてFIX解が得られており、且つ、コンバイン1が数メートル以上に亘って直進した状態、及び、コンバイン1の位置座標の変化に基づいて高精度な方位情報が算出される状態を、高精度方位算出状態と呼称する。 In this specification, the FIX solution is obtained in the RTK-GPS positioning by the satellite positioning module 80 and the own vehicle position calculation unit 21, and the combine 1 has traveled straight for several meters or more, and the combine. A state in which highly accurate directional information is calculated based on a change in the position coordinates of 1 is referred to as a high-precision directional calculation state.
 以上で説明した構成により、自車方位算出部25は、コンバイン1の姿勢方位を高精度に算出することができる。自車方位算出部25により算出されたコンバイン1の姿勢方位は、走行制御部24へ送られる。 With the configuration described above, the vehicle direction calculation unit 25 can calculate the attitude direction of the combine 1 with high accuracy. The attitude direction of the combine 1 calculated by the own vehicle direction calculation unit 25 is sent to the traveling control unit 24.
 走行制御部24は、走行装置11を制御可能に構成されている。走行制御部24は、走行装置11を制御することにより、機体10の走行を制御する。 The travel control unit 24 is configured to be able to control the travel device 11. The travel control unit 24 controls the travel of the machine body 10 by controlling the travel device 11.
 即ち、コンバイン1は、走行装置11を有する機体10の走行を制御する走行制御部24を備えている。 That is, the combine 1 includes a travel control unit 24 that controls the travel of the machine body 10 having the travel device 11.
 尚、制御部20、及び、制御部20に含まれる自車位置算出部21等の各要素は、マイクロコンピュータ等の物理的な装置であっても良いし、ソフトウェアにおける機能部であっても良い。 Each element such as the control unit 20 and the own vehicle position calculation unit 21 included in the control unit 20 may be a physical device such as a microcomputer or a functional unit in software. ..
 また、通信端末4は、図2に示すように、自車位置算出部21からコンバイン1の位置座標を受け取る。これにより、通信端末4は、通信端末4のディスプレイ4bに、コンバイン1の現在位置を表示可能である。 Further, as shown in FIG. 2, the communication terminal 4 receives the position coordinates of the combine 1 from the own vehicle position calculation unit 21. As a result, the communication terminal 4 can display the current position of the combine 1 on the display 4b of the communication terminal 4.
 〔刈取部の昇降操作に関する構成〕
 図1に示すように、コンバイン1は、刈取シリンダ15Aを備えている。また、図2に示すように、コンバイン1は、刈取昇降操作具44を備えている。
[Structure related to raising and lowering the cutting section]
As shown in FIG. 1, the combine 1 includes a cutting cylinder 15A. Further, as shown in FIG. 2, the combine 1 is provided with a cutting elevating operation tool 44.
 刈取昇降操作具44は、運転部12に設けられている。制御部20は、オペレータによる刈取昇降操作具44の操作に応じて、刈取シリンダ15Aの伸縮を制御するように構成されている。 The cutting elevating operation tool 44 is provided in the driving unit 12. The control unit 20 is configured to control the expansion and contraction of the cutting cylinder 15A in response to the operation of the cutting raising / lowering operation tool 44 by the operator.
 刈取シリンダ15Aが伸びると、搬送部16及び刈取部Hは、一体的に、刈取部Hが上昇する方向に揺動する。これにより、刈取部Hは、機体10に対して上昇する。 When the cutting cylinder 15A is extended, the transport unit 16 and the cutting unit H integrally swing in the direction in which the cutting unit H rises. As a result, the cutting section H rises with respect to the machine body 10.
 また、刈取シリンダ15Aが縮むと、搬送部16及び刈取部Hは、一体的に、刈取部Hが下降する方向に揺動する。これにより、刈取部Hは、機体10に対して下降する。 Further, when the cutting cylinder 15A contracts, the transport unit 16 and the cutting unit H integrally swing in the direction in which the cutting unit H descends. As a result, the cutting section H descends with respect to the machine body 10.
 この構成により、オペレータは、刈取昇降操作具44を操作することによって、刈取部Hの昇降操作を行うことができる。 With this configuration, the operator can perform the raising / lowering operation of the cutting unit H by operating the cutting raising / lowering operation tool 44.
 〔自動操舵走行に関する構成〕
 図2に示すように、制御部20は、自動操舵制御部30を有している。自動操舵制御部30は、走行制御部24の制御モードを、第1モードと第2モードとの間で切り替えることができるように構成されている。
[Configuration related to automatic steering]
As shown in FIG. 2, the control unit 20 has an automatic steering control unit 30. The automatic steering control unit 30 is configured to be able to switch the control mode of the travel control unit 24 between the first mode and the second mode.
 走行制御部24の制御モードが第1モードであるとき、走行制御部24は、コンバイン1が自動操舵走行を行うように、走行装置11を制御する。 When the control mode of the travel control unit 24 is the first mode, the travel control unit 24 controls the travel device 11 so that the combine 1 performs automatic steering travel.
 また、走行制御部24の制御モードが第2モードであるとき、走行制御部24に、操舵操作具41の操作に応じた信号が入力される。そして、走行制御部24は、この信号に応じて、機体10の走行を制御する。 Further, when the control mode of the travel control unit 24 is the second mode, a signal corresponding to the operation of the steering operation tool 41 is input to the travel control unit 24. Then, the travel control unit 24 controls the travel of the aircraft 10 in response to this signal.
 即ち、走行制御部24の制御モードが第2モードであるとき、走行制御部24は、操舵操作具41の操作に応じて機体10の走行を制御する。 That is, when the control mode of the travel control unit 24 is the second mode, the travel control unit 24 controls the travel of the aircraft 10 according to the operation of the steering operation tool 41.
 この構成により、走行制御部24の制御モードが第2モードであるとき、機体10は、操舵操作具41の操作に応じて走行する。これにより、コンバイン1は、走行制御部24の制御モードが第2モードであるとき、手動操舵走行を行う。 With this configuration, when the control mode of the travel control unit 24 is the second mode, the aircraft 10 travels in response to the operation of the steering operation tool 41. As a result, the combine 1 performs manual steering traveling when the control mode of the traveling control unit 24 is the second mode.
 以下では、自動操舵走行に関する構成について詳述する。 Below, the configuration related to automatic steering driving will be described in detail.
 図2に示すように、自動操舵制御部30は、方位決定部31、経路算出部32、モード切替部33、直進判定部34を備えている。 As shown in FIG. 2, the automatic steering control unit 30 includes a direction determination unit 31, a route calculation unit 32, a mode switching unit 33, and a straight-ahead determination unit 34.
 直進判定部34は、走行制御部24の制御モードが第2モードであるとき、機体10が所定距離D1に亘って直進したか否かを判定する。 The straight-ahead determination unit 34 determines whether or not the aircraft 10 has traveled straight over a predetermined distance D1 when the control mode of the travel control unit 24 is the second mode.
 詳述すると、操舵操作具41の操作状態を示す信号が、操舵操作具41から自動操舵制御部30へ送られる。直進判定部34は、この信号に基づいて、操舵操作具41が操作されているか否かを経時的に判定する。 More specifically, a signal indicating the operating state of the steering operating tool 41 is sent from the steering operating tool 41 to the automatic steering control unit 30. Based on this signal, the straight-ahead determination unit 34 determines whether or not the steering operation tool 41 is being operated over time.
 そして、直進判定部34は、自車位置算出部21から受け取ったコンバイン1の位置座標に基づいて、操舵操作具41が操作されていない間のコンバイン1の移動距離を算出する。算出された移動距離が所定距離D1に達した場合、直進判定部34は、機体10が所定距離D1に亘って直進したと判定する。また、算出された移動距離が所定距離D1に達しない場合、直進判定部34は、機体10が所定距離D1に亘って直進していないと判定する。 Then, the straight-ahead determination unit 34 calculates the moving distance of the combine 1 while the steering operation tool 41 is not operated, based on the position coordinates of the combine 1 received from the own vehicle position calculation unit 21. When the calculated travel distance reaches the predetermined distance D1, the straight-ahead determination unit 34 determines that the aircraft 10 has traveled straight over the predetermined distance D1. Further, when the calculated movement distance does not reach the predetermined distance D1, the straight-ahead determination unit 34 determines that the aircraft 10 has not traveled straight over the predetermined distance D1.
 そして、方位決定部31は、所定の開始条件が満たされており、且つ、直進判定部34により機体10が所定距離D1に亘って直進したと判定された場合、所定距離D1に亘って行われた直進の方向に基づいて基準方位TA(図8参照)を決定する。 Then, when the orientation determination unit 31 satisfies the predetermined start condition and the straight-ahead determination unit 34 determines that the aircraft 10 has traveled straight over the predetermined distance D1, the direction determination unit 31 is performed over the predetermined distance D1. The reference direction TA (see FIG. 8) is determined based on the straight direction.
 より具体的には、方位決定部31は、自車位置算出部21から受け取ったコンバイン1の位置座標に基づいて、操舵操作具41が操作されていない間のコンバイン1の位置座標の推移を記憶する。そして、直進判定部34により、機体10が所定距離D1に亘って直進したと判定されたとき、方位決定部31は、記憶している位置座標のうちの2地点を、第1登録地点Q1及び第2登録地点Q2として決定する。 More specifically, the directional determination unit 31 stores the transition of the position coordinates of the combine 1 while the steering operation tool 41 is not operated, based on the position coordinates of the combine 1 received from the own vehicle position calculation unit 21. do. Then, when the straight-ahead determination unit 34 determines that the aircraft 10 has traveled straight over a predetermined distance D1, the directional determination unit 31 sets two points of the stored position coordinates as the first registration point Q1 and the first registration point Q1. Determined as the second registration point Q2.
 このとき、方位決定部31は、直進判定部34によって機体10が所定距離D1に亘って直進したと判定された時点でのコンバイン1の位置座標を、第2登録地点Q2として決定する。また、所定距離D1に亘って行われた直進の開始時点でのコンバイン1の位置座標を、第1登録地点Q1として決定する。 At this time, the direction determination unit 31 determines the position coordinates of the combine 1 at the time when the straight-ahead determination unit 34 determines that the aircraft 10 has traveled straight over a predetermined distance D1 as the second registration point Q2. Further, the position coordinates of the combine 1 at the start of the straight movement performed over the predetermined distance D1 are determined as the first registration point Q1.
 言い換えれば、所定距離D1に亘って行われた直進の始点及び終点が、それぞれ、第1登録地点Q1及び第2登録地点Q2として決定される。 In other words, the start point and the end point of going straight over the predetermined distance D1 are determined as the first registration point Q1 and the second registration point Q2, respectively.
 そして、方位決定部31は、第1登録地点Q1と第2登録地点Q2とに基づいて、自動操舵のための基準方位TAを決定する。より具体的には、方位決定部31は、第1登録地点Q1から第2登録地点Q2へ向かう直線の方向を算出する。 Then, the directional determination unit 31 determines the reference directional TA for automatic steering based on the first registration point Q1 and the second registration point Q2. More specifically, the orientation determination unit 31 calculates the direction of a straight line from the first registration point Q1 to the second registration point Q2.
 ここで、第1登録地点Q1から第2登録地点Q2へ向かう直線の方向は、所定距離D1に亘って行われた直進の方向に等しい。即ち、方位決定部31は、所定距離D1に亘って行われた直進の方向を算出する。そして、方位決定部31は、算出された方向を、基準方位TAとして決定する。 Here, the direction of the straight line from the first registration point Q1 to the second registration point Q2 is equal to the direction of the straight line made over the predetermined distance D1. That is, the directional determination unit 31 calculates the direction of straight travel performed over the predetermined distance D1. Then, the direction determination unit 31 determines the calculated direction as the reference direction TA.
 基準方位TAの形式は、特に限定されないが、例えば、東西南北を基準とした形式(例えば、「北」や「北27度東」等)であっても良いし、座標系における単位ベクトルであっても良い。 The format of the reference direction TA is not particularly limited, but may be, for example, a format based on north, south, east, or west (for example, "north" or "27 degrees east"), or is a unit vector in the coordinate system. May be.
 また、基準方位TAは、一方から他方への向きを有するものでなくても良い。例えば、基準方位TAは、座標系における直線の傾き(例えば、第1登録地点Q1と第2登録地点Q2とを通る直線の傾き)を示すものであっても良いし、座標系における直線そのもの(例えば、第1登録地点Q1と第2登録地点Q2とを通る直線そのもの)を示すものであっても良いし、東西南北を基準として方向を示すもの(例えば、「南北方向」や「東西方向」等)であっても良い。 Further, the reference direction TA does not have to have a direction from one to the other. For example, the reference direction TA may indicate the slope of a straight line in the coordinate system (for example, the slope of the straight line passing through the first registration point Q1 and the second registration point Q2), or the straight line itself in the coordinate system (for example. For example, it may indicate the straight line itself passing through the first registration point Q1 and the second registration point Q2, or indicate the direction with respect to the north, south, east, and west (for example, "north-south direction" or "east-west direction". Etc.).
 以上で説明した方法により、方位決定部31は、所定距離D1に亘って行われた直進の方向に基づいて基準方位TAを決定する。 By the method described above, the direction determination unit 31 determines the reference direction TA based on the direction of straight travel performed over the predetermined distance D1.
 尚、本発明はこれに限定されない。直進判定部34は、走行制御部24の制御モードが第2モードであるとき、機体10が所定時間に亘って直進したか否かを判定するように構成されていても良い。そして、この場合、方位決定部31は、所定の開始条件が満たされており、且つ、直進判定部34により機体10が所定時間に亘って直進したと判定された場合、所定時間に亘って行われた直進の方向に基づいて基準方位TAを決定するように構成されていても良い。 The present invention is not limited to this. The straight-ahead determination unit 34 may be configured to determine whether or not the aircraft 10 has traveled straight for a predetermined time when the control mode of the travel control unit 24 is the second mode. In this case, if the orientation determination unit 31 satisfies the predetermined start condition and the straight-ahead determination unit 34 determines that the aircraft 10 has traveled straight for a predetermined time, the direction determination unit 31 will go straight for a predetermined time. It may be configured to determine the reference directional TA based on the straight-ahead direction.
 即ち、コンバイン1は、走行制御部24の制御モードが第2モードであるとき、機体10が所定距離D1または所定時間に亘って直進したか否かを判定する直進判定部34を備えている。また、方位決定部31は、直進判定部34により機体10が所定距離D1または所定時間に亘って直進したと判定された場合、所定距離D1または所定時間に亘って行われた直進の方向に基づいて基準方位TAを決定する。 That is, the combine 1 includes a straight-ahead determination unit 34 that determines whether or not the aircraft 10 has traveled straight over a predetermined distance D1 or a predetermined time when the control mode of the travel control unit 24 is the second mode. Further, when the straight-ahead determination unit 34 determines that the aircraft 10 has traveled straight over a predetermined distance D1 or a predetermined time, the directional determination unit 31 is based on the straight-ahead direction performed over the predetermined distance D1 or the predetermined time. The reference direction TA is determined.
 尚、所定距離D1は、特に限定されないが、例えば1メートルであっても良い。また、所定時間は、特に限定されないが、例えば1秒であっても良い。 The predetermined distance D1 is not particularly limited, but may be, for example, 1 meter. The predetermined time is not particularly limited, but may be, for example, 1 second.
 方位決定部31が基準方位TAを決定した後、経路算出部32は、平面視で衛星測位モジュール80の位置を通ると共に基準方位TAに沿う方向の走行ラインを常時算出する。即ち、この走行ラインは、基準方位TAに基づいて算出される。尚、経路算出部32により算出される走行ラインは、刈取部Hの刈幅中心を通るように算出されても良い。そして、オペレータが自動操舵開始終了ボタン(図示せず)を操作すると、モード切替部33は、走行制御部24の制御モードを第2モードから第1モードに切り替える。 After the directional determination unit 31 determines the reference directional TA, the route calculation unit 32 passes through the position of the satellite positioning module 80 in a plan view and constantly calculates a traveling line in the direction along the reference directional TA. That is, this traveling line is calculated based on the reference direction TA. The traveling line calculated by the route calculation unit 32 may be calculated so as to pass through the center of the cutting width of the cutting unit H. Then, when the operator operates the automatic steering start / end button (not shown), the mode switching unit 33 switches the control mode of the traveling control unit 24 from the second mode to the first mode.
 走行制御部24の制御モードが第2モードから第1モードに切り替わると、経路算出部32は、制御モードが第2モードから第1モードに切り替わった時点で算出されていた走行ラインを固定する。固定された走行ラインは、自動操舵目標ラインGL(本発明に係る「走行経路」に相当)(図8参照)となり、自動操舵制御部30から走行制御部24へ送られる。即ち、経路算出部32は、制御モードが第2モードから第1モードに切り替わったタイミングで、そのときに算出していた走行ラインを自動操舵目標ラインGLとして決定する。 When the control mode of the travel control unit 24 is switched from the second mode to the first mode, the route calculation unit 32 fixes the travel line calculated at the time when the control mode is switched from the second mode to the first mode. The fixed travel line becomes an automatic steering target line GL (corresponding to the “travel path” according to the present invention) (see FIG. 8), and is sent from the automatic steering control unit 30 to the travel control unit 24. That is, at the timing when the control mode is switched from the second mode to the first mode, the route calculation unit 32 determines the traveling line calculated at that time as the automatic steering target line GL.
 走行制御部24の制御モードが第1モードであるとき、走行制御部24は、自車位置算出部21から受け取ったコンバイン1の位置座標と、自車方位算出部25から受け取ったコンバイン1の姿勢方位と、自動操舵制御部30から受け取った自動操舵目標ラインGLと、に基づいて、コンバイン1の走行を制御する。より具体的には、走行制御部24は、自動操舵目標ラインGLに沿った自動操舵走行によって刈取走行が行われるように、機体10の走行を制御する。 When the control mode of the travel control unit 24 is the first mode, the travel control unit 24 has the position coordinates of the combine 1 received from the vehicle position calculation unit 21 and the attitude of the combine 1 received from the vehicle orientation calculation unit 25. The traveling of the combine 1 is controlled based on the direction and the automatic steering target line GL received from the automatic steering control unit 30. More specifically, the travel control unit 24 controls the travel of the machine body 10 so that the cutting travel is performed by the automatic steering travel along the automatic steering target line GL.
 尚、このように、基準方位TAは、自動操舵のためのものである。即ち、コンバイン1は、自動操舵のための基準方位TAを決定する方位決定部31を備えている。 In this way, the reference directional TA is for automatic steering. That is, the combine 1 includes an azimuth determining unit 31 that determines a reference azimuth TA for automatic steering.
 また、本発明は、以上で説明した構成に限定されない。走行制御部24の制御モードが第1モードであるとき、走行制御部24は、自動操舵目標ラインGLに代えて、基準方位TAに基づいて機体10の走行を制御しても良い。この場合、走行制御部24は、コンバイン1の姿勢方位が基準方位TAに合うように、または、基準方位TAに対して平行となるように、機体方位を制御しても良い。 Further, the present invention is not limited to the configuration described above. When the control mode of the travel control unit 24 is the first mode, the travel control unit 24 may control the travel of the aircraft 10 based on the reference direction TA instead of the automatic steering target line GL. In this case, the traveling control unit 24 may control the aircraft orientation so that the attitude orientation of the combine 1 matches the reference orientation TA or is parallel to the reference orientation TA.
 即ち、走行制御部24の制御モードが第1モードであるとき、走行制御部24は、基準方位TA、または、基準方位TAに基づいて算出された自動操舵目標ラインGLに基づいて機体10の走行を制御する。 That is, when the control mode of the travel control unit 24 is the first mode, the travel control unit 24 travels the aircraft 10 based on the reference direction TA or the automatic steering target line GL calculated based on the reference direction TA. To control.
 尚、本実施形態において、走行制御部24の制御モードが第1モードであるとき、オペレータが自動操舵開始終了ボタンを操作すると、モード切替部33は、走行制御部24の制御モードを第1モードから第2モードに切り替える。 In the present embodiment, when the control mode of the travel control unit 24 is the first mode and the operator operates the automatic steering start / end button, the mode switching unit 33 sets the control mode of the travel control unit 24 to the first mode. To switch to the second mode.
 即ち、コンバイン1は、走行制御部24の制御モードを第1モードと第2モードとの間で切り替えるモード切替部33を備えている。 That is, the combine 1 includes a mode switching unit 33 that switches the control mode of the traveling control unit 24 between the first mode and the second mode.
 ところで、図2に示すように、コンバイン1は、報知部53を備えている。走行制御部24の制御モードが第2モードから第1モードへ切り替わったとき、自動操舵制御部30は、所定の信号を報知部53へ送る。この信号に応じて、報知部53は、走行制御部24の制御モードが第2モードから第1モードへ切り替わったことをオペレータへ知らせるための報知を行う。 By the way, as shown in FIG. 2, the combine 1 includes a notification unit 53. When the control mode of the travel control unit 24 is switched from the second mode to the first mode, the automatic steering control unit 30 sends a predetermined signal to the notification unit 53. In response to this signal, the notification unit 53 notifies the operator that the control mode of the travel control unit 24 has been switched from the second mode to the first mode.
 また、走行制御部24の制御モードが第1モードから第2モードへ切り替わったとき、自動操舵制御部30は、所定の信号を報知部53へ送る。この信号に応じて、報知部53は、走行制御部24の制御モードが第1モードから第2モードへ切り替わったことをオペレータへ知らせるための報知を行う。 Further, when the control mode of the travel control unit 24 is switched from the first mode to the second mode, the automatic steering control unit 30 sends a predetermined signal to the notification unit 53. In response to this signal, the notification unit 53 notifies the operator that the control mode of the travel control unit 24 has been switched from the first mode to the second mode.
 本実施形態において、報知部53は、音声を出力するスピーカーである。ただし、本発明はこれに限定されず、報知部53は、ランプや表示装置等であっても良い。 In the present embodiment, the notification unit 53 is a speaker that outputs voice. However, the present invention is not limited to this, and the notification unit 53 may be a lamp, a display device, or the like.
 以上で説明した通り、モード切替部33は、オペレータが自動操舵開始終了ボタンを操作することに応じて、走行制御部24の制御モードを第1モードと第2モードとの間で切り替える。 As described above, the mode switching unit 33 switches the control mode of the traveling control unit 24 between the first mode and the second mode in response to the operator operating the automatic steering start / end button.
 ここで、モード切替部33は、自動操舵開始終了ボタンが操作されなくとも、状況に応じて、走行制御部24の制御モードを第1モードと第2モードとの間で自動的に切り替えるように構成されている。以下では、制御モードの自動的な切り替えについて詳述する。 Here, the mode switching unit 33 automatically switches the control mode of the traveling control unit 24 between the first mode and the second mode according to the situation even if the automatic steering start / end button is not operated. It is configured. In the following, the automatic switching of the control mode will be described in detail.
 〔第2モードから第1モードへの切り替えについて〕
 モード切替部33は、所定の開始条件が満たされており、且つ、直進判定部34により機体10が所定距離D1に亘って直進したと判定された場合、走行制御部24の制御モードを第1モードに切り替えるように構成されている。また、モード切替部33は、開始条件が満たされていない場合には走行制御部24の制御モードを第1モードに切り替えないように構成されている。
[About switching from the second mode to the first mode]
When the mode switching unit 33 satisfies the predetermined start condition and the straight-ahead determination unit 34 determines that the aircraft 10 has traveled straight over a predetermined distance D1, the mode switching unit 33 sets the control mode of the travel control unit 24 to the first. It is configured to switch to mode. Further, the mode switching unit 33 is configured not to switch the control mode of the traveling control unit 24 to the first mode when the start condition is not satisfied.
 尚、本発明はこれに限定されない。モード切替部33は、所定の開始条件が満たされており、且つ、直進判定部34により機体10が所定時間に亘って直進したと判定された場合、走行制御部24の制御モードを第1モードに切り替えるように構成されていても良い。 The present invention is not limited to this. When the mode switching unit 33 satisfies the predetermined start condition and the straight-ahead determination unit 34 determines that the aircraft 10 has traveled straight for a predetermined time, the mode switching unit 33 sets the control mode of the travel control unit 24 to the first mode. It may be configured to switch to.
 即ち、モード切替部33は、所定の開始条件が満たされており、且つ、直進判定部34により機体10が所定距離D1または所定時間に亘って直進したと判定された場合、走行制御部24の制御モードを第1モードに切り替えるように構成されていると共に、開始条件が満たされていない場合には走行制御部24の制御モードを第1モードに切り替えないように構成されている。 That is, when the mode switching unit 33 satisfies the predetermined start condition and the straight-ahead determination unit 34 determines that the aircraft 10 has traveled straight for a predetermined distance D1 or a predetermined time, the travel control unit 24 It is configured to switch the control mode to the first mode, and is configured not to switch the control mode of the traveling control unit 24 to the first mode when the start condition is not satisfied.
 そして、図6に示す第1判定ルーチンによって、この開始条件が満たされているか否かが判定される。この第1判定ルーチンは、自動操舵制御部30に格納されている。自動操舵制御部30は、この第1判定ルーチンを、走行制御部24の制御モードが第2モードであるときに、一定時間毎に繰り返し実行する。 Then, it is determined whether or not this start condition is satisfied by the first determination routine shown in FIG. This first determination routine is stored in the automatic steering control unit 30. The automatic steering control unit 30 repeatedly executes this first determination routine at regular time intervals when the control mode of the travel control unit 24 is the second mode.
 以下では、図2及び図6を参照し、第1判定ルーチンについて説明する。 Hereinafter, the first determination routine will be described with reference to FIGS. 2 and 6.
 第1判定ルーチンが開始されると、まず、ステップS01の処理が実行される。ステップS01では、図2に示すように、自動操舵制御部30が、主変速レバー19の操作位置を示す情報を取得する。そして、取得した情報に基づいて、主変速レバー19が前進用操作位置FPに位置しているか否かが判定される。 When the first determination routine is started, the process of step S01 is executed first. In step S01, as shown in FIG. 2, the automatic steering control unit 30 acquires information indicating the operation position of the main shift lever 19. Then, based on the acquired information, it is determined whether or not the main shift lever 19 is located at the forward operation position FP.
 主変速レバー19が前進用操作位置FPに位置していない場合、ステップS01でNoと判定され、処理は一旦終了する。また、主変速レバー19が前進用操作位置FPに位置している場合、ステップS01でYesと判定され、処理はステップS02へ移行する。 If the main shift lever 19 is not located at the forward operation position FP, it is determined as No in step S01, and the process ends once. Further, when the main shift lever 19 is located at the forward operation position FP, it is determined as Yes in step S01, and the process proceeds to step S02.
 ここで、図2に示すように、自動操舵制御部30は、副変速スイッチ42の操作信号を受け取るように構成されている。そして、自動操舵制御部30は、この操作信号に基づいて、副変速装置11bの変速状態を判定可能に構成されている。 Here, as shown in FIG. 2, the automatic steering control unit 30 is configured to receive an operation signal of the auxiliary shift switch 42. Then, the automatic steering control unit 30 is configured to be able to determine the shift state of the auxiliary transmission device 11b based on this operation signal.
 ステップS02では、副変速装置11bが作業用の変速状態であるか否かが判定される。より具体的には、副変速装置11bが低速状態であるか否かが判定される。 In step S02, it is determined whether or not the auxiliary transmission 11b is in a shift state for work. More specifically, it is determined whether or not the auxiliary transmission 11b is in a low speed state.
 副変速装置11bが低速状態でない場合、ステップS02でNoと判定され、処理は一旦終了する。また、副変速装置11bが低速状態である場合、ステップS02でYesと判定され、処理はステップS03へ移行する。 If the auxiliary transmission 11b is not in the low speed state, it is determined as No in step S02, and the process ends once. Further, when the auxiliary transmission 11b is in the low speed state, it is determined as Yes in step S02, and the process proceeds to step S03.
 ステップS03では、図2に示すように、自動操舵制御部30が、自車位置算出部21から、上述のFIX解が得られているか否かを示す情報を取得する。そして、取得した情報に基づいて、機体位置の測位状態が所定の高精度状態であるか否かが判定される。より具体的には、衛星測位モジュール80及び自車位置算出部21によるRTK-GPS測位においてFIX解が得られているか否かが判定される。 In step S03, as shown in FIG. 2, the automatic steering control unit 30 acquires information indicating whether or not the above-mentioned FIX solution is obtained from the own vehicle position calculation unit 21. Then, based on the acquired information, it is determined whether or not the positioning state of the aircraft position is a predetermined high-precision state. More specifically, it is determined whether or not the FIX solution is obtained in the RTK-GPS positioning by the satellite positioning module 80 and the own vehicle position calculation unit 21.
 衛星測位モジュール80及び自車位置算出部21によるRTK-GPS測位においてFIX解が得られていない場合、ステップS03でNoと判定され、処理は一旦終了する。また、衛星測位モジュール80及び自車位置算出部21によるRTK-GPS測位においてFIX解が得られている場合、ステップS03でYesと判定され、処理はステップS04へ移行する。 If the FIX solution is not obtained in the RTK-GPS positioning by the satellite positioning module 80 and the own vehicle position calculation unit 21, it is determined as No in step S03, and the process is temporarily terminated. Further, when the FIX solution is obtained in the RTK-GPS positioning by the satellite positioning module 80 and the own vehicle position calculation unit 21, it is determined as Yes in step S03, and the process proceeds to step S04.
 ステップS04では、図2に示すように、自動操舵制御部30が、刈取脱穀レバー43の操作位置を示す情報を取得する。そして、取得した情報に基づいて、刈取クラッチC2が入状態であるか否かが判定される。 In step S04, as shown in FIG. 2, the automatic steering control unit 30 acquires information indicating the operation position of the cutting and threshing lever 43. Then, based on the acquired information, it is determined whether or not the cutting clutch C2 is in the engaged state.
 刈取脱穀レバー43の操作位置が第2操作位置M2または第3操作位置M3である場合、ステップS04でNoと判定され、処理は一旦終了する。また、刈取脱穀レバー43の操作位置が第1操作位置M1である場合、ステップS04でYesと判定され、処理はステップS05へ移行する。 When the operation position of the harvesting threshing lever 43 is the second operation position M2 or the third operation position M3, No is determined in step S04, and the process is temporarily terminated. Further, when the operation position of the cutting and threshing lever 43 is the first operation position M1, it is determined as Yes in step S04, and the process proceeds to step S05.
 ここで、図2に示すように、コンバイン1は、昇降検知部54を備えている。昇降検知部54は、刈取シリンダ15Aの伸縮状態を検知する。昇降検知部54による検知結果は、自動操舵制御部30へ送られる。そして、自動操舵制御部30は、昇降検知部54による検知結果に基づいて、刈取部Hが作業位置に位置しているか否かを判定可能に構成されている。 Here, as shown in FIG. 2, the combine 1 includes an elevating detection unit 54. The elevating detection unit 54 detects the expansion / contraction state of the cutting cylinder 15A. The detection result by the elevating detection unit 54 is sent to the automatic steering control unit 30. Then, the automatic steering control unit 30 is configured to be able to determine whether or not the cutting unit H is located at the working position based on the detection result by the elevating detection unit 54.
 尚、本実施形態においては、刈取部Hの最上昇位置からの下降量が所定値以上であることが、刈取部Hが作業位置に位置していることに相当する。 In the present embodiment, the amount of descent from the highest rising position of the cutting section H is equal to or more than a predetermined value, which corresponds to the position of the cutting section H at the working position.
 ステップS05では、刈取部Hが作業位置に位置しているか否かが判定される。刈取部Hが作業位置に位置していない場合、ステップS05でNoと判定され、処理は一旦終了する。また、刈取部Hが作業位置に位置している場合、ステップS05でYesと判定され、処理はステップS06へ移行する。 In step S05, it is determined whether or not the cutting unit H is located at the working position. If the cutting unit H is not located at the working position, it is determined as No in step S05, and the process ends once. Further, when the cutting unit H is located at the working position, it is determined as Yes in step S05, and the process proceeds to step S06.
 ステップS06では、機体10が所定距離D1に亘って直進したか否かが判定される。この判定は、上述のように、直進判定部34により行われる。 In step S06, it is determined whether or not the aircraft 10 has traveled straight over a predetermined distance D1. As described above, this determination is performed by the straight-ahead determination unit 34.
 機体10が所定距離D1に亘って直進していない場合、ステップS06でNoと判定され、処理は一旦終了する。また、機体10が所定距離D1に亘って直進した場合、ステップS06でYesと判定され、処理はステップS07へ移行する。 If the aircraft 10 has not traveled straight over the predetermined distance D1, it is determined as No in step S06, and the process is temporarily terminated. Further, when the aircraft 10 travels straight over a predetermined distance D1, it is determined as Yes in step S06, and the process proceeds to step S07.
 ステップS07では、所定距離D1に亘って行われた直進の方向に基づいて、基準方位TAが決定される。この決定は、上述のように、方位決定部31により行われる。そして、処理はステップS08へ移行する。 In step S07, the reference direction TA is determined based on the direction of straight travel performed over the predetermined distance D1. This determination is made by the orientation determination unit 31 as described above. Then, the process proceeds to step S08.
 ステップS08では、モード切替部33によって、走行制御部24の制御モードが第2モードから第1モードに切り替えられる。そして、処理はステップS09へ移行する。 In step S08, the mode switching unit 33 switches the control mode of the traveling control unit 24 from the second mode to the first mode. Then, the process proceeds to step S09.
 ステップS09では、報知部53は、走行制御部24の制御モードが第2モードから第1モードへ切り替わったことをオペレータへ知らせるための報知を行う。その後、処理は一旦終了する。 In step S09, the notification unit 53 notifies the operator that the control mode of the travel control unit 24 has been switched from the second mode to the first mode. After that, the process ends once.
 以上の説明から理解されるように、本実施形態において、上述の開始条件には、ステップS01からステップS05の全てにおいてYesと判定されることが含まれている。しかしながら、本発明はこれに限定されず、ステップS01からステップS05のうちの一部が設けられていなくても良い。 As can be understood from the above description, in the present embodiment, the above-mentioned start condition includes that all of steps S01 to S05 are determined to be Yes. However, the present invention is not limited to this, and a part of steps S01 to S05 may not be provided.
 即ち、開始条件には、主変速レバー19が前進用操作位置FPに位置していること、副変速装置11bが作業用の変速状態であること、機体位置の測位状態が所定の高精度状態であること、刈取部Hへの動力伝達のためのクラッチが入状態となっていること、刈取部Hが作業位置に位置していること、のうちの少なくとも一つが含まれている。 That is, the start conditions are that the main shift lever 19 is located at the forward operation position FP, the auxiliary transmission 11b is in the shift state for work, and the positioning state of the aircraft position is in a predetermined high accuracy state. At least one of the fact that the clutch for power transmission to the cutting section H is engaged and that the cutting section H is located at the working position is included.
 尚、図6に示すように、本実施形態において、方位決定部31は、所定の開始条件が満たされており、且つ、直進判定部34により機体10が所定距離D1に亘って直進したと判定された場合、所定距離D1に亘って行われた直進の方向に基づいて基準方位TAを決定する。また、方位決定部31は、開始条件が満たされていない場合には基準方位TAを決定しない。 As shown in FIG. 6, in the present embodiment, the orientation determination unit 31 determines that the predetermined start condition is satisfied and the straight-ahead determination unit 34 determines that the aircraft 10 has traveled straight over the predetermined distance D1. If so, the reference direction TA is determined based on the direction of straight travel performed over the predetermined distance D1. Further, the direction determination unit 31 does not determine the reference direction TA when the start condition is not satisfied.
 しかしながら、本発明はこれに限定されず、方位決定部31は、所定の開始条件が満たされているか否かとは無関係に、直進判定部34により機体10が所定距離D1または所定時間に亘って直進したと判定された場合、所定距離D1または所定時間に亘って行われた直進の方向に基づいて基準方位TAを決定するように構成されていても良い。 However, the present invention is not limited to this, and the directional determination unit 31 causes the aircraft 10 to travel straight for a predetermined distance D1 or a predetermined time by the straight-ahead determination unit 34 regardless of whether or not a predetermined start condition is satisfied. If it is determined that the reference direction TA has been determined, the reference direction TA may be determined based on the direction of straight travel performed over a predetermined distance D1 or a predetermined time.
 〔第1モードから第2モードへの切り替えについて〕
 モード切替部33は、走行制御部24の制御モードが第1モードであるとき、所定の解除条件が満たされた場合に、走行制御部24の制御モードを第2モードに切り替えるように構成されている。
[About switching from the first mode to the second mode]
The mode switching unit 33 is configured to switch the control mode of the travel control unit 24 to the second mode when a predetermined release condition is satisfied when the control mode of the travel control unit 24 is the first mode. There is.
 そして、図7に示す第2判定ルーチンによって、この解除条件が満たされているか否かが判定される。この第2判定ルーチンは、自動操舵制御部30に格納されている。自動操舵制御部30は、この第2判定ルーチンを、走行制御部24の制御モードが第1モードであるときに、一定時間毎に繰り返し実行する。 Then, it is determined whether or not this cancellation condition is satisfied by the second determination routine shown in FIG. 7. This second determination routine is stored in the automatic steering control unit 30. The automatic steering control unit 30 repeatedly executes this second determination routine at regular time intervals when the control mode of the travel control unit 24 is the first mode.
 以下では、図2及び図7を参照し、第2判定ルーチンについて説明する。 Hereinafter, the second determination routine will be described with reference to FIGS. 2 and 7.
 第2判定ルーチンが開始されると、まず、ステップS11の処理が実行される。ステップS11では、図2に示すように、自動操舵制御部30が、主変速レバー19の操作位置を示す情報を取得する。そして、取得した情報に基づいて、主変速レバー19が前進用操作位置FP以外の操作位置に操作されたか否かが判定される。より具体的には、主変速レバー19が中立位置NPまたは後進用操作位置RPに位置しているか否かが判定される。 When the second determination routine is started, the process of step S11 is first executed. In step S11, as shown in FIG. 2, the automatic steering control unit 30 acquires information indicating the operation position of the main shift lever 19. Then, based on the acquired information, it is determined whether or not the main shift lever 19 is operated to an operation position other than the forward operation position FP. More specifically, it is determined whether or not the main shift lever 19 is located at the neutral position NP or the reverse operation position RP.
 主変速レバー19が中立位置NPまたは後進用操作位置RPに位置している場合、ステップS11でYesと判定され、処理はステップS19へ移行する。また、主変速レバー19が中立位置NPまたは後進用操作位置RPに位置していない場合、ステップS11でNoと判定され、処理はステップS12へ移行する。 When the main shift lever 19 is located at the neutral position NP or the reverse operation position RP, it is determined as Yes in step S11, and the process proceeds to step S19. If the main shift lever 19 is not located at the neutral position NP or the reverse operation position RP, it is determined as No in step S11, and the process proceeds to step S12.
 ステップS12では、副変速装置11bが作業用の変速状態でなくなったか否かが判定される。より具体的には、副変速装置11bが高速状態であるか否かが判定される。 In step S12, it is determined whether or not the auxiliary transmission 11b is no longer in the working shift state. More specifically, it is determined whether or not the auxiliary transmission 11b is in the high speed state.
 副変速装置11bが高速状態である場合、ステップS12でYesと判定され、処理はステップS19へ移行する。また、副変速装置11bが高速状態でない場合、ステップS12でNoと判定され、処理はステップS13へ移行する。 When the auxiliary transmission 11b is in the high speed state, it is determined as Yes in step S12, and the process proceeds to step S19. If the auxiliary transmission 11b is not in the high speed state, it is determined as No in step S12, and the process proceeds to step S13.
 ステップS13では、図2に示すように、自動操舵制御部30が、自車位置算出部21から、上述のFIX解が得られているか否かを示す情報を取得する。そして、取得した情報に基づいて、機体位置の測位状態が所定の高精度状態でなくなったか否かが判定される。より具体的には、衛星測位モジュール80及び自車位置算出部21によるRTK-GPS測位においてFIX解が得られない状態であるか否かが判定される。言い換えれば、衛星測位モジュール80及び自車位置算出部21によるRTK-GPS測位の状態がFLOATであるか否かが判定される。 In step S13, as shown in FIG. 2, the automatic steering control unit 30 acquires information indicating whether or not the above-mentioned FIX solution is obtained from the own vehicle position calculation unit 21. Then, based on the acquired information, it is determined whether or not the positioning state of the aircraft position is no longer a predetermined high-precision state. More specifically, it is determined whether or not the FIX solution cannot be obtained in the RTK-GPS positioning by the satellite positioning module 80 and the own vehicle position calculation unit 21. In other words, it is determined whether or not the RTK-GPS positioning state by the satellite positioning module 80 and the own vehicle position calculation unit 21 is FLOAT.
 衛星測位モジュール80及び自車位置算出部21によるRTK-GPS測位においてFIX解が得られていない場合、ステップS13でYesと判定され、処理はステップS19へ移行する。また、衛星測位モジュール80及び自車位置算出部21によるRTK-GPS測位においてFIX解が得られている場合、ステップS13でNoと判定され、処理はステップS14へ移行する。 If the FIX solution is not obtained in the RTK-GPS positioning by the satellite positioning module 80 and the own vehicle position calculation unit 21, it is determined as Yes in step S13, and the process proceeds to step S19. Further, when the FIX solution is obtained in the RTK-GPS positioning by the satellite positioning module 80 and the own vehicle position calculation unit 21, it is determined as No in step S13, and the process proceeds to step S14.
 ステップS14では、図2に示すように、自動操舵制御部30が、刈取脱穀レバー43の操作位置を示す情報を取得する。そして、取得した情報に基づいて、刈取クラッチC2が切状態になったか否かが判定される。 In step S14, as shown in FIG. 2, the automatic steering control unit 30 acquires information indicating the operation position of the cutting and threshing lever 43. Then, based on the acquired information, it is determined whether or not the cutting clutch C2 is in the disengaged state.
 刈取脱穀レバー43の操作位置が第2操作位置M2または第3操作位置M3である場合、ステップS14でYesと判定され、処理はステップS19へ移行する。また、刈取脱穀レバー43の操作位置が第1操作位置M1である場合、ステップS14でNoと判定され、処理はステップS15へ移行する。 When the operation position of the harvesting threshing lever 43 is the second operation position M2 or the third operation position M3, it is determined as Yes in step S14, and the process proceeds to step S19. Further, when the operation position of the cutting and threshing lever 43 is the first operation position M1, it is determined as No in step S14, and the process proceeds to step S15.
 ステップS15では、刈取部Hが非作業位置に移動したか否かが判定される。尚、本実施形態においては、刈取部Hの最上昇位置からの下降量が所定値以下であることが、刈取部Hが非作業位置に位置していることに相当する。刈取部Hが非作業位置に位置している場合、ステップS15でYesと判定され、処理はステップS19へ移行する。また、刈取部Hが非作業位置に位置していない場合、ステップS15でNoと判定され、処理はステップS16へ移行する。 In step S15, it is determined whether or not the cutting unit H has moved to the non-working position. In the present embodiment, the amount of descent from the highest rising position of the cutting section H is equal to or less than a predetermined value, which corresponds to the position of the cutting section H in the non-working position. When the cutting unit H is located in the non-working position, it is determined as Yes in step S15, and the process proceeds to step S19. If the cutting unit H is not located in the non-working position, it is determined as No in step S15, and the process proceeds to step S16.
 ここで、図2に示すように、自動操舵制御部30は、刈取昇降操作具44の操作信号を受け取るように構成されている。そして、自動操舵制御部30は、この操作信号に基づいて、刈取部Hを非作業位置に移動させるための操作が行われたか否かを判定可能に構成されている。 Here, as shown in FIG. 2, the automatic steering control unit 30 is configured to receive an operation signal of the cutting elevating operation tool 44. Then, the automatic steering control unit 30 is configured to be able to determine whether or not an operation for moving the cutting unit H to a non-working position has been performed based on this operation signal.
 ステップS16では、刈取部Hを非作業位置に移動させるための操作が行われたか否かが判定される。より具体的には、刈取部Hが上昇操作されたか否かが判定される。 In step S16, it is determined whether or not an operation for moving the cutting unit H to a non-working position has been performed. More specifically, it is determined whether or not the cutting unit H has been raised.
 刈取部Hが上昇操作された場合、ステップS16でYesと判定され、処理はステップS19へ移行する。また、刈取部Hが上昇操作されていない場合、ステップS16でNoと判定され、処理はステップS17へ移行する。 When the cutting unit H is raised, it is determined to be Yes in step S16, and the process proceeds to step S19. Further, when the cutting unit H is not raised, it is determined as No in step S16, and the process proceeds to step S17.
 ステップS17では、操舵操作具41から自動操舵制御部30へ送られる操舵操作具41の操作状態を示す信号に基づいて、操舵操作具41が第2操作量A2よりも大きく操作されたか否かが判定される。操舵操作具41が第2操作量A2よりも大きく操作された場合、ステップS17でYesと判定され、処理はステップS19へ移行する。また、操舵操作具41が第2操作量A2よりも大きく操作されていない場合、ステップS17でNoと判定され、処理は一旦終了する。 In step S17, whether or not the steering operation tool 41 is operated larger than the second operation amount A2 based on the signal indicating the operation state of the steering operation tool 41 sent from the steering operation tool 41 to the automatic steering control unit 30. It is judged. When the steering operating tool 41 is operated larger than the second operation amount A2, it is determined as Yes in step S17, and the process proceeds to step S19. Further, when the steering operation tool 41 is not operated larger than the second operation amount A2, it is determined as No in step S17, and the process is temporarily terminated.
 ステップS19では、モード切替部33によって、走行制御部24の制御モードが第1モードから第2モードに切り替えられる。その後、処理は一旦終了する。 In step S19, the control mode of the travel control unit 24 is switched from the first mode to the second mode by the mode switching unit 33. After that, the process ends once.
 即ち、モード切替部33は、走行制御部24の制御モードが第1モードであるとき、操舵操作具41の操作量が第2操作量A2より大きい場合、走行制御部24の制御モードを第2モードに切り替える。 That is, when the control mode of the travel control unit 24 is the first mode, the mode switching unit 33 sets the control mode of the travel control unit 24 to the second when the operation amount of the steering operating tool 41 is larger than the second operation amount A2. Switch to mode.
 尚、ステップS19において、制御モードが切り替わった後、報知部53により、走行制御部24の制御モードが第1モードから第2モードへ切り替わったことをオペレータへ知らせるための報知が行われても良い。 In step S19, after the control mode is switched, the notification unit 53 may notify the operator that the control mode of the travel control unit 24 has been switched from the first mode to the second mode. ..
 以上の説明から理解されるように、本実施形態において、上述の解除条件は、ステップS11からステップS17の何れかにおいてYesと判定されることである。しかしながら、本発明はこれに限定されず、ステップS11からステップS17のうちの一部が設けられていなくても良い。 As can be understood from the above description, in the present embodiment, the above-mentioned cancellation condition is determined to be Yes in any of steps S11 to S17. However, the present invention is not limited to this, and a part of steps S11 to S17 may not be provided.
 この場合、解除条件には、主変速レバー19が前進用操作位置FP以外の操作位置に操作されること、副変速装置11bが作業用の変速状態でなくなること、機体位置の測位状態が所定の高精度状態でなくなること、刈取部Hへの動力伝達のためのクラッチが切状態になること、刈取部Hが非作業位置に移動すること、刈取部Hを非作業位置に移動させるための操作が行われること、操舵操作具41が第2操作量A2よりも大きく操作されること、のうちの少なくとも一つが含まれている。 In this case, the release conditions are that the main shift lever 19 is operated to an operation position other than the forward operation position FP, the auxiliary transmission 11b is no longer in the shift state for work, and the positioning state of the aircraft position is predetermined. Operation for moving the cutting section H to a non-working position, moving the cutting section H to a non-working position, and disengaging the clutch for power transmission to the cutting section H. Is performed, and at least one of the steering operation tool 41 being operated larger than the second operation amount A2 is included.
 また、以上で説明したように、モード切替部33は、解除条件に含まれる複数の条件のうち、少なくとも一つが満たされた場合に、走行制御部24の制御モードを第2モードに切り替えるように構成されている。 Further, as described above, the mode switching unit 33 switches the control mode of the traveling control unit 24 to the second mode when at least one of the plurality of conditions included in the release condition is satisfied. It is configured.
 しかしながら、本発明はこれに限定されない。モード切替部33は、解除条件に含まれる複数の条件のうち、二つ以上の所定個数の条件が満たされた場合に走行制御部24の制御モードを第2モードに切り替えるように構成されていても良い。 However, the present invention is not limited to this. The mode switching unit 33 is configured to switch the control mode of the traveling control unit 24 to the second mode when two or more predetermined number of conditions are satisfied among the plurality of conditions included in the release condition. Is also good.
 ここで、第1判定ルーチンによって、基準方位TAが決定されると共に、走行制御部24の制御モードが第2モードから第1モードに切り替わる場合について、例を挙げて説明する。 Here, a case where the reference direction TA is determined by the first determination routine and the control mode of the traveling control unit 24 is switched from the second mode to the first mode will be described with an example.
 図8及び図9に示す例では、コンバイン1は、圃場における外周側を走行している。図8において、コンバイン1は、まず、圃場の北東部の第1地点P1から圃場に進入する。このとき、走行制御部24の制御モードは第2モードである。また、このとき、基準方位TAは、まだ決定されていないものとする。そして、コンバイン1は、圃場の北端において、西へ向かって走行する。 In the examples shown in FIGS. 8 and 9, the combine 1 runs on the outer peripheral side of the field. In FIG. 8, the combine 1 first enters the field from the first point P1 in the northeastern part of the field. At this time, the control mode of the traveling control unit 24 is the second mode. At this time, it is assumed that the reference direction TA has not been determined yet. Then, the combine 1 travels toward the west at the northern end of the field.
 次に、コンバイン1は、第2地点P2を通過する。この時点で、オペレータが、操舵操作具41を直進状態に操作するものとする。これにより、コンバイン1は、第2地点P2から直進する。 Next, combine 1 passes through the second point P2. At this point, it is assumed that the operator operates the steering operation tool 41 in a straight-ahead state. As a result, the combine 1 goes straight from the second point P2.
 この例では、コンバイン1が第2地点P2を通過してから第3地点P3に到達するまでの間、オペレータは、操舵操作具41を操作しないものとする。また、第2地点P2から第3地点P3までの距離が、所定距離D1であるとする。また、コンバイン1が第3地点P3に到達した時点で、図6に示した第1判定ルーチンのステップS01からステップS05でYesと判定される状態であるとする。 In this example, it is assumed that the operator does not operate the steering operation tool 41 from the time when the combine 1 passes through the second point P2 to the time when the combine 1 reaches the third point P3. Further, it is assumed that the distance from the second point P2 to the third point P3 is the predetermined distance D1. Further, it is assumed that when the combine 1 reaches the third point P3, it is determined to be Yes in steps S01 to S05 of the first determination routine shown in FIG.
 この場合、コンバイン1が第3地点P3に到達した時点で、第1判定ルーチンのステップS06においてYesと判定される。これにより、方位決定部31は、基準方位TAを決定する。 In this case, when the combine 1 reaches the third point P3, it is determined as Yes in step S06 of the first determination routine. As a result, the direction determination unit 31 determines the reference direction TA.
 このとき、方位決定部31は、第2地点P2を第1登録地点Q1として決定する。また、方位決定部31は、第3地点P3を第2登録地点Q2として決定する。そして、方位決定部31は、第1登録地点Q1から第2登録地点Q2へ向かう直線の方向を算出し、この方向を基準方位TAとして決定する。図8において、基準方位TAは、西の方角に一致する。 At this time, the orientation determination unit 31 determines the second point P2 as the first registration point Q1. Further, the orientation determination unit 31 determines the third point P3 as the second registration point Q2. Then, the direction determination unit 31 calculates the direction of the straight line from the first registration point Q1 to the second registration point Q2, and determines this direction as the reference direction TA. In FIG. 8, the reference direction TA coincides with the west direction.
 その後、経路算出部32は、平面視で衛星測位モジュール80の位置を通ると共に基準方位TAに沿う方向の走行ラインを常時算出する。この例において、経路算出部32は、東西方向に延びる走行ラインを算出することとなる。 After that, the route calculation unit 32 constantly calculates the traveling line in the direction along the reference direction TA while passing through the position of the satellite positioning module 80 in a plan view. In this example, the route calculation unit 32 calculates a traveling line extending in the east-west direction.
 ただし、この例では、基準方位TAが算出された直後に、走行制御部24の制御モードが第2モードから第1モードに切り替わる。そのため、基準方位TAが算出された直後に、走行ラインが固定され、自動操舵目標ラインGLとなる。また、この自動操舵目標ラインGLは、第2地点P2と第3地点P3とを通ることとなる。また、この自動操舵目標ラインGLは、圃場の北端部において、東西方向に延びている。 However, in this example, the control mode of the traveling control unit 24 is switched from the second mode to the first mode immediately after the reference direction TA is calculated. Therefore, immediately after the reference direction TA is calculated, the traveling line is fixed and becomes the automatic steering target line GL. Further, this automatic steering target line GL passes through the second point P2 and the third point P3. Further, this automatic steering target line GL extends in the east-west direction at the northern end of the field.
 そして、図8に示すように、コンバイン1は、第3地点P3から、自動操舵走行を開始する。これにより、コンバイン1は、圃場の北端において西へ向かって自動操舵走行を行う。 Then, as shown in FIG. 8, the combine 1 starts the automatic steering running from the third point P3. As a result, the combine 1 automatically steers toward the west at the northern end of the field.
 その後、コンバイン1が圃場の西端に到達すると、オペレータは、操舵操作具41を左側へ第2操作量A2よりも大きく操作して、コンバイン1の進行方向を南方へ変更する。これにより、図7に示した第2判定ルーチンのステップS17においてYesと判定され、走行制御部24の制御モードが第1モードから第2モードに切り替わる。 After that, when the combine 1 reaches the western end of the field, the operator operates the steering operation tool 41 to the left side more than the second operation amount A2 to change the traveling direction of the combine 1 to the south. As a result, it is determined as Yes in step S17 of the second determination routine shown in FIG. 7, and the control mode of the traveling control unit 24 is switched from the first mode to the second mode.
 この時点で、経路算出部32により算出された走行ラインの固定は解除される。そして、この時点から、経路算出部32は、平面視で衛星測位モジュール80の位置を通ると共に基準方位TAに沿う方向の走行ラインを常時算出する。この例において、経路算出部32は、東西方向に延びる走行ラインを算出することとなる。 At this point, the fixing of the traveling line calculated by the route calculation unit 32 is released. Then, from this point in time, the route calculation unit 32 constantly calculates a traveling line in the direction along the reference direction TA while passing through the position of the satellite positioning module 80 in a plan view. In this example, the route calculation unit 32 calculates a traveling line extending in the east-west direction.
 そして、図9に示すように、コンバイン1は、第4地点P4を通過する。この時点で、オペレータが、操舵操作具41を直進状態に操作するものとする。これにより、コンバイン1は、第4地点P4から直進する。 Then, as shown in FIG. 9, the combine 1 passes through the fourth point P4. At this point, it is assumed that the operator operates the steering operation tool 41 in a straight-ahead state. As a result, the combine 1 goes straight from the fourth point P4.
 この例では、コンバイン1が第4地点P4を通過してから第5地点P5に到達するまでの間、オペレータは、操舵操作具41を操作しないものとする。また、第4地点P4から第5地点P5までの距離が、所定距離D1であるとする。また、コンバイン1が第5地点P5に到達した時点で、図6に示した第1判定ルーチンのステップS01からステップS05でYesと判定される状態であるとする。 In this example, it is assumed that the operator does not operate the steering operation tool 41 from the time when the combine 1 passes through the fourth point P4 to the time when the combine 1 reaches the fifth point P5. Further, it is assumed that the distance from the fourth point P4 to the fifth point P5 is the predetermined distance D1. Further, it is assumed that when the combine 1 reaches the fifth point P5, it is determined to be Yes in steps S01 to S05 of the first determination routine shown in FIG.
 この場合、コンバイン1が第5地点P5に到達した時点で、第1判定ルーチンのステップS06においてYesと判定される。これにより、方位決定部31は、新たな基準方位TAを決定することにより、基準方位TAを更新する。 In this case, when the combine 1 reaches the fifth point P5, it is determined as Yes in step S06 of the first determination routine. As a result, the direction determination unit 31 updates the reference direction TA by determining a new reference direction TA.
 このとき、方位決定部31は、既に決定されていた基準方位TAを破棄する。即ち、図8に示した西向きの基準方位TAは、この時点で破棄される。そして、方位決定部31は、第4地点P4を第1登録地点Q1として決定する。また、方位決定部31は、第5地点P5を第2登録地点Q2として決定する。そして、方位決定部31は、第1登録地点Q1から第2登録地点Q2へ向かう直線の方向を算出し、この方向を基準方位TAとして決定する。図9において、基準方位TAは、南の方角に一致する。 At this time, the direction determination unit 31 discards the already determined reference direction TA. That is, the westward reference direction TA shown in FIG. 8 is discarded at this point. Then, the direction determination unit 31 determines the fourth point P4 as the first registration point Q1. Further, the orientation determination unit 31 determines the fifth point P5 as the second registration point Q2. Then, the direction determination unit 31 calculates the direction of the straight line from the first registration point Q1 to the second registration point Q2, and determines this direction as the reference direction TA. In FIG. 9, the reference directional TA coincides with the south direction.
 その後、経路算出部32は、平面視で衛星測位モジュール80の位置を通ると共に基準方位TAに沿う方向の走行ラインを常時算出する。この例において、経路算出部32は、南北方向に延びる走行ラインを算出することとなる。 After that, the route calculation unit 32 constantly calculates the traveling line in the direction along the reference direction TA while passing through the position of the satellite positioning module 80 in a plan view. In this example, the route calculation unit 32 calculates a traveling line extending in the north-south direction.
 ただし、この例では、基準方位TAが算出された直後に、走行制御部24の制御モードが第2モードから第1モードに切り替わる。そのため、基準方位TAが算出された直後に、走行ラインが固定され、自動操舵目標ラインGLとなる。また、この自動操舵目標ラインGLは、第4地点P4と第5地点P5とを通ることとなる。また、この自動操舵目標ラインGLは、圃場の西端部において、南北方向に延びている。 However, in this example, the control mode of the traveling control unit 24 is switched from the second mode to the first mode immediately after the reference direction TA is calculated. Therefore, immediately after the reference direction TA is calculated, the traveling line is fixed and becomes the automatic steering target line GL. Further, this automatic steering target line GL will pass through the fourth point P4 and the fifth point P5. Further, this automatic steering target line GL extends in the north-south direction at the western end of the field.
 そして、図9に示すように、コンバイン1は、第5地点P5から、自動操舵走行を開始する。これにより、コンバイン1は、圃場の西端において南へ向かって自動操舵走行を行う。 Then, as shown in FIG. 9, the combine 1 starts the automatic steering running from the fifth point P5. As a result, the combine 1 automatically steers toward the south at the western end of the field.
 〔方位変更処理について〕
 方位決定部31は、方位変更処理を実行可能に構成されている。方位変更処理とは、走行制御部24の制御モードが第1モードであるとき、人為操作具45の操作に応じて、基準方位TA、または、自動操舵目標ラインGLの方向を変更する処理である。
[About direction change processing]
The direction determination unit 31 is configured to be able to execute the direction change process. The direction change process is a process of changing the direction of the reference direction TA or the automatic steering target line GL according to the operation of the artificial operation tool 45 when the control mode of the travel control unit 24 is the first mode. ..
 即ち、方位決定部31は、走行制御部24の制御モードが第1モードであるとき、人為操作具45の操作に応じて、基準方位TA、または、自動操舵目標ラインGLの方向を変更する処理である方位変更処理を実行する。 That is, the directional determination unit 31 changes the direction of the reference directional direction TA or the automatic steering target line GL according to the operation of the artificial operating tool 45 when the control mode of the traveling control unit 24 is the first mode. Executes the direction change process.
 以下では、方位決定部31により方位変更処理が実行される場合について、例を挙げて説明する。 In the following, a case where the direction change process is executed by the direction determination unit 31 will be described with an example.
 図10から図12に示す例と、図13及び図14に示す例と、では、コンバイン1は、圃場の東端において、北へ向かって走行している。また、この圃場の東端における境界OBは、図10に示す第6地点P6において折れ曲がっている。圃場の境界OBのうち、第6地点P6よりも南側の部分は南北方向に沿って延びている。また、圃場の境界OBのうち、第6地点P6よりも北側の部分は、第6地点P6から北東方向へ延びている。 In the examples shown in FIGS. 10 to 12 and the examples shown in FIGS. 13 and 14, the combine 1 is traveling northward at the eastern end of the field. Further, the boundary OB at the eastern end of this field is bent at the sixth point P6 shown in FIG. Of the boundary OB of the field, the part on the south side of the sixth point P6 extends in the north-south direction. Further, the portion of the boundary OB of the field on the north side of the sixth point P6 extends in the northeast direction from the sixth point P6.
 まず、図10から図12に示す例について説明する。 First, the examples shown in FIGS. 10 to 12 will be described.
 図10において、コンバイン1は、南北方向に延びる第1目標ラインGL1に沿って自動操舵走行を行っている。第1目標ラインGL1は、自動操舵目標ラインGLである。このとき、走行制御部24の制御モードは第1モードである。また、このときの基準方位TAは、北向きであるものとする。 In FIG. 10, the combine 1 is automatically steering along the first target line GL1 extending in the north-south direction. The first target line GL1 is an automatic steering target line GL. At this time, the control mode of the traveling control unit 24 is the first mode. Further, the reference directional TA at this time is assumed to be facing north.
 この例においては、図11に示すように、コンバイン1が第6地点P6に到達した時点で、オペレータが、操舵操作具41を右第1操作位置R1と右第2操作位置R2との間の位置まで操作したものとする。これにより、操舵操作具41は、右側へ第1操作量A1以上且つ第2操作量A2以下の操作量で操作されたこととなる。 In this example, as shown in FIG. 11, when the combine 1 reaches the sixth point P6, the operator moves the steering operation tool 41 between the right first operation position R1 and the right second operation position R2. It is assumed that the operation is performed up to the position. As a result, the steering operation tool 41 is operated to the right with an operation amount of 1st operation amount A1 or more and 2nd operation amount A2 or less.
 この操作に応じて、方位決定部31は、方位変更処理を実行する。本実施形態における方位変更処理では、自動操舵目標ラインGLの方向が、操舵操作具41の操作方向に従って変更されるものとする。この例では操舵操作具41が右側へ操作されたため、自動操舵目標ラインGLの方向が、平面視で右回りに所定角度だけ変更される。 In response to this operation, the direction determination unit 31 executes the direction change process. In the direction change process in the present embodiment, the direction of the automatic steering target line GL is changed according to the operation direction of the steering operation tool 41. In this example, since the steering operation tool 41 is operated to the right, the direction of the automatic steering target line GL is changed clockwise by a predetermined angle in a plan view.
 これにより、新たな自動操舵目標ラインGLである第2目標ラインGL2が算出される。 As a result, the second target line GL2, which is a new automatic steering target line GL, is calculated.
 このように、方位決定部31は、走行制御部24の制御モードが第1モードであるとき、操舵操作具41の操作量が第1操作量A1以上且つ第2操作量A2以下である場合、方位変更処理を実行する。 As described above, when the control mode of the traveling control unit 24 is the first mode, the direction determination unit 31 determines that the operation amount of the steering operation tool 41 is the first operation amount A1 or more and the second operation amount A2 or less. Execute the direction change process.
 尚、仮に、操舵操作具41が左側へ第1操作量A1以上且つ第2操作量A2以下の操作量で操作された場合は、自動操舵目標ラインGLの方向が、平面視で左回りに所定角度だけ変更される。 If the steering operation tool 41 is operated to the left with an operation amount of 1st operation amount A1 or more and 2nd operation amount A2 or less, the direction of the automatic steering target line GL is determined counterclockwise in a plan view. Only the angle is changed.
 また、このときの所定角度は、任意に設定することが可能である。所定角度は、例えば0.5度である。 In addition, the predetermined angle at this time can be set arbitrarily. The predetermined angle is, for example, 0.5 degrees.
 また、仮に、操舵操作具41の操作量が第1操作量A1未満である場合は、方位決定部31は、方位変更処理を実行しない。 If the operating amount of the steering operating tool 41 is less than the first operating amount A1, the directional determination unit 31 does not execute the directional change process.
 即ち、方位決定部31は、走行制御部24の制御モードが第1モードであるとき、操舵操作具41の操作量が第1操作量A1未満である場合、方位変更処理を実行しない。 That is, when the control mode of the traveling control unit 24 is the first mode, the directional determination unit 31 does not execute the directional change process when the operation amount of the steering operation tool 41 is less than the first operation amount A1.
 また、方位変更処理によって方向が変更された後の自動操舵目標ラインGLは、平面視で衛星測位モジュール80の位置を通るように算出されても良いし、衛星測位モジュール80から機体前方に予め決められた距離だけ離れた位置を通るように算出されても良いし、刈取部Hの刈幅中心を通るように算出されても良い。 Further, the automatic steering target line GL after the direction is changed by the directional change process may be calculated so as to pass the position of the satellite positioning module 80 in a plan view, or may be determined in advance from the satellite positioning module 80 in front of the aircraft. It may be calculated so as to pass through a position separated by a specified distance, or it may be calculated to pass through the center of the cutting width of the cutting portion H.
 また、この例では、新たな自動操舵目標ラインGLである第2目標ラインGL2が算出されると同時に、古い自動操舵目標ラインGLである第1目標ラインGL1は破棄される。しかしながら、本発明はこれに限定されない。新たな自動操舵目標ラインGLが算出されたとき、古い自動操舵目標ラインGLは破棄されず、記憶されたままでも良い。 Further, in this example, the second target line GL2, which is the new automatic steering target line GL, is calculated, and at the same time, the first target line GL1 which is the old automatic steering target line GL is discarded. However, the present invention is not limited to this. When the new automatic steering target line GL is calculated, the old automatic steering target line GL may not be discarded and may be stored.
 図12に示すように、方位変更処理の実行後は、コンバイン1は、第2目標ラインGL2に沿って自動操舵走行を行う。尚、図10に示す状態から、図12に示す状態まで、走行制御部24の制御モードは第1モードであり続ける。 As shown in FIG. 12, after the direction change process is executed, the combine 1 automatically steers along the second target line GL2. From the state shown in FIG. 10 to the state shown in FIG. 12, the control mode of the traveling control unit 24 continues to be the first mode.
 また、以上で説明した例では、方位変更処理により、自動操舵目標ラインGLの方向が変更されたが、本発明はこれに限定されない。方位変更処理により、基準方位TAが変更されても良い。例えば、図11に示す状態において、北向きの基準方位TAが、方位変更処理によって北東向きの基準方位TAに変更されても良い。この場合、経路算出部32が、変更後の基準方位TAに沿う自動操舵目標ラインGLを算出することにより、新たな自動操舵目標ラインGLが算出される。 Further, in the example described above, the direction of the automatic steering target line GL is changed by the direction change process, but the present invention is not limited to this. The reference directional TA may be changed by the directional change process. For example, in the state shown in FIG. 11, the north-facing reference direction TA may be changed to the northeast-facing reference direction TA by the direction change process. In this case, the route calculation unit 32 calculates the automatic steering target line GL along the changed reference direction TA, so that a new automatic steering target line GL is calculated.
 また、本実施形態においては、図2に示すように、方位変更処理の実行に際して、自動操舵制御部30は、所定の信号を報知部53へ送る。この信号に応じて、報知部53は、方位変更処理の実行をオペレータへ知らせるための報知を行う。 Further, in the present embodiment, as shown in FIG. 2, the automatic steering control unit 30 sends a predetermined signal to the notification unit 53 when the direction change process is executed. In response to this signal, the notification unit 53 notifies the operator of the execution of the direction change process.
 尚、この報知は、方位変更処理の実行前に行われても良いし、方位変更処理の実行と同時に行われても良いし、方位変更処理の実行後に行われても良い。 Note that this notification may be performed before the execution of the direction change process, at the same time as the execution of the direction change process, or after the execution of the direction change process.
 次に、図13及び図14に示す例について説明する。 Next, the examples shown in FIGS. 13 and 14 will be described.
 図13に示す状態では、図11と同様に、コンバイン1が第6地点P6に到達した時点で、オペレータが、操舵操作具41を右第1操作位置R1と右第2操作位置R2との間の位置まで操作したものとする。これにより、上記で説明した方位変更処理が実行される。 In the state shown in FIG. 13, as in FIG. 11, when the combine 1 reaches the sixth point P6, the operator moves the steering operation tool 41 between the right first operation position R1 and the right second operation position R2. It is assumed that the operation is performed up to the position of. As a result, the direction change process described above is executed.
 しかしながら、図13に示す状態では、図11とは異なり、第2目標ラインGL2が算出された時点で、圃場の傾斜等の影響により、既に、コンバイン1の機体10の向きが第2目標ラインGL2に沿っているものとする。 However, in the state shown in FIG. 13, unlike FIG. 11, when the second target line GL2 is calculated, the direction of the body 10 of the combine 1 is already the second target line GL2 due to the influence of the inclination of the field and the like. It shall be in line with.
 このように、方位変更処理により新たな自動操舵目標ラインGLが算出された際、既に、機体10の向きがその自動操舵目標ラインGLに沿っている場合、走行制御部24は、図14に示すように、応答旋回制御を実行する。応答旋回制御とは、走行制御部24の制御モードが第1モードであるとき、人為操作具45の操作に応じて、人為操作具45の操作方向への一時的な旋回動作が行われるように機体10の走行を制御することである。 As described above, when the new automatic steering target line GL is calculated by the direction change process and the direction of the aircraft 10 is already along the automatic steering target line GL, the traveling control unit 24 shows in FIG. As such, the response turning control is executed. The response turning control means that when the control mode of the traveling control unit 24 is the first mode, a temporary turning operation in the operation direction of the artificial operating tool 45 is performed in response to the operation of the artificial operating tool 45. It is to control the traveling of the machine body 10.
 即ち、走行制御部24は、走行制御部24の制御モードが第1モードであるとき、人為操作具45の操作に応じて、人為操作具45の操作方向への一時的な旋回動作が行われるように機体10の走行を制御する応答旋回制御を実行可能である。 That is, when the control mode of the travel control unit 24 is the first mode, the travel control unit 24 performs a temporary turning operation in the operation direction of the artificial operation tool 45 in response to the operation of the artificial operation tool 45. As described above, it is possible to execute response turning control for controlling the traveling of the aircraft 10.
 図14では、応答旋回制御の一例が示されている。この例においては、上述の通り、オペレータが操舵操作具41を右側へ操作したため、走行制御部24は、右側への一時的な旋回動作が行われるように機体10の走行を制御する。 FIG. 14 shows an example of response turning control. In this example, as described above, since the operator operates the steering operation tool 41 to the right side, the travel control unit 24 controls the travel of the aircraft 10 so that a temporary turning operation to the right side is performed.
 これにより、図14に示すように、コンバイン1は、第2目標ラインGL2に対して右側へ一時的に旋回する。その後、走行制御部24は、第2目標ラインGL2に沿う自動操舵走行が行われるように、機体10の走行を制御する。 As a result, as shown in FIG. 14, the combine 1 temporarily turns to the right with respect to the second target line GL2. After that, the travel control unit 24 controls the travel of the aircraft 10 so that the automatic steering travel along the second target line GL2 is performed.
 尚、この一時的な旋回動作は、微小な旋回動作であることが好ましい。そのため、図14に示す例では、この一時的な旋回動作によって、第2目標ラインGL2に対して右方向へはほとんど移動しない。 It is preferable that this temporary turning motion is a minute turning motion. Therefore, in the example shown in FIG. 14, this temporary turning motion hardly moves to the right with respect to the second target line GL2.
 以上で説明した構成であれば、走行制御部24の制御モードが第1モードであるとき、機体10は自動操舵走行を行うこととなる。そして、自動操舵走行中に、オペレータが人為操作具45を操作すると、方位変更処理が実行される。これにより、基準方位TA、または、自動操舵目標ラインGLの方向が変更される。その結果、自動操舵走行での進行方向が変化することとなる。 With the configuration described above, when the control mode of the travel control unit 24 is the first mode, the aircraft 10 will perform automatic steering travel. Then, when the operator operates the artificial operating tool 45 during the automatic steering running, the directional change process is executed. As a result, the direction of the reference direction TA or the automatic steering target line GL is changed. As a result, the traveling direction in the automatic steering running changes.
 従って、以上で説明した構成であれば、自動操舵走行中に、自動操舵走行での進行方向を変更可能なコンバイン1を実現できる。 Therefore, with the configuration described above, it is possible to realize the combine 1 that can change the traveling direction in the automatic steering running during the automatic steering running.
 〔角度シフト量の設定について〕
 コンバイン1に備わる通信端末4は、ディスプレイ4bに、角度シフト量設定画面を表示可能に構成されている。図16及び図17に示す通信端末4のディスプレイ4bには、角度シフト量設定画面が表示されている。
[About setting the angle shift amount]
The communication terminal 4 provided in the combine 1 is configured to be able to display an angle shift amount setting screen on the display 4b. The angle shift amount setting screen is displayed on the display 4b of the communication terminal 4 shown in FIGS. 16 and 17.
 通信端末4は、人為的な操作入力を受け付けるように構成されている。詳述すると、ディスプレイ4bは、タッチ操作可能に構成されている。オペレータは、ディスプレイ4bにタッチ操作を行うことにより、通信端末4への操作入力を行うことができる。 The communication terminal 4 is configured to accept artificial operation input. More specifically, the display 4b is configured to be touch-operable. The operator can perform an operation input to the communication terminal 4 by performing a touch operation on the display 4b.
 図16に示すように、角度シフト量設定画面には、角度シフト量表示部70、プラスボタン71、マイナスボタン72が表示されている。角度シフト量表示部70には、角度シフト量が表示される。尚、角度シフト量とは、方位変更処理における基準方位TAまたは自動操舵目標ラインGLの方向の変更量である。 As shown in FIG. 16, the angle shift amount display unit 70, the plus button 71, and the minus button 72 are displayed on the angle shift amount setting screen. The angle shift amount display unit 70 displays the angle shift amount. The angle shift amount is the amount of change in the direction of the reference direction TA or the automatic steering target line GL in the direction change process.
 図16に示す例では、角度シフト量表示部70に、「0.5°」と表示されている。これにより、角度シフト量が0.5°に設定されていることが示されている。 In the example shown in FIG. 16, "0.5 °" is displayed on the angle shift amount display unit 70. This indicates that the angle shift amount is set to 0.5 °.
 尚、図16に示すように、角度シフト量設定画面においては、角度シフト量表示部70の他に、種々のパラメータを表示する一つまたは複数の表示部が設けられていても良い。図16では、このような表示部が、角度シフト量表示部70よりも下側に設けられている。 As shown in FIG. 16, the angle shift amount setting screen may be provided with one or more display units for displaying various parameters in addition to the angle shift amount display unit 70. In FIG. 16, such a display unit is provided below the angle shift amount display unit 70.
 プラスボタン71及びマイナスボタン72は、タッチ操作可能なボタンである。オペレータがプラスボタン71をタッチ操作する度に、所定の信号が方位決定部31へ送られる。この信号は、プラスボタン71がタッチ操作されたことを示す信号である。 The plus button 71 and the minus button 72 are touch-operable buttons. Every time the operator touches the plus button 71, a predetermined signal is sent to the direction determination unit 31. This signal is a signal indicating that the plus button 71 has been touch-operated.
 ここで、方位決定部31は、現在設定されている角度シフト量を記憶している。そして、方位決定部31は、プラスボタン71がタッチ操作されたことを示す信号を受け取ると、角度シフト量を所定角度だけ増加させる。そして、方位決定部31は、増加後の角度シフト量を記憶する。 Here, the direction determination unit 31 stores the currently set angle shift amount. Then, when the directional determination unit 31 receives a signal indicating that the plus button 71 has been touch-operated, the azimuth determination unit 31 increases the angle shift amount by a predetermined angle. Then, the directional determination unit 31 stores the angle shift amount after the increase.
 この構成により、オペレータがプラスボタン71をタッチ操作する度に、角度シフト量が所定角度刻みで増加する。 With this configuration, the angle shift amount increases in predetermined angle increments each time the operator touches the plus button 71.
 また、オペレータがマイナスボタン72をタッチ操作する度に、所定の信号が方位決定部31へ送られる。この信号は、マイナスボタン72がタッチ操作されたことを示す信号である。 Further, every time the operator touches the minus button 72, a predetermined signal is sent to the direction determination unit 31. This signal is a signal indicating that the minus button 72 has been touch-operated.
 方位決定部31は、マイナスボタン72がタッチ操作されたことを示す信号を受け取ると、角度シフト量を所定角度だけ減少させる。そして、方位決定部31は、減少後の角度シフト量を記憶する。 When the directional determination unit 31 receives a signal indicating that the minus button 72 has been touch-operated, the azimuth determination unit 31 reduces the angle shift amount by a predetermined angle. Then, the directional determination unit 31 stores the angle shift amount after the decrease.
 この構成により、オペレータがマイナスボタン72をタッチ操作する度に、角度シフト量が所定角度刻みで減少する。 With this configuration, each time the operator touches the minus button 72, the angle shift amount is reduced in predetermined angle increments.
 以上で説明した構成により、通信端末4は、操作入力によって、方位変更処理における基準方位TAまたは自動操舵目標ラインGLの方向の変更量を所定角度刻みで変更可能に構成されている。また、コンバイン1は、人為的な操作入力を受け付けると共に、方位変更処理における基準方位TAまたは自動操舵目標ラインGLの方向の変更量を、操作入力によって設定可能な通信端末4を備えている。 With the configuration described above, the communication terminal 4 is configured to be able to change the amount of change in the direction of the reference direction TA or the automatic steering target line GL in the direction change process in a predetermined angle step by the operation input. Further, the combine 1 is provided with a communication terminal 4 that accepts an artificial operation input and can set the amount of change in the direction of the reference direction TA or the automatic steering target line GL in the direction change process by the operation input.
 本実施形態において、この所定角度は、0.1°である。即ち、通信端末4は、操作入力によって、方位変更処理における基準方位TAまたは自動操舵目標ラインGLの方向の変更量を0.1°刻みで変更可能に構成されている。ただし、本発明はこれに限定されず、この所定角度は、0.1°以外のいかなる角度であっても良い。 In this embodiment, this predetermined angle is 0.1 °. That is, the communication terminal 4 is configured to be able to change the amount of change in the direction of the reference direction TA or the automatic steering target line GL in the direction change process in increments of 0.1 ° by the operation input. However, the present invention is not limited to this, and the predetermined angle may be any angle other than 0.1 °.
 また、本実施形態において、通信端末4は、機体10の走行中には、ディスプレイ4bに角度シフト量設定画面を表示しないように構成されている。また、ディスプレイ4bに角度シフト量設定画面が表示された状態で機体10が走行を開始した場合、プラスボタン71及びマイナスボタン72は、タッチ操作を受け付けない状態となる。 Further, in the present embodiment, the communication terminal 4 is configured not to display the angle shift amount setting screen on the display 4b while the machine body 10 is traveling. Further, when the machine body 10 starts traveling while the angle shift amount setting screen is displayed on the display 4b, the plus button 71 and the minus button 72 are in a state of not accepting the touch operation.
 このように、通信端末4は、機体10の走行中には、基準方位TAまたは自動操舵目標ラインGLの方向の変更量を設定するための操作入力を受け付けないように構成されている。 As described above, the communication terminal 4 is configured not to accept the operation input for setting the change amount of the direction of the reference direction TA or the automatic steering target line GL while the aircraft 10 is traveling.
 尚、角度シフト量には、上限値が設けられていても良い。角度シフト量の上限値は、特に限定されないが、例えば2.0°であっても良い。 An upper limit may be set for the angle shift amount. The upper limit of the angle shift amount is not particularly limited, but may be, for example, 2.0 °.
 通信端末4は、方位決定部31の制御モードを、許可モードと禁止モードとの間で切り替えることができるように構成されている。許可モードとは、方位変更処理の実行が許可されるモードである。禁止モードとは、方位変更処理の実行が禁止されるモードである。 The communication terminal 4 is configured so that the control mode of the direction determination unit 31 can be switched between the allow mode and the prohibition mode. The permission mode is a mode in which execution of the direction change process is permitted. The prohibition mode is a mode in which the execution of the direction change process is prohibited.
 即ち、方位決定部31の制御モードは、方位変更処理の実行が許可される許可モードと、方位変更処理の実行が禁止される禁止モードと、の間で切り替え可能である。 That is, the control mode of the directional control unit 31 can be switched between a permission mode in which the execution of the directional change process is permitted and a prohibition mode in which the execution of the directional change process is prohibited.
 詳述すると、通信端末4は、角度シフト量を減少させる操作入力に応じて、方位決定部31の制御モードを、許可モードから禁止モードへ切り替える。より具体的には、角度シフト量が0.1°に設定されている状態で、オペレータがマイナスボタン72をタッチ操作すると、通信端末4は、方位決定部31の制御モードを、許可モードから禁止モードへ切り替える。方位決定部31の制御モードが禁止モードである場合、図17に示すように、角度シフト量表示部70に、「なし」と表示される。 More specifically, the communication terminal 4 switches the control mode of the directional determination unit 31 from the permit mode to the prohibit mode in response to the operation input for reducing the angle shift amount. More specifically, when the operator touches the minus button 72 while the angle shift amount is set to 0.1 °, the communication terminal 4 prohibits the control mode of the direction determination unit 31 from the permission mode. Switch to mode. When the control mode of the directional determination unit 31 is the prohibition mode, “None” is displayed on the angle shift amount display unit 70 as shown in FIG.
 また、通信端末4は、角度シフト量を増加させる操作入力に応じて、方位決定部31の制御モードを、禁止モードから許可モードへ切り替える。より具体的には、方位決定部31の制御モードが禁止モードである状態で、オペレータがプラスボタン71をタッチ操作すると、通信端末4は、方位決定部31の制御モードを、禁止モードから許可モードへ切り替える。方位決定部31の制御モードが許可モードである場合、図16に示すように、角度シフト量表示部70に、現在設定されている角度シフト量が表示される。 Further, the communication terminal 4 switches the control mode of the directional determination unit 31 from the prohibition mode to the permission mode in response to the operation input for increasing the angle shift amount. More specifically, when the operator touches the plus button 71 while the control mode of the directional determination unit 31 is the prohibited mode, the communication terminal 4 changes the control mode of the directional determination unit 31 from the prohibited mode to the permitted mode. Switch to. When the control mode of the azimuth determination unit 31 is the permission mode, as shown in FIG. 16, the angle shift amount display unit 70 displays the currently set angle shift amount.
 このように、通信端末4は、操作入力によって方位決定部31の制御モードを切り替え可能に構成されている。 As described above, the communication terminal 4 is configured so that the control mode of the direction determination unit 31 can be switched by the operation input.
 ここで、自動操舵制御部30(図2参照)は、走行制御部24の制御モードが第1モードであるとき、図18に示す第3判定ルーチンに従って、方位変更処理を実行するか否かを決定する。この第3判定ルーチンは、自動操舵制御部30に格納されている。自動操舵制御部30は、この第3判定ルーチンを、走行制御部24の制御モードが第1モードであるときに、一定時間毎に繰り返し実行する。 Here, the automatic steering control unit 30 (see FIG. 2) determines whether or not to execute the directional change process according to the third determination routine shown in FIG. 18 when the control mode of the travel control unit 24 is the first mode. decide. This third determination routine is stored in the automatic steering control unit 30. The automatic steering control unit 30 repeatedly executes this third determination routine at regular time intervals when the control mode of the travel control unit 24 is the first mode.
 以下では、図18を参照し、第3判定ルーチンについて説明する。 Hereinafter, the third determination routine will be described with reference to FIG.
 第3判定ルーチンが開始されると、まず、ステップS21の処理が実行される。ステップS21では、操舵操作具41から自動操舵制御部30へ送られる操舵操作具41の操作状態を示す信号に基づいて、操舵操作具41が操作されたか否かが判定される。操舵操作具41が操作されていない場合、ステップS21でNoと判定され、処理は一旦終了する。また、操舵操作具41が操作されている場合、ステップS21でYesと判定され、処理はステップS22へ移行する。 When the third determination routine is started, the process of step S21 is first executed. In step S21, it is determined whether or not the steering operation tool 41 has been operated based on the signal indicating the operation state of the steering operation tool 41 sent from the steering operation tool 41 to the automatic steering control unit 30. If the steering operating tool 41 is not operated, it is determined as No in step S21, and the process ends once. Further, when the steering operation tool 41 is operated, it is determined as Yes in step S21, and the process proceeds to step S22.
 ステップS22では、操舵操作具41の操作量が第1操作量A1よりも小さいか否かが判定される。操舵操作具41の操作量が第1操作量A1よりも小さい場合、ステップS22でYesと判定され、処理は一旦終了する。また、操舵操作具41の操作量が第1操作量A1以上である場合、ステップS22でNoと判定され、処理はステップS23へ移行する。 In step S22, it is determined whether or not the operation amount of the steering operation tool 41 is smaller than the first operation amount A1. When the operation amount of the steering operation tool 41 is smaller than the first operation amount A1, it is determined as Yes in step S22, and the process is temporarily terminated. Further, when the operation amount of the steering operation tool 41 is equal to or more than the first operation amount A1, it is determined as No in step S22, and the process proceeds to step S23.
 尚、本発明はこれに限定されず、操舵操作具41は、操作量が第1操作量A1よりも小さいときには、操舵操作具41の操作による信号が走行制御部24及び自動操舵制御部30へ送られないように構成されていても良い。言い換えれば、コンバイン1は、操舵操作具41の操作量が第1操作量A1よりも小さいときには、操舵操作具41が操作されていないときと同じ状態となるように構成されていても良い。この場合、ステップS22が設けられておらず、且つ、ステップS21において、操舵操作具41の操作量が第1操作量A1よりも小さい場合はNoと判定され、操舵操作具41の操作量が第1操作量A1以上である場合はYesと判定される構成であっても良い。 The present invention is not limited to this, and when the operation amount of the steering operation tool 41 is smaller than the first operation amount A1, the signal by the operation of the steering operation tool 41 is sent to the traveling control unit 24 and the automatic steering control unit 30. It may be configured not to be sent. In other words, the combine 1 may be configured to be in the same state as when the steering operation tool 41 is not operated when the operation amount of the steering operation tool 41 is smaller than the first operation amount A1. In this case, if step S22 is not provided and the operation amount of the steering operation tool 41 is smaller than the first operation amount A1 in step S21, it is determined as No, and the operation amount of the steering operation tool 41 is the first. When one operation amount is A1 or more, the configuration may be determined as Yes.
 ステップS23では、操舵操作具41の操作量が第2操作量A2以下であるか否かが判定される。操舵操作具41の操作量が第2操作量A2よりも大きい場合、ステップS23でNoと判定され、処理は一旦終了する。また、操舵操作具41の操作量が第2操作量A2以下である場合、ステップS23でYesと判定され、処理はステップS24へ移行する。 In step S23, it is determined whether or not the operation amount of the steering operation tool 41 is equal to or less than the second operation amount A2. When the operation amount of the steering operation tool 41 is larger than the second operation amount A2, it is determined as No in step S23, and the process is temporarily terminated. Further, when the operation amount of the steering operation tool 41 is equal to or less than the second operation amount A2, it is determined as Yes in step S23, and the process proceeds to step S24.
 尚、ステップS23でNoと判定された場合は、上述の第2判定ルーチン(図7参照)のステップS17でYesと判定されることとなる。その結果、モード切替部33によって、走行制御部24の制御モードが第1モードから第2モードに切り替えられる。 If No is determined in step S23, Yes is determined in step S17 of the above-mentioned second determination routine (see FIG. 7). As a result, the mode switching unit 33 switches the control mode of the traveling control unit 24 from the first mode to the second mode.
 ステップS24では、方位決定部31の制御モードが許可モードであるか否かが判定される。方位決定部31の制御モードが禁止モードである場合、ステップS24でNoと判定され、処理は一旦終了する。 In step S24, it is determined whether or not the control mode of the direction determination unit 31 is the permission mode. When the control mode of the direction determination unit 31 is the prohibition mode, No is determined in step S24, and the process ends once.
 即ち、方位決定部31は、走行制御部24の制御モードが第1モードであるとき、操舵操作具41の操作量が第1操作量A1以上且つ第2操作量A2以下であっても、方位決定部31の制御モードが禁止モードである場合は、方位変更処理を実行しない。 That is, when the control mode of the traveling control unit 24 is the first mode, the directional determination unit 31 is oriented even if the operation amount of the steering operation tool 41 is the first operation amount A1 or more and the second operation amount A2 or less. When the control mode of the determination unit 31 is the prohibition mode, the direction change process is not executed.
 尚、ステップS24でNoと判定された場合、モード切替部33によって、走行制御部24の制御モードが第1モードから第2モードに切り替えられるように構成されていても良い。 If No is determined in step S24, the mode switching unit 33 may be configured to switch the control mode of the traveling control unit 24 from the first mode to the second mode.
 方位決定部31の制御モードが許可モードである場合、ステップS24でYesと判定され、処理はステップS25へ移行する。 When the control mode of the direction determination unit 31 is the permission mode, it is determined as Yes in step S24, and the process proceeds to step S25.
 ステップS25では、上述の応答旋回制御が実行される。尚、上記の応答旋回制御についての説明では、「方位変更処理により新たな自動操舵目標ラインGLが算出された際、既に、機体10の向きがその自動操舵目標ラインGLに沿っている場合、走行制御部24は、図14に示すように、応答旋回制御を実行する。」と説明したが、これは単なる例示に過ぎず、本発明はこれに限定されない。例えば、応答旋回制御は、方位変更処理の実行前に行われても良いし、方位変更処理の実行と同時に行われても良い。また、方位変更処理により新たな自動操舵目標ラインGLが算出された際、機体10の向きがその自動操舵目標ラインGLに沿っているか否かにかかわらず、応答旋回制御が実行されても良い。 In step S25, the above-mentioned response turning control is executed. In the above description of the response turning control, "when a new automatic steering target line GL is calculated by the direction change process, if the direction of the aircraft 10 is already along the automatic steering target line GL, the vehicle travels. As shown in FIG. 14, the control unit 24 executes the response turning control. ”However, this is merely an example, and the present invention is not limited thereto. For example, the response turning control may be performed before the execution of the direction change process, or may be performed at the same time as the execution of the direction change process. Further, when a new automatic steering target line GL is calculated by the directional change process, the response turning control may be executed regardless of whether or not the direction of the aircraft 10 is along the automatic steering target line GL.
 ステップS25の後、処理はステップS26へ移行する。ステップS26では、上述の方位変更処理が実行される。その後、処理は一旦終了する。 After step S25, the process proceeds to step S26. In step S26, the above-mentioned direction change process is executed. After that, the process ends once.
 〔その他の実施形態〕
 (1)走行装置11は、ホイール式であっても良いし、セミクローラ式であっても良い。
[Other embodiments]
(1) The traveling device 11 may be a wheel type or a semi-crawler type.
 (2)人為操作具45は、操舵操作具41とは異なる部材であっても良い。例えば、図15に示すように、ステアリングホイール51が備えられると共に、ステアリングホイール51に左右の人為操作具45が設けられていても良い。この例において、人為操作具45は、ボタンである。また、ステアリングホイール51は、本発明に係る「操舵操作具」に相当する。また、この場合のステアリングホイール51の操作量は、ステアリングホイール51の回転角度である。 (2) The artificial operating tool 45 may be a member different from the steering operating tool 41. For example, as shown in FIG. 15, the steering wheel 51 may be provided, and the steering wheel 51 may be provided with left and right artificial operating tools 45. In this example, the artificial operating tool 45 is a button. Further, the steering wheel 51 corresponds to the "steering operation tool" according to the present invention. Further, the operating amount of the steering wheel 51 in this case is the rotation angle of the steering wheel 51.
 (3)自車位置算出部21、走行制御部24、自車方位算出部25、自動操舵制御部30、方位決定部31、経路算出部32、モード切替部33、直進判定部34のうち、一部または全てがコンバイン1の外部に備えられていても良いのであって、例えば、コンバイン1の外部に設けられた管理施設や管理サーバに備えられていても良い。 (3) Of the own vehicle position calculation unit 21, the travel control unit 24, the own vehicle orientation calculation unit 25, the automatic steering control unit 30, the orientation determination unit 31, the route calculation unit 32, the mode switching unit 33, and the straight-ahead determination unit 34. A part or all of them may be provided outside the combine 1, and may be provided, for example, in a management facility or a management server provided outside the combine 1.
 (4)方位決定部31は、走行制御部24の制御モードが第1モードであるとき、操舵操作具41の操作量が第2操作量A2より大きい場合、方位変更処理を実行しても良い。また、方位決定部31は、走行制御部24の制御モードが第1モードであるとき、操舵操作具41の操作量が第1操作量A1未満である場合、方位変更処理を実行しても良い。 (4) The directional control unit 31 may execute the directional change process when the control mode of the travel control unit 24 is the first mode and the operation amount of the steering operation tool 41 is larger than the second operation amount A2. .. Further, the directional control unit 31 may execute the directional change process when the control mode of the travel control unit 24 is the first mode and the operation amount of the steering operation tool 41 is less than the first operation amount A1. ..
 (5)操舵操作具41と刈取昇降操作具44とは同一の操作具であっても良く、例えば、操作レバーであっても良い。 (5) The steering operation tool 41 and the cutting elevating operation tool 44 may be the same operation tool, and may be, for example, an operation lever.
 (6)上述の開始条件に、機体方位の算出状態が所定の高精度状態であることが含まれていても良い。より具体的には、開始条件に、高精度方位算出状態であることが含まれていても良い。 (6) The above-mentioned start condition may include that the calculated state of the aircraft orientation is a predetermined high-precision state. More specifically, the start condition may include a high-precision directional calculation state.
 (7)上述の開始条件に、「機体方位が基準方位TAに対して所定角度以内であるか、または、機体方位が基準方位TAに180°を加えた方位に対して所定角度以内であること」が含まれていても良い。 (7) The above-mentioned start condition states that "the aircraft orientation is within a predetermined angle with respect to the reference direction TA, or the aircraft orientation is within a predetermined angle with respect to the orientation obtained by adding 180 ° to the reference direction TA. May be included.
 (8)直進判定部34は、機体10が所定距離D1に亘って直進したか否かを判定すると共に、機体10が所定時間に亘って直進したか否かを判定するように構成されていても良い。 (8) The straight-ahead determination unit 34 is configured to determine whether or not the aircraft 10 has traveled straight over a predetermined distance D1 and also to determine whether or not the aircraft 10 has traveled straight over a predetermined time. Is also good.
 (9)第1登録地点Q1及び第2登録地点Q2が手動で決定可能であると共に、上記実施形態にて説明した処理による基準方位TAの決定の機能を、有効と無効との間で切り替え可能に構成されていても良い。 (9) The first registration point Q1 and the second registration point Q2 can be manually determined, and the function of determining the reference direction TA by the process described in the above embodiment can be switched between valid and invalid. It may be configured in.
 例えば、コンバイン1が第1登録ボタン(図示せず)及び第2登録ボタン(図示せず)を備えると共に、第1登録ボタンが操作された時点でのコンバイン1の位置座標が第1登録地点Q1として決定され、第2登録ボタンが操作された時点でのコンバイン1の位置座標が第2登録地点Q2として決定されても良い。この場合、方位決定部31は、上記実施形態と同様に、第1登録地点Q1から第2登録地点Q2へ向かう直線の方向を、基準方位TAとして決定しても良い。 For example, the combine 1 is provided with a first registration button (not shown) and a second registration button (not shown), and the position coordinates of the combine 1 at the time when the first registration button is operated are the first registration points Q1. The position coordinates of the combine 1 at the time when the second registration button is operated may be determined as the second registration point Q2. In this case, the direction determination unit 31 may determine the direction of the straight line from the first registration point Q1 to the second registration point Q2 as the reference direction TA, as in the above embodiment.
 (10)モード切替部33は、走行制御部24の制御モードを第2モードから第1モードに自動的に切り替えることができないように構成されていても良い。この場合、直進判定部34により機体10が所定距離D1または所定時間に亘って直進したと判定された場合に基準方位TAが決定され、且つ、第2モードから第1モードへの切り替えは行われない構成であっても良い。 (10) The mode switching unit 33 may be configured so that the control mode of the traveling control unit 24 cannot be automatically switched from the second mode to the first mode. In this case, the reference direction TA is determined when the aircraft 10 is determined to have traveled straight for a predetermined distance D1 or a predetermined time by the straight-ahead determination unit 34, and the second mode is switched to the first mode. It may not have a configuration.
 (11)モード切替部33は、走行制御部24の制御モードを第1モードから第2モードに自動的に切り替えることができないように構成されていても良い。 (11) The mode switching unit 33 may be configured so that the control mode of the traveling control unit 24 cannot be automatically switched from the first mode to the second mode.
 (12)モード切替部33は、直進判定部34により機体10が所定距離D1または所定時間に亘って直進したと判定された場合、開始条件が満たされているか否かとは無関係に、走行制御部24の制御モードを第1モードに切り替えるように構成されていても良い。 (12) When it is determined by the straight-ahead determination unit 34 that the aircraft 10 has traveled straight for a predetermined distance D1 or a predetermined time, the mode switching unit 33 is a travel control unit regardless of whether or not the start condition is satisfied. The 24 control modes may be configured to switch to the first mode.
 (13)上記実施形態における各部材の機能をコンピュータに実現させる農作業機制御プログラムとして構成されていても良い。また、上記実施形態における各部材の機能をコンピュータに実現させる農作業機制御プログラムが記録された記録媒体として構成されていても良い。 (13) It may be configured as an agricultural work machine control program that realizes the function of each member in the above embodiment on a computer. Further, it may be configured as a recording medium in which an agricultural work machine control program that realizes the functions of each member in the above embodiment on a computer is recorded.
 尚、上述の実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能である。また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。 It should be noted that the configuration disclosed in the above embodiment (including another embodiment, the same shall apply hereinafter) can be applied in combination with the configuration disclosed in other embodiments as long as there is no contradiction. Moreover, the embodiment disclosed in the present specification is an example, and the embodiment of the present invention is not limited to this, and can be appropriately modified without departing from the object of the present invention.
 本発明は、普通型のコンバインだけではなく、自脱型のコンバイン、トラクタ、田植機、トウモロコシ収穫機、ジャガイモ収穫機、ニンジン収穫機等、種々の農作業機に利用可能である。 The present invention can be used not only for ordinary combine harvesters but also for various agricultural work machines such as self-removing combine harvesters, tractors, rice transplanters, corn harvesters, potato harvesters, and carrot harvesters.
 1   コンバイン(農作業機)
 4   通信端末(設定部)
 10  機体
 11  走行装置
 24  走行制御部
 31  方位決定部
 33  モード切替部
 34  直進判定部
 41  操舵操作具
 45  人為操作具
 51  ステアリングホイール(操舵操作具)
 A1  第1操作量
 A2  第2操作量
 D1  所定距離
 GL  自動操舵目標ライン(走行経路)
 TA  基準方位
1 combine (agricultural work machine)
4 Communication terminal (setting unit)
10 Aircraft 11 Traveling device 24 Traveling control unit 31 Direction determination unit 33 Mode switching unit 34 Straight-ahead judgment unit 41 Steering operation tool 45 Artificial operation tool 51 Steering wheel (steering operation tool)
A1 1st operation amount A2 2nd operation amount D1 Predetermined distance GL Automatic steering target line (travel route)
TA reference direction

Claims (11)

  1.  操舵のための操舵操作具と、
     走行装置を有する機体の走行を制御する走行制御部と、
     前記走行制御部の制御モードを第1モードと第2モードとの間で切り替えるモード切替部と、
     自動操舵のための基準方位を決定する方位決定部と、を備え、
     前記走行制御部の制御モードが前記第1モードであるとき、前記走行制御部は、前記基準方位、または、前記基準方位に基づいて算出された走行経路に基づいて前記機体の走行を制御し、
     前記走行制御部の制御モードが前記第2モードであるとき、前記機体は、前記操舵操作具の操作に応じて走行し、
     前記方位決定部は、前記走行制御部の制御モードが前記第1モードであるとき、人為操作具の操作に応じて、前記基準方位、または、前記走行経路の方向を変更する処理である方位変更処理を実行する農作業機。
    Steering control tools for steering and
    A travel control unit that controls the travel of an aircraft having a travel device,
    A mode switching unit that switches the control mode of the traveling control unit between the first mode and the second mode,
    Equipped with an azimuth determination unit that determines the reference azimuth for automatic steering,
    When the control mode of the travel control unit is the first mode, the travel control unit controls the travel of the aircraft based on the reference direction or the travel route calculated based on the reference direction.
    When the control mode of the traveling control unit is the second mode, the aircraft travels in response to the operation of the steering operating tool.
    The direction change unit is a process of changing the reference direction or the direction of the travel path according to the operation of the artificial operating tool when the control mode of the travel control unit is the first mode. Agricultural work machine that performs processing.
  2.  前記人為操作具は、前記操舵操作具である請求項1に記載の農作業機。 The artificial operation tool is the agricultural work machine according to claim 1, which is the steering operation tool.
  3.  前記操舵操作具の可動範囲は、第1操作量よりも大きな操作量である第2操作量よりも大きく前記操舵操作具を操作可能であるように設定されており、
     前記方位決定部は、前記走行制御部の制御モードが前記第1モードであるとき、前記操舵操作具の操作量が前記第1操作量未満である場合、前記方位変更処理を実行せず、
     前記方位決定部は、前記走行制御部の制御モードが前記第1モードであるとき、前記操舵操作具の操作量が前記第1操作量以上且つ前記第2操作量以下である場合、前記方位変更処理を実行し、
     前記モード切替部は、前記走行制御部の制御モードが前記第1モードであるとき、前記操舵操作具の操作量が前記第2操作量より大きい場合、前記走行制御部の制御モードを前記第2モードに切り替える請求項2に記載の農作業機。
    The movable range of the steering operating tool is set so that the steering operating tool can be operated larger than the second operating amount, which is a larger operating amount than the first operating amount.
    When the control mode of the traveling control unit is the first mode, the directional determination unit does not execute the directional change process when the operation amount of the steering operating tool is less than the first operation amount.
    When the control mode of the traveling control unit is the first mode, the directional determination unit changes the direction when the operation amount of the steering operating tool is equal to or more than the first operation amount and equal to or less than the second operation amount. Execute the process and
    When the control mode of the travel control unit is the first mode and the operation amount of the steering operating tool is larger than the second operation amount, the mode switching unit sets the control mode of the travel control unit to the second mode. The agricultural work machine according to claim 2, wherein the mode is switched.
  4.  前記走行制御部は、前記走行制御部の制御モードが前記第1モードであるとき、前記人為操作具の操作に応じて、前記人為操作具の操作方向への一時的な旋回動作が行われるように前記機体の走行を制御する応答旋回制御を実行可能である請求項1から3の何れか一項に記載の農作業機。 When the control mode of the traveling control unit is the first mode, the traveling control unit performs a temporary turning operation in the operating direction of the artificial operating tool in response to the operation of the artificial operating tool. The agricultural work machine according to any one of claims 1 to 3, wherein the response turning control for controlling the traveling of the machine can be executed.
  5.  前記走行制御部の制御モードが前記第2モードであるとき、前記機体が所定距離または所定時間に亘って直進したか否かを判定する直進判定部を備え、
     前記方位決定部は、前記直進判定部により前記機体が前記所定距離または前記所定時間に亘って直進したと判定された場合、前記所定距離または前記所定時間に亘って行われた直進の方向に基づいて前記基準方位を決定する請求項1から4の何れか一項に記載の農作業機。
    When the control mode of the traveling control unit is the second mode, the vehicle includes a straight-ahead determination unit that determines whether or not the aircraft has traveled straight for a predetermined distance or a predetermined time.
    When the straight-ahead determination unit determines that the aircraft has traveled straight over the predetermined distance or the predetermined time, the directional determination unit is based on the straight-ahead direction performed over the predetermined distance or the predetermined time. The agricultural work machine according to any one of claims 1 to 4, wherein the reference direction is determined.
  6.  人為的な操作入力を受け付けると共に、前記方位変更処理における前記基準方位または前記走行経路の方向の変更量を、前記操作入力によって設定可能な設定部を備える請求項1から5の何れか一項に記載の農作業機。 The item according to any one of claims 1 to 5, which includes a setting unit that accepts an artificial operation input and can set the amount of change in the reference direction or the direction of the traveling route in the direction change process by the operation input. The listed agricultural work machine.
  7.  前記方位決定部の制御モードは、前記方位変更処理の実行が許可される許可モードと、前記方位変更処理の実行が禁止される禁止モードと、の間で切り替え可能であり、
     前記設定部は、前記操作入力によって前記方位決定部の制御モードを切り替え可能に構成されている請求項6に記載の農作業機。
    The control mode of the direction changing unit can be switched between a permission mode in which the execution of the direction change process is permitted and a prohibition mode in which the execution of the direction change process is prohibited.
    The agricultural work machine according to claim 6, wherein the setting unit is configured so that the control mode of the direction determination unit can be switched by the operation input.
  8.  前記設定部は、前記操作入力によって、前記変更量を所定角度刻みで変更可能に構成されている請求項6または7に記載の農作業機。 The agricultural work machine according to claim 6 or 7, wherein the setting unit is configured so that the change amount can be changed in predetermined angle increments by the operation input.
  9.  前記設定部は、前記機体の走行中には、前記変更量を設定するための前記操作入力を受け付けないように構成されている請求項6から8の何れか一項に記載の農作業機。 The agricultural work machine according to any one of claims 6 to 8, wherein the setting unit is configured not to accept the operation input for setting the change amount while the machine is running.
  10.  操舵のための操舵操作具と、走行装置を有する機体と、を備える農作業機を制御する農作業機制御プログラムであって、
     前記機体の走行を制御する走行制御機能と、
     前記走行制御機能の制御モードを第1モードと第2モードとの間で切り替えるモード切替機能と、
     自動操舵のための基準方位を決定する方位決定機能と、をコンピュータに実現させ、
     前記走行制御機能の制御モードが前記第1モードであるとき、前記走行制御機能は、前記基準方位、または、前記基準方位に基づいて算出された走行経路に基づいて前記機体の走行を制御し、
     前記走行制御機能の制御モードが前記第2モードであるとき、前記機体は、前記操舵操作具の操作に応じて走行し、
     前記方位決定機能は、前記走行制御機能の制御モードが前記第1モードであるとき、人為操作具の操作に応じて、前記基準方位、または、前記走行経路の方向を変更する処理である方位変更処理を実行する農作業機制御プログラム。
    It is an agricultural work machine control program that controls an agricultural work machine including a steering operation tool for steering and an airframe having a traveling device.
    A travel control function that controls the travel of the aircraft and
    A mode switching function for switching the control mode of the traveling control function between the first mode and the second mode, and
    The computer has a directional determination function that determines the reference directional direction for automatic steering.
    When the control mode of the travel control function is the first mode, the travel control function controls the travel of the aircraft based on the reference direction or the travel route calculated based on the reference direction.
    When the control mode of the travel control function is the second mode, the aircraft travels in response to the operation of the steering operation tool.
    The direction determination function is a process of changing the reference direction or the direction of the travel path according to the operation of the artificial operating tool when the control mode of the travel control function is the first mode. Agricultural machine control program that executes processing.
  11.  操舵のための操舵操作具と、走行装置を有する機体と、を備える農作業機を制御する農作業機制御プログラムを記録した記録媒体であって、
     前記機体の走行を制御する走行制御機能と、
     前記走行制御機能の制御モードを第1モードと第2モードとの間で切り替えるモード切替機能と、
     自動操舵のための基準方位を決定する方位決定機能と、をコンピュータに実現させ、
     前記走行制御機能の制御モードが前記第1モードであるとき、前記走行制御機能は、前記基準方位、または、前記基準方位に基づいて算出された走行経路に基づいて前記機体の走行を制御し、
     前記走行制御機能の制御モードが前記第2モードであるとき、前記機体は、前記操舵操作具の操作に応じて走行し、
     前記方位決定機能は、前記走行制御機能の制御モードが前記第1モードであるとき、人為操作具の操作に応じて、前記基準方位、または、前記走行経路の方向を変更する処理である方位変更処理を実行する農作業機制御プログラムを記録した記録媒体。
    A recording medium on which a farm work machine control program for controlling a farm work machine including a steering operation tool for steering and an airframe having a traveling device is recorded.
    A travel control function that controls the travel of the aircraft and
    A mode switching function for switching the control mode of the traveling control function between the first mode and the second mode, and
    The computer has a directional determination function that determines the reference directional direction for automatic steering.
    When the control mode of the travel control function is the first mode, the travel control function controls the travel of the aircraft based on the reference direction or the travel route calculated based on the reference direction.
    When the control mode of the travel control function is the second mode, the aircraft travels in response to the operation of the steering operation tool.
    The direction determination function is a process of changing the reference direction or the direction of the travel path according to the operation of the artificial operating tool when the control mode of the travel control function is the first mode. A recording medium on which the agricultural work machine control program that executes the processing is recorded.
PCT/JP2021/035805 2020-10-02 2021-09-29 Agricultural work machine, agricultural work machine control program, and recording medium in which agricultural work machine control program is recorded WO2022071375A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180067691.5A CN116437796A (en) 2020-10-02 2021-09-29 Agricultural machine, agricultural machine control program, and recording medium on which agricultural machine control program is recorded
KR1020237010239A KR20230079061A (en) 2020-10-02 2021-09-29 Agricultural machine, agricultural machine control program, recording medium recording agricultural machine control program

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020167987 2020-10-02
JP2020-167987 2020-10-02
JP2021030138A JP2022060134A (en) 2020-10-02 2021-02-26 Agricultural work machine
JP2021-030138 2021-02-26

Publications (1)

Publication Number Publication Date
WO2022071375A1 true WO2022071375A1 (en) 2022-04-07

Family

ID=80949193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035805 WO2022071375A1 (en) 2020-10-02 2021-09-29 Agricultural work machine, agricultural work machine control program, and recording medium in which agricultural work machine control program is recorded

Country Status (3)

Country Link
KR (1) KR20230079061A (en)
CN (1) CN116437796A (en)
WO (1) WO2022071375A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008072963A (en) * 2006-09-21 2008-04-03 Yanmar Co Ltd Agricultural working vehicle
JP2017153438A (en) * 2016-03-03 2017-09-07 株式会社クボタ Field work vehicle
JP2018093861A (en) * 2017-09-07 2018-06-21 井関農機株式会社 Work vehicle
JP2021015478A (en) * 2019-07-12 2021-02-12 ヤンマーパワーテクノロジー株式会社 Self-driving system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6925780B2 (en) 2016-02-03 2021-08-25 株式会社クボタ Work platform

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008072963A (en) * 2006-09-21 2008-04-03 Yanmar Co Ltd Agricultural working vehicle
JP2017153438A (en) * 2016-03-03 2017-09-07 株式会社クボタ Field work vehicle
JP2018093861A (en) * 2017-09-07 2018-06-21 井関農機株式会社 Work vehicle
JP2021015478A (en) * 2019-07-12 2021-02-12 ヤンマーパワーテクノロジー株式会社 Self-driving system

Also Published As

Publication number Publication date
CN116437796A (en) 2023-07-14
KR20230079061A (en) 2023-06-05

Similar Documents

Publication Publication Date Title
WO2019111535A1 (en) Target route generation system for work vehicle
EP3970462A1 (en) Autonomous travel system
JP2020087292A (en) Automatic travel control system
JP7420759B2 (en) Travel control system
WO2022071382A1 (en) Agricultural work machine, agricultural work machine control program, recording medium on which agricultural work machine control program is recorded, and agricultural work machine control method
WO2022071375A1 (en) Agricultural work machine, agricultural work machine control program, and recording medium in which agricultural work machine control program is recorded
WO2022004698A1 (en) Agricultural work machine, agricultural work machine control program, recording medium on which agricultural work machine control program is recorded, and agricultural work machine control method
JP2022060134A (en) Agricultural work machine
JP7458918B2 (en) agricultural machinery
JP7499717B2 (en) Cruise control system
JP7433186B2 (en) agricultural machinery
WO2022004474A1 (en) Harvester, automatic traveling method of harvester, program, recording medium, system, agricultural machine, automatic traveling method of agricultural machine, method, and automatic steering management system
WO2022071493A1 (en) Farm machine, system, method, program, and recording medium
KR20210067924A (en) Automatic traveling control system, combine and harvester
JP7387572B2 (en) agricultural machinery
JP2022191070A (en) agricultural machine
JP2020054320A (en) Work vehicle
WO2023127640A1 (en) Work vehicle, and control system for work vehicle
JP7311656B2 (en) Target route generation system for work vehicles
JP2022011846A (en) Harvester and automatic travel method of harvester
WO2022181071A1 (en) Autonomous travel control system, field work machine, autonomous travel control method, autonomous travel control program, and storage medium
WO2023112611A1 (en) Automatic steering system
JP2022011847A (en) Agricultural implement and automatic travel method of agricultural implement
WO2023127684A1 (en) Work vehicle
JP2022011849A (en) Agricultural implement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21875675

Country of ref document: EP

Kind code of ref document: A1