WO2023112611A1 - Automatic steering system - Google Patents

Automatic steering system Download PDF

Info

Publication number
WO2023112611A1
WO2023112611A1 PCT/JP2022/042997 JP2022042997W WO2023112611A1 WO 2023112611 A1 WO2023112611 A1 WO 2023112611A1 JP 2022042997 W JP2022042997 W JP 2022042997W WO 2023112611 A1 WO2023112611 A1 WO 2023112611A1
Authority
WO
WIPO (PCT)
Prior art keywords
turning
steering
travel
distance
travel route
Prior art date
Application number
PCT/JP2022/042997
Other languages
French (fr)
Japanese (ja)
Inventor
大久保樹
久保田祐樹
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Publication of WO2023112611A1 publication Critical patent/WO2023112611A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present invention relates to an automatic steering system for an automatic traveling work vehicle that transitions from a previous traveling route to a next traveling route through turning.
  • the self-driving work vehicle automatically travels using its own vehicle position calculated using satellite positioning, etc., and the travel route set in the work area. For example, an automatic traveling vehicle that is put into a field or the like travels along parallel linear travel paths connected by U-turn travel for field work. At that time, the optimal automatic steering for U-turn traveling, which transitions from a straight preceding travel route to the next travel route, requires turning speed (time required for turning), turning occupied space (space required for turning), and turning accuracy ( Accuracy of reaching the next travel route) and smooth turning trajectory (do not disturb the work area) must be considered.
  • the first turning travel (start turning travel) for leaving the preceding travel route is performed at a preset steering angle
  • the second turning travel (starting travel travel) for entering the next travel route is performed.
  • the final turning travel) is performed along the preset final turning circle
  • the intermediate travel between the first turning travel and the second turning travel is along the tangent line drawn from the vehicle body to the final turning circle. done.
  • a preset starting turning path for leaving the previous traveling path and a preset final turning path for entering the next traveling path are used.
  • the turning radius is larger than the turning radius of the final turning path.
  • An object of the present invention is to provide an automatic steering system that improves the accuracy of entering the next travel route when leaving the previous travel route and entering the next travel route.
  • an automatic steering system for an automatically traveling working vehicle that transitions from a previous traveling route to a next traveling route through turning traveling, wherein a starting steering degree is set as a turning steering degree for starting turning traveling in the turning traveling.
  • a steering control unit when the distance from the vehicle body to the next travel route reaches a predetermined approach distance after the end of the start turning travel by the start steering degree, or when the distance from the previous travel route to the vehicle body reaches a predetermined distance; and a final steering control unit for setting a final steering degree as the turning steering degree of the final turning traveling performed when the leaving distance is reached.
  • the steering degree means the steering angle when the steering mechanism is a steerable wheel, and means the speed difference between the left and right crawlers when the steering mechanism is a crawler.
  • the steering degree may be the turning radius.
  • the turning travel for transitioning from the previous travel route to the next travel route consists of the starting turning travel, which is the first turning travel, and the final turning travel, which is the turning travel for entering the next travel route.
  • the start of the final turning travel is based on the distance from the vehicle body to the next travel path or the distance from the previous travel path to the vehicle body.
  • the final steering degree used in this final turning travel can be calculated in advance based on the distance from the vehicle body to the next travel route.
  • High-precision steering control such as setting the final turning start point as a target point, is unnecessary for traveling from the end of the initial turning travel to the start of the final turning travel.
  • the vehicle body When the positional relationship between the vehicle body and the next travel route reaches a predetermined relationship, the vehicle body is steered toward the next travel route. For example, when the positional relationship between the vehicle body and the next travel route becomes a predetermined relationship, if the vehicle body is steered toward the next travel route at a predetermined steering angle, a complicated turning control algorithm is unnecessary. Become. That is, the work vehicle always starts the final turning travel in a positional relationship set in advance with respect to the next travel route, so that the approach accuracy to the next travel route is stabilized. When the work vehicle is a rice transplanter, the stable entry into the next travel route guarantees an accurate seedling planting position, resulting in an increase in yield.
  • the previous travel route and the next travel route are target travel routes extending parallel to each other
  • the turning travel is a 180-degree turning travel
  • the start The steering control unit shifts the steering angle from the starting steering angle to a neutral steering angle before or after the change in direction of the vehicle body in the starting turning travel reaches 90 degrees.
  • the work travel route pattern frequently used by self-driving work vehicles, especially work vehicles that perform field work is a pattern in which multiple straight-line travel routes are connected in a 180-degree turn.
  • a 180 degree turning run consists of two 90 degree turning runs.
  • the steering angle begins to return to the neutral steering angle when the azimuth change of the vehicle body reaches approximately 90 degrees, preferably close to 90 degrees, at the start of turning. It runs straight until it is time to start turning.
  • the steering degree may gradually begin to return to the neutral steering degree.
  • the interval between the previous travel route and the next travel route is short, and when the start timing of the final turning travel comes before the azimuth change of the vehicle reaches 90 degrees in the starting turning travel, the final turning travel is started at that point. In either case, since the final turning travel is started with the positional relationship set in advance with respect to the next travel route, the accuracy of entering the next travel route is stabilized.
  • the predetermined approach distance or the predetermined departure distance is such that the bearing of the vehicle body coincides with the extension direction line of the next travel route due to the final turning travel using the final steering degree. is set to
  • the predetermined approach distance or the predetermined departure distance is a distance from the vehicle body to the next travel route in a direction perpendicular to the extension direction of the next travel route or the previous travel route. is the distance from the vehicle body to the preceding travel route in a direction perpendicular to the extending direction of the vehicle.
  • the coordinate position of the target travel route for automatic driving is stored in advance, the distance from the vehicle body to the previous travel route or the next travel route in the direction perpendicular to the extending direction is obtained using the coordinate position of the vehicle body. , is easily sought.
  • the coordinate position of the vehicle body can be obtained using satellite positioning technology, inertial navigation technology, etc., which are used for automatic driving.
  • a distance adjustment unit for adjusting the predetermined approach distance or the predetermined separation distance is provided, and the distance adjustment unit adjusts the minimum turning radius, turning speed, working width, Adjusting the predetermined approach distance or the predetermined departure distance based on at least one ground condition.
  • the predetermined approach distance or predetermined separation distance for accurately reaching the next travel route may fluctuate depending on the state of traveling devices such as crawlers and wheels and the state of the work site. With this configuration for coping with such fluctuations, accurate turning travel is realized regardless of the state of the traveling device of the work vehicle and the state of the work site.
  • the starting steering degree is the maximum steering degree
  • the final steering degree is the maximum steering degree
  • both the starting steering degree and the final steering degree may be the maximum steering degree.
  • the starting steering control section the final steering control section, a first turning mode steering section that performs a first turning mode, which is turning steering based on a predetermined turning speed, a second turning mode steering unit that controls a turning steering angle more finely than the first turning mode steering unit and performs a second turning mode, which is turning steering with a lower turning speed than the first turning mode steering unit;
  • a turning mode selector for selecting either the turning mode or the second turning mode is provided.
  • the autonomous vehicle can be equipped with various turning modes.
  • various turning modes there is a turning mode that realizes turning steering control according to the above-mentioned Patent Document 1 and Patent Document 2.
  • MPC Model Predictive Control
  • MPC Model Predictive Control
  • FIG. 5 is a schematic diagram illustrating turning travel from a start turning travel to a final turning travel; It is a functional block diagram which shows the control system of a rice transplanter.
  • a rice transplanter that travels in a field will be described as an example of an embodiment of an autonomous working vehicle equipped with the automatic steering system of the present invention.
  • front the direction of arrow F shown in FIG. 1
  • rear the direction of arrow B shown in FIG. 1).
  • left-right direction or the lateral direction means the left-right direction (machine width direction) perpendicular to the front-back direction of the machine body. shall mean the direction of orientation.
  • the rice transplanter has a vehicle body 1 of riding type and four-wheel drive type.
  • the vehicle body 1 includes a parallel quadruple link type link mechanism 13, a hydraulic elevating cylinder 13a, a seedling planting device 3A, a fertilizing device 3B, and the like.
  • the link mechanism 13 is connected to the rear portion of the vehicle body 1 so as to be vertically swingable.
  • the elevating cylinder 13a drives the link mechanism 13 to swing.
  • 3 A of seedling planting apparatuses are connected with the rear-end part of the link mechanism 13 so that rolling is possible.
  • the fertilizing device 3B extends from the rear end of the vehicle body 1 to the seedling planting device 3A.
  • the seedling planting device 3A and the fertilizing device 3B are working devices 3 provided in the automatic traveling working vehicle of the present invention.
  • the vehicle body 1 includes a wheel-type traveling device 12, an engine 2A, and a hydraulic continuously variable transmission 2B.
  • the continuously variable transmission 2B is a main transmission.
  • the continuously variable transmission 2B is, for example, an HST (Hydro-Static Transmission).
  • the continuously variable transmission 2B changes the speed of the power (rotational speed) output from the engine 2A by adjusting the angles of the motor swash plate and the pump swash plate.
  • the traveling device 12 has left and right front wheels 12A and left and right rear wheels 12B.
  • the left and right front wheels 12A function as steering wheels for changing the orientation of the vehicle.
  • the left and right rear wheels 12B cannot be steered.
  • a driving section 14 is provided at the rear portion of the vehicle body 1 .
  • the driving unit 14 includes a steering wheel 10 for steering the front wheels, a main shift lever 7A, an auxiliary shift lever 7B, a work operation lever 11, and a driver's seat 16 for passengers (drivers, workers, managers). , etc.
  • the main shift lever 7A adjusts the vehicle speed by shifting the continuously variable transmission 2B.
  • the sub-transmission lever 7B enables the shift operation of the sub-transmission.
  • the work operation lever 11 performs elevating operation of the seedling planting device 3A.
  • a preliminary seedling storage device 17A is supported by a preliminary seedling support frame 17 in front of the operating section 14. As shown in FIG.
  • the spare seedling storage device 17A stores spare seedlings.
  • the steering wheel 10 is connected to the front wheels 12A via a steering mechanism (not shown).
  • the steering angle of the front wheels 12A is adjusted by rotating the steering wheel 10.
  • FIG. A steering motor M1 is connected to the steering mechanism.
  • the steering motor M1 operates based on a steering signal to adjust the steering angle (steering degree) of the front wheels 12A.
  • a shift operation motor M2 is provided for automatically operating the main shift lever 7A.
  • the shift position of the continuously variable transmission 2B is adjusted by operating the shift operation motor M2 based on the shift signal.
  • the seedling planting device 3A is illustrated in an eight-row planting format as an example.
  • the seedling planting device 3A may be of other types such as a 6-row planting type or a 10-row planting type.
  • Power from the engine 2A is distributed to each planting mechanism 22 via the planting clutch C0 and each row clutch EC.
  • the planting clutch C0 switches the driving state of the seedling planting device 3A by switching on and off power transmission from the engine 2A.
  • Each row clutch EC is configured to be able to select driving or non-driving of each planting mechanism 22 every two rows in the seedling planting device 3A. By controlling each row clutch EC, the seedling planting device 3A can be changed to two-row planting, four-row planting, six-row planting, and eight-row planting.
  • the seedling planting device 3A includes a seedling platform 21, a planting mechanism 22, and the like.
  • the seedling mounting table 21 is a pedestal on which 8 rows of mat-like seedlings are mounted.
  • the seedling mounting table 21 reciprocates in the horizontal direction with a constant stroke amount corresponding to the lateral width of the mat-like seedling.
  • the eight planting mechanisms 22 are of a rotary type and are arranged in the left-right direction at regular intervals corresponding to the intervals between the planting rows. Power from the engine 2A is transmitted to each planting mechanism 22 .
  • Each planting mechanism 22 cuts off one seedling (planted seedling) from the lower end of each mat-like seedling placed on the seedling mounting table 21 by the power from the engine 2A, and places it on the mud part after leveling. Plant.
  • the seedling planting apparatus 3A can take out seedlings from the mat-like seedlings placed on the seedling placement table 21 and plant them in the mud part of the paddy field in the operating state.
  • the fertilizing device 3B has a hopper 25, a delivery mechanism 26, and a fertilizing hose 28.
  • the hopper 25 stores granular or powdery fertilizers (chemicals and other agricultural materials).
  • a delivery mechanism 26 delivers fertilizer from the hopper 25 .
  • the fertilizing hose 28 conveys the fertilizer delivered by the delivery mechanism 26 and discharges the fertilizer to the field.
  • Fertilizer stored in the hopper 25 is delivered by a delivery mechanism 26 by a predetermined amount and sent to the fertilizing hose 28, conveyed through the fertilizing hose 28 by the carrying wind of the blower 27, and discharged from the ditching device 29 to the field. be.
  • the fertilizing device 3B supplies fertilizer to the field.
  • the grooving machine 29 is arranged on the leveling float 15 .
  • Each grooving device 29 ascends and descends together with each leveling float 15, forms a fertilizing groove in the muddy part of the paddy field, and guides the fertilizer into the fertilizing groove during work travel in which each leveling float 15 touches the ground.
  • the grading float 15 functions as a ground sensor.
  • the communication terminal 9 that is detachably attached to the driving unit 14 is composed of, for example, a tablet computer.
  • the communication terminal 9 can output various types of information to the operator as visual information and auditory information, and can accept inputs of various types of information.
  • the communication terminal 9 is wirelessly or wiredly connected to the control system of the rice transplanter so that data can be exchanged.
  • Various functions for automatic driving are installed in the communication terminal 9 . For example, it is possible to remotely control the control system (control unit 100) of the rice transplanter at a position away from the rice transplanter.
  • the rice transplanter is equipped with a positioning unit 8.
  • the positioning unit 8 outputs positioning data for calculating the position and orientation of the vehicle body 1 .
  • the positioning unit 8 includes a satellite positioning module 8A that receives radio waves from satellites of the global navigation satellite system (GNSS) and an inertial measurement module 8B that detects the three-axis tilt and acceleration of the vehicle body 1 .
  • the positioning unit 8 is supported on top of the preliminary seedling support frame 17 .
  • the rice transplanter in this embodiment can selectively execute manual running and automatic running.
  • manual traveling the driver manually operates (including remote control operation) the steering wheel 10, the main gearshift lever 7A, the sub gearshift lever 7B, the work operation lever 11, etc. to perform work traveling.
  • automatic travel the rice transplanter automatically travels and works along a preset target travel route.
  • the driver When the rice transplanter performs the seedling planting work, the driver first runs the rice transplanter manually along the outer circumference (outer edge) of the field without performing work. As shown in FIG. 3, by this round trip, the outer peripheral shape of the farm field (field map) is generated, and the farm field is divided into the outer peripheral area OA and the inner area IA.
  • a travel route that the rice transplanter uses for automatic travel is generated.
  • a plurality of linear running paths hereinafter referred to as straight running paths, but not necessarily limited to straight lines
  • This straight travel route is a travel route for the rice transplanter to travel throughout the entire inner area IA for work.
  • Automatic steering in automatic driving is performed using this straight travel route as a target travel route.
  • Each straight travel route is connected by a U-shaped turning travel route (substantially a 180-degree turning route).
  • Automatic driving control consisting of automatic steering and automatic transmission is performed.
  • one or more round traveling routes are generated that go around the outer peripheral area OA along the outer periphery (outer edge) of the farm field.
  • the circular traveling route consists of two circular traveling routes, inner and outer.
  • the inner and outer circular travel routes can also be automatically traveled, but one or both of them may be manually traveled.
  • FIG. 4 shows a 180-degree turning travel path TL for transitioning from the previous travel path Lf, which is the straight travel route used for the previous work travel, to the next travel path Ln, which is the straight travel route used for the next work travel. An example is shown.
  • This 180-degree turning travel route TL consists of a starting turning travel route TL1, a final turning travel route TL2, and an intermediate travel route TL0.
  • D indicates the distance between the previous travel route Lf and the next travel route Ln.
  • the azimuth of the straight travel route which is the direction in which the previous travel route Lf and the next travel route Ln extend, is assumed to be the longitudinal azimuth AZ1, and the azimuth perpendicular to the azimuth of the straight travel route is assumed to be the lateral azimuth AZ2.
  • the starting turning travel path TL1 indicates a starting turning travel of 90 degrees from the end point of the previous traveling path Lf or an extension line of the previous traveling path Lf toward the next traveling path Ln, and the turning steering angle at that time is the starting steering angle. , is preset, but the maximum steering angle is preferred.
  • the start turning travel ends when the vehicle body azimuth becomes the lateral azimuth AZ2 (when the vehicle body 1 turns 90 degrees), the steering angle is returned to the neutral steering angle (neutral steering degree), and the intermediate travel route TL0 is reached.
  • Running (straight running) is started.
  • the predetermined approach distance D1 is the distance from the vehicle body 1 to the next travel route Ln in the lateral direction AZ2, which is the direction orthogonal to the extending direction of the next travel route Ln.
  • the predetermined detachment distance D2 is the distance from the vehicle body 1 to the preceding travel route Lf in the lateral direction AZ2, which is the direction orthogonal to the extending direction of the preceding travel route Lf.
  • the final steering angle which is the turning steering angle in the final turning travel, is set in advance, but the maximum steering angle is preferred.
  • the final turning run ends when the azimuth of the vehicle body 1 becomes the longitudinal azimuth AZ1.
  • the vehicle body 1 is positioned on the previous travel route Lf or an extension of the previous travel route Lf at the end of the final turning travel. If the position of the vehicle body 1 deviates from the preceding travel route Lf or the extension of the preceding travel route Lf in the lateral direction AZ2, the automatic steering control for the straight travel route is activated to correct the deviation. That is, when the final turning travel is completed, a route search is performed for the next travel route Ln, the next travel route Ln is captured, and automatic steering is performed using this as the target travel route.
  • the final steering angle used in the final turning run is set in advance, but the maximum steering angle is preferred.
  • the target of the predetermined approach distance D1 or the predetermined departure distance D2 is such that the orientation of the vehicle body 1 coincides with the longitudinal orientation AZ1 by the final turning using the final steering angle, that is, coincides with the extension direction line of the next traveling route n. As such, it is statistically calculated and set by repeating experiments and simulations using actual machines.
  • the predetermined approach distance D1 or the predetermined departure distance D2 can be adjusted in order to deal with the field conditions and aging of the steering system including the travel device 12 each time.
  • the starting steering angle and final steering angle can also be adjusted.
  • Fig. 5 shows a control block diagram of the control system of this rice transplanter.
  • the control system of the rice transplanter consists of a control unit 100 that controls various operations of the rice transplanter and a communication terminal 9 that can exchange data with the control unit 100 .
  • Signals from the positioning unit 8 , the manual operation tool sensor group 31 , the travel sensor group 32 , and the work sensor group 33 are input to the control unit 100 .
  • a control signal from the control unit 100 is output to the traveling equipment group 1A and the work equipment group 1B.
  • the control unit 100 acquires positioning data for calculating the position and orientation of the vehicle body 1 (orientation in the longitudinal direction of the vehicle body) from the satellite positioning module 8A of the positioning unit 8. Acquire inertial measurement data about the tilt and acceleration of the vehicle body 1 (orientation in the longitudinal direction of the vehicle body) from the satellite positioning module 8A of the positioning unit 8. Acquire inertial measurement data about the tilt and acceleration of the vehicle body 1 (orientation in the longitudinal direction of the vehicle body) from the satellite positioning module 8A of the positioning unit 8. Acquire inertial measurement data about the tilt and acceleration of the vehicle body 1 (orientation in the longitudinal direction of the vehicle body) from the satellite positioning module 8A of the positioning unit 8. Acquire inertial measurement data about the tilt and acceleration of the vehicle body 1 (orientation in the longitudinal direction of the vehicle body) from the satellite positioning module 8A of the positioning unit 8. Acquire inertial measurement data about the tilt and acceleration of the vehicle body 1 (orientation in the longitudinal direction of the vehicle body) from the satellite positioning module 8A of the positioning unit 8.
  • the traveling device group 1A includes, for example, a steering motor M1 and a shift operation motor M2. Based on the control signal from the control unit 100, the steering angle is adjusted by controlling the steering motor M1. Further, the vehicle speed is adjusted by controlling the speed change operation motor M2.
  • the work equipment group 1B includes, for example, an elevating cylinder 13a, a seedling amount adjusting device, a feeding amount adjusting device, and an on/off control device for the planting clutch C0 and each row clutch EC.
  • the elevating cylinder 13a elevates the seedling planting device 3A.
  • the seedling amount adjusting device adjusts the amount of seedlings taken by the planting mechanism 22 .
  • the delivery amount adjusting device changes the amount of fertilizer delivered by the delivery mechanism 26 .
  • the manual operating tool sensor group 31 includes sensors, switches, and the like that detect the operating states of various manual operating tools.
  • the traveling sensor group 32 includes various sensors for detecting conditions such as steering angle, vehicle speed, engine speed, and set values for them.
  • the work sensor group 33 includes various sensors for detecting the states of the link mechanism 13, the seedling planting device 3A, and the fertilizing device 3B.
  • the control unit 100 includes a travel control unit 6, a work control unit 51, a vehicle body position calculation unit 52, a travel route setting unit 53, and a travel locus management unit 54.
  • the vehicle body position calculation unit 52 calculates map coordinates (body position) of the vehicle body 1 based on satellite positioning data and inertial navigation data sequentially sent from the positioning unit 8 .
  • the map coordinates may be coordinates in a field coordinate system or a specific coordinate system as well as latitude and longitude.
  • the communication terminal 9 is provided with a touch panel interface 90, an agricultural field information storage unit 91, a travel route map generation unit 92, a travel route generation unit 93, a remote control unit 94, and the like.
  • the touch panel interface 90 is a graphic interface and has a function of displaying and inputting information through a touch panel provided in the communication terminal 9 . Therefore, this communication terminal 9 can function as an input/output interface for information and data of the control unit 100 .
  • the farm field information storage unit 91 stores information about the farm field, such as the entrance (exit) position of the farm field and the positions where seedlings and fertilizer can be supplied.
  • the travel route map generator 92 generates a map of the farm field based on the travel locus obtained by causing the vehicle body 1 to travel along the outermost periphery of the outer peripheral area OA (see FIG. 3) of the farm field, that is, along the boundary line with the ridge. Calculate the external dimensions.
  • the travel route generation unit 93 divides the field into an outer peripheral area OA and an inner area IA based on the outer dimensions of the field, and generates a travel route for automatic travel.
  • the travel route as shown in FIG. 3, consists of a circular travel route for travel in the outer peripheral area OA and a straight travel route for travel in the central area. The generated travel route is sent to the control unit 100 .
  • the remote control unit 94 has a program that causes the communication terminal 9 to function as a remote control for operating the rice transplanter.
  • the administrator uses a hardware switch attached to the communication terminal 9 or a software switch displayed on the touch panel of the communication terminal 9 to remotely operate the control system (control unit 100) of the rice transplanter. can.
  • a travel route setting unit 53 built in the control unit 100 receives and manages the travel route generated by the travel route generation unit 93 from the communication terminal 9, and sets a target travel route for route following steering control.
  • the travel route is set in sequence.
  • the travel locus management unit 54 generates and stores the travel locus of the vehicle body 1 based on the vehicle body position calculated by the vehicle body position calculation unit 52 .
  • the work control unit 51 automatically controls the work equipment group 1B based on a program given in advance during automatic travel, and controls the work equipment group 1B based on the driver's operation during manual travel.
  • the travel control unit 6 includes an automatic travel control unit 6A, a manual travel control unit 6B, and a control management unit 6C.
  • This rice transplanter can be switched between an automatic running mode for automatic running and a manual running mode for manual running.
  • the control management unit 6C receives a signal from a manual operation tool sensor (one of a group of manual operation tool sensors) that detects the state of a driving mode switching operation tool (not shown) and a switching signal generated by the control unit 100 in a controlled manner. Based on this, either the automatic driving mode or the manual driving mode is selected.
  • the manual travel control unit 6B that operates in the manual travel mode controls the steering motor M1 based on the amount of operation of the steering wheel 10, and based on the operation of manual operation tools such as the main shift lever 7A and the sub shift lever 7B. , to control the shift operation motor M2.
  • the automatic travel control unit 6A that operates in the automatic travel mode includes a route following steering unit 61 and an automatic turning steering unit 62.
  • the route following steering unit 61 performs route following control so that the vehicle body 1 travels along the target travel route set by the travel route setting unit 53 .
  • the route following steering section 61 uses the vehicle body position calculated by the vehicle body position calculation section 52 to determine the positional deviation of the vehicle body 1 with respect to the target travel route (lateral deviation relative to the target travel route) and the azimuth deviation of the vehicle body 1 (target deviation angle of the vehicle azimuth with respect to the azimuth of the travel route).
  • the route following steering section 61 executes steering control so as to reduce the positional deviation and the azimuth deviation.
  • the turning automatic steering section 62 performs steering control for turning for turning the vehicle body 1, for example, for turning 90 degrees or 180 degrees.
  • the turning automatic steering unit 62 has a start steering control unit 621, a final steering control unit 622, an intermediate steering control unit 623, a distance It has a determination unit 624 , a distance adjustment unit 625 and a turning mode selection unit 626 .
  • the turning travel here is a 180-degree turning travel.
  • the start steering control unit 621 controls the start turning travel for turning toward the next travel route Ln after the vehicle body 1 finishes traveling on the previous travel route Lf.
  • the starting steering degree is set as the turning steering degree in order to perform the starting turning travel.
  • This starting turning travel is a 90-degree turn, and ends when the vehicle body azimuth becomes the lateral azimuth AZ2 (when the azimuth change of the vehicle body 1 reaches 90 degrees).
  • the steering control is taken over by the intermediate steering control section 623 .
  • the intermediate steering control unit 623 returns the steering angle to the neutral steering angle, and causes the vehicle body 1 to travel in the lateral direction AZ2.
  • the distance determination unit 624 records the predetermined approach distance D1 or the predetermined separation distance D2.
  • the distance determination unit 624 determines when the distance from the vehicle body 1 to the next travel route Ln in the lateral direction AZ2 reaches a predetermined approach distance D1, or when the distance from the previous travel route Lf to the vehicle body 1 in the lateral direction AZ2 reaches a predetermined departure distance.
  • a final turning start command is given to the final steering control section 622 .
  • the final steering control unit 622 in response to the final turning start command from the distance determination unit 624, controls the start turning travel for the vehicle body 1 to turn toward the next travel route Ln in the longitudinal direction AZ1. At that time, the final steering degree is set as the turning steering degree in order to perform the final turning travel.
  • the final turning run by the final steering control unit 622 ends when the azimuth of the vehicle body 1 matches or substantially matches the longitudinal direction AZ1.
  • the distance adjustment unit 625 adjusts the predetermined approach distance D1 or the predetermined separation distance D2 used by the distance determination unit 624. This adjustment may be made automatically based on at least one of turning performance, turning speed, and ground conditions at the work site, or based on lateral displacement of the vehicle body position relative to the next traveling path Ln at the end of the final turning travel. good. Of course, the distance may be adjusted by the administrator using a dial switch or the like provided on the vehicle body 1 , or the distance may be adjusted through the communication terminal 9 using the touch panel interface 90 of the communication terminal 9 .
  • start steering angle and the final steering angle are set to the maximum steering angle in this embodiment, they can be changed to arbitrary steering angles.
  • the steering control is handed over to the route following steering unit 61 .
  • the route following steering unit 61 captures the next travel route Ln or an extension of the next travel route Ln, and performs steering control so that the vehicle body 1 rides on the next travel route Ln or the next travel route Ln. If the route following steering unit 61 cannot capture the next travel route Ln or the extension of the next travel route Ln, the vehicle is stopped.
  • the turning automatic steering section 62 operates in a turning mode other than a turning mode (this is referred to as a first turning mode) in which the final turning travel start timing is determined using the above-described predetermined approach distance D1 or predetermined departure distance D2. It also has modes. For example, it is possible to use a turning mode in which a 90-degree turn is performed at a predetermined steering angle in the initial turning travel, and then a final turning travel is performed with the starting end of the next travel route Ln as the travel target point. Alternatively, the turning mode disclosed in Patent Document 1 and Patent Document 2 can also be used. Furthermore, as a more accurate turning mode, turning traveling using MPC (model predictive control) can also be used.
  • MPC model predictive control
  • the turning mode selection unit 626 registers such turning modes as a second turning mode, a third turning mode, and a further turning mode, and selects a turning mode to be executed from among these. This selection is made automatically or manually. Furthermore, it is also possible to set in advance depending on the turning location.
  • the functional portion that performs turning steering in the first turning mode is indicated as a first turning mode steering portion 62A.
  • the functional portion that performs turning steering in the second turning mode is indicated as a second turning mode steering portion 62B.
  • the functional portion that performs turning steering in the third turning mode is indicated as a third turning mode steering portion 62C.
  • a rice transplanter is used as an automatic traveling working vehicle equipped with the automatic steering system of the present invention. It can also be applied to automatic traveling work vehicles such as lawn mowers and ground levelers.
  • a turn pattern is taken in which the vehicle moves from the previous travel route Lf to the next travel route Ln via a 180-degree turn travel.
  • the present invention is not limited to this embodiment, and the present invention can also be applied to turning travel at other angles, for example, a turning pattern consisting of a 45-degree start turning travel and a 45-degree final turning travel. Furthermore, the turning angles of the starting turning travel and the final turning travel may be different.
  • the travel device 12 is of the steering wheel type, but may be of the crawler type.
  • each functional unit is integrated with other functional units, each functional unit is divided into a plurality of functional units, and the control unit Various modifications are possible, such as 100 being distributed over multiple control subunits.
  • the automatic steering system of the present invention can be applied to an automatic traveling work vehicle that moves from the previous traveling route to the next traveling route through turning.

Abstract

The present invention is an automatic steering system for an autonomous travel work vehicle transitioning from a previous travel path Lf to a subsequent travel path Ln via turning travel. The automatic steering system comprises: a starting steering control unit which sets a starting steering angle as a turning steering angle for starting turning travel during turning travel; and an ending steering control unit which sets an ending steering angle as a turning steering angle for ending turning travel carried out after the starting turning travel at the starting steering angle has finished and the distance from a vehicle body 1 to the subsequent travel path Ln has reached a prescribed approach distance D1, or the distance from the previous travel path Lf to the vehicle body 1 has reached a prescribed separation distance D2.

Description

自動操舵システムautomatic steering system
 本発明は、前走行経路から旋回走行を介して次走行経路に移行する自動走行作業車のための自動操舵システムに関する。 The present invention relates to an automatic steering system for an automatic traveling work vehicle that transitions from a previous traveling route to a next traveling route through turning.
 自動走行作業車は、衛星測位などを用いて算出される自車位置と、作業地に設定された走行経路とを用いて、自動走行を行う。例えば、圃場などに投入される自動走行作業車は、圃場作業のために、Uターン走行で繋がれる平行に延びた線状の走行経路に沿って走行する。その際、直線状の前走行経路から次走行経路に移行するUターン走行における最適な自動操舵では、旋回速度(旋回に必要な時間)、旋回占有スペース(旋回に必要なスペース)、旋回精度(次走行経路への到達精度)、スムーズな旋回軌跡(作業地を荒らさないこと)が考慮されなければならない。 The self-driving work vehicle automatically travels using its own vehicle position calculated using satellite positioning, etc., and the travel route set in the work area. For example, an automatic traveling vehicle that is put into a field or the like travels along parallel linear travel paths connected by U-turn travel for field work. At that time, the optimal automatic steering for U-turn traveling, which transitions from a straight preceding travel route to the next travel route, requires turning speed (time required for turning), turning occupied space (space required for turning), and turning accuracy ( Accuracy of reaching the next travel route) and smooth turning trajectory (do not disturb the work area) must be considered.
 特許文献1による自動操舵システムでは、前走行経路から離脱するための第1旋回走行(開始旋回走行)は予め設定された操舵角で行われ、次走行経路に進入するための第2旋回走行(最終旋回走行)は予め設定された最終旋回円に沿うように行われ、第1旋回走行と第2旋回走行との間の中間走行は、車体から最終旋回円に引かれた接線に沿うように行われる。 In the automatic steering system according to Patent Document 1, the first turning travel (start turning travel) for leaving the preceding travel route is performed at a preset steering angle, and the second turning travel (starting travel travel) for entering the next travel route is performed. The final turning travel) is performed along the preset final turning circle, and the intermediate travel between the first turning travel and the second turning travel is along the tangent line drawn from the vehicle body to the final turning circle. done.
 特許文献2による自動操舵システムでは、前走行経路から離脱するための予め設定された開始旋回経路と、次走行経路に進入するために予め設定された最終旋回経路とが用いられ、開始旋回経路の旋回半径は、最終旋回経路の旋回半径より大きくなっている。 In the automatic steering system according to Patent Document 2, a preset starting turning path for leaving the previous traveling path and a preset final turning path for entering the next traveling path are used. The turning radius is larger than the turning radius of the final turning path.
特開2018-185671号公報JP 2018-185671 A 特開2020-031593号公報JP 2020-031593 A
 特許文献1や特許文献2における旋回走行では、次走行経路に案内する最終旋回経路の始端に正確に到達しないと、最終旋回経路に沿わせる操舵制御においてハンチングが生じて、次走行経路にスムーズに到達しないという問題が生じる。旋回制御におけるオーバーシュートの状態で最終旋回経路の走行が終了すると、車体が次走行経路を超えた向こう側に横ずれし、アンダーシュート状態で最終旋回経路の走行が終了すると、車体が次走行経路の手前側に横ずれする。また旋回制御でハンチングが生じると圃場は大きく荒らされてしまう。 In the turning travel in Patent Documents 1 and 2, if the starting end of the final turning path to be guided to the next travel path is not accurately reached, hunting occurs in the steering control along the final turning path, and the next travel path is smoothly performed. The problem arises that it is not reached. When traveling on the final turning path ends in an overshoot state in turning control, the vehicle body slips beyond the next traveling path, and when traveling on the final turning path ends in an undershooting state, the vehicle body shifts to the next traveling path. It slips to the front side. Also, if hunting occurs during turning control, the field will be greatly damaged.
 本発明の目的は、前走行経路から離脱して次走行経路へ進入する走行において、次走行経路への進入精度が改善される自動操舵システムを提供することである。 An object of the present invention is to provide an automatic steering system that improves the accuracy of entering the next travel route when leaving the previous travel route and entering the next travel route.
 本発明による、前走行経路から旋回走行を介して次走行経路に移行する自動走行作業車のための自動操舵システムは、前記旋回走行における開始旋回走行の旋回操舵度として開始操舵度を設定する開始操舵制御部と、前記開始操舵度による前記開始旋回走行の終了後、車体から前記次走行経路までの距離が所定接近距離に達した場合に、または前記前走行経路から前記車体までの距離が所定離脱距離に達した場合に行われる最終旋回走行の前記旋回操舵度として最終操舵度を設定する最終操舵制御部とを備える。なお、操舵度は、操舵機構が操向輪である場合は操舵角を意味し、操舵機構がクローラである場合は左右クローラの速度差を意味する。もちろん、操舵度は旋回半径であってもよい。 According to the present invention, there is provided an automatic steering system for an automatically traveling working vehicle that transitions from a previous traveling route to a next traveling route through turning traveling, wherein a starting steering degree is set as a turning steering degree for starting turning traveling in the turning traveling. a steering control unit, when the distance from the vehicle body to the next travel route reaches a predetermined approach distance after the end of the start turning travel by the start steering degree, or when the distance from the previous travel route to the vehicle body reaches a predetermined distance; and a final steering control unit for setting a final steering degree as the turning steering degree of the final turning traveling performed when the leaving distance is reached. The steering degree means the steering angle when the steering mechanism is a steerable wheel, and means the speed difference between the left and right crawlers when the steering mechanism is a crawler. Of course, the steering degree may be the turning radius.
 この構成によれば、前走行経路から次走行経路に移行するための旋回走行は、最初の旋回走行である開始旋回走行と、次走行経路に進入するための旋回走行である最終旋回走行とからなる。最終旋回走行の開始は、車体から次走行経路までの距離、または前走行経路から車体までの距離に基づいて行われる。この最終旋回走行で用いられる最終操舵度は、車体から次走行経路までの距離に基づいて前もって算出できる。開始旋回走行の終了から最終旋回走行の開始までの走行には、最終旋回走行開始点を目標点とするような精度の高い操舵制御は不要である。車体と次走行経路との位置関係が所定の関係になれば、車体は、次走行経路に向かって操舵される。例えば、車体と次走行経路との位置関係が所定の関係になると、車体が予め決められた操舵角度で次走行経路に向かって操舵されるように構成すれば、複雑な旋回制御アルゴリズムは不要となる。つまり、作業車は、常に、次走行経路に対して予め設定された位置関係で、最終旋回走行が開始されるので、次走行経路への進入精度が安定する。作業車が田植機の場合、次走行経路への進入精度の安定によって、正確な苗植付位置が保証され、結果的に収量アップに結び付く。 According to this configuration, the turning travel for transitioning from the previous travel route to the next travel route consists of the starting turning travel, which is the first turning travel, and the final turning travel, which is the turning travel for entering the next travel route. Become. The start of the final turning travel is based on the distance from the vehicle body to the next travel path or the distance from the previous travel path to the vehicle body. The final steering degree used in this final turning travel can be calculated in advance based on the distance from the vehicle body to the next travel route. High-precision steering control, such as setting the final turning start point as a target point, is unnecessary for traveling from the end of the initial turning travel to the start of the final turning travel. When the positional relationship between the vehicle body and the next travel route reaches a predetermined relationship, the vehicle body is steered toward the next travel route. For example, when the positional relationship between the vehicle body and the next travel route becomes a predetermined relationship, if the vehicle body is steered toward the next travel route at a predetermined steering angle, a complicated turning control algorithm is unnecessary. Become. That is, the work vehicle always starts the final turning travel in a positional relationship set in advance with respect to the next travel route, so that the approach accuracy to the next travel route is stabilized. When the work vehicle is a rice transplanter, the stable entry into the next travel route guarantees an accurate seedling planting position, resulting in an increase in yield.
 本発明を好適に適用させるための実施形態の1つでは、前記前走行経路と前記次走行経路とが互いに平行に延びた目標走行経路であり、前記旋回走行が180度旋回走行であり、開始操舵制御部は、前記開始旋回走行における前記車体の方位変更が90度に達する前に、または90度に達した場合、操舵度を前記開始操舵度から中立操舵度に移行させる。 In one embodiment for preferably applying the present invention, the previous travel route and the next travel route are target travel routes extending parallel to each other, the turning travel is a 180-degree turning travel, and the start The steering control unit shifts the steering angle from the starting steering angle to a neutral steering angle before or after the change in direction of the vehicle body in the starting turning travel reaches 90 degrees.
 自動走行作業車、特に圃場作業を行う作業車で頻繁に用いられる作業走行経路パターンは、複数の直線状に延びた走行経路を180度旋回走行で繋いでいくパターンである。180度旋回走行は、2つの90度旋回走行で構成される。この構成において、前走行経路と次走行経路との間隔が長い場合、開始旋回走行で車体の方位変更がほぼ90度、好ましくは90度近くになると、操舵度を中立操舵度に戻し始め、最終旋回走行の開始タイミングが来るまで、直進走行する。もちろん、方位変更が90度に達するかなり前から、徐々に操舵度を中立操舵度に戻し始めてもよい。前走行経路と次走行経路との間隔が短く、開始旋回走行で車体の方位変更が90度に達する前に、最終旋回走行の開始タイミングが来ると、その時点で最終旋回走行が開始される。いずれの場合でも、次走行経路に対して予め設定された位置関係で、最終旋回走行が開始されるので、次走行経路への進入精度が安定する。 The work travel route pattern frequently used by self-driving work vehicles, especially work vehicles that perform field work, is a pattern in which multiple straight-line travel routes are connected in a 180-degree turn. A 180 degree turning run consists of two 90 degree turning runs. In this configuration, when the distance between the previous travel route and the next travel route is long, the steering angle begins to return to the neutral steering angle when the azimuth change of the vehicle body reaches approximately 90 degrees, preferably close to 90 degrees, at the start of turning. It runs straight until it is time to start turning. Of course, well before the heading change reaches 90 degrees, the steering degree may gradually begin to return to the neutral steering degree. The interval between the previous travel route and the next travel route is short, and when the start timing of the final turning travel comes before the azimuth change of the vehicle reaches 90 degrees in the starting turning travel, the final turning travel is started at that point. In either case, since the final turning travel is started with the positional relationship set in advance with respect to the next travel route, the accuracy of entering the next travel route is stabilized.
 本発明の好適な実施形態の1つでは、前記所定接近距離または前記所定離脱距離は、前記最終操舵度を用いた前記最終旋回走行によって前記車体の方位が前記次走行経路の延び方向線に一致するように設定されている。 In one preferred embodiment of the present invention, the predetermined approach distance or the predetermined departure distance is such that the bearing of the vehicle body coincides with the extension direction line of the next travel route due to the final turning travel using the final steering degree. is set to
 理想的なケースとして、最終旋回走行の終了時に車体が次走行経路の開始点に到達していなくても、車体が次走行経路の延び方向線に一致していると、そのまま直進するだけで次走行経路に到達できる。この構成では、最終旋回走行での終了時における次走行経路の延び方向線での次走行経路の始点までの距離のずれは許容され、次走行経路の延び方向線に対する横ずれだけが抑制される旋回制御であるので、旋回円に沿うような操舵制御に比べて、制御負担がすくなくなる。 As an ideal case, even if the vehicle body has not reached the starting point of the next travel route at the end of the final turn, if the vehicle body is aligned with the extension line of the next travel route, it will continue straight ahead. The driving route can be reached. In this configuration, the deviation of the distance from the extension direction line of the next travel route to the start point of the next travel route at the end of the final turning travel is allowed, and only the lateral deviation with respect to the extension direction line of the next travel route is suppressed. Since this is control, the control burden is less than steering control along a turning circle.
 本発明の好適な実施形態の1つでは、前記所定接近距離または前記所定離脱距離は、前記次走行経路の延び方向に直交する方位における前記車体から前記次走行経路までの距離または前記前走行経路の延び方向に直交する方位における前記車体から前記前走行経路までの距離である。 In one preferred embodiment of the present invention, the predetermined approach distance or the predetermined departure distance is a distance from the vehicle body to the next travel route in a direction perpendicular to the extension direction of the next travel route or the previous travel route. is the distance from the vehicle body to the preceding travel route in a direction perpendicular to the extending direction of the vehicle.
 自動走行のための目標となる走行経路の座標位置は予め記憶されているので、車体から前走行経路や次走行経路までのその延び方向に直交する方位における距離は、車体の座標位置を用いて、簡単に求められる。車体の座標位置は、自動走行のために用いられている衛星測位技術や慣性航法技術などを用いて求められる。 Since the coordinate position of the target travel route for automatic driving is stored in advance, the distance from the vehicle body to the previous travel route or the next travel route in the direction perpendicular to the extending direction is obtained using the coordinate position of the vehicle body. , is easily sought. The coordinate position of the vehicle body can be obtained using satellite positioning technology, inertial navigation technology, etc., which are used for automatic driving.
 本発明の好適な実施形態の1つでは、前記所定接近距離または前記所定離脱距離を調整する距離調整部が備えられ、前記距離調整部は、最小旋回半径、旋回速度、作業幅、作業地の地面状態の少なくとも1つに基づいて、前記所定接近距離または前記所定離脱距離を調整する。 In one of the preferred embodiments of the present invention, a distance adjustment unit for adjusting the predetermined approach distance or the predetermined separation distance is provided, and the distance adjustment unit adjusts the minimum turning radius, turning speed, working width, Adjusting the predetermined approach distance or the predetermined departure distance based on at least one ground condition.
 正確に次走行経路に到達するための所定接近距離または所定離脱距離は、クローラや車輪などの走行装置の状態や作業地の状態によって、変動することがある。このような変動に対処するための本構成によって、作業車の走行装置の状態や作業地の状態にかかわらず、正確な旋回走行が実現する。 The predetermined approach distance or predetermined separation distance for accurately reaching the next travel route may fluctuate depending on the state of traveling devices such as crawlers and wheels and the state of the work site. With this configuration for coping with such fluctuations, accurate turning travel is realized regardless of the state of the traveling device of the work vehicle and the state of the work site.
 本発明の好適な実施形態の1つでは、前記開始操舵度は最大操舵度であり、また他の好適な実施形態の1つでは、前記最終操舵度は最大操舵度である。 In one preferred embodiment of the present invention, the starting steering degree is the maximum steering degree, and in another preferred embodiment, the final steering degree is the maximum steering degree.
 操舵度を最大にすれば、旋回スペースが小さくなり、旋回走行時間も短くなる。もちろん、開始操舵度と最終操舵度の両方が、最大操舵度であってもよい。 If the steering degree is maximized, the turning space will be smaller and the turning travel time will be shorter. Of course, both the starting steering degree and the final steering degree may be the maximum steering degree.
 本発明の好適な実施形態の1つでは、前記開始操舵制御部と前記最終操舵制御部と所定の旋回速度に基づく旋回操舵である第1旋回モードを行う第1旋回モード操舵部と、前記第1旋回モード操舵部よりも細かく旋回操舵角度を制御するとともに前記第1旋回モード操舵部よりも旋回速度が低速な旋回操舵である第2旋回モードを行う第2旋回モード操舵部と、前記第1旋回モードと前記第2旋回モードのいずれかを選択する旋回モード選択部とが備えられている。 In one preferred embodiment of the present invention, the starting steering control section, the final steering control section, a first turning mode steering section that performs a first turning mode, which is turning steering based on a predetermined turning speed, a second turning mode steering unit that controls a turning steering angle more finely than the first turning mode steering unit and performs a second turning mode, which is turning steering with a lower turning speed than the first turning mode steering unit; A turning mode selector for selecting either the turning mode or the second turning mode is provided.
 上述した旋回操舵制御(操舵モード)以外にも、自動走行作業車は、種々の旋回モードを搭載できる。その他の旋回モードとして、上述した特許文献1や特許文献2による旋回操舵制御を実現する旋回モードが挙げられる。さらには、MPC(Model Predictive Control)と呼ばれる精度は高いが、制御負担が大きい旋回操舵制御を実現する旋回モードも利用可能である。本構成であれば、これらの旋回操舵制御のメリットとデメリットを有効利用できる。 In addition to the turning steering control (steering mode) described above, the autonomous vehicle can be equipped with various turning modes. As other turning modes, there is a turning mode that realizes turning steering control according to the above-mentioned Patent Document 1 and Patent Document 2. Furthermore, a turning mode called MPC (Model Predictive Control), which achieves turning steering control with high accuracy but a heavy control load, can also be used. With this configuration, the advantages and disadvantages of turning steering control can be effectively utilized.
自動操舵システムを搭載した田植機の側面図である。It is a side view of a rice transplanter equipped with an automatic steering system. エンジンから植付機構への動力伝達を説明する模式図である。It is a schematic diagram explaining the power transmission from an engine to a planting mechanism. 田植機の自動走行のための走行経路を説明する模式図である。It is a mimetic diagram explaining a travel route for automatic travel of a rice transplanter. 開始旋回走行から最終旋回走行に至る旋回走行を説明する模式図である。FIG. 5 is a schematic diagram illustrating turning travel from a start turning travel to a final turning travel; 田植機の制御系を示す機能ブロック図である。It is a functional block diagram which shows the control system of a rice transplanter.
 以下、本発明の自動操舵システムを搭載した自動走行作業車の実施形態の1つとして、圃場を作業走行する田植機を例に説明する。本実施形態では、特に断りがない限り、「前」(図1に示す矢印Fの方向)は機体前後方向(走行方向)における前方を意味し、「後」(図1に示す矢印Bの方向)は機体前後方向(走行方向)における後方を意味するものとする。また、左右方向または横方向は、機体前後方向に直交する機体左右方向(機体幅方向)を意味し、「左」は図1における紙面の手前の方向、「右」は図1における紙面の奥向きの方向を意味するものとする。 In the following, a rice transplanter that travels in a field will be described as an example of an embodiment of an autonomous working vehicle equipped with the automatic steering system of the present invention. In this embodiment, unless otherwise specified, "front" (the direction of arrow F shown in FIG. 1) means the front in the longitudinal direction (running direction) of the aircraft, and "rear" (the direction of arrow B shown in FIG. 1). ) means the rear in the longitudinal direction (running direction) of the fuselage. In addition, the left-right direction or the lateral direction means the left-right direction (machine width direction) perpendicular to the front-back direction of the machine body. shall mean the direction of orientation.
〔全体構造〕
 図1に示すように、田植機は、乗用型で四輪駆動形式の車体1を備える。車体1は、平行四連リンク形式のリンク機構13と、油圧式の昇降シリンダ13aと、苗植付装置3Aと、施肥装置3Bと、等を備える。リンク機構13は、車体1の後部に昇降揺動可能に連結されている。昇降シリンダ13aはリンク機構13を揺動駆動する。苗植付装置3Aは、リンク機構13の後端部にローリング可能に連結される。施肥装置3Bは、車体1の後端部から苗植付装置3Aにわたって架設されている。この実施形態では、苗植付装置3A及び施肥装置3Bが、本発明の自動走行作業車に備えられる作業装置3である。
[Overall structure]
As shown in FIG. 1, the rice transplanter has a vehicle body 1 of riding type and four-wheel drive type. The vehicle body 1 includes a parallel quadruple link type link mechanism 13, a hydraulic elevating cylinder 13a, a seedling planting device 3A, a fertilizing device 3B, and the like. The link mechanism 13 is connected to the rear portion of the vehicle body 1 so as to be vertically swingable. The elevating cylinder 13a drives the link mechanism 13 to swing. 3 A of seedling planting apparatuses are connected with the rear-end part of the link mechanism 13 so that rolling is possible. The fertilizing device 3B extends from the rear end of the vehicle body 1 to the seedling planting device 3A. In this embodiment, the seedling planting device 3A and the fertilizing device 3B are working devices 3 provided in the automatic traveling working vehicle of the present invention.
 車体1は、車輪式の走行装置12、エンジン2A、及び、油圧式の無段変速装置2Bを備える。無段変速装置2Bは主変速装置である。無段変速装置2Bは、例えばHST(Hydro-Static Transmission:静油圧式無段変速装置)である。無段変速装置2Bは、モータ斜板及びポンプ斜板の角度を調節することによって、エンジン2Aから出力される動力(回転数)を変速する。走行装置12は、左右の前輪12Aと、左右の後輪12Bと、を有する。左右の前輪12Aは、車体方位を変更するための操舵輪として機能する。左右の後輪12Bは操舵不能である。 The vehicle body 1 includes a wheel-type traveling device 12, an engine 2A, and a hydraulic continuously variable transmission 2B. The continuously variable transmission 2B is a main transmission. The continuously variable transmission 2B is, for example, an HST (Hydro-Static Transmission). The continuously variable transmission 2B changes the speed of the power (rotational speed) output from the engine 2A by adjusting the angles of the motor swash plate and the pump swash plate. The traveling device 12 has left and right front wheels 12A and left and right rear wheels 12B. The left and right front wheels 12A function as steering wheels for changing the orientation of the vehicle. The left and right rear wheels 12B cannot be steered.
 図1に示すように、車体1の後部に運転部14が備えられている。運転部14は、前輪操舵用のステアリングホイール10と、主変速レバー7Aと、副変速レバー7Bと、作業操作レバー11と、搭乗者(運転者・作業者・管理者)用の運転座席16と、等を備える。主変速レバー7Aは、無段変速装置2Bの変速操作を行うことで車速を調節する。副変速レバー7Bは、副変速装置の変速操作を可能にする。作業操作レバー11は、苗植付装置3Aの昇降操作等を行う。さらに、運転部14の前方において、予備苗収納装置17Aが予備苗支持フレーム17に支持されている。予備苗収納装置17Aは予備苗を収容する。 As shown in FIG. 1, a driving section 14 is provided at the rear portion of the vehicle body 1 . The driving unit 14 includes a steering wheel 10 for steering the front wheels, a main shift lever 7A, an auxiliary shift lever 7B, a work operation lever 11, and a driver's seat 16 for passengers (drivers, workers, managers). , etc. The main shift lever 7A adjusts the vehicle speed by shifting the continuously variable transmission 2B. The sub-transmission lever 7B enables the shift operation of the sub-transmission. The work operation lever 11 performs elevating operation of the seedling planting device 3A. Further, a preliminary seedling storage device 17A is supported by a preliminary seedling support frame 17 in front of the operating section 14. As shown in FIG. The spare seedling storage device 17A stores spare seedlings.
 ステアリングホイール10は、非図示の操舵機構を介して前輪12Aと連結されている。前輪12Aの操舵角は、ステアリングホイール10の回転操作によって調整される。操舵機構にステアリングモータM1が連結されている。自動操舵時には、操舵信号に基づいてステアリングモータM1が動作することによって、前輪12Aの操舵角(操舵度)が調整される。さらに、本実施形態では、主変速レバー7Aを自動操作するための変速操作用モータM2が備えられている。自動走行時には、変速信号に基づいて変速操作用モータM2が動作することによって、無段変速装置2Bの変速位置が調整される。 The steering wheel 10 is connected to the front wheels 12A via a steering mechanism (not shown). The steering angle of the front wheels 12A is adjusted by rotating the steering wheel 10. FIG. A steering motor M1 is connected to the steering mechanism. During automatic steering, the steering motor M1 operates based on a steering signal to adjust the steering angle (steering degree) of the front wheels 12A. Further, in the present embodiment, a shift operation motor M2 is provided for automatically operating the main shift lever 7A. During automatic running, the shift position of the continuously variable transmission 2B is adjusted by operating the shift operation motor M2 based on the shift signal.
 図2に示すように、苗植付装置3Aは、一例として8条植え形式で図示されている。なお、苗植付装置3Aは、6条植え形式や10条植え形式などの他の形式であってもよい。エンジン2Aからの動力は、植付クラッチC0及び各条クラッチECを介して各植付機構22に分配される。植付クラッチC0は、エンジン2Aからの動力伝達を入切することによって、苗植付装置3Aの駆動状態を切り替える。各条クラッチECは、苗植付装置3Aにおいて各植付機構22の駆動または非駆動を2条毎に選択可能に構成されている。各条クラッチECの制御によって、苗植付装置3Aは、2条植え、4条植え、6条植え、8条植えの形式に変更可能である。 As shown in FIG. 2, the seedling planting device 3A is illustrated in an eight-row planting format as an example. The seedling planting device 3A may be of other types such as a 6-row planting type or a 10-row planting type. Power from the engine 2A is distributed to each planting mechanism 22 via the planting clutch C0 and each row clutch EC. The planting clutch C0 switches the driving state of the seedling planting device 3A by switching on and off power transmission from the engine 2A. Each row clutch EC is configured to be able to select driving or non-driving of each planting mechanism 22 every two rows in the seedling planting device 3A. By controlling each row clutch EC, the seedling planting device 3A can be changed to two-row planting, four-row planting, six-row planting, and eight-row planting.
 図1及び図2に示すように、苗植付装置3Aは、苗載せ台21と、植付機構22と、等を備える。苗載せ台21は、8条分のマット状苗を載置する台座である。苗載せ台21は、マット状苗の左右幅に対応する一定ストローク量で左右方向に往復移動する。苗載せ台21が左右のストローク端に達するごとに、苗載せ台21上の各マット状苗が、苗載せ台21の下端に向けて所定ピッチで縦送りされる。8個の植付機構22は、ロータリ式で、植え付け条間に対応する一定間隔で左右方向に配置される。そして、各植付機構22には、エンジン2Aからの動力が伝達される。各植付機構22は、エンジン2Aからの動力によって、苗載せ台21に載置された各マット状苗の下端から一株分の苗(植付苗)を切り取って、整地後の泥土部に植え付ける。これにより、苗植付装置3Aは、作動状態において、苗載せ台21に載置されたマット状苗から苗を取り出して、水田の泥土部に植え付け可能である。 As shown in FIGS. 1 and 2, the seedling planting device 3A includes a seedling platform 21, a planting mechanism 22, and the like. The seedling mounting table 21 is a pedestal on which 8 rows of mat-like seedlings are mounted. The seedling mounting table 21 reciprocates in the horizontal direction with a constant stroke amount corresponding to the lateral width of the mat-like seedling. Each time the seedling platform 21 reaches the left and right stroke ends, each mat-like seedling on the seedling platform 21 is longitudinally fed toward the lower end of the seedling platform 21 at a predetermined pitch. The eight planting mechanisms 22 are of a rotary type and are arranged in the left-right direction at regular intervals corresponding to the intervals between the planting rows. Power from the engine 2A is transmitted to each planting mechanism 22 . Each planting mechanism 22 cuts off one seedling (planted seedling) from the lower end of each mat-like seedling placed on the seedling mounting table 21 by the power from the engine 2A, and places it on the mud part after leveling. Plant. As a result, the seedling planting apparatus 3A can take out seedlings from the mat-like seedlings placed on the seedling placement table 21 and plant them in the mud part of the paddy field in the operating state.
 施肥装置3Bは、ホッパ25と、繰出機構26と、施肥ホース28と、を有する。ホッパ25は、粒状または粉状の肥料(薬剤やその他の農用資材)を貯留する。繰出機構26は、ホッパ25から肥料を繰り出す。施肥ホース28は、繰出機構26によって繰出された肥料を搬送するとともに肥料を圃場に排出する。ホッパ25に貯留された肥料が、繰出機構26によって所定量ずつ繰り出されて施肥ホース28へ送られて、ブロワ27の搬送風によって施肥ホース28内を搬送され、作溝器29から圃場へ排出される。このように、施肥装置3Bは圃場に肥料を供給する。 The fertilizing device 3B has a hopper 25, a delivery mechanism 26, and a fertilizing hose 28. The hopper 25 stores granular or powdery fertilizers (chemicals and other agricultural materials). A delivery mechanism 26 delivers fertilizer from the hopper 25 . The fertilizing hose 28 conveys the fertilizer delivered by the delivery mechanism 26 and discharges the fertilizer to the field. Fertilizer stored in the hopper 25 is delivered by a delivery mechanism 26 by a predetermined amount and sent to the fertilizing hose 28, conveyed through the fertilizing hose 28 by the carrying wind of the blower 27, and discharged from the ditching device 29 to the field. be. Thus, the fertilizing device 3B supplies fertilizer to the field.
 作溝器29は、整地フロート15に配備される。そして、各作溝器29は、各整地フロート15とともに昇降し、各整地フロート15が接地する作業走行時に、水田の泥土部に施肥溝を形成して肥料を施肥溝内に案内する。整地フロート15は、接地センサとして機能する。 The grooving machine 29 is arranged on the leveling float 15 . Each grooving device 29 ascends and descends together with each leveling float 15, forms a fertilizing groove in the muddy part of the paddy field, and guides the fertilizer into the fertilizing groove during work travel in which each leveling float 15 touches the ground. The grading float 15 functions as a ground sensor.
 運転部14に取り外し可能に装着される通信端末9は、例えばタブレットコンピュータで構成されている。通信端末9は、各種の情報をオペレータに視覚情報や聴覚情報報として出力するとともに、各種の情報の入力を受け付け可能である。通信端末9は、無線または有線で、田植機の制御系とデータ交換可能に接続される。通信端末9には、自動走行のための種々の機能がインストールされている。例えば、田植機から離れた位置において、田植機の制御系(制御ユニット100)をリモコン操縦することも可能である。 The communication terminal 9 that is detachably attached to the driving unit 14 is composed of, for example, a tablet computer. The communication terminal 9 can output various types of information to the operator as visual information and auditory information, and can accept inputs of various types of information. The communication terminal 9 is wirelessly or wiredly connected to the control system of the rice transplanter so that data can be exchanged. Various functions for automatic driving are installed in the communication terminal 9 . For example, it is possible to remotely control the control system (control unit 100) of the rice transplanter at a position away from the rice transplanter.
 さらに、田植機は測位ユニット8を備える。測位ユニット8は、車体1の位置及び方位を算出するための測位データを出力する。測位ユニット8には、全地球航法衛星システム(GNSS)の衛星からの電波を受信する衛星測位モジュール8Aと、車体1の三軸の傾きや加速度を検出する慣性計測モジュール8Bが含まれている。測位ユニット8は、予備苗支持フレーム17の上部に支持される。 Furthermore, the rice transplanter is equipped with a positioning unit 8. The positioning unit 8 outputs positioning data for calculating the position and orientation of the vehicle body 1 . The positioning unit 8 includes a satellite positioning module 8A that receives radio waves from satellites of the global navigation satellite system (GNSS) and an inertial measurement module 8B that detects the three-axis tilt and acceleration of the vehicle body 1 . The positioning unit 8 is supported on top of the preliminary seedling support frame 17 .
〔走行経路〕
 自動走行によって、田植機が圃場に苗植付作業を行う作業走行について、図3を用いて説明する。
[Travel route]
Working traveling in which the rice transplanter performs seedling planting work in a field by automatic traveling will be described with reference to FIG. 3 .
 本実施形態における田植機は、手動走行と自動走行とを選択的に実行可能である。手動走行では、運転者が手動操作(リモコン操作を含む)で、ステアリングホイール10、主変速レバー7A、副変速レバー7B、作業操作レバー11等を操作して作業走行を行う。自動走行では、あらかじめ設定された目標走行経路に沿って、田植機が自動制御で走行及び作業を行う。 The rice transplanter in this embodiment can selectively execute manual running and automatic running. In manual traveling, the driver manually operates (including remote control operation) the steering wheel 10, the main gearshift lever 7A, the sub gearshift lever 7B, the work operation lever 11, etc. to perform work traveling. In automatic travel, the rice transplanter automatically travels and works along a preset target travel route.
 田植機が苗植付作業を行う際には、まず、圃場の外周(外縁)に沿って、運転者が手動操作で、作業を行わずに田植機を走行させる。図3に示すように、この周回走行によって、圃場の外周形状(圃場マップ)が生成され、圃場が外周領域OAと内部領域IAに区分けされる。 When the rice transplanter performs the seedling planting work, the driver first runs the rice transplanter manually along the outer circumference (outer edge) of the field without performing work. As shown in FIG. 3, by this round trip, the outer peripheral shape of the farm field (field map) is generated, and the farm field is divided into the outer peripheral area OA and the inner area IA.
 圃場マップが生成されると、田植機が自動走行のために用いる走行経路が生成される。
内部領域IAでは、圃場の一つの辺に略平行となるように延びた複数の直線状の走行経路(以下、これを直線走行経路と称するが、必ずしも直線には限定されない)が生成される。この直線走行経路は、田植機が、内部領域IAの全体をくまなく作業走行するための走行経路である。自動走行における自動操舵は、この直線走行経路を目標走行経路として行われる。各直線走行経路は、U字状の旋回走行経路(実質的には180度旋回経路)によって繋がれる。自動操舵と自動変速とからなる自動走行制御で行われる。
When the field map is generated, a travel route that the rice transplanter uses for automatic travel is generated.
In the inner area IA, a plurality of linear running paths (hereinafter referred to as straight running paths, but not necessarily limited to straight lines) extending substantially parallel to one side of the field are generated. This straight travel route is a travel route for the rice transplanter to travel throughout the entire inner area IA for work. Automatic steering in automatic driving is performed using this straight travel route as a target travel route. Each straight travel route is connected by a U-shaped turning travel route (substantially a 180-degree turning route). Automatic driving control consisting of automatic steering and automatic transmission is performed.
 外周領域OAでは、圃場の外周(外縁)に沿って外周領域OA内を周回する1つまたは複数回の周回走行経路が生成される。例えば、図3の例では、周回走行経路は、内側と外側の2つの周回走行経路とからなる。内側及び外側の周回走行経路も自動走行が可能であるが、いずれか一方または両方が手動走行されてもよい。 In the outer peripheral area OA, one or more round traveling routes are generated that go around the outer peripheral area OA along the outer periphery (outer edge) of the farm field. For example, in the example of FIG. 3, the circular traveling route consists of two circular traveling routes, inner and outer. The inner and outer circular travel routes can also be automatically traveled, but one or both of them may be manually traveled.
〔旋回操舵〕
 図4に、直前の作業走行に用いられた直線走行経路である前走行経路Lfから、次の作業走行に用いられる直線走行経路である次走行経路Lnに移行するための180度旋回走行経路TLの一例が示されている。
[Turn steering]
FIG. 4 shows a 180-degree turning travel path TL for transitioning from the previous travel path Lf, which is the straight travel route used for the previous work travel, to the next travel path Ln, which is the straight travel route used for the next work travel. An example is shown.
 この180度旋回走行経路TLは、開始旋回走行経路TL1と、最終旋回走行経路TL2と、中間走行経路TL0とからなる。図4では、前走行経路Lfと次走行経路Lnとの間隔はDで示されている。さらに、前走行経路Lf及び次走行経路Lnの延び方向である直線走行経路の方位は、縦方位AZ1とし、直線走行経路の方位に直交する方位は、横方位AZ2とする。 This 180-degree turning travel route TL consists of a starting turning travel route TL1, a final turning travel route TL2, and an intermediate travel route TL0. In FIG. 4, D indicates the distance between the previous travel route Lf and the next travel route Ln. Further, the azimuth of the straight travel route, which is the direction in which the previous travel route Lf and the next travel route Ln extend, is assumed to be the longitudinal azimuth AZ1, and the azimuth perpendicular to the azimuth of the straight travel route is assumed to be the lateral azimuth AZ2.
 開始旋回走行経路TL1は、前走行経路Lfの端点または前走行経路Lfの延長線から次走行経路Lnの方への90度の開始旋回走行を示し、その際の旋回操舵角は開始操舵角として、前もって設定されるが、最大操舵角が好ましい。開始旋回走行は車体方位が横方位AZ2となる時点(車体1が90度旋回した時点)で終了し、操舵角は中立操舵角(中立操舵度)に戻され、中間走行経路TL0で示される中間走行(直進走行)が開始される。 The starting turning travel path TL1 indicates a starting turning travel of 90 degrees from the end point of the previous traveling path Lf or an extension line of the previous traveling path Lf toward the next traveling path Ln, and the turning steering angle at that time is the starting steering angle. , is preset, but the maximum steering angle is preferred. The start turning travel ends when the vehicle body azimuth becomes the lateral azimuth AZ2 (when the vehicle body 1 turns 90 degrees), the steering angle is returned to the neutral steering angle (neutral steering degree), and the intermediate travel route TL0 is reached. Running (straight running) is started.
 中間走行において、車体1から次走行経路Lnまでの距離が所定接近距離D1に達した場合、または前走行経路Lfから車体1までの距離が所定離脱距離D2に達した場合、最終旋回走行経路TL2で示される最終旋回走行が開始される。この実施形態では、所定接近距離D1は、次走行経路Lnの延び方向に直交する方位である横方位AZ2における車体1から次走行経路Lnまでの距離である。所定離脱距離D2は、前走行経路Lfの延び方向に直交する方位である横方位AZ2における車体1から前走行経路Lfまでの距離である。なお、中間走行は、前走行経路Lfと次走行経路Lnとの間隔Dが短い場合、省略される。 In intermediate travel, when the distance from the vehicle body 1 to the next travel route Ln reaches the predetermined approach distance D1, or when the distance from the previous travel route Lf to the vehicle body 1 reaches the predetermined separation distance D2, the final turning travel route TL2 is reached. The final turning run indicated by is started. In this embodiment, the predetermined approach distance D1 is the distance from the vehicle body 1 to the next travel route Ln in the lateral direction AZ2, which is the direction orthogonal to the extending direction of the next travel route Ln. The predetermined detachment distance D2 is the distance from the vehicle body 1 to the preceding travel route Lf in the lateral direction AZ2, which is the direction orthogonal to the extending direction of the preceding travel route Lf. Intermediate travel is omitted when the distance D between the previous travel route Lf and the next travel route Ln is short.
 最終旋回走行での旋回操舵角である最終操舵角は前もって設定されるが、最大操舵角が好ましい。最終旋回走行は、車体1の方位が縦方位AZ1になれば、終了する。最終旋回走行が理想的に行われると、最終旋回走行の終了時には、車体1は、前走行経路Lfまたは前走行経路Lfの延長線に位置する。車体1の位置が、前走行経路Lfまたは前走行経路Lfの延長線から横方位AZ2でずれが生じていた場合は、直線走行経路に対する自動操舵制御が作動して、当該ずれが修正される。つまり、最終旋回走行が終了すると、次走行経路Lnに対する経路探索を行って、次走行経路Lnを捕捉し、これを目標走行経路として自動操舵が行われる。 The final steering angle, which is the turning steering angle in the final turning travel, is set in advance, but the maximum steering angle is preferred. The final turning run ends when the azimuth of the vehicle body 1 becomes the longitudinal azimuth AZ1. When the final turning travel is ideally performed, the vehicle body 1 is positioned on the previous travel route Lf or an extension of the previous travel route Lf at the end of the final turning travel. If the position of the vehicle body 1 deviates from the preceding travel route Lf or the extension of the preceding travel route Lf in the lateral direction AZ2, the automatic steering control for the straight travel route is activated to correct the deviation. That is, when the final turning travel is completed, a route search is performed for the next travel route Ln, the next travel route Ln is captured, and automatic steering is performed using this as the target travel route.
 最終旋回走行で用いられる最終操舵角は前もって設定されるが、最大操舵角が好ましい。所定接近距離D1または所定離脱距離D2は、最終操舵角を用いた最終旋回走行によって車体1の方位が縦方位AZ1に一致するように、つまり次走行経路nの延び方向線に一致することを目標として、実機を用いた実験やシミュレーションを繰り返し、統計的に算出され、設定される。もちろん、その都度の圃場状態や走行装置12を含む操舵システムの経年変化に対処するため、所定接近距離D1または所定離脱距離D2は、調整可能である。同様に、開始操舵角や最終操舵角も調整可能である。 The final steering angle used in the final turning run is set in advance, but the maximum steering angle is preferred. The target of the predetermined approach distance D1 or the predetermined departure distance D2 is such that the orientation of the vehicle body 1 coincides with the longitudinal orientation AZ1 by the final turning using the final steering angle, that is, coincides with the extension direction line of the next traveling route n. As such, it is statistically calculated and set by repeating experiments and simulations using actual machines. Of course, the predetermined approach distance D1 or the predetermined departure distance D2 can be adjusted in order to deal with the field conditions and aging of the steering system including the travel device 12 each time. Similarly, the starting steering angle and final steering angle can also be adjusted.
 図5には、この田植機の制御系の制御ブロック図が示されている。田植機の制御系は、田植機の各種動作を制御する制御ユニット100と、制御ユニット100とのデータ交換が可能な通信端末9とからなる。制御ユニット100には、測位ユニット8、手動操作具センサ群31、走行センサ群32、作業センサ群33からの信号が入力されている。制御ユニット100からの制御信号が、走行機器群1Aと作業機器群1Bとに出力される。 Fig. 5 shows a control block diagram of the control system of this rice transplanter. The control system of the rice transplanter consists of a control unit 100 that controls various operations of the rice transplanter and a communication terminal 9 that can exchange data with the control unit 100 . Signals from the positioning unit 8 , the manual operation tool sensor group 31 , the travel sensor group 32 , and the work sensor group 33 are input to the control unit 100 . A control signal from the control unit 100 is output to the traveling equipment group 1A and the work equipment group 1B.
 制御ユニット100は、測位ユニット8の衛星測位モジュール8Aから車体1の位置及び方位(車体前後方向の方位)を算出するための測位データを取得し、慣性計測モジュール8Bからは、車体1の三軸の傾きや加速度に関する慣性計測データを取得する。 The control unit 100 acquires positioning data for calculating the position and orientation of the vehicle body 1 (orientation in the longitudinal direction of the vehicle body) from the satellite positioning module 8A of the positioning unit 8. Acquire inertial measurement data about the tilt and acceleration of the
 走行機器群1Aには、例えば、ステアリングモータM1や変速操作用モータM2が含まれている。制御ユニット100からの制御信号に基づいて、ステアリングモータM1が制御されることによって操舵角が調節される。また、変速操作用モータM2が制御されることによって車速が調節される。 The traveling device group 1A includes, for example, a steering motor M1 and a shift operation motor M2. Based on the control signal from the control unit 100, the steering angle is adjusted by controlling the steering motor M1. Further, the vehicle speed is adjusted by controlling the speed change operation motor M2.
 作業機器群1Bには、例えば、昇降シリンダ13a、苗取り量調節機器、繰出し量調節機器、及び、植付クラッチC0や各条クラッチECの入り切り制御機器等が含まれている。昇降シリンダ13aは苗植付装置3Aを昇降させる。苗取り量調節機器は植付機構22による苗取り量を調節する。繰出し量調節機器は繰出機構26による肥料の繰出し量を変更する。 The work equipment group 1B includes, for example, an elevating cylinder 13a, a seedling amount adjusting device, a feeding amount adjusting device, and an on/off control device for the planting clutch C0 and each row clutch EC. The elevating cylinder 13a elevates the seedling planting device 3A. The seedling amount adjusting device adjusts the amount of seedlings taken by the planting mechanism 22 . The delivery amount adjusting device changes the amount of fertilizer delivered by the delivery mechanism 26 .
 手動操作具センサ群31には、各種手動操作具の操作状態を検出するセンサやスイッチなどが含まれている。走行センサ群32には、操舵角、車速、エンジン回転数などの状態及びそれらに対する設定値を検出する各種センサが含まれている。作業センサ群33には、リンク機構13、苗植付装置3A、施肥装置3Bの状態を検出する各種センサが含まれている。 The manual operating tool sensor group 31 includes sensors, switches, and the like that detect the operating states of various manual operating tools. The traveling sensor group 32 includes various sensors for detecting conditions such as steering angle, vehicle speed, engine speed, and set values for them. The work sensor group 33 includes various sensors for detecting the states of the link mechanism 13, the seedling planting device 3A, and the fertilizing device 3B.
 制御ユニット100には、走行制御部6、作業制御部51、車体位置算出部52、走行経路設定部53、及び、走行軌跡管理部54が備えられている。 The control unit 100 includes a travel control unit 6, a work control unit 51, a vehicle body position calculation unit 52, a travel route setting unit 53, and a travel locus management unit 54.
 車体位置算出部52は、測位ユニット8から逐次送られてくる衛星測位データや慣性航法データに基づいて、車体1の地図座標(車体位置)を算出する。この地図座標は、緯度経度だけでなく、圃場座標系、あるいは特定の座標系での座標であってよい。 The vehicle body position calculation unit 52 calculates map coordinates (body position) of the vehicle body 1 based on satellite positioning data and inertial navigation data sequentially sent from the positioning unit 8 . The map coordinates may be coordinates in a field coordinate system or a specific coordinate system as well as latitude and longitude.
 この実施形態では、通信端末9に、タッチパネルインターフェース90、圃場情報格納部91、走行経路マップ生成部92、走行経路生成部93、リモコン部94、等が備えられている。タッチパネルインターフェース90は、グラフィックインタフェースであって、通信端末9に装備されているタッチパネルを通じて、情報の表示や入力を行う機能を有する。したがって、この通信端末9は、制御ユニット100の情報やデータの入力出力インターフェースとして機能できる。 In this embodiment, the communication terminal 9 is provided with a touch panel interface 90, an agricultural field information storage unit 91, a travel route map generation unit 92, a travel route generation unit 93, a remote control unit 94, and the like. The touch panel interface 90 is a graphic interface and has a function of displaying and inputting information through a touch panel provided in the communication terminal 9 . Therefore, this communication terminal 9 can function as an input/output interface for information and data of the control unit 100 .
 圃場情報格納部91は、圃場の入口(出口)位置や苗や肥料の補給可能位置など圃場に関する情報が格納されている。走行経路マップ生成部92は、圃場の外周領域OA(図3参照)の最外周部、つまり畔との境界線に沿って車体1を周回走行させることで得られる走行軌跡に基づいて、圃場の外形寸法を算出する。走行経路生成部93は、圃場の外形寸法に基づいて圃場を外周領域OAと内部領域IAとに区分けし、自動走行するための走行経路を生成する。走行経路は、図3に示されたように、外周領域OAを走行するための周回走行経路と、中央領域を走行するための直線走行経路とからなる。生成された走行経路は、制御ユニット100に送られる。 The farm field information storage unit 91 stores information about the farm field, such as the entrance (exit) position of the farm field and the positions where seedlings and fertilizer can be supplied. The travel route map generator 92 generates a map of the farm field based on the travel locus obtained by causing the vehicle body 1 to travel along the outermost periphery of the outer peripheral area OA (see FIG. 3) of the farm field, that is, along the boundary line with the ridge. Calculate the external dimensions. The travel route generation unit 93 divides the field into an outer peripheral area OA and an inner area IA based on the outer dimensions of the field, and generates a travel route for automatic travel. The travel route, as shown in FIG. 3, consists of a circular travel route for travel in the outer peripheral area OA and a straight travel route for travel in the central area. The generated travel route is sent to the control unit 100 .
 リモコン部94は、この通信端末9を田植機の操作のためのリモコンとして機能させるプログラムを有する。リモコン部94が動作すると、管理者は、通信端末9に付属するハードウエアスイッチや通信端末9のタッチパネルに表示されたソフトウエアスイッチを用いて、田植機の制御系(制御ユニット100)をリモコン操作できる。 The remote control unit 94 has a program that causes the communication terminal 9 to function as a remote control for operating the rice transplanter. When the remote controller 94 operates, the administrator uses a hardware switch attached to the communication terminal 9 or a software switch displayed on the touch panel of the communication terminal 9 to remotely operate the control system (control unit 100) of the rice transplanter. can.
 制御ユニット100に構築されている走行経路設定部53は、通信端末9から走行経路生成部93によって生成された走行経路を受け取って管理し、経路追従操舵制御のための目標となる走行経路を目標走行経路として、順次設定する。 A travel route setting unit 53 built in the control unit 100 receives and manages the travel route generated by the travel route generation unit 93 from the communication terminal 9, and sets a target travel route for route following steering control. The travel route is set in sequence.
 走行軌跡管理部54は、車体位置算出部52によって算出された車体位置に基づいて、車体1の走行軌跡を生成して、記憶する。 The travel locus management unit 54 generates and stores the travel locus of the vehicle body 1 based on the vehicle body position calculated by the vehicle body position calculation unit 52 .
 作業制御部51は、自動走行では、前もって与えられているプログラムに基づいて自動的に作業機器群1Bを制御し、手動走行では、運転者の操作に基づいて、作業機器群1Bを制御する。 The work control unit 51 automatically controls the work equipment group 1B based on a program given in advance during automatic travel, and controls the work equipment group 1B based on the driver's operation during manual travel.
 走行制御部6には、自動走行制御部6Aと、手動走行制御部6Bと、制御管理部6Cと、が備えられている。この田植機は、自動走行を行う自動走行モードと手動走行を行う手動走行モードとに切替可能である。制御管理部6Cは、図示されていない走行モード切替操作具の状態を検出する手動操作具センサ(手動操作具センサ群の1つ)からの信号や制御ユニット100が制御的に生成する切替信号に基づいて、自動走行モードと手動走行モードのいずれかを選択する。 The travel control unit 6 includes an automatic travel control unit 6A, a manual travel control unit 6B, and a control management unit 6C. This rice transplanter can be switched between an automatic running mode for automatic running and a manual running mode for manual running. The control management unit 6C receives a signal from a manual operation tool sensor (one of a group of manual operation tool sensors) that detects the state of a driving mode switching operation tool (not shown) and a switching signal generated by the control unit 100 in a controlled manner. Based on this, either the automatic driving mode or the manual driving mode is selected.
 手動走行モードで動作する手動走行制御部6Bは、ステアリングホイール10の操作量に基づいて、ステアリングモータM1を制御するとともに、主変速レバー7Aや副変速レバー7Bなどの手動操作具の操作に基づいて、変速操作用モータM2を制御する。 The manual travel control unit 6B that operates in the manual travel mode controls the steering motor M1 based on the amount of operation of the steering wheel 10, and based on the operation of manual operation tools such as the main shift lever 7A and the sub shift lever 7B. , to control the shift operation motor M2.
 自動走行モードで動作する自動走行制御部6Aは、経路追従操舵部61と旋回自動操舵部62とを備えている。経路追従操舵部61は、走行経路設定部53に設定された目標走行経路に沿って車体1が走行するように経路追従制御を行う。経路追従制御において経路追従操舵部61は、車体位置算出部52で算出された車体位置を用いて、目標走行経路に対する車体1の位置ずれ(目標走行経路に対する横ずれ)と車体1の方位ずれ(目標走行経路の方位に対する車体方位のずれ角)を算出する。そして経路追従制御において経路追従操舵部61は、この位置ずれ及び方位ずれが小さくなるように操舵制御を実行する。 The automatic travel control unit 6A that operates in the automatic travel mode includes a route following steering unit 61 and an automatic turning steering unit 62. The route following steering unit 61 performs route following control so that the vehicle body 1 travels along the target travel route set by the travel route setting unit 53 . In the route following control, the route following steering section 61 uses the vehicle body position calculated by the vehicle body position calculation section 52 to determine the positional deviation of the vehicle body 1 with respect to the target travel route (lateral deviation relative to the target travel route) and the azimuth deviation of the vehicle body 1 (target deviation angle of the vehicle azimuth with respect to the azimuth of the travel route). In the route following control, the route following steering section 61 executes steering control so as to reduce the positional deviation and the azimuth deviation.
 旋回自動操舵部62は、車体1の方向転換のための旋回走行、例えば90度旋回走行や180度旋回走行を行うための操舵制御を行う。特にこの旋回自動操舵部62は、図4を用いて説明された、直線走行経路同士を繋ぐ旋回走行を行うために、開始操舵制御部621、最終操舵制御部622、中間操舵制御部623、距離判定部624、距離調整部625、及び旋回モード選択部626を有する。 The turning automatic steering section 62 performs steering control for turning for turning the vehicle body 1, for example, for turning 90 degrees or 180 degrees. In particular, the turning automatic steering unit 62 has a start steering control unit 621, a final steering control unit 622, an intermediate steering control unit 623, a distance It has a determination unit 624 , a distance adjustment unit 625 and a turning mode selection unit 626 .
 図4を参照して、直線走行経路同士(前走行経路Lfと次走行経路Ln)を繋ぐ旋回走行における旋回自動操舵部62の機能を説明する。ここでの旋回走行は180度旋回走行である。開始操舵制御部621は、車体1が前走行経路Lfの走行が終了して、次走行経路Lnに向かって旋回走行するための開始旋回走行を制御する。その際、開始旋回走行を行うため旋回操舵度として開始操舵度を設定する。この開始旋回走行は、90度旋回であって、車体方位が横方位AZ2になれば(車体1の方位変更が90度に達した場合)、終了する。開始旋回走行が終了すると、操舵制御は中間操舵制御部623に引き継がれる。中間操舵制御部623は、操舵角を中立操舵角に戻し、車体1を横方位AZ2に走行させる。 With reference to FIG. 4, the function of the turning automatic steering unit 62 in the turning traveling that connects the straight traveling paths (the previous traveling path Lf and the next traveling path Ln) will be described. The turning travel here is a 180-degree turning travel. The start steering control unit 621 controls the start turning travel for turning toward the next travel route Ln after the vehicle body 1 finishes traveling on the previous travel route Lf. At that time, the starting steering degree is set as the turning steering degree in order to perform the starting turning travel. This starting turning travel is a 90-degree turn, and ends when the vehicle body azimuth becomes the lateral azimuth AZ2 (when the azimuth change of the vehicle body 1 reaches 90 degrees). When the start turning travel ends, the steering control is taken over by the intermediate steering control section 623 . The intermediate steering control unit 623 returns the steering angle to the neutral steering angle, and causes the vehicle body 1 to travel in the lateral direction AZ2.
 距離判定部624は、所定接近距離D1または所定離脱距離D2を記録している。距離判定部624は、車体1から次走行経路Lnまでの横方位AZ2での距離が所定接近距離D1に達した場合、または前走行経路Lfから車体1までの横方位AZ2での距離が所定離脱距離D2に達した場合、最終旋回開始指令を最終操舵制御部622に与える。 The distance determination unit 624 records the predetermined approach distance D1 or the predetermined separation distance D2. The distance determination unit 624 determines when the distance from the vehicle body 1 to the next travel route Ln in the lateral direction AZ2 reaches a predetermined approach distance D1, or when the distance from the previous travel route Lf to the vehicle body 1 in the lateral direction AZ2 reaches a predetermined departure distance. When the distance D2 is reached, a final turning start command is given to the final steering control section 622 .
 最終操舵制御部622は、距離判定部624からの最終旋回開始指令に応答して、車体1が縦方位AZ1で次走行経路Lnに向かうように旋回走行するための開始旋回走行を制御する。その際、最終旋回走行を行うため旋回操舵度として最終操舵度を設定する。最終操舵制御部622による最終旋回走行は、車体1の方位が、縦方位AZ1に一致するか、ほぼ一致すれば終了する。 The final steering control unit 622, in response to the final turning start command from the distance determination unit 624, controls the start turning travel for the vehicle body 1 to turn toward the next travel route Ln in the longitudinal direction AZ1. At that time, the final steering degree is set as the turning steering degree in order to perform the final turning travel. The final turning run by the final steering control unit 622 ends when the azimuth of the vehicle body 1 matches or substantially matches the longitudinal direction AZ1.
 距離調整部625は、距離判定部624で用いられる所定接近距離D1または所定離脱距離D2を調整する。この調整は、旋回性能、旋回速度、作業地の地面状態の少なくとも1つに基づいて、あるいは最終旋回走行の終了時における次走行経路Lnに対する車体位置の横ずれに基づいて自動的に行われてもよい。もちろん、車体1に設けたダイヤルスイッチなどを利用して、管理者が距離調整してもよいし、通信端末9のタッチパネルインターフェース90を利用して、通信端末9を通じて距離調整してもよい。 The distance adjustment unit 625 adjusts the predetermined approach distance D1 or the predetermined separation distance D2 used by the distance determination unit 624. This adjustment may be made automatically based on at least one of turning performance, turning speed, and ground conditions at the work site, or based on lateral displacement of the vehicle body position relative to the next traveling path Ln at the end of the final turning travel. good. Of course, the distance may be adjusted by the administrator using a dial switch or the like provided on the vehicle body 1 , or the distance may be adjusted through the communication terminal 9 using the touch panel interface 90 of the communication terminal 9 .
 なお、この実施形態では、開始操舵角及び最終操舵度は最大操舵角に設定されているが、任意の操舵角に変更できる。 Although the start steering angle and the final steering angle are set to the maximum steering angle in this embodiment, they can be changed to arbitrary steering angles.
 最終操舵制御部622による最終旋回走行が終了すると、操舵制御は、経路追従操舵部61に引き継がれる。経路追従操舵部61は、次走行経路Lnないしは次走行経路Lnの延長線を捕捉して、次走行経路Lnないしは次走行経路Lnに車体1が乗るように操舵制御を行う。経路追従操舵部61が次走行経路Lnないしは次走行経路Lnの延長線を捕捉できない場合は、停車する。 When the final turning run by the final steering control unit 622 is completed, the steering control is handed over to the route following steering unit 61 . The route following steering unit 61 captures the next travel route Ln or an extension of the next travel route Ln, and performs steering control so that the vehicle body 1 rides on the next travel route Ln or the next travel route Ln. If the route following steering unit 61 cannot capture the next travel route Ln or the extension of the next travel route Ln, the vehicle is stopped.
 この実施形態では、旋回自動操舵部62は、上述した所定接近距離D1または所定離脱距離D2を用いて最終旋回走行の開始タイミングを決定する旋回モード(これを第1旋回モードと称する)以外の旋回モードも備えている。例えば、開始旋回走行では所定の操舵角で90度旋回が行われ、その後は次走行経路Lnの始端を走行目標点として最終旋走行が行われる旋回モードも利用できる。あるいは、特許文献1や特許文献2で開示されている旋回モードも利用できる。さらには、より高精度な旋回モードとして、MPC(モデル予測制御)を用いた旋回走行も利用できる。旋回モード選択部626は、このような旋回モードを第2旋回モード、第3旋回モード、さらなる旋回モードとして登録し、この中から実行する旋回モードを選択する。この選択は、自動で、または手動で行われる。さらに、旋回場所によって、予め設定しておくことも可能である。図5では、第1旋回モードによる旋回操舵を行う機能部は第1旋回モード操舵部62Aとして示されている。図5では、第2旋回モードによる旋回操舵を行う機能部は第2旋回モード操舵部62Bとして示されている。図5では、第3旋回モードによる旋回操舵を行う機能部は第3旋回モード操舵部62Cとして示されている。 In this embodiment, the turning automatic steering section 62 operates in a turning mode other than a turning mode (this is referred to as a first turning mode) in which the final turning travel start timing is determined using the above-described predetermined approach distance D1 or predetermined departure distance D2. It also has modes. For example, it is possible to use a turning mode in which a 90-degree turn is performed at a predetermined steering angle in the initial turning travel, and then a final turning travel is performed with the starting end of the next travel route Ln as the travel target point. Alternatively, the turning mode disclosed in Patent Document 1 and Patent Document 2 can also be used. Furthermore, as a more accurate turning mode, turning traveling using MPC (model predictive control) can also be used. The turning mode selection unit 626 registers such turning modes as a second turning mode, a third turning mode, and a further turning mode, and selects a turning mode to be executed from among these. This selection is made automatically or manually. Furthermore, it is also possible to set in advance depending on the turning location. In FIG. 5, the functional portion that performs turning steering in the first turning mode is indicated as a first turning mode steering portion 62A. In FIG. 5, the functional portion that performs turning steering in the second turning mode is indicated as a second turning mode steering portion 62B. In FIG. 5, the functional portion that performs turning steering in the third turning mode is indicated as a third turning mode steering portion 62C.
〔別実施の形態〕
 本発明は、上述の実施形態に例示された構成に限定されるものではなく、以下、本発明の代表的な別実施形態を例示する。
[Another embodiment]
The present invention is not limited to the configurations exemplified in the above-described embodiments, and other representative embodiments of the present invention will be exemplified below.
(1)上述した実施形態では、本発明の自動操舵システムが搭載される自動走行作業車として田植機が取り挙げられたが、これに代えて、播種機や収穫機などの圃場作業機、あるいは草刈機や整地機などの自動走行作業車にも適用可能である。 (1) In the above-described embodiment, a rice transplanter is used as an automatic traveling working vehicle equipped with the automatic steering system of the present invention. It can also be applied to automatic traveling work vehicles such as lawn mowers and ground levelers.
(2)上述した実施形態では、前走行経路Lfから180度旋回走行を介して次走行経路Lnに移行する旋回パターンが取り挙げられた。この実施形態に限定されず、他の角度の旋回走行、例えば、45度開始旋回走行と45度最終旋回走行からなる旋回パターンにも、本発明は適用可能である。さらに、開始旋回走行と最終旋回走行の旋回角度が異なっていてもよい。 (2) In the above-described embodiment, a turn pattern is taken in which the vehicle moves from the previous travel route Lf to the next travel route Ln via a 180-degree turn travel. The present invention is not limited to this embodiment, and the present invention can also be applied to turning travel at other angles, for example, a turning pattern consisting of a 45-degree start turning travel and a 45-degree final turning travel. Furthermore, the turning angles of the starting turning travel and the final turning travel may be different.
(3)上述した実施形態では、走行装置12は、操舵輪タイプであったが、クローラタイプであってもよい。 (3) In the above-described embodiment, the travel device 12 is of the steering wheel type, but may be of the crawler type.
(4)図5を用いて説明された機能ブロックは、一例であって、各機能部が他の機能部と統合されること、各機能部が複数の機能部に分割されること、制御ユニット100が複数の制御サブユニットに分散されること、など種々の改変が可能である。 (4) The functional block described using FIG. 5 is an example, and each functional unit is integrated with other functional units, each functional unit is divided into a plurality of functional units, and the control unit Various modifications are possible, such as 100 being distributed over multiple control subunits.
 なお、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能である。また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。 It should be noted that the configurations disclosed in the above embodiments (including other embodiments, the same shall apply hereinafter) can be applied in combination with configurations disclosed in other embodiments as long as there is no contradiction. Moreover, the embodiments disclosed in this specification are merely examples, and the embodiments of the present invention are not limited thereto, and can be modified as appropriate without departing from the scope of the present invention.
 本発明の自動操舵システムは、前走行経路から旋回走行を介して次走行経路に移行する自動走行作業車に適用可能である。 The automatic steering system of the present invention can be applied to an automatic traveling work vehicle that moves from the previous traveling route to the next traveling route through turning.
 1    :車体
 3    :作業装置
 8    :測位ユニット
 51   :作業制御部
 52   :車体位置算出部
 53   :走行経路設定部
 6    :走行制御部
 6A   :自動走行制御部
 6B   :手動走行制御部
 6C   :制御管理部
 61   :経路追従操舵部
 62   :旋回自動操舵部
 62A  :第1旋回モード操舵部
 62B  :第2旋回モード操舵部
 62C  :第3旋回モード操舵部
 621  :開始操舵制御部
 622  :最終操舵制御部
 623  :中間操舵制御部
 624  :距離判定部
 625  :距離調整部
 626  :旋回モード選択部
 9    :通信端末
 93   :走行経路生成部
 94   :リモコン部
 100  :制御ユニット
 AZ1  :縦方位
 AZ2  :横方位
 D1   :所定接近距離
 D2   :所定離脱距離
 Lf   :前走行経路
 Ln   :次走行経路
 OA   :外周領域
 TL0  :中間走行経路
 TL1  :開始旋回走行経路
 TL2  :最終旋回走行経路
 
1: Vehicle body 3: Work device 8: Positioning unit 51: Work control unit 52: Vehicle position calculation unit 53: Travel route setting unit 6: Travel control unit 6A: Automatic travel control unit 6B: Manual travel control unit 6C: Control management unit 61: Route following steering unit 62: Turning automatic steering unit 62A: First turning mode steering unit 62B: Second turning mode steering unit 62C: Third turning mode steering unit 621: Start steering control unit 622: Final steering control unit 623: Intermediate steering control unit 624 : Distance determination unit 625 : Distance adjustment unit 626 : Turning mode selection unit 9 : Communication terminal 93 : Travel route generation unit 94 : Remote control unit 100 : Control unit AZ1 : Longitudinal direction AZ2 : Lateral direction D1 : Predetermined approach Distance D2: Predetermined departure distance Lf: Previous travel route Ln: Next travel route OA: Outer peripheral area TL0: Intermediate travel route TL1: Starting turning travel route TL2: Final turning travel route

Claims (7)

  1.  前走行経路から旋回走行を介して次走行経路に移行する自動走行作業車のための自動操舵システムであって、
     前記旋回走行における開始旋回走行の旋回操舵度として開始操舵度を設定する開始操舵制御部と、
     前記開始操舵度による前記開始旋回走行の終了後、車体から前記次走行経路までの距離が所定接近距離に達した場合に、または前記前走行経路から前記車体までの距離が所定離脱距離に達した場合に行われる最終旋回走行の前記旋回操舵度として最終操舵度を設定する最終操舵制御部とを、を備えた自動操舵システム。
    An automatic steering system for an automatic traveling work vehicle that transitions from a previous traveling route to a next traveling route through turning traveling,
    a start steering control unit for setting a start steering degree as a turning steering degree for starting turning travel in the turning travel;
    When the distance from the vehicle body to the next travel route reaches a predetermined approach distance after the end of the start turning travel by the start steering degree, or when the distance from the previous travel route to the vehicle body reaches a predetermined separation distance. and a final steering control unit for setting a final steering degree as the turning steering degree of the final turning travel performed when the automatic steering system.
  2.  前記前走行経路と前記次走行経路とが互いに平行に延びた目標走行経路であり、前記旋回走行が180度旋回走行であり、
     前記開始操舵制御部は、前記開始旋回走行における前記車体の方位変更が90度に達する前に、または90度に達した場合、操舵度を前記開始操舵度から中立操舵度に移行させる請求項1に記載の自動操舵システム。
    The preceding travel route and the next travel route are target travel routes extending parallel to each other, and the turning travel is a 180 degree turning travel,
    2. The start steering control unit shifts the steering degree from the start steering degree to the neutral steering degree before or when the vehicle body orientation change in the start turning travel reaches 90 degrees. The automatic steering system as described in .
  3.  前記所定接近距離または前記所定離脱距離は、前記最終操舵度を用いた前記最終旋回走行によって前記車体の方位が前記次走行経路の延び方向線に一致するように設定されている請求項1または2に記載の自動操舵システム。 3. The predetermined approach distance or the predetermined separation distance is set so that the bearing of the vehicle body coincides with the extension direction line of the next travel route by the final turning travel using the final steering degree. The automatic steering system according to .
  4.  前記所定接近距離または前記所定離脱距離は、前記次走行経路の延び方向に直交する方位における前記車体から前記次走行経路までの距離または前記前走行経路の延び方向に直交する方位における前記車体から前記前走行経路までの距離である請求項1から3のいずれか一項に記載の自動操舵システム。 The predetermined approach distance or the predetermined separation distance is a distance from the vehicle body to the next travel route in a direction perpendicular to the extension direction of the next travel route or from the vehicle body in a direction perpendicular to the extension direction of the previous travel route. 4. The automatic steering system according to any one of claims 1 to 3, wherein the distance is the distance to the previous travel route.
  5.  前記所定接近距離または前記所定離脱距離を調整する距離調整部が備えられ、
     前記距離調整部は、最小旋回半径、旋回速度、作業幅、作業地の地面状態の少なくとも1つに基づいて、前記所定接近距離または前記所定離脱距離を調整する請求項1から4のいずれか一項に記載の自動操舵システム。
    A distance adjustment unit that adjusts the predetermined approach distance or the predetermined separation distance is provided,
    5. The distance adjustment unit adjusts the predetermined approach distance or the predetermined separation distance based on at least one of a minimum turning radius, turning speed, working width, and ground conditions of the work site. Automatic steering system according to paragraph.
  6.  前記開始操舵度または前記最終操舵度の少なくともいずれかは、最大操舵度である請求項1から5のいずれか一項に記載の自動操舵システム。 The automatic steering system according to any one of claims 1 to 5, wherein at least one of the starting steering degree and the final steering degree is a maximum steering degree.
  7.  前記開始操舵制御部と前記最終操舵制御部と所定の旋回速度に基づく旋回操舵である第1旋回モードを行う第1旋回モード操舵部と、
     前記第1旋回モード操舵部よりも細かく旋回操舵角度を制御するとともに前記第1旋回モード操舵部よりも旋回速度が低速な旋回操舵である第2旋回モードを行う第2旋回モード操舵部と、
     前記第1旋回モードと前記第2旋回モードのいずれかを選択する旋回モード選択部と、が備えられている請求項1から6のいずれか一項に記載の自動操舵システム。
     
    the start steering control section, the final steering control section, and a first turning mode steering section that performs a first turning mode, which is turning steering based on a predetermined turning speed;
    a second turning mode steering unit that controls a turning steering angle more finely than the first turning mode steering unit and performs a second turning mode that is turning steering with a lower turning speed than the first turning mode steering unit;
    The automatic steering system according to any one of claims 1 to 6, further comprising a turning mode selection section that selects one of the first turning mode and the second turning mode.
PCT/JP2022/042997 2021-12-17 2022-11-21 Automatic steering system WO2023112611A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-205335 2021-12-17
JP2021205335A JP2023090397A (en) 2021-12-17 2021-12-17 automatic steering system

Publications (1)

Publication Number Publication Date
WO2023112611A1 true WO2023112611A1 (en) 2023-06-22

Family

ID=86774129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042997 WO2023112611A1 (en) 2021-12-17 2022-11-21 Automatic steering system

Country Status (2)

Country Link
JP (1) JP2023090397A (en)
WO (1) WO2023112611A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070255470A1 (en) * 2006-04-21 2007-11-01 Norbert Diekhans Method for controlling an agricultural machine system
US20130304300A1 (en) * 2012-05-11 2013-11-14 Trimble Navigation Ltd. Path planning autopilot
JP2018068284A (en) * 2016-10-26 2018-05-10 株式会社クボタ Travel route determination device
JP2018185671A (en) * 2017-04-26 2018-11-22 株式会社クボタ Automatic steering system
JP2020031593A (en) * 2018-08-30 2020-03-05 株式会社クボタ Automatic steering system for field work vehicle
JP2021153455A (en) * 2020-03-26 2021-10-07 井関農機株式会社 Transplanter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070255470A1 (en) * 2006-04-21 2007-11-01 Norbert Diekhans Method for controlling an agricultural machine system
US20130304300A1 (en) * 2012-05-11 2013-11-14 Trimble Navigation Ltd. Path planning autopilot
JP2018068284A (en) * 2016-10-26 2018-05-10 株式会社クボタ Travel route determination device
JP2018185671A (en) * 2017-04-26 2018-11-22 株式会社クボタ Automatic steering system
JP2020031593A (en) * 2018-08-30 2020-03-05 株式会社クボタ Automatic steering system for field work vehicle
JP2021153455A (en) * 2020-03-26 2021-10-07 井関農機株式会社 Transplanter

Also Published As

Publication number Publication date
JP2023090397A (en) 2023-06-29

Similar Documents

Publication Publication Date Title
JP7192018B2 (en) work vehicle
JP2023024520A5 (en)
WO2019111563A1 (en) Traveling route setting device
JP7034799B2 (en) Work platform
CN116267069A (en) Running operation machine, rice transplanting machine, paddy field direct seeding machine and spraying operation machine
JP2019176801A (en) Field work vehicle
JP6871831B2 (en) Autonomous driving system for work vehicles
JP2024003206A (en) Agricultural work vehicle
WO2023112611A1 (en) Automatic steering system
JP6991090B2 (en) Work platform
WO2022004474A1 (en) Harvester, automatic traveling method of harvester, program, recording medium, system, agricultural machine, automatic traveling method of agricultural machine, method, and automatic steering management system
JP7191004B2 (en) work machine
JP7398329B2 (en) work vehicle
JP7085977B2 (en) Field work equipment and load management system
WO2023112610A1 (en) Field work vehicle
JP2021108577A (en) Work vehicle
JP2021081822A (en) Autonomous traveling system
JP7038651B2 (en) Field work machine and farm work support system
JP7335558B2 (en) riding machine
WO2021145005A1 (en) Agricultural work vehicle, autonomous travel control program, recording medium for recording autonomous travel control program, and autonomous travel control method
JP2023178667A (en) work vehicle
JP2022011847A (en) Agricultural implement and automatic travel method of agricultural implement
JP2023037765A (en) Automatic traveling paddy field working machine
JP2023090398A (en) Automatic travel paddy field work vehicle
KR20230057278A (en) Working vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907142

Country of ref document: EP

Kind code of ref document: A1