WO2022004474A1 - Harvester, automatic traveling method of harvester, program, recording medium, system, agricultural machine, automatic traveling method of agricultural machine, method, and automatic steering management system - Google Patents

Harvester, automatic traveling method of harvester, program, recording medium, system, agricultural machine, automatic traveling method of agricultural machine, method, and automatic steering management system Download PDF

Info

Publication number
WO2022004474A1
WO2022004474A1 PCT/JP2021/023511 JP2021023511W WO2022004474A1 WO 2022004474 A1 WO2022004474 A1 WO 2022004474A1 JP 2021023511 W JP2021023511 W JP 2021023511W WO 2022004474 A1 WO2022004474 A1 WO 2022004474A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
aircraft position
traveling
reference direction
unit
Prior art date
Application number
PCT/JP2021/023511
Other languages
French (fr)
Japanese (ja)
Inventor
中林隆志
渡邉俊樹
佐野友彦
吉田脩
川畑翔太郎
堀内真幸
齊藤直
山岡京介
奥平淳人
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020113235A external-priority patent/JP2022011847A/en
Priority claimed from JP2020113234A external-priority patent/JP2022011846A/en
Priority claimed from JP2020113236A external-priority patent/JP7387544B2/en
Priority claimed from JP2020167985A external-priority patent/JP7387572B2/en
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to CN202180024559.6A priority Critical patent/CN115361861A/en
Priority to KR1020227034824A priority patent/KR20230029589A/en
Publication of WO2022004474A1 publication Critical patent/WO2022004474A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/007Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow
    • A01B69/008Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow automatic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • A01D34/008Control or measuring arrangements for automated or remotely controlled operation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present invention relates to a harvester, an automatic traveling method of the harvester, a program, a recording medium, a system, an agricultural work machine, an automatic traveling method and method of an agricultural work machine, and an automatic steering management system.
  • the rice transplanter which is one of the agricultural work vehicles, divides the field into an outer peripheral area and a central area located inside the field, and performs seedling planting work.
  • a linear teaching traveling by manual steering is performed along the shore in the outer peripheral region before the seedling planting work is performed.
  • the direction along the teaching path obtained by the teaching run is set as the target direction (reference direction).
  • a target direction and a target travel path are used.
  • the seedling planting work is performed by automatic steering from the central area. Seedling planting work is carried out while going straight along the first target running route by automatic steering, the direction of the aircraft is changed by turning running by manual steering performed near the shore, and the target direction and the next target running again Seedling planting work is carried out by automatic steering using a route.
  • the agricultural work machine disclosed in Patent Document 2 is provided with a positioning unit capable of acquiring the position information of the machine using a navigation satellite so that the agricultural work machine runs along the reference direction calculated in the first teaching run. , Steering control is performed by the steering control unit.
  • Patent Document 3 discloses an automatic work vehicle traveling system that manages a plurality of automatically traveling agricultural work vehicles put into one field.
  • this work vehicle automatic traveling system for example, the first agricultural work vehicle and the second agricultural work vehicle capable of data communication exchange the working traveling state.
  • Each agricultural work vehicle is provided with a route element selection unit that selects a travel route element that is a travel target for automatic driving from a previously generated travel route element group.
  • the route element selection unit selects the next travel route element in consideration of both working travel conditions and both aircraft positions.
  • first farm work vehicle and the second farm work vehicle can exchange the setting parameters of the vehicle traveling equipment group and the work equipment group equipped with each other, and the parameters of the own vehicle are based on the parameters of the other vehicle. Can be adjusted.
  • one side of an unworked area of a polygonal shape formed by manual surrounding cutting is used as a reference side, and this reference side is used as a reference side for the working width (including overlap).
  • the line obtained by moving in parallel by 1/2 is calculated as the initial reference line.
  • Work on the unworked area is performed in a reciprocating running pattern that repeats straight running with automatic steering and U-turn turning running with manual steering with the initial reference line as the target running path.
  • the target route for straight running with automatic steering is calculated by translating the initial reference line inward by the working width.
  • Rice transplanters and harvesters divide the field into an outer peripheral area and a central area located inside it, and carry out farm work.
  • a linear teaching traveling is manually performed in the outer peripheral region before the seedling planting work.
  • the direction along the teaching path obtained by the teaching run is set as the target direction (reference direction).
  • the target direction and the target travel route are used.
  • the seedling planting work is performed by automatic steering from the central area. Seedling planting work is carried out while going straight along the first target travel route by automatic steering, the direction of the aircraft is changed by the turning travel performed near the shore, and the reference direction and the next target travel route are used again. Seedling planting work is carried out by automatic steering.
  • a conceivable method is to first perform teaching running in the existing work area formed by the harvester entering the field by manual steering and performing a certain harvesting work.
  • Such a method has a drawback that the running time of the harvester without the harvesting work is increased and the efficiency of the harvesting work is deteriorated.
  • an object of the present invention is to provide a harvester that can obtain a reference direction by teaching running while performing harvesting work.
  • the harvesting work of the harvester is first carried out by orbiting the field along the shore side.
  • the lap running in the place where the protrusion area protruding from the shore, the water outlet, etc. exist, the avoidance running using the reverse movement is performed to avoid these.
  • the relationship between the vehicle speed and the processing speed of the harvesting equipment may not be appropriate, and when the harvest is clogged, the aircraft is temporarily stopped or the engine is stopped in order to clear the clogging. It will be necessary to make it.
  • an object of the present invention is to provide an agricultural work machine that can obtain a reference direction required for automatic driving even if an emergency evacuation driving state occurs in teaching driving.
  • Patent Document 2 The agricultural work machine disclosed in Patent Document 2 is steered and controlled along one reference direction. Depending on the type of farm work machine, the farm work machine may not only travel along one side of the field, but may also travel along a plurality of directions according to the shape of the field. Therefore, it is desirable to flexibly use a plurality of reference directions according to the traveling state of the aircraft.
  • An object of the present invention is to provide an agricultural work machine capable of automatic steering control along a plurality of directions according to the shape of a field or the like.
  • An object of the present invention is automatic steering that enables automatic driving of an agricultural work vehicle using a standard for automatic steering that can be easily calculated without generating a traveling route for automatic driving that covers the agricultural work area in advance. To provide a management system.
  • the harvester of the present invention is generated by a machine having a traveling device, a machine position calculation unit for calculating the position of the machine using satellite positioning, and a manual operation during the harvesting operation. It was generated by a manual operation at a place away from the first machine position during the harvesting work and a first machine position acquisition unit having the machine position acquired in response to the first signal as the first machine position. Calculated using the orientation of the straight line connecting the first aircraft position and the second aircraft position as the reference orientation and the second aircraft position acquisition unit whose second aircraft position is the aircraft position acquired in response to the second signal.
  • a reference orientation calculation unit and a travel control unit that controls automatic travel of the aircraft based on the reference orientation or a travel route calculated based on the reference orientation are provided.
  • the harvester enters the field and manually operates the harvesting work.
  • the first aircraft position and the second aircraft position calculated by satellite positioning are acquired in response to the driver's operation.
  • the direction of the straight line connecting the first machine position and the second machine position acquired at intervals is calculated as the reference direction.
  • Automatic driving is started based on the calculated reference direction or the traveling route calculated based on this reference direction. That is, if the harvesting work is performed manually only while the first machine body position and the second machine body position are acquired, the harvesting work by automatic running becomes possible after that.
  • the phrase "harvesting work” here includes a state in which the aircraft is performing harvesting work while traveling and a state in which the aircraft is stopped and performing harvesting work.
  • Automatic steering using the reference direction can be realized in multiple control modes.
  • One of them is that the reference direction is set as the target direction for automatic driving, and steering is performed so as to maintain the target direction from the time when the start command for automatic driving is issued.
  • the other one is that a travel path extending in the reference direction from the aircraft position at the time when the automatic travel start command is issued is set as a target route for automatic steering, and steering is performed along this target route.
  • the steering control algorithm becomes simple.
  • the method of steering so as to eliminate the positional deviation (lateral displacement) of the aircraft with respect to the traveling path calculated by using the aircraft position by satellite positioning, and the steering by combining the positional deviation and the directional deviation are steered.
  • the traveling route is set based on the reference direction at the start of automatic traveling, and the traveling control unit automatically travels the aircraft so as to follow the traveling route. To control.
  • the teaching run for acquiring the first machine position and the second machine position is a stable run even if the harvesting work is performed at the same time. Further, in order to obtain a desired reference direction, it is necessary to acquire the second aircraft position at an appropriate aircraft position with respect to the first aircraft position. Therefore, accurate manual steering is required for manual driving when reaching the position of the second aircraft from the position of the first aircraft.
  • a display information generation unit that generates a traveling locus of the aircraft from the first aircraft position to the second aircraft position and the traveling locus are generated. It is equipped with a display device to display. In this configuration, the driver can confirm the state of driving on the traveling track displayed on the display device, and accurate driving is facilitated.
  • the display device When driving support information is displayed on the display device, the display device is constantly checked by the driver during driving, so that it is also effective as an operation input device in which the driver gives a command regarding driving to the harvester. Therefore, in one of the preferred embodiments of the present invention, the display device is a touch panel, and the manual operation for generating the first signal is a touch operation for the first button displayed on the touch panel. The manual operation for generating the second signal is a touch operation for the second button displayed on the touch panel.
  • the distance between the first aircraft position and the second aircraft position is calculated in consideration of the satellite positioning error.
  • the larger the value the higher the accuracy of orientation calculation.
  • the minimum required distance between the first aircraft position and the second aircraft position can be estimated. For this reason, in one of the preferred embodiments of the present invention, traveling for a predetermined distance or more or traveling for a predetermined time or more from the position of the first aircraft is set as a condition for generating the second signal.
  • the predetermined distance is determined from the desired reference direction calculation accuracy and the error of satellite positioning. Further, since the vehicle speed suitable for the harvesting work is almost fixed, the time for traveling a predetermined distance can be obtained in the same manner.
  • the second button is displayed on the touch panel when the above-mentioned conditions are satisfied for traveling for a predetermined distance or more or traveling for a predetermined time or more from the position of the first aircraft.
  • the display information generation unit When the driver confirms the running state of the harvester while looking at the running locus displayed on the display device in order to set the position of the second aircraft at the correct position, it is convenient if a guide sign is also displayed on the display device.
  • the harvester runs with the boundary line of the harvesting work area (field) and the line indicating the planting line of the harvested crop as a guide, so it is appropriate if the line embodying such a guideline is displayed on the display device. It is a good support for calculating the reference orientation.
  • the display information generation unit generates a marker line parallel to the boundary line of the harvesting work area or the planting line of the harvested crop, and the boundary line or the marker. The line is displayed on the display device together with the travel locus.
  • the manual operation for generating the first signal is an operation for the harvesting start operation tool for starting the harvesting operation by the harvesting device.
  • the present invention covers not only the harvester but also the automatic traveling method for the harvester.
  • the automatic traveling method of the harvester provided with the aircraft having the traveling device is generated by the aircraft position calculation step of calculating the aircraft position using satellite positioning and the manual operation during the harvesting work by manual steering.
  • the first machine position acquisition step in which the machine position acquired in response to one signal is set as the first machine position
  • a reference orientation calculated using the orientation of a straight line connecting the first aircraft position and the second aircraft position as a reference orientation and a second aircraft position acquisition step in which the aircraft position acquired in response to a signal is set as the second aircraft position.
  • It includes a calculation step and a travel control step for controlling the automatic travel of the aircraft based on the reference orientation or the travel route calculated based on the reference orientation. Also in the automatic traveling method according to the present invention, the above-mentioned action and effect in the harvester and the embodiment can be applied.
  • the program of the present invention is a program for controlling a harvester equipped with an airframe having a traveling device, and is an airframe position calculation for calculating an airframe position using satellite positioning.
  • the second aircraft position acquisition function that sets the aircraft position acquired in response to the second signal generated by manual operation at a location away from the first aircraft position as the second aircraft position, and the first aircraft position and the first aircraft position.
  • a reference orientation calculation function that calculates the orientation of a straight line connecting two aircraft positions as a reference orientation, and traveling that controls automatic travel of the aircraft based on the reference orientation or a travel route calculated based on the reference orientation. Realize the control function and the computer
  • the recording medium of the present invention is a recording medium on which a program for controlling a harvester equipped with an aircraft having a traveling device is recorded, and the position of the aircraft is positioned by using satellite positioning.
  • the first machine position acquisition function that sets the first machine position acquired in response to the first signal generated by the manual operation during the harvesting work by manual steering, and the above-mentioned machine position calculation function.
  • the second machine position acquisition function that sets the machine position acquired in response to the second signal generated by the manual operation at a place away from the first machine position during the harvesting work as the second machine position
  • the reference orientation calculation function that calculates the orientation of the straight line connecting the position of one aircraft and the position of the second aircraft as the reference orientation, and the reference orientation or the traveling route calculated based on the reference orientation of the aircraft. It records a driving control function that controls automatic driving and a program that realizes a computer.
  • the system of the present invention is a system for controlling a harvester equipped with an airframe having a traveling device, and is an airframe position calculation for calculating an airframe position using satellite positioning.
  • a reference azimuth calculation unit that calculates the azimuth of the straight line connecting the two as a reference azimuth
  • a travel control unit that controls the automatic travel of the aircraft based on the reference azimuth or the travel route calculated based on the reference azimuth.
  • the agricultural work machine of the present invention includes a machine having a traveling device and performing forward traveling and non-forward traveling, and an aircraft position calculation unit for calculating the aircraft position using satellite positioning.
  • the first aircraft position acquisition unit whose first aircraft position is the aircraft position acquired in response to the first signal generated by manual operation, and through the forward travel, or both the forward travel and the non-forward travel.
  • a second aircraft position acquisition unit whose second aircraft position is the aircraft position acquired in response to a second signal generated by a manual operation at a location moved from the first aircraft position, and the first aircraft position.
  • the reference orientation calculation unit that calculates the orientation of the straight line connecting the second aircraft position and the second aircraft position as the reference orientation, and the automatic traveling of the aircraft based on the reference orientation or the traveling route calculated based on the reference orientation. It is provided with a traveling control unit for controlling.
  • Automatic steering using the reference direction can be realized in multiple control modes.
  • One of them is that the reference direction is set as the target direction for automatic driving, and steering is performed so as to maintain the target direction from the time when the start command for automatic driving is issued.
  • the other one is that a travel path extending in the reference direction from the aircraft position at the time when the automatic travel start command is issued is set as a target route for automatic steering, and steering is performed along this target route.
  • the steering control algorithm becomes simple.
  • the method of steering so as to eliminate the positional deviation (lateral displacement) of the aircraft with respect to the traveling path calculated by using the aircraft position by satellite positioning, and the steering by combining the positional deviation and the directional deviation are steered.
  • the traveling route is set based on the reference direction at the start of automatic traveling, and the traveling control unit automatically travels the aircraft so as to follow the traveling route. To control.
  • the non-forward travel includes a reverse travel state and / or a reverse travel state
  • the travel stop state includes an engine stop state or an engine drive state.
  • an emergency evacuation running state such as a temporary stop of the machine or an engine stop occurs in order to clear the clog.
  • the teaching running is not stopped despite the occurrence of such an emergency evacuation running state, the running while performing agricultural work such as harvesting work can also be used as the teaching running. From this, in one of the preferred embodiments of the present invention, even if the forward travel is a work travel or the forward travel is a non-work travel, the first aircraft position acquisition unit is the first. The position of one machine can be acquired, and the position acquisition unit of the second machine can acquire the position of the second machine.
  • the distance between the first aircraft position and the second aircraft position is calculated in consideration of the satellite positioning error.
  • the larger the value the higher the accuracy of orientation calculation.
  • the minimum required distance between the first aircraft position and the second aircraft position is estimated. For this reason, in one of the preferred embodiments of the present invention, traveling for a predetermined distance or more or traveling for a predetermined time or more from the position of the first aircraft is set as a condition for generating the second signal.
  • the predetermined distance is determined from the desired reference direction calculation accuracy and the error of satellite positioning. Further, since the vehicle speed suitable for the mowing work is almost fixed, the time for traveling a predetermined distance can be obtained in the same manner.
  • the minimum distance between the first aircraft position and the second aircraft position acquired in teaching driving is set and the distance is calculated by the mileage of the aircraft, in order to make an appropriate judgment, move backward to the mileage. Do not include the mileage of.
  • the minimum time required for traveling between the first aircraft position and the second aircraft position acquired in the teaching operation is set, for proper determination, the minimum time is calculated. Do not include stop time. For this reason, in one of the preferred embodiments of the present invention, the reverse distance is ignored as the predetermined distance, and the stop time is ignored as the predetermined time.
  • the manual operation for generating the first signal is an operation for the work start operation tool for starting the work operation by the work device.
  • the present invention is intended not only for agricultural work machines but also for automatic traveling methods for agricultural work machines.
  • the automatic traveling method of a harvester having a traveling device and having an aircraft that performs forward traveling and non-forward traveling is generated by a machine position calculation step for calculating the machine position using satellite positioning and a manual operation.
  • the first aircraft is the first aircraft position acquisition step in which the aircraft position acquired in response to the first signal is set as the first aircraft position, and through the forward travel, or through both the forward travel and the non-forward travel.
  • the second aircraft position acquisition step with the aircraft position acquired in response to the second signal generated by the manual operation at the place moved from the position as the second aircraft position, the first aircraft position and the second aircraft A reference orientation calculation step that calculates the orientation of a straight line connecting positions as a reference orientation, and a travel control step that controls automatic travel of the aircraft based on the reference orientation or a travel route calculated based on the reference orientation. And. Also in the automatic traveling method according to the present invention, the above-mentioned action and effect on the agricultural work machine and the embodiment can be applied.
  • the program of the present invention is a program for controlling an agricultural work machine having a traveling device and having an aircraft that performs forward traveling and non-forward traveling, and performs satellite positioning.
  • the machine position calculation function that calculates the machine position using the machine
  • the first machine position acquisition function that sets the machine position acquired in response to the first signal generated by manual operation as the first machine position, and the forward traveling.
  • the second aircraft position is the aircraft position acquired in response to the second signal generated by the manual operation at the place moved from the first aircraft position through both the forward traveling and the non-forward traveling.
  • the computer realizes a travel control function that controls the automatic travel of the aircraft based on the travel route.
  • the recording medium of the present invention is a recording medium that records a program for controlling an agricultural work machine having a traveling device and having an aircraft that performs forward traveling and non-forward traveling.
  • the second aircraft position acquisition function which is the position of two aircraft
  • the reference orientation calculation function which calculates the orientation of the straight line connecting the first aircraft position and the second aircraft position as the reference orientation, and the reference orientation, or the reference.
  • a program is recorded to realize a travel control function for controlling the automatic travel of the aircraft based on a travel route calculated based on the orientation, and a computer.
  • the system of the present invention is a system for controlling an agricultural work machine having a traveling device and having an aircraft that performs forward traveling and non-forward traveling, and performs satellite positioning.
  • the machine position calculation unit that calculates the machine position using the machine
  • the first machine position acquisition part that uses the machine position acquired in response to the first signal generated by manual operation as the first machine position, and the forward traveling.
  • the second aircraft position is the aircraft position acquired in response to the second signal generated by the manual operation at the place moved from the first aircraft position through both the forward traveling and the non-forward traveling.
  • the two aircraft position acquisition unit calculates the orientation of the straight line connecting the first aircraft position and the second aircraft position as the reference orientation
  • the reference orientation is provided with a travel control unit that controls the automatic travel of the aircraft based on the travel route.
  • the agricultural work machine of the present invention has an airframe having a maneuverable traveling device, an airframe position calculation unit for calculating an airframe position using satellite positioning, and a work traveling machine.
  • a storage unit that stores a plurality of reference directions, a selection unit that selects one of the plurality of reference directions, and the reference direction or a traveling target line set based on the reference direction. It is characterized by being provided with a steering control unit that automatically controls steering of the traveling device based on the position of the machine.
  • the storage unit stores a plurality of reference directions, and the selection unit can select one of the plurality of reference directions. Therefore, it is possible to configure a plurality of reference directions to be flexibly used according to the traveling state of the aircraft, and the steering control unit steers the traveling device according to the selected reference direction among the plurality of reference directions. Can be controlled. That is, the selection unit selects a necessary reference direction from a plurality of reference directions, and the steering control unit can control the steering based on the selected reference direction. As a result, an agricultural work machine capable of automatic steering control along a plurality of directions according to the shape of the field and the like is realized.
  • a reference direction calculation unit for calculating the reference direction based on a plurality of the aircraft positions calculated while traveling in the field
  • the reference direction calculation unit is a first point in the outer peripheral region of the field.
  • the first reference direction is calculated as one of the plurality of reference directions based on the aircraft position calculated at each of the first point and the second point in the two-point running over the second point. After traveling over the first point and the second point, the first point is traveled between two points in the outer peripheral region over a third point and a fourth point different from both the first point and the second point. It is preferable to calculate the second reference direction as one of the plurality of reference directions based on the aircraft positions calculated at each of the three points and the fourth point.
  • the first reference direction and the second reference direction are calculated by repeating the running between two points for each different area in the outer peripheral area of the field. Therefore, for example, in the process of traveling in the outer peripheral region of the field, it is possible to calculate a plurality of reference directions.
  • a reference direction calculation unit for calculating the reference direction based on a plurality of the aircraft positions calculated while traveling in the field is provided, and the reference direction calculation unit is predetermined from the calculated reference direction. It is preferable that the reference azimuth, which is deviated only by the azimuth, can be calculated.
  • the predetermined orientation is preferably 90 degrees.
  • the directional deviation setting unit capable of setting the directional deviation amount based on the artificial operation is provided, and the predetermined azimuth is the directional deviation amount set by the artificial operation.
  • the passenger or the manager of the agricultural work machine operates the directional deviation setting unit to set the desired directional deviation amount, so that the reference azimuth deviates from the calculated reference azimuth by the desired azimuth. Can be calculated.
  • a reference direction calculation unit for calculating the reference direction based on a plurality of the aircraft positions calculated while traveling in the field is provided, and the reference direction calculation unit is manually operated in the outer peripheral region of the field. It is preferable to calculate the plurality of reference directions along the extending direction of at least one side of the outer periphery of the field based on the aircraft position calculated during the orbiting.
  • the reference directions can be easily calculated without imposing a burden on the passengers of the agricultural work machine.
  • the traveling target line can be configured to extend along the one side. From this, the steering control by the steering control unit is along the one side, and suitable work running is realized.
  • the aircraft orientation calculation unit for calculating the orientation of the aircraft is provided, the plurality of reference orientations having different orientations are stored in the storage unit, and the selection unit is set to the calculated orientation of the aircraft. It is preferable to select one of the plurality of reference orientations based on the above.
  • the aircraft orientation calculation unit calculates the aircraft orientation, and the reference orientation suitable for the aircraft orientation is automatically selected. Therefore, it is not necessary for the passenger or the like to bother to select the reference direction as compared with the configuration in which the reference direction is not selected based on the direction of the aircraft, and the selection of the reference direction becomes smooth.
  • the steering control unit determines that the predetermined conditions are satisfied and that the aircraft has traveled straight for a predetermined distance or a predetermined time along the reference direction selected by the selection unit. In this case, it is preferable that the traveling device can be automatically steered and controlled.
  • the steering control unit When the steering control by the steering control unit is started while the passenger of the agricultural work machine is manually steering the aircraft to go straight, the steering control unit is stable only by finely adjusting the steering amount of the traveling device. Steering control can be executed. With this configuration, since the steering control by the steering control unit is started after the aircraft has traveled straight along the reference direction for a predetermined distance or a predetermined time, stable straight traveling is possible. Further, in the present configuration, since the steering control by the steering control unit is started in a state where a predetermined condition is satisfied, the steering control is performed under appropriate conditions.
  • the predetermined conditions include that the clutch for power transmission to the working device is engaged. Further, in the present invention, it is preferable that the predetermined conditions include that the working device is located at the working position.
  • an orientation display unit capable of displaying an orientation index indicating the reference orientation selected by the selection unit is provided.
  • the passenger or manager of the agricultural work machine can easily grasp the reference direction selected by the selection unit from the plurality of reference directions on the direction display unit.
  • the directional display unit determines the display mode of the directional index depending on whether the traveling device is artificially steered or controlled or the traveling device is automatically steered. It is preferable to change it.
  • the passenger or manager of the agricultural work machine can easily grasp whether or not the steering control is performed by the steering control unit based on the display mode of the directional index.
  • the system of the present invention is a system for controlling an agricultural work machine equipped with an aircraft having a maneuverable traveling device, and uses satellite positioning to determine the position of the agricultural work machine.
  • An aircraft position calculation unit to be calculated a storage unit capable of storing a plurality of reference directions for work driving, a selection unit for selecting one of the plurality of reference directions, the selected reference direction, or the selected reference direction.
  • a steering control unit that automatically steers and controls the traveling device based on the position of the aircraft is provided so as to follow a traveling target line set based on the selected reference direction.
  • the program of the present invention is a program for controlling an agricultural work machine equipped with an airframe having a maneuverable traveling device, and is a program for controlling the airframe of the agricultural work machine by using satellite positioning.
  • the aircraft position calculation function for calculating the position
  • the storage function for storing a plurality of reference directions for work driving in the memory
  • the selection function for selecting one of the plurality of reference directions
  • the computer has a steering control function that automatically steers the traveling device based on the position of the aircraft so as to follow the orientation or the traveling target line set based on the selected reference orientation. make it happen.
  • the recording medium of the present invention is a recording medium on which a program for controlling an agricultural work machine including an airframe having a maneuverable traveling device is recorded, and satellite positioning is used.
  • a machine position calculation function for calculating the machine position of the agricultural work machine, a storage function for storing a plurality of reference directions for work driving in a memory, and a selection function for selecting one of the plurality of reference directions.
  • Steering control that automatically steers the traveling device based on the aircraft position so as to follow the selected reference directional direction or the traveling target line set based on the selected reference azimuth. It records the functions and the programs that realize the functions on the computer.
  • the method of the present invention is a method for controlling an agricultural work machine equipped with an airframe having a maneuverable traveling device, and uses satellite positioning to control the airframe of the agricultural work machine.
  • An aircraft position calculation step for calculating a position
  • a storage step for storing a plurality of reference directions for work driving in a memory
  • a selection step for selecting one of the plurality of reference directions, and the selected reference. It includes a steering control step that automatically steers and controls the traveling device based on the aircraft position so as to follow the orientation or the traveling target line set based on the selected reference orientation.
  • the automatic steering management system for the agricultural work vehicle of the present invention has the first aircraft position and the first aircraft, which are the aircraft positions of the agricultural work vehicle acquired by using satellite positioning. At least one of the combination with the second aircraft position acquired by using the satellite positioning at a place away from the position and the reference orientation which is the orientation of the straight line connecting the first aircraft position and the second aircraft position.
  • the reference information management unit that manages as reference information and the travel control unit that controls the automatic travel of the agricultural work vehicle based on the reference orientation obtained from the reference information or the travel route calculated based on the reference orientation.
  • a reference information transmission unit for transmitting the reference information read from the reference information management unit.
  • the reference orientation which is the combination of the first aircraft position and the second aircraft position acquired through teaching running in the field, or the orientation of the straight line connecting the first aircraft position and the second aircraft position. It is managed by the standard information management department as standard information. Since the reference direction can be calculated from the first aircraft position and the second aircraft position, the reference information management unit manages only the combination of the first aircraft position and the second aircraft position, or the reference calculated from the combination. Only the orientation may be used, or both may be managed.
  • Such standard information is managed by the standard information management unit and sent to the travel control unit of the agricultural work vehicle. The travel control unit performs automatic steering control based on the reference information. For example, in this field, when a plurality of agricultural work vehicles automatically run at almost the same time or at intervals of time (seasonal), the same standard information managed by the standard information management department is automatically used. Used for steering.
  • Automatic steering using the reference direction can be realized in multiple control modes.
  • One of them is that the reference direction is set as the target direction for automatic driving, and steering is performed so as to maintain the target direction from the time when the start command for automatic driving is issued.
  • the other one is that a travel path extending in the reference direction from the aircraft position at the time when the automatic travel start command is issued is set as a target route for automatic steering, and steering is performed along this target route.
  • the former control mode if a position shift occurs due to slip or the like in the middle, there is a problem that the position shift cannot be corrected, but there is an advantage that the steering control algorithm becomes simple.
  • the method of steering so as to eliminate the positional deviation (lateral displacement) of the aircraft with respect to the traveling path calculated by using the aircraft position by satellite positioning, and the steering by combining the positional deviation and the directional deviation are steered.
  • the travel path is set based on the reference direction at the start of automatic steering, and the travel control unit automatically travels the aircraft so as to follow the travel path. To control.
  • the reference information management unit receives and manages the position of the first machine and the position of the second machine as the reference information.
  • the reference information management unit calculates and manages the reference direction from the position of the first machine and the position of the second machine.
  • the reference information management unit receives and manages the reference direction calculated from the first aircraft position and the second aircraft position as the reference information. That is, at the stage when the position of the second aircraft is acquired, the reference direction is calculated and given to the reference information management unit.
  • the reference information management unit manages the reference information for each field in which the farm work vehicle works. With this configuration, the farm work vehicle can be automatically steered using the reference information in the field where the reference information is managed by the reference information management unit, without performing the teaching run.
  • the reference information management unit and the reference information transmission unit are provided in a management computer that can be connected to the farm work vehicle via a data communication line. As a result, the standard information obtained in many fields is shared with many agricultural work vehicles.
  • the automatic steering management system of the present invention can be constructed as a small-scale system using data exchange communication between a plurality of agricultural work vehicles, instead of a large-scale system using a management computer.
  • this automatic steering management system may be constructed in the main agricultural work vehicle, or this automatic steering management system may be constructed in all agricultural work vehicles, and a specific automatic steering management system may be selected and used. You may.
  • the agricultural work vehicle includes at least a first agricultural work vehicle and a second agricultural work vehicle, and the first agricultural work vehicle and the second agricultural work vehicle.
  • the reference information management unit and the reference information transmission unit are provided on at least one of the above.
  • the second agricultural work vehicle here is a general term for a plurality of agricultural work vehicles that are put into the same field in cooperation with the first agricultural work vehicle, and the second agricultural work vehicle means at least one agricultural work vehicle.
  • the preceding farm work vehicle which is the master, first performs teaching driving, obtains standard information, performs automatic driving, and then performs automatic driving.
  • the remaining farm work vehicles can be automatically driven by using the reference information received from the preceding farm work vehicle as the follow-on farm work vehicle to be a slave.
  • the following agricultural work vehicle does not need to perform teaching running, and it is not necessary to manage the reference information obtained by teaching running, so that the control system becomes simple. Therefore, in one of the preferred embodiments of the present invention, the agricultural work vehicle includes a preceding agricultural work vehicle that performs work first in the same field and a succeeding agricultural work vehicle that performs work behind the preceding agricultural work vehicle. It is notified to the succeeding farm work vehicle that the standard information by the preceding farm work vehicle is managed by the standard information management unit.
  • the reference direction In order to calculate the reference direction, it is necessary to acquire the position of the first aircraft while traveling and to acquire the position of the second aircraft after traveling a further predetermined distance. It is also possible to automatically acquire the position of the first aircraft by detecting the straight running of the vehicle body, and automatically acquire the position of the second aircraft after a predetermined distance thereafter.
  • the reference direction is calculated from the acquired first and second aircraft positions and used as a control target for automatic steering thereafter, it is important for automatic driving to obtain an appropriate reference direction. .. For this reason, it is preferable for the driver to manually acquire the position of the first machine and the position of the second machine while checking the position of the machine and the state of the machine.
  • the first machine position is acquired in response to the first signal generated by the manual operation by the driver of the farm work vehicle, and the second machine is obtained.
  • the position is acquired in response to a second signal generated by a manual operation by the driver of the farming vehicle at a location away from the first aircraft position.
  • the program of the present invention is a program for controlling an automatic steering management system for an agricultural work vehicle, and the position of the agricultural work vehicle acquired by using satellite positioning.
  • Agricultural work based on a reference information management function that manages at least one of the reference orientations as reference information, the reference orientation obtained from the reference information, or a travel route calculated based on the reference orientation.
  • the computer is provided with a reference information transmission function for transmitting the reference information managed by the reference information management function to the control unit that controls the automatic running of the vehicle.
  • the recording medium of the present invention is a recording medium for recording a program for controlling an automatic steering management system for an agricultural work vehicle, and was acquired by using satellite positioning.
  • a reference information management function that manages at least one of the reference orientations that is the orientation of a straight line connecting the aircraft position as reference information, the reference orientation obtained from the reference information, or traveling calculated based on the reference orientation.
  • the control unit that controls the automatic running of the agricultural work vehicle based on the route records a program that realizes a reference information transmission function for transmitting the reference information managed by the reference information management function and a computer. ..
  • the method of the present invention is a method for controlling an automatic steering management system for an agricultural work vehicle, and the position of the agricultural work vehicle acquired by using satellite positioning is used.
  • Agricultural work based on a reference information management step that manages at least one of the reference orientations as reference information, the reference orientation obtained from the reference information, or a travel route calculated based on the reference orientation.
  • the control unit that controls the automatic traveling of the vehicle includes a reference information transmission step for transmitting the reference information managed in the reference information management step.
  • (First Embodiment) It is a side view of the combine.
  • (First Embodiment) It is a functional block diagram of the control system concerning automatic driving.
  • (First Embodiment) It is a schematic diagram which shows the running pattern in a harvesting work.
  • (First Embodiment) It is a schematic diagram which shows the other running pattern in a harvesting work.
  • (First Embodiment) It is a schematic diagram which shows the teaching running.
  • (First Embodiment) It is a schematic diagram which shows the transition from the manual steering running to the automatic steering running.
  • (First Embodiment) It is a schematic diagram for demonstrating the basics of automatic operation control.
  • (First Embodiment) It is a flowchart which shows an example of a harvesting work run.
  • (Second Embodiment) It is a functional block diagram of the control system concerning automatic driving. (Note 421) (Second Embodiment) It is a schematic diagram which shows the teaching running. (Second Embodiment) It is a schematic diagram which shows the teaching running. (Second Embodiment) It is a schematic diagram which shows the teaching running. (Third Embodiment) It is a functional block diagram which shows the control system of an agricultural work machine. (Third Embodiment) It is a flowchart about calculation of a reference direction. (Third Embodiment) It is a top view of the field which shows the reference direction calculated by the perimeter mowing run for one round of the machine body.
  • (Third Embodiment) It is a flowchart about automatic steering control.
  • (Third Embodiment) It is a top view of the field which shows the automatic steering control of the airframe based on a reference direction.
  • (Third Embodiment) It is a top view of the field which shows the automatic steering control of the airframe based on a reference direction.
  • (Third Embodiment) It is a top view of the field which shows the automatic steering control of the airframe based on a reference direction.
  • (Third Embodiment) It is a top view of the field which shows the automatic steering control of the airframe based on a reference direction.
  • (Third Embodiment) It is a top view of the field which shows the automatic steering control of the airframe based on a reference direction.
  • (Third Embodiment) It is a top view of the field which shows the automatic steering control of the airframe based on a reference direction.
  • (Third Embodiment) It is a top view of the field which shows the automatic steering control of the airframe based on a reference direction.
  • (Third Embodiment) It is a top view of the field which shows the automatic steering control of the airframe based on a reference direction.
  • (Third Embodiment) It is a flowchart which shows the start determination routine of the automatic steering control.
  • (Third Embodiment) It is a figure which shows the direction index.
  • (Third Embodiment) It is a figure which shows the direction index.
  • (Third Embodiment) It is a figure which shows the direction index.
  • (Third Embodiment) It is a figure which shows the direction index.
  • (Fourth Embodiment) It is a schematic diagram which shows the harvesting work performed cooperatively by two combines.
  • (Fourth Embodiment) It is a schematic diagram which shows the harvesting operation which used the orbiting running and the round-trip straight running on two combines.
  • (Fourth Embodiment) It is a functional block diagram of the control system about automatic driving mounted on a combine.
  • (Fourth Embodiment) It is a flowchart which shows an example of the cooperative harvesting work run.
  • a combine that performs harvesting work by automatic steering based on the traveling path of a rice transplanter that performs seedling planting work by automatic steering based on the reference orientation obtained by teaching running and the reference orientation used by the rice transplanter. It is a schematic diagram which shows the traveling route of. (Fourth Embodiment) It is a schematic diagram which shows the automatic steering management system incorporated in the management computer of a remote place.
  • this combine includes an aircraft 1, a pair of steerable left and right crawler-type traveling devices 11, a boarding section 12, a threshing device 13, a grain tank 14, and a harvesting device 15. And a transport device 16 and a grain discharge device 18.
  • the traveling device 11 is provided at the lower part of the combine.
  • the traveling device 11 has a pair of left and right crawler traveling mechanisms, and the combine can travel in the field as a harvesting work site by the traveling device 11.
  • the traveling device 11 includes a main transmission of a hydrostatic continuously variable transmission and a gear switching type auxiliary transmission.
  • the auxiliary transmission is configured to be capable of shifting, with the number of gears for movement (non-working) and the number of gears for work traveling slower than that for movement.
  • the boarding unit 12, the threshing device 13, and the grain tank 14 are provided above the traveling device 11, and these are configured as the upper part of the machine body 1.
  • the passenger and the observer also serve concurrently.
  • the observer may monitor the work of the combine from outside the combine.
  • a drive engine (not shown) is provided below the boarding section 12.
  • the grain discharge device 18 is connected to the rear lower portion of the grain tank 14.
  • the combine is traveled by the traveling device 11 while harvesting the crops in the field by the harvesting device 15.
  • the harvesting device 15 harvests the crops in the field. Then, the combine can be run by the traveling device 11 while harvesting the crops in the field by the harvesting device 15.
  • the transport device 16 is provided adjacent to the rear side of the harvest device 15.
  • the harvesting device 15 and the transporting device 16 are supported on the front portion of the machine body 1 so as to be able to move up and down by the expansion and contraction operation of the harvesting device cylinder 15a.
  • the crops harvested by the harvesting device 15 are transported to the threshing device 13 by the transport device 16 and threshed by the threshing device 13.
  • the grain as a harvest obtained by the threshing process is stored in the grain tank 14.
  • the grains stored in the grain tank 14 are discharged to the outside of the machine by the grain discharging device 18 as needed.
  • the grain discharge device 18 is configured to swing around the vertical axis core at the rear of the machine. That is, the free end portion of the grain discharge device 18 protrudes to the lateral outside of the machine body 1 so that the crop can be discharged, and the free end portion of the grain discharge device 18 is within the range of the machine width of the machine body 1.
  • the grain discharging device 18 is configured so as to be switchable between the stored storage state and the positioned storage state.
  • a satellite positioning module 80 is provided on the ceiling of the boarding section 12.
  • the satellite positioning module 80 receives a GNSS (Global Navigation Satellite System) signal from the artificial satellite GS and outputs satellite positioning data indicating the position of the combine body.
  • Signals of GNSS include GPS, QZSS, Galileo, GLONASS, BeiDou, and the like.
  • an inertial measurement module 81 called an IMU (Inertial Measurement Unit) is also provided in the airframe 1.
  • the inertial measurement module 81 has a gyro sensor and an acceleration sensor.
  • the inertial measurement module 81 can detect the angular velocity of the turning angle of the airframe 1, and can calculate the directional change angle of the airframe 1 by integrating the angular velocity. For this reason, the measurement data measured by the inertial measurement module 81 includes data that can indicate the direction (direction) of the airframe 1.
  • the inertial measurement module 81 can measure the angular velocity of the turning angle of the machine body 1, the left-right tilt angle of the machine body 1, the angular velocity of the front-back tilt angle of the machine body 1, and the like.
  • the satellite positioning module 80 and the inertial measurement module 81 may be integrally configured.
  • FIG. 2 is a functional block diagram of a travel control system showing a function related to automatic travel control of the combine.
  • This travel control system includes a general-purpose terminal VT, which is a tablet computer capable of data communication, and a control unit 4.
  • the control unit 4 is a core element of the travel control system, and is an aggregate of a plurality of ECUs connected by an in-vehicle LAN or the like.
  • the control unit 4 has an automatic driving mode in which automatic driving control is executed, and a manual driving mode in which driving control is performed by manual operation.
  • the general-purpose terminal VT includes a touch panel 3 as a display device and a graphic user interface that manages input / output of information through the touch panel 3.
  • the screen area of the touch panel 3 includes a support image display area 3a on which a running support image is displayed and an operation image display area 3b on which software buttons, lamps, and the like are displayed.
  • the first button 31 and the second button 32 which will be described in detail later, are arranged as software buttons in the operation image display area 3b.
  • various applications for processing information regarding the harvesting work by this combine are installed in the general-purpose terminal VT.
  • One of the applications is a display information generation unit 30 that generates information to be displayed in the support image display area 3a.
  • the control unit 4 includes an aircraft position calculation unit 40, a first aircraft position acquisition unit 41, a second aircraft position acquisition unit 42, a reference direction calculation unit 43, a travel route creation unit 44, and a travel locus creation unit 45.
  • the aircraft orientation calculation unit 46 and the traveling control unit 50 are provided. Hereinafter, these may be collectively referred to as “functional unit”.
  • Signals from the satellite positioning module 80, the inertial measurement module 81, and the general-purpose terminal VT are input to the control unit 4.
  • signals such as a vehicle speed sensor, an engine torque sensor, and an obstacle detection sensor are also input to the control unit 4.
  • control unit 4 is composed of a computer device having a CPU, a communication function, and a storage function (internal recording medium, external recording medium, and input / output interface), and a predetermined computer program.
  • This computer program causes the computer device to function as the above-mentioned functional unit.
  • the computer program is recorded on the computer-readable recording medium described above. By executing this computer program, a method including a step corresponding to each of the above-mentioned functional parts is executed in the combine.
  • the aircraft position calculation unit 40 calculates the aircraft position, which is the map position coordinates of the aircraft 1, at a predetermined repetition frequency based on the satellite positioning data output from the satellite positioning module 80.
  • the travel locus creation unit 45 creates a travel locus of the aircraft 1 based on the aircraft position acquired from the aircraft position calculation unit 40 over time.
  • the created travel locus is sent to the display information generation unit 30 and image-processed so that the support image display area 3a of the touch panel 3 has a width corresponding to a linear line or a harvest width together with the combine icon. It is displayed as a band-shaped line BL.
  • the aircraft orientation calculation unit 46 calculates the orientation of the aircraft 1 based on the measurement data output by the inertial measurement module 81. When the inertial measurement module 81 is not mounted, the aircraft orientation calculation unit 46 can be configured to calculate the orientation of the aircraft 1 based on, for example, an electronic compass.
  • This combine performs teaching driving for automatic driving while performing harvesting work. For example, when the combine enters the field, the teaching run can be performed immediately or after the required posture change.
  • the first machine position acquisition unit 41 receives the first signal generated by the driver clicking (touching) the first button 31 from the general-purpose terminal VT during the harvesting work.
  • the click operation of the first button 31 means the start of the teaching run.
  • the first airframe position acquisition unit 41 acquires the airframe position at the timing of receiving the first signal from the airframe position calculation unit 40, and stores the airframe position as the first airframe position.
  • the second machine position acquisition unit 42 continues the teaching run, and when the machine 1 makes a work run to a place away from the first machine position, the driver clicks (touches) the second button 32. The second signal generated by this is received.
  • the second machine position acquisition unit 42 acquires the machine position at the timing when the second signal is received from the general-purpose terminal VT from the machine position calculation unit 40, and stores the machine position as the second machine position.
  • the click operation of the second button 32 means the end of the teaching run. It should be noted that this combine can also perform teaching running in an already-worked area where the harvesting work has already been completed or in a mixed area including the already-worked area and the unworked area.
  • the reference direction calculation unit 43 uses the direction of a straight line connecting the first machine position read from the first machine position acquisition unit 41 and the second machine position read from the second machine position acquisition unit 42 as the reference direction. Calculated as. This reference orientation is stored and used in automatic steering control.
  • the traveling route creating unit 44 has a function of calculating a straight line extending in the reference direction through the vehicle body position (the position of the vehicle body reference point such as the cutting center of the harvesting device 15) as a target line. As will be described in detail later, this target line is determined and fixed as a target path in the automatic steering control when the automatic steering start command is output based on the operation of the automatic steering starter 71.
  • the travel route creation unit 44 calculates a straight line extending in the reference direction through the vehicle body position as a target line at the time when the automatic steering start command is output, determines this target line as the target route, and fixes the target line. It may be configured to do so.
  • the travel control unit 50 has an automatic steering module 51, a manual steering module 52, and a vehicle speed control module 53.
  • the automatic steering module 51 controls the automatic traveling of the aircraft 1 by a method described later during automatic traveling.
  • the manual steering module 52 controls the traveling of the aircraft 1 based on the operation of the driver during the manual traveling.
  • the vehicle speed control module 53 controls the vehicle speed when the aircraft 1 is moving forward and backward, and the vehicle speed when the aircraft 1 is stopped.
  • the traveling device 11 of this combine is composed of a crawler type left traveling mechanism 11a and a right traveling mechanism 11b. Therefore, the traveling control unit 50 gives a shifting control signal to the left shifting mechanism 10a to adjust the speed of the left traveling mechanism 11a, and also gives a shifting control signal to the right shifting mechanism 10b to speed the right traveling mechanism 11b. To adjust.
  • the aircraft 1 is steered by driving the left traveling mechanism 11a and the right shifting mechanism 10b at different speeds.
  • the aircraft 1 changes direction (turns 90 degrees in FIG. 3) so as to follow the next side.
  • this change of direction is simplified in the figure, it is actually a turning run with reverse movement called an alpha turn (switchback turn).
  • the traveling around the field is performed by combining the linear traveling and the turning traveling.
  • the next lap will be run on the route that has entered the inside by the amount of the harvest width. In this way, by repeating the circular running inward in a spiral shape, the harvesting work running of the entire field is completed.
  • the pattern shown in FIG. 4 is a linear route for the combine that has entered the field to make a lap of about 2 to 3 laps and the inner unworked area (inner area) left by this lap. It consists of a reciprocating run that repeats the direction change at the U-turn (180 ° U-turn turn in FIG. 4).
  • the 180 ° U-turn turn is performed on the existing work area (outer peripheral area).
  • the distance from the straight path after running to the next straight path becomes large, but in the 180 ° U-turn turn using the switchback turn, that is the case.
  • the distance is short, and it is possible to have a running pattern in which a straight path that has finished running and the next straight path are adjacent to each other.
  • the automatic traveling control of the present invention is a control for traveling on this linear path by automatic steering as much as possible.
  • the linear path here includes not only a strict straight path but also a linear path consisting of a polygonal line and a path drawing a large curve.
  • the automatic traveling of the present invention is performed based on this reference direction or a traveling route as a target route calculated based on this reference direction.
  • the position of the first machine and the position of the second machine can be acquired when the machine 1 is traveling and the harvesting work is being performed, or when the machine 1 is stopped and the harvesting work is being performed. You can also do it.
  • the first aircraft position and the second aircraft position are harvested while the aircraft 1 is traveling. It is preferable to get it when.
  • FIG. 6 shows a method of determining a traveling route that is a target route for automatic steering.
  • a target line in the direction of the reference direction passing through the cutting center of the harvesting device 15 (one of the reference points of the aircraft 1 set in advance) is constantly calculated, and when automatic steering is started (1). (When the automatic steering starter 71 is operated), the target line is determined and fixed as a traveling path.
  • the travel route is determined and fixed in response to the operation of the automatic steering starter 71 by the driver. This makes it possible to start automatic driving.
  • the harvesting work operating tool Since the start of the harvesting work accompanied by the descent of the harvesting device 15 is performed by the harvesting work operating tool, when the harvesting work operating tool is used as the automatic steering starting tool 71, the start of the harvesting work and the automatic steering is one operating tool. It is possible and convenient by the operation of.
  • the target line is always calculated, and when the automatic steering is started, the target line is determined as a traveling path and is not fixed, but a reference that passes through the reference point at that time when the automatic steering is started.
  • a configuration may be adopted in which a target line in the direction of orientation is created and fixed as a traveling route.
  • Automatic steering control for automatic driving can be performed in the following three steering modes, and at least one of them is incorporated in the automatic steering module 51. When multiple modes are incorporated, they are selected and used.
  • the angle formed by the travel path (target route) extending in the reference orientation and the aircraft orientation line (the line indicating the direction of the aircraft 1 passing through the reference point of the aircraft 1) is the orientation deviation: ⁇ , and the aircraft 1 with respect to the travel route.
  • the deviation (distance from the reference point of the aircraft 1 to the traveling path) is the positional deviation: d.
  • directional deviation and misalignment are used as control inputs, and a steering control signal is output so that the directional deviation falls within the permissible directional range. If the misalignment exceeds the permissible position, priority is given. The steering control signal is output so that the misalignment falls within the allowable position range.
  • control is adopted in which the steering control signal is directly output by inputting both the misalignment and the misalignment. You may.
  • the driving route is set at the start of automatic driving.
  • the driving route is set at the start of automatic driving.
  • This mode is mainly used for fields with little slip and short straight distances.
  • the straight path after that is automatically driven by automatic steering in the above-mentioned first maneuvering mode is adopted, and when traveling on two sides orthogonal to one side, the orientation obtained by rotating the reference orientation by 90 degrees is used as the reference orientation.
  • a teaching run is performed to obtain the reference direction required for automatic steering.
  • the driver clicks the first button 31 (see FIG. 2) displayed in the operation image display area 3b of the touch panel 3 (# 11).
  • the first aircraft position which is the aircraft position at that time, is acquired (# 12).
  • the point A indicating the position of the first machine is displayed in the support image display area 3a of the touch panel 3 (# 13).
  • a band-shaped line BL showing the run trajectory of the combine from the point A is displayed together with the combine icon at the harvest width ( # 14).
  • a sign line GL indicating a line parallel to the shore or the ridge of the field is displayed in order to perform accurate teaching running.
  • a line parallel to the planting strip may be displayed as a marker line GL.
  • the end condition of the teaching run is whether the combine has traveled a predetermined distance (for example, 5 m) or more from the position of the first aircraft, or whether the predetermined time required for traveling the predetermined distance has elapsed.
  • a predetermined distance for example, 5 m
  • the second button 32 is displayed in the operation image display area 3b of the touch panel 3 (# 16).
  • the driver can confirm the teaching run by the points A and B displayed in the support image display area 3a and the running locus between them.
  • the direction of the straight line connecting the position of the first machine and the position of the second machine is calculated and stored as the reference direction (# 20).
  • the automatic steering starter 71 is used for the operation for starting the automatic running in the automatic steering. It is checked whether or not the automatic steering starter 71 has been operated (# 30).
  • step # 35Yes branch When the start of automatic steering is requested by the operation of the automatic steering starter 71 (# 35Yes branch), the vehicle jumps to step # 31, and the traveling route is determined based on the aircraft position and the reference direction at that time. It is fixed and automatic steering is started.
  • the reference direction of a different direction is stored as the reference direction
  • the reference direction having a direction close to the direction of the aircraft 1 at the time when the start of automatic steering is requested is used for determining the traveling route. Used.
  • a configuration may be adopted in which the driver selects the reference direction used for determining the traveling route.
  • the resumption of automatic steering is usually performed from the harvesting work running in which the harvesting device 15 is lowered following the direction change running (non-harvesting work running) by the manual steering in which the harvesting device 15 is raised.
  • a harvesting start operating tool that starts a harvesting operation by a harvesting device such as a harvesting device 15 may be used in combination with the automatic steering starter 71 or instead of the automatic steering starter 71.
  • the aircraft orientation calculation unit 46 for calculating the orientation of the aircraft 1 based on the measurement data of the inertial measurement module 81 is provided, but it is calculated over time by the aircraft position calculation unit 40.
  • a configuration may be adopted in which the direction of the aircraft 1 is calculated from the aircraft position.
  • Each functional unit shown in the functional block diagram of FIG. 2 may be combined with another functional unit, or one functional unit may be separated into a plurality of functional units.
  • the first machine position and the second machine position are the machine positions at the operation timings of the first button 31 and the second button 32, respectively, but instead of this, the first button It may be a representative value (average value, etc.) of a plurality of aircraft positions before and after the operation timing of the 31 and the second button 32.
  • the traveling device 11 is composed of a crawler-type left traveling mechanism 11a and a right traveling mechanism 11b, and the aircraft 1 is due to a speed difference between the left traveling mechanism 11a and the right traveling mechanism 11b.
  • a traveling device 11 in which the aircraft 1 is steered by changing the steering angle of the steering wheel may be adopted.
  • the teaching run is performed while performing the harvesting work, but it is also possible to perform the teaching running without performing the harvesting work and calculate the reference direction.
  • a system for controlling the combine may be configured by the functional unit of the control unit 4 described above.
  • FIGS. 9-12 Another embodiment of the present invention will be described with reference to FIGS. 9-12.
  • the same reference numerals may be given to the same configurations as those of the above-described embodiments, and detailed description thereof may be omitted.
  • the combine of the present embodiment is different from the combine of the above-described embodiment in the following points.
  • the second machine position acquisition unit 42 includes the teaching travel management unit 42a. Hereinafter, it will be described in detail.
  • the machine 1 in the teaching running that starts when the position of the first machine is acquired, the machine 1 is allowed to temporarily stop, stop the engine, and move backward. Compared to teaching running that allows only forward movement, the permission conditions for permitting the position of the second aircraft are more diverse.
  • the permission condition is that the mileage between the first aircraft position and the second aircraft position is equal to or greater than a predetermined value
  • the reverse distance is ignored. That is, the mileage in reverse and the forward mileage that supplements the mileage returned to the position side of the first aircraft by reverse must be excluded from the mileage for determining the condition.
  • the permission condition is that the traveling time between the first aircraft position and the second aircraft position is longer than a predetermined time
  • the temporary stop time of the aircraft 1 and the traveling time and the reverse movement of the aircraft 1 are carried out.
  • the total travel time for forward travel that compensates for the travel distance returned to the position side of the first aircraft must be excluded from the travel time for condition determination.
  • the second machine position acquisition unit 42 includes a teaching travel management unit 42a.
  • the teaching travel management unit 42a satisfies the conditions for determining the position of the second aircraft despite the special travel modes in teaching travel such as "temporary stop of the aircraft 1", “engine stop”, and "reverse”. Determine if it is possible.
  • the first machine position acquired by the first machine position acquisition unit 41 is stored in the memory address assigned to the RAM, but when the power is cut off by a key-off operation or the like, it is stored in advance. It is saved and stored in the save area of the non-volatile memory. After that, when the power supply is restored by a key-on operation or the like, the position of the first machine is read from the save area of the non-volatile memory and stored in the previous memory address.
  • maintaining the function of the RAM with a spare battery is also required to maintain the position of the first machine when the power is turned off by a key-off operation or the like.
  • maintaining the function of the RAM with a spare battery is also required to maintain the position of the first machine when the power is turned off by a key-off operation or the like.
  • Non-forward running includes a reverse running state, a running stopped state, or both. Further, the running stop state includes an engine stop state or an engine drive state.
  • the traveling mode shown in FIG. 10 is a standard traveling mode using only forward traveling.
  • the traveling mode shown in FIG. 11 is one of the non-forward traveling modes, which is a special traveling mode in which reverse traveling (indicated by a dotted arrow) is performed in the middle and then forward traveling is performed again. be.
  • the traveling mode shown in FIG. 12 is also one of the non-forward traveling modes, which is a special traveling mode in which the aircraft 1 in the middle is stopped (stopped) and then the forward traveling is performed again.
  • a special traveling mode in which the aircraft 1 in the middle is stopped (stopped) and then the forward traveling is performed again.
  • the vehicle is stopped, there are an engine drive state in which the engine is driven as it is and an engine stop state in which the engine is stopped. Both are considered valid teaching runs.
  • the reference azimuth is the direction of a straight line connecting the first aircraft position and the second aircraft position. Is calculated.
  • the automatic traveling of the present invention is performed based on this reference direction or a traveling route as a target route calculated based on this reference direction.
  • the position of the first machine and the position of the second machine can be acquired when the machine 1 is running and the harvesting work is being performed, or can be obtained when the machine 1 is not performing the harvesting work. Further, either the first machine position or the second machine position can be acquired even when the machine 1 is stopped and the harvesting work is being performed.
  • the first aircraft position and the second aircraft position are harvested while the aircraft 1 is traveling. It is preferable to get it when.
  • FIGS. 13-29 Another embodiment of the present invention will be described with reference to FIGS. 13-29.
  • the same reference numerals may be given to the same configurations as those of the above-described embodiments, and detailed description thereof may be omitted.
  • the combine of the present embodiment has the same configuration as the conventional combine of the first embodiment shown in FIG.
  • the combine of the present embodiment includes the control system shown in FIG. [Control unit configuration]
  • the control unit 230 shown in FIG. 13 is a core element of the control system of the combine, and is shown as an aggregate of a plurality of ECUs.
  • control unit 230 is a computer device having a CPU, a communication function, and a storage function (internal recording medium, or external recording medium and input / output interface), and a predetermined computer device, similarly to the control unit 4 of the first embodiment. It consists of a computer program.
  • This computer program causes the computer device to function as the above-mentioned functional unit.
  • the computer program is recorded on the computer-readable recording medium described above. By executing this computer program, a method including a step corresponding to each of the above-mentioned functional parts is executed in the combine.
  • the control unit 230 is configured to be switchable between an automatic steering mode in which automatic steering control is executed and a manual steering mode in which automatic steering control is not executed.
  • "Automatic steering control” is to set a linear traveling target line C, which will be described later, based on a predetermined direction, and control the traveling device 11 so that the aircraft 1 travels along the traveling target line C. Means.
  • the control unit 230 calculates the reference direction B as the predetermined direction. Further, the control unit 230 is configured to be able to communicate with a general-purpose terminal VT (touch panel type screen terminal).
  • VT touch panel type screen terminal
  • the reference direction B is the direction in which the aircraft 1 should go straight on the ground in the automatic steering control, and is managed by an angle value based on, for example, either north, south, east, or west.
  • the aircraft 1 can travel in one direction and in the direction opposite to one direction by 180 ° along the reference direction B.
  • the reference direction B is managed by an angle value in the range of 180 ° with respect to any of the north, south, east, and west, but the reference direction B is managed by the angle value in the range of 360 °. It may be. Alternatively, the reference direction B may be managed by a vector value.
  • the “reference direction” in the present invention is the direction in which the aircraft 1 should go straight on the ground in automatic steering control.
  • the aircraft 1 can travel in one direction and in the direction 180 ° opposite to one direction along the reference direction B, but only in one direction along the reference direction B.
  • a configuration in which the machine body 1 travels is also included in the present invention.
  • the control unit 230 includes a machine position calculation unit 231, a machine direction calculation unit 232, a reference direction calculation unit 233, a storage unit 234, a selection unit 235, a line setting unit 236, a steering control unit 237, and conditions.
  • a determination unit 238 and a determination unit 238 are provided. Similar to the first embodiment, these may be collectively referred to as "functional unit” below.
  • the signals of the satellite positioning module 80, the inertial measurement module 81, the start point setting switch 221a, and the end point setting switch 221b are input to the control unit 230.
  • signals such as a vehicle speed sensor, an engine torque sensor, and an obstacle detection sensor are also input to the control unit 230.
  • the aircraft position calculation unit 231 calculates the position coordinates of the aircraft 1 over time based on the positioning data output by the satellite positioning module 80. That is, the aircraft position calculation unit 231 calculates the aircraft position using satellite positioning. The calculated position coordinates of the aircraft 1 over time are sent to the aircraft orientation calculation unit 232 and the steering control unit 237.
  • the aircraft orientation calculation unit 232 can calculate the traveling orientation change angle of the aircraft 1 by integrating the angular velocity detected by the inertial measurement module 81. Further, the aircraft orientation calculation unit 232 can calculate the traveling speed and the traveling orientation of the aircraft 1 by time-differentiating the position coordinates of the aircraft 1 calculated over time.
  • the aircraft orientation calculation unit 232 is based on at least one of the position coordinates of the aircraft 1 calculated over time by the aircraft position calculation unit 231 and the angular velocity output by the inertial measurement module 81. Is calculated.
  • the traveling direction of the aircraft 1 calculated by the aircraft orientation calculation unit 232 is sent to the selection unit 235 and the steering control unit 237.
  • the aircraft orientation calculation unit 232 may calculate the traveling orientation of the aircraft 1 based on, for example, an electronic compass.
  • a setting switch 221 for setting the reference direction B is provided.
  • the setting switch 221 is, for example, an icon button displayed on a general-purpose terminal VT (for example, a touch-operable screen such as a liquid crystal screen or an OLED screen) provided on the boarding unit 12, and is a start point setting for setting a start point position. It has a switch 221a and an end point setting switch 221b for setting an end point position.
  • VT for example, a touch-operable screen such as a liquid crystal screen or an OLED screen
  • the position Aa of the aircraft 1 at this timing calculates the reference direction. It is sent to the section 233.
  • the position Aa is calculated by the machine body position calculation unit 231 at the timing when the start point setting switch 221a is operated.
  • the end point setting switch 221b cannot be operated.
  • the end point setting switch 221b After the passenger operates the start point setting switch 221a, when the aircraft 1 continues to travel and is separated from the position Aa by a distance beyond a preset distance, the end point setting switch 221b can be operated.
  • the start point setting switch 221a may be operable or the start point setting switch 221a may be inoperable while the aircraft 1 is traveling after the passenger operates the start point setting switch 221a.
  • the position Aa of the aircraft 1 at this timing may be sent to the reference direction calculation unit 233 again.
  • a button for erasing the memory of the position Aa and canceling the setting of the reference direction B may be displayed instead of the start point setting switch 221a.
  • the position Ab of the aircraft 1 at this timing is sent to the reference direction calculation unit 233.
  • the position Ab is calculated by the aircraft position calculation unit 231 at the timing when the end point setting switch 221b is operated.
  • the reference direction B for the work run is calculated by the reference direction calculation unit 233, and the calculated reference direction B is stored in the storage unit 234.
  • the reference direction calculation unit 233 calculates the reference direction B based on the positions of the plurality of aircraft calculated while the field is running.
  • the storage unit 234 is configured to be able to store a plurality of reference directions B for work running.
  • the storage unit 234 is not limited to the one that stores the reference direction B, and may be, for example, the one that stores the positions Aa and Ab.
  • control unit 230 is connected to the directional deviation setting unit 239.
  • the directional deviation setting unit 239 is configured so that the directional deviation amount ⁇ B can be set based on an artificial operation.
  • the directional deviation setting unit 239 is, for example, an icon button displayed on the general-purpose terminal VT provided on the boarding unit 12, but may be a dial-type switch or a lever.
  • the reference direction calculation unit 233 is configured to be able to calculate another reference direction B that is deviated by a "predetermined direction” from the calculated reference direction B.
  • the "predetermined direction” is the direction deviation amount ⁇ B set by human operation.
  • the selection unit 235 selects one of the plurality of reference directions B.
  • the selection unit 235 acquires the traveling direction of the aircraft 1 from the aircraft orientation calculation unit 232.
  • the selection unit 235 selects the reference direction B closest to the traveling direction of the aircraft 1 from the plurality of reference directions B stored in the storage unit 234.
  • the condition determination unit 238 receives signals from, for example, the main shift lever 222, the auxiliary shift switch 223, the cutting and threshing lever 224, the elevating detection unit 225, the threshing clutch 226, and the cutting clutch 227, and automatically steers based on these signals. It is configured so that "predetermined conditions" for control can be determined.
  • the determination result of the condition determination unit 238 is sent to the line setting unit 236.
  • the details of the processing of the condition determination unit 238 will be described later in [About the start determination routine].
  • the main shift lever 222, the auxiliary shift switch 223, the cutting and threshing lever 224, the elevating detection unit 225, the threshing clutch 226, and the cutting clutch 227 will also be described later in [About the start determination routine].
  • the line setting unit 236 constantly acquires the latest position coordinates of the aircraft 1 calculated by the aircraft position calculation unit 231.
  • the line setting unit 236 acquires the determination result from the condition determination unit 238. Then, if the determination result allows automatic steering control, the line setting unit 236 is a reference selected by the storage unit 234 from the left and right center portions of the harvesting device 15 based on the latest position coordinates. The traveling target line C extending forward along the direction B is constantly calculated.
  • the line setting unit 236 fixes (sets) the travel target line C calculated at that time as the travel target line C to be traveled by the aircraft 1.
  • This set travel target line C is fixed until the automatic steering mode is canceled.
  • the travel target line C extends from the aircraft 1 to the front of the aircraft and is parallel to the reference direction B selected by the storage unit 234.
  • the line setting unit 236 sets the travel target line C based on the selected reference direction B.
  • the control unit 230 changes from the automatic steering mode to the manual steering mode. It can be switched.
  • the line setting unit 236 cancels the setting of the traveling target line C.
  • the line setting unit 236 may be configured to calculate and set the travel target line C when the control unit 230 is switched to the automatic steering mode.
  • the steering control unit 237 can calculate the amount of positional deviation of the aircraft 1 in the lateral direction with respect to the traveling target line C.
  • the steering control unit 237 can calculate the angle deviation between the traveling direction of the aircraft 1 and the reference direction B selected by the storage unit 234, that is, the direction deviation.
  • the steering control unit 237 is based on the aircraft position information from the aircraft position calculation unit 231 and the directional information from the aircraft orientation calculation unit 232.
  • the traveling device 11 is controlled so that 1 travels along the traveling target line C.
  • This peripheral mowing area becomes a turning space for the machine 1 when the combine harvests crops in the field inner area (for example, the work target area CA in FIGS. 23 and 24) while reciprocating in the subsequent process. For this reason, it is desirable that the turning space be secured widely.
  • the passenger runs the combine two to three laps in the outer peripheral area of the field, and secures an area of about two to three times the harvest width of the combine as a turning space.
  • FIG. 14 is a flowchart showing the order of calculation of the reference direction B.
  • the end point setting switch 221b is automatically switched to the inoperable state (step # 101).
  • start point setting switch 221a and the end point setting switch 221b are icon buttons of the general-purpose terminal VT.
  • the inoperable state of the end point setting switch 221b is, for example, a state in which the icon button of the end point setting switch 221b is not displayed on the general-purpose terminal VT (including the gray out of the icon button), or the icon button of the end point setting switch 221b is general purpose. Even if it is displayed on the terminal VT, the operation of the passenger etc. may not be reflected.
  • the passenger When the passenger moves the combine to the ridge of the field and starts going straight (or substantially straight) along the ridge of the field, the passenger operates the start point setting switch 221a (step # 102).
  • the "operation” includes the icon operation of the start point setting switch 221a and the end point setting switch 221b, which are icon buttons.
  • the position Aa is stored as the position coordinates of the machine body 1 (step # 103).
  • the position Aa is the position coordinates of the machine 1 calculated by the machine position calculation unit 231 at the timing when the start point setting switch 221a is operated.
  • step # 104 whether or not the aircraft 1 is separated from the position Aa by a preset distance or more is determined by the reference direction calculation unit 233 (step # 104).
  • the “preset distance” is, for example, 5 meters from the position Aa.
  • step # 109 If the aircraft 1 is not farther than the preset distance from the position Aa (step # 104: No), the process of step # 109 is performed.
  • Step # 109 is a process of switching the end point setting switch 221b to the inoperable state when the end point setting switch 221b is in the operable state. That is, unless the aircraft 1 is farther than the preset distance from the position Aa (step # 104: No), the inoperable state of the end point setting switch 221b is maintained, and the passenger cannot operate the end point setting switch 221b.
  • step # 104 If the aircraft 1 is farther than the preset distance from the position Aa (step # 104: Yes), the end point setting switch 221b is switched to the operable state (step # 105), at this time, the end point setting switch 221b is set. If it is already in an operable state, the operable state of the end point setting switch 221b is maintained.
  • step # 106 it is determined whether or not the end point setting switch 221b has been operated.
  • step # 106 No
  • the processes of steps # 104 to # 105 are repeated.
  • step # 109 the end point setting switch 221b is switched to the inoperable state again.
  • the position Ab is stored as the position coordinates of the aircraft 1 (step # 107).
  • the position Ab is the position coordinates of the machine 1 calculated by the machine position calculation unit 231 at the timing when the end point setting switch 221b is operated.
  • the passenger runs the work while moving the combine straight (or substantially straight) along one side of the ridge of the field, and operates the start point setting switch 221a and the end point setting switch 221b to operate the positions Aa and Ab. Is obtained.
  • the reference direction calculation unit 233 calculates the reference direction B as the direction of the straight line connecting the two points of the positions Aa and Ab (step # 108).
  • the reference direction calculation unit 233 calculates the direction of the straight line connecting the two machine positions calculated by the machine position calculation unit 231 as the reference direction B. Further, in step # 108, the reference direction calculation unit 233 stores the calculated reference direction B in the storage unit 234. As a result, the calculation process of the reference direction B is completed.
  • the reference direction calculation unit 233 is configured to be able to acquire a plurality of reference directions B.
  • the passenger moves the combine to another ridge in the field and operates the start point setting switch 221a to drive the combine straight (or substantially straight) along one side of the other ridge.
  • the end point setting switch 221b is operated.
  • the reference direction calculation unit 233 performs the processes from step # 101 to step # 108 again to calculate another reference direction B.
  • one round of peripheral cutting is performed along the ridge of the field, and a plurality of reference directions B1, B2, B3, and B4 are calculated by the reference direction calculation unit 233, and the storage unit 234 is used.
  • a plurality of reference directions B1, B2, B3, and B4 having different directions are stored in the storage.
  • the reference direction B1 is calculated based on the positions A1 and A2
  • the reference direction B2 is calculated based on the positions A3 and A4
  • the reference direction B3 is calculated based on the positions A5 and A6, and the reference direction B3 is calculated based on the positions A7 and A8.
  • Direction B4 has been calculated.
  • Positions A1, A3, A5, and A7 are positions Aa (see FIGS. 13 and 14) at the timing when the start point setting switch 221a is operated, and positions A2, A4, A6, and A8 are positions A8 where the end point setting switch 221b is operated. Position Ab at the timing (see FIGS. 13 and 14).
  • the reference direction calculation unit 233 calculates the reference direction B based on the aircraft position calculated during the orbiting in the outer peripheral region of the field. At this time, the reference direction calculation unit 233 calculates a plurality of reference directions B along the extending directions of the outer periphery of the field.
  • the reference direction calculation unit 233 calculates a plurality of reference directions B along the extending direction of the outer periphery of the field based on the aircraft position calculated during the orbital running by the artificial operation in the outer peripheral region of the field.
  • Position A1 is the "first point” of the present invention
  • position A2 is the “second point” of the present invention
  • the reference direction B1 is the "first reference direction” of the present invention. That is, the reference directional direction calculation unit 233 has a plurality of reference directional directions B based on the aircraft positions calculated at the positions A1 and A2 in the two-point traveling over the positions A1 and A2 in the outer peripheral region of the field. The reference direction B1 is calculated as one.
  • Position A3 is the "third point” of the present invention
  • position A4 is the “fourth point” of the present invention
  • the reference direction B2 is the "second reference direction” of the present invention. That is, after traveling over the position A1 and the position A2, the reference direction calculation unit 233 reaches the position A3 and the position in the two-point traveling over the positions A3 and the position A4 which are different from the positions A1 and A2 in the outer peripheral region.
  • the reference direction B2 is calculated as one of the plurality of reference directions B based on the aircraft positions calculated for each of A4.
  • the reference direction B1 is calculated based on the positions A1 and A2, and the reference direction B2 is calculated based on the positions A3 and A4, but the present embodiment is not limited to this embodiment. ..
  • the reference orientation calculation unit 233 calculates the reference orientation B2 that is offset by 90 degrees from the calculated reference orientation B1. good. That is, when the reference direction B1 is calculated based on the positions A1 and A2, the reference direction B2 deviated by 90 degrees from the reference direction B1 without traveling between two points over the positions A3 and A4.
  • the configuration may be calculated automatically.
  • the position of the machine 1 calculated by the machine position calculation unit 231 is stored as the position Pa (step # 111).
  • step # 112 it is determined whether or not the predetermined conditions for automatic steering control are satisfied.
  • Whether or not the predetermined conditions for automatic steering control are satisfied is determined by the start determination routine shown in FIG. 25.
  • This start determination routine is a subroutine called in the process of step # 112 and is processed by the condition determination unit 238.
  • the start determination routine returns the return value of Yes to step # 112 if a predetermined condition for automatic steering control is satisfied.
  • start determination routine returns a return value of No to step # 112 if a predetermined condition for automatic steering control is not satisfied.
  • the start determination routine shown in FIG. 25 will be described later in [About the start determination routine].
  • step # 112 When the return value of No is returned to step # 112 from the start determination routine (step # 112: No), the processes of steps # 111 to # 112 are repeated, and the position Pa is continuously updated.
  • step # 112 When the return value of Yes is returned to step # 112 from the start determination routine (step # 112: Yes), the selection unit 235 acquires the traveling direction of the aircraft 1 from the aircraft orientation calculation unit 232 (step # 113).
  • the selection unit 235 selects the reference direction B closest to the traveling direction of the aircraft 1 among the plurality of reference directions B (step # 114).
  • the selection unit 235 selects the reference direction B1 from the plurality of reference directions B.
  • the line setting unit 236 calculates the difference ⁇ between the traveling direction of the aircraft 1 and the reference direction B (step # 115), and the difference ⁇ is within a preset threshold value (for example, within 5 °). ) (Step # 116).
  • step # 116 No
  • the processes of steps # 111 to # 115 are repeated, and the position Pa is continuously updated.
  • the same reference direction B may be repeatedly selected in step # 114, but in this case, the selection of the selection unit 235 is retained.
  • the selection unit 235 selects the other reference direction B.
  • step # 116 If the difference ⁇ is within the preset threshold value (step # 116: Yes), the line setting unit 236 determines whether or not the aircraft position is separated from the position Pa stored in step # 111 by a distance longer than the preset distance. Judgment (step # 117).
  • step # 117 If the determination in step # 117 is No, the processes in steps # 112 to # 117 are repeated. At this time, the process of step # 111 is not performed and the position Pa is not updated. When the machine body 1 moves forward in this state, the separation distance between the machine body position and the position Pa stored in step # 111 increases.
  • step # 118 the control unit 230 shifts to the automatic steering mode, and the steering control unit 237 performs automatic steering control (step # 118).
  • the aircraft 1 travels straight over a predetermined distance along the reference direction B selected by the selection unit 235 and the predetermined conditions are satisfied. If it is determined that the operation has been performed, the traveling device 11 is automatically steered and controlled.
  • the line setting unit 236 sets a linear traveling target line C parallel to the reference direction B in front of the aircraft 1.
  • the position information of the aircraft 1 is calculated over time by the aircraft position calculation unit 231, and the relative directional change angle is calculated over time by the aircraft orientation calculation unit 232.
  • the steering control unit 237 calculates the amount of lateral displacement of the aircraft 1 with respect to the travel target line C and the orientation deviation angle between the reference direction B and the travel direction of the aircraft 1, and the aircraft 1 travels.
  • the traveling device 11 is controlled so as to travel along the target line C.
  • the peripheral mowing run of the combine is performed over 2 to 3 laps.
  • one round of mowing is performed along the outer periphery of the field to calculate a plurality of reference directions B (see FIG. 15), and each of the reference directions B is stored in the storage unit 234. .. Therefore, each of these reference directions B can be used for the peripheral mowing run after the second lap.
  • the surrounding cutting run is performed adjacent to the cutting marks extending over the positions A1 and A2.
  • the selection unit 235 selects the reference direction B1 closest to the traveling direction of the aircraft 1, and the line setting unit 236 sets a linear traveling target line C1 parallel to the reference direction B1 ahead of the traveling direction of the aircraft 1. Generate. Then, in the region D1 over the cutting width of the combine, automatic steering control along the traveling target line C1 is performed.
  • the surrounding cutting run is performed adjacent to the cutting marks extending over the positions A3 and A4.
  • the selection unit 235 selects the reference direction B2 closest to the traveling direction of the aircraft 1, and the line setting unit 236 sets a linear traveling target line C2 parallel to the reference direction B2 in front of the traveling direction of the aircraft 1.
  • the line setting unit 236 sets a linear traveling target line C2 parallel to the reference direction B2 in front of the traveling direction of the aircraft 1.
  • the surrounding cutting run is performed adjacent to the cutting marks extending over the positions A5 and A6.
  • the selection unit 235 selects the reference direction B3 closest to the traveling direction of the aircraft 1, and the line setting unit 236 sets a linear traveling target line C3 parallel to the reference direction B3 in front of the traveling direction of the aircraft 1. Generate. Then, in the region D3 over the cutting width of the combine, automatic steering control along the traveling target line C3 is performed.
  • the surrounding cutting is performed adjacent to the cutting marks extending over the positions A6 and A7, and the traveling direction of the aircraft 1 is the same as or close to the reference direction B1. Therefore, the selection unit 235 selects the reference direction B1, and the line setting unit 236 generates a linear traveling target line C4 parallel to the reference direction B1 in front of the traveling direction of the aircraft 1. Then, in the region D4 over the cutting width of the combine, automatic steering control along the traveling target line C4 is performed.
  • the surrounding cutting is performed adjacent to the cutting marks extending over the positions A6 and A7, and the traveling direction of the aircraft 1 is the same as or close to the reference direction B2. Therefore, the selection unit 235 selects the reference direction B2, and the line setting unit 236 generates a linear traveling target line C5 parallel to the reference direction B2 in front of the traveling direction of the aircraft 1. Then, in the region D5 over the cutting width of the combine, automatic steering control along the traveling target line C5 is performed.
  • the surrounding cutting run is performed adjacent to the cutting marks extending over the positions A7 and A8.
  • the selection unit 235 selects the reference direction B4 closest to the traveling direction of the aircraft 1, and the line setting unit 236 sets a linear traveling target line C6 parallel to the reference direction B4 in front of the traveling direction of the aircraft 1. Generate. Then, in the region D6 over the cutting width of the combine, automatic steering control along the traveling target line C6 is performed.
  • the combine harvests the crop while reciprocating around the work target area CA left inside the work area left by the surrounding cutting.
  • the cutting run in which the crop is cut while advancing along the travel target line C and the direction change of 180 ° (or approximately 180 °) in the outer peripheral region outside the work target area CA are repeated. ..
  • the combine harvests the crop so as to cover the entire work area CA.
  • the traveling direction of the aircraft 1 is the same as or close to the reference direction B1. Therefore, the selection unit 235 selects the reference direction B1, and the line setting unit 236 generates linear traveling target lines C7, C8, etc. parallel to the reference direction B1 in front of the traveling direction of the aircraft 1.
  • the selection unit 235 selects the reference direction B1
  • the line setting unit 236 generates linear traveling target lines C7, C8, etc. parallel to the reference direction B1 in front of the traveling direction of the aircraft 1.
  • automatic steering control along the travel target line C7 is performed in the region D7 over the cutting width of the combine.
  • automatic steering control along the running target line C8 is performed in the region D8 over the cutting width of the combine.
  • the line setting unit 236 sets the travel target line C in the work target area CA based on the reference direction B calculated during the orbital travel in the outer peripheral region.
  • the work target area CA is cut around so as to be a polygon with unequal sides along the shape of the field, but the work target area CA is a quadrangle. Peripheral mowing may be carried out so as to be. The burden on the occupant is reduced by performing automatic steering control during reciprocating running after mowing around the combine.
  • the selection unit 235 selects one of the plurality of reference directions B based on the calculated travel direction of the aircraft 1, and the line setting unit 236 selects the travel target based on the selected reference direction B.
  • Set line C
  • step # 121 When the start determination routine is started by calling step # 112 in FIG. 25, the process of step # 121 is first executed.
  • step # 121 the condition determination unit 238 acquires information indicating the operation position of the main shift lever 222 shown in FIG.
  • the main shift lever 222 is configured to be swingable in the front-rear direction.
  • the range of motion of the main shift lever 222 is divided into three, a forward operation position FP, a neutral position NP, and a reverse operation position RP.
  • the main speed change lever 222 When the main speed change lever 222 is located at the neutral position NP, the main speed change device is in the neutral state and the traveling device 11 is not driven to travel.
  • the traveling device 11 travels forward at a high speed so that the main shift lever 222 tilts from the neutral position NP to the side where the forward operation position FP is located.
  • the traveling device 11 travels backward at a high speed so that the main shift lever 222 tilts from the neutral position NP to the side where the reverse operation position RP is located.
  • a signal from the sensor that detects the swing angle of the main shift lever 222 is input to the condition determination unit 238, and the condition determination unit 238 determines whether or not the main shift lever 222 is located at the forward operation position FP. ..
  • step # 121 If the main shift lever 222 is not located at the forward operation position FP, it is determined as No in step # 121, and the return value of No is returned to step # 112.
  • step # 121 when the main shift lever 222 is located at the forward operation position FP, it is determined as Yes in step # 121, and the process proceeds to step # 122.
  • the condition determination unit 238 is configured to receive the operation signal of the auxiliary shift switch 223 shown in FIG.
  • the auxiliary shift switch 223 is provided on the main shift lever 222. Each time the auxiliary transmission switch 223 is operated, the transmission state of the auxiliary transmission device (not shown) is alternately switched between working traveling (low speed state) and non-working (high speed state).
  • a signal from the sensor that detects the state of the auxiliary shift switch 223 is input to the condition determination unit 238.
  • the condition determination unit 238 is configured to be able to determine whether the shift state of the auxiliary shift switch 223 is for working or non-working.
  • step # 122 it is determined whether or not the state of the auxiliary shift switch 223 is for work driving. More specifically, it is determined whether or not the auxiliary transmission is in a low speed state.
  • step # 122 If the auxiliary transmission is not in the low speed state, it is determined as No in step # 122, and the return value of No is returned to step # 112.
  • step # 122 If the auxiliary transmission is in a low speed state, it is determined as Yes in step # 122, and the process proceeds to step # 123.
  • step # 123 the condition determination unit 238 acquires information indicating whether or not the FIX solution (known technique) necessary for RTK-GPS positioning is obtained from the aircraft position calculation unit 231 shown in FIG. Then, based on the acquired information, it is determined whether or not the positioning state of the aircraft position is at least a predetermined accuracy.
  • FIX solution known technique
  • condition determination unit 238 determines whether or not the FIX solution is obtained in the RTK-GPS positioning by the satellite positioning module 80 and the aircraft position calculation unit 231.
  • step # 123 If a FIX solution is obtained in RTK-GPS positioning by the satellite positioning module 80 and the aircraft position calculation unit 231, it is determined to be Yes in step # 123, and the process proceeds to step # 124.
  • step # 124 the condition determination unit 238 acquires information indicating the operation position of the harvesting threshing lever 224 shown in FIG.
  • the harvesting threshing lever 224 is provided on the boarding section 12.
  • the harvesting threshing lever 224 is configured to be swingable in the front-rear direction.
  • the harvesting threshing lever 224 is configured so that the operation position can be selectively switched between the first operation position M1, the second operation position M2, and the third operation position M3.
  • the on / off state of the threshing clutch 226 and the harvesting clutch 227 changes.
  • a signal from the sensor that detects the swing angle of the cutting and threshing lever 224 is input to the condition determination unit 238.
  • the condition determination unit 238 is configured to be able to determine whether the operation position of the cutting and threshing lever 224 is the first operation position M1, the second operation position M2, or the third operation position M3.
  • both the threshing clutch 226 and the harvesting clutch 227 are in the engaged state. In this state, the power from the engine is transmitted to the threshing device 13 and transmitted to the harvesting device 15 via the cutting clutch 227. As a result, the threshing device 13 and the harvesting device 15 operate.
  • the threshing clutch 226 When the operating position of the cutting threshing lever 224 is the second operating position M2, the threshing clutch 226 is in the on state and the cutting clutch 227 is in the off state. In this state, the power from the engine is transmitted to the threshing device 13 and not to the cutting clutch 227. As a result, the threshing device 13 operates and the harvesting device 15 does not operate.
  • both the threshing clutch 226 and the cutting clutch 227 are in the off state. In this state, the power from the engine is not transmitted to either the threshing device 13 or the cutting clutch 227. At this time, the threshing device 13 and the harvesting device 15 do not operate.
  • condition determination unit 238 determines whether or not the threshing clutch 226 is in the engaged state based on the acquired information.
  • step # 124 When the operation position of the harvesting threshing lever 224 is the third operation position M3, it is determined as No in step # 124, and the return value of No is returned to step # 112.
  • step # 124 when the operation position of the harvesting threshing lever 224 is the first operation position M1 or the second operation position M2, it is determined as Yes in step # 124, and the process proceeds to step # 125.
  • condition determination unit 238 determines whether or not the cutting clutch 227 is in the engaged state based on the acquired information (step # 125).
  • step # 125 When the operation position of the harvesting threshing lever 224 is the second operation position M2 or the third operation position M3, No is determined in step # 125, and the return value of No is returned to step # 112.
  • step # 125 when the operation position of the harvesting threshing lever 224 is the first operation position M1, it is determined as Yes in step # 125, and the process proceeds to step # 126.
  • step # 126 it is determined whether or not the harvesting device 15 is located at the working position.
  • the amount of descent from the highest position of the harvesting device 15 is equal to or more than a predetermined value, which corresponds to the position of the harvesting device 15 at the working position.
  • the combine harvester 1 is provided with an elevating detection unit 225.
  • the elevating detection unit 225 detects the expansion / contraction state of the harvesting device cylinder 15a.
  • the detection result by the elevating detection unit 225 is sent to the condition determination unit 238.
  • condition determination unit 238 determines whether or not the harvesting device 15 is located at the working position based on the detection result by the elevating detection unit 225.
  • step # 126 If the harvesting device 15 is not located at the working position, it is determined as No in step # 126, and the return value of No is returned to step # 112.
  • step # 126 When the harvesting device 15 is located at the working position, it is determined as Yes in step # 126. If it is determined to be Yes in step # 126, it is determined that a predetermined condition for automatic steering control is satisfied, and the return value of Yes is returned to step # 112.
  • the above-mentioned "predetermined condition" for automatic steering control includes the determination of Yes in all of steps # 121 to # 126. It has been. However, the present invention is not limited to this, and a part of steps # 121 to # 126 may not be provided.
  • the above-mentioned "predetermined conditions" for automatic steering control include that the main shift lever 222 is located at the forward operation position FP, that the auxiliary transmission is in a shift state for work, and that the aircraft is in a shift state for work.
  • the positioning state of the position is higher than the predetermined accuracy, the clutch for power transmission to the threshing device 13 is in the engaged state, and the clutch for power transmission to the harvesting device 15 is in the engaged state.
  • At least one of the fact that the harvesting device 15 is located at the working position is included.
  • the directional indexes RL1 and RL2 of the reference azimuth B and the combine are displayed on the general-purpose terminal VT so that the combine is tilted according to the difference ⁇ (see FIGS. 16, 27 and 28).
  • the directional indicators RL1 and RL2 are lines indicating the reference directional B selected by the selection unit 235. Therefore, the passenger can easily adjust the traveling direction of the aircraft 1 to the reference direction B while checking the general-purpose terminal VT before starting the automatic steering control.
  • the peripheral mowing run is performed along the reference direction B1, and then the peripheral mowing run is performed along the reference direction B2.
  • the directional indicators GL1 and GL2 shown in FIGS. 26 and 29 are lines indicating the traveling target line C set by the line setting unit 236.
  • the general-purpose terminal VT is an "direction display unit" capable of displaying the direction indexes GL1, GL2, RL1 and RL2.
  • the directional indicators GL1, GL2, RL1 and RL2 are displayed on the screen of the general-purpose terminal VT so that the combine rotates without rotating, but the combine does not rotate.
  • the azimuth index GL1, GL2, RL1 and RL2 may be rotated.
  • the directional indexes GL1, GL2, RL1, RL2 of the reference azimuth B and the combine are respectively tilted so that one of the directional indexes GL1, GL2, RL1, RL2 of the reference azimuth B and the combine is inclined according to the difference ⁇ . It may be displayed on the general-purpose terminal VT.
  • the reference direction B1 and the reference direction B2 deviated by 90 degrees from the reference direction B1 are set.
  • the selection unit 235 selects the reference direction B1.
  • the selection unit 235 selects the reference direction B2.
  • the selection unit 235 selects the reference direction B closest to the direction of the machine 1 from the plurality of reference directions B based on the direction of the machine 1 calculated by the machine direction calculation unit 232.
  • FIG. 26 shows a state in which the crops in the uncut area (the area where the crops in the field are not cut) are cut by the harvesting device 15 while the automatic steering control is performed along the reference direction B1.
  • the directional index GL1 of the traveling target line C is displayed on the general-purpose terminal VT, and automatic steering control is performed so that the aircraft 1 follows the traveling target line C.
  • the work area D is displayed on the general-purpose terminal VT with a width extending over the work width of the combine as an area where the crop is cut with automatic steering control.
  • the work area D is displayed on the general-purpose terminal VT as a travel locus of the combine by automatic steering control.
  • FIG. 27 shows a state in which the control unit 230 shifts from the automatic steering mode to the manual steering mode after the combine has cut through the uncut area, and turns 90 degrees to the left of the aircraft in the already cut area. There is.
  • the difference ⁇ between the reference direction B1 and the direction of the aircraft 1 is within 45 degrees.
  • the difference ⁇ between the reference direction B1 and the direction of the aircraft 1 is smaller than the difference between the reference direction B2 and the direction of the aircraft 1 (90 degrees ⁇ ). Therefore, the reference direction B1 is selected in the processes of steps # 113 and # 114 in FIG. 16, and as shown in FIG. 27, the direction index RL1 of the reference direction B1 is displayed on the general-purpose terminal VT.
  • FIG. 28 shows a state in which the airframe 1 is turning further to the left than in the case shown in FIG. 27.
  • the difference ⁇ between the reference direction B1 and the direction of the aircraft 1 is larger than 45 degrees.
  • the reference direction B2 is selected in the processes of steps # 113 and # 114 in FIG. 16, and as shown in FIG. 28, the direction index RL2 of the reference direction B2 is displayed on the general-purpose terminal VT.
  • a plurality of directional lines parallel to the reference azimuth B may be displayed on the general-purpose terminal VT at intervals of the working width of the combine, and the plurality of directional lines and the combine may be displayed.
  • the positional relationship with the general-purpose terminal VT may be displayed. In this case, it becomes easier for the passenger to adjust the position of the aircraft in the lateral direction as a reference when performing, for example, the mid-division traveling.
  • the traveling direction of the machine 1 may be automatically corrected so that the traveling direction of the machine 1 follows the reference direction B.
  • FIG. 29 shows a state in which the crop in the uncut area is cut by the harvesting device 15 while the 90-degree turn of the machine 1 is completed and the automatic steering control is performed along the reference direction B2.
  • the control unit 230 shifts to the automatic steering mode in step # 118 of FIG. 16
  • the directional index GL2 of the traveling target line C is displayed on the general-purpose terminal VT provided in the boarding unit 12, and the directional index GL2 is in front of the combine. It is displayed to extend to.
  • the work area D is displayed on the general-purpose terminal VT with a width extending over the work width of the combine.
  • the directional indicators GL1 and GL2 are displayed when the control unit 230 is in the automatic steering mode, and the directional indicators RL1 and RL2 are displayed when the control unit 230 is in the manual steering mode. Is displayed.
  • the directional indicators GL1 and GL2 are indicated by solid lines, and the directional indicators RL1 and RL2 are indicated by broken lines.
  • the directional indicators GL1 and GL2 and the directional indicators RL1 and RL2 may be displayed in different colors. That is, the general-purpose terminal VT as the "direction display unit" has the directional index GL1 depending on whether the traveling device 11 is artificially steered or controlled automatically. , GL2, RL1, RL2 display mode is changed.
  • the work area D is displayed on the general-purpose terminal VT as a width over the work width of the combine.
  • the work width may be input by the passenger or may be acquired via an external network.
  • an extra width that overlaps with the already cut area or the uncut area adjacent in the lateral direction may be taken into consideration in this working width.
  • the overlap margin may be input by the passenger or may be acquired via an external network.
  • the work area D along the travel target line C with a width extending over the work width of the combine is displayed on the general-purpose terminal VT, and the lateral deviation and the orientation deviation of the combine with respect to the travel target line C are displayed on the general-purpose terminal VT.
  • the areas D7 and D8 may be configured to be displayed on the general-purpose terminal VT as the work area D with a width extending over the work width of the combine.
  • the steering control unit 237 controls the traveling device 11 based on the aircraft position information from the aircraft position calculation unit 231 and the directional information from the aircraft orientation calculation unit 232. It is not limited to this embodiment.
  • the steering control unit 237 may control the traveling device 11 based on the aircraft position information from the aircraft position calculation unit 231, or may control the traveling device 11 based on the directional information from the aircraft orientation calculation unit 232. Is also good.
  • the steering control unit 237 may automatically control the steering of the traveling device 11 based on the position of the aircraft so as to follow the reference direction B.
  • the steering control unit 237 may automatically steer the traveling device 11 based on the aircraft position so as to follow the traveling target line C set based on the reference direction B.
  • the line setting unit 236 may not be provided.
  • the line setting unit 236 and the steering control unit 237 may be integrally configured.
  • the reference direction B1 is calculated based on the positions A1 and A2, and the reference direction B2 is calculated based on the positions A3 and A4. It is not limited to the form.
  • the reference direction B1 when the reference direction B1 is calculated based on the positions A1 and A2, the reference directions B2 and B3 deviated by a predetermined direction may be automatically calculated. At this time, the amount of misorientation may be set manually or automatically.
  • the position Aa is stored when the start point setting switch 221a is operated
  • the position Ab is stored when the end point setting switch 221b is operated
  • the reference direction calculation unit 233 is stored in the positions Aa and Ab.
  • the reference direction B is calculated based on this, but the present invention is not limited to this embodiment.
  • the reference direction B may be automatically calculated based on the straight section.
  • the reference direction B1 is automatically calculated when the machine 1 goes straight over the positions A1 and A2
  • the reference direction B2 is calculated when the machine 1 goes straight over the positions A3 and A4. Is also good.
  • reference direction B3 may be calculated automatically when the aircraft 1 travels straight over the positions A5 and A6, and the reference direction B4 may be calculated when the aircraft 1 travels straight over the positions A7 and A8.
  • the reference direction B is automatically calculated based on the straight section along at least one side of the outer periphery of the field. It may be a configuration calculated in.
  • the reference direction calculation unit 233 sets a plurality of reference directions B along the extending direction of at least one side of the outer periphery of the field based on the aircraft position calculated during the orbital traveling by human operation in the outer peripheral region of the field. You may calculate.
  • the position A1 is the "first point” of the present invention
  • the position A2 is the “second point” of the present invention
  • the reference direction B1 is the “second point” of the present invention.
  • it is a "first reference direction”, it is not limited to this embodiment.
  • the position A3 is the “third point” of the present invention
  • the position A4 is the “fourth point” of the present invention
  • the reference direction B2 is the “second reference direction” of the present invention. It is not limited to the embodiment.
  • the position A3 may be the "first point” of the present invention
  • the position A4 may be the “second point” of the present invention
  • the reference direction B2 is the "first reference direction” of the present invention.
  • the position A5 may be the "third point” of the present invention, and the position A6 may be the “fourth point” of the present invention.
  • the reference direction B3 is the "second reference direction” of the present invention.
  • the position A7 may be the "third point” of the present invention, and the position A8 may be the “fourth point” of the present invention.
  • the reference direction B4 is the "second reference direction” of the present invention.
  • the aircraft orientation calculation unit 232 for calculating the traveling orientation of the aircraft 1 is provided, and the selection unit 235 is among the plurality of reference orientations B based on the calculated traveling orientation of the aircraft 1.
  • the selection unit 235 is among the plurality of reference orientations B based on the calculated traveling orientation of the aircraft 1.
  • One is selected, but is not limited to this embodiment.
  • the selection unit 235 may select the reference direction B based on an artificial operation, or may select the reference direction B based on the reception from the external network.
  • the reference directional direction calculation unit 233 for calculating the reference directional direction B based on the plurality of aircraft positions calculated while traveling in the field is provided, but the embodiment is not limited to this embodiment.
  • the configuration may not include the reference direction calculation unit 233.
  • a plurality of reference directions B may be received from an external network and stored in the storage unit 234.
  • the "airframe position calculation unit” of the present invention may be an integral configuration of the airframe position calculation unit 231 and the satellite positioning module 80. Further, the aircraft orientation calculation unit 232 may be configured to calculate the traveling orientation of the aircraft 1 based on the position information of at least one of the aircraft position calculation unit 231 and the satellite positioning module 80.
  • the aircraft 1 can travel in one direction and in the direction 180 ° opposite to one direction along the reference direction B, but one along the reference direction B. It may be a unidirectional configuration in which the aircraft 1 can travel only in the direction.
  • another reference direction B having information in the direction 180 ° opposite to the one direction may be stored in the storage unit 234. Then, the selection unit 235 may select the other reference direction B when the automatic steering control for traveling straight in the direction opposite to the one direction is performed.
  • the steering control unit 237 starts automatic steering control when the aircraft 1 is separated from the position Pa by a predetermined distance or more. It is not limited to the embodiment.
  • the steering control unit 237 may start the automatic steering control.
  • the traveling device 11 may be configured to be in a state where the steering can be automatically controlled.
  • the "working device” of the present invention may be one of the threshing device 13 and the harvesting device 15.
  • the line setting unit 236 acquires the determination result from the condition determination unit 238, but is not limited to this embodiment.
  • condition determination unit 238 may not be provided, and the line setting unit 236 may not acquire the determination result from the condition determination unit 238. Further, the line setting unit 236 and the condition determination unit 238 may be integrally configured.
  • the configuration may not include the directional deviation setting unit 239 shown in the above embodiment.
  • the reference direction calculation unit 233 may be configured to calculate the reference direction B which is deviated by 90 degrees (fixed value whose setting cannot be changed) from the calculated reference direction B.
  • the reference direction calculation unit 233 may be configured to calculate the reference direction B which is deviated from the calculated reference direction B by a preset value.
  • the determination process of whether or not the push button switch is manually operated is performed, and when the push button switch is manually operated, the push button switch is manually operated. It may be configured to shift to the automatic steering mode in step # 118.
  • step # 112 of FIG. 16 it is determined whether or not a predetermined condition for automatic steering control is satisfied based on the start determination routine shown in FIG. 25, but the present invention is limited to this embodiment. Not done.
  • step # 111 of FIG. 16 After the position of the machine 1 is stored as the position Pa in step # 111 of FIG. 16, the traveling direction of the machine 1 may be acquired in step # 113 without the processing of step # 112.
  • control unit 230 may be a hardware circuit configured by, for example, an ASIC or FPGA, or may be a software program executed by a computer. Further, the control unit 230 may be configured by a combination of such hardware and software.
  • FIGS. 30-35 Another embodiment of the present invention will be described with reference to FIGS. 30-35.
  • the same reference numerals may be given to the same configurations as those of the above-described embodiments, and detailed description thereof may be omitted.
  • two combine harvesters H as agricultural work vehicles that is, a first combine H1 as a preceding combine (master combine) and a second combine H2 as a succeeding combine (slave combine) are introduced into one field and cooperate with each other. Then the harvesting work is done. Of course, a plurality of subsequent combines may be introduced.
  • These combine Hs are equipped with a general-purpose terminal VT, which is a tablet computer capable of data communication.
  • the first combine H1 and the second combine H2 can exchange information on running and harvesting work through the general-purpose terminal VT.
  • the first combine H1 starts the harvesting work from the vicinity of the upper left apex of the deformed quadrangle showing the field, and swirls to the left. Perform a run (orbital run).
  • the swirl running of the combine H consists of a straight running along each side (shore) of the field and a turning run performed at each corner of the field.
  • the combine H is automatically driven by using the reference direction obtained from the reference information or the automatic steering based on the travel path calculated based on the reference direction.
  • the reference direction is acquired by setting a part of the straight running by manual steering in the first lap running of the first combine H1 as teaching running.
  • a reference orientation may be acquired for each side of the field, or an orientation obtained by rotating the reference orientation acquired on one side may be used as the reference orientation for the other three sides.
  • the first combine H1 that has acquired the reference direction can run automatically.
  • the second combine H2 receives the reference direction acquired by the first combine H1 through data communication, so that automatic steering without teaching running becomes possible.
  • FIG. 31 shows how the first combine H1 and the second combine H2 perform harvesting work on each region formed by dividing a quadrangular field into two.
  • the first combine H1 acquires a reference direction extending along the vertical side and a reference direction extending along the horizontal side when traveling around the outermost circumference.
  • the direction obtained by rotating the reference direction acquired on the vertical side may be used as the reference direction in the running on the horizontal side.
  • the first combine H1 that has acquired the reference direction can perform straight running in two laps by automatic steering based on the reference direction or the running path calculated based on the reference direction. After that, the first combine H1 performs harvesting work by repeated running (straight reciprocating running) of straight running by automatic steering and direction change running (180 ° turning) by manual steering.
  • the second combine H2 receives the reference direction acquired by the first combine H1 through data communication, and by repeatedly traveling straight ahead with automatic steering and turning direction (180 ° turning) with manual steering. Perform harvesting work.
  • running data such as vehicle speed, work data such as harvest speed, and harvest such as yield per unit section running Data, etc. may be handled.
  • FIG. 31 is a functional block diagram of the travel control system showing the functions related to the automatic travel control of the combine H.
  • the combine H includes a control system similar to that of the conventional combine of the first embodiment shown in FIG. Hereinafter, a configuration different from the control system of the ordinary combine of the first embodiment will be described.
  • the first button 31 and the second button 32 which will be described in detail later, are arranged as software buttons in the operation image display area 3b of the touch panel 3 of the general-purpose terminal VT.
  • various applications for processing information regarding the harvesting work by the combine H are installed in the general-purpose terminal VT.
  • One of the applications is a display information generation unit 30 that generates information to be displayed in the support image display area 3a.
  • control unit 4 includes the above-mentioned functional units (airframe position calculation unit 40, first aircraft position acquisition unit 41, second aircraft position acquisition unit 42, reference direction calculation unit 43, and travel route.
  • the reference information management unit 47 is provided.
  • the first combine H1 When this combine H is put into the field as the first combine H1 (master combine), the first combine H1 performs teaching running to acquire the reference direction used for automatic running. For example, when the first combine H1 enters the field, the teaching run is performed immediately or after the necessary posture change.
  • the first machine position acquisition unit 41 receives the first signal generated by the driver clicking (touching) the first button 31 from the general-purpose terminal VT during the harvesting work.
  • the click operation of the first button 31 means the start of the teaching run.
  • the first airframe position acquisition unit 41 acquires the airframe position at the timing of receiving the first signal from the airframe position calculation unit 40, and stores the airframe position as the first airframe position.
  • the second machine position acquisition unit 42 continues the teaching run, and when the machine 1 makes a work run to a place away from the first machine position, the driver clicks (touches) the second button 32. The second signal generated by this is received.
  • the second machine position acquisition unit 42 acquires the machine position at the timing when the second signal is received from the general-purpose terminal VT from the machine position calculation unit 40, and stores the machine position as the second machine position.
  • the click operation of the second button 32 means the end of the teaching run.
  • the combine H can also perform teaching running in an already-worked area where the harvesting work has already been completed or in a mixed area including the already-worked area and the unworked area.
  • the reference direction calculation unit 43 uses the direction of a straight line connecting the first machine position read from the first machine position acquisition unit 41 and the second machine position read from the second machine position acquisition unit 42 as the reference direction. Calculated as.
  • the calculated reference direction is sent to the travel route creation unit 44 and, if necessary, to the travel control unit 50. Further, the reference orientation is sent to the reference information management unit 47 using the combination of the first aircraft position and the second aircraft position as reference information.
  • the reference information management unit 47 manages at least one of the combination of the first machine position and the second machine position and the reference direction which is the direction of the straight line connecting the first machine position and the second machine position as the reference information. ..
  • the reference information management unit 47 transfers the reference information to the combine H used as the second combine H2 via the reference information transmission unit 83a of the communication unit 83. And send.
  • the reference information management unit 47 of the second combine H2 which has received the reference information via the reference information receiving unit 83b of the communication unit 83, transfers the reference direction obtained from the reference information to the travel route creation unit 44 or the travel control unit 50. give.
  • this combine H is used both as the first combine H1 and as the second combine H2.
  • the reference information management unit 47 has a function of managing the reference information for each input field.
  • the travel control unit 50 controls the automatic travel of the combine H based on the reference direction obtained from the reference information or the travel route calculated based on the reference direction.
  • the first combine H1 is set to the first aircraft position (point A) with a part of the running along the vertical side (vertical side, short side of the field shown in FIG. 31) as a teaching run in the first lap work run. ) And the position of the second aircraft (point B), and the reference direction is calculated.
  • the reference direction When running along the horizontal side (horizontal side, long side of the field shown in FIG. 31), the reference direction is not calculated, and the direction obtained by rotating the reference direction obtained by the teaching run along the vertical side is horizontal. It is used as a reference direction for automatic driving along the sides.
  • the straight path that is traveling straight is automatically driven by the automatic steering according to the first steering mode described above.
  • the second combine H2 following the preceding first combine H1 performs automatic traveling by automatic steering by using the reference direction sent from the first combine H1.
  • the first combine H1 enters the field through the doorway (# 201) and starts the harvesting run by manual steering (# 202).
  • a teaching run is performed to obtain the reference direction required for automatic steering.
  • the driver clicks the first button 31 (see FIG. 31) displayed in the operation image display area 3b of the touch panel 3 (# 211).
  • the first aircraft position which is the aircraft position at that time, is acquired (# 212).
  • the point A indicating the position of the first machine is displayed in the support image display area 3a of the touch panel 3 (# 213).
  • a band-shaped line BL showing the running locus from the point A is displayed with the combine H icon in the harvest width (#). 214).
  • a sign line GL indicating a line parallel to the shore or the ridge of the field is displayed in order to perform accurate teaching running.
  • a line parallel to the planting strip may be displayed as a marker line GL.
  • the end condition of the teaching run is whether the combine H has traveled a predetermined distance (for example, 5 m) or more from the position of the first aircraft, or whether the predetermined time required for traveling the predetermined distance has elapsed.
  • a predetermined distance for example, 5 m
  • the second button 32 is displayed in the operation image display area 3b of the touch panel 3 (# 216).
  • the driver can confirm the teaching run by the points A and B displayed in the support image display area 3a and the running locus between them.
  • the direction of the straight line connecting the position of the first machine and the position of the second machine is calculated and stored as the reference direction (# 220).
  • the calculated reference direction is transmitted to the second combine H2 (# 221).
  • the first combine H1 can shift from manual steering to automatic steering.
  • the automatic steering starter 71 is used for the operation for starting the automatic running in the automatic steering. It is checked whether or not the automatic steering starter 71 has been operated (# 230).
  • step # 235Yes branch When the start of automatic steering is requested by the operation of the automatic steering starter 71 (# 235Yes branch), the vehicle jumps to step # 231 and a traveling route is formed based on the aircraft position and the reference direction at that time. Automatic steering is started.
  • the reference direction having a direction close to the direction of the aircraft 1 at the time when the start of automatic steering is requested is for forming the traveling path.
  • the driver selects the reference direction used for forming the travel path.
  • the resumption of automatic steering is usually performed from the harvesting work running in which the harvesting device 15 is lowered following the direction change running (non-harvesting work running) by the manual steering in which the harvesting device 15 is raised.
  • a harvesting start operating tool for starting the harvesting operation by the harvesting device may be used in combination with the automatic steering starter 71 or instead of the automatic steering starter 71.
  • the second combine H2 stands by at a position that does not interfere with the lap running by the first combine H1, for example, outside the catching area (# 250).
  • the second combine H2 checks whether or not the reference direction sent from the first combine H1 has been received while waiting (# 251).
  • the second combine H2 moves from the standby position to a position suitable for manually starting the harvesting work (# 252).
  • the driver determines that the aircraft 1 is in a position where automatic steering should be started and the automatic steering starter 71 is operated (# 260Yes branch), as described with reference to FIG. 6 of the first embodiment.
  • the travel route is determined and fixed based on the aircraft position and the reference direction at that time (# 261).
  • the second combine H2 also starts automatic steering in the first steering mode (# 262).
  • FIG. 34 shows the harvesting work by the combine H and the seedling planting work by the rice transplanter PM in the same field beyond the seasons.
  • the seedling planting work by the rice transplanter PM is performed by a lap running consisting of a straight running and a 90 ° turning running, and a straight reciprocating running consisting of a straight running running and a 180 ° turning running.
  • the rice transplanter PM acquires the reference direction during the first non-working run of about half a lap. After acquiring the reference direction, the straight running can be performed by automatic steering based on the reference direction or the running path calculated based on the reference direction.
  • the reference direction acquired by the rice transplanter PM is temporarily recorded in the memory medium. Seedlings planted in a certain row by the rice transplanter PM are harvested by combine H when they grow as planting grain rods in different seasons.
  • Combine H harvests the planted grain rod while running along the seedling planting row, that is, the planted grain rod row.
  • automatic steering based on the reference direction read from the memory medium or the running path calculated based on the reference direction becomes possible.
  • the reference information receiving unit 83b for receiving the reference information including the reference orientation, the reference information management unit 47 for managing the received reference information, and the reference information read from the reference information management unit 47 are transmitted.
  • An example of an automatic steering management system provided in a management computer 100 having a reference information transmission unit 83a and a server function is shown.
  • the management computer 100 can be connected to the agricultural work vehicle via a data communication line such as the Internet.
  • Agricultural work vehicles include all agricultural work vehicles that perform field work, such as combine H, rice transplanter PM, and tractor TR.
  • the management computer 100 includes an input / output data processing unit 101, an agricultural work management unit 102, and a database 103.
  • the input / output data processing unit 101 has a function of processing the data received from the agricultural work vehicle, transferring it to the agricultural work management unit 102, processing the data from the agricultural work management unit 102, and distributing it to the agricultural work vehicle.
  • the reference information transmission unit 83a and the reference information reception unit 83b are included in the input / output data processing unit 101.
  • the farm work management unit 102 has a function of processing the work run result information for each field sent from each farm work vehicle and evaluating the work run result, and the field work schedule plan information for each field to be sent to each farm work vehicle. Has the ability to create.
  • the standard information management unit 47 is included in the agricultural work management unit 102.
  • the database 103 stores data for which data is recorded and extracted by the agricultural work management unit 102.
  • the data stored in the database 103 includes field information, field work information, field evaluation information, etc. for each field and for each type of farm work vehicle.
  • Such data is stored in a layered structure, and the layered structure includes a field map A layer, a ridge formation map layer, a reference direction layer, a row formation map layer, a traveling locus map layer, a yield map layer, and the like. It has been.
  • the reference direction acquired by the agricultural work vehicle for example, the first reference direction, the second reference direction, and so on are recorded.
  • the reference orientation acquired by the rice transplanter PM is given to the combine H, which performs harvesting work in the same field in the same farming cycle, inside and outside the field.
  • the reference orientation acquired by the first combine H1 is given to the second combine H2, which performs the same cooperative harvesting work in the same field, inside and outside the field.
  • straight or straight path used in the above-described embodiment does not mean a strict straight path, but the phrase includes a straight path consisting of a polygonal line and a run that draws a large curve. Is also included.
  • Each functional unit shown in the functional block diagram of FIG. 32 may be combined with another functional unit, or one functional unit may be separated into a plurality of functional units.
  • the reference direction calculation unit 43 and the reference information management unit 47 may be integrated, the reference direction calculation unit 43 may create and manage the reference information, or the reference information management unit 47 may calculate the reference direction. It may be managed as reference information.
  • the second combine H2 receives the reference direction obtained by the first combine H1 via communication, transfers it to the traveling route creating unit 44 or the automatic steering module 51, and automatically steers it.
  • the driver may manually enter the machine gun siege into the control unit 4.
  • the traveling device 11 is composed of a crawler-type left traveling mechanism 11a and a right traveling mechanism 11b, and the aircraft 1 is due to a speed difference between the left traveling mechanism 11a and the right traveling mechanism 11b.
  • a traveling device 11 in which the aircraft 1 is steered by changing the steering angle of the steering wheel may be adopted.
  • the combine H and the rice transplanter PM perform teaching running to obtain a reference direction.
  • a drone that has been supporting various agricultural works in recent years may be used to acquire an image taken from the sky of the field, and a reference direction may be obtained from the acquired image. For example, by fixing the shooting camera to the drone so that the shooting axis of the shooting camera is in a predetermined direction and flying the drone in a predetermined direction, an accurate reference direction in a map coordinate system or a field coordinate system can be obtained.
  • the first embodiment can be applied not only to a normal combine harvester but also to other harvesters such as a self-removing combine harvester and a corn harvester.
  • the second embodiment can be applied to agricultural work machines such as self-removing combine harvesters, rice transplanters, direct seeding machines, tractors, and management machines, in addition to ordinary combine harvesters.
  • the third embodiment can be applied to agricultural work machines such as self-removing combine harvesters, rice transplanters, direct seeding machines, tractors, and management machines, in addition to ordinary combine harvesters.
  • the fourth embodiment can be applied to an automatic steering management system that manages information necessary for automatic steering of agricultural work vehicles.
  • Aircraft 3 Touch panel 3a: Support image display area 3b: Operation image display area 4: Control unit 13: Threshing device (working device) 15: Harvesting equipment (working equipment) 30: Display information generation unit 31: 1st button 32: 2nd button 40: Aircraft position calculation unit 41: 1st aircraft position acquisition unit 42: 2nd aircraft position acquisition unit 43: Reference orientation calculation unit 44: Travel route creation unit 45: Travel locus creation unit 46: Aircraft orientation calculation unit 50: Travel control unit 51: Automatic steering module 52: Manual steering module 53: Vehicle speed control module 71: Automatic steering starter 80: Satellite positioning module 81: Inertial measurement module BL: Belt-shaped line (running locus) GL: Marked line GS: Artificial satellite VT: General-purpose terminal [second embodiment] 42a: Teaching driving management unit [third embodiment] 226: Threshing clutch (clutch) 227: Mowing clutch (clutch) 231: Aircraft position calculation unit 232: Aircraft direction calculation unit 233: Reference direction calculation unit 234:

Abstract

This harvester comprises: a machine body location calculation unit 40 which calculates the location of a machine body by using satellite positioning; a first machine body location acquisition unit 41 which takes, as a first machine body location, a machine body location acquired in response to a first signal generated by a manual operation during harvesting; a second machine body location acquisition unit 42 which takes, as a second machine body location, a machine body location acquired in response to a second signal generated by a manual operation in a place spaced apart from the first machine body location during the harvesting; a reference azimuth calculation unit 43 which calculates by taking, as a reference azimuth, the azimuth of a straight line connecting the first machine body location and the second machine body location; and a traveling control unit 50 which controls automatic traveling of the machine body on the basis of the reference azimuth or a traveling path calculated on the basis of the reference azimuth.

Description

収穫機、収穫機の自動走行方法、プログラム、記録媒体、システム、農作業機、農作業機の自動走行方法、方法、自動操舵管理システムHarvester, automatic driving method of harvester, program, recording medium, system, agricultural work machine, automatic driving method of agricultural work machine, method, automatic steering management system
 本発明は、収穫機、収穫機の自動走行方法、プログラム、記録媒体、システム、農作業機、農作業機の自動走行方法、方法、自動操舵管理システムに関する。 The present invention relates to a harvester, an automatic traveling method of the harvester, a program, a recording medium, a system, an agricultural work machine, an automatic traveling method and method of an agricultural work machine, and an automatic steering management system.
 農作業車の1つである、田植機は、圃場を外周領域とその内側に位置する中央領域とに分けて、苗植付け作業を行う。例えば、特許文献1による自動走行可能な田植機では、苗植付け作業を行う前に、外周領域で畔に沿うように手動操舵による直線状のティーチング走行が行われる。 The rice transplanter, which is one of the agricultural work vehicles, divides the field into an outer peripheral area and a central area located inside the field, and performs seedling planting work. For example, in the rice transplanter capable of automatic traveling according to Patent Document 1, a linear teaching traveling by manual steering is performed along the shore in the outer peripheral region before the seedling planting work is performed.
 ティーチング走行によって得られたティーチング経路に沿う方向が目標方位(基準方位)として設定される。自動操舵では、目標方位と目標走行経路とが用いられる。 The direction along the teaching path obtained by the teaching run is set as the target direction (reference direction). In automatic steering, a target direction and a target travel path are used.
 苗植付け作業は、中央領域から自動操舵で行われる。最初の目標走行経路に沿って自動操舵で直進しながら苗植付け作業が行われ、畔際付近で行われる手動操舵での旋回走行で機体の方向転換が行われ、再び目標方位と次の目標走行経路とを用いた自動操舵での苗植付け作業が行われる。 The seedling planting work is performed by automatic steering from the central area. Seedling planting work is carried out while going straight along the first target running route by automatic steering, the direction of the aircraft is changed by turning running by manual steering performed near the shore, and the target direction and the next target running again Seedling planting work is carried out by automatic steering using a route.
 このような直進走行と旋回走行とが繰り返されることで、中央領域に対する苗植付け作業が終了すると、外周領域に対する苗植付け作業が行わる。外周領域に対する苗植付け作業の終了後に、田植機は、圃場外に出る。 By repeating such straight running and turning running, when the seedling planting work for the central area is completed, the seedling planting work for the outer peripheral area is performed. After the seedling planting work on the outer peripheral area is completed, the rice transplanter goes out of the field.
 特許文献2に開示された農作業機では、航法衛星を用いて機体の位置情報を取得可能な測位ユニットが備えられ、最初のティーチング走行で算出された基準方位に沿って農作業機が走行するように、操向制御部による操向制御が行われる。 The agricultural work machine disclosed in Patent Document 2 is provided with a positioning unit capable of acquiring the position information of the machine using a navigation satellite so that the agricultural work machine runs along the reference direction calculated in the first teaching run. , Steering control is performed by the steering control unit.
 特許文献3には、1つの圃場に投入された複数の自動走行可能な農作業車を管理する作業車自動走行システムが開示されている。この作業車自動走行システムでは、例えば、データ通信可能な第1農作業車と第2農作業車とは作業走行状態の交換を行う。 Patent Document 3 discloses an automatic work vehicle traveling system that manages a plurality of automatically traveling agricultural work vehicles put into one field. In this work vehicle automatic traveling system, for example, the first agricultural work vehicle and the second agricultural work vehicle capable of data communication exchange the working traveling state.
 それぞれの農作業車は、予め生成された走行経路要素群から自動走行の走行目標となる走行経路要素を選択する経路要素選択部を備えている。経路要素選択部は、双方の作業走行状態と双方の機体位置とを考慮して次走行経路要素を選択する。これにより、第1農作業車と第2農作業車とは、互いの衝突を回避しながら、収穫作業を協調的に行う。 Each agricultural work vehicle is provided with a route element selection unit that selects a travel route element that is a travel target for automatic driving from a previously generated travel route element group. The route element selection unit selects the next travel route element in consideration of both working travel conditions and both aircraft positions. As a result, the first agricultural work vehicle and the second agricultural work vehicle coordinately perform the harvesting work while avoiding collision with each other.
 さらに、この第1農作業車と第2農作業車とは、装備している車両走行機器群や作業装置機器群の設定パラメータを相互交換することができ、相手車のパラメータに基づいて自車のパラメータの調整が可能である。 Further, the first farm work vehicle and the second farm work vehicle can exchange the setting parameters of the vehicle traveling equipment group and the work equipment group equipped with each other, and the parameters of the own vehicle are based on the parameters of the other vehicle. Can be adjusted.
 特許文献4による自動走行可能な収穫機は、手動による周囲刈り走行によって形成された多角形形状の未作業領域の一辺を基準辺とし、この基準辺を内側に作業幅(オーバーラップを含める)の1/2だけ平行に移動して得られる線を初期基準線として算出する。 In the harvester capable of automatic traveling according to Patent Document 4, one side of an unworked area of a polygonal shape formed by manual surrounding cutting is used as a reference side, and this reference side is used as a reference side for the working width (including overlap). The line obtained by moving in parallel by 1/2 is calculated as the initial reference line.
 未作業領域に対する作業は、初期基準線を目標走行経路とする自動操舵での直進走行と手動操舵でのUターン旋回走行とを繰り返す往復走行パターンで行われる。自動操舵での直進走行のための目標経路は、初期基準線を内側に作業幅だけ平行移動することで算出される。 Work on the unworked area is performed in a reciprocating running pattern that repeats straight running with automatic steering and U-turn turning running with manual steering with the initial reference line as the target running path. The target route for straight running with automatic steering is calculated by translating the initial reference line inward by the working width.
 田植機や収穫機は、圃場を外周領域とその内側に位置する中央領域とに分けて、農作業を行う。その際、特許文献1による自動走行可能な田植機では、苗苗植付け作業の前に、外周領域で手動による直線状のティーチング走行が行われる。ティーチング走行によって得られたティーチング経路に沿う方向が目標方位(基準方位)として設定される。 Rice transplanters and harvesters divide the field into an outer peripheral area and a central area located inside it, and carry out farm work. At that time, in the rice transplanter capable of automatic traveling according to Patent Document 1, a linear teaching traveling is manually performed in the outer peripheral region before the seedling planting work. The direction along the teaching path obtained by the teaching run is set as the target direction (reference direction).
 自動操舵では、目標方位と目標走行経路とが用いられる。苗植付け作業は、中央領域から自動操舵で行われる。最初の目標走行経路に沿って自動操舵で直進しながら苗植付け作業が行われ、畔際付近で行われる旋回走行で機体の方向転換が行われ、再び基準方位と次の目標走行経路とを用いた自動操舵での苗植付け作業が行われる。 In automatic steering, the target direction and the target travel route are used. The seedling planting work is performed by automatic steering from the central area. Seedling planting work is carried out while going straight along the first target travel route by automatic steering, the direction of the aircraft is changed by the turning travel performed near the shore, and the reference direction and the next target travel route are used again. Seedling planting work is carried out by automatic steering.
 このような直進走行と旋回走行とが繰り返されることで、中央領域に対する苗植付け作業が終了すると、外周領域に対する苗植付け作業が行わる。外周領域に対する苗植付け作業の終了後に、田植機は、圃場外に出る。 By repeating such straight running and turning running, when the seedling planting work for the central area is completed, the seedling planting work for the outer peripheral area is performed. After the seedling planting work on the outer peripheral area is completed, the rice transplanter goes out of the field.
特開2017-123804号公報Japanese Unexamined Patent Publication No. 2017-123804 特開2019-097503号公報Japanese Unexamined Patent Publication No. 2019-097503 特開2018-99043号公報(段落番号0080から段落番号0107)Japanese Unexamined Patent Publication No. 2018-99043 (paragraph number 0080 to paragraph number 0107) 特開2020-022397号公報(段落番号0053から段落番号0056)Japanese Unexamined Patent Publication No. 2020-0222397 (paragraph number 0053 to paragraph number 0056)
〔第1課題〕
 収穫機において、特許文献1で開示されているようなティーチング走行を通じて算出される基準方位を用いた自動操舵で自動走行を行うには、ティーチング走行が必須となる。しかしながら、圃場作業車の1つである収穫機は、圃場内に進入すると、すぐに収穫作業を行わないと、収穫物を押し倒すことになる。
[First task]
Teaching running is indispensable for the harvester to perform automatic running by automatic steering using the reference direction calculated through teaching running as disclosed in Patent Document 1. However, when the harvester, which is one of the field work platforms, enters the field and does not perform the harvesting work immediately, the harvested product is pushed down.
 このため、考えられる方法は、最初に、手動操舵で収穫機が圃場に進入し、一定の収穫作業が行われることで形成された既作業領域でティーチング走行を行うことである。このような方法では、収穫作業を伴わない収穫機の走行時間が増加して、収穫作業の効率が悪くなる欠点が生じる。 Therefore, a conceivable method is to first perform teaching running in the existing work area formed by the harvester entering the field by manual steering and performing a certain harvesting work. Such a method has a drawback that the running time of the harvester without the harvesting work is increased and the efficiency of the harvesting work is deteriorated.
 このため、本発明の目的は、収穫作業を行いながらも、ティーチング走行による基準方位が得られる収穫機を提供することである。 Therefore, an object of the present invention is to provide a harvester that can obtain a reference direction by teaching running while performing harvesting work.
〔第2課題〕
 農作業車の1つである収穫機は、圃場内に進入すると、すぐに収穫作業を行わないと、収穫物を押し倒すことになる。また、特許文献1で開示されているようなティーチング走行を用いて算出される基準方位を用いて、自動走行を行う収穫機では、自動走行の前に、ティーチング走行を行うことが必須となる。従って、圃場に進入して収穫作業を行う際、できるだけ早い機会にティーチング走行が行われることが好ましい。
[Second task]
When the harvester, which is one of the agricultural work vehicles, enters the field, if the harvesting work is not performed immediately, the harvested product will be pushed down. Further, in a harvester that performs automatic running using a reference direction calculated by using teaching running as disclosed in Patent Document 1, it is essential to perform teaching running before automatic running. Therefore, when entering the field and performing the harvesting work, it is preferable that the teaching run is performed at the earliest possible opportunity.
 収穫機の収穫作業は、まず、畔側に沿って圃場を周回する周回走行によって行われる。周回走行では、畔から突き出した突起領域や水口などが存在している場所では、これらを回避するための後進を用いた回避走行が行われる。さらに、収穫作業の最初では、車速と収穫装置の処理速度との関係が適切でないこともあり、収穫物の詰まりなどが生じると、詰まりを取り除くために、機体を一時停止させたり、エンジンを停止させたりする必要が生じる。 The harvesting work of the harvester is first carried out by orbiting the field along the shore side. In the lap running, in the place where the protrusion area protruding from the shore, the water outlet, etc. exist, the avoidance running using the reverse movement is performed to avoid these. Furthermore, at the beginning of the harvesting work, the relationship between the vehicle speed and the processing speed of the harvesting equipment may not be appropriate, and when the harvest is clogged, the aircraft is temporarily stopped or the engine is stopped in order to clear the clogging. It will be necessary to make it.
 特許文献1で示すような、従来のティーチング走行では、ティーチング走行の途中での、後進、停車、さらにはエンジン停止といった緊急避難的な走行状態は考慮されておらず、そのような走行状態が生じると、ティーチング走行は中止され、その後、再度ティーチング走行が開始される。このことは、できるだけ早く自動走行に移行したい運転者にとって問題となる。 In the conventional teaching running as shown in Patent Document 1, emergency evacuation running states such as reverse movement, stopping, and even engine stop during the teaching running are not taken into consideration, and such running states occur. Then, the teaching run is stopped, and then the teaching run is started again. This is a problem for drivers who want to shift to autonomous driving as soon as possible.
 このため、本発明の目的は、ティーチング走行において緊急避難的な走行状態が生じても、自動走行のために必要な基準方位が得られる農作業機を提供することである。 Therefore, an object of the present invention is to provide an agricultural work machine that can obtain a reference direction required for automatic driving even if an emergency evacuation driving state occurs in teaching driving.
〔第3課題〕
 特許文献2に開示された農作業機は、一つの基準方位に沿って操向制御が行われる。農作業機の種類によっては、農作業機が圃場の一方位に沿って走行するだけでなく、圃場の形状に応じて複数の方位に沿って走行する場合もある。このため、機体の走行状態に応じて複数の基準方位を臨機応変に使い分けられることが望ましい。
[Third task]
The agricultural work machine disclosed in Patent Document 2 is steered and controlled along one reference direction. Depending on the type of farm work machine, the farm work machine may not only travel along one side of the field, but may also travel along a plurality of directions according to the shape of the field. Therefore, it is desirable to flexibly use a plurality of reference directions according to the traveling state of the aircraft.
 本発明の目的は、圃場の形状等に応じて複数の方位に沿って自動操向制御が可能な農作業機を提供することにある。 An object of the present invention is to provide an agricultural work machine capable of automatic steering control along a plurality of directions according to the shape of a field or the like.
〔第4課題〕
 特許文献4や特許文献1による作業車では、同じ圃場で少なくとも1台の作業車が、ほぼ同時に、または時間的(季節的)に間隔を開けて、同じ初期基準線又は基準方位を用いて自動作業走行を行うことは考慮されていない。従って、そのようなケースでは、それぞれの農作業車が、別々に初期基準線又は基準方位を算出する必要がある。別々に算出した各初期基準線又は各基準方位に相違があれば、統一された基準の基づく自動操舵ができないという問題が生じる。
[Fourth task]
In the work vehicle according to Patent Document 4 and Patent Document 1, at least one work vehicle in the same field automatically uses the same initial reference line or reference direction at almost the same time or at intervals of time (seasonal). Working runs are not considered. Therefore, in such a case, each agricultural work vehicle needs to calculate the initial reference line or reference direction separately. If there is a difference in each initial reference line or each reference direction calculated separately, there arises a problem that automatic steering based on a unified reference cannot be performed.
 特許文献3による作業車自動走行システムでは、同じ圃場に投入された複数の作業車同士で、作業走行状態や機体位置などの情報を交換することで、適切な走行経路要素を選択して、協調した自動作業走行が実現する。しかしながら、この作業車自動走行システムでは、予め圃場を網羅する走行経路要素群が生成されなければならない。 In the work vehicle automatic driving system according to Patent Document 3, a plurality of work vehicles put into the same field exchange information such as the work travel state and the machine body position to select an appropriate travel route element and cooperate with each other. Automatic work driving is realized. However, in this work vehicle automatic traveling system, a traveling route element group covering the field must be generated in advance.
 本発明の目的は、農作業地を網羅する自動走行のための走行経路を予め生成することなしに、簡単に算出できる自動操舵のための基準を用いた農作業車の自動走行を可能にする自動操舵管理システムを提供することである。 An object of the present invention is automatic steering that enables automatic driving of an agricultural work vehicle using a standard for automatic steering that can be easily calculated without generating a traveling route for automatic driving that covers the agricultural work area in advance. To provide a management system.
 上述した第1課題を解決する手段として、本発明の収穫機は、走行装置を有する機体と、衛星測位を用いて機体位置を算出する機体位置算出部と、収穫作業中において手動操作によって生成された第1信号に応答して取得した前記機体位置を第1機体位置とする第1機体位置取得部と、前記収穫作業中において前記第1機体位置から離れた場所での手動操作によって生成された第2信号に応答して取得した前記機体位置を第2機体位置とする第2機体位置取得部と、前記第1機体位置と前記第2機体位置とを結ぶ直線の方位を基準方位として算出する基準方位算出部と、前記基準方位、または、前記基準方位に基づいて算出された走行経路に基づいて前記機体の自動走行を制御する走行制御部と、を備える。 As a means for solving the first problem described above, the harvester of the present invention is generated by a machine having a traveling device, a machine position calculation unit for calculating the position of the machine using satellite positioning, and a manual operation during the harvesting operation. It was generated by a manual operation at a place away from the first machine position during the harvesting work and a first machine position acquisition unit having the machine position acquired in response to the first signal as the first machine position. Calculated using the orientation of the straight line connecting the first aircraft position and the second aircraft position as the reference orientation and the second aircraft position acquisition unit whose second aircraft position is the aircraft position acquired in response to the second signal. A reference orientation calculation unit and a travel control unit that controls automatic travel of the aircraft based on the reference orientation or a travel route calculated based on the reference orientation are provided.
 この構成では、収穫機は圃場に進入し、手動運転で収穫作業を行う。その際、運転者の操作に応答して衛星測位で算出された第1機体位置と第2機体位置が取得される。間隔をあけて取得された第1機体位置と第2機体位置とを結ぶ直線の方位が基準方位として算出される。算出された基準方位または、この基準方位に基づいて算出された走行経路に基づいて、自動走行が開始される。つまり、第1機体位置と第2機体位置を取得する間だけ手動運転で収穫作業が行われると、その後は、自動走行での収穫作業が可能となる。なお、ここでの「収穫作業中」なる語句は、機体が走行しながら収穫作業を行っている状態、及び機体が停止して収穫作業を行っている状態を含むものである。 In this configuration, the harvester enters the field and manually operates the harvesting work. At that time, the first aircraft position and the second aircraft position calculated by satellite positioning are acquired in response to the driver's operation. The direction of the straight line connecting the first machine position and the second machine position acquired at intervals is calculated as the reference direction. Automatic driving is started based on the calculated reference direction or the traveling route calculated based on this reference direction. That is, if the harvesting work is performed manually only while the first machine body position and the second machine body position are acquired, the harvesting work by automatic running becomes possible after that. The phrase "harvesting work" here includes a state in which the aircraft is performing harvesting work while traveling and a state in which the aircraft is stopped and performing harvesting work.
 基準方位を利用した自動操舵は、複数の制御モードで実現可能である。その一つは、基準方位を自動走行の目標方位として、自動走行の開始指令が発せられた時点から、目標方位を維持するように操舵が行われることである。他の1つは、自動走行の開始指令が発せられた時点の機体位置から基準方位で延びる走行経路が自動操舵のための目標経路として設定され、この目標経路に沿うように操舵が行われることである。前者の制御モードでは、途中でスリップなどで位置ずれが生じた場合、この位置ずれの補正ができないという問題点があるが、操舵制御のアルゴリズムが簡単となる利点がある。後者の制御モードでは、衛星測位による機体位置を用いて算出される走行経路に対する機体の位置ずれ(横ずれ)を解消するように操舵される方法と、位置ずれと方位ずれとを組み合わせて操舵される方法とがあるが、いずれ方法であっても、前者の制御モードの問題点は解消される。このことから、本発明の好適な実施形態の1つでは、自動走行開始時に前記基準方位に基づいて前記走行経路が設定され、前記走行制御部は前記走行経路に沿うように前記機体の自動走行を制御する。 Automatic steering using the reference direction can be realized in multiple control modes. One of them is that the reference direction is set as the target direction for automatic driving, and steering is performed so as to maintain the target direction from the time when the start command for automatic driving is issued. The other one is that a travel path extending in the reference direction from the aircraft position at the time when the automatic travel start command is issued is set as a target route for automatic steering, and steering is performed along this target route. Is. In the former control mode, if a position shift occurs due to slipping or the like in the middle, there is a problem that the position shift cannot be corrected, but there is an advantage that the steering control algorithm becomes simple. In the latter control mode, the method of steering so as to eliminate the positional deviation (lateral displacement) of the aircraft with respect to the traveling path calculated by using the aircraft position by satellite positioning, and the steering by combining the positional deviation and the directional deviation are steered. There is a method, but whichever method is used, the problem of the former control mode is solved. From this, in one of the preferred embodiments of the present invention, the traveling route is set based on the reference direction at the start of automatic traveling, and the traveling control unit automatically travels the aircraft so as to follow the traveling route. To control.
 第1機体位置と第2機体位置とを取得するためのティーチング走行は、同時に収穫作業が行われていても安定した走行であることが好ましい。また、所望する基準方位を獲得するためには、第1機体位置に対する適正な機体位置で、第2機体位置を取得する必要がある。このため、第1機体位置から第2機体位置に達する際の手動走行には、正確な手動操舵が要求される。この課題を解決するため、本発明の好適な実施形態の1つでは、前記第1機体位置から前記第2機体位置に向かう前記機体の走行軌跡を生成する表示情報生成部と、前記走行軌跡を表示する表示デバイスが備えられている。この構成では、運転者は、表示デバイスに表示される走行軌跡で、走行の様子を確認することができ、正確な走行が容易となる。 It is preferable that the teaching run for acquiring the first machine position and the second machine position is a stable run even if the harvesting work is performed at the same time. Further, in order to obtain a desired reference direction, it is necessary to acquire the second aircraft position at an appropriate aircraft position with respect to the first aircraft position. Therefore, accurate manual steering is required for manual driving when reaching the position of the second aircraft from the position of the first aircraft. In order to solve this problem, in one of the preferred embodiments of the present invention, a display information generation unit that generates a traveling locus of the aircraft from the first aircraft position to the second aircraft position and the traveling locus are generated. It is equipped with a display device to display. In this configuration, the driver can confirm the state of driving on the traveling track displayed on the display device, and accurate driving is facilitated.
 表示デバイスに運転の支援情報が表示される場合、表示デバイスは、運転中に運転者によって常時チェックされるので、運転者が走行に関する指令を収穫機に与える操作入力デバイスとしても効果的である。このことから、本発明の好適な実施形態の1つでは、前記表示デバイスがタッチパネルであり、前記第1信号を生成する前記手動操作は、前記タッチパネルに表示された第1ボタンに対するタッチ操作であり、前記第2信号を生成する前記手動操作は、前記タッチパネルに表示された第2ボタンに対するタッチ操作である。 When driving support information is displayed on the display device, the display device is constantly checked by the driver during driving, so that it is also effective as an operation input device in which the driver gives a command regarding driving to the harvester. Therefore, in one of the preferred embodiments of the present invention, the display device is a touch panel, and the manual operation for generating the first signal is a touch operation for the first button displayed on the touch panel. The manual operation for generating the second signal is a touch operation for the second button displayed on the touch panel.
 衛星測位によって算出される第1機体位置と第2機体位置とを結ぶ直線で基準方位を算出する場合、衛星測位の誤差を考慮すると、第1機体位置と第2機体位置との間の距離が大きいほど方位算出の精度が高くなる。所望の基準方位算出精度と衛星測位の誤差とから、最低限必要とされる第1機体位置と第2機体位置との間の距離が推定できる。このことから、本発明の好適な実施形態の1つでは、前記第2信号が生成される条件として、前記第1機体位置から所定距離以上の走行または所定時間以上の走行が設定されている。所定距離は、所望の基準方位算出精度と衛星測位の誤差とから決定される。また、収穫作業に適した車速は、ほぼ決まっているので、所定距離を走行するための時間も同様に求めることができる。 When calculating the reference direction with a straight line connecting the first aircraft position and the second aircraft position calculated by satellite positioning, the distance between the first aircraft position and the second aircraft position is calculated in consideration of the satellite positioning error. The larger the value, the higher the accuracy of orientation calculation. From the desired reference direction calculation accuracy and the error of satellite positioning, the minimum required distance between the first aircraft position and the second aircraft position can be estimated. For this reason, in one of the preferred embodiments of the present invention, traveling for a predetermined distance or more or traveling for a predetermined time or more from the position of the first aircraft is set as a condition for generating the second signal. The predetermined distance is determined from the desired reference direction calculation accuracy and the error of satellite positioning. Further, since the vehicle speed suitable for the harvesting work is almost fixed, the time for traveling a predetermined distance can be obtained in the same manner.
 本発明による好適な実施形態の1つでは、前記第2ボタンは、前記第1機体位置から所定距離以上の走行または所定時間以上の走行前記条件が満たされた場合に前記タッチパネルに表示される。この構成により、第1機体位置が設定されてから、基準方位の算出精度が保証される条件(走行距離や走行時間)が成立した時に、第2機体位置を設定するための第2ボタンがタッチパネルに表示されるので、条件の成立前に第2機体位置を設定するといった運転者のミスが回避される。 In one of the preferred embodiments according to the present invention, the second button is displayed on the touch panel when the above-mentioned conditions are satisfied for traveling for a predetermined distance or more or traveling for a predetermined time or more from the position of the first aircraft. With this configuration, after the first aircraft position is set, when the conditions (mileage and travel time) that guarantee the calculation accuracy of the reference direction are satisfied, the second button for setting the second aircraft position is the touch panel. Since it is displayed in, the driver's mistake such as setting the position of the second aircraft before the condition is satisfied is avoided.
 第2機体位置を正しい位置で設定するために、運転者が表示デバイスに表示される走行軌跡を見ながら収穫機の走行状態を確認する場合、目安となる標識も表示デバイスに表示されると好都合である。特に、収穫機は、収穫作業地(圃場)の境界線や収穫作物の植付け条を示す線を目安として走行するので、そのような目安を具現化した線が表示デバイスに表示されると適正な基準方位を算出するための良き支援となる。このことから、本発明の好適な実施形態の1つでは、前記表示情報生成部は、収穫作業地の境界線または収穫作物の植付け条に平行な標識線を生成し、前記境界線又は前記標識線は前記走行軌跡とともに前記表示デバイスに表示される。 When the driver confirms the running state of the harvester while looking at the running locus displayed on the display device in order to set the position of the second aircraft at the correct position, it is convenient if a guide sign is also displayed on the display device. Is. In particular, the harvester runs with the boundary line of the harvesting work area (field) and the line indicating the planting line of the harvested crop as a guide, so it is appropriate if the line embodying such a guideline is displayed on the display device. It is a good support for calculating the reference orientation. From this, in one of the preferred embodiments of the present invention, the display information generation unit generates a marker line parallel to the boundary line of the harvesting work area or the planting line of the harvested crop, and the boundary line or the marker. The line is displayed on the display device together with the travel locus.
 第1機体位置を取得するための操作が、収穫作業開始時又は収穫作業開始の直後に行われると、第2機体位置を取得するための操作も収穫作業開始から早い時期に行うことができ、結果的に自動走行の開始を早めることができる。従って、本発明の好適な実施形態の1つでは、前記第1信号を生成する前記手動操作は、収穫機器による収穫動作を開始する収穫開始操作具に対する操作である。この構成により、収穫作業の開始と同時であっても、第1機体位置を取得するための操作が容易となる。 If the operation for acquiring the position of the first aircraft is performed at the start of the harvesting work or immediately after the start of the harvesting work, the operation for acquiring the position of the second aircraft can also be performed at an early stage from the start of the harvesting work. As a result, the start of automatic driving can be accelerated. Therefore, in one of the preferred embodiments of the present invention, the manual operation for generating the first signal is an operation for the harvesting start operation tool for starting the harvesting operation by the harvesting device. With this configuration, the operation for acquiring the position of the first machine body becomes easy even at the same time as the start of the harvesting work.
 本発明は、収穫機だけでなく、収穫機のための自動走行方法も対象としている。本発明による、走行装置を有する機体を備えた収穫機の自動走行方法は、衛星測位を用いて機体位置を算出する機体位置算出ステップと、手動操舵による収穫作業中の手動操作によって生成された第1信号に応答して取得した前記機体位置を第1機体位置とする第1機体位置取得ステップと、前記収穫作業中において前記第1機体位置から離れた場所での手動操作によって生成された第2信号に応答して取得した前記機体位置を第2機体位置とする第2機体位置取得ステップと、前記第1機体位置と前記第2機体位置とを結ぶ直線の方位を基準方位として算出する基準方位算出ステップと、前記基準方位、または、前記基準方位に基づいて算出された走行経路に基づいて前記機体の自動走行を制御する走行制御ステップと、を備える。本発明による自動走行方法でも、上述した収穫機での作用効果、及び実施形態例が適用可能である。 The present invention covers not only the harvester but also the automatic traveling method for the harvester. According to the present invention, the automatic traveling method of the harvester provided with the aircraft having the traveling device is generated by the aircraft position calculation step of calculating the aircraft position using satellite positioning and the manual operation during the harvesting work by manual steering. The first machine position acquisition step in which the machine position acquired in response to one signal is set as the first machine position, and the second generated by manual operation at a place away from the first machine position during the harvesting operation. A reference orientation calculated using the orientation of a straight line connecting the first aircraft position and the second aircraft position as a reference orientation and a second aircraft position acquisition step in which the aircraft position acquired in response to a signal is set as the second aircraft position. It includes a calculation step and a travel control step for controlling the automatic travel of the aircraft based on the reference orientation or the travel route calculated based on the reference orientation. Also in the automatic traveling method according to the present invention, the above-mentioned action and effect in the harvester and the embodiment can be applied.
 上述した第1課題を解決する手段として、本発明のプログラムは、走行装置を有する機体を備えた収穫機を制御するためのプログラムであって、衛星測位を用いて機体位置を算出する機体位置算出機能と、手動操舵による収穫作業中の手動操作によって生成された第1信号に応答して取得した前記機体位置を第1機体位置とする第1機体位置取得機能と、前記収穫作業中において前記第1機体位置から離れた場所での手動操作によって生成された第2信号に応答して取得した前記機体位置を第2機体位置とする第2機体位置取得機能と、前記第1機体位置と前記第2機体位置とを結ぶ直線の方位を基準方位として算出する基準方位算出機能と、前記基準方位、または、前記基準方位に基づいて算出された走行経路に基づいて前記機体の自動走行を制御する走行制御機能と、をコンピュータに実現させる As a means for solving the above-mentioned first problem, the program of the present invention is a program for controlling a harvester equipped with an airframe having a traveling device, and is an airframe position calculation for calculating an airframe position using satellite positioning. The function, the first machine position acquisition function in which the machine position acquired in response to the first signal generated by the manual operation during the harvesting work by manual steering is set as the first machine position, and the first machine position during the harvesting work. The second aircraft position acquisition function that sets the aircraft position acquired in response to the second signal generated by manual operation at a location away from the first aircraft position as the second aircraft position, and the first aircraft position and the first aircraft position. A reference orientation calculation function that calculates the orientation of a straight line connecting two aircraft positions as a reference orientation, and traveling that controls automatic travel of the aircraft based on the reference orientation or a travel route calculated based on the reference orientation. Realize the control function and the computer
 上述した第1課題を解決する手段として、本発明の記録媒体は、走行装置を有する機体を備えた収穫機を制御するためのプログラムを記録した記録媒体であって、衛星測位を用いて機体位置を算出する機体位置算出機能と、手動操舵による収穫作業中の手動操作によって生成された第1信号に応答して取得した前記機体位置を第1機体位置とする第1機体位置取得機能と、前記収穫作業中において前記第1機体位置から離れた場所での手動操作によって生成された第2信号に応答して取得した前記機体位置を第2機体位置とする第2機体位置取得機能と、前記第1機体位置と前記第2機体位置とを結ぶ直線の方位を基準方位として算出する基準方位算出機能と、前記基準方位、または、前記基準方位に基づいて算出された走行経路に基づいて前記機体の自動走行を制御する走行制御機能と、をコンピュータに実現させるプログラムを記録している。 As a means for solving the above-mentioned first problem, the recording medium of the present invention is a recording medium on which a program for controlling a harvester equipped with an aircraft having a traveling device is recorded, and the position of the aircraft is positioned by using satellite positioning. The first machine position acquisition function that sets the first machine position acquired in response to the first signal generated by the manual operation during the harvesting work by manual steering, and the above-mentioned machine position calculation function. The second machine position acquisition function that sets the machine position acquired in response to the second signal generated by the manual operation at a place away from the first machine position during the harvesting work as the second machine position, and the first The reference orientation calculation function that calculates the orientation of the straight line connecting the position of one aircraft and the position of the second aircraft as the reference orientation, and the reference orientation or the traveling route calculated based on the reference orientation of the aircraft. It records a driving control function that controls automatic driving and a program that realizes a computer.
 上述した第1課題を解決する手段として、本発明のシステムは、走行装置を有する機体を備えた収穫機を制御するためのシステムであって、衛星測位を用いて機体位置を算出する機体位置算出部と、収穫作業中において手動操作によって生成された第1信号に応答して取得した前記機体位置を第1機体位置とする第1機体位置取得部と、前記収穫作業中において前記第1機体位置から離れた場所での手動操作によって生成された第2信号に応答して取得した前記機体位置を第2機体位置とする第2機体位置取得部と、前記第1機体位置と前記第2機体位置とを結ぶ直線の方位を基準方位として算出する基準方位算出部と、前記基準方位、または、前記基準方位に基づいて算出された走行経路に基づいて前記機体の自動走行を制御する走行制御部と、を備える。 As a means for solving the above-mentioned first problem, the system of the present invention is a system for controlling a harvester equipped with an airframe having a traveling device, and is an airframe position calculation for calculating an airframe position using satellite positioning. The unit, the first aircraft position acquisition unit having the aircraft position acquired in response to the first signal generated by manual operation during the harvesting operation as the first aircraft position, and the first aircraft position during the harvesting operation. A second aircraft position acquisition unit whose second aircraft position is the aircraft position acquired in response to a second signal generated by a manual operation at a location away from, and the first aircraft position and the second aircraft position. A reference azimuth calculation unit that calculates the azimuth of the straight line connecting the two as a reference azimuth, and a travel control unit that controls the automatic travel of the aircraft based on the reference azimuth or the travel route calculated based on the reference azimuth. , Equipped with.
 上述した第2課題を解決する手段として、本発明の農作業機は、走行装置を有し前進走行と非前進走行とを行う機体と、衛星測位を用いて機体位置を算出する機体位置算出部と、手動操作によって生成された第1信号に応答して取得した前記機体位置を第1機体位置とする第1機体位置取得部と、前記前進走行を通じて、又は前記前進走行と前記非前進走行の両方を通じて前記第1機体位置から移動した場所での手動操作によって生成された第2信号に応答して取得した前記機体位置を第2機体位置とする第2機体位置取得部と、前記第1機体位置と前記第2機体位置とを結ぶ直線の方位を基準方位として算出する基準方位算出部と、前記基準方位、または、前記基準方位に基づいて算出された走行経路に基づいて前記機体の自動走行を制御する走行制御部と、を備える。 As a means for solving the above-mentioned second problem, the agricultural work machine of the present invention includes a machine having a traveling device and performing forward traveling and non-forward traveling, and an aircraft position calculation unit for calculating the aircraft position using satellite positioning. , The first aircraft position acquisition unit whose first aircraft position is the aircraft position acquired in response to the first signal generated by manual operation, and through the forward travel, or both the forward travel and the non-forward travel. A second aircraft position acquisition unit whose second aircraft position is the aircraft position acquired in response to a second signal generated by a manual operation at a location moved from the first aircraft position, and the first aircraft position. The reference orientation calculation unit that calculates the orientation of the straight line connecting the second aircraft position and the second aircraft position as the reference orientation, and the automatic traveling of the aircraft based on the reference orientation or the traveling route calculated based on the reference orientation. It is provided with a traveling control unit for controlling.
 この構成では、基準方位を算出するために必要な第1機体位置と第2機体位置とを取得するためのティーチング走行において、前進走行だけではなく、前進走行以外の非前進走行の両方を通じてなどの緊急避難的な走行状態も許容される。従って、非前進走行が生じても、第1機体位置と第2機体位置を取得する間だけ手動運転でのティーチング走行が行われると、基準方位が得られ、その後は、自動走行が可能となる。 In this configuration, in the teaching running for acquiring the first aircraft position and the second aircraft position necessary for calculating the reference direction, not only through forward running but also through both non-forward running other than forward running, etc. Emergency evacuation driving conditions are also acceptable. Therefore, even if non-forward running occurs, if the teaching running by manual operation is performed only while acquiring the position of the first machine and the position of the second machine, the reference direction is obtained, and then the automatic running becomes possible. ..
 基準方位を利用した自動操舵は、複数の制御モードで実現可能である。その一つは、基準方位を自動走行の目標方位として、自動走行の開始指令が発せられた時点から、目標方位を維持するように操舵が行われることである。他の1つは、自動走行の開始指令が発せられた時点の機体位置から基準方位で延びる走行経路が自動操舵のための目標経路として設定され、この目標経路に沿うように操舵が行われることである。前者の制御モードでは、途中でスリップなどで位置ずれが生じた場合、この位置ずれの補正ができないという問題点があるが、操舵制御のアルゴリズムが簡単となる利点がある。後者の制御モードでは、衛星測位による機体位置を用いて算出される走行経路に対する機体の位置ずれ(横ずれ)を解消するように操舵される方法と、位置ずれと方位ずれとを組み合わせて操舵される方法とがあるが、いずれ方法であっても、前者の制御モードの問題点は解消される。このことから、本発明の好適な実施形態の1つでは、自動走行開始時に前記基準方位に基づいて前記走行経路が設定され、前記走行制御部は前記走行経路に沿うように前記機体の自動走行を制御する。 Automatic steering using the reference direction can be realized in multiple control modes. One of them is that the reference direction is set as the target direction for automatic driving, and steering is performed so as to maintain the target direction from the time when the start command for automatic driving is issued. The other one is that a travel path extending in the reference direction from the aircraft position at the time when the automatic travel start command is issued is set as a target route for automatic steering, and steering is performed along this target route. Is. In the former control mode, if a position shift occurs due to slipping or the like in the middle, there is a problem that the position shift cannot be corrected, but there is an advantage that the steering control algorithm becomes simple. In the latter control mode, the method of steering so as to eliminate the positional deviation (lateral displacement) of the aircraft with respect to the traveling path calculated by using the aircraft position by satellite positioning, and the steering by combining the positional deviation and the directional deviation are steered. There is a method, but whichever method is used, the problem of the former control mode is solved. From this, in one of the preferred embodiments of the present invention, the traveling route is set based on the reference direction at the start of automatic traveling, and the traveling control unit automatically travels the aircraft so as to follow the traveling route. To control.
 本発明の好適な実施形態の1つでは、前記非前進走行には、後進走行状態又は走行停止状態あるいはその両方が含まれ、さらに前記走行停止状態にはエンジン停止状態またはエンジン駆動状態が含まれている。この構成では、ティーチング走行のため前進する機体の前方に畔から突き出した突起領域や水口などが存在していても、ティーチング走行は中止されることなしに、これらを回避するために後進を用いた回避走行を行うことができる。さらに、この回避走行において、停車やエンジン停止が伴っても、ティーチング走行は中止されないので、無駄なく、ティーチング走行が完了し、自動走行に必要な基準方位が得られる。 In one of the preferred embodiments of the present invention, the non-forward travel includes a reverse travel state and / or a reverse travel state, and the travel stop state includes an engine stop state or an engine drive state. ing. In this configuration, even if there is a protrusion area or a water outlet protruding from the shore in front of the aircraft moving forward for teaching running, the teaching running is not stopped and reverse movement is used to avoid these. Avoidance driving can be performed. Further, in this avoidance running, the teaching running is not stopped even if the vehicle is stopped or the engine is stopped, so that the teaching running is completed without waste and the reference direction required for the automatic running can be obtained.
 収穫機のような農作業機では、収穫物の詰まりなどが生じると、詰まりを取り除くために、機体の一時停止やエンジン停止などの緊急避難的な走行状態が発生する。しかしながら、このような緊急避難的な走行状態の発生にも関わらず、ティーチング走行が中止されなければ、収穫作業などの農作業を行いながらの走行も、ティーチング走行として利用することができる。このことから、本発明の好適な実施形態の1つでは、前記前進走行が作業走行であっても、あるいは前記前進走行が非作業走行であっても、前記第1機体位置取得部は前記第1機体位置を取得可能であり、前記第2機体位置取得部は前記第2機体位置を取得可能である。 In agricultural work machines such as harvesters, when the crop is clogged, an emergency evacuation running state such as a temporary stop of the machine or an engine stop occurs in order to clear the clog. However, if the teaching running is not stopped despite the occurrence of such an emergency evacuation running state, the running while performing agricultural work such as harvesting work can also be used as the teaching running. From this, in one of the preferred embodiments of the present invention, even if the forward travel is a work travel or the forward travel is a non-work travel, the first aircraft position acquisition unit is the first. The position of one machine can be acquired, and the position acquisition unit of the second machine can acquire the position of the second machine.
 衛星測位によって算出される第1機体位置と第2機体位置とを結ぶ直線で基準方位を算出する場合、衛星測位の誤差を考慮すると、第1機体位置と第2機体位置との間の距離が大きいほど方位算出の精度が高くなる。所望の基準方位算出精度と衛星測位の誤差とから、最低限必要とされる第1機体位置と第2機体位置との間の距離が推定される。このことから、本発明の好適な実施形態の1つでは、前記第2信号が生成される条件として、前記第1機体位置から所定距離以上の走行または所定時間以上の走行が設定されている。所定距離は、所望の基準方位算出精度と衛星測位の誤差とから決定される。また、刈取作業に適した車速は、ほぼ決まっているので、所定距離を走行するための時間も同様に求めることができる。 When calculating the reference direction with a straight line connecting the first aircraft position and the second aircraft position calculated by satellite positioning, the distance between the first aircraft position and the second aircraft position is calculated in consideration of the satellite positioning error. The larger the value, the higher the accuracy of orientation calculation. From the desired reference direction calculation accuracy and the error of satellite positioning, the minimum required distance between the first aircraft position and the second aircraft position is estimated. For this reason, in one of the preferred embodiments of the present invention, traveling for a predetermined distance or more or traveling for a predetermined time or more from the position of the first aircraft is set as a condition for generating the second signal. The predetermined distance is determined from the desired reference direction calculation accuracy and the error of satellite positioning. Further, since the vehicle speed suitable for the mowing work is almost fixed, the time for traveling a predetermined distance can be obtained in the same manner.
 ティーチング走行において取得される第1機体位置と第2機体位置との間の最小距離が設定され、その距離を機体の走行距離で求める場合、適切な判定のためには、当該走行距離に後進での走行距離を含ませてはならない。同様に、ティーチング走行において取得される第1機体位置と第2機体位置との間を走行するためにかかる最低時間が設定されている場合、適切な判定のためには、最低時間の算出に、停車時間を含ませてはならない。このことから、本発明の好適な実施形態の1つでは、前記所定距離として後進距離は無視され、前記所定時間として停車時間は無視される。 When the minimum distance between the first aircraft position and the second aircraft position acquired in teaching driving is set and the distance is calculated by the mileage of the aircraft, in order to make an appropriate judgment, move backward to the mileage. Do not include the mileage of. Similarly, when the minimum time required for traveling between the first aircraft position and the second aircraft position acquired in the teaching operation is set, for proper determination, the minimum time is calculated. Do not include stop time. For this reason, in one of the preferred embodiments of the present invention, the reverse distance is ignored as the predetermined distance, and the stop time is ignored as the predetermined time.
 第1機体位置を設定するための操作が、農作業開始時か農作業開始から短時間の経過後に行われると、第2機体位置を設定するための操作も農作業開始から早い時期に行うことができ、結果的に自動走行の開始を早めることができる。従って、本発明の好適な実施形態の1つでは、前記第1信号を生成する前記手動操作は、作業装置による作業動作を開始する旨の作業開始操作具に対する操作である。この構成により、農作業の開始時点でも、スムーズに第1機体位置を設定するための操作が可能となる。 If the operation for setting the position of the first aircraft is performed at the start of farm work or shortly after the start of farm work, the operation for setting the position of the second aircraft can also be performed early from the start of farm work. As a result, the start of automatic driving can be accelerated. Therefore, in one of the preferred embodiments of the present invention, the manual operation for generating the first signal is an operation for the work start operation tool for starting the work operation by the work device. With this configuration, it is possible to smoothly set the position of the first machine even at the start of farm work.
 本発明は、農作業機だけでなく、農作業機のための自動走行方法も対象としている。本発明による、走行装置を有し前進走行と非前進走行とを行う機体を備えた収穫機の自動走行方法は、衛星測位を用いて機体位置を算出する機体位置算出ステップと、手動操作によって生成された第1信号に応答して取得した前記機体位置を第1機体位置とする第1機体位置取得ステップと、前記前進走行を通じて、又は前記前進走行と前記非前進走行の両方を通じて前記第1機体位置から移動した場所での手動操作によって生成された第2信号に応答して取得した前記機体位置を第2機体位置とする第2機体位置取得ステップと、前記第1機体位置と前記第2機体位置とを結ぶ直線の方位を基準方位として算出する基準方位算出ステップと、前記基準方位、または、前記基準方位に基づいて算出された走行経路に基づいて前記機体の自動走行を制御する走行制御ステップと、を備える。本発明による自動走行方法でも、上述した農作業機での作用効果、及び実施形態例が適用可能である。 The present invention is intended not only for agricultural work machines but also for automatic traveling methods for agricultural work machines. According to the present invention, the automatic traveling method of a harvester having a traveling device and having an aircraft that performs forward traveling and non-forward traveling is generated by a machine position calculation step for calculating the machine position using satellite positioning and a manual operation. The first aircraft is the first aircraft position acquisition step in which the aircraft position acquired in response to the first signal is set as the first aircraft position, and through the forward travel, or through both the forward travel and the non-forward travel. The second aircraft position acquisition step with the aircraft position acquired in response to the second signal generated by the manual operation at the place moved from the position as the second aircraft position, the first aircraft position and the second aircraft A reference orientation calculation step that calculates the orientation of a straight line connecting positions as a reference orientation, and a travel control step that controls automatic travel of the aircraft based on the reference orientation or a travel route calculated based on the reference orientation. And. Also in the automatic traveling method according to the present invention, the above-mentioned action and effect on the agricultural work machine and the embodiment can be applied.
 上述した第2課題を解決する手段として、本発明のプログラムは、走行装置を有し前進走行と非前進走行とを行う機体を備えた農作業機を制御するためのプログラムであって、衛星測位を用いて機体位置を算出する機体位置算出機能と、手動操作によって生成された第1信号に応答して取得した前記機体位置を第1機体位置とする第1機体位置取得機能と、前記前進走行を通じて、又は前記前進走行と前記非前進走行の両方を通じて前記第1機体位置から移動した場所での手動操作によって生成された第2信号に応答して取得した前記機体位置を第2機体位置とする第2機体位置取得機能と、前記第1機体位置と前記第2機体位置とを結ぶ直線の方位を基準方位として算出する基準方位算出機能と、前記基準方位、または、前記基準方位に基づいて算出された走行経路に基づいて前記機体の自動走行を制御する走行制御機能と、をコンピュータに実現させる。 As a means for solving the above-mentioned second problem, the program of the present invention is a program for controlling an agricultural work machine having a traveling device and having an aircraft that performs forward traveling and non-forward traveling, and performs satellite positioning. Through the machine position calculation function that calculates the machine position using the machine, the first machine position acquisition function that sets the machine position acquired in response to the first signal generated by manual operation as the first machine position, and the forward traveling. Or, the second aircraft position is the aircraft position acquired in response to the second signal generated by the manual operation at the place moved from the first aircraft position through both the forward traveling and the non-forward traveling. It is calculated based on the two aircraft position acquisition function, the reference orientation calculation function that calculates the orientation of the straight line connecting the first aircraft position and the second aircraft position as the reference orientation, and the reference orientation or the reference orientation. The computer realizes a travel control function that controls the automatic travel of the aircraft based on the travel route.
 上述した第2課題を解決する手段として、本発明の記録媒体は、走行装置を有し前進走行と非前進走行とを行う機体を備えた農作業機を制御するためのプログラムを記録した記録媒体であって、衛星測位を用いて機体位置を算出する機体位置算出機能と、手動操作によって生成された第1信号に応答して取得した前記機体位置を第1機体位置とする第1機体位置取得機能と、前記前進走行を通じて、又は前記前進走行と前記非前進走行の両方を通じて前記第1機体位置から移動した場所での手動操作によって生成された第2信号に応答して取得した前記機体位置を第2機体位置とする第2機体位置取得機能と、前記第1機体位置と前記第2機体位置とを結ぶ直線の方位を基準方位として算出する基準方位算出機能と、前記基準方位、または、前記基準方位に基づいて算出された走行経路に基づいて前記機体の自動走行を制御する走行制御機能と、をコンピュータに実現させるプログラムを記録している。 As a means for solving the above-mentioned second problem, the recording medium of the present invention is a recording medium that records a program for controlling an agricultural work machine having a traveling device and having an aircraft that performs forward traveling and non-forward traveling. There is an aircraft position calculation function that calculates the aircraft position using satellite positioning, and a first aircraft position acquisition function that uses the aircraft position acquired in response to the first signal generated by manual operation as the first aircraft position. And, the aircraft position acquired in response to the second signal generated by the manual operation at the place moved from the first aircraft position through the forward travel or both the forward travel and the non-forward travel. The second aircraft position acquisition function, which is the position of two aircraft, the reference orientation calculation function, which calculates the orientation of the straight line connecting the first aircraft position and the second aircraft position as the reference orientation, and the reference orientation, or the reference. A program is recorded to realize a travel control function for controlling the automatic travel of the aircraft based on a travel route calculated based on the orientation, and a computer.
 上述した第2課題を解決する手段として、本発明のシステムは、走行装置を有し前進走行と非前進走行とを行う機体を備えた農作業機を制御するためのシステムであって、衛星測位を用いて機体位置を算出する機体位置算出部と、手動操作によって生成された第1信号に応答して取得した前記機体位置を第1機体位置とする第1機体位置取得部と、前記前進走行を通じて、又は前記前進走行と前記非前進走行の両方を通じて前記第1機体位置から移動した場所での手動操作によって生成された第2信号に応答して取得した前記機体位置を第2機体位置とする第2機体位置取得部と、前記第1機体位置と前記第2機体位置とを結ぶ直線の方位を基準方位として算出する基準方位算出部と、前記基準方位、または、前記基準方位に基づいて算出された走行経路に基づいて前記機体の自動走行を制御する走行制御部と、を備える。 As a means for solving the above-mentioned second problem, the system of the present invention is a system for controlling an agricultural work machine having a traveling device and having an aircraft that performs forward traveling and non-forward traveling, and performs satellite positioning. Through the machine position calculation unit that calculates the machine position using the machine, the first machine position acquisition part that uses the machine position acquired in response to the first signal generated by manual operation as the first machine position, and the forward traveling. Or, the second aircraft position is the aircraft position acquired in response to the second signal generated by the manual operation at the place moved from the first aircraft position through both the forward traveling and the non-forward traveling. Calculated based on the reference orientation or the reference orientation, the two aircraft position acquisition unit, the reference orientation calculation unit that calculates the orientation of the straight line connecting the first aircraft position and the second aircraft position as the reference orientation, and the reference orientation. It is provided with a travel control unit that controls the automatic travel of the aircraft based on the travel route.
 上述した第3課題を解決する手段として、本発明の農作業機は、操向可能な走行装置を有する機体と、衛星測位を用いて機体位置を算出する機体位置算出部と、作業走行のための複数の基準方位を記憶する記憶部と、前記複数の基準方位のうちの一つを選択する選択部と、前記基準方位、または、前記基準方位に基づいて設定された走行目標ラインに沿うように、前記機体位置に基づいて前記走行装置を自動的に操向制御する操向制御部と、が備えられていることを特徴とする。 As a means for solving the above-mentioned third problem, the agricultural work machine of the present invention has an airframe having a maneuverable traveling device, an airframe position calculation unit for calculating an airframe position using satellite positioning, and a work traveling machine. A storage unit that stores a plurality of reference directions, a selection unit that selects one of the plurality of reference directions, and the reference direction or a traveling target line set based on the reference direction. It is characterized by being provided with a steering control unit that automatically controls steering of the traveling device based on the position of the machine.
 本発明によると、記憶部が複数の基準方位を記憶し、選択部が複数の基準方位の一つを選択可能である。このため、複数の基準方位が機体の走行状態に応じて臨機応変に使い分けられる構成が可能となり、操向制御部は複数の基準方位のうちの選択された基準方位に応じて走行装置を操向制御できる。つまり、選択部が複数の基準方位から必要な基準方位を選択し、操向制御部が選択された基準方位に基づいて操向制御を可能となる。これにより、圃場の形状等に応じて複数の方位に沿って自動操向制御が可能な農作業機が実現される。 According to the present invention, the storage unit stores a plurality of reference directions, and the selection unit can select one of the plurality of reference directions. Therefore, it is possible to configure a plurality of reference directions to be flexibly used according to the traveling state of the aircraft, and the steering control unit steers the traveling device according to the selected reference direction among the plurality of reference directions. Can be controlled. That is, the selection unit selects a necessary reference direction from a plurality of reference directions, and the steering control unit can control the steering based on the selected reference direction. As a result, an agricultural work machine capable of automatic steering control along a plurality of directions according to the shape of the field and the like is realized.
 本発明において、圃場の走行中に算出された複数の前記機体位置に基づいて前記基準方位を算出する基準方位算出部が備えられ、前記基準方位算出部は、圃場の外周領域における第一地点と第二地点とに亘る二点間走行で前記第一地点と前記第二地点との夫々で算出された前記機体位置に基づいて前記複数の基準方位の一つとして第一基準方位を算出し、前記第一地点と前記第二地点とに亘る走行後に、前記外周領域において前記第一地点と前記第二地点との何れとも異なる第三地点と第四地点とに亘る二点間走行で前記第三地点と前記第四地点との夫々で算出された前記機体位置に基づいて前記複数の基準方位の一つとして第二基準方位を算出すると好適である。 In the present invention, a reference direction calculation unit for calculating the reference direction based on a plurality of the aircraft positions calculated while traveling in the field is provided, and the reference direction calculation unit is a first point in the outer peripheral region of the field. The first reference direction is calculated as one of the plurality of reference directions based on the aircraft position calculated at each of the first point and the second point in the two-point running over the second point. After traveling over the first point and the second point, the first point is traveled between two points in the outer peripheral region over a third point and a fourth point different from both the first point and the second point. It is preferable to calculate the second reference direction as one of the plurality of reference directions based on the aircraft positions calculated at each of the three points and the fourth point.
 本構成であれば、圃場の外周領域において異なる領域ごとに二点間走行を繰り返すことによって、第一基準方位と第二基準方位との夫々が算出される。このため、例えば圃場の外周領域を走行する過程で、複数の基準方位の算出が可能となる。 With this configuration, the first reference direction and the second reference direction are calculated by repeating the running between two points for each different area in the outer peripheral area of the field. Therefore, for example, in the process of traveling in the outer peripheral region of the field, it is possible to calculate a plurality of reference directions.
 本発明において、圃場の走行中に算出された複数の前記機体位置に基づいて前記基準方位を算出する基準方位算出部が備えられ、前記基準方位算出部は、算出済みの前記基準方位から所定の方位だけ方位ずれした前記基準方位を算出可能に構成されていると好適である。 In the present invention, a reference direction calculation unit for calculating the reference direction based on a plurality of the aircraft positions calculated while traveling in the field is provided, and the reference direction calculation unit is predetermined from the calculated reference direction. It is preferable that the reference azimuth, which is deviated only by the azimuth, can be calculated.
 本構成であれば、算出済みの基準方位に基づいて異なる方位を有する新たな基準方位の算出が可能となる。このため、基準方位を算出するために機体を走行させる手間を省くことが可能となり、複数の基準方位の算出が容易になる。 With this configuration, it is possible to calculate a new reference direction having a different direction based on the calculated reference direction. Therefore, it is possible to save the trouble of running the aircraft in order to calculate the reference direction, and it becomes easy to calculate a plurality of reference directions.
 本発明において、前記所定の方位は、90度であると好適である。 In the present invention, the predetermined orientation is preferably 90 degrees.
 圃場の形状は矩形である場合が多いため、本構成であれば、圃場の矩形形状に沿った基準方位の算出が容易になる。 Since the shape of the field is often rectangular, this configuration makes it easy to calculate the reference orientation along the rectangular shape of the field.
 本発明において、人為操作に基づいて方位ずれ量を設定可能な方位ずれ設定部が備えられ、前記所定の方位は、前記人為操作によって設定される前記方位ずれ量であると好適である。 In the present invention, it is preferable that the directional deviation setting unit capable of setting the directional deviation amount based on the artificial operation is provided, and the predetermined azimuth is the directional deviation amount set by the artificial operation.
 本構成であれば、例えば農作業機の搭乗者や管理者が方位ずれ設定部を操作して所望の方位ずれ量を設定することによって、算出済みの基準方位から所望の方位だけ方位ずれした基準方位の算出が可能となる。 In this configuration, for example, the passenger or the manager of the agricultural work machine operates the directional deviation setting unit to set the desired directional deviation amount, so that the reference azimuth deviates from the calculated reference azimuth by the desired azimuth. Can be calculated.
 本発明において、圃場の走行中に算出された複数の前記機体位置に基づいて前記基準方位を算出する基準方位算出部が備えられ、前記基準方位算出部は、圃場の外周領域における人為操作での周回走行中に算出された前記機体位置に基づいて、圃場の外周辺のうち少なくとも一辺の延びる方位に沿う前記複数の基準方位を算出すると好適である。 In the present invention, a reference direction calculation unit for calculating the reference direction based on a plurality of the aircraft positions calculated while traveling in the field is provided, and the reference direction calculation unit is manually operated in the outer peripheral region of the field. It is preferable to calculate the plurality of reference directions along the extending direction of at least one side of the outer periphery of the field based on the aircraft position calculated during the orbiting.
 本構成であれば、圃場の外周領域を周回走行する過程で、複数の基準方位が算出されるため、農作業機の搭乗者に負担が掛かることなく、基準方位が容易に算出される。また、基準方位が、圃場の外周辺のうち少なくとも一辺の延びる方位に沿うため、走行目標ラインが当該一辺に沿って延びる構成が可能である。このことから、操向制御部による操向制御が当該一辺に沿うものとなって、好適な作業走行が実現される。 With this configuration, since a plurality of reference directions are calculated in the process of traveling around the outer peripheral area of the field, the reference directions can be easily calculated without imposing a burden on the passengers of the agricultural work machine. Further, since the reference direction is along the direction in which at least one side of the outer periphery of the field extends, the traveling target line can be configured to extend along the one side. From this, the steering control by the steering control unit is along the one side, and suitable work running is realized.
 本発明において、前記機体の方位を算出する機体方位算出部が備えられ、前記記憶部に、方位の夫々異なる前記複数の基準方位が記憶され、前記選択部は、算出された前記機体の方位に基づいて前記複数の基準方位のうちの一つを選択すると好適である。 In the present invention, the aircraft orientation calculation unit for calculating the orientation of the aircraft is provided, the plurality of reference orientations having different orientations are stored in the storage unit, and the selection unit is set to the calculated orientation of the aircraft. It is preferable to select one of the plurality of reference orientations based on the above.
 本構成であれば、機体方位算出部によって機体の方位が算出され、機体の方位に適した基準方位が自動的に選択される。このため、機体の方位に基づく基準方位の選択が行われない構成と比較して、搭乗者等がわざわざ基準方位を選択する必要がなく、基準方位の選択が円滑になる。 With this configuration, the aircraft orientation calculation unit calculates the aircraft orientation, and the reference orientation suitable for the aircraft orientation is automatically selected. Therefore, it is not necessary for the passenger or the like to bother to select the reference direction as compared with the configuration in which the reference direction is not selected based on the direction of the aircraft, and the selection of the reference direction becomes smooth.
 本発明において、前記操向制御部は、所定の条件が満たされており、かつ、前記選択部によって選択された前記基準方位に沿って前記機体が所定距離または所定時間に亘って直進したと判定した場合、前記走行装置を自動的に操向制御可能な状態となると好適である。 In the present invention, the steering control unit determines that the predetermined conditions are satisfied and that the aircraft has traveled straight for a predetermined distance or a predetermined time along the reference direction selected by the selection unit. In this case, it is preferable that the traveling device can be automatically steered and controlled.
 農作業機の搭乗者が手動操舵で機体を直進させた状態で、操向制御部による操向制御が開始されると、操向制御部は、走行装置の操向量を微調整するだけで安定的に操向制御を実行できる。本構成であれば、機体が基準方位に沿って所定距離または所定時間に亘って直進した後に操向制御部による操向制御が開始されるため、安定的な直進走行が可能となる。また、本構成であれば、所定の条件が満たされた状態で操向制御部による操向制御が開始されるため、操向制御が適切な状況下で行われる。 When the steering control by the steering control unit is started while the passenger of the agricultural work machine is manually steering the aircraft to go straight, the steering control unit is stable only by finely adjusting the steering amount of the traveling device. Steering control can be executed. With this configuration, since the steering control by the steering control unit is started after the aircraft has traveled straight along the reference direction for a predetermined distance or a predetermined time, stable straight traveling is possible. Further, in the present configuration, since the steering control by the steering control unit is started in a state where a predetermined condition is satisfied, the steering control is performed under appropriate conditions.
 本発明において、前記所定の条件に、作業装置への動力伝達のためのクラッチが入状態となっていることが含まれると好適である。また、本発明において、前記所定の条件に、作業装置が作業位置に位置していることが含まれると好適である。 In the present invention, it is preferable that the predetermined conditions include that the clutch for power transmission to the working device is engaged. Further, in the present invention, it is preferable that the predetermined conditions include that the working device is located at the working position.
 本構成によって、自動的な操向制御に基づく作業走行が適切な状況で行われる。 With this configuration, work running based on automatic steering control is performed in an appropriate situation.
 本発明において、前記選択部によって選択された前記基準方位を示す方位指標を表示可能な方位表示部が備えられていると好適である。 In the present invention, it is preferable that an orientation display unit capable of displaying an orientation index indicating the reference orientation selected by the selection unit is provided.
 本構成であれば、農作業機の搭乗者や管理者は、複数の基準方位のうち選択部によって選択された基準方位を方位表示部で容易に把握できる。 With this configuration, the passenger or manager of the agricultural work machine can easily grasp the reference direction selected by the selection unit from the plurality of reference directions on the direction display unit.
 本発明において、前記方位表示部は、前記走行装置が人為的に操向制御されている場合と、前記走行装置が自動的に操向制御されている場合と、で前記方位指標の表示態様を変更すると好適である。 In the present invention, the directional display unit determines the display mode of the directional index depending on whether the traveling device is artificially steered or controlled or the traveling device is automatically steered. It is preferable to change it.
 本構成であれば、農作業機の搭乗者や管理者は、操向制御部による操向制御が行われているかどうかを、方位指標の表示態様に基づいて容易に把握できる。 With this configuration, the passenger or manager of the agricultural work machine can easily grasp whether or not the steering control is performed by the steering control unit based on the display mode of the directional index.
 上述した第3課題を解決する手段として、本発明のシステムは、操向可能な走行装置を有する機体を備える農作業機を制御するシステムであって、衛星測位を用いて前記農作業機の機体位置を算出する機体位置算出部と、作業走行のための複数の基準方位を記憶可能な記憶部と、前記複数の基準方位のうちの一つを選択する選択部と、選択された前記基準方位、または、選択された前記基準方位に基づいて設定された走行目標ラインに沿うように、前記機体位置に基づいて前記走行装置を自動的に操向制御する操向制御部と、が備えられている。 As a means for solving the above-mentioned third problem, the system of the present invention is a system for controlling an agricultural work machine equipped with an aircraft having a maneuverable traveling device, and uses satellite positioning to determine the position of the agricultural work machine. An aircraft position calculation unit to be calculated, a storage unit capable of storing a plurality of reference directions for work driving, a selection unit for selecting one of the plurality of reference directions, the selected reference direction, or the selected reference direction. , A steering control unit that automatically steers and controls the traveling device based on the position of the aircraft is provided so as to follow a traveling target line set based on the selected reference direction.
 上述した第3課題を解決する手段として、本発明のプログラムは、操向可能な走行装置を有する機体を備える農作業機を制御するためのプログラムであって、衛星測位を用いて前記農作業機の機体位置を算出する機体位置算出機能と、作業走行のための複数の基準方位をメモリに記憶させる記憶機能と、前記複数の基準方位のうちの一つを選択する選択機能と、選択された前記基準方位、または、選択された前記基準方位に基づいて設定された走行目標ラインに沿うように、前記機体位置に基づいて前記走行装置を自動的に操向制御する操向制御機能と、をコンピュータに実現させる。 As a means for solving the above-mentioned third problem, the program of the present invention is a program for controlling an agricultural work machine equipped with an airframe having a maneuverable traveling device, and is a program for controlling the airframe of the agricultural work machine by using satellite positioning. The aircraft position calculation function for calculating the position, the storage function for storing a plurality of reference directions for work driving in the memory, the selection function for selecting one of the plurality of reference directions, and the selected reference. The computer has a steering control function that automatically steers the traveling device based on the position of the aircraft so as to follow the orientation or the traveling target line set based on the selected reference orientation. make it happen.
 上述した第3課題を解決する手段として、本発明の記録媒体は、操向可能な走行装置を有する機体を備える農作業機を制御するためのプログラムを記録した記録媒体であって、衛星測位を用いて前記農作業機の機体位置を算出する機体位置算出機能と、作業走行のための複数の基準方位をメモリに記憶させる記憶機能と、前記複数の基準方位のうちの一つを選択する選択機能と、選択された前記基準方位、または、選択された前記基準方位に基づいて設定された走行目標ラインに沿うように、前記機体位置に基づいて前記走行装置を自動的に操向制御する操向制御機能と、をコンピュータに実現させるプログラムを記録している。 As a means for solving the above-mentioned third problem, the recording medium of the present invention is a recording medium on which a program for controlling an agricultural work machine including an airframe having a maneuverable traveling device is recorded, and satellite positioning is used. A machine position calculation function for calculating the machine position of the agricultural work machine, a storage function for storing a plurality of reference directions for work driving in a memory, and a selection function for selecting one of the plurality of reference directions. Steering control that automatically steers the traveling device based on the aircraft position so as to follow the selected reference directional direction or the traveling target line set based on the selected reference azimuth. It records the functions and the programs that realize the functions on the computer.
 上述した第3課題を解決する手段として、本発明の方法は、操向可能な走行装置を有する機体を備える農作業機を制御するための方法であって、衛星測位を用いて前記農作業機の機体位置を算出する機体位置算出ステップと、作業走行のための複数の基準方位をメモリに記憶させる記憶ステップと、前記複数の基準方位のうちの一つを選択する選択ステップと、選択された前記基準方位、または、選択された前記基準方位に基づいて設定された走行目標ラインに沿うように、前記機体位置に基づいて前記走行装置を自動的に操向制御する操向制御ステップと、を含む。 As a means for solving the above-mentioned third problem, the method of the present invention is a method for controlling an agricultural work machine equipped with an airframe having a maneuverable traveling device, and uses satellite positioning to control the airframe of the agricultural work machine. An aircraft position calculation step for calculating a position, a storage step for storing a plurality of reference directions for work driving in a memory, a selection step for selecting one of the plurality of reference directions, and the selected reference. It includes a steering control step that automatically steers and controls the traveling device based on the aircraft position so as to follow the orientation or the traveling target line set based on the selected reference orientation.
 上述した第4課題を解決する手段として、本発明の農作業車のための自動操舵管理システムは、衛星測位を用いて取得された前記農作業車の機体位置である第1機体位置と前記第1機体位置から離れた場所で前記衛星測位を用いて取得された第2機体位置との組み合わせ、及び前記第1機体位置と前記第2機体位置とを結ぶ直線の方位である基準方位のうち少なくとも一方を基準情報として管理する基準情報管理部と、前記基準情報から得られる前記基準方位、または、前記基準方位に基づいて算出された走行経路に基づいて前記農作業車の自動走行を制御する走行制御部に、前記基準情報管理部から読み出された前記基準情報を送信する基準情報送信部と、を備える。 As a means for solving the above-mentioned fourth problem, the automatic steering management system for the agricultural work vehicle of the present invention has the first aircraft position and the first aircraft, which are the aircraft positions of the agricultural work vehicle acquired by using satellite positioning. At least one of the combination with the second aircraft position acquired by using the satellite positioning at a place away from the position and the reference orientation which is the orientation of the straight line connecting the first aircraft position and the second aircraft position. The reference information management unit that manages as reference information and the travel control unit that controls the automatic travel of the agricultural work vehicle based on the reference orientation obtained from the reference information or the travel route calculated based on the reference orientation. , A reference information transmission unit for transmitting the reference information read from the reference information management unit.
 この自動操舵管理システムでは、圃場におけるティーチング走行を通じて取得される第1機体位置と第2機体位置との組み合わせ、または第1機体位置と第2機体位置とを結ぶ直線の方位である基準方位は、基準情報として基準情報管理部で管理される。第1機体位置と第2機体位置とから基準方位は算出できるので、基準情報管理部で管理されるのは、第1機体位置と第2機体位置の組み合わせだけ、又はその組み合わせから算出された基準方位だけでもよいし、その両方が管理されてもよい。そのような基準情報が基準情報管理部で管理され、農作業車の走行制御部に送られる。走行制御部は、基準情報に基づいて自動操舵制御を行う。例えば、この圃場において、複数の農作業車が、ほぼ同時に、または時間的(季節的)に間隔を開けて、自動走行を行う場合には、基準情報管理部で管理されている同じ基準情報が自動操舵のために用いられる。 In this automatic steering management system, the reference orientation, which is the combination of the first aircraft position and the second aircraft position acquired through teaching running in the field, or the orientation of the straight line connecting the first aircraft position and the second aircraft position, is set. It is managed by the standard information management department as standard information. Since the reference direction can be calculated from the first aircraft position and the second aircraft position, the reference information management unit manages only the combination of the first aircraft position and the second aircraft position, or the reference calculated from the combination. Only the orientation may be used, or both may be managed. Such standard information is managed by the standard information management unit and sent to the travel control unit of the agricultural work vehicle. The travel control unit performs automatic steering control based on the reference information. For example, in this field, when a plurality of agricultural work vehicles automatically run at almost the same time or at intervals of time (seasonal), the same standard information managed by the standard information management department is automatically used. Used for steering.
 基準方位を利用した自動操舵は、複数の制御モードで実現可能である。その一つは、基準方位を自動走行の目標方位として、自動走行の開始指令が発せられた時点から、目標方位を維持するように操舵が行われることである。他の1つは、自動走行の開始指令が発せられた時点の機体位置から基準方位で延びる走行経路が自動操舵のための目標経路として設定され、この目標経路に沿うように操舵が行われることである。前者の制御モードでは、途中でスリップなどによって位置ずれが生じた場合、この位置ずれの補正ができないという問題点があるが、操舵制御のアルゴリズムが簡単となる利点がある。後者の制御モードでは、衛星測位による機体位置を用いて算出される走行経路に対する機体の位置ずれ(横ずれ)を解消するように操舵される方法と、位置ずれと方位ずれとを組み合わせて操舵される方法とがある。いずれ方法であっても、前者の制御モードの問題点は解消される。このことから、本発明の好適な実施形態の1つでは、自動操舵開始時に前記基準方位に基づいて前記走行経路が設定され、前記走行制御部は前記走行経路に沿うように前記機体の自動走行を制御する。 Automatic steering using the reference direction can be realized in multiple control modes. One of them is that the reference direction is set as the target direction for automatic driving, and steering is performed so as to maintain the target direction from the time when the start command for automatic driving is issued. The other one is that a travel path extending in the reference direction from the aircraft position at the time when the automatic travel start command is issued is set as a target route for automatic steering, and steering is performed along this target route. Is. In the former control mode, if a position shift occurs due to slip or the like in the middle, there is a problem that the position shift cannot be corrected, but there is an advantage that the steering control algorithm becomes simple. In the latter control mode, the method of steering so as to eliminate the positional deviation (lateral displacement) of the aircraft with respect to the traveling path calculated by using the aircraft position by satellite positioning, and the steering by combining the positional deviation and the directional deviation are steered. There is a method. Either method solves the problem of the former control mode. From this, in one of the preferred embodiments of the present invention, the travel path is set based on the reference direction at the start of automatic steering, and the travel control unit automatically travels the aircraft so as to follow the travel path. To control.
 基準情報として第1機体位置と第2機体位置との組み合わせが基準情報管理部で管理されていると、この組み合わせから、第1機体位置及び第2機体位置の地図上の位置、つまり圃場での位置が把握できるという利点が得られる。このことから、本発明の好適な実施形態の1つでは、前記基準情報管理部は、前記第1機体位置と前記第2機体位置とを前記基準情報として受け取って管理する。 If the combination of the 1st aircraft position and the 2nd aircraft position is managed by the reference information management unit as the reference information, the positions on the map of the 1st aircraft position and the 2nd aircraft position, that is, in the field, can be obtained from this combination. The advantage of being able to grasp the position is obtained. Therefore, in one of the preferred embodiments of the present invention, the reference information management unit receives and manages the position of the first machine and the position of the second machine as the reference information.
 基準情報管理部で第1機体位置と第2機体位置との組み合わせだけが管理されている場合、自動操舵を開始するためには、第1機体位置と第2機体位置とを結ぶ線の方位(基準方位)を算出する必要がある。自動操舵を開始するごとに基準方位を算出するのは処理の無駄となるので、算出された基準方位が基準情報管理部で管理されることが好ましい。基準情報管理部での基準方位の管理の1つの形態では、基準情報管理部は、前記第1機体位置と前記第2機体位置とから前記基準方位を算出して管理する。他の1つの形態では、前記基準情報管理部は、前記第1機体位置と前記第2機体位置とから算出された前記基準方位を前記基準情報として受け取って管理する。つまり、第2機体位置を取得した段階で、基準方位が算出され、基準情報管理部に与えられる。 When only the combination of the 1st aircraft position and the 2nd aircraft position is managed by the reference information management unit, in order to start automatic steering, the direction of the line connecting the 1st aircraft position and the 2nd aircraft position ( It is necessary to calculate the reference direction). Since it is a waste of processing to calculate the reference direction each time the automatic steering is started, it is preferable that the calculated reference direction is managed by the reference information management unit. In one form of managing the reference direction in the reference information management unit, the reference information management unit calculates and manages the reference direction from the position of the first machine and the position of the second machine. In another aspect, the reference information management unit receives and manages the reference direction calculated from the first aircraft position and the second aircraft position as the reference information. That is, at the stage when the position of the second aircraft is acquired, the reference direction is calculated and given to the reference information management unit.
 農繁期では、農作業車は、多くの圃場を掛け持ちで農作業を行う。また、1つの圃場に複数台の農作業車が投入される場合もある。各圃場は、異なる形状を有するので、基準情報の内容も異なったものとなる。従って、農作業車が、各圃場で自動走行を行う場合には、圃場毎に得られた基準情報を再利用することが好ましい。このことから、本発明の好適な実施形態の1つでは、前記基準情報管理部は、前記基準情報を前記農作業車が作業を行う圃場毎に管理する。この構成により農作業車は、基準情報管理部に基準情報が管理されている圃場における自動走行では、ティーチング走行を行うことなしに、その基準情報を用いた自動操舵が可能となる。 During the farming season, farming vehicles carry out farming work in many fields. In addition, a plurality of farm work vehicles may be put into one field. Since each field has a different shape, the content of the reference information is also different. Therefore, when the farm work vehicle automatically travels in each field, it is preferable to reuse the reference information obtained for each field. For this reason, in one of the preferred embodiments of the present invention, the reference information management unit manages the reference information for each field in which the farm work vehicle works. With this configuration, the farm work vehicle can be automatically steered using the reference information in the field where the reference information is managed by the reference information management unit, without performing the teaching run.
 地域に分布しているそれぞれの圃場において、複数の農作業車が、同時に、または時間的(季節的に)間隔を開けて、農作業が行われる。その農作業が効率的にかつ運転者の負担を軽減しながら行われるためには、自動操舵を用いた自動走行が必要となる。その際、各圃場で得られた基準情報は、多くの農作業車によって共通的に利用されることが好ましい。このことから、本発明の好適な実施形態の1つでは、前記基準情報管理部及び前記基準情報送信部は、前記農作業車とデータ通信回線を介して接続可能な管理コンピュータに備えられている。これにより、多くの圃場で得られた基準情報が多くの農作業車に共有される。 In each field distributed in the area, multiple farm work vehicles perform farm work at the same time or at intervals of time (seasonal). In order for the farm work to be carried out efficiently and while reducing the burden on the driver, automatic driving using automatic steering is required. At that time, it is preferable that the standard information obtained in each field is commonly used by many agricultural work vehicles. For this reason, in one of the preferred embodiments of the present invention, the reference information management unit and the reference information transmission unit are provided in a management computer that can be connected to the farm work vehicle via a data communication line. As a result, the standard information obtained in many fields is shared with many agricultural work vehicles.
 もちろん、本発明の自動操舵管理システムは、管理コンピュータを用いた大規模なシステムではなく、複数の農作業車の間でのデータ交換通信を利用した小規模なシステムとして構築することも可能である。この場合には、中心となる農作業車にこの自動操舵管理システムを構築してもよいし、全ての農作業車にこのこの自動操舵管理システムを構築し、選択して特定の自動操舵管理システムを利用してもよい。このことから、本発明の好適な実施形態の1つでは、前記農作業車には、少なくとも第1農作業車と第2農作業車とが含まれており、前記第1農作業車と前記第2農作業車の少なくとも一方に前記基準情報管理部及び前記基準情報送信部が備えられている。ここでの第2農作業車は、第1農作業車と協調して同一圃場に投入される複数の農作業車を総称しており、第2農作業車は少なくとも1台の農作業車を意味している。 Of course, the automatic steering management system of the present invention can be constructed as a small-scale system using data exchange communication between a plurality of agricultural work vehicles, instead of a large-scale system using a management computer. In this case, this automatic steering management system may be constructed in the main agricultural work vehicle, or this automatic steering management system may be constructed in all agricultural work vehicles, and a specific automatic steering management system may be selected and used. You may. From this, in one of the preferred embodiments of the present invention, the agricultural work vehicle includes at least a first agricultural work vehicle and a second agricultural work vehicle, and the first agricultural work vehicle and the second agricultural work vehicle. The reference information management unit and the reference information transmission unit are provided on at least one of the above. The second agricultural work vehicle here is a general term for a plurality of agricultural work vehicles that are put into the same field in cooperation with the first agricultural work vehicle, and the second agricultural work vehicle means at least one agricultural work vehicle.
 1つの圃場に対して、複数の農作業車が協調して農作業を行う場合には、マスタとなる先行農作業車が、まずティーチング走行を行なって、基準情報を求め、自動走行を行い、その後に、残りの農作業車は、スレイブとなる後続農作業車として、先行農作業車から受け取った基準情報を用いて、自動走行を行うことができる。この場合、後続農作業車はティーチング走行を行う必要がなく、ティーチング走行によって得られた基準情報を管理する必要もないので、制御系が簡単となる。このことから、本発明の好適な実施形態の1つでは、前記農作業車には、同じ圃場で先に作業を行う先行農作業車と前記先行農作業車に遅れて作業を行う後続農作業車とが含まれており、前記先行農作業車による前記基準情報が前記基準情報管理部で管理されたことが前記後続農作業車に通知される。 When a plurality of farm work vehicles cooperate to carry out farm work in one field, the preceding farm work vehicle, which is the master, first performs teaching driving, obtains standard information, performs automatic driving, and then performs automatic driving. The remaining farm work vehicles can be automatically driven by using the reference information received from the preceding farm work vehicle as the follow-on farm work vehicle to be a slave. In this case, the following agricultural work vehicle does not need to perform teaching running, and it is not necessary to manage the reference information obtained by teaching running, so that the control system becomes simple. Therefore, in one of the preferred embodiments of the present invention, the agricultural work vehicle includes a preceding agricultural work vehicle that performs work first in the same field and a succeeding agricultural work vehicle that performs work behind the preceding agricultural work vehicle. It is notified to the succeeding farm work vehicle that the standard information by the preceding farm work vehicle is managed by the standard information management unit.
 基準方位を算出するためには、走行中に第1機体位置を取得し、さらなる所定距離の走行後に第2機体位置を取得する必要がある。車体の直進走行の検知により自動的に第1機体位置を取得し、その後の所定距離の後に自動的に第2機体位置を取得することも可能である。しかしながら、取得した第1機体位置と第2機体位置とから基準方位が算出され、以後の自動操舵の制御目標として用いられるので、適切な基準方位を得ることが、自動走行のための重要となる。このことから、運転者が機体位置や機体の状態を確認しながら、第1機体位置と第2機体位置を手動で取得することが好ましい。このことから、本発明の好適な実施形態の1つでは、前記第1機体位置は、前記農作業車の運転者による手動操作によって生成される第1信号に応答して取得され、前記第2機体位置は、前記第1機体位置から離れた場所での、前記農作業車の運転者による手動操作によって生成された第2信号に応答して取得される。 In order to calculate the reference direction, it is necessary to acquire the position of the first aircraft while traveling and to acquire the position of the second aircraft after traveling a further predetermined distance. It is also possible to automatically acquire the position of the first aircraft by detecting the straight running of the vehicle body, and automatically acquire the position of the second aircraft after a predetermined distance thereafter. However, since the reference direction is calculated from the acquired first and second aircraft positions and used as a control target for automatic steering thereafter, it is important for automatic driving to obtain an appropriate reference direction. .. For this reason, it is preferable for the driver to manually acquire the position of the first machine and the position of the second machine while checking the position of the machine and the state of the machine. From this, in one of the preferred embodiments of the present invention, the first machine position is acquired in response to the first signal generated by the manual operation by the driver of the farm work vehicle, and the second machine is obtained. The position is acquired in response to a second signal generated by a manual operation by the driver of the farming vehicle at a location away from the first aircraft position.
 上述した第4課題を解決する手段として、本発明のプログラムは、農作業車のための自動操舵管理システムを制御するためのプログラムであって、衛星測位を用いて取得された前記農作業車の機体位置である第1機体位置と前記第1機体位置から離れた場所で前記衛星測位を用いて取得された第2機体位置との組み合わせ、及び前記第1機体位置と前記第2機体位置とを結ぶ直線の方位である基準方位のうち少なくとも一方を基準情報として管理する基準情報管理機能と、前記基準情報から得られる前記基準方位、または、前記基準方位に基づいて算出された走行経路に基づいて前記農作業車の自動走行を制御する制御ユニットに、前記基準情報管理機能によって管理されている前記基準情報を送信する基準情報送信機能と、をコンピュータに実現させる。 As a means for solving the above-mentioned fourth problem, the program of the present invention is a program for controlling an automatic steering management system for an agricultural work vehicle, and the position of the agricultural work vehicle acquired by using satellite positioning. The combination of the first aircraft position and the second aircraft position acquired by the satellite positioning at a place away from the first aircraft position, and the straight line connecting the first aircraft position and the second aircraft position. Agricultural work based on a reference information management function that manages at least one of the reference orientations as reference information, the reference orientation obtained from the reference information, or a travel route calculated based on the reference orientation. The computer is provided with a reference information transmission function for transmitting the reference information managed by the reference information management function to the control unit that controls the automatic running of the vehicle.
 上述した第4課題を解決する手段として、本発明の記録媒体は、農作業車のための自動操舵管理システムを制御するためのプログラムを記録した記録媒体であって、衛星測位を用いて取得された前記農作業車の機体位置である第1機体位置と前記第1機体位置から離れた場所で前記衛星測位を用いて取得された第2機体位置との組み合わせ、及び前記第1機体位置と前記第2機体位置とを結ぶ直線の方位である基準方位のうち少なくとも一方を基準情報として管理する基準情報管理機能と、前記基準情報から得られる前記基準方位、または、前記基準方位に基づいて算出された走行経路に基づいて前記農作業車の自動走行を制御する制御ユニットに、前記基準情報管理機能によって管理されている前記基準情報を送信する基準情報送信機能と、をコンピュータに実現させるプログラムを記録している。 As a means for solving the above-mentioned fourth problem, the recording medium of the present invention is a recording medium for recording a program for controlling an automatic steering management system for an agricultural work vehicle, and was acquired by using satellite positioning. The combination of the first aircraft position, which is the aircraft position of the agricultural work vehicle, and the second aircraft position obtained by using the satellite positioning at a place away from the first aircraft position, and the first aircraft position and the second aircraft. A reference information management function that manages at least one of the reference orientations that is the orientation of a straight line connecting the aircraft position as reference information, the reference orientation obtained from the reference information, or traveling calculated based on the reference orientation. The control unit that controls the automatic running of the agricultural work vehicle based on the route records a program that realizes a reference information transmission function for transmitting the reference information managed by the reference information management function and a computer. ..
 上述した第4課題を解決する手段として、本発明の方法は、農作業車のための自動操舵管理システムを制御するための方法であって、衛星測位を用いて取得された前記農作業車の機体位置である第1機体位置と前記第1機体位置から離れた場所で前記衛星測位を用いて取得された第2機体位置との組み合わせ、及び前記第1機体位置と前記第2機体位置とを結ぶ直線の方位である基準方位のうち少なくとも一方を基準情報として管理する基準情報管理ステップと、前記基準情報から得られる前記基準方位、または、前記基準方位に基づいて算出された走行経路に基づいて前記農作業車の自動走行を制御する制御ユニットに、前記基準情報管理ステップにて管理されている前記基準情報を送信する基準情報送信ステップと、を含む。 As a means for solving the above-mentioned fourth problem, the method of the present invention is a method for controlling an automatic steering management system for an agricultural work vehicle, and the position of the agricultural work vehicle acquired by using satellite positioning is used. The combination of the first aircraft position and the second aircraft position acquired by the satellite positioning at a place away from the first aircraft position, and the straight line connecting the first aircraft position and the second aircraft position. Agricultural work based on a reference information management step that manages at least one of the reference orientations as reference information, the reference orientation obtained from the reference information, or a travel route calculated based on the reference orientation. The control unit that controls the automatic traveling of the vehicle includes a reference information transmission step for transmitting the reference information managed in the reference information management step.
(第1実施形態)コンバインの側面図である。(First Embodiment) It is a side view of the combine. (第1実施形態)自動走行に関する制御系の機能ブロック図である。(First Embodiment) It is a functional block diagram of the control system concerning automatic driving. (第1実施形態)収穫作業における走行パターンを示す模式図である。(First Embodiment) It is a schematic diagram which shows the running pattern in a harvesting work. (第1実施形態)収穫作業における他の走行パターンを示す模式図である。(First Embodiment) It is a schematic diagram which shows the other running pattern in a harvesting work. (第1実施形態)ティーチング走行を示す模式図である。(First Embodiment) It is a schematic diagram which shows the teaching running. (第1実施形態)手動操舵走行から自動操舵走行への移行を示す模式図である。(First Embodiment) It is a schematic diagram which shows the transition from the manual steering running to the automatic steering running. (第1実施形態)自動操作制御の基本を説明するための模式図である。(First Embodiment) It is a schematic diagram for demonstrating the basics of automatic operation control. (第1実施形態)収穫作業走行の一例を示すフローチャートである。(First Embodiment) It is a flowchart which shows an example of a harvesting work run. (第2実施形態)自動走行に関する制御系の機能ブロック図である。(421に注意)(Second Embodiment) It is a functional block diagram of the control system concerning automatic driving. (Note 421) (第2実施形態)ティーチング走行を示す模式図である。(Second Embodiment) It is a schematic diagram which shows the teaching running. (第2実施形態)ティーチング走行を示す模式図である。(Second Embodiment) It is a schematic diagram which shows the teaching running. (第2実施形態)ティーチング走行を示す模式図である。(Second Embodiment) It is a schematic diagram which shows the teaching running. (第3実施形態)農作業機の制御系を示す機能ブロック図である。(Third Embodiment) It is a functional block diagram which shows the control system of an agricultural work machine. (第3実施形態)基準方位の算出に関するフローチャート図である。(Third Embodiment) It is a flowchart about calculation of a reference direction. (第3実施形態)機体の1周分の周囲刈り走行によって算出された基準方位を示す圃場の平面図である。(Third Embodiment) It is a top view of the field which shows the reference direction calculated by the perimeter mowing run for one round of the machine body. (第3実施形態)自動操向制御に関するフローチャート図である。(Third Embodiment) It is a flowchart about automatic steering control. (第3実施形態)基準方位に基づく機体の自動操向制御を示す圃場の平面図である。(Third Embodiment) It is a top view of the field which shows the automatic steering control of the airframe based on a reference direction. (第3実施形態)基準方位に基づく機体の自動操向制御を示す圃場の平面図である。(Third Embodiment) It is a top view of the field which shows the automatic steering control of the airframe based on a reference direction. (第3実施形態)基準方位に基づく機体の自動操向制御を示す圃場の平面図である。(Third Embodiment) It is a top view of the field which shows the automatic steering control of the airframe based on a reference direction. (第3実施形態)基準方位に基づく機体の自動操向制御を示す圃場の平面図である。(Third Embodiment) It is a top view of the field which shows the automatic steering control of the airframe based on a reference direction. (第3実施形態)基準方位に基づく機体の自動操向制御を示す圃場の平面図である。(Third Embodiment) It is a top view of the field which shows the automatic steering control of the airframe based on a reference direction. (第3実施形態)基準方位に基づく機体の自動操向制御を示す圃場の平面図である。(Third Embodiment) It is a top view of the field which shows the automatic steering control of the airframe based on a reference direction. (第3実施形態)基準方位に基づく機体の自動操向制御を示す圃場の平面図である。(Third Embodiment) It is a top view of the field which shows the automatic steering control of the airframe based on a reference direction. (第3実施形態)基準方位に基づく機体の自動操向制御を示す圃場の平面図である。(Third Embodiment) It is a top view of the field which shows the automatic steering control of the airframe based on a reference direction. (第3実施形態)自動操向制御の開始判定ルーチンを示すフローチャート図である。(Third Embodiment) It is a flowchart which shows the start determination routine of the automatic steering control. (第3実施形態)方位指標を示す図である。(Third Embodiment) It is a figure which shows the direction index. (第3実施形態)方位指標を示す図である。(Third Embodiment) It is a figure which shows the direction index. (第3実施形態)方位指標を示す図である。(Third Embodiment) It is a figure which shows the direction index. (第3実施形態)方位指標を示す図である。(Third Embodiment) It is a figure which shows the direction index. (第4実施形態)2台のコンバインによって協調的に行われる収穫作業を示す模式図である。(Fourth Embodiment) It is a schematic diagram which shows the harvesting work performed cooperatively by two combines. (第4実施形態)2台のコンバインに周回走行と往復直線走行とを用いた収穫作業を示す模式図である。(Fourth Embodiment) It is a schematic diagram which shows the harvesting operation which used the orbiting running and the round-trip straight running on two combines. (第4実施形態)コンバインに搭載されている、自動走行に関する制御系の機能ブロック図である。(Fourth Embodiment) It is a functional block diagram of the control system about automatic driving mounted on a combine. (第4実施形態)協調的収穫作業走行の一例を示すフローチャートである。(Fourth Embodiment) It is a flowchart which shows an example of the cooperative harvesting work run. (第4実施形態)ティーチング走行によって得られた基準方位に基づいて自動操舵で苗植え付け作業を行う田植機の走行経路と、田植機が利用した基準方位に基づいて自動操舵で収穫作業を行うコンバインの走行経路を示す模式図である。(Fourth Embodiment) A combine that performs harvesting work by automatic steering based on the traveling path of a rice transplanter that performs seedling planting work by automatic steering based on the reference orientation obtained by teaching running and the reference orientation used by the rice transplanter. It is a schematic diagram which shows the traveling route of. (第4実施形態)遠隔地の管理コンピュータに組み込まれた自動操舵管理システムを示す模式図である。(Fourth Embodiment) It is a schematic diagram which shows the automatic steering management system incorporated in the management computer of a remote place.
 本発明に係る収穫機の一例としての普通型のコンバインの実施形態が、図面に基づいて以下に記載されている。 An embodiment of a conventional combine as an example of a harvester according to the present invention is described below based on drawings.
〔収穫機の基本構成〕
 図1に示されるように、このコンバインは、機体1と、操向可能な左右一対のクローラ式の走行装置11と、搭乗部12と、脱穀装置13と、穀粒タンク14と、収穫装置15と、搬送装置16と、穀粒排出装置18とを備えている。
[Basic configuration of harvester]
As shown in FIG. 1, this combine includes an aircraft 1, a pair of steerable left and right crawler-type traveling devices 11, a boarding section 12, a threshing device 13, a grain tank 14, and a harvesting device 15. And a transport device 16 and a grain discharge device 18.
 走行装置11は、コンバインの下部に備えられている。走行装置11は左右一対のクローラ走行機構を有し、コンバインは、走行装置11によって収穫作業地としての圃場を走行可能である。 The traveling device 11 is provided at the lower part of the combine. The traveling device 11 has a pair of left and right crawler traveling mechanisms, and the combine can travel in the field as a harvesting work site by the traveling device 11.
 図示はしないが、走行装置11は、静油圧式無段変速装置の主変速装置と、ギヤ切換式の副変速装置と、を有する。なお、副変速装置は、移動用(非作業用)の変速段数と、移動用よりも低速な作業走行用の変速段数と、変速可能に構成されている。 Although not shown, the traveling device 11 includes a main transmission of a hydrostatic continuously variable transmission and a gear switching type auxiliary transmission. The auxiliary transmission is configured to be capable of shifting, with the number of gears for movement (non-working) and the number of gears for work traveling slower than that for movement.
 搭乗部12、脱穀装置13、穀粒タンク14は、走行装置11よりも上側に備えられ、これらは機体1の上部として構成されている。コンバインの運転者が、搭乗部12に搭乗する。 The boarding unit 12, the threshing device 13, and the grain tank 14 are provided above the traveling device 11, and these are configured as the upper part of the machine body 1. The combine driver boarded the boarding section 12.
 通常、搭乗者と監視者とは兼務される。なお、搭乗者と監視者とが別人の場合、監視者は、コンバインの機外からコンバインの作業を監視していても良い。 Normally, the passenger and the observer also serve concurrently. When the passenger and the observer are different persons, the observer may monitor the work of the combine from outside the combine.
 搭乗部12の下方に駆動用のエンジン(不図示)が備えられている。穀粒排出装置18は、穀粒タンク14の後下部に連結されている。 A drive engine (not shown) is provided below the boarding section 12. The grain discharge device 18 is connected to the rear lower portion of the grain tank 14.
 コンバインは、収穫装置15によって圃場の作物を収穫しながら走行装置11によって走行する。 The combine is traveled by the traveling device 11 while harvesting the crops in the field by the harvesting device 15.
 換言すれば、収穫装置15は圃場の作物を収穫する。そして、コンバインは、収穫装置15によって圃場の作物を収穫しながら走行装置11によって走行する作業走行が可能である。 In other words, the harvesting device 15 harvests the crops in the field. Then, the combine can be run by the traveling device 11 while harvesting the crops in the field by the harvesting device 15.
 搬送装置16は収穫装置15よりも後側に隣接して設けられている。収穫装置15及び搬送装置16は、収穫装置シリンダ15aの伸縮動作によって上下昇降が可能なように、機体1の前部に支持されている。 The transport device 16 is provided adjacent to the rear side of the harvest device 15. The harvesting device 15 and the transporting device 16 are supported on the front portion of the machine body 1 so as to be able to move up and down by the expansion and contraction operation of the harvesting device cylinder 15a.
 収穫装置15によって収穫された作物は、搬送装置16によって脱穀装置13へ搬送され、脱穀装置13によって脱穀処理される。脱穀処理によって得られた収穫物としての穀粒は、穀粒タンク14に貯留される。穀粒タンク14に貯留された穀粒は、必要に応じて、穀粒排出装置18によって機外に排出される。 The crops harvested by the harvesting device 15 are transported to the threshing device 13 by the transport device 16 and threshed by the threshing device 13. The grain as a harvest obtained by the threshing process is stored in the grain tank 14. The grains stored in the grain tank 14 are discharged to the outside of the machine by the grain discharging device 18 as needed.
 穀粒排出装置18は機体後部の縦軸芯回りに揺動可能に構成されている。即ち、穀粒排出装置18の遊端部が機体1よりも機体横外側へ張り出して作物を排出可能な排出状態と、穀粒排出装置18の遊端部が機体1の機体横幅の範囲内に位置する収納状態と、に切換可能なように穀粒排出装置18は構成されている。 The grain discharge device 18 is configured to swing around the vertical axis core at the rear of the machine. That is, the free end portion of the grain discharge device 18 protrudes to the lateral outside of the machine body 1 so that the crop can be discharged, and the free end portion of the grain discharge device 18 is within the range of the machine width of the machine body 1. The grain discharging device 18 is configured so as to be switchable between the stored storage state and the positioned storage state.
 搭乗部12の天井部には、衛星測位モジュール80が設けられている。衛星測位モジュール80は、人工衛星GSからのGNSS(Global Navigation Satellite System)の信号を受信して、コンバインの機体位置を示す衛星測位データを出力する。GNSSの信号として、GPS、QZSS、Galileo、GLONASS、BeiDou、等の信号が含まれる。 A satellite positioning module 80 is provided on the ceiling of the boarding section 12. The satellite positioning module 80 receives a GNSS (Global Navigation Satellite System) signal from the artificial satellite GS and outputs satellite positioning data indicating the position of the combine body. Signals of GNSS include GPS, QZSS, Galileo, GLONASS, BeiDou, and the like.
 衛星測位データに基づいて算出される2点間の機体位置から、機体1の方位(向き)の算出が可能であるが、短い距離における瞬時の機体1の方位を正確に算出することは困難である。このため、機体1の方位(向き)を検出するために、IMU(Inertial Measurement Unit)と呼ばれる慣性計測モジュール81も、機体1に備えられている。 It is possible to calculate the direction (direction) of the aircraft 1 from the aircraft position between two points calculated based on satellite positioning data, but it is difficult to accurately calculate the instantaneous orientation of the aircraft 1 over a short distance. be. Therefore, in order to detect the orientation of the airframe 1, an inertial measurement module 81 called an IMU (Inertial Measurement Unit) is also provided in the airframe 1.
 慣性計測モジュール81は、ジャイロセンサや加速度センサを有する。慣性計測モジュール81は、機体1の旋回角度の角速度を検出可能であり、角速度を積分することで機体1の方位変化角を算出できる。このことから、慣性計測モジュール81によって計測される計測データには機体1の方位(向き)を示すことができるデータが含まれている。 The inertial measurement module 81 has a gyro sensor and an acceleration sensor. The inertial measurement module 81 can detect the angular velocity of the turning angle of the airframe 1, and can calculate the directional change angle of the airframe 1 by integrating the angular velocity. For this reason, the measurement data measured by the inertial measurement module 81 includes data that can indicate the direction (direction) of the airframe 1.
 詳述はしないが、慣性計測モジュール81は、機体1の旋回角度の角速度の他、機体1の左右傾斜角度、機体1の前後傾斜角度の角速度等も計測可能である。 Although not described in detail, the inertial measurement module 81 can measure the angular velocity of the turning angle of the machine body 1, the left-right tilt angle of the machine body 1, the angular velocity of the front-back tilt angle of the machine body 1, and the like.
 なお、衛星測位モジュール80と慣性計測モジュール81とが一体的に構成されても良い。 The satellite positioning module 80 and the inertial measurement module 81 may be integrally configured.
〔制御ユニットの構成〕
 図2は、このコンバインの自動走行制御に関する機能を示す走行制御系の機能ブロック図である。この走行制御系は、データ通信可能なタブレットコンピュータである汎用端末VTと、制御ユニット4とを備えている。
[Control unit configuration]
FIG. 2 is a functional block diagram of a travel control system showing a function related to automatic travel control of the combine. This travel control system includes a general-purpose terminal VT, which is a tablet computer capable of data communication, and a control unit 4.
 制御ユニット4は、走行制御系の中核要素であり、車載LAN等で接続される複数のECUの集合体である。制御ユニット4は、自動走行制御が実行される自動走行モードと、手動操作で走行制御が行われる手動走行モードとを有する。 The control unit 4 is a core element of the travel control system, and is an aggregate of a plurality of ECUs connected by an in-vehicle LAN or the like. The control unit 4 has an automatic driving mode in which automatic driving control is executed, and a manual driving mode in which driving control is performed by manual operation.
 汎用端末VTは、表示デバイスとしてのタッチパネル3と、タッチパネル3を通じて情報の入出力を管理するグラフィックユーザインターフェースとを備えている。タッチパネル3の画面領域には、走行支援画像が表示される支援画像表示領域3aとソフトウエアボタンやランプなどが表示される操作画像表示領域3bとを含む。 The general-purpose terminal VT includes a touch panel 3 as a display device and a graphic user interface that manages input / output of information through the touch panel 3. The screen area of the touch panel 3 includes a support image display area 3a on which a running support image is displayed and an operation image display area 3b on which software buttons, lamps, and the like are displayed.
 この実施形態では、操作画像表示領域3bに、ソフトウエアボタンとして、あとで詳しく説明する第1ボタン31と第2ボタン32が配置されている。さらに、汎用端末VTには、このコンバインによる収穫作業に関する情報を処理する各種アプリケーションがインストールされている。アプリケーションの1つは、支援画像表示領域3aに表示される情報を生成する表示情報生成部30である。 In this embodiment, the first button 31 and the second button 32, which will be described in detail later, are arranged as software buttons in the operation image display area 3b. Further, various applications for processing information regarding the harvesting work by this combine are installed in the general-purpose terminal VT. One of the applications is a display information generation unit 30 that generates information to be displayed in the support image display area 3a.
 制御ユニット4には、機体位置算出部40と、第1機体位置取得部41と、第2機体位置取得部42と、基準方位算出部43と、走行経路作成部44と、走行軌跡作成部45、機体方位算出部46と、走行制御部50と、が備えられている。以下、これらを「機能部」と総称する場合がある。 The control unit 4 includes an aircraft position calculation unit 40, a first aircraft position acquisition unit 41, a second aircraft position acquisition unit 42, a reference direction calculation unit 43, a travel route creation unit 44, and a travel locus creation unit 45. The aircraft orientation calculation unit 46 and the traveling control unit 50 are provided. Hereinafter, these may be collectively referred to as “functional unit”.
 制御ユニット4には、衛星測位モジュール80、慣性計測モジュール81、汎用端末VTからの信号が入力される。また、図示はしないが、制御ユニット4には、車速センサ、エンジンのトルクセンサ、障害物検知センサ、などの信号も入力される。 Signals from the satellite positioning module 80, the inertial measurement module 81, and the general-purpose terminal VT are input to the control unit 4. Although not shown, signals such as a vehicle speed sensor, an engine torque sensor, and an obstacle detection sensor are also input to the control unit 4.
 詳しくは、制御ユニット4は、CPU、通信機能、及びストレージ機能(内部記録媒体、または外部記録媒体及び入出力インタフェース)を備えたコンピュータ装置と、所定のコンピュータプログラムとで構成される。このコンピュータプログラムは、コンピュータ装置を、上述した機能部として機能させる。コンピュータプログラムは、コンピュータが読み取り可能な上述の記録媒体に記録されている。このコンピュータプログラムを実行することにより、コンバインにおいて、上述の各機能部に対応するステップを含む方法が実行される。 Specifically, the control unit 4 is composed of a computer device having a CPU, a communication function, and a storage function (internal recording medium, external recording medium, and input / output interface), and a predetermined computer program. This computer program causes the computer device to function as the above-mentioned functional unit. The computer program is recorded on the computer-readable recording medium described above. By executing this computer program, a method including a step corresponding to each of the above-mentioned functional parts is executed in the combine.
 機体位置算出部40は、衛星測位モジュール80から出力された衛星測位データに基づいて、機体1の地図位置座標である機体位置を、所定の繰り返し周波数で算出する。 The aircraft position calculation unit 40 calculates the aircraft position, which is the map position coordinates of the aircraft 1, at a predetermined repetition frequency based on the satellite positioning data output from the satellite positioning module 80.
 走行軌跡作成部45は、機体位置算出部40から経時的に取得する機体位置に基づいて、機体1の走行軌跡を作成する。作成された走行軌跡は、表示情報生成部30に送られ、画像処理されることで、タッチパネル3の支援画像表示領域3aに、コンバインのアイコンともに、線状ラインまたは収穫幅に対応する幅を有する帯状ラインBLとして表示される。 The travel locus creation unit 45 creates a travel locus of the aircraft 1 based on the aircraft position acquired from the aircraft position calculation unit 40 over time. The created travel locus is sent to the display information generation unit 30 and image-processed so that the support image display area 3a of the touch panel 3 has a width corresponding to a linear line or a harvest width together with the combine icon. It is displayed as a band-shaped line BL.
 機体方位算出部46は、慣性計測モジュール81によって出力された計測データに基づいて機体1の方位を算出する。なお、機体方位算出部46は、慣性計測モジュール81が搭載されていない場合、例えば電子コンパス等に基づいて機体1の方位を算出するように構成することも可能である。 The aircraft orientation calculation unit 46 calculates the orientation of the aircraft 1 based on the measurement data output by the inertial measurement module 81. When the inertial measurement module 81 is not mounted, the aircraft orientation calculation unit 46 can be configured to calculate the orientation of the aircraft 1 based on, for example, an electronic compass.
 このコンバインは、収穫作業を行いながら、自動走行のためのティーチング走行を行う。例えば、コンバインが圃場に進入すると、直ちに、あるいは必要な姿勢変更の後にティーチング走行を行うことができる。 This combine performs teaching driving for automatic driving while performing harvesting work. For example, when the combine enters the field, the teaching run can be performed immediately or after the required posture change.
 第1機体位置取得部41は、収穫作業中において、運転者が第1ボタン31をクリック操作(タッチ操作)することによって生成される第1信号を汎用端末VTから受け取る。第1ボタン31のクリック操作はティーチング走行の開始を意味する。第1機体位置取得部41は、第1信号を受け取ったタイミングでの機体位置を、機体位置算出部40から取得し、当該機体位置を第1機体位置として記憶する。 The first machine position acquisition unit 41 receives the first signal generated by the driver clicking (touching) the first button 31 from the general-purpose terminal VT during the harvesting work. The click operation of the first button 31 means the start of the teaching run. The first airframe position acquisition unit 41 acquires the airframe position at the timing of receiving the first signal from the airframe position calculation unit 40, and stores the airframe position as the first airframe position.
 第2機体位置取得部42は、ティーチング走行を継続し、機体1が第1機体位置から離れた場所まで作業走行を行った際に、運転者が第2ボタン32をクリック操作(タッチ操作)することで生成される第2信号を受け取る。 The second machine position acquisition unit 42 continues the teaching run, and when the machine 1 makes a work run to a place away from the first machine position, the driver clicks (touches) the second button 32. The second signal generated by this is received.
 第2機体位置取得部42は、汎用端末VTから第2信号を受け取ったタイミングでの機体位置を、機体位置算出部40から取得し、当該機体位置を第2機体位置として記憶する。第2ボタン32のクリック操作はティーチング走行の終了を意味する。なお、このコンバインは、既に収穫作業を終えた既作業領域や既作業領域と未作業領域とを含む混在領域で、ティーチング走行を行うことも可能である。 The second machine position acquisition unit 42 acquires the machine position at the timing when the second signal is received from the general-purpose terminal VT from the machine position calculation unit 40, and stores the machine position as the second machine position. The click operation of the second button 32 means the end of the teaching run. It should be noted that this combine can also perform teaching running in an already-worked area where the harvesting work has already been completed or in a mixed area including the already-worked area and the unworked area.
 基準方位算出部43は、第1機体位置取得部41から読み出された第1機体位置と、第2機体位置取得部42から読み出された第2機体位置とを結ぶ直線の方位を基準方位として算出する。この基準方位は、記憶され、自動操舵制御において利用される。 The reference direction calculation unit 43 uses the direction of a straight line connecting the first machine position read from the first machine position acquisition unit 41 and the second machine position read from the second machine position acquisition unit 42 as the reference direction. Calculated as. This reference orientation is stored and used in automatic steering control.
 走行経路作成部44は、車体位置(収穫装置15の刈取中心などの車体基準点の位置)を通って基準方位で延びる直線を目標ラインとして算出する機能を有する。後で詳説するように、この目標ラインは、自動操舵開始具71の操作に基づいて自動操舵開始指令が出力された時点で、自動操舵制御における目標経路として決定され、固定される。 The traveling route creating unit 44 has a function of calculating a straight line extending in the reference direction through the vehicle body position (the position of the vehicle body reference point such as the cutting center of the harvesting device 15) as a target line. As will be described in detail later, this target line is determined and fixed as a target path in the automatic steering control when the automatic steering start command is output based on the operation of the automatic steering starter 71.
 走行経路作成部44は、変形例として、自動操舵開始指令が出力された時点で、車体位置を通って基準方位で延びる直線を目標ラインとして算出し、この目標ラインを目標経路として決定し、固定するように構成されてもよい。 As a modification, the travel route creation unit 44 calculates a straight line extending in the reference direction through the vehicle body position as a target line at the time when the automatic steering start command is output, determines this target line as the target route, and fixes the target line. It may be configured to do so.
 走行制御部50は、自動操舵モジュール51、手動操舵モジュール52、車速制御モジュール53を有する。自動操舵モジュール51は、自動走行時において、後述する方法で機体1の自動走行を制御する。手動操舵モジュール52は、手動走行時において、運転者の操作に基づいて機体1の走行を制御する。車速制御モジュール53は、機体1の前進時及び後進時の車速、機体1の停止を制御する。 The travel control unit 50 has an automatic steering module 51, a manual steering module 52, and a vehicle speed control module 53. The automatic steering module 51 controls the automatic traveling of the aircraft 1 by a method described later during automatic traveling. The manual steering module 52 controls the traveling of the aircraft 1 based on the operation of the driver during the manual traveling. The vehicle speed control module 53 controls the vehicle speed when the aircraft 1 is moving forward and backward, and the vehicle speed when the aircraft 1 is stopped.
 このコンバインの走行装置11は、クローラ式の左走行機構11aと右走行機構11bとから構成されている。このため、走行制御部50は、左変速機構10aに変速制御信号を与えて、左走行機構11aの速度を調整するともに、右変速機構10bに変速制御信号を与えて、右走行機構11bの速度を調整する。左走行機構11aと右変速機構10bとを異なる速度で駆動することにより、機体1が操舵される。 The traveling device 11 of this combine is composed of a crawler type left traveling mechanism 11a and a right traveling mechanism 11b. Therefore, the traveling control unit 50 gives a shifting control signal to the left shifting mechanism 10a to adjust the speed of the left traveling mechanism 11a, and also gives a shifting control signal to the right shifting mechanism 10b to speed the right traveling mechanism 11b. To adjust. The aircraft 1 is steered by driving the left traveling mechanism 11a and the right shifting mechanism 10b at different speeds.
〔収穫作業経路について〕
 このコンバインは、麦や米などの植立穀桿を収穫するために、圃場を収穫幅でくまなく走行する。その際、頻繁に用いられている収穫走行パターンが、模式的に図3と図4とに示されている。図3に示されたパターンでは、圃場に進入したコンバインが、圃場を境界付けている畔などの境界線(圃場の一辺)に沿って収穫作業を行いながら走行する。
[About the harvesting work route]
This combine travels across the field to harvest planted grain rods such as wheat and rice. At that time, the frequently used harvesting running patterns are schematically shown in FIGS. 3 and 4. In the pattern shown in FIG. 3, the combine that has entered the field travels while performing harvesting work along a boundary line (one side of the field) such as the shore that borders the field.
 一辺の走行が終了すると、機体1が次の一辺に沿うように方向転換(図3では90度旋回)を行う。この方向転換は、図では簡単化されているが、実際はアルファターン(スイッチバックターン)と呼ばれる後進を伴う旋回走行である。このように、直線状の走行と旋回走行を組み合わせて、圃場を周回する走行が行われる。 When the running on one side is completed, the aircraft 1 changes direction (turns 90 degrees in FIG. 3) so as to follow the next side. Although this change of direction is simplified in the figure, it is actually a turning run with reverse movement called an alpha turn (switchback turn). In this way, the traveling around the field is performed by combining the linear traveling and the turning traveling.
 機体1が出発点に到達すると、収穫幅分だけ、内側に入り込んだ経路で、次の周回の走行が行われる。このように、渦巻状に内側に向かう周回走行を繰り返すことで、圃場全体の収穫作業走行が完了する。 When the aircraft 1 reaches the starting point, the next lap will be run on the route that has entered the inside by the amount of the harvest width. In this way, by repeating the circular running inward in a spiral shape, the harvesting work running of the entire field is completed.
 図4に示されたパターンは、圃場に進入したコンバインが、2~3周程度の周回走行と、この周回走行により残された内側の未作業領域(内側領域)に対して、直線状の経路とUターンでの方向転換(図4では180°Uターン旋回)とを繰り返す往復走行とからなる。 The pattern shown in FIG. 4 is a linear route for the combine that has entered the field to make a lap of about 2 to 3 laps and the inner unworked area (inner area) left by this lap. It consists of a reciprocating run that repeats the direction change at the U-turn (180 ° U-turn turn in FIG. 4).
 180°Uターン旋回は既作業地(外周領域)で行われる。なお、前進だけ用いた180°Uターン旋回では、走行を終えた直線状の経路から次の直線状の経路までの距離は大きくなるが、スイッチバックターンを用いた180°Uターン旋回では、その距離は短く、走行を終えた直線状の経路と次の直線状の経路とが隣接するような走行パターンも可能となる。 The 180 ° U-turn turn is performed on the existing work area (outer peripheral area). In the 180 ° U-turn turn using only forward movement, the distance from the straight path after running to the next straight path becomes large, but in the 180 ° U-turn turn using the switchback turn, that is the case. The distance is short, and it is possible to have a running pattern in which a straight path that has finished running and the next straight path are adjacent to each other.
 上記の2つの収穫走行パターンでは、方向転換のための旋回経路以外では、長い直線状経路が存在する。本発明の自動走行制御は、この直線状経路をできるだけ自動操舵で走行するための制御である。なお、ここでの直線状経路は、厳密な直線経路だけでなく、折れ線からなる直線経路、さらには大きな湾曲を描く経路も含まれている。 In the above two harvesting running patterns, there is a long linear path other than the turning path for changing direction. The automatic traveling control of the present invention is a control for traveling on this linear path by automatic steering as much as possible. The linear path here includes not only a strict straight path but also a linear path consisting of a polygonal line and a path drawing a large curve.
 〔自動操舵制御について〕
 図5で示されているように、圃場に進入したコンバインが収穫作業走行の間に行うティーチング走行を通じて第1機体位置(図5ではA点で示されている)と第2機体位置(図5ではB点で示されている)とが取得される。さらに、第1機体位置と第2機体位置とを結ぶ直線の方位である基準方位が算出される。
[About automatic steering control]
As shown in FIG. 5, the first aircraft position (indicated by point A in FIG. 5) and the second aircraft position (indicated by point A in FIG. 5) and the second aircraft position (indicated by point A in FIG. 5) through the teaching run performed by the combine that entered the field during the harvesting work run. Then, (indicated by point B) and is acquired. Further, a reference azimuth, which is the azimuth of a straight line connecting the position of the first aircraft and the position of the second aircraft, is calculated.
 本発明の自動走行は、この基準方位、又は、この基準方位に基づいて算出される目標経路としての走行経路に基づいて行われる。なお、第1機体位置及び第2機体位置は、機体1が走行しながら収穫作業を行っているときに取得することもできるし、機体1が停止して収穫作業を行っているときに取得することもできる。 The automatic traveling of the present invention is performed based on this reference direction or a traveling route as a target route calculated based on this reference direction. The position of the first machine and the position of the second machine can be acquired when the machine 1 is traveling and the harvesting work is being performed, or when the machine 1 is stopped and the harvesting work is being performed. You can also do it.
 機体1が静止した状態では、衛星測位データに基づく機体位置の算出精度が悪くなることを考慮すれば、第1機体位置及び第2機体位置は、機体1が走行しながら収穫作業を行っているときに取得するのが好ましい。 Considering that the calculation accuracy of the aircraft position based on the satellite positioning data deteriorates when the aircraft 1 is stationary, the first aircraft position and the second aircraft position are harvested while the aircraft 1 is traveling. It is preferable to get it when.
 自動操舵の目標経路となる走行経路の決定方法は、図6に示されている。 FIG. 6 shows a method of determining a traveling route that is a target route for automatic steering.
 運転者が、手動操舵を行い、機体1を次に直線状に走行させようとするための所望経路(走行経路が決定される前の仮想的な経路である)に、最終的に達する位置合わせ経路を想定しながら、走行する。機体1が自動走行を開始するために適切である位置に達すると、運転者は自動操舵開始具71を操作する。 Alignment that finally reaches the desired route (a virtual route before the travel route is determined) for the driver to manually steer and try to drive the aircraft 1 in a straight line next. Drive while assuming the route. When the aircraft 1 reaches a position suitable for starting automatic driving, the driver operates the automatic steering starter 71.
 この実施形態では、収穫装置15の刈取中心(前もって設定されている機体1の基準点の1つ)を通る基準方位の向きの目標ラインが常時算出されており、自動操舵が開始される時に(自動操舵開始具71が操作された時に)、その目標ラインが走行経路として決定され、固定される構成を採用している。 In this embodiment, a target line in the direction of the reference direction passing through the cutting center of the harvesting device 15 (one of the reference points of the aircraft 1 set in advance) is constantly calculated, and when automatic steering is started (1). (When the automatic steering starter 71 is operated), the target line is determined and fixed as a traveling path.
 したがって、運転者による自動操舵開始具71の操作に応答して、走行経路が決定され、固定される。これにより、自動走行の開始が可能となる。 Therefore, the travel route is determined and fixed in response to the operation of the automatic steering starter 71 by the driver. This makes it possible to start automatic driving.
 例えば、図4で示されたような収穫走行パターンでは、周囲領域で180°Uターン旋回を通じて次の直線状の経路に向かう走行が位置合わせ走行である。180°Uターン旋回では、収穫装置15を上昇させた非収穫作業走行が行われ、次の直線状の経路に入ると、収穫装置15を下降させた収穫作業走行が開始され、このタイミングで自動操舵も開始されると好都合である。 For example, in the harvesting running pattern as shown in FIG. 4, running toward the next linear path through a 180 ° U-turn turn in the surrounding area is alignment running. In the 180 ° U-turn turn, the non-harvesting work running with the harvesting device 15 raised is performed, and when entering the next linear path, the harvesting work running with the harvesting device 15 lowered is started, and the harvesting work running is automatically started at this timing. It is convenient if steering is also started.
 収穫装置15の下降を伴う収穫作業の開始は収穫作業操作具によって行われるので、収穫作業操作具が自動操舵開始具71として用いられると、収穫作業と自動操舵との開始が、1つの操作具の操作で可能となり、便利である。 Since the start of the harvesting work accompanied by the descent of the harvesting device 15 is performed by the harvesting work operating tool, when the harvesting work operating tool is used as the automatic steering starting tool 71, the start of the harvesting work and the automatic steering is one operating tool. It is possible and convenient by the operation of.
 なお、目標ラインが常時算出され、自動操舵が開始される時にその目標ラインが走行経路として決定され、固定されるのではなく、自動操舵が開始される時に、その時点での基準点を通る基準方位の向きの目標ラインが作成され、走行経路として固定される構成を採用してもよい。 It should be noted that the target line is always calculated, and when the automatic steering is started, the target line is determined as a traveling path and is not fixed, but a reference that passes through the reference point at that time when the automatic steering is started. A configuration may be adopted in which a target line in the direction of orientation is created and fixed as a traveling route.
 自動走行のための自動操舵制御は、次の3つの操舵モードで行うことが可能であり、そのうちの少なくとも1つのモードが、自動操舵モジュール51に組み込まれる。複数のモードが組み込まれた場合、選択して用いられる。 Automatic steering control for automatic driving can be performed in the following three steering modes, and at least one of them is incorporated in the automatic steering module 51. When multiple modes are incorporated, they are selected and used.
(第1操舵モード)
 このモードでは、図7に示されているように、走行経路作成部44によって決定され、固定される走行経路と、機体方位算出部46によって算出される機体方位、機体位置算出部40によって算出される機体位置が用いられる。
(1st steering mode)
In this mode, as shown in FIG. 7, the travel route is determined and fixed by the travel route creation unit 44, and the aircraft orientation calculated by the aircraft orientation calculation unit 46 and calculated by the aircraft position calculation unit 40. Aircraft position is used.
 基準方位で延びている走行経路(目標経路)と機体方位線(機体1の基準点を通る機体1の向きを示す線)とがなす角度が方位ずれ:θであり、走行経路に対する機体1のずれ(機体1の基準点から走行経路までの距離)が、位置ずれ:dである。 The angle formed by the travel path (target route) extending in the reference orientation and the aircraft orientation line (the line indicating the direction of the aircraft 1 passing through the reference point of the aircraft 1) is the orientation deviation: θ, and the aircraft 1 with respect to the travel route. The deviation (distance from the reference point of the aircraft 1 to the traveling path) is the positional deviation: d.
 操舵制御では、方位ずれと位置ずれとを制御入力とし、方位ずれが方位許容範囲内に入るように操舵制御信号が出力されるとともに、位置ずれが位置許容範囲を超えた場合には、優先的に位置ずれが位置許容範囲内に入るように操舵制御信号が出力される。 In steering control, directional deviation and misalignment are used as control inputs, and a steering control signal is output so that the directional deviation falls within the permissible directional range. If the misalignment exceeds the permissible position, priority is given. The steering control signal is output so that the misalignment falls within the allowable position range.
 また、方位ずれと位置ずれとを個別に取り扱うのではなく、センサーフィージュン技術を用いることで、方位ずれと位置ずれとの両方を入力することで直接操舵制御信号が出力される制御が採用されてもよい。 In addition, instead of handling the misalignment and misalignment individually, by using the sensor fijun technology, control is adopted in which the steering control signal is directly output by inputting both the misalignment and the misalignment. You may.
 このモードでは、自動走行開始時に、走行経路が設定される。 In this mode, the driving route is set at the start of automatic driving.
(第2操舵モード)
 このモードでは、方位ずれは操舵制御の入力として用いられず、位置ずれだけが操舵制御の入力として用いられる。つまり、位置ずれを解消するように操舵制御信号が出力され、機体1の基準点が走行経路上に乗るように操舵される。
(Second steering mode)
In this mode, the directional shift is not used as the steering control input, only the misalignment is used as the steering control input. That is, a steering control signal is output so as to eliminate the misalignment, and the reference point of the aircraft 1 is steered so as to be on the traveling path.
 このモードでは、自動走行開始時に、走行経路が設定される。 In this mode, the driving route is set at the start of automatic driving.
(第3操舵モード)
 このモードでは、位置ずれは操舵制御の入力値として用いられず、基準方位に対する機体方位のずれである方位ずれだけが操舵制御の入力として用いられる。従って、自動走行開始時に走行経路を作成する必要がない。自動操舵開始時点から、機体方位が基準方位となるように操舵制御信号が出力される。
(Third steering mode)
In this mode, the misalignment is not used as the input value for steering control, and only the directional deviation, which is the deviation of the aircraft orientation with respect to the reference orientation, is used as the input for steering control. Therefore, it is not necessary to create a traveling route at the start of automatic traveling. From the start of automatic steering, a steering control signal is output so that the aircraft orientation becomes the reference orientation.
 自動操舵制御の途中でスリップや計測誤差の集積などにより位置ずれが生じた場合には、その修正は行われない。このモードはスリップの少ない圃場や直線距離の短い走行に主に用いられる。 If a position shift occurs due to slippage or accumulation of measurement errors during automatic steering control, it will not be corrected. This mode is mainly used for fields with little slip and short straight distances.
〔収穫作業の流れ〕
 次に、図8のフローチャートを用いて、収穫作業走行の一例を説明する。この収穫作業走行では、周回作業走行の最初の一辺の走行の一部をティーチング走行として、第1機体位置(A点)と第2機体位置(B点)とを取得して、基準方位を算出する(図5参照)。
[Flow of harvesting work]
Next, an example of the harvesting work run will be described with reference to the flowchart of FIG. In this harvesting work run, a part of the run on the first side of the lap work run is regarded as a teaching run, and the first machine position (point A) and the second machine position (point B) are acquired to calculate the reference direction. (See Fig. 5).
 その後の直線状経路は、上記の第1操縦モードによる自動操舵で自動走行を行う。図4で示された走行パターンが採用され、一辺と直交している二辺の走行時には、基準方位を90度回転させた方位が基準方位として用いられる。 The straight path after that is automatically driven by automatic steering in the above-mentioned first maneuvering mode. The traveling pattern shown in FIG. 4 is adopted, and when traveling on two sides orthogonal to one side, the orientation obtained by rotating the reference orientation by 90 degrees is used as the reference orientation.
 コンバインは、出入口を通じて圃場に進入すると(#01)、手動操舵での収穫走行を開始する(#02)。 When the combine enters the field through the doorway (# 01), the harvester starts the harvesting run by manual steering (# 02).
 次いで、自動操舵に必要な基準方位を得るためのティーチング走行が行われる。ティーチング走行を開始するため、運転者は、タッチパネル3の操作画像表示領域3bに表示されている第1ボタン31(図2参照)をクリックする(#11)。 Next, a teaching run is performed to obtain the reference direction required for automatic steering. In order to start the teaching run, the driver clicks the first button 31 (see FIG. 2) displayed in the operation image display area 3b of the touch panel 3 (# 11).
 このクリック操作に応答して、その時点での機体位置である第1機体位置が取得される(#12)。同時に、タッチパネル3の支援画像表示領域3aには、第1機体位置を示すA点が表示される(#13)。 In response to this click operation, the first aircraft position, which is the aircraft position at that time, is acquired (# 12). At the same time, the point A indicating the position of the first machine is displayed in the support image display area 3a of the touch panel 3 (# 13).
 収穫作業走行にともなって、図2に示されているように、支援画像表示領域3aには、A点からのコンバインの走行軌跡を示す帯状ラインBLが収穫幅でコンバインのアイコンとともに表示される(#14)。 Along with the harvesting work run, as shown in FIG. 2, in the support image display area 3a, a band-shaped line BL showing the run trajectory of the combine from the point A is displayed together with the combine icon at the harvest width ( # 14).
 さらに、支援画像表示領域3aには、正確なティーチング走行を行うために、圃場の畔又は畦に平行な線を示す標識線GLが表示されている。 Further, in the support image display area 3a, a sign line GL indicating a line parallel to the shore or the ridge of the field is displayed in order to perform accurate teaching running.
 もし、収穫作物の植付け条の方位が分かっている場合には、植付け条に平行な線を標識線GLとして表示してもよい。 If the orientation of the planting strip of the harvested crop is known, a line parallel to the planting strip may be displayed as a marker line GL.
 ティーチング走行の終了条件は、第1機体位置からコンバインが所定距離(例えば5m)以上走行すること、あるいは、所定距離の走行に必要な所定時間を経過したかどうかである。ここでは、所定距離以上の走行距離を条件として、十分なティーチング走行が行われたかどうかが判定される(#15)。 The end condition of the teaching run is whether the combine has traveled a predetermined distance (for example, 5 m) or more from the position of the first aircraft, or whether the predetermined time required for traveling the predetermined distance has elapsed. Here, it is determined whether or not sufficient teaching running has been performed on condition that the running distance is equal to or longer than a predetermined distance (# 15).
 十分なティーチング走行を示す条件が満たされると(#15Yes分岐)、タッチパネル3の操作画像表示領域3bに第2ボタン32が表示される(#16)。 When the condition indicating sufficient teaching running is satisfied (# 15Yes branch), the second button 32 is displayed in the operation image display area 3b of the touch panel 3 (# 16).
 運転者が、第2ボタン32をクリックすると(#17Yes分岐)、このクリック操作に応答して、その時点での機体位置である第2機体位置が取得され(#18)、支援画像表示領域3aに表示されている走行軌跡上に第2機体位置を示すB点が表示される(#19)。 When the driver clicks the second button 32 (# 17Yes branch), in response to this click operation, the second aircraft position, which is the aircraft position at that time, is acquired (# 18), and the support image display area 3a Point B indicating the position of the second aircraft is displayed on the traveling locus displayed in (# 19).
 運転者は、支援画像表示領域3aに表示されているA点とB点とその間の走行軌跡とによってティーチング走行を確認することができる。 The driver can confirm the teaching run by the points A and B displayed in the support image display area 3a and the running locus between them.
 さらに、第1機体位置と第2機体位置と結ぶ直線の方位が基準方位として算出され、記憶される(#20)。 Furthermore, the direction of the straight line connecting the position of the first machine and the position of the second machine is calculated and stored as the reference direction (# 20).
 手動操舵での収穫作業走行であるティーチング走行が終了すれば、コンバインは手動操舵から自動操舵への移行が可能となる。自動操舵での自動走行を開始するための操作には、自動操舵開始具71が用いられる。この自動操舵開始具71が操作されたかどうかチェックされる(#30)。 When the teaching run, which is the harvesting work run by manual steering, is completed, the combine will be able to shift from manual steering to automatic steering. The automatic steering starter 71 is used for the operation for starting the automatic running in the automatic steering. It is checked whether or not the automatic steering starter 71 has been operated (# 30).
 機体1が自動操舵を開始すべき位置にあると運転者が判断し、自動操舵開始具71が操作された場合(#30Yes分岐)、図6を用いて説明されたように、その時点の機体位置と基準方位とに基づいて走行経路が決定され、固定される(#31)。そして、この例では、第1操舵モードでの自動操舵が開始される(#32)。 When the driver determines that the aircraft 1 is in the position where the automatic steering should be started and the automatic steering starter 71 is operated (# 30Yes branch), the aircraft at that time is as explained with reference to FIG. The travel route is determined and fixed based on the position and the reference direction (# 31). Then, in this example, automatic steering in the first steering mode is started (# 32).
 自動操舵が開始されると、方向転換などの理由で、自動操舵が中止されるかどうかのチェックが行われる(#33)。 When automatic steering is started, it is checked whether automatic steering is stopped due to reasons such as direction change (# 33).
 自動操舵から手動操舵への移行には、種々の条件があるが、方向転換を行うための操向レバー(非図示)の操作もその1つである。自動操舵が中止されると(#33Yes分岐)、コンバインは手動操舵状態となる(#34)。運転者は、手動操舵により、機体1の方向転換、次の条での収穫作業のための位置合わせなどを行う。 There are various conditions for the transition from automatic steering to manual steering, and one of them is the operation of the steering lever (not shown) for changing direction. When the automatic steering is stopped (# 33Yes branch), the combine is in the manual steering state (# 34). By manual steering, the driver changes the direction of the aircraft 1 and aligns it for the harvesting work in the next section.
 次いで、再び、手動操舵から自動操舵への移行を行うべく、自動操舵開始具71の操作による自動操舵の開始が要求されているかどうかがチェックされる(#35)。 Next, in order to shift from manual steering to automatic steering again, it is checked whether or not the start of automatic steering by the operation of the automatic steering starter 71 is required (# 35).
 自動操舵開始具71の操作により、自動操舵の開始が要求された場合(#35Yes分岐)、ステップ#31にジャンプして、その時点の機体位置と基準方位とに基づいて走行経路が決定され、固定され、自動操舵が開始される。 When the start of automatic steering is requested by the operation of the automatic steering starter 71 (# 35Yes branch), the vehicle jumps to step # 31, and the traveling route is determined based on the aircraft position and the reference direction at that time. It is fixed and automatic steering is started.
 なお、基準方位として異なる方位の基準方位が記憶されている場合には、自動操舵の開始が要求された時点での、機体1の方位に近い方位を有する基準方位が走行経路の決定のために用いられる。もちろん、走行経路の決定のために用いる基準方位を運転者が選択するような構成を採用してもよい。 When the reference direction of a different direction is stored as the reference direction, the reference direction having a direction close to the direction of the aircraft 1 at the time when the start of automatic steering is requested is used for determining the traveling route. Used. Of course, a configuration may be adopted in which the driver selects the reference direction used for determining the traveling route.
 自動操舵の再開は、通常、収穫装置15を上昇させた手動操舵での方向転換走行(非収穫作業走行)に続いて行われる収穫装置15を下降させた収穫作業走行から行われる。 The resumption of automatic steering is usually performed from the harvesting work running in which the harvesting device 15 is lowered following the direction change running (non-harvesting work running) by the manual steering in which the harvesting device 15 is raised.
 このことから、自動操舵開始具71に併用して、あるいは自動操舵開始具71に代えて、収穫装置15などの収穫機器による収穫動作を開始する収穫開始操作具が用いられてもよい。 For this reason, a harvesting start operating tool that starts a harvesting operation by a harvesting device such as a harvesting device 15 may be used in combination with the automatic steering starter 71 or instead of the automatic steering starter 71.
〔第1実施形態の変形例〕
 本発明は、上述の実施形態に例示された構成に限定されるものではなく、以下、本発明の代表的な別実施形態を例示する。
[Modified example of the first embodiment]
The present invention is not limited to the configuration exemplified in the above-described embodiment, and the following will exemplify another typical embodiment of the present invention.
(1)上述の実施形態では、慣性計測モジュール81の計測データに基づいて機体1の方位を算出する機体方位算出部46が備えられていたが、機体位置算出部40によって経時的に算出される機体位置から、機体1の方位が算出される構成を採用してもよい。 (1) In the above-described embodiment, the aircraft orientation calculation unit 46 for calculating the orientation of the aircraft 1 based on the measurement data of the inertial measurement module 81 is provided, but it is calculated over time by the aircraft position calculation unit 40. A configuration may be adopted in which the direction of the aircraft 1 is calculated from the aircraft position.
(2)図2の機能ブロック図で示された各機能部は、他の機能部と合体させてもよいし、1つの機能部を複数の機能部に分離させてもよい。 (2) Each functional unit shown in the functional block diagram of FIG. 2 may be combined with another functional unit, or one functional unit may be separated into a plurality of functional units.
(3)上述の実施形態では、第1機体位置及び第2機体位置は、それぞれ第1ボタン31及び第2ボタン32の操作タイミングでの機体位置であったが、これに代えて、第1ボタン31及び第2ボタン32の操作タイミングの前後における複数の機体位置も含めたそれらの代表値(平均値など)であってもよい。 (3) In the above-described embodiment, the first machine position and the second machine position are the machine positions at the operation timings of the first button 31 and the second button 32, respectively, but instead of this, the first button It may be a representative value (average value, etc.) of a plurality of aircraft positions before and after the operation timing of the 31 and the second button 32.
(4)上述の実施形態では、走行装置11は、クローラ式の左走行機構11aと右走行機構11bとから構成されており、左走行機構11aと右走行機構11bとの速度差により、機体1が操舵されたが、操向輪の操向角度を変えることにより機体1が操舵される走行装置11を採用してもよい。 (4) In the above-described embodiment, the traveling device 11 is composed of a crawler-type left traveling mechanism 11a and a right traveling mechanism 11b, and the aircraft 1 is due to a speed difference between the left traveling mechanism 11a and the right traveling mechanism 11b. However, a traveling device 11 in which the aircraft 1 is steered by changing the steering angle of the steering wheel may be adopted.
(5)上述の実施形態では、ティーチング走行は、収穫作業を行いながら行われたが、収穫作業を行わない状態でティーチング走行を行って、基準方位を算出することも可能である。 (5) In the above-described embodiment, the teaching run is performed while performing the harvesting work, but it is also possible to perform the teaching running without performing the harvesting work and calculate the reference direction.
(6)上述した制御ユニット4の機能部により、コンバイン(収穫機)を制御するためのシステムが構成されてもよい。 (6) A system for controlling the combine (harvester) may be configured by the functional unit of the control unit 4 described above.
〔第2実施形態〕
 本発明の別の実施形態を図9-12に基づいて説明する。上述の実施形態と同様の構成については、同じ符号を付し、詳しい説明を省略する場合がある。
[Second Embodiment]
Another embodiment of the present invention will be described with reference to FIGS. 9-12. The same reference numerals may be given to the same configurations as those of the above-described embodiments, and detailed description thereof may be omitted.
 本実施形態のコンバインは、次の点で上述の実施形態のコンバインと異なる。第2機体位置取得部42が、ティーチング走行管理部42aを含む。以下、詳しく説明する。 The combine of the present embodiment is different from the combine of the above-described embodiment in the following points. The second machine position acquisition unit 42 includes the teaching travel management unit 42a. Hereinafter, it will be described in detail.
 本実施形態では、第1機体位置が取得されることによって始まるティーチング走行において、機体1の一時停車、エンジン停止、後進も許容される。前進だけを許容するティーチング走行に比べて、第2機体位置を許可するための許可条件が多様になる。 In the present embodiment, in the teaching running that starts when the position of the first machine is acquired, the machine 1 is allowed to temporarily stop, stop the engine, and move backward. Compared to teaching running that allows only forward movement, the permission conditions for permitting the position of the second aircraft are more diverse.
 例えば、第1機体位置と第2機体位置との間の走行距離が所定以上であることが許可条件となっている場合、後進距離は無視される。つまり、後進での走行距離や、後進により第1機体位置側に戻った走行距離を補う前進走行距離は、条件判定のための走行距離から除外しなければならない。 For example, if the permission condition is that the mileage between the first aircraft position and the second aircraft position is equal to or greater than a predetermined value, the reverse distance is ignored. That is, the mileage in reverse and the forward mileage that supplements the mileage returned to the position side of the first aircraft by reverse must be excluded from the mileage for determining the condition.
 また、第1機体位置と第2機体位置との間の走行時間が所定以上であることが許可条件となっている場合、機体1の一時的な停車時間、及び、後進での走行時間と後進により第1機体位置側に戻った走行距離を補う前進走行のための走行時間の合計時間は、条件判定のための走行時間から除外しなければならない。 Further, when the permission condition is that the traveling time between the first aircraft position and the second aircraft position is longer than a predetermined time, the temporary stop time of the aircraft 1 and the traveling time and the reverse movement of the aircraft 1 are carried out. The total travel time for forward travel that compensates for the travel distance returned to the position side of the first aircraft must be excluded from the travel time for condition determination.
 このような問題を解決するため、図9に示されるように、第2機体位置取得部42にはティーチング走行管理部42aが含まれている。ティーチング走行管理部42aは、ティーチング走行における特別な走行形態である「機体1の一時停車」、「エンジン停止」、「後進」などにもかかわらず、第2機体位置を確定するための条件が満たされるどうかを判定する。 In order to solve such a problem, as shown in FIG. 9, the second machine position acquisition unit 42 includes a teaching travel management unit 42a. The teaching travel management unit 42a satisfies the conditions for determining the position of the second aircraft despite the special travel modes in teaching travel such as "temporary stop of the aircraft 1", "engine stop", and "reverse". Determine if it is possible.
 エンジン停止等により、第1機体位置の記憶場所が他の記憶場所に退避した場合には、第1機体位置は、エンジン再開後に退避した記憶場所から正規の記憶場所に転送する必要が生じる。このような処理もティーチング走行管理部42aが行う。 When the storage location of the first aircraft position is evacuated to another storage location due to engine stop or the like, it is necessary to transfer the first aircraft position from the evacuated storage location to the regular storage location after restarting the engine. Such processing is also performed by the teaching travel management unit 42a.
 具体的には、第1機体位置取得部41によって取得された第1機体位置は、RAMに割り当てられているメモリ番地に記憶されるが、キーオフ操作等によって電源が遮断される場合には、予め不揮発性メモリの退避領域に退避記憶される。その後、キーオン操作等によって電源が復活すると、第1機体位置は、不揮発性メモリの退避領域から読み出されて、以前のメモリ番地に記憶される。 Specifically, the first machine position acquired by the first machine position acquisition unit 41 is stored in the memory address assigned to the RAM, but when the power is cut off by a key-off operation or the like, it is stored in advance. It is saved and stored in the save area of the non-volatile memory. After that, when the power supply is restored by a key-on operation or the like, the position of the first machine is read from the save area of the non-volatile memory and stored in the previous memory address.
 キーオフ操作等による電源遮断時の第1機体位置の保持には、このような処理以外に、予備バッテリによるRAMの機能維持などもある。いずれにしてもこのようなリカバリー処理により、ティーチング走行中に、キーオフ操作によるエンジン停止および電源遮断が生じても、ティーチング走行は有効となる。 In addition to such processing, maintaining the function of the RAM with a spare battery is also required to maintain the position of the first machine when the power is turned off by a key-off operation or the like. In any case, by such a recovery process, even if the engine is stopped and the power is cut off due to the key-off operation during the teaching running, the teaching running is effective.
 〔自動操舵制御について〕
 図10で示されているように、圃場に進入したコンバインが収穫作業走行の間に行うティーチング走行を通じて第1機体位置(図10ではA点で示されている)と第2機体位置(図10ではB点で示されている)とが取得される。ティーチング走行には、前進走行のみからなる形態や、非前進走行を含む形態など、種々の形態がある。
[About automatic steering control]
As shown in FIG. 10, the first aircraft position (indicated by point A in FIG. 10) and the second aircraft position (indicated by point A in FIG. 10) and the second aircraft position (indicated by point A in FIG. 10) through the teaching run performed by the combine that entered the field during the harvesting work run. Then, (indicated by point B) and is acquired. There are various forms of teaching running, such as a form consisting only of forward running and a form including non-forward running.
 非前進走行には、後進走行状態又は走行停止状態あるいはその両方が含まれる。さらに走行停止状態にはエンジン停止状態またはエンジン駆動状態が含まれている。 Non-forward running includes a reverse running state, a running stopped state, or both. Further, the running stop state includes an engine stop state or an engine drive state.
 図10で示されている走行形態は、前進走行だけを用いた標準的な走行形態である。 The traveling mode shown in FIG. 10 is a standard traveling mode using only forward traveling.
 図11で示されている走行形態は非前進走行形態の1つであり、途中で後進走行(点線矢印で示されている)が行われ、その後、再び前進走行が行われる特別な走行形態である。 The traveling mode shown in FIG. 11 is one of the non-forward traveling modes, which is a special traveling mode in which reverse traveling (indicated by a dotted arrow) is performed in the middle and then forward traveling is performed again. be.
 図12で示されている走行形態も非前進走行形態の1つであり、途中の機体1が停止し(停車)、その後、再び前進走行が行われる特別な走行形態である。停車時には、エンジンはそのまま駆動しているエンジン駆動状態と、エンジンが停止しているエンジン停止状態とがある。両者とも有効なティーチング走行とみなされる。 The traveling mode shown in FIG. 12 is also one of the non-forward traveling modes, which is a special traveling mode in which the aircraft 1 in the middle is stopped (stopped) and then the forward traveling is performed again. When the vehicle is stopped, there are an engine drive state in which the engine is driven as it is and an engine stop state in which the engine is stopped. Both are considered valid teaching runs.
 標準的な走行状態であっても、特別な走行状態であっても、第2機体位置が有効に取得されると、第1機体位置と第2機体位置とを結ぶ直線の方位である基準方位が算出される。 Regardless of whether it is a standard driving condition or a special driving condition, when the second aircraft position is effectively acquired, the reference azimuth is the direction of a straight line connecting the first aircraft position and the second aircraft position. Is calculated.
 本発明の自動走行は、この基準方位、又は、この基準方位に基づいて算出される目標経路としての走行経路に基づいて行われる。 The automatic traveling of the present invention is performed based on this reference direction or a traveling route as a target route calculated based on this reference direction.
 なお、上述した特別な走行状態の全てが有効なティーチング走行とみなされずに、いずれかの特別な走行状態だけが有効なティーチング走行とみなすような構成を採用してもよい。 It should be noted that a configuration may be adopted in which not all of the above-mentioned special running conditions are regarded as effective teaching running, but only one of the special running conditions is regarded as effective teaching running.
 また、第1機体位置及び第2機体位置は、機体1が走行しながら収穫作業を行っているときに取得することもできるし、収穫作業を行っていないときに取得することもできる。さらには、第1機体位置または第2機体位置のいずれかは、機体1が停車して収穫作業を行っているときにも、取得することもできる。 Further, the position of the first machine and the position of the second machine can be acquired when the machine 1 is running and the harvesting work is being performed, or can be obtained when the machine 1 is not performing the harvesting work. Further, either the first machine position or the second machine position can be acquired even when the machine 1 is stopped and the harvesting work is being performed.
 機体1が静止した状態では、衛星測位データに基づく機体位置の算出精度が悪くなることを考慮すれば、第1機体位置及び第2機体位置は、機体1が走行しながら収穫作業を行っているときに取得するのが好ましい。 Considering that the calculation accuracy of the aircraft position based on the satellite positioning data deteriorates when the aircraft 1 is stationary, the first aircraft position and the second aircraft position are harvested while the aircraft 1 is traveling. It is preferable to get it when.
 本実施形態では、収穫作業走行において、所定距離以上の走行距離を条件として、十分なティーチング走行が行われたかどうかが判定される(図8の#15)。その際、上述した標準的な走行形態だけでなく、特別な走行形態も、有効なティーチング走行みなされ、ティーチング走行管理部42aが、それぞれの走行形態に応じて、ティーチング走行の終了条件がみたされているかどうかチェックする。 In the present embodiment, it is determined whether or not sufficient teaching running has been performed in the harvesting work running on condition that the running distance is equal to or longer than a predetermined distance (# 15 in FIG. 8). At that time, not only the above-mentioned standard running mode but also a special running mode is regarded as effective teaching running, and the teaching running management unit 42a meets the end condition of the teaching running according to each running mode. Check if it is.
〔第3実施形態〕
 本発明の別の実施形態を図13-29に基づいて説明する。上述の実施形態と同様の構成については、同じ符号を付し、詳しい説明を省略する場合がある。
[Third Embodiment]
Another embodiment of the present invention will be described with reference to FIGS. 13-29. The same reference numerals may be given to the same configurations as those of the above-described embodiments, and detailed description thereof may be omitted.
 本実施形態のコンバインは、図1に示される第1実施形態の普通型コンバインと同様の構成を備える。そして、本実施形態のコンバインは、図13に示される制御系を備える。
〔制御ユニットの構成〕
 図13に示される制御ユニット230は、コンバインの制御系の中核要素であり、複数のECUの集合体として示されている。
The combine of the present embodiment has the same configuration as the conventional combine of the first embodiment shown in FIG. The combine of the present embodiment includes the control system shown in FIG.
[Control unit configuration]
The control unit 230 shown in FIG. 13 is a core element of the control system of the combine, and is shown as an aggregate of a plurality of ECUs.
 すなわち、制御ユニット230は、第1実施形態の制御ユニット4と同様に、CPU、通信機能、及びストレージ機能(内部記録媒体、または外部記録媒体及び入出力インタフェース)を備えたコンピュータ装置と、所定のコンピュータプログラムとで構成される。このコンピュータプログラムは、コンピュータ装置を、上述した機能部として機能させる。コンピュータプログラムは、コンピュータが読み取り可能な上述の記録媒体に記録されている。このコンピュータプログラムを実行することにより、コンバインにおいて、上述の各機能部に対応するステップを含む方法が実行される。 That is, the control unit 230 is a computer device having a CPU, a communication function, and a storage function (internal recording medium, or external recording medium and input / output interface), and a predetermined computer device, similarly to the control unit 4 of the first embodiment. It consists of a computer program. This computer program causes the computer device to function as the above-mentioned functional unit. The computer program is recorded on the computer-readable recording medium described above. By executing this computer program, a method including a step corresponding to each of the above-mentioned functional parts is executed in the combine.
 制御ユニット230は、自動操向制御が実行される自動操向モードと、自動操向制御が実行されない手動操向モードと、に切換え可能なように構成されている。『自動操向制御』とは、所定の方位に基づいて、後述する直線状の走行目標ラインCを設定し、機体1が走行目標ラインCに沿って走行するように走行装置11を制御することを意味する。 The control unit 230 is configured to be switchable between an automatic steering mode in which automatic steering control is executed and a manual steering mode in which automatic steering control is not executed. "Automatic steering control" is to set a linear traveling target line C, which will be described later, based on a predetermined direction, and control the traveling device 11 so that the aircraft 1 travels along the traveling target line C. Means.
 制御ユニット230は、当該所定の方位として基準方位Bを算出する。また、制御ユニット230は汎用端末VT(タッチパネル式画面端末)と通信可能に構成されている。 The control unit 230 calculates the reference direction B as the predetermined direction. Further, the control unit 230 is configured to be able to communicate with a general-purpose terminal VT (touch panel type screen terminal).
 基準方位Bは、自動操向制御において機体1が地上を直進するべき方位であって、例えば東西南北の何れかを基準とした角度値で管理される。本実施形態では、基準方位Bに沿って、一方向と、一方向と180°反対方向と、の双方向に機体1の走行が可能である。 The reference direction B is the direction in which the aircraft 1 should go straight on the ground in the automatic steering control, and is managed by an angle value based on, for example, either north, south, east, or west. In the present embodiment, the aircraft 1 can travel in one direction and in the direction opposite to one direction by 180 ° along the reference direction B.
 この場合、基準方位Bは、東西南北の何れかを基準とした180°の範囲の角度値で管理されれば十分であるが、基準方位Bが360°の範囲の角度値で管理される構成であっても良い。あるいは、基準方位Bがベクトル値で管理されても良い。 In this case, it is sufficient that the reference direction B is managed by an angle value in the range of 180 ° with respect to any of the north, south, east, and west, but the reference direction B is managed by the angle value in the range of 360 °. It may be. Alternatively, the reference direction B may be managed by a vector value.
 本発明における『基準方位』は、自動操向制御において機体1が地上を直進するべき方位である。本発明では、基準方位Bに沿って、一方向と、一方向と180°反対方向と、の双方向に機体1の走行が可能であるが、基準方位Bに沿って一方向のみの単方向に機体1が走行する構成も、本発明に含まれる。 The "reference direction" in the present invention is the direction in which the aircraft 1 should go straight on the ground in automatic steering control. In the present invention, the aircraft 1 can travel in one direction and in the direction 180 ° opposite to one direction along the reference direction B, but only in one direction along the reference direction B. A configuration in which the machine body 1 travels is also included in the present invention.
 制御ユニット230に、機体位置算出部231と、機体方位算出部232と、基準方位算出部233と、記憶部234と、選択部235と、ライン設定部236と、操向制御部237と、条件判定部238と、が備えられている。第1実施形態と同様に、以下、これらを「機能部」と総称する場合がある。 The control unit 230 includes a machine position calculation unit 231, a machine direction calculation unit 232, a reference direction calculation unit 233, a storage unit 234, a selection unit 235, a line setting unit 236, a steering control unit 237, and conditions. A determination unit 238 and a determination unit 238 are provided. Similar to the first embodiment, these may be collectively referred to as "functional unit" below.
 制御ユニット230に、衛星測位モジュール80、慣性計測モジュール81、始点設定スイッチ221a、終点設定スイッチ221b、の信号が入力される。また、図示はしないが、制御ユニット230に、車速センサ、エンジンのトルクセンサ、障害物検知センサ、等の信号も入力される。 The signals of the satellite positioning module 80, the inertial measurement module 81, the start point setting switch 221a, and the end point setting switch 221b are input to the control unit 230. Although not shown, signals such as a vehicle speed sensor, an engine torque sensor, and an obstacle detection sensor are also input to the control unit 230.
 機体位置算出部231は、衛星測位モジュール80によって出力された測位データに基づいて、機体1の位置座標を経時的に算出する。即ち、機体位置算出部231は、衛星測位を用いて機体位置を算出する。算出された機体1の経時的な位置座標は、機体方位算出部232と操向制御部237とへ送られる。 The aircraft position calculation unit 231 calculates the position coordinates of the aircraft 1 over time based on the positioning data output by the satellite positioning module 80. That is, the aircraft position calculation unit 231 calculates the aircraft position using satellite positioning. The calculated position coordinates of the aircraft 1 over time are sent to the aircraft orientation calculation unit 232 and the steering control unit 237.
 機体方位算出部232は、慣性計測モジュール81によって検出された角速度を積分することによって、機体1の走行方位変化角を算出できる。また、機体方位算出部232は、経時的に算出した機体1の位置座標を時間微分することによって、機体1の走行速度及び走行方位を算出できる。 The aircraft orientation calculation unit 232 can calculate the traveling orientation change angle of the aircraft 1 by integrating the angular velocity detected by the inertial measurement module 81. Further, the aircraft orientation calculation unit 232 can calculate the traveling speed and the traveling orientation of the aircraft 1 by time-differentiating the position coordinates of the aircraft 1 calculated over time.
 即ち、機体方位算出部232は、機体位置算出部231によって経時的に算出された機体1の位置座標と、慣性計測モジュール81によって出力された角速度と、の少なくとも一方に基づいて機体1の走行方位を算出する。 That is, the aircraft orientation calculation unit 232 is based on at least one of the position coordinates of the aircraft 1 calculated over time by the aircraft position calculation unit 231 and the angular velocity output by the inertial measurement module 81. Is calculated.
 機体方位算出部232によって算出された機体1の走行方位は、選択部235と操向制御部237とに送られる。なお、機体方位算出部232は、例えば電子コンパス等に基づいて機体1の走行方位を算出しても良い。 The traveling direction of the aircraft 1 calculated by the aircraft orientation calculation unit 232 is sent to the selection unit 235 and the steering control unit 237. The aircraft orientation calculation unit 232 may calculate the traveling orientation of the aircraft 1 based on, for example, an electronic compass.
 基準方位Bを設定するための設定スイッチ221が備えられている。設定スイッチ221は、例えば搭乗部12に設けられた汎用端末VT(例えば液晶の画面、OLEDの画面等のタッチ操作可能な画面)に表示されたアイコンボタンであって、始点位置を設定する始点設定スイッチ221aと、終点位置を設定する終点設定スイッチ221bと、を有する。 A setting switch 221 for setting the reference direction B is provided. The setting switch 221 is, for example, an icon button displayed on a general-purpose terminal VT (for example, a touch-operable screen such as a liquid crystal screen or an OLED screen) provided on the boarding unit 12, and is a start point setting for setting a start point position. It has a switch 221a and an end point setting switch 221b for setting an end point position.
 手動操向モードの状態で始点設定スイッチ221aの操作が可能であって、この状態で機体1が走行し、始点設定スイッチ221aが操作されると、このタイミングにおける機体1の位置Aaが基準方位算出部233へ送られる。位置Aaは、始点設定スイッチ221aが操作されたタイミングで、機体位置算出部231によって算出される。なお、始点設定スイッチ221aが操作される時点において、終点設定スイッチ221bの操作は不能である。 When the start point setting switch 221a can be operated in the manual steering mode, the aircraft 1 runs in this state, and the start point setting switch 221a is operated, the position Aa of the aircraft 1 at this timing calculates the reference direction. It is sent to the section 233. The position Aa is calculated by the machine body position calculation unit 231 at the timing when the start point setting switch 221a is operated. At the time when the start point setting switch 221a is operated, the end point setting switch 221b cannot be operated.
 搭乗者が始点設定スイッチ221aを操作した後、機体1が走行を継続して位置Aaから予め設定された距離以上に離れると、終点設定スイッチ221bの操作が可能となる。 After the passenger operates the start point setting switch 221a, when the aircraft 1 continues to travel and is separated from the position Aa by a distance beyond a preset distance, the end point setting switch 221b can be operated.
 なお、搭乗者が始点設定スイッチ221aを操作した後で機体1が走行している間、始点設定スイッチ221aは操作可能であっても良いし、始点設定スイッチ221aは操作不能であっても良い。 The start point setting switch 221a may be operable or the start point setting switch 221a may be inoperable while the aircraft 1 is traveling after the passenger operates the start point setting switch 221a.
 始点設定スイッチ221aが操作可能である場合、搭乗者が始点設定スイッチ221aを改めて操作すると、このタイミングにおける機体1の位置Aaが、再度、基準方位算出部233へ送られても良い。 When the start point setting switch 221a can be operated, when the passenger operates the start point setting switch 221a again, the position Aa of the aircraft 1 at this timing may be sent to the reference direction calculation unit 233 again.
 始点設定スイッチ221aが操作不能である場合、始点設定スイッチ221aに代わって、位置Aaの記憶を消去して基準方位Bの設定を中止するボタンが表示されても良い。 When the start point setting switch 221a is inoperable, a button for erasing the memory of the position Aa and canceling the setting of the reference direction B may be displayed instead of the start point setting switch 221a.
 終点設定スイッチ221bが操作されると、このタイミングにおける機体1の位置Abが基準方位算出部233へ送られる。位置Abは、終点設定スイッチ221bが操作されたタイミングで、機体位置算出部231によって算出される。 When the end point setting switch 221b is operated, the position Ab of the aircraft 1 at this timing is sent to the reference direction calculation unit 233. The position Ab is calculated by the aircraft position calculation unit 231 at the timing when the end point setting switch 221b is operated.
 そして、位置Aa,Abに基づいて、作業走行のための基準方位Bが基準方位算出部233によって算出され、算出された基準方位Bが記憶部234に記憶される。 Then, based on the positions Aa and Ab, the reference direction B for the work run is calculated by the reference direction calculation unit 233, and the calculated reference direction B is stored in the storage unit 234.
 即ち、基準方位算出部233は、圃場の走行中に算出された複数の機体位置に基づいて基準方位Bを算出する。 That is, the reference direction calculation unit 233 calculates the reference direction B based on the positions of the plurality of aircraft calculated while the field is running.
 また、記憶部234は、作業走行のための複数の基準方位Bを記憶可能に構成されている。なお、記憶部234は、基準方位Bを記憶するものに限定されず、例えば、位置Aa,Abを記憶するものであっても良い。 Further, the storage unit 234 is configured to be able to store a plurality of reference directions B for work running. The storage unit 234 is not limited to the one that stores the reference direction B, and may be, for example, the one that stores the positions Aa and Ab.
 また、制御ユニット230は方位ずれ設定部239と接続されている。方位ずれ設定部239は、人為操作に基づいて方位ずれ量ΔBを設定可能に構成されている。 Further, the control unit 230 is connected to the directional deviation setting unit 239. The directional deviation setting unit 239 is configured so that the directional deviation amount ΔB can be set based on an artificial operation.
 方位ずれ設定部239は、例えば搭乗部12に設けられた汎用端末VTに表示されたアイコンボタンであるが、ダイヤル式のスイッチであっても良いし、レバーであっても良い。 The directional deviation setting unit 239 is, for example, an icon button displayed on the general-purpose terminal VT provided on the boarding unit 12, but may be a dial-type switch or a lever.
 そして基準方位算出部233は、算出済みの基準方位Bから『所定の方位』だけ方位ずれした別の基準方位Bを算出可能に構成されている。『所定の方位』は、人為操作によって設定される方位ずれ量ΔBである。 Then, the reference direction calculation unit 233 is configured to be able to calculate another reference direction B that is deviated by a "predetermined direction" from the calculated reference direction B. The "predetermined direction" is the direction deviation amount ΔB set by human operation.
 選択部235は複数の基準方位Bのうちの一つを選択する。 The selection unit 235 selects one of the plurality of reference directions B.
 まず、選択部235は、機体方位算出部232から機体1の走行方位を取得する。 First, the selection unit 235 acquires the traveling direction of the aircraft 1 from the aircraft orientation calculation unit 232.
 そして選択部235は、記憶部234に記憶された複数の基準方位Bのうち、機体1の走行方位に最も近い基準方位Bを選択する。 Then, the selection unit 235 selects the reference direction B closest to the traveling direction of the aircraft 1 from the plurality of reference directions B stored in the storage unit 234.
 条件判定部238は、例えば、主変速レバー222、副変速スイッチ223、刈取脱穀レバー224、昇降検知部225、脱穀クラッチ226、刈取クラッチ227からの信号を受け取り、これらの信号に基づいて自動操向制御のための『所定の条件』を判定可能に構成されている。 The condition determination unit 238 receives signals from, for example, the main shift lever 222, the auxiliary shift switch 223, the cutting and threshing lever 224, the elevating detection unit 225, the threshing clutch 226, and the cutting clutch 227, and automatically steers based on these signals. It is configured so that "predetermined conditions" for control can be determined.
 条件判定部238の判定結果は、ライン設定部236へ送られる。条件判定部238の処理の詳細に関しては〔開始判定ルーチンについて〕で後述する。 The determination result of the condition determination unit 238 is sent to the line setting unit 236. The details of the processing of the condition determination unit 238 will be described later in [About the start determination routine].
 主変速レバー222、副変速スイッチ223、刈取脱穀レバー224、昇降検知部225、脱穀クラッチ226、刈取クラッチ227に関しても、〔開始判定ルーチンについて〕で纏めて後述する。 The main shift lever 222, the auxiliary shift switch 223, the cutting and threshing lever 224, the elevating detection unit 225, the threshing clutch 226, and the cutting clutch 227 will also be described later in [About the start determination routine].
 ライン設定部236は、機体位置算出部231によって算出された最新の機体1の位置座標を常時取得する。 The line setting unit 236 constantly acquires the latest position coordinates of the aircraft 1 calculated by the aircraft position calculation unit 231.
 また、ライン設定部236は、条件判定部238から判定結果を取得する。そして、当該判定結果が自動操向制御を許容するものであれば、ライン設定部236は、当該最新の位置座標に基づいて、収穫装置15の左右中心部から、記憶部234によって選択された基準方位Bに沿って前方に延びる走行目標ラインCを常時算出する。 Further, the line setting unit 236 acquires the determination result from the condition determination unit 238. Then, if the determination result allows automatic steering control, the line setting unit 236 is a reference selected by the storage unit 234 from the left and right center portions of the harvesting device 15 based on the latest position coordinates. The traveling target line C extending forward along the direction B is constantly calculated.
 制御ユニット230が自動操向モードに切換えられると、ライン設定部236は、その時点で算出されている走行目標ラインCを、機体1が走行すべき走行目標ラインCとして固定(設定)する。 When the control unit 230 is switched to the automatic steering mode, the line setting unit 236 fixes (sets) the travel target line C calculated at that time as the travel target line C to be traveled by the aircraft 1.
 この設定された走行目標ラインCは、自動操向モードが解除されるまで固定される。走行目標ラインCは、機体1から機体前方へ延び、かつ、記憶部234によって選択された基準方位Bと平行である。 This set travel target line C is fixed until the automatic steering mode is canceled. The travel target line C extends from the aircraft 1 to the front of the aircraft and is parallel to the reference direction B selected by the storage unit 234.
 即ち、ライン設定部236は、選択された基準方位Bに基づいて走行目標ラインCを設定する。 That is, the line setting unit 236 sets the travel target line C based on the selected reference direction B.
 自動操向モード中に、搭乗者が、操向レバー(不図示)を操作したり、主変速レバー222を停止位置に操作したりすると、制御ユニット230が自動操向モードから手動操向モードに切換えられる。 When the passenger operates the steering lever (not shown) or the main shift lever 222 to the stop position during the automatic steering mode, the control unit 230 changes from the automatic steering mode to the manual steering mode. It can be switched.
 制御ユニット230が自動操向モードから手動操向モードに切換えられると、ライン設定部236は走行目標ラインCの設定を解除する。 When the control unit 230 is switched from the automatic steering mode to the manual steering mode, the line setting unit 236 cancels the setting of the traveling target line C.
 なお、ライン設定部236が、制御ユニット230が自動操向モードに切換えられたときに走行目標ラインCを算出・設定するよう構成されてもよい。 The line setting unit 236 may be configured to calculate and set the travel target line C when the control unit 230 is switched to the automatic steering mode.
 操向制御部237は、走行目標ラインCに対する機体1の機体横方向における位置ズレ量を算出できる。 The steering control unit 237 can calculate the amount of positional deviation of the aircraft 1 in the lateral direction with respect to the traveling target line C.
 また、操向制御部237は、機体1の走行方位と、記憶部234によって選択された基準方位Bと、の角度偏差、即ち方位ズレを算出できる。 Further, the steering control unit 237 can calculate the angle deviation between the traveling direction of the aircraft 1 and the reference direction B selected by the storage unit 234, that is, the direction deviation.
 制御ユニット230が自動操向モードに設定されているとき、操向制御部237は、機体位置算出部231からの機体位置情報と、機体方位算出部232からの方位情報と、に基づいて、機体1が走行目標ラインCに沿って走行するように、走行装置11を制御する。 When the control unit 230 is set to the automatic steering mode, the steering control unit 237 is based on the aircraft position information from the aircraft position calculation unit 231 and the directional information from the aircraft orientation calculation unit 232. The traveling device 11 is controlled so that 1 travels along the traveling target line C.
〔基準方位の算出について〕
 圃場の収穫作業を行う場合、まず、搭乗者(監視者であっても良い、以下同じ)は、コンバインを手動で操作し、圃場内の外周領域において、圃場の外周辺、即ち畦際に沿って周囲刈り走行(作業走行の一例)しながら収穫を行う。
[Calculation of reference direction]
When harvesting a field, first, the passenger (which may be a watcher, the same shall apply hereinafter) manually manipulates the combine to, in the outer perimeter area of the field, along the outer perimeter of the field, i.e. along the ridge. Harvesting is carried out while mowing the surrounding area (an example of work driving).
 この周囲刈り走行の領域は、コンバインが後工程で往復走行しながら圃場内側領域(例えば図23及び図24の作業対象領域CA)の作物を収穫する際に、機体1の旋回スペースとなる。このことから、当該旋回スペースは広く確保されることが望ましい。 This peripheral mowing area becomes a turning space for the machine 1 when the combine harvests crops in the field inner area (for example, the work target area CA in FIGS. 23 and 24) while reciprocating in the subsequent process. For this reason, it is desirable that the turning space be secured widely.
 このため、搭乗者は、圃場の外周領域でコンバインを2~3周走行させ、コンバインの収穫幅の2~3倍程度の周囲刈り走行の領域を旋回スペースとして確保する。 For this reason, the passenger runs the combine two to three laps in the outer peripheral area of the field, and secures an area of about two to three times the harvest width of the combine as a turning space.
 基準方位Bの算出は、圃場内の外周領域における周囲刈り走行と一緒に行われる。図14に、基準方位Bの算出の順序がフローチャートで示される。 The calculation of the reference direction B is performed together with the peripheral mowing running in the outer peripheral region in the field. FIG. 14 is a flowchart showing the order of calculation of the reference direction B.
 まず、終点設定スイッチ221bが自動的に操作不能状態に切換えられる(ステップ#101)。 First, the end point setting switch 221b is automatically switched to the inoperable state (step # 101).
 本実施形態では、始点設定スイッチ221a及び終点設定スイッチ221bが汎用端末VTのアイコンボタンである。 In this embodiment, the start point setting switch 221a and the end point setting switch 221b are icon buttons of the general-purpose terminal VT.
 終点設定スイッチ221bの操作不能状態とは、例えば、終点設定スイッチ221bのアイコンボタンが汎用端末VTに表示されない状態(アイコンボタンのグレーアウトも含まれる)であったり、終点設定スイッチ221bのアイコンボタンが汎用端末VTに表示されていても搭乗者等の操作が反映されない状態であったりする。 The inoperable state of the end point setting switch 221b is, for example, a state in which the icon button of the end point setting switch 221b is not displayed on the general-purpose terminal VT (including the gray out of the icon button), or the icon button of the end point setting switch 221b is general purpose. Even if it is displayed on the terminal VT, the operation of the passenger etc. may not be reflected.
 搭乗者が圃場の畦際にコンバインを移動させ、圃場の畦際に沿って直進(または略直進)を開始する際に、搭乗者は始点設定スイッチ221aを操作する(ステップ#102)。 When the passenger moves the combine to the ridge of the field and starts going straight (or substantially straight) along the ridge of the field, the passenger operates the start point setting switch 221a (step # 102).
 なお、本実施形態で『操作』とは、アイコンボタンである始点設定スイッチ221a及び終点設定スイッチ221bのアイコン操作も含まれる。 In the present embodiment, the "operation" includes the icon operation of the start point setting switch 221a and the end point setting switch 221b, which are icon buttons.
 始点設定スイッチ221aが操作されると(ステップ#102:Yes)、機体1の位置座標として位置Aaが記憶される(ステップ#103)。位置Aaは、始点設定スイッチ221aが操作されたタイミングで、機体位置算出部231によって算出された機体1の位置座標である。 When the start point setting switch 221a is operated (step # 102: Yes), the position Aa is stored as the position coordinates of the machine body 1 (step # 103). The position Aa is the position coordinates of the machine 1 calculated by the machine position calculation unit 231 at the timing when the start point setting switch 221a is operated.
 そして、搭乗者が圃場の畦際の一辺に沿ってコンバインを直進(または略直進)させながら作業走行を行う。この間、機体1が位置Aaから予め設定された距離以上に離れたかどうかが、基準方位算出部233によって判定される(ステップ#104)。 Then, the passenger runs the work while making the combine go straight (or almost straight) along one side of the ridge of the field. During this time, whether or not the aircraft 1 is separated from the position Aa by a preset distance or more is determined by the reference direction calculation unit 233 (step # 104).
 『予め設定された距離』は、例えば位置Aaから5メートルである。 The "preset distance" is, for example, 5 meters from the position Aa.
 機体1が位置Aaから予め設定された距離以上に離れていなければ(ステップ#104:No)、ステップ#109の処理が行われる。 If the aircraft 1 is not farther than the preset distance from the position Aa (step # 104: No), the process of step # 109 is performed.
 ステップ#109は、終点設定スイッチ221bが操作可能状態である場合に、終点設定スイッチ221bを操作不能状態に切換える処理である。つまり、機体1が位置Aaから予め設定された距離以上に離れていなければ(ステップ#104:No)、終点設定スイッチ221bの操作不能状態が保持され、搭乗者は終点設定スイッチ221bを操作できない。 Step # 109 is a process of switching the end point setting switch 221b to the inoperable state when the end point setting switch 221b is in the operable state. That is, unless the aircraft 1 is farther than the preset distance from the position Aa (step # 104: No), the inoperable state of the end point setting switch 221b is maintained, and the passenger cannot operate the end point setting switch 221b.
 機体1が位置Aaから予め設定された距離以上に離れていれば(ステップ#104:Yes)、終点設定スイッチ221bが操作可能状態に切換えられる(ステップ#105)、このとき、終点設定スイッチ221bが既に操作可能状態であれば、終点設定スイッチ221bの操作可能状態が保持される。 If the aircraft 1 is farther than the preset distance from the position Aa (step # 104: Yes), the end point setting switch 221b is switched to the operable state (step # 105), at this time, the end point setting switch 221b is set. If it is already in an operable state, the operable state of the end point setting switch 221b is maintained.
 そして、終点設定スイッチ221bが操作されたかどうかが判定される(ステップ#106)。 Then, it is determined whether or not the end point setting switch 221b has been operated (step # 106).
 終点設定スイッチ221bが操作されなければ(ステップ#106:No)、ステップ#104~#105の処理が繰り返される。 If the end point setting switch 221b is not operated (step # 106: No), the processes of steps # 104 to # 105 are repeated.
 このとき、例えばコンバインが後進走行する等の要因によって、機体1が位置Aaから予め設定された距離以上に離れなくなると(ステップ#104:No)、終点設定スイッチ221bが再び操作不能状態に切換えられる(ステップ#109)。 At this time, if the aircraft 1 does not move beyond the preset distance from the position Aa due to factors such as the combine traveling backward (step # 104: No), the end point setting switch 221b is switched to the inoperable state again. (Step # 109).
 終点設定スイッチ221bが操作されると(ステップ#106:Yes)、機体1の位置座標として位置Abが記憶される(ステップ#107)。位置Abは、終点設定スイッチ221bが操作されたタイミングで、機体位置算出部231によって算出された機体1の位置座標である。 When the end point setting switch 221b is operated (step # 106: Yes), the position Ab is stored as the position coordinates of the aircraft 1 (step # 107). The position Ab is the position coordinates of the machine 1 calculated by the machine position calculation unit 231 at the timing when the end point setting switch 221b is operated.
 このように、搭乗者が圃場の畦際の一辺に沿ってコンバインを直進(または略直進)させながら作業走行を行い、始点設定スイッチ221a及び終点設定スイッチ221bを操作することによって、位置Aa,Abが取得される。 In this way, the passenger runs the work while moving the combine straight (or substantially straight) along one side of the ridge of the field, and operates the start point setting switch 221a and the end point setting switch 221b to operate the positions Aa and Ab. Is obtained.
 位置Aa,Abが取得されると、基準方位算出部233は位置Aa,Abの二点間を結ぶ直線の方位として基準方位Bを算出する(ステップ#108)。 When the positions Aa and Ab are acquired, the reference direction calculation unit 233 calculates the reference direction B as the direction of the straight line connecting the two points of the positions Aa and Ab (step # 108).
 即ち、基準方位算出部233は、機体位置算出部231によって算出された二つの機体位置を結ぶ直線の方位を基準方位Bとして算出する。また、ステップ#108において基準方位算出部233は算出済みの基準方位Bを記憶部234に記憶する。これにより、基準方位Bの算出処理が完了する。 That is, the reference direction calculation unit 233 calculates the direction of the straight line connecting the two machine positions calculated by the machine position calculation unit 231 as the reference direction B. Further, in step # 108, the reference direction calculation unit 233 stores the calculated reference direction B in the storage unit 234. As a result, the calculation process of the reference direction B is completed.
 上述のステップ#101からステップ#108までの処理を繰り返し行うことによって、基準方位算出部233は複数の基準方位Bを取得可能に構成されている。 By repeating the above-mentioned processes from step # 101 to step # 108, the reference direction calculation unit 233 is configured to be able to acquire a plurality of reference directions B.
 例えば、搭乗者が、圃場の別の畦際にコンバインを移動させ、始点設定スイッチ221aを操作して当該別の畦際の一辺に沿ってコンバインを直進(または略直進)させながら作業走行を行って、その後、終点設定スイッチ221bを操作する。このとき、基準方位算出部233は、ステップ#101からステップ#108までの処理を再度行い、別の基準方位Bを算出する。 For example, the passenger moves the combine to another ridge in the field and operates the start point setting switch 221a to drive the combine straight (or substantially straight) along one side of the other ridge. After that, the end point setting switch 221b is operated. At this time, the reference direction calculation unit 233 performs the processes from step # 101 to step # 108 again to calculate another reference direction B.
 図15に示される例では、圃場の畦際に沿って1周分の周囲刈り走行が行われ、複数の基準方位B1,B2,B3,B4が基準方位算出部233によって算出され、記憶部234に、方位の夫々異なる複数の基準方位B1,B2,B3,B4が記憶されている。位置A1,A2に基づいて基準方位B1が算出され、位置A3,A4に基づいて基準方位B2が算出され、位置A5,A6に基づいて基準方位B3が算出され、位置A7,A8に基づいて基準方位B4が算出されている。 In the example shown in FIG. 15, one round of peripheral cutting is performed along the ridge of the field, and a plurality of reference directions B1, B2, B3, and B4 are calculated by the reference direction calculation unit 233, and the storage unit 234 is used. A plurality of reference directions B1, B2, B3, and B4 having different directions are stored in the storage. The reference direction B1 is calculated based on the positions A1 and A2, the reference direction B2 is calculated based on the positions A3 and A4, the reference direction B3 is calculated based on the positions A5 and A6, and the reference direction B3 is calculated based on the positions A7 and A8. Direction B4 has been calculated.
 位置A1,A3,A5,A7は始点設定スイッチ221aが操作されたタイミングにおける位置Aa(図13及び図14参照)であって、位置A2,A4,A6,A8は終点設定スイッチ221bが操作されたタイミングにおける位置Ab(図13及び図14参照)である。 Positions A1, A3, A5, and A7 are positions Aa (see FIGS. 13 and 14) at the timing when the start point setting switch 221a is operated, and positions A2, A4, A6, and A8 are positions A8 where the end point setting switch 221b is operated. Position Ab at the timing (see FIGS. 13 and 14).
 即ち、基準方位算出部233は、圃場の外周領域における周回走行中に算出された機体位置に基づいて基準方位Bを算出する。このとき、基準方位算出部233は、圃場の外周辺の延びる方位に沿う複数の基準方位Bを算出する。 That is, the reference direction calculation unit 233 calculates the reference direction B based on the aircraft position calculated during the orbiting in the outer peripheral region of the field. At this time, the reference direction calculation unit 233 calculates a plurality of reference directions B along the extending directions of the outer periphery of the field.
 換言すると、基準方位算出部233は、圃場の外周領域における人為操作での周回走行中に算出された機体位置に基づいて、圃場の外周辺の延びる方位に沿う複数の基準方位Bを算出する。 In other words, the reference direction calculation unit 233 calculates a plurality of reference directions B along the extending direction of the outer periphery of the field based on the aircraft position calculated during the orbital running by the artificial operation in the outer peripheral region of the field.
 位置A1は本発明の『第一地点』であって、位置A2は本発明の『第二地点』である。また、基準方位B1は本発明の『第一基準方位』である。即ち、基準方位算出部233は、圃場の外周領域における位置A1と位置A2とに亘る二点間走行で位置A1と位置A2との夫々で算出された機体位置に基づいて複数の基準方位Bの一つとして基準方位B1を算出する。 Position A1 is the "first point" of the present invention, and position A2 is the "second point" of the present invention. Further, the reference direction B1 is the "first reference direction" of the present invention. That is, the reference directional direction calculation unit 233 has a plurality of reference directional directions B based on the aircraft positions calculated at the positions A1 and A2 in the two-point traveling over the positions A1 and A2 in the outer peripheral region of the field. The reference direction B1 is calculated as one.
 位置A3は本発明の『第三地点』であって、位置A4は本発明の『第四地点』である。また、基準方位B2は本発明の『第二基準方位』である。即ち、基準方位算出部233は、位置A1と位置A2とに亘る走行後に、外周領域において位置A1と位置A2との何れとも異なる位置A3と位置A4とに亘る二点間走行で位置A3と位置A4との夫々で算出された機体位置に基づいて複数の基準方位Bの一つとして基準方位B2を算出する。 Position A3 is the "third point" of the present invention, and position A4 is the "fourth point" of the present invention. Further, the reference direction B2 is the "second reference direction" of the present invention. That is, after traveling over the position A1 and the position A2, the reference direction calculation unit 233 reaches the position A3 and the position in the two-point traveling over the positions A3 and the position A4 which are different from the positions A1 and A2 in the outer peripheral region. The reference direction B2 is calculated as one of the plurality of reference directions B based on the aircraft positions calculated for each of A4.
 本実施形態では、図15に示されるように、位置A1,A2に基づいて基準方位B1が算出され、位置A3,A4に基づいて基準方位B2が算出されているが、この実施形態に限定されない。例えば、方位ずれ設定部239の人為操作によって90度の方位ずれ量ΔBが設定され、基準方位算出部233は、算出済みの基準方位B1から90度だけ方位ずれした基準方位B2を算出しても良い。つまり、位置A1,A2に基づいて基準方位B1が算出されると、位置A3,A4に亘る二点間走行を行わなくても、基準方位B1に対して90度だけ方位ずれした基準方位B2が自動的に算出される構成であっても良い。 In the present embodiment, as shown in FIG. 15, the reference direction B1 is calculated based on the positions A1 and A2, and the reference direction B2 is calculated based on the positions A3 and A4, but the present embodiment is not limited to this embodiment. .. For example, even if the orientation deviation amount ΔB of 90 degrees is set by the artificial operation of the orientation deviation setting unit 239, and the reference orientation calculation unit 233 calculates the reference orientation B2 that is offset by 90 degrees from the calculated reference orientation B1. good. That is, when the reference direction B1 is calculated based on the positions A1 and A2, the reference direction B2 deviated by 90 degrees from the reference direction B1 without traveling between two points over the positions A3 and A4. The configuration may be calculated automatically.
〔自動操向制御について〕
 基準方位Bが記憶部234に記憶された後、自動操向制御の前に、人の操作に応じて図16に示されるような判定処理が行われる。
[About automatic steering control]
After the reference direction B is stored in the storage unit 234, a determination process as shown in FIG. 16 is performed according to a human operation before the automatic steering control.
 まず、機体位置算出部231によって算出された機体1の位置が位置Paとして記憶される(ステップ#111)。 First, the position of the machine 1 calculated by the machine position calculation unit 231 is stored as the position Pa (step # 111).
 続いて、自動操向制御のための所定の条件が満たされているかどうかが判定される(ステップ#112)。 Subsequently, it is determined whether or not the predetermined conditions for automatic steering control are satisfied (step # 112).
 自動操向制御のための所定の条件が満たされているか否かは、図25に示される開始判定ルーチンによって判定される。 Whether or not the predetermined conditions for automatic steering control are satisfied is determined by the start determination routine shown in FIG. 25.
 この開始判定ルーチンは、ステップ#112の処理で呼び出されるサブルーチンであって、条件判定部238によって処理される。 This start determination routine is a subroutine called in the process of step # 112 and is processed by the condition determination unit 238.
 開始判定ルーチンは、自動操向制御のための所定の条件が満たされていれば、ステップ#112にYesの戻り値を返す。 The start determination routine returns the return value of Yes to step # 112 if a predetermined condition for automatic steering control is satisfied.
 また、開始判定ルーチンは、自動操向制御のための所定の条件が満たされていなければ、ステップ#112にNoの戻り値を返す。 Further, the start determination routine returns a return value of No to step # 112 if a predetermined condition for automatic steering control is not satisfied.
 図25に示される開始判定ルーチンに関しては〔開始判定ルーチンについて〕で後述する。 The start determination routine shown in FIG. 25 will be described later in [About the start determination routine].
 開始判定ルーチンからステップ#112にNoの戻り値が返されると(ステップ#112:No)、ステップ#111~#112の処理が繰り返され、位置Paが更新され続ける。 When the return value of No is returned to step # 112 from the start determination routine (step # 112: No), the processes of steps # 111 to # 112 are repeated, and the position Pa is continuously updated.
 開始判定ルーチンからステップ#112にYesの戻り値が返されると(ステップ#112:Yes)、選択部235が、機体1の走行方位を機体方位算出部232から取得する(ステップ#113)。 When the return value of Yes is returned to step # 112 from the start determination routine (step # 112: Yes), the selection unit 235 acquires the traveling direction of the aircraft 1 from the aircraft orientation calculation unit 232 (step # 113).
 そして選択部235は、複数の基準方位Bのうち機体1の走行方位に最も近い基準方位Bを選択する(ステップ#114)。 Then, the selection unit 235 selects the reference direction B closest to the traveling direction of the aircraft 1 among the plurality of reference directions B (step # 114).
 図17に示される例では、機体1の走行方位が基準方位B1に沿っていることから、選択部235は、複数の基準方位Bのうちの基準方位B1を選択する。 In the example shown in FIG. 17, since the traveling direction of the aircraft 1 is along the reference direction B1, the selection unit 235 selects the reference direction B1 from the plurality of reference directions B.
 そして、ライン設定部236(または選択部235)は、機体1の走行方位と基準方位Bとの差分Δθを算出し(ステップ#115)、差分Δθが予め設定された閾値以内(例えば5°以内)かどうかを判定する(ステップ#116)。 Then, the line setting unit 236 (or selection unit 235) calculates the difference Δθ between the traveling direction of the aircraft 1 and the reference direction B (step # 115), and the difference Δθ is within a preset threshold value (for example, within 5 °). ) (Step # 116).
 差分Δθが予め設定された閾値よりも大きければ(ステップ#116:No)、ステップ#111~#115の処理が繰り返され、位置Paが更新され続ける。 If the difference Δθ is larger than the preset threshold value (step # 116: No), the processes of steps # 111 to # 115 are repeated, and the position Pa is continuously updated.
 このとき、ステップ#114において同じ基準方位Bが繰り返し選択される場合が考えられるが、この場合には選択部235の選択が保持される。 At this time, the same reference direction B may be repeatedly selected in step # 114, but in this case, the selection of the selection unit 235 is retained.
 また、この間に機体1が旋回し、機体1の走行方位に最も近い基準方位Bが他の基準方位Bになってしまうと、選択部235は当該他の基準方位Bを選択する。 Further, if the machine 1 turns during this period and the reference direction B closest to the traveling direction of the machine 1 becomes another reference direction B, the selection unit 235 selects the other reference direction B.
 差分Δθが予め設定された閾値以内であれば(ステップ#116:Yes)、ライン設定部236は、ステップ#111で記憶された位置Paから予め設定された距離以上に機体位置が離れたかどうかを判定する(ステップ#117)。 If the difference Δθ is within the preset threshold value (step # 116: Yes), the line setting unit 236 determines whether or not the aircraft position is separated from the position Pa stored in step # 111 by a distance longer than the preset distance. Judgment (step # 117).
 ステップ#117の判定がNoであれば、ステップ#112~#117の処理が繰り返される。このとき、ステップ#111の処理は行われずに位置Paは更新されない。この状態で機体1が前進すると、機体位置と、ステップ#111で記憶された位置Paと、の離間距離が大きくなる。 If the determination in step # 117 is No, the processes in steps # 112 to # 117 are repeated. At this time, the process of step # 111 is not performed and the position Pa is not updated. When the machine body 1 moves forward in this state, the separation distance between the machine body position and the position Pa stored in step # 111 increases.
 そして、ステップ#117の判定がYesになると、制御ユニット230が自動操向モードに移行し、操向制御部237による自動操向制御が行われる(ステップ#118)。 Then, when the determination in step # 117 becomes Yes, the control unit 230 shifts to the automatic steering mode, and the steering control unit 237 performs automatic steering control (step # 118).
 以上の説明から理解されるように、操向制御部237は、所定の条件が満たされており、かつ、選択部235によって選択された基準方位Bに沿って機体1が所定距離に亘って直進したと判定した場合、走行装置11を自動的に操向制御可能な状態となる。 As can be understood from the above description, in the steering control unit 237, the aircraft 1 travels straight over a predetermined distance along the reference direction B selected by the selection unit 235 and the predetermined conditions are satisfied. If it is determined that the operation has been performed, the traveling device 11 is automatically steered and controlled.
 制御ユニット230が自動操向モードに移行すると、ライン設定部236は、基準方位Bと平行な直線状の走行目標ラインCを機体1の前方に設定する。 When the control unit 230 shifts to the automatic steering mode, the line setting unit 236 sets a linear traveling target line C parallel to the reference direction B in front of the aircraft 1.
 自動操向モードの移行後において、機体1の位置情報が機体位置算出部231によって経時的に算出されるとともに、相対的な方位変化角が機体方位算出部232によって経時的に算出される。 After the transition to the automatic steering mode, the position information of the aircraft 1 is calculated over time by the aircraft position calculation unit 231, and the relative directional change angle is calculated over time by the aircraft orientation calculation unit 232.
 そして、操向制御部237は、走行目標ラインCに対する機体1の機体横方向の位置ズレ量と、基準方位Bと機体1の走行方位との方位ズレ角度と、を算出し、機体1が走行目標ラインCに沿って走行するように、走行装置11を制御する。 Then, the steering control unit 237 calculates the amount of lateral displacement of the aircraft 1 with respect to the travel target line C and the orientation deviation angle between the reference direction B and the travel direction of the aircraft 1, and the aircraft 1 travels. The traveling device 11 is controlled so as to travel along the target line C.
 上述したように、周囲刈り走行の領域は後工程でコンバインの旋回スペースとして用いられるため、コンバインの周囲刈り走行は2~3周に亘って行われる。 As described above, since the area of the peripheral mowing run is used as the turning space of the combine in the subsequent process, the peripheral mowing run of the combine is performed over 2 to 3 laps.
 本実施形態では、圃場の外周辺に沿って1周の周囲刈り走行が行われて複数の基準方位Bが算出され(図15参照)、基準方位Bの夫々は記憶部234に記憶されている。このため、これらの基準方位Bの夫々は、2周目以降の周囲刈り走行に利用可能である。 In the present embodiment, one round of mowing is performed along the outer periphery of the field to calculate a plurality of reference directions B (see FIG. 15), and each of the reference directions B is stored in the storage unit 234. .. Therefore, each of these reference directions B can be used for the peripheral mowing run after the second lap.
 図17では、位置A1,A2に亘る刈跡に隣接して周囲刈り走行が行われる。このとき、選択部235は、機体1の走行方位に最も近い基準方位B1を選択し、ライン設定部236は、機体1の進行方位前方に基準方位B1と平行な直線状の走行目標ラインC1を生成する。そして、コンバインの刈幅に亘る領域D1において、走行目標ラインC1に沿う自動操向制御が行われる。 In FIG. 17, the surrounding cutting run is performed adjacent to the cutting marks extending over the positions A1 and A2. At this time, the selection unit 235 selects the reference direction B1 closest to the traveling direction of the aircraft 1, and the line setting unit 236 sets a linear traveling target line C1 parallel to the reference direction B1 ahead of the traveling direction of the aircraft 1. Generate. Then, in the region D1 over the cutting width of the combine, automatic steering control along the traveling target line C1 is performed.
 図18では、位置A3,A4に亘る刈跡に隣接して周囲刈り走行が行われる。このとき、選択部235は、機体1の走行方位に最も近い基準方位B2を選択し、ライン設定部236は、機体1の進行方位前方に基準方位B2と平行な直線状の走行目標ラインC2を生成する。そして、コンバインの刈幅に亘る領域D2において、走行目標ラインC2に沿う自動操向制御が行われる。 In FIG. 18, the surrounding cutting run is performed adjacent to the cutting marks extending over the positions A3 and A4. At this time, the selection unit 235 selects the reference direction B2 closest to the traveling direction of the aircraft 1, and the line setting unit 236 sets a linear traveling target line C2 parallel to the reference direction B2 in front of the traveling direction of the aircraft 1. Generate. Then, in the region D2 over the cutting width of the combine, automatic steering control along the traveling target line C2 is performed.
 図19では、位置A5,A6に亘る刈跡に隣接して周囲刈り走行が行われる。このとき、選択部235は、機体1の走行方位に最も近い基準方位B3を選択し、ライン設定部236は、機体1の進行方位前方に基準方位B3と平行な直線状の走行目標ラインC3を生成する。そして、コンバインの刈幅に亘る領域D3において、走行目標ラインC3に沿う自動操向制御が行われる。 In FIG. 19, the surrounding cutting run is performed adjacent to the cutting marks extending over the positions A5 and A6. At this time, the selection unit 235 selects the reference direction B3 closest to the traveling direction of the aircraft 1, and the line setting unit 236 sets a linear traveling target line C3 parallel to the reference direction B3 in front of the traveling direction of the aircraft 1. Generate. Then, in the region D3 over the cutting width of the combine, automatic steering control along the traveling target line C3 is performed.
 図20では、位置A6と位置A7とに亘る刈跡に隣接して周囲刈り走行が行われており、機体1の走行方位は基準方位B1と同一または近似する。このため、選択部235は基準方位B1を選択し、ライン設定部236は、機体1の進行方位前方に基準方位B1と平行な直線状の走行目標ラインC4を生成する。そして、コンバインの刈幅に亘る領域D4において、走行目標ラインC4に沿う自動操向制御が行われる。 In FIG. 20, the surrounding cutting is performed adjacent to the cutting marks extending over the positions A6 and A7, and the traveling direction of the aircraft 1 is the same as or close to the reference direction B1. Therefore, the selection unit 235 selects the reference direction B1, and the line setting unit 236 generates a linear traveling target line C4 parallel to the reference direction B1 in front of the traveling direction of the aircraft 1. Then, in the region D4 over the cutting width of the combine, automatic steering control along the traveling target line C4 is performed.
 図21では、位置A6と位置A7とに亘る刈跡に隣接して周囲刈り走行が行われており、機体1の走行方位は基準方位B2と同一または近似する。このため、選択部235は基準方位B2を選択し、ライン設定部236は、機体1の進行方位前方に基準方位B2と平行な直線状の走行目標ラインC5を生成する。そして、コンバインの刈幅に亘る領域D5において、走行目標ラインC5に沿う自動操向制御が行われる。 In FIG. 21, the surrounding cutting is performed adjacent to the cutting marks extending over the positions A6 and A7, and the traveling direction of the aircraft 1 is the same as or close to the reference direction B2. Therefore, the selection unit 235 selects the reference direction B2, and the line setting unit 236 generates a linear traveling target line C5 parallel to the reference direction B2 in front of the traveling direction of the aircraft 1. Then, in the region D5 over the cutting width of the combine, automatic steering control along the traveling target line C5 is performed.
 図22では、位置A7,A8に亘る刈跡に隣接して周囲刈り走行が行われる。このとき、選択部235は、機体1の走行方位に最も近い基準方位B4を選択し、ライン設定部236は、機体1の進行方位前方に基準方位B4と平行な直線状の走行目標ラインC6を生成する。そして、コンバインの刈幅に亘る領域D6において、走行目標ラインC6に沿う自動操向制御が行われる。 In FIG. 22, the surrounding cutting run is performed adjacent to the cutting marks extending over the positions A7 and A8. At this time, the selection unit 235 selects the reference direction B4 closest to the traveling direction of the aircraft 1, and the line setting unit 236 sets a linear traveling target line C6 parallel to the reference direction B4 in front of the traveling direction of the aircraft 1. Generate. Then, in the region D6 over the cutting width of the combine, automatic steering control along the traveling target line C6 is performed.
 コンバインの周囲刈り走行が完了すると、図23及び図24に示されるように、コンバインは、周囲刈り走行による既作業領域よりも内側に残された作業対象領域CAを往復走行しながら作物を刈り取る。 When the harvesting around the combine is completed, as shown in FIGS. 23 and 24, the combine harvests the crop while reciprocating around the work target area CA left inside the work area left by the surrounding cutting.
 作業対象領域CAにおいて、走行目標ラインCに沿って前進しながら作物を刈り取る刈取走行と、作業対象領域CAよりも外側の外周領域における180°(または略180°)の方向転換と、が繰り返される。これにより、コンバインは、作業対象領域CAの全体を網羅するように作物を刈り取る。 In the work target area CA, the cutting run in which the crop is cut while advancing along the travel target line C and the direction change of 180 ° (or approximately 180 °) in the outer peripheral region outside the work target area CA are repeated. .. As a result, the combine harvests the crop so as to cover the entire work area CA.
 このとき、機体1の走行方位は基準方位B1と同一または近似する。このため、選択部235は基準方位B1を選択し、ライン設定部236は、機体1の進行方位前方に基準方位B1と平行な直線状の走行目標ラインC7,C8等を生成する。これにより、例えば図23に示される往復走行では、コンバインの刈幅に亘る領域D7において、走行目標ラインC7に沿う自動操向制御が行われる。また、例えば図24に示される中割り走行では、コンバインの刈幅に亘る領域D8において、走行目標ラインC8に沿う自動操向制御が行われる。 At this time, the traveling direction of the aircraft 1 is the same as or close to the reference direction B1. Therefore, the selection unit 235 selects the reference direction B1, and the line setting unit 236 generates linear traveling target lines C7, C8, etc. parallel to the reference direction B1 in front of the traveling direction of the aircraft 1. As a result, for example, in the reciprocating travel shown in FIG. 23, automatic steering control along the travel target line C7 is performed in the region D7 over the cutting width of the combine. Further, for example, in the middle division running shown in FIG. 24, automatic steering control along the running target line C8 is performed in the region D8 over the cutting width of the combine.
 つまり、ライン設定部236は、外周領域における周回走行中に算出された基準方位Bに基づいて作業対象領域CAに走行目標ラインCを設定する。 That is, the line setting unit 236 sets the travel target line C in the work target area CA based on the reference direction B calculated during the orbital travel in the outer peripheral region.
 なお、図23及び図24に示される例では、作業対象領域CAが圃場の形状に沿って不等辺の多角形となるように周囲刈り走行が行われているが、作業対象領域CAが四角形となるように周囲刈り走行が行われても良い。コンバインの周囲刈り走行後の往復走行等で自動操向制御が行われることによって、搭乗者の負担が軽減される。 In the examples shown in FIGS. 23 and 24, the work target area CA is cut around so as to be a polygon with unequal sides along the shape of the field, but the work target area CA is a quadrangle. Peripheral mowing may be carried out so as to be. The burden on the occupant is reduced by performing automatic steering control during reciprocating running after mowing around the combine.
 このように、選択部235は、算出された機体1の走行方位に基づいて複数の基準方位Bのうちの一つを選択し、ライン設定部236は選択された基準方位Bに基づいて走行目標ラインCを設定する。 In this way, the selection unit 235 selects one of the plurality of reference directions B based on the calculated travel direction of the aircraft 1, and the line setting unit 236 selects the travel target based on the selected reference direction B. Set line C.
〔開始判定ルーチンについて〕
 以下では、図13及び図25を参照し、条件判定部238によって処理される開始判定ルーチンについて説明する。
[About the start judgment routine]
Hereinafter, the start determination routine processed by the condition determination unit 238 will be described with reference to FIGS. 13 and 25.
 図25のステップ#112の呼び出しによって開始判定ルーチンが開始されると、まず、ステップ#121の処理が実行される。 When the start determination routine is started by calling step # 112 in FIG. 25, the process of step # 121 is first executed.
 ステップ#121では、条件判定部238が、図13に示される主変速レバー222の操作位置を示す情報を取得する。 In step # 121, the condition determination unit 238 acquires information indicating the operation position of the main shift lever 222 shown in FIG.
 主変速レバー222は、前後方向に揺動操作可能に構成されている。主変速レバー222の可動域は、前進用操作位置FP、中立位置NP、後進用操作位置RPの3つに区画されている。 The main shift lever 222 is configured to be swingable in the front-rear direction. The range of motion of the main shift lever 222 is divided into three, a forward operation position FP, a neutral position NP, and a reverse operation position RP.
 そして、主変速レバー222が操作されることにより、走行装置11の主変速装置の変速状態が変化する。 Then, by operating the main shift lever 222, the shift state of the main shift device of the traveling device 11 changes.
 主変速レバー222が中立位置NPに位置しているとき、主変速装置は中立状態であって、走行装置11は走行駆動しない。 When the main speed change lever 222 is located at the neutral position NP, the main speed change device is in the neutral state and the traveling device 11 is not driven to travel.
 主変速レバー222が中立位置NPから前進用操作位置FPの位置する側に倒れるほど、走行装置11は高速に前進走行する。 The traveling device 11 travels forward at a high speed so that the main shift lever 222 tilts from the neutral position NP to the side where the forward operation position FP is located.
 主変速レバー222が中立位置NPから後進用操作位置RPの位置する側に倒れるほど、走行装置11は高速に後進走行する。 The traveling device 11 travels backward at a high speed so that the main shift lever 222 tilts from the neutral position NP to the side where the reverse operation position RP is located.
 主変速レバー222の揺動角度を検出するセンサからの信号が条件判定部238に入力され、条件判定部238は、主変速レバー222が前進用操作位置FPに位置しているか否かを判定する。 A signal from the sensor that detects the swing angle of the main shift lever 222 is input to the condition determination unit 238, and the condition determination unit 238 determines whether or not the main shift lever 222 is located at the forward operation position FP. ..
 主変速レバー222が前進用操作位置FPに位置していない場合、ステップ#121でNoと判定され、Noの戻り値がステップ#112に返される。 If the main shift lever 222 is not located at the forward operation position FP, it is determined as No in step # 121, and the return value of No is returned to step # 112.
 また、主変速レバー222が前進用操作位置FPに位置している場合、ステップ#121でYesと判定され、処理はステップ#122へ移行する。 Further, when the main shift lever 222 is located at the forward operation position FP, it is determined as Yes in step # 121, and the process proceeds to step # 122.
 条件判定部238は、図13に示される副変速スイッチ223の操作信号を受け取るように構成されている。 The condition determination unit 238 is configured to receive the operation signal of the auxiliary shift switch 223 shown in FIG.
 副変速スイッチ223は主変速レバー222に設けられている。副変速スイッチ223が操作されるたびに、副変速装置(不図示)の変速状態は、作業走行用(低速状態)と非作業用(高速状態)とに交互に切り替わる。 The auxiliary shift switch 223 is provided on the main shift lever 222. Each time the auxiliary transmission switch 223 is operated, the transmission state of the auxiliary transmission device (not shown) is alternately switched between working traveling (low speed state) and non-working (high speed state).
 副変速スイッチ223の状態を検出するセンサからの信号が条件判定部238に入力される。条件判定部238は、副変速スイッチ223の変速状態が作業走行用と非作業用との何れであるかを判定可能に構成されている。 A signal from the sensor that detects the state of the auxiliary shift switch 223 is input to the condition determination unit 238. The condition determination unit 238 is configured to be able to determine whether the shift state of the auxiliary shift switch 223 is for working or non-working.
 ステップ#122では、副変速スイッチ223の状態が作業走行用であるか否かが判定される。より具体的には、副変速装置が低速状態であるか否かが判定される。 In step # 122, it is determined whether or not the state of the auxiliary shift switch 223 is for work driving. More specifically, it is determined whether or not the auxiliary transmission is in a low speed state.
 副変速装置が低速状態でない場合、ステップ#122でNoと判定され、Noの戻り値がステップ#112に返される。 If the auxiliary transmission is not in the low speed state, it is determined as No in step # 122, and the return value of No is returned to step # 112.
 また、副変速装置が低速状態である場合、ステップ#122でYesと判定され、処理はステップ#123へ移行する。 If the auxiliary transmission is in a low speed state, it is determined as Yes in step # 122, and the process proceeds to step # 123.
 ステップ#123では、条件判定部238が、図13に示される機体位置算出部231から、RTK-GPS測位に必要なFIX解(公知技術)が得られているか否かを示す情報を取得する。そして、取得した情報に基づいて、機体位置の測位状態が所定の精度以上であるか否かが判定される。 In step # 123, the condition determination unit 238 acquires information indicating whether or not the FIX solution (known technique) necessary for RTK-GPS positioning is obtained from the aircraft position calculation unit 231 shown in FIG. Then, based on the acquired information, it is determined whether or not the positioning state of the aircraft position is at least a predetermined accuracy.
 より具体的には、条件判定部238は、衛星測位モジュール80及び機体位置算出部231によるRTK-GPS測位においてFIX解が得られているか否かを判定する。 More specifically, the condition determination unit 238 determines whether or not the FIX solution is obtained in the RTK-GPS positioning by the satellite positioning module 80 and the aircraft position calculation unit 231.
 衛星測位モジュール80及び機体位置算出部231によるRTK-GPS測位においてFIX解が得られていない場合、ステップ#123でNoと判定され、Noの戻り値がステップ#112に返される。 If the FIX solution is not obtained in the RTK-GPS positioning by the satellite positioning module 80 and the aircraft position calculation unit 231, No is determined in step # 123, and the return value of No is returned to step # 112.
 衛星測位モジュール80及び機体位置算出部231によるRTK-GPS測位においてFIX解が得られている場合、ステップ#123でYesと判定され、処理はステップ#124へ移行する。 If a FIX solution is obtained in RTK-GPS positioning by the satellite positioning module 80 and the aircraft position calculation unit 231, it is determined to be Yes in step # 123, and the process proceeds to step # 124.
 ステップ#124では、条件判定部238が、図13に示される刈取脱穀レバー224の操作位置を示す情報を取得する。 In step # 124, the condition determination unit 238 acquires information indicating the operation position of the harvesting threshing lever 224 shown in FIG.
 刈取脱穀レバー224は、搭乗部12に設けられている。刈取脱穀レバー224は、前後方向に揺動操作可能に構成されている。 The harvesting threshing lever 224 is provided on the boarding section 12. The harvesting threshing lever 224 is configured to be swingable in the front-rear direction.
 そして、刈取脱穀レバー224は、第一操作位置M1、第二操作位置M2、第三操作位置M3の間で、操作位置を択一的に切り替えることができるように構成されている。刈取脱穀レバー224が操作されることにより、脱穀クラッチ226及び刈取クラッチ227の入切状態が変化する。 The harvesting threshing lever 224 is configured so that the operation position can be selectively switched between the first operation position M1, the second operation position M2, and the third operation position M3. By operating the harvesting threshing lever 224, the on / off state of the threshing clutch 226 and the harvesting clutch 227 changes.
 刈取脱穀レバー224の揺動角度を検出するセンサからの信号が条件判定部238に入力される。条件判定部238は、刈取脱穀レバー224の操作位置が第一操作位置M1、第二操作位置M2、第三操作位置M3の何れであるかを判定可能に構成されている。 A signal from the sensor that detects the swing angle of the cutting and threshing lever 224 is input to the condition determination unit 238. The condition determination unit 238 is configured to be able to determine whether the operation position of the cutting and threshing lever 224 is the first operation position M1, the second operation position M2, or the third operation position M3.
 刈取脱穀レバー224の操作位置が第一操作位置M1であるとき、脱穀クラッチ226及び刈取クラッチ227は、何れも入状態である。この状態で、エンジンからの動力は、脱穀装置13へ伝達され、刈取クラッチ227を介して収穫装置15へ伝達される。これにより、脱穀装置13及び収穫装置15は動作する。 When the operating position of the harvesting threshing lever 224 is the first operating position M1, both the threshing clutch 226 and the harvesting clutch 227 are in the engaged state. In this state, the power from the engine is transmitted to the threshing device 13 and transmitted to the harvesting device 15 via the cutting clutch 227. As a result, the threshing device 13 and the harvesting device 15 operate.
 刈取脱穀レバー224の操作位置が第二操作位置M2であるとき、脱穀クラッチ226は入状態であり、刈取クラッチ227は切状態である。この状態で、エンジンからの動力は、脱穀装置13へ伝達され、刈取クラッチ227へ伝達されない。これにより、脱穀装置13は動作し、収穫装置15は動作しない。 When the operating position of the cutting threshing lever 224 is the second operating position M2, the threshing clutch 226 is in the on state and the cutting clutch 227 is in the off state. In this state, the power from the engine is transmitted to the threshing device 13 and not to the cutting clutch 227. As a result, the threshing device 13 operates and the harvesting device 15 does not operate.
 刈取脱穀レバー224の操作位置が第三操作位置M3であるとき、脱穀クラッチ226及び刈取クラッチ227は、何れも切状態である。この状態で、エンジンからの動力は、脱穀装置13及び刈取クラッチ227の何れにも伝達されない。このとき、脱穀装置13及び収穫装置15は動作しない。 When the operating position of the cutting threshing lever 224 is the third operating position M3, both the threshing clutch 226 and the cutting clutch 227 are in the off state. In this state, the power from the engine is not transmitted to either the threshing device 13 or the cutting clutch 227. At this time, the threshing device 13 and the harvesting device 15 do not operate.
 そして条件判定部238は、取得した情報に基づいて、脱穀クラッチ226が入状態であるか否かを判定する。 Then, the condition determination unit 238 determines whether or not the threshing clutch 226 is in the engaged state based on the acquired information.
 刈取脱穀レバー224の操作位置が第三操作位置M3である場合、ステップ#124でNoと判定され、Noの戻り値がステップ#112に返される。 When the operation position of the harvesting threshing lever 224 is the third operation position M3, it is determined as No in step # 124, and the return value of No is returned to step # 112.
 また、刈取脱穀レバー224の操作位置が第一操作位置M1または第二操作位置M2である場合、ステップ#124でYesと判定され、処理はステップ#125へ移行する。 Further, when the operation position of the harvesting threshing lever 224 is the first operation position M1 or the second operation position M2, it is determined as Yes in step # 124, and the process proceeds to step # 125.
 更に条件判定部238は、取得した情報に基づいて、刈取クラッチ227が入状態であるか否かを判定する(ステップ#125)。 Further, the condition determination unit 238 determines whether or not the cutting clutch 227 is in the engaged state based on the acquired information (step # 125).
 刈取脱穀レバー224の操作位置が第二操作位置M2または第三操作位置M3である場合、ステップ#125でNoと判定され、Noの戻り値がステップ#112に返される。 When the operation position of the harvesting threshing lever 224 is the second operation position M2 or the third operation position M3, No is determined in step # 125, and the return value of No is returned to step # 112.
 また、刈取脱穀レバー224の操作位置が第一操作位置M1である場合、ステップ#125でYesと判定され、処理はステップ#126へ移行する。 Further, when the operation position of the harvesting threshing lever 224 is the first operation position M1, it is determined as Yes in step # 125, and the process proceeds to step # 126.
 ステップ#126では、収穫装置15が作業位置に位置しているか否かが判定される。なお、本実施形態においては、収穫装置15の最上昇位置からの下降量が所定値以上であることが、収穫装置15が作業位置に位置していることに相当する。 In step # 126, it is determined whether or not the harvesting device 15 is located at the working position. In the present embodiment, the amount of descent from the highest position of the harvesting device 15 is equal to or more than a predetermined value, which corresponds to the position of the harvesting device 15 at the working position.
 ここで、コンバインの機体1は、昇降検知部225を備えている。昇降検知部225は、収穫装置シリンダ15aの伸縮状態を検知する。昇降検知部225による検知結果は、条件判定部238へ送られる。 Here, the combine harvester 1 is provided with an elevating detection unit 225. The elevating detection unit 225 detects the expansion / contraction state of the harvesting device cylinder 15a. The detection result by the elevating detection unit 225 is sent to the condition determination unit 238.
 そして、条件判定部238は、昇降検知部225による検知結果に基づいて、収穫装置15が作業位置に位置しているか否かを判定する。 Then, the condition determination unit 238 determines whether or not the harvesting device 15 is located at the working position based on the detection result by the elevating detection unit 225.
 収穫装置15が作業位置に位置していない場合、ステップ#126でNoと判定され、Noの戻り値がステップ#112に返される。 If the harvesting device 15 is not located at the working position, it is determined as No in step # 126, and the return value of No is returned to step # 112.
 収穫装置15が作業位置に位置している場合、ステップ#126でYesと判定される。ステップ#126でYesと判定されると、自動操向制御のための所定の条件が満たされていると判定され、Yesの戻り値がステップ#112に返される。 When the harvesting device 15 is located at the working position, it is determined as Yes in step # 126. If it is determined to be Yes in step # 126, it is determined that a predetermined condition for automatic steering control is satisfied, and the return value of Yes is returned to step # 112.
 以上の説明から理解されるように、本実施形態において、上述の自動操向制御のための『所定の条件』には、ステップ#121からステップ#126の全てにおいてYesと判定されることが含まれている。しかしながら、本発明はこれに限定されず、ステップ#121からステップ#126のうちの一部が設けられていなくても良い。 As can be understood from the above description, in the present embodiment, the above-mentioned "predetermined condition" for automatic steering control includes the determination of Yes in all of steps # 121 to # 126. It has been. However, the present invention is not limited to this, and a part of steps # 121 to # 126 may not be provided.
 即ち、上述の自動操向制御のための『所定の条件』には、主変速レバー222が前進用操作位置FPに位置していること、副変速装置が作業用の変速状態であること、機体位置の測位状態が所定の精度以上であること、脱穀装置13への動力伝達のためのクラッチが入状態となっていること、収穫装置15への動力伝達のためのクラッチが入状態となっていること、収穫装置15が作業位置に位置していること、のうちの少なくとも一つが含まれている。 That is, the above-mentioned "predetermined conditions" for automatic steering control include that the main shift lever 222 is located at the forward operation position FP, that the auxiliary transmission is in a shift state for work, and that the aircraft is in a shift state for work. The positioning state of the position is higher than the predetermined accuracy, the clutch for power transmission to the threshing device 13 is in the engaged state, and the clutch for power transmission to the harvesting device 15 is in the engaged state. At least one of the fact that the harvesting device 15 is located at the working position is included.
〔基準方位及び走行目標ラインの画面表示について〕
 図16におけるステップ#111~#117の処理が行われる間、搭乗部12に設けられた汎用端末VTに、選択された基準方位Bと、コンバイン(農作業機)と、が表示される(図27及び図28参照)。
[About the screen display of the reference direction and the driving target line]
While the processes of steps # 111 to # 117 in FIG. 16 are being performed, the selected reference direction B and the combine (agricultural work machine) are displayed on the general-purpose terminal VT provided in the boarding unit 12 (FIG. 27). And FIG. 28).
 差分Δθ(図16、図27及び図28参照)に応じてコンバインが傾斜するように、基準方位Bの方位指標RL1,RL2とコンバインとの夫々が汎用端末VTに表示される。 The directional indexes RL1 and RL2 of the reference azimuth B and the combine are displayed on the general-purpose terminal VT so that the combine is tilted according to the difference Δθ (see FIGS. 16, 27 and 28).
 方位指標RL1,RL2は、選択部235によって選択された基準方位Bを示す線である。このため、搭乗者は、自動操向制御の開始前に汎用端末VTを確認しながら機体1の走行方位を基準方位Bに合わせ易くなる。 The directional indicators RL1 and RL2 are lines indicating the reference directional B selected by the selection unit 235. Therefore, the passenger can easily adjust the traveling direction of the aircraft 1 to the reference direction B while checking the general-purpose terminal VT before starting the automatic steering control.
 図26~図29に示される例では、基準方位B1に沿って周囲刈り走行が行われ、続いて基準方位B2に沿って周囲刈り走行が行われる。 In the example shown in FIGS. 26 to 29, the peripheral mowing run is performed along the reference direction B1, and then the peripheral mowing run is performed along the reference direction B2.
 図26及び図29に示される方位指標GL1,GL2は、ライン設定部236によって設定された走行目標ラインCを示す線である。本実施形態において、汎用端末VTは、方位指標GL1,GL2,RL1,RL2を表示可能な『方位表示部』である。 The directional indicators GL1 and GL2 shown in FIGS. 26 and 29 are lines indicating the traveling target line C set by the line setting unit 236. In the present embodiment, the general-purpose terminal VT is an "direction display unit" capable of displaying the direction indexes GL1, GL2, RL1 and RL2.
 なお、図26~図29に示される例では、汎用端末VTの画面上で方位指標GL1,GL2,RL1,RL2は回転せずにコンバインが回転するように表示されるが、コンバインが回転せずに方位指標GL1,GL2,RL1,RL2が回転する構成であっても良い。 In the example shown in FIGS. 26 to 29, the directional indicators GL1, GL2, RL1 and RL2 are displayed on the screen of the general-purpose terminal VT so that the combine rotates without rotating, but the combine does not rotate. The azimuth index GL1, GL2, RL1 and RL2 may be rotated.
 つまり、差分Δθに応じて基準方位Bの方位指標GL1,GL2,RL1,RL2とコンバインとの一方が傾斜するように、基準方位Bの方位指標GL1,GL2,RL1,RL2とコンバインとの夫々が汎用端末VTに表示されてもよい。 That is, the directional indexes GL1, GL2, RL1, RL2 of the reference azimuth B and the combine are respectively tilted so that one of the directional indexes GL1, GL2, RL1, RL2 of the reference azimuth B and the combine is inclined according to the difference Δθ. It may be displayed on the general-purpose terminal VT.
 図26~図29に示される例では、基準方位B1と、基準方位B1に対して90度だけ方位ずれした基準方位B2と、が設定されている。 In the examples shown in FIGS. 26 to 29, the reference direction B1 and the reference direction B2 deviated by 90 degrees from the reference direction B1 are set.
 このため、基準方位B1と機体1の方位との差分Δθが45度(90度の半分の角度)以内であれば、選択部235が基準方位B1を選択する。 Therefore, if the difference Δθ between the reference direction B1 and the direction of the aircraft 1 is within 45 degrees (half the angle of 90 degrees), the selection unit 235 selects the reference direction B1.
 また、基準方位B1と機体1の方位との差分Δθが45度よりも大きければ、選択部235が基準方位B2を選択する。 Further, if the difference Δθ between the reference direction B1 and the direction of the aircraft 1 is larger than 45 degrees, the selection unit 235 selects the reference direction B2.
 つまり、選択部235は、機体方位算出部232によって算出された機体1の方位に基づいて、複数の基準方位Bのうちから最も機体1の方位に近い基準方位Bを選択する。 That is, the selection unit 235 selects the reference direction B closest to the direction of the machine 1 from the plurality of reference directions B based on the direction of the machine 1 calculated by the machine direction calculation unit 232.
 図26では、基準方位B1に沿って自動操向制御が行われながら、未刈領域(圃場の作物が刈り取られていない領域)の作物が収穫装置15によって刈り取られる状態が示される。 FIG. 26 shows a state in which the crops in the uncut area (the area where the crops in the field are not cut) are cut by the harvesting device 15 while the automatic steering control is performed along the reference direction B1.
 汎用端末VTに、走行目標ラインCの方位指標GL1が表示され、機体1が走行目標ラインCに沿うように自動操向制御が行われる。 The directional index GL1 of the traveling target line C is displayed on the general-purpose terminal VT, and automatic steering control is performed so that the aircraft 1 follows the traveling target line C.
 自動操向制御を伴って作物が刈り取られた領域として、コンバインの作業幅に亘る幅で作業領域Dが汎用端末VTに表示される。作業領域Dは、自動操向制御によるコンバインの走行軌跡として汎用端末VTに表示される。 The work area D is displayed on the general-purpose terminal VT with a width extending over the work width of the combine as an area where the crop is cut with automatic steering control. The work area D is displayed on the general-purpose terminal VT as a travel locus of the combine by automatic steering control.
 図27では、コンバインが未刈領域を刈り抜けた後に制御ユニット230が自動操向モードから手動操向モードへ移行し、既刈領域で機体左方向に90度の旋回を行う状態が示されている。図27では、基準方位B1と機体1の方位との差分Δθが45度以内である。 FIG. 27 shows a state in which the control unit 230 shifts from the automatic steering mode to the manual steering mode after the combine has cut through the uncut area, and turns 90 degrees to the left of the aircraft in the already cut area. There is. In FIG. 27, the difference Δθ between the reference direction B1 and the direction of the aircraft 1 is within 45 degrees.
 換言すると、基準方位B1と機体1の方位との差分Δθが、基準方位B2と機体1の方位との差分(90度-Δθ)よりも小さい。このため、図16におけるステップ#113及びステップ#114の処理で基準方位B1が選択され、図27に示されるように、汎用端末VTに基準方位B1の方位指標RL1が表示される。 In other words, the difference Δθ between the reference direction B1 and the direction of the aircraft 1 is smaller than the difference between the reference direction B2 and the direction of the aircraft 1 (90 degrees −Δθ). Therefore, the reference direction B1 is selected in the processes of steps # 113 and # 114 in FIG. 16, and as shown in FIG. 27, the direction index RL1 of the reference direction B1 is displayed on the general-purpose terminal VT.
 図28では、機体1が図27に示される場合よりも更に機体左方向に旋回している状態が示されている。図28では、基準方位B1と機体1の方位との差分Δθが45度よりも大きい。 FIG. 28 shows a state in which the airframe 1 is turning further to the left than in the case shown in FIG. 27. In FIG. 28, the difference Δθ between the reference direction B1 and the direction of the aircraft 1 is larger than 45 degrees.
 換言すると、基準方位B1と機体1の方位との差分Δθが、基準方位B2と機体1の方位との差分(90-Δθ)よりも大きい。このため、図16におけるステップ#113及びステップ#114の処理で基準方位B2が選択され、図28に示されるように、汎用端末VTに基準方位B2の方位指標RL2が表示される。 In other words, the difference Δθ between the reference direction B1 and the direction of the aircraft 1 is larger than the difference (90-Δθ) between the reference direction B2 and the direction of the aircraft 1. Therefore, the reference direction B2 is selected in the processes of steps # 113 and # 114 in FIG. 16, and as shown in FIG. 28, the direction index RL2 of the reference direction B2 is displayed on the general-purpose terminal VT.
 なお、基準方位Bに平行な方位線、即ち方位指標RL1または方位指標RL2と平行な方位線が、コンバインの作業幅の間隔で汎用端末VTに複数表示されても良く、複数の方位線とコンバインとの位置関係が汎用端末VTに表示されても良い。この場合、搭乗者は、例えば中割り走行を行う際の基準として機体横方向の位置調整を行い易くなる。 A plurality of directional lines parallel to the reference azimuth B, that is, directional lines parallel to the directional index RL1 or the directional index RL2 may be displayed on the general-purpose terminal VT at intervals of the working width of the combine, and the plurality of directional lines and the combine may be displayed. The positional relationship with the general-purpose terminal VT may be displayed. In this case, it becomes easier for the passenger to adjust the position of the aircraft in the lateral direction as a reference when performing, for example, the mid-division traveling.
 なお、機体1の走行方位が基準方位Bに合わない場合、機体1の走行方位が基準方位Bに沿うように、機体1の走行方位が自動的に修正される構成であっても良い。 If the traveling direction of the machine 1 does not match the reference direction B, the traveling direction of the machine 1 may be automatically corrected so that the traveling direction of the machine 1 follows the reference direction B.
 図29では、機体1の90度の旋回が完了し、基準方位B2に沿って自動操向制御が行われながら、未刈領域の作物が収穫装置15によって刈り取られる状態が示される。図16のステップ#118で制御ユニット230が自動操向モードに移行すると、搭乗部12に設けられた汎用端末VTに走行目標ラインCの方位指標GL2が表示され、方位指標GL2は、コンバインの前方に延びるように表示される。また、走行目標ラインCに沿って自動操向制御を伴う作業走行が行われると、コンバインの作業幅に亘る幅で作業領域Dが汎用端末VTに表示される。 FIG. 29 shows a state in which the crop in the uncut area is cut by the harvesting device 15 while the 90-degree turn of the machine 1 is completed and the automatic steering control is performed along the reference direction B2. When the control unit 230 shifts to the automatic steering mode in step # 118 of FIG. 16, the directional index GL2 of the traveling target line C is displayed on the general-purpose terminal VT provided in the boarding unit 12, and the directional index GL2 is in front of the combine. It is displayed to extend to. Further, when a work run accompanied by automatic steering control is performed along the run target line C, the work area D is displayed on the general-purpose terminal VT with a width extending over the work width of the combine.
 図26~図29に示される例では、制御ユニット230が自動操向モードである場合に方位指標GL1,GL2が表示され、制御ユニット230が手動操向モードである場合に方位指標RL1,RL2が表示される。図26~図29に示される例では、方位指標GL1,GL2は実線で表示され、方位指標RL1,RL2は破線で示されている。方位指標GL1,GL2と、方位指標RL1,RL2と、の夫々が異なる色で表示されても良い。即ち、『方位表示部』としての汎用端末VTは、走行装置11が人為的に操向制御されている場合と、走行装置11が自動的に操向制御されている場合と、で方位指標GL1,GL2,RL1,RL2の表示態様を変更する。 In the example shown in FIGS. 26 to 29, the directional indicators GL1 and GL2 are displayed when the control unit 230 is in the automatic steering mode, and the directional indicators RL1 and RL2 are displayed when the control unit 230 is in the manual steering mode. Is displayed. In the examples shown in FIGS. 26 to 29, the directional indicators GL1 and GL2 are indicated by solid lines, and the directional indicators RL1 and RL2 are indicated by broken lines. The directional indicators GL1 and GL2 and the directional indicators RL1 and RL2 may be displayed in different colors. That is, the general-purpose terminal VT as the "direction display unit" has the directional index GL1 depending on whether the traveling device 11 is artificially steered or controlled automatically. , GL2, RL1, RL2 display mode is changed.
 作業領域Dは、コンバインの作業幅に亘る幅として汎用端末VTに表示される。作業幅は、搭乗者が入力するものであっても良いし、外部のネットワーク経由で取得するものであっても良い。 The work area D is displayed on the general-purpose terminal VT as a width over the work width of the combine. The work width may be input by the passenger or may be acquired via an external network.
 また、この作業幅に、横方向に隣接する既刈領域または未刈領域とオーバーラップする余分な幅、いわゆるオーバーラップしろが考慮されても良い。このとき、当該オーバーラップしろは、搭乗者が入力するものであっても良いし、外部のネットワーク経由で取得するものであっても良い。 Further, an extra width that overlaps with the already cut area or the uncut area adjacent in the lateral direction, that is, a so-called overlap margin may be taken into consideration in this working width. At this time, the overlap margin may be input by the passenger or may be acquired via an external network.
 コンバインの作業幅に亘る幅で走行目標ラインCに沿う作業領域Dが汎用端末VTに表示されるとともに、走行目標ラインCに対するコンバインの横ズレ及び方位ズレが汎用端末VTに表示される。 The work area D along the travel target line C with a width extending over the work width of the combine is displayed on the general-purpose terminal VT, and the lateral deviation and the orientation deviation of the combine with respect to the travel target line C are displayed on the general-purpose terminal VT.
 また、図23及び図24に示される往復走行においても、例えば領域D7,D8が、コンバインの作業幅に亘る幅で作業領域Dとして汎用端末VTに表示される構成であっても良い。 Further, also in the reciprocating travel shown in FIGS. 23 and 24, for example, the areas D7 and D8 may be configured to be displayed on the general-purpose terminal VT as the work area D with a width extending over the work width of the combine.
〔第3実施形態の変形例〕
 本発明は、上述の実施形態に例示された構成に限定されるものではなく、以下、本発明の代表的な変形例を示す。
[Modified example of the third embodiment]
The present invention is not limited to the configurations exemplified in the above-described embodiments, and typical modifications of the present invention will be shown below.
(1)上述の実施形態において、操向制御部237は、機体位置算出部231からの機体位置情報と、機体方位算出部232からの方位情報と、に基づいて走行装置11を制御するが、この実施形態に限定されない。 (1) In the above-described embodiment, the steering control unit 237 controls the traveling device 11 based on the aircraft position information from the aircraft position calculation unit 231 and the directional information from the aircraft orientation calculation unit 232. It is not limited to this embodiment.
 操向制御部237は、機体位置算出部231からの機体位置情報に基づいて走行装置11を制御しても良いし、機体方位算出部232からの方位情報に基づいて走行装置11を制御しても良い。 The steering control unit 237 may control the traveling device 11 based on the aircraft position information from the aircraft position calculation unit 231, or may control the traveling device 11 based on the directional information from the aircraft orientation calculation unit 232. Is also good.
 操向制御部237は、基準方位Bに沿うように、機体位置に基づいて走行装置11を自動的に操向制御しても良い。 The steering control unit 237 may automatically control the steering of the traveling device 11 based on the position of the aircraft so as to follow the reference direction B.
 また、操向制御部237は、基準方位Bに基づいて設定された走行目標ラインCに沿うように、機体位置に基づいて走行装置11を自動的に操向制御しても良い。 Further, the steering control unit 237 may automatically steer the traveling device 11 based on the aircraft position so as to follow the traveling target line C set based on the reference direction B.
 操向制御部237が基準方位Bに沿うように走行装置11を自動的に操向制御する場合、ライン設定部236が備えられない構成であっても良い。あるいは、ライン設定部236と操向制御部237とが一体的に構成されても良い。 When the steering control unit 237 automatically controls the steering so as to follow the reference direction B, the line setting unit 236 may not be provided. Alternatively, the line setting unit 236 and the steering control unit 237 may be integrally configured.
(2)上述の実施形態では、図15に示されるように、位置A1,A2に基づいて基準方位B1が算出され、位置A3,A4に基づいて基準方位B2が算出されているが、この実施形態に限定されない。 (2) In the above-described embodiment, as shown in FIG. 15, the reference direction B1 is calculated based on the positions A1 and A2, and the reference direction B2 is calculated based on the positions A3 and A4. It is not limited to the form.
 図15に示される例では、位置A1,A2に基づいて基準方位B1が算出されると、所定の方位だけ方位ずれした基準方位B2,B3が自動的に算出される構成であっても良い。このとき、方位ずれの量が手動で設定されても良いし、自動的に設定されても良い。 In the example shown in FIG. 15, when the reference direction B1 is calculated based on the positions A1 and A2, the reference directions B2 and B3 deviated by a predetermined direction may be automatically calculated. At this time, the amount of misorientation may be set manually or automatically.
(3)上述の実施形態では、始点設定スイッチ221aが操作されると位置Aaが記憶され、終点設定スイッチ221bが操作されると位置Abが記憶され、基準方位算出部233は位置Aa,Abに基づいて基準方位Bを算出するが、この実施形態に限定されない。 (3) In the above-described embodiment, the position Aa is stored when the start point setting switch 221a is operated, the position Ab is stored when the end point setting switch 221b is operated, and the reference direction calculation unit 233 is stored in the positions Aa and Ab. The reference direction B is calculated based on this, but the present invention is not limited to this embodiment.
 例えば、機体1が圃場の外周辺に沿って直進(または略直進、以下同じ)したら、その直進区間に基づいて基準方位Bが自動的に算出される構成であっても良い。 For example, if the machine 1 goes straight along the outer periphery of the field (or goes straight, the same applies hereinafter), the reference direction B may be automatically calculated based on the straight section.
 例えば図15では、機体1が位置A1,A2に亘って直進することによって基準方位B1が自動的に算出され、機体1が位置A3,A4に亘って直進することによって基準方位B2が算出されても良い。 For example, in FIG. 15, the reference direction B1 is automatically calculated when the machine 1 goes straight over the positions A1 and A2, and the reference direction B2 is calculated when the machine 1 goes straight over the positions A3 and A4. Is also good.
 また、機体1が位置A5,A6に亘って直進することによって基準方位B3が自動的に算出され、機体1が位置A7,A8に亘って直進することによって基準方位B4が算出されても良い。 Further, the reference direction B3 may be calculated automatically when the aircraft 1 travels straight over the positions A5 and A6, and the reference direction B4 may be calculated when the aircraft 1 travels straight over the positions A7 and A8.
 また、圃場の外周辺に沿う直進区間の全てに基づいて基準方位Bが自動的に算出される必要はなく、圃場の外周辺のうち少なくとも一辺に沿う直進区間に基づいて基準方位Bが自動的に算出される構成であっても良い。 Further, it is not necessary to automatically calculate the reference direction B based on all the straight sections along the outer periphery of the field, and the reference direction B is automatically calculated based on the straight section along at least one side of the outer periphery of the field. It may be a configuration calculated in.
 即ち、基準方位算出部233は、圃場の外周領域における人為操作での周回走行中に算出された機体位置に基づいて、圃場の外周辺のうち少なくとも一辺の延びる方位に沿う複数の基準方位Bを算出しても良い。 That is, the reference direction calculation unit 233 sets a plurality of reference directions B along the extending direction of at least one side of the outer periphery of the field based on the aircraft position calculated during the orbital traveling by human operation in the outer peripheral region of the field. You may calculate.
(4)上述した実施形態では、図15において、位置A1は本発明の『第一地点』であって、位置A2は本発明の『第二地点』であって、基準方位B1は本発明の『第一基準方位』であるが、この実施形態に限定されない。 (4) In the above-described embodiment, in FIG. 15, the position A1 is the "first point" of the present invention, the position A2 is the "second point" of the present invention, and the reference direction B1 is the "second point" of the present invention. Although it is a "first reference direction", it is not limited to this embodiment.
 また、位置A3は本発明の『第三地点』であって、位置A4は本発明の『第四地点』であって、基準方位B2は本発明の『第二基準方位』であるが、この実施形態に限定されない。 Further, the position A3 is the "third point" of the present invention, the position A4 is the "fourth point" of the present invention, and the reference direction B2 is the "second reference direction" of the present invention. It is not limited to the embodiment.
 例えば、位置A3が本発明の『第一地点』であって、位置A4が本発明の『第二地点』であっても良い。この場合、基準方位B2が本発明の『第一基準方位』である。 For example, the position A3 may be the "first point" of the present invention, and the position A4 may be the "second point" of the present invention. In this case, the reference direction B2 is the "first reference direction" of the present invention.
 また、位置A5が本発明の『第三地点』であって、位置A6が本発明の『第四地点』であっても良い。この場合、基準方位B3が本発明の『第二基準方位』である。 Further, the position A5 may be the "third point" of the present invention, and the position A6 may be the "fourth point" of the present invention. In this case, the reference direction B3 is the "second reference direction" of the present invention.
 更に、位置A7が本発明の『第三地点』であって、位置A8が本発明の『第四地点』であっても良い。この場合、基準方位B4が本発明の『第二基準方位』である。 Further, the position A7 may be the "third point" of the present invention, and the position A8 may be the "fourth point" of the present invention. In this case, the reference direction B4 is the "second reference direction" of the present invention.
(5)上述の実施形態では、機体1の走行方位を算出する機体方位算出部232が備えられ、選択部235は、算出された機体1の走行方位に基づいて複数の基準方位Bのうちの一つを選択するが、この実施形態に限定されない。 (5) In the above-described embodiment, the aircraft orientation calculation unit 232 for calculating the traveling orientation of the aircraft 1 is provided, and the selection unit 235 is among the plurality of reference orientations B based on the calculated traveling orientation of the aircraft 1. One is selected, but is not limited to this embodiment.
 必要な場合には、選択部235は、人為操作に基づいて基準方位Bを選択しても良いし、外部のネットワークからの受信に基づいて基準方位Bを選択しても良い。 If necessary, the selection unit 235 may select the reference direction B based on an artificial operation, or may select the reference direction B based on the reception from the external network.
(6)上述の実施形態では、圃場の走行中に算出された複数の機体位置に基づいて基準方位Bを算出する基準方位算出部233が備えられているが、この実施形態に限定されない。 (6) In the above-described embodiment, the reference directional direction calculation unit 233 for calculating the reference directional direction B based on the plurality of aircraft positions calculated while traveling in the field is provided, but the embodiment is not limited to this embodiment.
 例えば、基準方位算出部233が備えられない構成であっても良い。この場合、複数の基準方位Bが外部のネットワークから受信され、記憶部234に記憶される構成であっても良い。 For example, the configuration may not include the reference direction calculation unit 233. In this case, a plurality of reference directions B may be received from an external network and stored in the storage unit 234.
(7)本発明の『機体位置算出部』は、機体位置算出部231と衛星測位モジュール80とが一体的に構成されたものであっても良い。また、機体方位算出部232が、機体位置算出部231と衛星測位モジュール80との少なくとも一方の位置情報に基づいて機体1の走行方位を算出する構成であっても良い。 (7) The "airframe position calculation unit" of the present invention may be an integral configuration of the airframe position calculation unit 231 and the satellite positioning module 80. Further, the aircraft orientation calculation unit 232 may be configured to calculate the traveling orientation of the aircraft 1 based on the position information of at least one of the aircraft position calculation unit 231 and the satellite positioning module 80.
(8)上述の実施形態では、基準方位Bに沿って、一方向と、一方向と180°反対方向と、の双方向に機体1の走行が可能であるが、基準方位Bに沿って一方向にのみ機体1の走行が可能な単方向の構成であっても良い。 (8) In the above-described embodiment, the aircraft 1 can travel in one direction and in the direction 180 ° opposite to one direction along the reference direction B, but one along the reference direction B. It may be a unidirectional configuration in which the aircraft 1 can travel only in the direction.
 この場合、当該一方向と反対方向に自動走行制御を行う場合、当該一方向と180°反対方向の情報を有する別の基準方位Bが記憶部234に記憶されても良い。そして、当該一方向と180°反対方向へ直進する自動操向制御が行われる際に、選択部235が当該別の基準方位Bを選択する構成であっても良い。 In this case, when the automatic traveling control is performed in the direction opposite to the one direction, another reference direction B having information in the direction 180 ° opposite to the one direction may be stored in the storage unit 234. Then, the selection unit 235 may select the other reference direction B when the automatic steering control for traveling straight in the direction opposite to the one direction is performed.
(9)上述の実施形態において、図16に示されるように、操向制御部237は、機体1が位置Paから所定の距離以上に離れた場合に、自動操向制御を開始するが、この実施形態に限定されない。 (9) In the above-described embodiment, as shown in FIG. 16, the steering control unit 237 starts automatic steering control when the aircraft 1 is separated from the position Pa by a predetermined distance or more. It is not limited to the embodiment.
 例えば、差分Δθが予め設定された閾値以内である状態が所定時間に亘って継続すると、操向制御部237が自動操向制御を開始する構成であっても良い。 For example, if the state in which the difference Δθ is within the preset threshold value continues for a predetermined time, the steering control unit 237 may start the automatic steering control.
 つまり、操向制御部237は、所定の条件が満たされており、かつ、選択部235によって選択された基準方位Bに沿って機体1が所定距離または所定時間に亘って直進したと判定した場合、走行装置11を自動的に操向制御可能な状態となる構成であっても良い。 That is, when the steering control unit 237 determines that the predetermined conditions are satisfied and the aircraft 1 has traveled straight for a predetermined distance or a predetermined time along the reference direction B selected by the selection unit 235. The traveling device 11 may be configured to be in a state where the steering can be automatically controlled.
(10)本発明の『作業装置』は、脱穀装置13と収穫装置15との一方であっても良い。 (10) The "working device" of the present invention may be one of the threshing device 13 and the harvesting device 15.
(11)上述の実施形態において、ライン設定部236は、条件判定部238から判定結果を取得するが、この実施形態に限定されない。 (11) In the above-described embodiment, the line setting unit 236 acquires the determination result from the condition determination unit 238, but is not limited to this embodiment.
 例えば、条件判定部238が備えられない構成であっても良く、ライン設定部236は、条件判定部238から判定結果を取得しない構成であっても良い。また、ライン設定部236と条件判定部238とが一体的に構成されても良い。 For example, the condition determination unit 238 may not be provided, and the line setting unit 236 may not acquire the determination result from the condition determination unit 238. Further, the line setting unit 236 and the condition determination unit 238 may be integrally configured.
(12)上述の実施形態で示された方位ずれ設定部239が備えられない構成であっても良い。 (12) The configuration may not include the directional deviation setting unit 239 shown in the above embodiment.
 この場合、基準方位算出部233は、算出済みの基準方位Bから90度(設定変更不能な固定値)だけ方位ずれした基準方位Bを算出するように構成されても良い。 In this case, the reference direction calculation unit 233 may be configured to calculate the reference direction B which is deviated by 90 degrees (fixed value whose setting cannot be changed) from the calculated reference direction B.
 つまり、基準方位算出部233は、算出済みの基準方位Bから予め設定された値だけ方位ずれした基準方位Bを算出するように構成されても良い。 That is, the reference direction calculation unit 233 may be configured to calculate the reference direction B which is deviated from the calculated reference direction B by a preset value.
(13)図25に示される開始判定ルーチンでは示されていないが、自動操向制御のための所定の条件が満たされているかどうかの判定に、例えば押しボタンスイッチの人為操作が含まれても良い。 (13) Although not shown in the start determination routine shown in FIG. 25, even if the determination as to whether or not a predetermined condition for automatic steering control is satisfied includes, for example, an artificial operation of a push button switch. good.
 また、図16のステップ#118で自動操向モードに移行する前に、押しボタンスイッチの人為操作が行われたかどうかの判定処理が行われ、押しボタンスイッチの人為操作が行われた場合に、ステップ#118で自動操向モードに移行する構成であっても良い。 Further, before shifting to the automatic steering mode in step # 118 of FIG. 16, the determination process of whether or not the push button switch is manually operated is performed, and when the push button switch is manually operated, the push button switch is manually operated. It may be configured to shift to the automatic steering mode in step # 118.
(14)図16のステップ#112では、図25に示される開始判定ルーチンに基づいて、自動操向制御のための所定の条件が満たされているかどうかが判定されるが、この実施形態に限定されない。 (14) In step # 112 of FIG. 16, it is determined whether or not a predetermined condition for automatic steering control is satisfied based on the start determination routine shown in FIG. 25, but the present invention is limited to this embodiment. Not done.
 図16のステップ#111で機体1の位置が位置Paとして記憶された後、ステップ#112の処理が行われずにステップ#113で機体1の走行方位が取得される構成であっても良い。 After the position of the machine 1 is stored as the position Pa in step # 111 of FIG. 16, the traveling direction of the machine 1 may be acquired in step # 113 without the processing of step # 112.
(15)上述の制御ユニット230は、例えばASICやFPGA等によって構成されたハードウェア回路であっても良いし、コンピュータによって実行されるソフトウェアプログラムであっても良い。また、制御ユニット230は、このようなハードウェアとソフトウェアとの複合によって構成されても良い。 (15) The above-mentioned control unit 230 may be a hardware circuit configured by, for example, an ASIC or FPGA, or may be a software program executed by a computer. Further, the control unit 230 may be configured by a combination of such hardware and software.
〔第4実施形態〕
 本発明の別の実施形態を図30-35に基づいて説明する。上述の実施形態と同様の構成については、同じ符号を付し、詳しい説明を省略する場合がある。
[Fourth Embodiment]
Another embodiment of the present invention will be described with reference to FIGS. 30-35. The same reference numerals may be given to the same configurations as those of the above-described embodiments, and detailed description thereof may be omitted.
 図30では、1つの圃場に農作業車として2台のコンバインH、つまり先行コンバイン(マスタコンバイン)としての第1コンバインH1と、後続コンバイン(スレイブコンバイン)としての第2コンバインH2が投入され、互いに協調して収穫作業を行われる。もちろん、後続コンバインが複数台投入されてもよい。 In FIG. 30, two combine harvesters H as agricultural work vehicles, that is, a first combine H1 as a preceding combine (master combine) and a second combine H2 as a succeeding combine (slave combine) are introduced into one field and cooperate with each other. Then the harvesting work is done. Of course, a plurality of subsequent combines may be introduced.
 図30で模式的に示されているが、これらのコンバインHは、図1に示される第1実施形態の普通型コンバインと同様の構成を備える。 Although schematically shown in FIG. 30, these combine Hs have the same configuration as the conventional combine of the first embodiment shown in FIG.
 これらのコンバインHには、データ通信可能なタブレットコンピュータである汎用端末VTが搭載されている。第1コンバインH1と第2コンバインH2とは、汎用端末VTを通じて、走行や収穫作業に関する情報を交換することができる。 These combine Hs are equipped with a general-purpose terminal VT, which is a tablet computer capable of data communication. The first combine H1 and the second combine H2 can exchange information on running and harvesting work through the general-purpose terminal VT.
 図30に示された第1コンバインH1と第2コンバインH2とによる協調作業では、第1コンバインH1は、圃場を示している変形四角形の左上の頂点付近から収穫作業を開始し、左旋回の渦巻き走行(周回走行)を行う。コンバインHの渦巻き走行は、圃場の各辺(畔)に沿って行われる直進走行と、圃場の各コーナで行われる方向転換走行とからなる。 In the cooperative work by the first combine H1 and the second combine H2 shown in FIG. 30, the first combine H1 starts the harvesting work from the vicinity of the upper left apex of the deformed quadrangle showing the field, and swirls to the left. Perform a run (orbital run). The swirl running of the combine H consists of a straight running along each side (shore) of the field and a turning run performed at each corner of the field.
 直進走行では、基準情報を用いた自動走行が可能である。具体的には、後述されるが、基準情報から得られる基準方位、または、基準方位に基づいて算出された走行経路に基づく自動操舵を用いて、コンバインHの自動走行が行われる。 In straight-ahead driving, automatic driving using standard information is possible. Specifically, as will be described later, the combine H is automatically driven by using the reference direction obtained from the reference information or the automatic steering based on the travel path calculated based on the reference direction.
 基準方位は、第1コンバインH1の最初の周回走行における手動操舵での直進走行の一部区間をティーチング走行とすることにより取得される。圃場の各辺に基準方位が取得されてもよいし、1辺で取得された基準方位を回転させて得られた方位が他の3辺の基準方位として用いられてもよい。 The reference direction is acquired by setting a part of the straight running by manual steering in the first lap running of the first combine H1 as teaching running. A reference orientation may be acquired for each side of the field, or an orientation obtained by rotating the reference orientation acquired on one side may be used as the reference orientation for the other three sides.
 基準方位を取得した第1コンバインH1は、自動走行が可能となる。第2コンバインH2は、第1コンバインH1よって取得された基準方位を、データ通信を通じて受け取ることで、ティーチング走行なしでの自動操舵が可能となる。 The first combine H1 that has acquired the reference direction can run automatically. The second combine H2 receives the reference direction acquired by the first combine H1 through data communication, so that automatic steering without teaching running becomes possible.
 図31には、四角形の圃場を二分割して形成された各領域に対して、第1コンバインH1と第2コンバインH2とが収穫作業を行う様子が示されている。 FIG. 31 shows how the first combine H1 and the second combine H2 perform harvesting work on each region formed by dividing a quadrangular field into two.
 第1コンバインH1は最外周の周回走行を行う際に、縦辺に沿って延びる基準方位と、横辺に沿って延びる基準方位を取得する。縦辺で取得された基準方位を回転させて得られた方位が、横辺の走行において基準方位として用いられてもよい。 The first combine H1 acquires a reference direction extending along the vertical side and a reference direction extending along the horizontal side when traveling around the outermost circumference. The direction obtained by rotating the reference direction acquired on the vertical side may be used as the reference direction in the running on the horizontal side.
 基準方位を取得した第1コンバインH1は、基準方位または、基準方位に基づいて算出された走行経路に基づいて、2周の周回走行における直進走行を、自動操舵で行うことができる。その後は、第1コンバインH1は、自動操舵での直進走行と、手動操舵での方向転換走行(180°旋回)との繰り返し走行(直線往復走行)により収穫作業を行う。 The first combine H1 that has acquired the reference direction can perform straight running in two laps by automatic steering based on the reference direction or the running path calculated based on the reference direction. After that, the first combine H1 performs harvesting work by repeated running (straight reciprocating running) of straight running by automatic steering and direction change running (180 ° turning) by manual steering.
 第2コンバインH2は、第1コンバインH1によって取得された基準方位を、データ通信を通じて受け取ることで、自動操舵での直進走行と、手動操舵での方向転換走行(180°旋回)との繰り返し走行により収穫作業を行う。 The second combine H2 receives the reference direction acquired by the first combine H1 through data communication, and by repeatedly traveling straight ahead with automatic steering and turning direction (180 ° turning) with manual steering. Perform harvesting work.
 第1コンバインH1と第2コンバインH2との間のデータ通信によって交換されるデータとして、基準方位以外に、車速などの走行データ、収穫速度などの作業データ、単位区画走行あたりの収穫量などの収穫データ、などが取り扱われてもよい。 As data exchanged by data communication between the first combine H1 and the second combine H2, in addition to the reference direction, running data such as vehicle speed, work data such as harvest speed, and harvest such as yield per unit section running Data, etc. may be handled.
 図31は、このコンバインHの自動走行制御に関する機能を示す走行制御系の機能ブロック図である。コンバインHは、図2に示される第1実施形態の普通型コンバインと同様の制御系を備える。以下、第1実施形態の普通型コンバインの制御系と異なる構成について説明する。 FIG. 31 is a functional block diagram of the travel control system showing the functions related to the automatic travel control of the combine H. The combine H includes a control system similar to that of the conventional combine of the first embodiment shown in FIG. Hereinafter, a configuration different from the control system of the ordinary combine of the first embodiment will be described.
 この実施形態では、汎用端末VTのタッチパネル3の操作画像表示領域3bに、ソフトウエアボタンとして、あとで詳しく説明する第1ボタン31と第2ボタン32が配置されている。さらに、汎用端末VTには、このコンバインHによる収穫作業に関する情報を処理する各種アプリケーションがインストールされている。アプリケーションの1つは、支援画像表示領域3aに表示される情報を生成する表示情報生成部30である。 In this embodiment, the first button 31 and the second button 32, which will be described in detail later, are arranged as software buttons in the operation image display area 3b of the touch panel 3 of the general-purpose terminal VT. Further, various applications for processing information regarding the harvesting work by the combine H are installed in the general-purpose terminal VT. One of the applications is a display information generation unit 30 that generates information to be displayed in the support image display area 3a.
 本実施形態では、制御ユニット4には、上述の機能部(機体位置算出部40と、第1機体位置取得部41と、第2機体位置取得部42と、基準方位算出部43と、走行経路作成部44と、走行軌跡作成部45、機体方位算出部46と、走行制御部50)に加えて、基準情報管理部47が備えられている。 In the present embodiment, the control unit 4 includes the above-mentioned functional units (airframe position calculation unit 40, first aircraft position acquisition unit 41, second aircraft position acquisition unit 42, reference direction calculation unit 43, and travel route. In addition to the creation unit 44, the travel locus creation unit 45, the aircraft direction calculation unit 46, and the travel control unit 50), the reference information management unit 47 is provided.
 このコンバインHが第1コンバインH1(マスタコンバイン)として圃場に投入されている場合、第1コンバインH1は、自動走行のために用いられる基準方位を取得するためのティーチング走行を行う。例えば、第1コンバインH1が圃場に進入すると、直ちに、あるいは必要な姿勢変更の後にティーチング走行が行われる。 When this combine H is put into the field as the first combine H1 (master combine), the first combine H1 performs teaching running to acquire the reference direction used for automatic running. For example, when the first combine H1 enters the field, the teaching run is performed immediately or after the necessary posture change.
 第1機体位置取得部41は、収穫作業中において、運転者が第1ボタン31をクリック操作(タッチ操作)することによって生成される第1信号を汎用端末VTから受け取る。第1ボタン31のクリック操作はティーチング走行の開始を意味する。第1機体位置取得部41は、第1信号を受け取ったタイミングでの機体位置を、機体位置算出部40から取得し、当該機体位置を第1機体位置として記憶する。 The first machine position acquisition unit 41 receives the first signal generated by the driver clicking (touching) the first button 31 from the general-purpose terminal VT during the harvesting work. The click operation of the first button 31 means the start of the teaching run. The first airframe position acquisition unit 41 acquires the airframe position at the timing of receiving the first signal from the airframe position calculation unit 40, and stores the airframe position as the first airframe position.
 第2機体位置取得部42は、ティーチング走行を継続し、機体1が第1機体位置から離れた場所まで作業走行を行った際に、運転者が第2ボタン32をクリック操作(タッチ操作)することで生成される第2信号を受け取る。 The second machine position acquisition unit 42 continues the teaching run, and when the machine 1 makes a work run to a place away from the first machine position, the driver clicks (touches) the second button 32. The second signal generated by this is received.
 第2機体位置取得部42は、汎用端末VTから第2信号を受け取ったタイミングでの機体位置を、機体位置算出部40から取得し、当該機体位置を第2機体位置として記憶する。第2ボタン32のクリック操作はティーチング走行の終了を意味する。なお、コンバインHは、既に収穫作業を終えた既作業領域や既作業領域と未作業領域とを含む混在領域で、ティーチング走行を行うことも可能である。 The second machine position acquisition unit 42 acquires the machine position at the timing when the second signal is received from the general-purpose terminal VT from the machine position calculation unit 40, and stores the machine position as the second machine position. The click operation of the second button 32 means the end of the teaching run. The combine H can also perform teaching running in an already-worked area where the harvesting work has already been completed or in a mixed area including the already-worked area and the unworked area.
 基準方位算出部43は、第1機体位置取得部41から読み出された第1機体位置と、第2機体位置取得部42から読み出された第2機体位置とを結ぶ直線の方位を基準方位として算出する。算出された基準方位は、走行経路作成部44に、そして必要に応じて走行制御部50に送られる。さらに、基準方位は、第1機体位置と第2機体位置との組み合わせを基準情報として、基準情報管理部47に送られる。 The reference direction calculation unit 43 uses the direction of a straight line connecting the first machine position read from the first machine position acquisition unit 41 and the second machine position read from the second machine position acquisition unit 42 as the reference direction. Calculated as. The calculated reference direction is sent to the travel route creation unit 44 and, if necessary, to the travel control unit 50. Further, the reference orientation is sent to the reference information management unit 47 using the combination of the first aircraft position and the second aircraft position as reference information.
 基準情報管理部47は、第1機体位置と第2機体位置との組み合わせ、及び第1機体位置と第2機体位置とを結ぶ直線の方位である基準方位のうち少なくとも一方を基準情報として管理する。 The reference information management unit 47 manages at least one of the combination of the first machine position and the second machine position and the reference direction which is the direction of the straight line connecting the first machine position and the second machine position as the reference information. ..
 このコンバインHが第1コンバインH1として用いられている場合、その基準情報管理部47は、基準情報を、第2コンバインH2として用いられいるコンバインHに、通信ユニット83の基準情報送信部83aを介して送信する。 When this combine H is used as the first combine H1, the reference information management unit 47 transfers the reference information to the combine H used as the second combine H2 via the reference information transmission unit 83a of the communication unit 83. And send.
 基準情報を通信ユニット83の基準情報受信部83bを介して受け取った第2コンバインH2の基準情報管理部47は、当該基準情報から得られる基準方位を、走行経路作成部44または走行制御部50に与える。 The reference information management unit 47 of the second combine H2, which has received the reference information via the reference information receiving unit 83b of the communication unit 83, transfers the reference direction obtained from the reference information to the travel route creation unit 44 or the travel control unit 50. give.
 つまり、このコンバインHは、第1コンバインH1としても、あるいは第2コンバインH2としても用いられる。 That is, this combine H is used both as the first combine H1 and as the second combine H2.
 コンバインHは、多くの圃場に投入され、それらの圃場毎に異なる基準方位を含む基準情報が作成される。基準情報管理部47は、基準情報を、投入された圃場毎に管理する機能を有する。 Combine H is put into many fields, and reference information including different reference directions is created for each of those fields. The reference information management unit 47 has a function of managing the reference information for each input field.
 走行制御部50は、基準情報から得られる基準方位、または、基準方位に基づいて算出された走行経路に基づいてコンバインHの自動走行を制御する。 The travel control unit 50 controls the automatic travel of the combine H based on the reference direction obtained from the reference information or the travel route calculated based on the reference direction.
 次に、図33のフローチャートを用いて、収穫作業走行の一例を説明する。この収穫作業走行は、図31で示めされた走行パターンで行われる。 Next, an example of the harvesting work run will be described using the flowchart of FIG. 33. This harvesting work run is performed in the run pattern shown in FIG.
 その際、第1コンバインH1は、最初の周回作業走行で縦辺(縦畔、図31に示される圃場の短辺)に沿った走行の一部をティーチング走行として、第1機体位置(A点)と第2機体位置(B点)とを取得して、基準方位を算出する。 At that time, the first combine H1 is set to the first aircraft position (point A) with a part of the running along the vertical side (vertical side, short side of the field shown in FIG. 31) as a teaching run in the first lap work run. ) And the position of the second aircraft (point B), and the reference direction is calculated.
 横辺(横畔、図31に示される圃場の長辺)に沿った走行では、基準方位は算出されず、縦辺に沿ったティーチング走行で取得された基準方位を回転させた方位が、横辺に沿った自動走行のための基準方位として利用される。 When running along the horizontal side (horizontal side, long side of the field shown in FIG. 31), the reference direction is not calculated, and the direction obtained by rotating the reference direction obtained by the teaching run along the vertical side is horizontal. It is used as a reference direction for automatic driving along the sides.
 基準方位が取得されると、直進走行である直線状経路は、上記の第1操縦モードによる自動操舵で自動走行される。先行する第1コンバインH1に後続する第2コンバインH2は、第1コンバインH1から送られてきた基準方位を利用して、自動操舵での自動走行を行う。 When the reference direction is acquired, the straight path that is traveling straight is automatically driven by the automatic steering according to the first steering mode described above. The second combine H2 following the preceding first combine H1 performs automatic traveling by automatic steering by using the reference direction sent from the first combine H1.
 まず、第1コンバインH1が出入口を通じて圃場に進入し(#201)、手動操舵での収穫走行を開始する(#202)。 First, the first combine H1 enters the field through the doorway (# 201) and starts the harvesting run by manual steering (# 202).
 次いで、自動操舵に必要な基準方位を得るためのティーチング走行が行われる。ティーチング走行を開始するため、運転者は、タッチパネル3の操作画像表示領域3bに表示されている第1ボタン31(図31参照)をクリックする(#211)。 Next, a teaching run is performed to obtain the reference direction required for automatic steering. In order to start the teaching run, the driver clicks the first button 31 (see FIG. 31) displayed in the operation image display area 3b of the touch panel 3 (# 211).
 このクリック操作に応答して、その時点での機体位置である第1機体位置が取得される(#212)。同時に、タッチパネル3の支援画像表示領域3aには、第1機体位置を示すA点が表示される(#213)。 In response to this click operation, the first aircraft position, which is the aircraft position at that time, is acquired (# 212). At the same time, the point A indicating the position of the first machine is displayed in the support image display area 3a of the touch panel 3 (# 213).
 収穫作業走行にともなって、図31に示されているように、支援画像表示領域3aには、A点からの走行軌跡を示す帯状ラインBLが収穫幅でコンバインHのアイコンとともに表示される(#214)。 As the harvesting work runs, as shown in FIG. 31, in the support image display area 3a, a band-shaped line BL showing the running locus from the point A is displayed with the combine H icon in the harvest width (#). 214).
 さらに、支援画像表示領域3aには、正確なティーチング走行を行うために、圃場の畔又は畦に平行な線を示す標識線GLが表示されている。 Further, in the support image display area 3a, a sign line GL indicating a line parallel to the shore or the ridge of the field is displayed in order to perform accurate teaching running.
 もし、収穫作物の植付け条の方位が分かっている場合には、植付け条に平行な線を標識線GLとして表示してもよい。 If the orientation of the planting strip of the harvested crop is known, a line parallel to the planting strip may be displayed as a marker line GL.
 ティーチング走行の終了条件は、第1機体位置からコンバインHが所定距離(例えば5m)以上走行すること、あるいは、所定距離の走行に必要な所定時間を経過したかどうかである。ここでは、所定距離以上の走行距離を条件として、十分なティーチング走行が行われたかどうかが判定される(#215)。 The end condition of the teaching run is whether the combine H has traveled a predetermined distance (for example, 5 m) or more from the position of the first aircraft, or whether the predetermined time required for traveling the predetermined distance has elapsed. Here, it is determined whether or not sufficient teaching running has been performed on condition that the running distance is equal to or longer than a predetermined distance (# 215).
 十分なティーチング走行を示す条件が満たされると(#215Yes分岐)、タッチパネル3の操作画像表示領域3bに第2ボタン32が表示される(#216)。 When the condition indicating sufficient teaching running is satisfied (# 215Yes branch), the second button 32 is displayed in the operation image display area 3b of the touch panel 3 (# 216).
 運転者が、第2ボタン32をクリックすると(#217Yes分岐)、このクリック操作に応答して、その時点での機体位置である第2機体位置が取得され(#218)、支援画像表示領域3aに表示されている走行軌跡上に第2機体位置を示すB点が表示される(#219)。 When the driver clicks the second button 32 (# 217Yes branch), in response to this click operation, the second aircraft position, which is the aircraft position at that time, is acquired (# 218), and the support image display area 3a Point B indicating the position of the second aircraft is displayed on the traveling locus displayed in (# 219).
 運転者は、支援画像表示領域3aに表示されているA点とB点とその間の走行軌跡とによってティーチング走行を確認することができる。 The driver can confirm the teaching run by the points A and B displayed in the support image display area 3a and the running locus between them.
 さらに、第1機体位置と第2機体位置と結ぶ直線の方位が基準方位として算出され、記憶される(#220)。 Furthermore, the direction of the straight line connecting the position of the first machine and the position of the second machine is calculated and stored as the reference direction (# 220).
 さらに、算出された基準方位は、第2コンバインH2に送信される(#221)。 Further, the calculated reference direction is transmitted to the second combine H2 (# 221).
 手動操舵での収穫作業走行であるティーチング走行が終了すれば、第1コンバインH1は手動操舵から自動操舵への移行が可能となる。自動操舵での自動走行を開始するための操作には、自動操舵開始具71が用いられる。この自動操舵開始具71が操作されたかどうかチェックされる(#230)。 When the teaching run, which is the harvesting work run by manual steering, is completed, the first combine H1 can shift from manual steering to automatic steering. The automatic steering starter 71 is used for the operation for starting the automatic running in the automatic steering. It is checked whether or not the automatic steering starter 71 has been operated (# 230).
 機体1が自動操舵を開始すべき位置にあると運転者が判断し、自動操舵開始具71が操作された場合(#230Yes分岐)、第1実施形態の図6を用いて説明されたように、その時点の機体位置と基準方位とに基づいて走行経路が決定され、固定される(#231)。そして、この例では、第1操舵モードでの自動操舵が開始される(#232)。 When the driver determines that the aircraft 1 is in a position where automatic steering should be started and the automatic steering starter 71 is operated (# 230Yes branch), as described with reference to FIG. 6 of the first embodiment. , The travel route is determined and fixed based on the aircraft position and the reference direction at that time (# 231). Then, in this example, automatic steering in the first steering mode is started (# 232).
 自動操舵が開始されると、方向転換などの理由で、自動操舵が中止されるかどうかのチェックが行われる(#233)。 When the automatic steering is started, it is checked whether the automatic steering is stopped due to a change of direction or the like (# 233).
 自動操舵から手動操舵へ移行には、種々の条件があるが、方向転換を行うための操向レバー(非図示)の操作もその1つである。自動操舵が中止されると(#233Yes分岐)、第1コンバインH1は手動操舵状態となる(#234)。運転者は、手動操舵により、機体1の方向転換、次の条での収穫作業のための位置合わせなどを行う。 There are various conditions for shifting from automatic steering to manual steering, and one of them is the operation of the steering lever (not shown) for changing direction. When the automatic steering is stopped (# 233Yes branch), the first combine H1 is in the manual steering state (# 234). By manual steering, the driver changes the direction of the aircraft 1 and aligns it for the harvesting work in the next section.
 次いで、再び、手動操舵から自動操舵への移行を行うべく、自動操舵開始具71の操作による自動操舵の開始が要求されているかどうかがチェックされる(#235)。 Next, in order to shift from manual steering to automatic steering again, it is checked whether or not the start of automatic steering by the operation of the automatic steering starter 71 is required (# 235).
 自動操舵開始具71の操作により、自動操舵の開始が要求された場合(#235Yes分岐)、ステップ#231にジャンプして、その時点の機体位置と基準方位とに基づいて走行経路が形成され、自動操舵が開始される。 When the start of automatic steering is requested by the operation of the automatic steering starter 71 (# 235Yes branch), the vehicle jumps to step # 231 and a traveling route is formed based on the aircraft position and the reference direction at that time. Automatic steering is started.
 なお、基準方位として異なる方位の基準方位が記憶されている場合には、自動操舵の開始が要求された時点での、機体1の方位に近い方位を有する基準方位が走行経路の形成のために用いられる。もちろん、走行経路の形成のために用いる基準方位を運転者が選択するような構成を採用してもよい。 If a reference direction of a different direction is stored as the reference direction, the reference direction having a direction close to the direction of the aircraft 1 at the time when the start of automatic steering is requested is for forming the traveling path. Used. Of course, a configuration may be adopted in which the driver selects the reference direction used for forming the travel path.
 自動操舵の再開は、通常、収穫装置15を上昇させた手動操舵での方向転換走行(非収穫作業走行)に続いて行われる収穫装置15を下降させた収穫作業走行から行われる。 The resumption of automatic steering is usually performed from the harvesting work running in which the harvesting device 15 is lowered following the direction change running (non-harvesting work running) by the manual steering in which the harvesting device 15 is raised.
 このことから、自動操舵開始具71に併用して、あるいは自動操舵開始具71に代えて、収穫機器による収穫動作を開始する収穫開始操作具が用いられてもよい。 For this reason, a harvesting start operating tool for starting the harvesting operation by the harvesting device may be used in combination with the automatic steering starter 71 or instead of the automatic steering starter 71.
 第2コンバインH2は、第1コンバインH1による周回走行の邪魔にならない位置、例えば、捕場外で待機する(#250)。第2コンバインH2は、待機しながら、第1コンバインH1から送られてくる基準方位が受信されたがどうかチェックする(#251)。 The second combine H2 stands by at a position that does not interfere with the lap running by the first combine H1, for example, outside the catching area (# 250). The second combine H2 checks whether or not the reference direction sent from the first combine H1 has been received while waiting (# 251).
 基準方位が受信されると(#251Yes分岐)、第2コンバインH2は、待機位置から手動で収穫作業を開始するのに適した位置移動する(#252)。 When the reference orientation is received (# 251Yes branch), the second combine H2 moves from the standby position to a position suitable for manually starting the harvesting work (# 252).
 収穫作業開始位置に達すると、手動操舵での収穫走行が開始される(#253)。 When the harvesting work start position is reached, the harvesting run by manual steering is started (# 253).
 第2コンバインH2は、手動操舵での収穫走行が開始されると、手動操舵から自動操舵への移行タイミングは運転者によって決定される。このため、自動操舵開始具71が操作されたかどうかチェックされる(#260)。 In the second combine H2, when the harvesting run by manual steering is started, the shift timing from manual steering to automatic steering is determined by the driver. Therefore, it is checked whether or not the automatic steering starter 71 has been operated (# 260).
 機体1が自動操舵を開始すべき位置にあると運転者が判断し、自動操舵開始具71が操作された場合(#260Yes分岐)、第1実施形態の図6を用いて説明されたように、その時点の機体位置と基準方位とに基づいて走行経路が決定され、固定される(#261)。そして、この例では、第1コンバインH1と同様に、第2コンバインH2でも第1操舵モードでの自動操舵が開始される(#262)。 When the driver determines that the aircraft 1 is in a position where automatic steering should be started and the automatic steering starter 71 is operated (# 260Yes branch), as described with reference to FIG. 6 of the first embodiment. , The travel route is determined and fixed based on the aircraft position and the reference direction at that time (# 261). Then, in this example, as in the first combine H1, the second combine H2 also starts automatic steering in the first steering mode (# 262).
 自動操舵が開始されると、方向転換などの理由で、自動操舵が中止されるかどうかのチェックが行われる(#263)。 When the automatic steering is started, it is checked whether the automatic steering is stopped due to a change of direction or the like (# 263).
 自動操舵から手動操舵への移行には、種々の条件があるが、方向転換を行うための操向レバー(非図示)の操作もその1つである。自動操舵が中止されると(#233Yes分岐)、第2コンバインH2は手動操舵状態となる(#264)。運転者は、手動操舵により、機体1の方向転換、次の条での収穫作業のための位置合わせなどを行う。 There are various conditions for the transition from automatic steering to manual steering, and one of them is the operation of the steering lever (not shown) for changing direction. When the automatic steering is stopped (# 233Yes branch), the second combine H2 is in the manual steering state (# 264). By manual steering, the driver changes the direction of the aircraft 1 and aligns it for the harvesting work in the next section.
 次いで、再び、手動操舵から自動操舵への移行を行うべく、自動操舵開始具71の操作による自動操舵の開始が要求されているかどうかがチェックされる(#265)。 Next, in order to shift from manual steering to automatic steering again, it is checked whether or not the start of automatic steering by the operation of the automatic steering starter 71 is required (# 265).
 図34には、季節を超えた同一圃場での、コンバインHによる収穫作業と田植機PMによる苗植付け作業とが、示されている。図示例では、田植機PMによる苗植付け作業が、直進走行と90°旋回走行とからなる周回走行と、直進走行と180°旋回走行とからなる直線往復走行とによって行われる。 FIG. 34 shows the harvesting work by the combine H and the seedling planting work by the rice transplanter PM in the same field beyond the seasons. In the illustrated example, the seedling planting work by the rice transplanter PM is performed by a lap running consisting of a straight running and a 90 ° turning running, and a straight reciprocating running consisting of a straight running running and a 180 ° turning running.
 田植機PMは、最初の略半周の非作業走行時に、基準方位を取得する。基準方位の取得後の、直進走行は、基準方位または、基準方位に基づいて算出された走行経路に基づいて、自動操舵で行うことができる。 The rice transplanter PM acquires the reference direction during the first non-working run of about half a lap. After acquiring the reference direction, the straight running can be performed by automatic steering based on the reference direction or the running path calculated based on the reference direction.
 田植機PMによって取得された基準方位は、メモリ媒体に一時的に記録される。田植機PMによって一定の条列で植え付けられた苗は、季節が変わり、植立穀桿として育つと、コンバインHによって収穫される。 The reference direction acquired by the rice transplanter PM is temporarily recorded in the memory medium. Seedlings planted in a certain row by the rice transplanter PM are harvested by combine H when they grow as planting grain rods in different seasons.
 コンバインHは、苗植付け条列、つまり植立穀桿条列に沿って走行しながら、植立穀桿を収穫する。その際の直進走行では、メモリ媒体から読み出された基準方位または、基準方位に基づいて算出された走行経路に基づく自動操舵が可能となる。 Combine H harvests the planted grain rod while running along the seedling planting row, that is, the planted grain rod row. In the straight running at that time, automatic steering based on the reference direction read from the memory medium or the running path calculated based on the reference direction becomes possible.
 図35には、基準方位を含む基準情報を受信する基準情報受信部83bと、受信した基準情報を管理する基準情報管理部47と、基準情報管理部47から読み出された基準情報を送信する基準情報送信部83aとが、サーバ機能を有する管理コンピュータ100に備えられている自動操舵管理システムの一例が示されている。 In FIG. 35, the reference information receiving unit 83b for receiving the reference information including the reference orientation, the reference information management unit 47 for managing the received reference information, and the reference information read from the reference information management unit 47 are transmitted. An example of an automatic steering management system provided in a management computer 100 having a reference information transmission unit 83a and a server function is shown.
 管理コンピュータ100は、農作業車と、インターネットなどのデータ通信回線を介して接続可能である。農作業車として、コンバインH、田植機PM、トラクタTRなど、圃場作業を行う全ての農作業車が含まれている。 The management computer 100 can be connected to the agricultural work vehicle via a data communication line such as the Internet. Agricultural work vehicles include all agricultural work vehicles that perform field work, such as combine H, rice transplanter PM, and tractor TR.
 管理コンピュータ100は、入出力データ処理部101、農作業管理部102、データベース103を備えている。 The management computer 100 includes an input / output data processing unit 101, an agricultural work management unit 102, and a database 103.
 入出力データ処理部101は、農作業車から受け取ったデータを処理して、農作業管理部102に転送し、農作業管理部102からのデータを処理して農作業車に配信する機能を有する。 The input / output data processing unit 101 has a function of processing the data received from the agricultural work vehicle, transferring it to the agricultural work management unit 102, processing the data from the agricultural work management unit 102, and distributing it to the agricultural work vehicle.
 基準情報送信部83a及び基準情報受信部83bは入出力データ処理部101に含まれている。 The reference information transmission unit 83a and the reference information reception unit 83b are included in the input / output data processing unit 101.
 農作業管理部102は、各農作業車から送られてくる圃場毎の作業走行結果情報を処理して作業走行結果を評価する機能、及び各農作業車に送るための圃場毎の圃場作業予定計画情報を作成する機能を有する。 The farm work management unit 102 has a function of processing the work run result information for each field sent from each farm work vehicle and evaluating the work run result, and the field work schedule plan information for each field to be sent to each farm work vehicle. Has the ability to create.
 基準情報管理部47は、農作業管理部102に含まれている。 The standard information management unit 47 is included in the agricultural work management unit 102.
 データベース103は、農作業管理部102によってデータの記録、抽出が行われるデータを格納している。 The database 103 stores data for which data is recorded and extracted by the agricultural work management unit 102.
 データベース103に格納されるデータには、圃場単位でかつ農作業車の機種別で、圃場情報、圃場作業情報、圃場評価情報などが含まれている。 The data stored in the database 103 includes field information, field work information, field evaluation information, etc. for each field and for each type of farm work vehicle.
 このようなデータは、レイヤ構造で格納されており、レイヤ構造には、圃場地図Aレイヤ、畝形成マップレイヤ、基準方位レイヤ、条列形成マップレイヤ、走行軌跡マップレイヤ、収量マップレイヤなどが含まれている。 Such data is stored in a layered structure, and the layered structure includes a field map A layer, a ridge formation map layer, a reference direction layer, a row formation map layer, a traveling locus map layer, a yield map layer, and the like. It has been.
 基準方位レイヤには、農作業車によって取得された基準方位、例えば第1基準方位、第2基準方位、・・・が記録されている。具体的には、田植機PMで取得された基準方位が、同じ圃場で同じ農作周期において収穫作業を行うコンバインHに、圃場内外で、与えられる。あるいは、第1コンバインH1で取得された基準方位が、同じ圃場で同じ協調的に収穫作業を行う第2コンバインH2に、圃場内外で与えられる。 In the reference direction layer, the reference direction acquired by the agricultural work vehicle, for example, the first reference direction, the second reference direction, and so on are recorded. Specifically, the reference orientation acquired by the rice transplanter PM is given to the combine H, which performs harvesting work in the same field in the same farming cycle, inside and outside the field. Alternatively, the reference orientation acquired by the first combine H1 is given to the second combine H2, which performs the same cooperative harvesting work in the same field, inside and outside the field.
〔第4実施形態の変形例〕
 本発明は、上述の実施形態に例示された構成に限定されるものではなく、以下、本発明の代表的な変形例を例示する。
[Modified example of the fourth embodiment]
The present invention is not limited to the configuration exemplified in the above-described embodiment, and the following will illustrate typical modifications of the present invention.
 (1)上述の実施形態で用いられた、直進または直線状経路なる語句は、厳密な直線走行を意味するのではなく、この語句には、折れ線からなる直線経路、さらには大きな湾曲を描く走行も含まれている。 (1) The phrase "straight or straight path" used in the above-described embodiment does not mean a strict straight path, but the phrase includes a straight path consisting of a polygonal line and a run that draws a large curve. Is also included.
 (2)図32の機能ブロック図で示された各機能部は、他の機能部と合体させてもよいし、1つの機能部を複数の機能部に分離させてもよい。例えば、基準方位算出部43と基準情報管理部47とが一体化され、基準方位算出部43が基準情報を作成して、管理してもよいし、基準情報管理部47が基準方位を算出して、基準情報として管理してもよい。 (2) Each functional unit shown in the functional block diagram of FIG. 32 may be combined with another functional unit, or one functional unit may be separated into a plurality of functional units. For example, the reference direction calculation unit 43 and the reference information management unit 47 may be integrated, the reference direction calculation unit 43 may create and manage the reference information, or the reference information management unit 47 may calculate the reference direction. It may be managed as reference information.
 (3)上述の実施形態では、第2コンバインH2は、第1コンバインH1によって得られた基準方位を、通信を介して受け取り、走行経路作成部44または自動操舵モジュール51に転送して、自動操舵のために利用していた。これに代えて、運転者が手動で、機銃包囲を制御ユニット4に入力してもよい。 (3) In the above-described embodiment, the second combine H2 receives the reference direction obtained by the first combine H1 via communication, transfers it to the traveling route creating unit 44 or the automatic steering module 51, and automatically steers it. Was used for. Alternatively, the driver may manually enter the machine gun siege into the control unit 4.
 (4)上述の実施形態では、走行装置11は、クローラ式の左走行機構11aと右走行機構11bとから構成されており、左走行機構11aと右走行機構11bとの速度差により、機体1が操舵されたが、操向輪の操向角度を変えることにより機体1が操舵される走行装置11を採用してもよい。 (4) In the above-described embodiment, the traveling device 11 is composed of a crawler-type left traveling mechanism 11a and a right traveling mechanism 11b, and the aircraft 1 is due to a speed difference between the left traveling mechanism 11a and the right traveling mechanism 11b. However, a traveling device 11 in which the aircraft 1 is steered by changing the steering angle of the steering wheel may be adopted.
 (5)上述の実施形態では、コンバインHや田植機PMがティーチング走行を行なって、基準方位を得ていた。これに代えて、近年種々の農作業を支援しているドローンを用いて、圃場の上空からの撮影画像を取得し、取得した撮影画像から基準方位を求めてもよい。例えば、撮影カメラの撮影軸が所定方向となるように撮影カメラをドローンに固定し、ドローンを所定方向で飛行させることで、地図座標系または圃場座標系での正確な基準方位が得られる。 (5) In the above-described embodiment, the combine H and the rice transplanter PM perform teaching running to obtain a reference direction. Instead of this, a drone that has been supporting various agricultural works in recent years may be used to acquire an image taken from the sky of the field, and a reference direction may be obtained from the acquired image. For example, by fixing the shooting camera to the drone so that the shooting axis of the shooting camera is in a predetermined direction and flying the drone in a predetermined direction, an accurate reference direction in a map coordinate system or a field coordinate system can be obtained.
 第1実施形態は、普通型コンバイン以外にも、自脱型コンバイン、とうもろこし収穫機など、他の収穫機にも応用できる。 The first embodiment can be applied not only to a normal combine harvester but also to other harvesters such as a self-removing combine harvester and a corn harvester.
 第2実施形態は、普通型コンバイン以外にも、自脱型コンバイン、田植機、直播機、トラクタ、管理機等の農作業機に応用できる。 The second embodiment can be applied to agricultural work machines such as self-removing combine harvesters, rice transplanters, direct seeding machines, tractors, and management machines, in addition to ordinary combine harvesters.
 第3実施形態は、普通型コンバイン以外にも、自脱型コンバイン、田植機、直播機、トラクタ、管理機等の農作業機に応用できる。 The third embodiment can be applied to agricultural work machines such as self-removing combine harvesters, rice transplanters, direct seeding machines, tractors, and management machines, in addition to ordinary combine harvesters.
 第4実施形態は、農作業車の自動操舵のために必要な情報を管理する自動操舵管理システムに応用可能である。 The fourth embodiment can be applied to an automatic steering management system that manages information necessary for automatic steering of agricultural work vehicles.
〔第1実施形態〕
1   :機体
3   :タッチパネル
3a  :支援画像表示領域
3b  :操作画像表示領域
4   :制御ユニット
13  :脱穀装置(作業装置)
15  :収穫装置(作業装置)
30  :表示情報生成部
31  :第1ボタン
32  :第2ボタン
40  :機体位置算出部
41  :第1機体位置取得部
42  :第2機体位置取得部
43  :基準方位算出部
44  :走行経路作成部
45  :走行軌跡作成部
46  :機体方位算出部
50  :走行制御部
51  :自動操舵モジュール
52  :手動操舵モジュール
53  :車速制御モジュール
71  :自動操舵開始具
80  :衛星測位モジュール
81  :慣性計測モジュール
BL  :帯状ライン(走行軌跡)
GL  :標識線
GS  :人工衛星
VT  :汎用端末
〔第2実施形態〕
42a :ティーチング走行管理部
〔第3実施形態〕
226 :脱穀クラッチ(クラッチ)
227 :刈取クラッチ(クラッチ)
231 :機体位置算出部
232 :機体方位算出部
233 :基準方位算出部
234 :記憶部
235 :選択部
237 :操向制御部
Aa  :位置(第一地点、第三地点)
Ab  :位置(第二地点、第四地点)
A1  :位置(第一地点)
A2  :位置(第二地点)
A3  :位置(第三地点)
A4  :位置(第四地点)
A5  :位置
A6  :位置
A7  :位置
A8  :位置
B   :基準方位
B1  :基準方位(第一基準方位)
B2  :基準方位(第二基準方位)
B3  :基準方位
B4  :基準方位
ΔB  :方位ずれ量(所定の方位)
C   :走行目標ライン
C1  :走行目標ライン
C2  :走行目標ライン
C3  :走行目標ライン
C4  :走行目標ライン
C5  :走行目標ライン
C6  :走行目標ライン
C7  :走行目標ライン
C8  :走行目標ライン
GL1 :方位指標
GL2 :方位指標
RL1 :方位指標
RL2 :方位指標
VT  :タッチパネル式画面(方位表示部)
〔第4実施形態〕
47  :基準情報管理部
83  :通信ユニット
83a :基準情報送信部
83b :基準情報受信部
100 :管理コンピュータ
101 :入出力データ処理部
102 :農作業管理部
103 :データベース
[First Embodiment]
1: Aircraft 3: Touch panel 3a: Support image display area 3b: Operation image display area 4: Control unit 13: Threshing device (working device)
15: Harvesting equipment (working equipment)
30: Display information generation unit 31: 1st button 32: 2nd button 40: Aircraft position calculation unit 41: 1st aircraft position acquisition unit 42: 2nd aircraft position acquisition unit 43: Reference orientation calculation unit 44: Travel route creation unit 45: Travel locus creation unit 46: Aircraft orientation calculation unit 50: Travel control unit 51: Automatic steering module 52: Manual steering module 53: Vehicle speed control module 71: Automatic steering starter 80: Satellite positioning module 81: Inertial measurement module BL: Belt-shaped line (running locus)
GL: Marked line GS: Artificial satellite VT: General-purpose terminal [second embodiment]
42a: Teaching driving management unit [third embodiment]
226: Threshing clutch (clutch)
227: Mowing clutch (clutch)
231: Aircraft position calculation unit 232: Aircraft direction calculation unit 233: Reference direction calculation unit 234: Storage unit 235: Selection unit 237: Steering control unit Aa: Position (first point, third point)
Ab: Position (second and fourth points)
A1: Position (first point)
A2: Position (second point)
A3: Position (third point)
A4: Position (4th point)
A5: Position A6: Position A7: Position A8: Position B: Reference direction B1: Reference direction (first reference direction)
B2: Reference direction (second reference direction)
B3: Reference direction B4: Reference direction ΔB: Direction deviation amount (predetermined direction)
C: Driving target line C1: Driving target line C2: Driving target line C3: Driving target line C4: Driving target line C5: Driving target line C6: Driving target line C7: Driving target line C8: Driving target line GL1: Direction index GL2 : Direction index RL1: Direction index RL2: Direction index VT: Touch panel screen (direction display unit)
[Fourth Embodiment]
47: Reference information management unit 83: Communication unit 83a: Reference information transmission unit 83b: Reference information reception unit 100: Management computer 101: Input / output data processing unit 102: Agricultural work management unit 103: Database

Claims (52)

  1.  走行装置を有する機体と、
     衛星測位を用いて機体位置を算出する機体位置算出部と、
     収穫作業中において手動操作によって生成された第1信号に応答して取得した前記機体位置を第1機体位置とする第1機体位置取得部と、
     前記収穫作業中において前記第1機体位置から離れた場所での手動操作によって生成された第2信号に応答して取得した前記機体位置を第2機体位置とする第2機体位置取得部と、
     前記第1機体位置と前記第2機体位置とを結ぶ直線の方位を基準方位として算出する基準方位算出部と、
     前記基準方位、または、前記基準方位に基づいて算出された走行経路に基づいて前記機体の自動走行を制御する走行制御部と、を備えた収穫機。
    An aircraft with a traveling device and
    The aircraft position calculation unit that calculates the aircraft position using satellite positioning, and
    A first aircraft position acquisition unit whose first aircraft position is the aircraft position acquired in response to the first signal generated by manual operation during the harvesting operation.
    A second machine position acquisition unit whose second machine position is the machine position acquired in response to a second signal generated by a manual operation at a place away from the first machine position during the harvesting operation.
    A reference azimuth calculation unit that calculates the directional direction of a straight line connecting the first aircraft position and the second aircraft position as a reference azimuth.
    A harvester including the reference direction or a travel control unit that controls automatic travel of the aircraft based on a travel route calculated based on the reference orientation.
  2.  自動走行開始時に前記基準方位に基づいて前記走行経路が設定され、前記走行制御部は前記走行経路に沿うように前記機体の自動走行を制御する請求項1に記載の収穫機。 The harvester according to claim 1, wherein the traveling route is set based on the reference direction at the start of automatic traveling, and the traveling control unit controls the automatic traveling of the aircraft so as to follow the traveling route.
  3.  前記第1機体位置から前記第2機体位置に向かう前記機体の走行軌跡を生成する表示情報生成部と、前記走行軌跡を表示する表示デバイスが備えられている請求項1又は2に記載の収穫機。 The harvester according to claim 1 or 2, further comprising a display information generation unit that generates a traveling locus of the aircraft from the first aircraft position to the second aircraft position, and a display device that displays the traveling locus. ..
  4.  前記表示デバイスがタッチパネルであり、前記第1信号を生成する前記手動操作は、前記タッチパネルに表示された第1ボタンに対するタッチ操作であり、前記第2信号を生成する前記手動操作は、前記タッチパネルに表示された第2ボタンに対するタッチ操作である請求項3に記載の収穫機。 The display device is a touch panel, the manual operation for generating the first signal is a touch operation for the first button displayed on the touch panel, and the manual operation for generating the second signal is on the touch panel. The harvester according to claim 3, which is a touch operation for the displayed second button.
  5.  前記第2信号が生成される条件として、前記第1機体位置から所定距離以上の走行または所定時間以上の走行が設定されている請求項4に記載の収穫機。 The harvester according to claim 4, wherein traveling for a predetermined distance or longer or traveling for a predetermined time or longer is set as a condition for generating the second signal.
  6.  前記第2ボタンは、前記条件が満たされた場合に前記タッチパネルに表示される請求項5に記載の収穫機。 The harvester according to claim 5, wherein the second button is displayed on the touch panel when the conditions are satisfied.
  7.  前記表示情報生成部は、収穫作業地の境界線または収穫作物の植付け条に平行な標識線を生成し、前記境界線又は前記標識線は前記走行軌跡とともに前記表示デバイスに表示される請求項3から6のいずれか一項に記載の収穫機。 The display information generation unit generates a marker line parallel to the boundary line of the harvesting work area or the planting line of the harvested crop, and the boundary line or the marker line is displayed on the display device together with the traveling locus. The harvester according to any one of 6 to 6.
  8.  前記第1信号を生成する前記手動操作は、収穫機器による収穫動作を開始する収穫開始操作具に対する操作である請求項1から7のいずれか一項に記載の収穫機。 The harvester according to any one of claims 1 to 7, wherein the manual operation for generating the first signal is an operation for a harvest start operation tool for starting a harvest operation by a harvest device.
  9.  走行装置を有する機体を備えた収穫機の自動走行方法であって、
     衛星測位を用いて機体位置を算出する機体位置算出ステップと、
     手動操舵による収穫作業中の手動操作によって生成された第1信号に応答して取得した前記機体位置を第1機体位置とする第1機体位置取得ステップと、
     前記収穫作業中において前記第1機体位置から離れた場所での手動操作によって生成された第2信号に応答して取得した前記機体位置を第2機体位置とする第2機体位置取得ステップと、
     前記第1機体位置と前記第2機体位置とを結ぶ直線の方位を基準方位として算出する基準方位算出ステップと、
     前記基準方位、または、前記基準方位に基づいて算出された走行経路に基づいて前記機体の自動走行を制御する走行制御ステップと、を備えた収穫機の自動走行方法。
    It is an automatic running method of a harvester equipped with a running device.
    The aircraft position calculation step to calculate the aircraft position using satellite positioning, and
    The first aircraft position acquisition step with the aircraft position acquired in response to the first signal generated by the manual operation during the harvesting operation by manual steering as the first aircraft position, and
    A second machine position acquisition step in which the machine position acquired in response to a second signal generated by a manual operation at a place away from the first machine position during the harvesting operation is set as the second machine position.
    A reference direction calculation step for calculating the direction of a straight line connecting the first machine position and the second machine position as a reference direction, and
    A method for automatically traveling a harvester, comprising: a travel control step for controlling automatic travel of the aircraft based on the reference orientation or a travel route calculated based on the reference orientation.
  10.  走行装置を有する機体を備えた収穫機を制御するためのプログラムであって、
     衛星測位を用いて機体位置を算出する機体位置算出機能と、
     手動操舵による収穫作業中の手動操作によって生成された第1信号に応答して取得した前記機体位置を第1機体位置とする第1機体位置取得機能と、
     前記収穫作業中において前記第1機体位置から離れた場所での手動操作によって生成された第2信号に応答して取得した前記機体位置を第2機体位置とする第2機体位置取得機能と、
     前記第1機体位置と前記第2機体位置とを結ぶ直線の方位を基準方位として算出する基準方位算出機能と、
     前記基準方位、または、前記基準方位に基づいて算出された走行経路に基づいて前記機体の自動走行を制御する走行制御機能と、をコンピュータに実現させるプログラム。
    A program for controlling a harvester equipped with an airframe having a traveling device.
    The aircraft position calculation function that calculates the aircraft position using satellite positioning, and
    The first aircraft position acquisition function that sets the aircraft position acquired in response to the first signal generated by the manual operation during harvesting work by manual steering as the first aircraft position, and
    A second machine position acquisition function that sets the machine position as the second machine position acquired in response to a second signal generated by a manual operation at a place away from the first machine position during the harvesting operation.
    A reference direction calculation function that calculates the direction of the straight line connecting the first aircraft position and the second aircraft position as the reference direction, and
    A program that enables a computer to realize a travel control function that controls automatic travel of the aircraft based on the reference direction or a travel route calculated based on the reference orientation.
  11.  走行装置を有する機体を備えた収穫機を制御するためのプログラムを記録した記録媒体であって、
     衛星測位を用いて機体位置を算出する機体位置算出機能と、
     手動操舵による収穫作業中の手動操作によって生成された第1信号に応答して取得した前記機体位置を第1機体位置とする第1機体位置取得機能と、
     前記収穫作業中において前記第1機体位置から離れた場所での手動操作によって生成された第2信号に応答して取得した前記機体位置を第2機体位置とする第2機体位置取得機能と、
     前記第1機体位置と前記第2機体位置とを結ぶ直線の方位を基準方位として算出する基準方位算出機能と、
     前記基準方位、または、前記基準方位に基づいて算出された走行経路に基づいて前記機体の自動走行を制御する走行制御機能と、をコンピュータに実現させるプログラムを記録した記録媒体。
    A recording medium on which a program for controlling a harvester equipped with an airframe having a traveling device is recorded.
    The aircraft position calculation function that calculates the aircraft position using satellite positioning, and
    The first aircraft position acquisition function that sets the aircraft position acquired in response to the first signal generated by the manual operation during harvesting work by manual steering as the first aircraft position, and
    A second machine position acquisition function that sets the machine position as the second machine position acquired in response to a second signal generated by a manual operation at a place away from the first machine position during the harvesting operation.
    A reference direction calculation function that calculates the direction of the straight line connecting the first aircraft position and the second aircraft position as the reference direction, and
    A recording medium recording a program that realizes a running control function for controlling automatic running of the aircraft based on the reference direction or a running path calculated based on the reference direction, and a computer.
  12.  走行装置を有する機体を備えた収穫機を制御するためのシステムであって、
     衛星測位を用いて機体位置を算出する機体位置算出部と、
     収穫作業中において手動操作によって生成された第1信号に応答して取得した前記機体位置を第1機体位置とする第1機体位置取得部と、
     前記収穫作業中において前記第1機体位置から離れた場所での手動操作によって生成された第2信号に応答して取得した前記機体位置を第2機体位置とする第2機体位置取得部と、
     前記第1機体位置と前記第2機体位置とを結ぶ直線の方位を基準方位として算出する基準方位算出部と、
     前記基準方位、または、前記基準方位に基づいて算出された走行経路に基づいて前記機体の自動走行を制御する走行制御部と、を備えたシステム。
    A system for controlling a harvester equipped with an airframe having a traveling device.
    The aircraft position calculation unit that calculates the aircraft position using satellite positioning, and
    A first aircraft position acquisition unit whose first aircraft position is the aircraft position acquired in response to the first signal generated by manual operation during the harvesting operation.
    A second machine position acquisition unit whose second machine position is the machine position acquired in response to a second signal generated by a manual operation at a place away from the first machine position during the harvesting operation.
    A reference azimuth calculation unit that calculates the directional direction of a straight line connecting the first aircraft position and the second aircraft position as a reference azimuth.
    A system including a travel control unit that controls automatic travel of the aircraft based on the reference direction or a travel route calculated based on the reference orientation.
  13.  走行装置を有し前進走行と非前進走行とを行う機体と、
     衛星測位を用いて機体位置を算出する機体位置算出部と、
     手動操作によって生成された第1信号に応答して取得した前記機体位置を第1機体位置とする第1機体位置取得部と、
     前記前進走行を通じて、又は前記前進走行と前記非前進走行の両方を通じて前記第1機体位置から移動した場所での手動操作によって生成された第2信号に応答して取得した前記機体位置を第2機体位置とする第2機体位置取得部と、
     前記第1機体位置と前記第2機体位置とを結ぶ直線の方位を基準方位として算出する基準方位算出部と、
     前記基準方位、または、前記基準方位に基づいて算出された走行経路に基づいて前記機体の自動走行を制御する走行制御部と、を備えた農作業機。
    An aircraft that has a traveling device and performs forward traveling and non-forward traveling,
    The aircraft position calculation unit that calculates the aircraft position using satellite positioning, and
    A first aircraft position acquisition unit whose first aircraft position is the aircraft position acquired in response to the first signal generated by manual operation.
    The second aircraft is the aircraft position acquired in response to a second signal generated by manual operation at a location moved from the first aircraft position through the forward travel or both forward and non-forward travel. The second aircraft position acquisition unit to be the position and
    A reference azimuth calculation unit that calculates the directional direction of a straight line connecting the first aircraft position and the second aircraft position as a reference azimuth.
    A farm work machine provided with a travel control unit that controls automatic travel of the machine based on the reference direction or a travel path calculated based on the reference direction.
  14.  自動走行開始時に前記基準方位に基づいて前記走行経路が設定され、前記走行制御部は前記走行経路に沿うように前記機体の自動走行を制御する請求項13に記載の農作業機。 The agricultural work machine according to claim 13, wherein the travel route is set based on the reference direction at the start of automatic travel, and the travel control unit controls the automatic travel of the aircraft so as to follow the travel route.
  15.  前記非前進走行には、後進走行状態又は走行停止状態あるいはその両方が含まれ、さらに前記走行停止状態にはエンジン停止状態またはエンジン駆動状態が含まれている請求項13又は14に記載の農作業機。 The agricultural work machine according to claim 13 or 14, wherein the non-forward traveling includes a reverse traveling state and / or a traveling stopped state, and the traveling stopped state includes an engine stopped state or an engine driven state. ..
  16.  前記前進走行が作業走行であっても、あるいは前記前進走行が非作業走行であっても、前記第1機体位置取得部は前記第1機体位置を取得可能であり、前記第2機体位置取得部は前記第2機体位置を取得可能である請求項13から15のいずれか一項に記載の農作業機。 Even if the forward running is a working run or the forward running is a non-working run, the first machine position acquisition unit can acquire the first machine position and the second machine position acquisition unit. Is the agricultural work machine according to any one of claims 13 to 15, wherein the position of the second machine can be acquired.
  17.  前記第2信号が生成される条件として、前記第1機体位置から所定距離以上の走行または所定時間以上の走行が設定されている請求項13から16のいずれか一項に記載の農作業機。 The agricultural work machine according to any one of claims 13 to 16, wherein a running of a predetermined distance or more or a running of a predetermined time or more is set as a condition for generating the second signal.
  18.  前記所定距離として後進距離は無視され、前記所定時間として停車時間は無視される請求項17に記載の農作業機。 The agricultural work machine according to claim 17, wherein the reverse distance is ignored as the predetermined distance, and the stop time is ignored as the predetermined time.
  19.  前記第1信号を生成する前記手動操作は、作業装置による作業動作を開始する旨の作業開始操作具に対する操作である請求項13から18のいずれか一項に記載の農作業機。 The agricultural work machine according to any one of claims 13 to 18, wherein the manual operation for generating the first signal is an operation for a work start operation tool for starting a work operation by the work device.
  20.  走行装置を有し前進走行と非前進走行とを行う機体を備えた農作業機の自動走行方法であって、
     衛星測位を用いて機体位置を算出する機体位置算出ステップと、
     手動操作によって生成された第1信号に応答して取得した前記機体位置を第1機体位置とする第1機体位置取得ステップと、
     前記前進走行を通じて、又は前記前進走行と前記非前進走行の両方を通じて前記第1機体位置から移動した場所での手動操作によって生成された第2信号に応答して取得した前記機体位置を第2機体位置とする第2機体位置取得ステップと、
     前記第1機体位置と前記第2機体位置とを結ぶ直線の方位を基準方位として算出する基準方位算出ステップと、
     前記基準方位、または、前記基準方位に基づいて算出された走行経路に基づいて前記機体の自動走行を制御する走行制御ステップと、を備えた農作業機の自動走行方法。
    It is an automatic running method of an agricultural work machine equipped with a traveling device and an aircraft that performs forward traveling and non-forward traveling.
    The aircraft position calculation step to calculate the aircraft position using satellite positioning, and
    The first aircraft position acquisition step in which the aircraft position acquired in response to the first signal generated by manual operation is set as the first aircraft position, and
    The second aircraft is the aircraft position acquired in response to a second signal generated by manual operation at a location moved from the first aircraft position through the forward travel or both forward and non-forward travel. The second aircraft position acquisition step to be the position and
    A reference direction calculation step for calculating the direction of a straight line connecting the first machine position and the second machine position as a reference direction, and
    A method for automatically traveling an agricultural work machine, comprising: a travel control step for controlling automatic travel of the aircraft based on the reference orientation or a travel route calculated based on the reference orientation.
  21.  走行装置を有し前進走行と非前進走行とを行う機体を備えた農作業機を制御するためのプログラムであって、
     衛星測位を用いて機体位置を算出する機体位置算出機能と、
     手動操作によって生成された第1信号に応答して取得した前記機体位置を第1機体位置とする第1機体位置取得機能と、
     前記前進走行を通じて、又は前記前進走行と前記非前進走行の両方を通じて前記第1機体位置から移動した場所での手動操作によって生成された第2信号に応答して取得した前記機体位置を第2機体位置とする第2機体位置取得機能と、
     前記第1機体位置と前記第2機体位置とを結ぶ直線の方位を基準方位として算出する基準方位算出機能と、
     前記基準方位、または、前記基準方位に基づいて算出された走行経路に基づいて前記機体の自動走行を制御する走行制御機能と、をコンピュータに実現させるプログラム。
    It is a program for controlling an agricultural work machine equipped with a traveling device and an aircraft that performs forward traveling and non-forward traveling.
    The aircraft position calculation function that calculates the aircraft position using satellite positioning, and
    The first aircraft position acquisition function that sets the aircraft position acquired in response to the first signal generated by manual operation as the first aircraft position, and
    The second aircraft is the aircraft position acquired in response to a second signal generated by manual operation at a location moved from the first aircraft position through the forward travel or both forward and non-forward travel. The second aircraft position acquisition function, which is the position, and
    A reference direction calculation function that calculates the direction of the straight line connecting the first aircraft position and the second aircraft position as the reference direction, and
    A program that enables a computer to realize a travel control function that controls automatic travel of the aircraft based on the reference direction or a travel route calculated based on the reference orientation.
  22.  走行装置を有し前進走行と非前進走行とを行う機体を備えた農作業機を制御するためのプログラムを記録した記録媒体であって、
     衛星測位を用いて機体位置を算出する機体位置算出機能と、
     手動操作によって生成された第1信号に応答して取得した前記機体位置を第1機体位置とする第1機体位置取得機能と、
     前記前進走行を通じて、又は前記前進走行と前記非前進走行の両方を通じて前記第1機体位置から移動した場所での手動操作によって生成された第2信号に応答して取得した前記機体位置を第2機体位置とする第2機体位置取得機能と、
     前記第1機体位置と前記第2機体位置とを結ぶ直線の方位を基準方位として算出する基準方位算出機能と、
     前記基準方位、または、前記基準方位に基づいて算出された走行経路に基づいて前記機体の自動走行を制御する走行制御機能と、をコンピュータに実現させるプログラムを記録した記録媒体。
    It is a recording medium on which a program for controlling an agricultural work machine having a traveling device and having an aircraft that performs forward traveling and non-forward traveling is recorded.
    The aircraft position calculation function that calculates the aircraft position using satellite positioning, and
    The first aircraft position acquisition function that sets the aircraft position acquired in response to the first signal generated by manual operation as the first aircraft position, and
    The second aircraft is the aircraft position acquired in response to a second signal generated by manual operation at a location moved from the first aircraft position through the forward travel or both forward and non-forward travel. The second aircraft position acquisition function, which is the position, and
    A reference direction calculation function that calculates the direction of the straight line connecting the first aircraft position and the second aircraft position as the reference direction, and
    A recording medium recording a program that realizes a running control function for controlling automatic running of the aircraft based on the reference direction or a running path calculated based on the reference direction, and a computer.
  23.  走行装置を有し前進走行と非前進走行とを行う機体を備えた農作業機を制御するためのシステムであって、
     衛星測位を用いて機体位置を算出する機体位置算出部と、
     手動操作によって生成された第1信号に応答して取得した前記機体位置を第1機体位置とする第1機体位置取得部と、
     前記前進走行を通じて、又は前記前進走行と前記非前進走行の両方を通じて前記第1機体位置から移動した場所での手動操作によって生成された第2信号に応答して取得した前記機体位置を第2機体位置とする第2機体位置取得部と、
     前記第1機体位置と前記第2機体位置とを結ぶ直線の方位を基準方位として算出する基準方位算出部と、
     前記基準方位、または、前記基準方位に基づいて算出された走行経路に基づいて前記機体の自動走行を制御する走行制御部と、を備えたシステム。
    It is a system for controlling an agricultural work machine equipped with a traveling device and an aircraft that performs forward traveling and non-forward traveling.
    The aircraft position calculation unit that calculates the aircraft position using satellite positioning, and
    A first aircraft position acquisition unit whose first aircraft position is the aircraft position acquired in response to the first signal generated by manual operation.
    The second aircraft is the aircraft position acquired in response to a second signal generated by manual operation at a location moved from the first aircraft position through the forward travel or both forward and non-forward travel. The second aircraft position acquisition unit to be the position and
    A reference azimuth calculation unit that calculates the directional direction of a straight line connecting the first aircraft position and the second aircraft position as a reference azimuth.
    A system including a travel control unit that controls automatic travel of the aircraft based on the reference direction or a travel route calculated based on the reference orientation.
  24.  操向可能な走行装置を有する機体と、
     衛星測位を用いて機体位置を算出する機体位置算出部と、
     作業走行のための複数の基準方位を記憶可能な記憶部と、
     前記複数の基準方位のうちの一つを選択する選択部と、
     選択された前記基準方位、または、選択された前記基準方位に基づいて設定された走行目標ラインに沿うように、前記機体位置に基づいて前記走行装置を自動的に操向制御する操向制御部と、が備えられている農作業機。
    An aircraft with a maneuverable traveling device and
    The aircraft position calculation unit that calculates the aircraft position using satellite positioning, and
    A storage unit that can store multiple reference directions for work driving,
    A selection unit that selects one of the plurality of reference directions, and
    A steering control unit that automatically steers and controls the traveling device based on the position of the aircraft so as to follow the selected reference orientation or the traveling target line set based on the selected reference orientation. And, the agricultural work machine equipped with.
  25.  圃場の走行中に算出された複数の前記機体位置に基づいて前記基準方位を算出する基準方位算出部が備えられ、
     前記基準方位算出部は、圃場の外周領域における第一地点と第二地点とに亘る二点間走行で前記第一地点と前記第二地点との夫々で算出された前記機体位置に基づいて前記複数の基準方位の一つとして第一基準方位を算出し、前記第一地点と前記第二地点とに亘る走行後に、前記外周領域において前記第一地点と前記第二地点との何れとも異なる第三地点と第四地点とに亘る二点間走行で前記第三地点と前記第四地点との夫々で算出された前記機体位置に基づいて前記複数の基準方位の一つとして第二基準方位を算出する請求項24に記載の農作業機。
    A reference direction calculation unit for calculating the reference direction based on a plurality of the aircraft positions calculated while traveling in the field is provided.
    The reference azimuth calculation unit is based on the aircraft position calculated at each of the first point and the second point in the two-point traveling between the first point and the second point in the outer peripheral region of the field. The first reference direction is calculated as one of the plurality of reference directions, and after traveling over the first point and the second point, the first point and the second point are different from each other in the outer peripheral region. The second reference direction is set as one of the plurality of reference directions based on the aircraft position calculated at each of the third point and the fourth point in the two-point running over the three points and the fourth point. The agricultural work machine according to claim 24 for calculation.
  26.  圃場の走行中に算出された複数の前記機体位置に基づいて前記基準方位を算出する基準方位算出部が備えられ、
     前記基準方位算出部は、算出済みの前記基準方位から所定の方位だけ方位ずれした前記基準方位を算出可能に構成されている請求項24または25に記載の農作業機。
    A reference direction calculation unit for calculating the reference direction based on a plurality of the aircraft positions calculated while traveling in the field is provided.
    The agricultural work machine according to claim 24 or 25, wherein the reference direction calculation unit is configured to be able to calculate the reference direction deviated by a predetermined direction from the calculated reference direction.
  27.  前記所定の方位は、90度である請求項26に記載の農作業機。 The agricultural work machine according to claim 26, wherein the predetermined orientation is 90 degrees.
  28.  人為操作に基づいて方位ずれ量を設定可能な方位ずれ設定部が備えられ、
     前記所定の方位は、前記人為操作によって設定される前記方位ずれ量である請求項26に記載の農作業機。
    A directional deviation setting unit that can set the directional deviation amount based on artificial operation is provided.
    The agricultural work machine according to claim 26, wherein the predetermined orientation is the amount of orientation deviation set by the artificial operation.
  29.  圃場の走行中に算出された複数の前記機体位置に基づいて前記基準方位を算出する基準方位算出部が備えられ、
     前記基準方位算出部は、圃場の外周領域における人為操作での周回走行中に算出された前記機体位置に基づいて、圃場の外周辺のうち少なくとも一辺の延びる方位に沿う前記複数の基準方位を算出する請求項24から28の何れか一項に記載の農作業機。
    A reference direction calculation unit for calculating the reference direction based on a plurality of the aircraft positions calculated while traveling in the field is provided.
    The reference direction calculation unit calculates the plurality of reference directions along the extending direction of at least one side of the outer periphery of the field based on the aircraft position calculated during the orbital running by human operation in the outer peripheral region of the field. The farm work machine according to any one of claims 24 to 28.
  30.  前記機体の方位を算出する機体方位算出部が備えられ、
     前記記憶部に、方位の夫々異なる前記複数の基準方位が記憶され、
     前記選択部は、算出された前記機体の方位に基づいて前記複数の基準方位のうちの一つを選択する請求項24から29の何れか一項に記載の農作業機。
    An aircraft orientation calculation unit for calculating the orientation of the aircraft is provided.
    The plurality of reference orientations having different orientations are stored in the storage unit.
    The agricultural work machine according to any one of claims 24 to 29, wherein the selection unit selects one of the plurality of reference directions based on the calculated orientation of the machine.
  31.  前記操向制御部は、所定の条件が満たされており、かつ、前記選択部によって選択された前記基準方位に沿って前記機体が所定距離または所定時間に亘って直進したと判定した場合、前記走行装置を自動的に操向制御可能な状態となる請求項30に記載の農作業機。 When the steering control unit determines that the predetermined conditions are satisfied and the aircraft has traveled straight for a predetermined distance or a predetermined time along the reference direction selected by the selection unit, the steering control unit may determine that the aircraft has traveled straight for a predetermined distance or a predetermined time. The agricultural work machine according to claim 30, wherein the traveling device can be automatically steered and controlled.
  32.  前記所定の条件に、作業装置への動力伝達のためのクラッチが入状態となっていることが含まれる請求項31に記載の農作業機。 The agricultural work machine according to claim 31, wherein the predetermined condition includes the clutch for power transmission to the work device being engaged.
  33.  前記所定の条件に、作業装置が作業位置に位置していることが含まれる請求項31または32に記載の農作業機。 The agricultural work machine according to claim 31 or 32, wherein the predetermined condition includes that the work device is located at the work position.
  34.  前記選択部によって選択された前記基準方位を示す方位指標を表示可能な方位表示部が備えられている請求項30から33の何れか一項に記載の農作業機。 The agricultural work machine according to any one of claims 30 to 33, which is provided with a direction display unit capable of displaying a direction index indicating the reference direction selected by the selection unit.
  35.  前記方位表示部は、前記走行装置が人為的に操向制御されている場合と、前記走行装置が自動的に操向制御されている場合と、で前記方位指標の表示態様を変更する請求項34に記載の農作業機。 The directional display unit is claimed to change the display mode of the directional index depending on whether the traveling device is artificially steered or controlled or the traveling device is automatically steered. The agricultural work machine according to 34.
  36.  操向可能な走行装置を有する機体を備える農作業機を制御するシステムであって、
     衛星測位を用いて前記農作業機の機体位置を算出する機体位置算出部と、
     作業走行のための複数の基準方位を記憶可能な記憶部と、
     前記複数の基準方位のうちの一つを選択する選択部と、
     選択された前記基準方位、または、選択された前記基準方位に基づいて設定された走行目標ラインに沿うように、前記機体位置に基づいて前記走行装置を自動的に操向制御する操向制御部と、が備えられているシステム。
    It is a system that controls an agricultural work machine equipped with an aircraft having a maneuverable traveling device.
    An aircraft position calculation unit that calculates the aircraft position of the agricultural work machine using satellite positioning, and
    A storage unit that can store multiple reference directions for work driving,
    A selection unit that selects one of the plurality of reference directions, and
    A steering control unit that automatically steers and controls the traveling device based on the position of the aircraft so as to follow the selected reference orientation or the traveling target line set based on the selected reference orientation. And the system equipped with.
  37.  操向可能な走行装置を有する機体を備える農作業機を制御するためのプログラムであって、
     衛星測位を用いて前記農作業機の機体位置を算出する機体位置算出機能と、
     作業走行のための複数の基準方位をメモリに記憶させる記憶機能と、
     前記複数の基準方位のうちの一つを選択する選択機能と、
     選択された前記基準方位、または、選択された前記基準方位に基づいて設定された走行目標ラインに沿うように、前記機体位置に基づいて前記走行装置を自動的に操向制御する操向制御機能と、をコンピュータに実現させるプログラム。
    A program for controlling an agricultural work machine equipped with a maneuverable traveling device.
    An aircraft position calculation function that calculates the aircraft position of the agricultural work machine using satellite positioning, and
    A memory function that stores multiple reference directions for work driving in memory,
    A selection function that selects one of the plurality of reference directions, and
    Steering control function that automatically steers and controls the traveling device based on the aircraft position so as to follow the selected reference orientation or the traveling target line set based on the selected reference orientation. And, a program that realizes on a computer.
  38.  操向可能な走行装置を有する機体を備える農作業機を制御するためのプログラムを記録した記録媒体であって、
     衛星測位を用いて前記農作業機の機体位置を算出する機体位置算出機能と、
     作業走行のための複数の基準方位をメモリに記憶させる記憶機能と、
     前記複数の基準方位のうちの一つを選択する選択機能と、
     選択された前記基準方位、または、選択された前記基準方位に基づいて設定された走行目標ラインに沿うように、前記機体位置に基づいて前記走行装置を自動的に操向制御する操向制御機能と、をコンピュータに実現させるプログラムを記録した記録媒体。
    A recording medium on which a program for controlling an agricultural work machine equipped with an airframe having an steerable traveling device is recorded.
    An aircraft position calculation function that calculates the aircraft position of the agricultural work machine using satellite positioning, and
    A memory function that stores multiple reference directions for work driving in memory,
    A selection function that selects one of the plurality of reference directions, and
    Steering control function that automatically steers and controls the traveling device based on the aircraft position so as to follow the selected reference orientation or the traveling target line set based on the selected reference orientation. A recording medium that records a program that realizes a computer.
  39.  操向可能な走行装置を有する機体を備える農作業機を制御するための方法であって、
     衛星測位を用いて前記農作業機の機体位置を算出する機体位置算出ステップと、
     作業走行のための複数の基準方位をメモリに記憶させる記憶ステップと、
     前記複数の基準方位のうちの一つを選択する選択ステップと、
     選択された前記基準方位、または、選択された前記基準方位に基づいて設定された走行目標ラインに沿うように、前記機体位置に基づいて前記走行装置を自動的に操向制御する操向制御ステップと、を含む方法。
    A method for controlling an agricultural work machine equipped with an airframe having a maneuverable traveling device.
    The machine position calculation step for calculating the machine position of the agricultural work machine using satellite positioning, and
    A storage step that stores multiple reference directions for work driving in memory,
    A selection step for selecting one of the plurality of reference orientations,
    A steering control step that automatically steers and controls the traveling device based on the aircraft position so as to follow the selected reference orientation or the traveling target line set based on the selected reference orientation. And how to include.
  40.  農作業車のための自動操舵管理システムであって、
     衛星測位を用いて取得された前記農作業車の機体位置である第1機体位置と前記第1機体位置から離れた場所で前記衛星測位を用いて取得された第2機体位置との組み合わせ、及び前記第1機体位置と前記第2機体位置とを結ぶ直線の方位である基準方位のうち少なくとも一方を基準情報として管理する基準情報管理部と、
     前記基準情報から得られる前記基準方位、または、前記基準方位に基づいて算出された走行経路に基づいて前記農作業車の自動走行を制御する走行制御部に、前記基準情報管理部から読み出された前記基準情報を送信する基準情報送信部と、を備えた自動操舵管理システム。
    An automatic steering management system for agricultural work vehicles,
    The combination of the first aircraft position, which is the aircraft position of the agricultural work vehicle acquired by using satellite positioning, and the second aircraft position acquired by using the satellite positioning at a place away from the first aircraft position, and the above. A reference information management unit that manages at least one of the reference orientations, which is the orientation of a straight line connecting the first aircraft position and the second aircraft position, as reference information.
    It was read from the reference information management unit by the travel control unit that controls the automatic travel of the agricultural work vehicle based on the reference direction obtained from the reference information or the travel route calculated based on the reference orientation. An automatic steering management system including a reference information transmission unit for transmitting the reference information.
  41.  自動操舵開始時に前記基準方位に基づいて前記走行経路が設定され、前記走行制御部は前記走行経路に沿うように前記農作業車の自動走行を制御する請求項40に記載の自動操舵管理システム。 The automatic steering management system according to claim 40, wherein the traveling route is set based on the reference direction at the start of automatic steering, and the traveling control unit controls the automatic traveling of the agricultural work vehicle so as to follow the traveling route.
  42.  前記基準情報管理部は、前記第1機体位置と前記第2機体位置とを前記基準情報として受け取って管理する請求項40又は41に記載の自動操舵管理システム。 The automatic steering management system according to claim 40 or 41, wherein the reference information management unit receives and manages the first aircraft position and the second aircraft position as the reference information.
  43.  前記基準情報管理部は、前記第1機体位置と前記第2機体位置とから前記基準方位を算出して管理する請求項42に記載の自動操舵管理システム。 The automatic steering management system according to claim 42, wherein the reference information management unit calculates and manages the reference direction from the first aircraft position and the second aircraft position.
  44.  前記基準情報管理部は、前記第1機体位置と前記第2機体位置とから算出された前記基準方位を前記基準情報として受け取って管理する請求項40又は41に記載の自動操舵管理システム。 The automatic steering management system according to claim 40 or 41, wherein the reference information management unit receives and manages the reference direction calculated from the first aircraft position and the second aircraft position as the reference information.
  45.  前記基準情報管理部は、前記基準情報を前記農作業車が作業を行う圃場毎に管理する請求項40から44のいずれか一項に記載の自動操舵管理システム。 The automatic steering management system according to any one of claims 40 to 44, wherein the standard information management unit manages the standard information for each field in which the farm work vehicle works.
  46.  前記基準情報管理部及び前記基準情報送信部は、前記農作業車とデータ通信回線を介して接続可能な管理コンピュータに備えられている請求項40から45のいずれか一項に記載の自動操舵管理システム。 The automatic steering management system according to any one of claims 40 to 45, wherein the reference information management unit and the reference information transmission unit are provided in a management computer that can be connected to the farm work vehicle via a data communication line. ..
  47.  前記農作業車には、少なくとも第1農作業車と第2農作業車とが含まれており、前記第1農作業車と前記第2農作業車の少なくとも一方に前記基準情報管理部及び前記基準情報送信部が備えられている請求項40から45のいずれか一項に記載の自動操舵管理システム。 The agricultural work vehicle includes at least a first agricultural work vehicle and a second agricultural work vehicle, and the standard information management unit and the standard information transmission unit are included in at least one of the first agricultural work vehicle and the second agricultural work vehicle. The automatic steering management system according to any one of claims 40 to 45 provided.
  48.  前記農作業車には、同じ圃場で先に作業を行う先行農作業車と前記先行農作業車に遅れて作業を行う後続農作業車とが含まれており、前記先行農作業車による前記基準情報が前記基準情報管理部で管理されたことが前記後続農作業車に通知される請求項40から47のいずれか一項に記載の自動操舵管理システム。 The agricultural work vehicle includes a preceding agricultural work vehicle that performs work first in the same field and a succeeding agricultural work vehicle that performs work behind the preceding agricultural work vehicle, and the reference information by the preceding agricultural work vehicle is the reference information. The automatic steering management system according to any one of claims 40 to 47, wherein the following agricultural work vehicle is notified that the control is managed by the management unit.
  49.  前記第1機体位置は、前記農作業車の運転者による手動操作によって生成される第1信号に応答して取得され、前記第2機体位置は、前記第1機体位置から離れた場所での、前記農作業車の前記運転者による手動操作によって生成された第2信号に応答して取得される請求項40から48のいずれか一項に記載の自動操舵管理システム。 The first aircraft position is acquired in response to a first signal generated by a manual operation by the driver of the farm work vehicle, and the second aircraft position is a location away from the first aircraft position. The automatic steering management system according to any one of claims 40 to 48, which is acquired in response to a second signal generated by a manual operation by the driver of the farm work vehicle.
  50.  農作業車のための自動操舵管理システムを制御するためのプログラムであって、
     衛星測位を用いて取得された前記農作業車の機体位置である第1機体位置と前記第1機体位置から離れた場所で前記衛星測位を用いて取得された第2機体位置との組み合わせ、及び前記第1機体位置と前記第2機体位置とを結ぶ直線の方位である基準方位のうち少なくとも一方を基準情報として管理する基準情報管理機能と、
     前記基準情報から得られる前記基準方位、または、前記基準方位に基づいて算出された走行経路に基づいて前記農作業車の自動走行を制御する制御ユニットに、前記基準情報管理機能によって管理されている前記基準情報を送信する基準情報送信機能と、をコンピュータに実現させるプログラム。
    A program for controlling an automatic steering management system for agricultural work vehicles.
    The combination of the first aircraft position, which is the aircraft position of the agricultural work vehicle acquired by using satellite positioning, and the second aircraft position acquired by using the satellite positioning at a place away from the first aircraft position, and the above. A reference information management function that manages at least one of the reference orientations, which is the orientation of a straight line connecting the first aircraft position and the second aircraft position, as reference information, and
    The reference information management function manages the control unit that controls the automatic running of the agricultural work vehicle based on the reference direction obtained from the reference information or the travel path calculated based on the reference direction. A program that enables a computer to have a standard information transmission function that transmits standard information.
  51.  農作業車のための自動操舵管理システムを制御するためのプログラムを記録した記録媒体であって、
     衛星測位を用いて取得された前記農作業車の機体位置である第1機体位置と前記第1機体位置から離れた場所で前記衛星測位を用いて取得された第2機体位置との組み合わせ、及び前記第1機体位置と前記第2機体位置とを結ぶ直線の方位である基準方位のうち少なくとも一方を基準情報として管理する基準情報管理機能と、
     前記基準情報から得られる前記基準方位、または、前記基準方位に基づいて算出された走行経路に基づいて前記農作業車の自動走行を制御する制御ユニットに、前記基準情報管理機能によって管理されている前記基準情報を送信する基準情報送信機能と、をコンピュータに実現させるプログラムを記録した記録媒体。
    A recording medium that records a program for controlling an automatic steering management system for agricultural work vehicles.
    The combination of the first aircraft position, which is the aircraft position of the agricultural work vehicle acquired by using satellite positioning, and the second aircraft position acquired by using the satellite positioning at a place away from the first aircraft position, and the above. A reference information management function that manages at least one of the reference orientations, which is the orientation of a straight line connecting the first aircraft position and the second aircraft position, as reference information, and
    The reference information management function manages the control unit that controls the automatic running of the agricultural work vehicle based on the reference direction obtained from the reference information or the travel path calculated based on the reference direction. A recording medium that records a program that realizes a reference information transmission function for transmitting reference information and a computer.
  52.  農作業車のための自動操舵管理システムを制御するための方法であって、
     衛星測位を用いて取得された前記農作業車の機体位置である第1機体位置と前記第1機体位置から離れた場所で前記衛星測位を用いて取得された第2機体位置との組み合わせ、及び前記第1機体位置と前記第2機体位置とを結ぶ直線の方位である基準方位のうち少なくとも一方を基準情報として管理する基準情報管理ステップと、
     前記基準情報から得られる前記基準方位、または、前記基準方位に基づいて算出された走行経路に基づいて前記農作業車の自動走行を制御する制御ユニットに、前記基準情報管理ステップにて管理されている前記基準情報を送信する基準情報送信ステップと、を含む方法。
    A method for controlling an automatic steering management system for farm vehicles,
    The combination of the first aircraft position, which is the aircraft position of the agricultural work vehicle acquired by using satellite positioning, and the second aircraft position acquired by using the satellite positioning at a place away from the first aircraft position, and the above. A reference information management step that manages at least one of the reference orientations, which is the orientation of a straight line connecting the first aircraft position and the second aircraft position, as reference information.
    The control unit that controls the automatic running of the agricultural work vehicle based on the reference direction obtained from the reference information or the travel path calculated based on the reference direction is managed by the reference information management step. A method comprising a reference information transmission step of transmitting the reference information.
PCT/JP2021/023511 2020-06-30 2021-06-22 Harvester, automatic traveling method of harvester, program, recording medium, system, agricultural machine, automatic traveling method of agricultural machine, method, and automatic steering management system WO2022004474A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180024559.6A CN115361861A (en) 2020-06-30 2021-06-22 Harvester, automatic travel method of harvester, program, recording medium, system, agricultural machine, automatic travel method of agricultural machine, method, and automatic steering management system
KR1020227034824A KR20230029589A (en) 2020-06-30 2021-06-22 Harvester, automatic driving method of harvester, program, recording medium, system, agricultural machine, automatic driving method of agricultural machine, method, automatic steering management system

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2020113235A JP2022011847A (en) 2020-06-30 2020-06-30 Agricultural implement and automatic travel method of agricultural implement
JP2020113234A JP2022011846A (en) 2020-06-30 2020-06-30 Harvester and automatic travel method of harvester
JP2020113237 2020-06-30
JP2020-113237 2020-06-30
JP2020113236A JP7387544B2 (en) 2020-06-30 2020-06-30 Automatic steering management system for agricultural vehicles
JP2020-113236 2020-06-30
JP2020-113234 2020-06-30
JP2020-113235 2020-06-30
JP2020167985A JP7387572B2 (en) 2020-06-30 2020-10-02 agricultural machinery
JP2020-167985 2020-10-02

Publications (1)

Publication Number Publication Date
WO2022004474A1 true WO2022004474A1 (en) 2022-01-06

Family

ID=79316247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023511 WO2022004474A1 (en) 2020-06-30 2021-06-22 Harvester, automatic traveling method of harvester, program, recording medium, system, agricultural machine, automatic traveling method of agricultural machine, method, and automatic steering management system

Country Status (3)

Country Link
KR (1) KR20230029589A (en)
CN (1) CN115361861A (en)
WO (1) WO2022004474A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024008018A1 (en) * 2022-07-06 2024-01-11 松灵机器人(深圳)有限公司 Mowing method and apparatus, mowing robot, and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017055673A (en) * 2015-09-14 2017-03-23 株式会社クボタ Work vehicle supporting system
WO2017110116A1 (en) * 2015-12-25 2017-06-29 株式会社クボタ Work vehicle
JP2020022397A (en) * 2018-08-07 2020-02-13 株式会社クボタ Harvester
JP2020058387A (en) * 2016-01-25 2020-04-16 株式会社クボタ Work vehicle

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6552420B2 (en) 2016-01-13 2019-07-31 株式会社クボタ Work vehicle
JP6525902B2 (en) * 2016-03-03 2019-06-05 株式会社クボタ Field work vehicle
KR102523426B1 (en) * 2016-09-05 2023-04-20 가부시끼 가이샤 구보다 Work vehicle automatic driving system, driving route management device, driving route generating device, driving route determining device
JP6689738B2 (en) 2016-12-19 2020-04-28 株式会社クボタ Work vehicle automatic traveling system
JP6991050B2 (en) 2017-12-05 2022-01-12 株式会社クボタ Traveling work machine
KR20200096491A (en) * 2017-12-18 2020-08-12 가부시끼 가이샤 구보다 Agricultural work car, work car collision boundary system and work car
KR20200096489A (en) * 2017-12-20 2020-08-12 가부시끼 가이샤 구보다 Work vehicle, travel path selection system for work vehicle, and travel path calculation system
JP6854847B2 (en) * 2019-05-22 2021-04-07 株式会社クボタ Work vehicle cooperation system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017055673A (en) * 2015-09-14 2017-03-23 株式会社クボタ Work vehicle supporting system
WO2017110116A1 (en) * 2015-12-25 2017-06-29 株式会社クボタ Work vehicle
JP2020058387A (en) * 2016-01-25 2020-04-16 株式会社クボタ Work vehicle
JP2020022397A (en) * 2018-08-07 2020-02-13 株式会社クボタ Harvester

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024008018A1 (en) * 2022-07-06 2024-01-11 松灵机器人(深圳)有限公司 Mowing method and apparatus, mowing robot, and storage medium

Also Published As

Publication number Publication date
KR20230029589A (en) 2023-03-03
CN115361861A (en) 2022-11-18

Similar Documents

Publication Publication Date Title
EP3351075B1 (en) Work vehicle support system
WO2020031473A1 (en) External shape calculation system, external shape calculation method, external shape calculation program, storage medium having external shape calculation program stored therein, farm field map generation system, farm field map generation program, storage medium having farm field map generation program stored therein, and farm field map generation method
JP7357444B2 (en) harvester
KR20210038917A (en) Harvester, driving system, driving method, driving program and storage medium
WO2020031494A1 (en) Harvester, harvesting system, harvesting method, harvesting program, and recording medium
JP6749448B2 (en) Work vehicle support system
KR20160119172A (en) Parallel travel work system
KR20160118331A (en) Method for setting travel path of autonomous travel work vehicle
JP6983734B2 (en) Harvester
JP7068961B2 (en) External shape calculation system and external shape calculation method
WO2022004474A1 (en) Harvester, automatic traveling method of harvester, program, recording medium, system, agricultural machine, automatic traveling method of agricultural machine, method, and automatic steering management system
WO2022004698A1 (en) Agricultural work machine, agricultural work machine control program, recording medium on which agricultural work machine control program is recorded, and agricultural work machine control method
WO2022071382A1 (en) Agricultural work machine, agricultural work machine control program, recording medium on which agricultural work machine control program is recorded, and agricultural work machine control method
JP7117414B2 (en) work vehicle
JP7030662B2 (en) Harvester
JP7387544B2 (en) Automatic steering management system for agricultural vehicles
JP7387572B2 (en) agricultural machinery
JP2022011847A (en) Agricultural implement and automatic travel method of agricultural implement
JP7334281B2 (en) harvester
JP7403397B2 (en) agricultural machinery
JP2022011846A (en) Harvester and automatic travel method of harvester
JP7335558B2 (en) riding machine
WO2023112611A1 (en) Automatic steering system
JP7458918B2 (en) agricultural machinery
JP7179891B2 (en) Driving area identification system, driving area identification method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21834156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21834156

Country of ref document: EP

Kind code of ref document: A1