WO2022070690A1 - ディーゼルエンジン - Google Patents
ディーゼルエンジン Download PDFInfo
- Publication number
- WO2022070690A1 WO2022070690A1 PCT/JP2021/031119 JP2021031119W WO2022070690A1 WO 2022070690 A1 WO2022070690 A1 WO 2022070690A1 JP 2021031119 W JP2021031119 W JP 2021031119W WO 2022070690 A1 WO2022070690 A1 WO 2022070690A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- engine
- exhaust
- rear direction
- cylinder head
- diesel engine
- Prior art date
Links
- 238000001816 cooling Methods 0.000 claims abstract description 48
- 239000007921 spray Substances 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 25
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 13
- 238000011144 upstream manufacturing Methods 0.000 description 11
- 238000002485 combustion reaction Methods 0.000 description 10
- 239000003054 catalyst Substances 0.000 description 9
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 7
- 239000000498 cooling water Substances 0.000 description 7
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 239000013618 particulate matter Substances 0.000 description 5
- 239000004071 soot Substances 0.000 description 5
- 239000000446 fuel Substances 0.000 description 4
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- WTHDKMILWLGDKL-UHFFFAOYSA-N urea;hydrate Chemical compound O.NC(N)=O WTHDKMILWLGDKL-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B29/00—Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
- F02B29/04—Cooling of air intake supply
- F02B29/0406—Layout of the intake air cooling or coolant circuit
- F02B29/0425—Air cooled heat exchangers
- F02B29/0431—Details or means to guide the ambient air to the heat exchanger, e.g. having a fan, flaps, a bypass or a special location in the engine compartment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/18—Construction facilitating manufacture, assembly, or disassembly
- F01N13/1805—Fixing exhaust manifolds, exhaust pipes or pipe sections to each other, to engine or to vehicle body
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B29/00—Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
- F02B29/04—Cooling of air intake supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B29/00—Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
- F02B29/04—Cooling of air intake supply
- F02B29/045—Constructional details of the heat exchangers, e.g. pipes, plates, ribs, insulation, materials, or manufacturing and assembly
- F02B29/0475—Constructional details of the heat exchangers, e.g. pipes, plates, ribs, insulation, materials, or manufacturing and assembly the intake air cooler being combined with another device, e.g. heater, valve, compressor, filter or EGR cooler, or being assembled on a special engine location
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2340/00—Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses
- F01N2340/04—Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses characterised by the arrangement of an exhaust pipe, manifold or apparatus in relation to vehicle frame or particular vehicle parts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2340/00—Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses
- F01N2340/06—Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses characterised by the arrangement of the exhaust apparatus relative to the turbine of a turbocharger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2590/00—Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
- F01N2590/08—Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for heavy duty applications, e.g. trucks, buses, tractors, locomotives
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/105—General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
- F01N3/106—Auxiliary oxidation catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2066—Selective catalytic reduction [SCR]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to a diesel engine, and more particularly to a diesel engine including a supercharger and an exhaust aftertreatment device.
- exhaust energy is excessive by using a supercharger that pressurizes fresh air by rotationally driving a compressor provided in an intake passage by a turbine that rotates with exhaust gas discharged from a combustion chamber. It is widely practiced to use it for turbocharging to increase engine output.
- a DPF Diesel Particulate Filter
- SCR Selective Catalyst Reduction
- Patent Document 1 in a diesel engine in which one side of the cylinder head in the engine width direction is the exhaust side and the other side is the intake side, a supercharger is arranged on the exhaust side and the supercharger is arranged in the engine width direction on the cylinder head.
- a layout is disclosed in which the turbocharger and the intake side are connected via an extending supercharger pipe, and the DPF is arranged so as to extend in the width direction of the engine at one end in the front-rear direction of the engine.
- Diesel engines are required to be mounted on work vehicles in addition to the above-mentioned increase in engine output using a supercharger and exhaust purification treatment, so they include superchargers and exhaust aftertreatment devices. It is necessary to make the entire engine compact.
- the length in the front-rear direction of the engine which is a direction parallel to the crank axis, is generally longer than the length in the width direction of the engine, which is orthogonal to the front-rear direction and the vertical direction of the engine.
- exhaust aftertreatment devices such as DPF and SCR are often relatively long (than in the engine width direction).
- the exhaust aftertreatment device is arranged so as to extend in the engine width direction as in Patent Document 1, the entire width of the engine is determined by the length of the exhaust aftertreatment device, and the entire engine width is determined. There is a problem that it becomes difficult to make it compact.
- the relatively long exhaust aftertreatment device so as to extend in the front-rear direction of the engine.
- the exhaust aftertreatment device is arranged side by side with the cylinder head or the like in the engine width direction, the entire width of the engine is expanded. There is a problem that it will end up. Further, for example, if the exhaust aftertreatment device is arranged on the cylinder head, the expansion of the entire engine width is suppressed, but the supercharging pipe extending in the engine width direction on the cylinder head may interfere with the exhaust aftertreatment device. ..
- the present invention has been made in view of this point, and an object of the present invention is to provide a technique for making the entire engine compact in a diesel engine including a supercharger and an exhaust aftertreatment device. ..
- the exhaust aftertreatment device is arranged on the cylinder head, and the compressed air from the supercharger is blown out in the front-rear direction of the engine.
- the present invention includes an engine main body in which a cylinder head is fastened to the upper part of a cylinder block, a supercharger that compresses intake air by using the flow of exhaust gas, and an exhaust aftertreatment device that purifies exhaust gas.
- a cylinder head is fastened to the upper part of a cylinder block
- a supercharger that compresses intake air by using the flow of exhaust gas
- an exhaust aftertreatment device that purifies exhaust gas.
- the diesel engine is provided with a cooling fan on one side of the engine body in the front-rear direction of the engine, which is a direction parallel to the crank axis, and the cylinder head is in the front-rear direction and the up-down direction of the engine.
- One side in the width direction of the engine orthogonal to the above is the exhaust side, and the other side is the intake side.
- the exhaust aftertreatment device is arranged above the cylinder head so as to extend in the front-rear direction of the engine.
- the supercharger is arranged on the exhaust side of the cylinder head, and is characterized in that it is configured to eject compressed air in the front-rear direction of the engine.
- the relatively long exhaust aftertreatment device is arranged on the upper side of the cylinder head so as to extend in the front-rear direction of the engine.
- the cylinder head relatively long in the front-rear direction of the engine in a plan view. Since the exhaust aftertreatment device is arranged so as to overlap with the cylinder head, it is compared with the case where the exhaust aftertreatment device is arranged so as to extend in the engine width direction or the exhaust aftertreatment device is arranged side by side in the cylinder head and the engine width direction. Therefore, the entire engine can be made compact.
- the turbocharger located on the exhaust side of the cylinder head uses compressed air before and after the engine. Since it is configured to blow out in the direction, it is possible to suppress the interference between the exhaust aftertreatment device and the turbocharger.
- an intercooler for cooling the compressed air from the supercharger is provided on one side of the engine main body in the front-rear direction of the engine, and the supercharger is the cylinder head. It may be arranged near the cooling fan in the front-rear direction of the engine on the exhaust side, and may be configured to eject compressed air to the cooling fan side in the front-rear direction of the engine.
- an intercooler is provided on one side (cooling fan side) of the engine body, a supercharger is arranged near the cooling fan in the front-rear direction of the engine, and compressed air is supplied to the cooling fan in the front-rear direction of the engine. Since the air is ejected to the side (intercooler side), the compressed air can be efficiently cooled by a relatively short intake path.
- the exhaust outlet of the supercharger and the exhaust introduction port of the exhaust aftertreatment device are connected by an exhaust pipe provided on the exhaust side of the cylinder head, and the exhaust of the supercharger is exhausted.
- the outlet may be located at the center in the front-rear direction of the engine.
- the exhaust outlet of the turbocharger is located at the center in the front-rear direction of the engine, one side (cooling) in the front-rear direction of the engine in the exhaust aftertreatment device arranged so as to extend in the front-rear direction of the engine. Even if the exhaust inlet is provided on the fan side) or the exhaust inlet is provided on the other side (opposite the cooling fan) of the engine in the front-rear direction, the exhaust pipe connecting the exhaust outlet and the exhaust inlet is It can be suppressed from becoming extremely long. As a result, the exhaust pipe can be easily routed without changing the layout of the turbocharger, in other words, while the turbocharger is arranged near the cooling fan.
- a flywheel housing for accommodating a flywheel connected to a crank shaft is provided on the other side of the engine body in the front-rear direction of the engine, and the exhaust of the exhaust aftertreatment device is introduced.
- the mouth may be provided above the flywheel housing.
- the crankshaft to which the flywheel is mounted is typically located relatively low in the engine body, but according to this configuration, above the flywheel housing that houses the flywheel, after exhaust. Since the exhaust inlet of the processing device is provided, the space above the flywheel housing can be effectively utilized, and the entire engine including the flywheel housing can be further made compact.
- the exhaust introduction port of the exhaust aftertreatment device may be provided between the cooling fan and the supercharger in the front-rear direction of the engine.
- the degree of freedom in layout is increased, and the exhaust aftertreatment device is provided by providing an exhaust introduction port of the exhaust aftertreatment device between the cooling fan and the turbocharger arranged near the cooling fan. Can be brought close to the cooling fan, so that the overall size of the engine can be further reduced in the front-rear direction of the engine.
- the entire engine can be made compact.
- the direction parallel to the crank shaft will be referred to as the engine front-rear direction
- the direction orthogonal to the engine front-rear direction and the vertical direction will be described as the engine width direction.
- the arrow Fw indicates the front side in the front-rear direction of the engine
- the arrow Lf indicates the left side in the engine width direction
- the arrow Up indicates the upper side in the vertical direction.
- FIG. 2 and FIG. 3 are side views, plan views, and perspective views schematically showing the diesel engine 1 according to the present embodiment, respectively.
- the radiator 19 and the intercooler 21 are not shown in FIG. 2, and the exhaust aftertreatment device 60 is not shown in FIG. 3.
- the diesel engine 1 includes a cylinder block 5, a cylinder head 7, an oil pan 9, an exhaust manifold 11, an intake manifold (not shown), and a fly wheel 13. It includes a cooling fan 17, a radiator 19, an intercooler 21, an EGR device 30, an intake throttle device 40, a turbocharger 50, and an exhaust aftertreatment device 60 that purifies the exhaust.
- the cylinder block 5 is provided with first to fourth cylinders (not shown) in order from the rear side (flywheel 13 side) in the front-rear direction of the engine, and four pistons that reciprocate up and down in each cylinder. (Not shown) and a crankshaft (crankshaft) 10 connected to four pistons via connecting rods (not shown) are built-in.
- An oil pan 9 for storing oil that circulates in the diesel engine 1 and lubricates various parts is fixed to the lower portion of the cylinder block 5.
- a cylinder head 7 is fastened to the upper part of the cylinder block 5.
- the diesel engine 1 has four combustion chambers (shown) partitioned by the four cylinders of the cylinder block 5, the cylinder head 7, and the top surfaces of the four pistons that reciprocate up and down in the cylinders. Cylinder) is formed.
- the cylinder block 5 and the cylinder head 7 fastened to the upper part of the cylinder block 5 are collectively referred to as an engine main body portion 3.
- the cylinder head 7 has an intake port (not shown) extending diagonally upward toward the right side in the engine width direction and an exhaust port (not shown) extending diagonally upward toward the left side in the engine width direction from the ceiling of each combustion chamber. ), And are formed. Further, the cylinder head 7 is connected to the intake manifold on the right side in the engine width direction, while the exhaust manifold 11 is connected to the left side in the engine width direction. As a result, the intake air flowing in the intake manifold is introduced into each combustion chamber via the intake port (intake stroke). In each combustion chamber, by injecting fuel into the air compressed and heated by the piston, the air-fuel mixture containing the intake air and the fuel self-ignites and burns (compression stroke, expansion stroke).
- the cylinder head 7 of the present embodiment is configured such that the left side (one side) in the engine width direction is the exhaust side and the right side (the other side) in the engine width direction is the intake side.
- each of the four pistons reciprocates up and down, and the up and down reciprocating motion of the pistons is performed by the connecting rod on the crankshaft 10. It is designed to be converted into a rotation of.
- a flywheel housing 15 for accommodating the flywheel 13 is provided on the rear side (the other side) of the engine body 3 in the front-rear direction of the engine.
- the flywheel 13 housed in the flywheel housing 15 is connected to the rear end portion of the crankshaft 10 and is configured to rotate integrally with the crankshaft 10.
- the rotation of the flywheel 13 stores rotational energy at the time of starting, facilitating the start, and stabilizing the rotation of the crankshaft 10 after the start.
- a threshing machine, a hydraulic excavator, or the like provided in a work vehicle (not shown) on which the diesel engine 1 is mounted.
- An intercooler 21 for cooling air) and a cooling fan 17 for blowing air to the radiator 19 and the intercooler 21 are provided. More specifically, the radiator 19 is arranged in front of the cooling fan 17, and the intercooler 21 is arranged further in front of the radiator 19.
- the cooling fan 17 rotates by transmitting rotational power from a pulley 10a attached to the front end of the crankshaft 10 via a V-rib belt 23.
- air is sucked from the outside air intake port provided in the engine cover (not shown), and the intercooler 21 and the radiator 19 are cooled by the sucked air.
- the cooling water pump 25 is also driven together with the cooling fan 17, and the cooling water in the radiator 19 is supplied to the cooling water pump 25.
- the cooling water supplied to the cooling water pump 25 is supplied to the water cooling jacket (not shown) formed in the cylinder block 5 and the cylinder head 7 by driving the cooling water pump 25, whereby the cooling water is supplied to the cylinder block 5 and the cylinder head 7.
- the diesel engine 1 is designed to be cooled.
- the intercooler 21 is connected to the intake injection pipe 59 of the turbocharger 50 described later via the upstream intake pipe 27, while the intercooler 21 is connected via the downstream intake pipe 29.
- an EGR device 30 is provided on the intake side of the cylinder head 7.
- the EGR device 30 includes an EGR pipe 31 as an EGR passage connecting the intake side and the exhaust side, and takes in a part of the exhaust gas through the EGR pipe 31. Recirculate to the side.
- An EGR valve composed of, for example, an electromagnetic flow control valve is provided inside the EGR pipe 31, and by appropriately adjusting (changing) the opening degree of the EGR valve, the gas recirculates from the exhaust side to the intake side.
- the amount of exhaust gas (EGR amount) to be generated is adjusted.
- EGR amount the amount of exhaust gas to be generated.
- a turbocharger 50 is provided on the exhaust side of the cylinder head 7.
- the turbocharger 50 has a turbine housing 51 having a built-in turbine wheel (not shown) and a compressor housing 53 having a built-in compressor wheel (not shown), and has a turbine by a connecting shaft (not shown).
- the wheel and the compressor wheel are configured to rotate integrally.
- the upstream side of the turbine wheel communicates with the exhaust manifold 11. Further, an exhaust pipe 41 is connected to an exhaust outlet 55 provided on the downstream side of the turbine wheel in the turbine housing 51, and the exhaust outlet 55 of the turbocharger 50 and the exhaust gas are exhausted via the exhaust pipe 41. It is connected to the exhaust introduction port 73 of the aftertreatment device 60. With such a configuration, the exhaust gas discharged from each combustion chamber to the exhaust manifold 11 through the exhaust port is introduced into the turbine housing 51, flows downstream while rotating the turbine wheel, and then the exhaust outlet 55. It is discharged from the exhaust pipe 41 and introduced into the exhaust aftertreatment device 60 via the exhaust pipe 41.
- the compressor housing 53 is provided with an intake intake pipe 57 extending to the front side in the front-rear direction of the engine on the upstream side of the compressor wheel, while an intake injection pipe extending to the front side in the front-rear direction of the engine is provided on the downstream side of the compressor wheel. 59 is provided.
- the intake introduction pipe 57 communicates with an air cleaner (not shown).
- an upstream intake pipe 27 is connected to the intake injection pipe 59, and the intake injection pipe 59 of the turbocharger 50 and the intercooler 21 are connected via the upstream intake pipe 27. ..
- the fresh air removed by the air cleaner is introduced into the compressor housing 53, compressed by the compressor wheel that is rotationally driven with the rotation of the turbine wheel, and then from the intake exhaust pipe 59 in the front-rear direction of the engine. After being ejected to the front side and cooled by the intercooler 21, it is sent to the intake manifold via the intake throttle device 40, mixed with the circulated exhaust gas in the intake manifold, and then supplied to each cylinder. It has become so.
- the exhaust after treatment device (After Treatment Device) (hereinafter, also referred to as “ATD”) 60 is provided in the DPF 70, the SCR 80, the SCR pipe 61 connecting the DPF 70 and the SCR 80, and the upstream side of the SCR pipe 61. It includes a dosing module (urea injection device) 63.
- the DPF 70 has a structure in which an oxidation catalyst (not shown) and a soot filter (not shown) are arranged in series and housed in a DPF casing 71.
- an oxidation catalyst not shown
- a soot filter not shown
- the soot filter is designed to play.
- the SCR80 has a structure in which an SCR catalyst (not shown) for reducing a urea selective catalyst and an oxidation catalyst (not shown) are arranged in series and housed in an SCR casing 81.
- the upstream end of the SCR casing 81 is connected to the downstream end of the DPF casing 71 via a relatively long SCR pipe 61.
- ammonia gas is generated by injecting urea water from the dosing module 63 into the exhaust gas flowing in from the DPF 70, and the exhaust gas and the ammonia gas are generated while passing through the relatively long SCR pipe 61. Mixing with is promoted.
- the nitrogen oxides in the exhaust gas chemically react with ammonia, are reduced to nitrogen and water, and pass through the oxidation catalyst. Ammonia is reduced when doing so.
- the particulate matter is removed by the DPF 70, and the exhaust gas from which the nitrogen oxides are reduced by the SCR 80 is discharged from the tail pipe 90 provided at the downstream end of the SCR casing 81.
- FIG. 7 is a diagram schematically showing a conventional diesel engine 101
- FIG. 7A is a plan view
- FIG. 7B is a sectional view.
- a cooling fan 117 is provided on the front side in the front-rear direction of the engine
- a flywheel housing 115 is provided on the rear side in the front-rear direction of the engine.
- the cylinder head 107 is configured with the left side in the engine width direction as the exhaust side and the right side in the engine width direction as the intake side, which is the same as the diesel engine 1 of the present embodiment.
- the DPF 170 as an exhaust aftertreatment device is located at the rear end of the engine in the front-rear direction and above the flywheel housing 115 in the engine width direction. It is arranged so as to extend.
- the intake ejection pipe 159 of the turbocharger 150 which supplies compressed air to the intake throttle device 140, extends in the engine width direction on the upper side of the cylinder head 107 so as to cross the cylinder head 107. It is different from the diesel engine 1 of the form.
- the length in the front-rear direction of the engine is generally longer than the length in the width direction of the engine, and the ATD such as DPF and SCR is relatively (more than the width direction of the engine). ) Often long.
- the DPF170 is arranged so as to extend in the engine width direction as in the conventional diesel engine 101, the total width of the engine is determined by the length of the DPF170 as shown in FIG. 7A. There is a problem that it becomes difficult to make the entire engine compact. Further, as shown in FIG. 7B, there is also a problem that the overall length of the engine becomes relatively long because the DPF 170 projects toward the rear side in the front-rear direction of the engine with respect to the flywheel housing 115.
- the relatively long DPF 170 so as to extend in the front-rear direction of the engine. There is a problem that it spreads. Further, for example, if the DPF 170 is arranged on the cylinder head 107, the overall width of the engine is suppressed from widening, but the DPF 170 may interfere with the intake jet pipe 159 that crosses the cylinder head 107.
- the ATD 60 is arranged on the cylinder head 7, and the compressed air from the turbocharger 50 is blown out toward the intercooler 21 in the front-rear direction of the engine.
- the ATD 60 including the DPF 70 and the SCR 80 is arranged above the cylinder head 7 so as to extend in the front-rear direction of the engine, and compressed air is applied in the front-rear direction of the engine.
- the turbocharger 50 is configured so as to be ejected to the cooling fan 17 side.
- the DPF 70 is located on the left side in the engine width direction on the cylinder head 7 in a posture extending in the front-rear direction of the engine, and the rear end in the front-rear direction of the engine is the flywheel housing 15. It is fixed to the cylinder head 7 with a bracket 75 or the like so as to be substantially flush with the rear end.
- the SCR80 is positioned on the cylinder head 7 on the right side in the engine width direction in a posture extending in the front-rear direction of the engine, and the rear end in the front-rear direction of the engine is substantially flush with the rear end of the flywheel housing 15. It is fixed to the cylinder head 7 with brackets 83, 85 and the like.
- DPF 70 and SCR 80 are connected to the front end (downstream end) of the DPF casing 71, extend slightly to the front side in the front-rear direction of the engine, bend 180 degrees, extend to the rear side in the front-rear direction of the engine, and then bend to the right in the width direction of the engine.
- SCR pipe 61 connected to the rear end portion (upstream end portion) of the SCR casing 81.
- the relatively long ATD 60 is arranged on the upper side of the cylinder head 7 so as to extend in the front-rear direction of the engine. Since the ATD 60 is arranged so as to overlap the cylinder head 7 which is long in the direction, the ATD 60 is arranged so as to extend in the engine width direction, or the ATD 60 is arranged side by side with the cylinder head 7 in the engine width direction. The entire engine can be made compact.
- the turbocharger 50 is arranged on the exhaust side of the cylinder head 7 near the cooling fan 17 in the front-rear direction of the engine, and as described above, the intake injection pipe 59 for ejecting compressed air is on the front side in the front-rear direction of the engine. It is extended. More specifically, the exhaust outlet 55 of the turbocharger 50 is arranged at the central portion in the front-rear direction of the engine, in other words, at a position corresponding to the second cylinder and the third cylinder (FIG. 1). See the position of the crankshaft 10 in.). Then, the turbocharger 50 is arranged on the front side (cooling fan 17 side) of the central portion in the front-rear direction of the engine.
- the exhaust introduction port 73 of the DPF 70 is provided above the flywheel housing 15, and the exhaust introduction port 73 of the DPF 70 and the turbocharger located at the center in the front-rear direction of the engine are supercharged.
- the exhaust outlet 55 of the machine 50 is connected to the exhaust pipe 41 extending in the front-rear direction of the engine provided on the exhaust side of the cylinder head 7.
- the cylinder head Since the turbocharger 50 arranged on the exhaust side of No. 7 is configured to blow out compressed air to the cooling fan 17 side in the front-rear direction of the engine, as shown in FIG. 3, on the upper side of the cylinder head 7. A relatively wide space S can be secured, which makes it possible to arrange the ATD 60 so as to extend in the front-rear direction of the engine. Therefore, even if the ATD 60 is arranged on the cylinder head 7 so as to extend in the front-rear direction of the engine, it is possible to suppress the interference between the ATD 60 and the turbocharger 50.
- turbocharger 50 is arranged near the cooling fan 17 in the front-rear direction of the engine and compressed air is blown out to the cooling fan 17 side (intercooler 21 side) in the front-rear direction of the engine, relatively short upstream intake air is taken.
- the compressed air can be efficiently cooled by the pipe 27.
- the exhaust outlet 55 of the turbocharger 50 is located at the center in the front-rear direction of the engine, even if the exhaust introduction port 73 is provided on the front side (cooling fan 17 side) of the ATD 60 in the front-rear direction of the engine. Even if the exhaust introduction port 73 is provided on the rear side (the side opposite to the cooling fan 17), it is possible to prevent the exhaust pipe 41 connecting the exhaust outlet 55 and the exhaust introduction port 73 from becoming extremely long. .. As a result, the exhaust pipe 41 can be easily routed without changing the layout of the turbocharger 50, in other words, while the turbocharger 50 is arranged near the cooling fan 17.
- the exhaust inlet 73 of the ATD 60 is provided above the flywheel housing 15, the space above the flywheel housing 15 can be effectively utilized to make the entire engine including the flywheel housing 15 compact. Can be further planned.
- the ATD60' includes a DPF70', an SCR80', an SCR pipe 61'that connects the DPF70' and the SCR80', and a dosing module 63'provided on the SCR pipe 61'.
- the DPF70', SCR80', SCR pipe 61'and the dosing module 63' have the same configuration as the DPF70, SCR80, SCR pipe 61 and the dosing module 63 in the first embodiment, except for the arrangement and the like. The description of the configuration will be omitted.
- the DPF 70' is located on the cylinder head 7 on the left side in the width direction of the engine in a posture extending in the front-rear direction of the engine, and the front end in the front-rear direction of the engine is the cooling fan 17 and the engine. It is fixed to the cylinder head 7 by a bracket 77 or the like shown in FIG. 6 so as to be located between the main body 3 and the main body 3.
- the SCR80' is located on the right side of the cylinder head 7 in the engine width direction in a posture extending in the front-rear direction of the engine, and the front end in the front-rear direction of the engine is located between the cooling fan 17 and the engine body 3.
- DPF70'and SCR80' are connected to the rear end (downstream end) of the DPF casing 71', extend slightly to the rear side in the front-rear direction of the engine, bend 180 degrees, extend to the front side in the front-rear direction of the engine, and then extend in the front-rear direction of the engine. It bends to the right side of the SCR casing 81'and is communicated by an SCR pipe 61' connected to the front end (upstream end) of the SCR casing 81'.
- the tail pipe 90' is provided at the rear end of the SCR casing 81'.
- the exhaust introduction port 73'of the DPF 70' is provided between the cooling fan 17 and the turbocharger 50 in the front-rear direction of the engine, and the exhaust introduction port 73' of the DPF 70'.
- the exhaust outlet 55 of the turbocharger 50 located at the center in the front-rear direction of the engine are connected by an exhaust pipe 41'provided on the exhaust side of the cylinder head 7.
- the exhaust pipe 41' extends slightly to the rear side in the front-rear direction of the engine, then bends 180 degrees, extends to the front side in the front-rear direction of the engine below the turbocharger 50, and then bends upward. While passing through the inside of the upstream intake pipe 27 in the engine width direction, it is connected to the exhaust introduction port 73'of the DPF 70'provided between the cooling fan 17 and the turbocharger 50.
- the relatively long ATD60' is arranged on the upper side of the cylinder head 7 so as to extend in the front-rear direction of the engine. Can be made compact.
- the exhaust introduction port 73' is provided on the front side (cooling fan 17 side) of the ATD 60'in the front-rear direction of the engine.
- the exhaust pipe 41' that connects the exhaust outlet 55 and the exhaust introduction port 73'can be prevented from becoming extremely long, whereby the exhaust can be exhausted without changing the layout of the turbocharger 50.
- the pipe 41' can be easily handled.
- the exhaust aftertreatment device 60' is cooled by providing the exhaust introduction port 73'of the exhaust aftertreatment device 60'between the cooling fan 17 and the turbocharger 50 arranged near the cooling fan 17. Since it can be brought close to the fan 17, as can be seen by comparing FIGS. 1 and 4, it is possible to make the entire engine compact in the front-rear direction of the engine.
- the cooling fan 17 side of the diesel engine 1,1' is the front side in the front-rear direction of the engine
- the flywheel 13 side is the rear side in the front-rear direction of the engine. It does not necessarily have to match the front-rear direction of the work vehicle on which the diesel engines 1, 1'are mounted.
- the diesel engine 1,1' may be mounted on the work vehicle so that the front-rear direction of the diesel engine 1,1' coincides with the front-rear direction of the work vehicle, or the diesel engine 1,1' may be mounted.
- Diesel engines 1, 1' may be mounted on the work vehicle so that the front-rear direction coincides with the body width direction of the work vehicle.
- the cylinder head 7 is configured with the left side in the engine width direction as the exhaust side and the right side in the engine width direction as the intake side.
- the cylinder head 7 may be configured with the left side as the intake side.
- the intercooler 21 is provided on the front side of the engine main body 3 in the front-rear direction of the engine.
- the turbocharger 50 may be configured as an intercoolerless turbocharger. In this case as well, since the turbocharger 50 is configured to eject compressed air in the front-rear direction of the engine, even if the ATDs 60, 60'are arranged on the cylinder head 7 so as to extend in the front-rear direction of the engine, It is possible to prevent the ATD 60, 60'and the turbocharger 50 from interfering with each other.
- the entire engine can be made compact. Therefore, it is extremely applicable to a diesel engine equipped with a supercharger and an exhaust aftertreatment device. It is beneficial.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Supercharger (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
シリンダブロック(5)の上部にシリンダヘッド(7)が締結されたエンジン本体部(3)と、ターボ過給機(50)と、排気後処理装置(60)と、を備えるディーゼルエンジン(1)である。エンジン本体部(3)のエンジン前後方向前側には、冷却ファン(17)が設けられている。シリンダヘッド(7)は、エンジン幅方向左側を排気側とし、右側を吸気側として構成されている。排気後処理装置(60)は、シリンダヘッド(7)の上側に、エンジン前後方向に延びるように配置されている。ターボ過給機(50)は、シリンダヘッド(7)の排気側に配置されていて、エンジン前後方向に圧縮空気を噴き出すように構成されている。
Description
本発明は、ディーゼルエンジンに関し、特に、過給機と排気後処理装置とを備えるディーゼルエンジンに関するものである。
従来から、ディーゼルエンジンにおいては、燃焼室から排出された排気ガスで回転するタービンによって、吸気通路に設けられたコンプレッサを回転駆動させて新気を加圧する過給機を用いて、排気エネルギーを過給に利用してエンジン出力を増大させることが広く行われている。
また、ディーゼルエンジンにおいては、排気後処理装置として、排気ガス中の粒子状物質を捕集するDPF(Diesel Particulate Filter)や、排気ガス中のNOxを還元反応させるSCR(Selective Catalytic Reduction)を排気通路に設け、エンジンから排出された排気ガスを浄化処理することも広く行われている。
例えば特許文献1には、シリンダヘッドのエンジン幅方向の一方側を排気側とし、他方側を吸気側としたディーゼルエンジンにおいて、過給機を排気側に配置し、シリンダヘッド上でエンジン幅方向に延びる過給管を介して、過給機と吸気側とを接続するとともに、エンジン前後方向の一方側の端部に、DPFをエンジン幅方向に延びるように配置したレイアウトが開示されている。
ディーゼルエンジンには、上述した、過給機を用いたエンジン出力の増大や、排気浄化処理の他にも、作業車両への搭載性も要求されるため、過給機や排気後処理装置を含めたエンジン全体のコンパクト化が必要となる。
ところで、ディーゼルエンジンを初めとするエンジンでは、クランク軸と平行な方向であるエンジン前後方向の長さが、エンジン前後方向と上下方向とに直交するエンジン幅方向の長さよりも長いのが一般的であり、また、DPFやSCRといった排気後処理装置は相対的に(エンジン幅方向よりも)長尺であることが多い。
にもかかわらず、上記特許文献1のもののように、エンジン幅方向に延びるように排気後処理装置を配置してしまうと、排気後処理装置の長さでエンジン全幅が決まってしまい、エンジン全体のコンパクト化を図ることが困難になるという問題がある。
そこで、相対的に長い排気後処理装置をエンジン前後方向に延びるように配置することも考えられるが、例えば、排気後処理装置をシリンダヘッド等とエンジン幅方向に並べて配置すると、エンジン全幅が広がってしまうという問題がある。また、例えば、排気後処理装置をシリンダヘッド上に配置すると、エンジン全幅が広がるのは抑えられるが、シリンダヘッド上でエンジン幅方向に延びる過給管と排気後処理装置とが干渉するおそれがある。
本発明はかかる点に鑑みてなされたものであり、その目的とするところは、過給機と排気後処理装置とを備えるディーゼルエンジンにおいて、エンジン全体のコンパクト化を図る技術を提供することにある。
前記目的を達成するため、本発明に係るディーゼルエンジンでは、排気後処理装置をシリンダヘッド上に配置するとともに、過給機からの圧縮空気をエンジン前後方向に噴き出すようにしている。
具体的には、本発明は、シリンダブロックの上部にシリンダヘッドが締結されたエンジン本体部と、排気の流れを利用して吸気を圧縮する過給機と、排気を浄化する排気後処理装置と、を備えるディーゼルエンジンを対象としている。
そして、上記ディーゼルエンジンは、上記エンジン本体部の、クランク軸と平行な方向であるエンジン前後方向における一方側には、冷却ファンが設けられており、上記シリンダヘッドは、エンジン前後方向と上下方向とに直交するエンジン幅方向の一方側を排気側とし、他方側を吸気側として構成されており、上記排気後処理装置は、上記シリンダヘッドの上側に、エンジン前後方向に延びるように配置されており、上記過給機は、上記シリンダヘッドの排気側に配置されていて、エンジン前後方向に圧縮空気を噴き出すように構成されていることを特徴とするものである。
この構成によれば、相対的に長い排気後処理装置を、エンジン前後方向に延びるようにシリンダヘッドの上側に配置することから、換言すると、平面視で、相対的にエンジン前後方向に長いシリンダヘッドと重なるように排気後処理装置を配置することから、排気後処理装置をエンジン幅方向に延びるように配置する場合や、排気後処理装置をシリンダヘッドとエンジン幅方向に並べて配置する場合に比して、エンジン全体のコンパクト化を図ることができる。
しかも、シリンダヘッドをエンジン幅方向に横切るように、圧縮空気を噴き出す(過給管が延びる)過給機とは異なり、シリンダヘッドの排気側に配置された過給機を、圧縮空気をエンジン前後方向に噴き出すように構成していることから、排気後処理装置と過給機とが干渉するのを抑えることができる。
また、上記ディーゼルエンジンでは、上記エンジン本体部のエンジン前後方向における一方側には、上記過給機からの圧縮空気を冷却するインタークーラが設けられており、上記過給機は、上記シリンダヘッドの排気側における、エンジン前後方向の冷却ファン寄りに配置されていて、エンジン前後方向における冷却ファン側に圧縮空気を噴き出すように構成されていてもよい。
この構成によれば、エンジン本体部の一方側(冷却ファン側)にインタークーラを設け、且つ、エンジン前後方向の冷却ファン寄りに過給機を配置するとともに、圧縮空気をエンジン前後方向における冷却ファン側(インタークーラ側)に噴き出すことから、相対的に短い吸気経路にて、圧縮空気を効率的に冷却することができる。
また、上記ディーゼルエンジンでは、上記過給機の排気出口と上記排気後処理装置の排気導入口とは、シリンダヘッドの排気側に設けられた排気管で接続されており、上記過給機の排気出口は、エンジン前後方向における中央部に位置していてもよい。
この構成によれば、過給機の排気出口がエンジン前後方向における中央部に位置していることから、エンジン前後方向に延びるように配置された排気後処理装置における、エンジン前後方向一方側(冷却ファン側)に排気導入口が設けられても、エンジン前後方向他方側(冷却ファンとは反対側)に排気導入口が設けられても、排気出口と排気導入口とを接続する排気管が、極端に長くなるのを抑えることができる。これにより、過給機のレイアウトを変更することなく、換言すると、冷却ファン寄りに過給機を配置したまま、排気管の取り回しを容易に行うことができる。
さらに、上記ディーゼルエンジンでは、上記エンジン本体部の、エンジン前後方向における他方側には、クランク軸と連結されるフライホイールを収容するフライホイールハウジングが設けられており、上記排気後処理装置の排気導入口は、上記フライホイールハウジングの上方に設けられていてもよい。
フライホイールが取り付けられているクランク軸は、通常、エンジン本体部における相対的に低い位置に配置されているところ、この構成によれば、かかるフライホイールを収容するフライホイールハウジングの上方に、排気後処理装置の排気導入口が設けられていることから、フライホイールハウジングの上方のスペースを有効に活用して、フライホイールハウジングを含めたエンジン全体のコンパクト化をより一層図ることができる。
また、上記ディーゼルエンジンでは、上記排気後処理装置の排気導入口は、エンジン前後方向における、上記冷却ファンと上記過給機との間に設けられていてもよい。
この構成によれば、レイアウトの自由度が高められるとともに、排気後処理装置の排気導入口を、冷却ファンと冷却ファン寄りに配置された過給機との間に設けることで、排気後処理装置を冷却ファンに近接させることができるので、エンジン前後方向における、エンジン全体のコンパクト化をより一層図ることができる。
以上説明したように、本発明に係るディーゼルエンジンによれば、過給機と排気後処理装置とを備えていても、エンジン全体のコンパクト化を図ることができる。
以下、本発明を実施するための形態を図面に基づいて説明する。なお、以下では、クランクシャフトと平行な方向をエンジン前後方向とし、エンジン前後方向と上下方向とに直交する方向をエンジン幅方向として説明を行う。また、各図における、矢印Fwはエンジン前後方向前側を、矢印Lfはエンジン幅方向左側を、矢印Upは上下方向上側をそれぞれ示している。
(実施形態1)
-エンジン全体構成-
図1、図2および図3は、本実施形態に係るディーゼルエンジン1をそれぞれ模式的に示す側面図、平面図および斜視図である。なお、図を見易くするために、図2ではラジエータ19およびインタークーラ21を、図3では排気後処理装置60をそれぞれ図示省略している。
-エンジン全体構成-
図1、図2および図3は、本実施形態に係るディーゼルエンジン1をそれぞれ模式的に示す側面図、平面図および斜視図である。なお、図を見易くするために、図2ではラジエータ19およびインタークーラ21を、図3では排気後処理装置60をそれぞれ図示省略している。
このディーゼルエンジン1は、図1~図3に示すように、シリンダブロック5と、シリンダヘッド7と、オイルパン9と、排気マニホールド11と、吸気マニホールド(図示せず)と、フライホイール13と、冷却ファン17と、ラジエータ19と、インタークーラ21と、EGR装置30と、吸気スロットル装置40と、ターボ過給機50と、排気を浄化する排気後処理装置60と、を備えている。
シリンダブロック5には、エンジン前後方向の後側(フライホイール13側)から順に第1~第4気筒(図示せず)が設けられているとともに、各気筒内でそれぞれ上下往復運動する4つのピストン(図示せず)と、4つのピストンにコネクティングロッド(図示せず)を介して連結されるクランクシャフト(クランク軸)10と、が内蔵されている。シリンダブロック5の下部には、ディーゼルエンジン1内を循環して各所を潤滑するオイルを貯留するためのオイルパン9が固定されている。一方、シリンダブロック5の上部には、図1に示すように、シリンダヘッド7が締結されている。これにより、このディーゼルエンジン1には、シリンダブロック5の4つの気筒と、シリンダヘッド7と、気筒内で上下往復運動する4つのピストンの頂面とによって区画される、4つの燃焼室(図示せず)が形成されている。
なお、以下では、シリンダブロック5と、シリンダブロック5の上部に締結されたシリンダヘッド7とを合わせて、エンジン本体部3とも称する。
シリンダヘッド7には、各燃焼室の天井部から、エンジン幅方向右側に向かって斜め上方に延びる吸気ポート(図示せず)と、エンジン幅方向左側に向かって斜め上方に延びる排気ポート(図示せず)と、が形成されている。また、シリンダヘッド7には、エンジン幅方向右側に吸気マニホールドが接続されている一方、エンジン幅方向左側に排気マニホールド11が接続されている。これにより、吸気マニホールド内を流れた吸入空気は、吸気ポートを介して各燃焼室に導入される(吸気行程)。各燃焼室では、ピストンによって圧縮加熱した空気に燃料を噴射することによって、吸入空気と燃料とを含む混合気が自着火して燃焼する(圧縮行程、膨張行程)。そして、混合気の燃焼によって各燃焼室で生成された排気ガスが、排気ポートを介して排気マニホールド11に排出される(排気行程)。このように、本実施形態のシリンダヘッド7は、エンジン幅方向左側(一方側)を排気側とし、エンジン幅方向右側(他方側)を吸気側として構成されている。
このようにして、ディーゼルエンジン1では、吸気行程→圧縮行程→膨張行程→排気行程が繰り返されることで、4つのピストンがそれぞれ上下往復運動し、かかるピストンの上下往復運動がコネクティングロッドによってクランクシャフト10の回転へと変換されるようになっている。
エンジン本体部3のエンジン前後方向後側(他方側)には、図1に示すように、フライホイール13を収容するフライホイールハウジング15が設けられている。フライホイールハウジング15内に収容されているフライホイール13は、クランクシャフト10の後端部と連結されていて、クランクシャフト10と一体的に回転するように構成されている。このように、フライホイール13が回転することで、始動時には回転エネルギーが蓄えられて始動が容易になるとともに、始動後はクランクシャフト10の回転が安定化するようになっている。また、フライホイール13から動力を取り出すことで、ディーゼルエンジン1が搭載される作業車両(図示せず)に設けられた、例えば脱穀機や油圧ショベル等を作動させることが可能となっている。
一方、エンジン本体部3のエンジン前後方向前側(一方側)には、図1および図3に示すように、ディーゼルエンジン1を冷却するラジエータ19と、ターボ過給機50で圧縮された空気(圧縮空気)を冷却するインタークーラ21と、ラジエータ19およびインタークーラ21への送風を行う冷却ファン17と、が設けられている。より詳しくは、ラジエータ19は、冷却ファン17の前方に配置され、インタークーラ21は、ラジエータ19の更に前方に配置されている。
冷却ファン17は、クランクシャフト10の前端部に取り付けられたプーリ10aからVリブベルト23を介して回転動力が伝達されることで回転するようになっている。冷却ファン17の回転により、エンジンカバー(図示せず)に設けた外気取入口から空気が吸引され、かかる吸引された空気によってインタークーラ21やラジエータ19が冷却される。このとき、冷却ファン17と共に冷却水ポンプ25も駆動され、ラジエータ19内の冷却水が冷却水ポンプ25に供給される。このようにして、冷却水ポンプ25に供給された冷却水は、冷却水ポンプ25の駆動によって、シリンダブロック5およびシリンダヘッド7に形成された水冷ジャケット(図示せず)に供給され、これにより、ディーゼルエンジン1が冷却されるようになっている。
インタークーラ21は、図1および図3に示すように、上流側吸気管27を介して、後述するターボ過給機50の吸気噴出管59に接続される一方、下流側吸気管29を介して、シリンダヘッド7の吸気側に設けられた吸気スロットル装置40に接続されている。これにより、ターボ過給機50からの圧縮空気が、インタークーラ21で一旦冷却されてから、吸気スロットル装置40および吸気マニホールドを経由して、各気筒に供給されるので、吸気充填効率が高められるようになっている。
また、本実施形態では、各燃焼室から排気ポートを介して排気マニホールド11に排出された排気ガスの一部を吸気側に還流(再循環)するようにしている。具体的には、シリンダヘッド7の吸気側には、図2および図3に示すように、EGR装置30が設けられている。EGR装置30は、図1および図3に示すように、吸気側と排気側とを接続するEGR通路としてのEGR管31を備えていて、かかるEGR管31を介して排気ガスの一部を吸気側に還流させる。
EGR管31の内部には、例えば電磁式流量制御弁により構成されるEGR弁が設けられており、かかるEGR弁の開度を適宜に調整(変更)することで、排気側から吸気側に還流される排気ガスの量(EGR量)が調整されるようになっている。このように、本実施形態のディーゼルエンジン1では、排気ガスの一部を吸入空気と混合させることにより、燃焼温度を低下させて、排気ガス中の窒素酸化物(NOx)を低減させることが可能となっている。
シリンダヘッド7の排気側には、図1および図3に示すように、ターボ過給機50が設けられている。ターボ過給機50は、タービンホイール(図示せず)を内蔵したタービンハウジング51と、コンプレッサホイール(図示省略)を内蔵したコンプレッサハウジング53とを有していて、連結軸(図示せず)によりタービンホイールとコンプレッサホイールとが一体回転するように構成されている。
タービンハウジング51は、タービンホイールの上流側が排気マニホールド11と連通している。また、タービンハウジング51における、タービンホイールの下流側に設けられた排気出口55には、排気管41が接続されていて、かかる排気管41を介して、ターボ過給機50の排気出口55と排気後処理装置60の排気導入口73とが接続されている。このような構成により、各燃焼室から排気ポートを介して排気マニホールド11に排出された排気ガスは、タービンハウジング51に導入されて、タービンホイールを回転させながら下流側に流れた後、排気出口55から排出され、排気管41を経由して、排気後処理装置60に導入されるようになっている。
これに対し、コンプレッサハウジング53には、コンプレッサホイールの上流側に、エンジン前後方向前側に延びる吸気導入管57が設けられている一方、コンプレッサホイールの下流側に、エンジン前後方向前側に延びる吸気噴出管59が設けられている。吸気導入管57は、エアクリーナ(図示せず)と連通している。また、吸気噴出管59には、上流側吸気管27が接続されていて、かかる上流側吸気管27を介して、ターボ過給機50の吸気噴出管59とインタークーラ21とが接続されている。このような構成により、エアクリーナにて除塵された新気は、コンプレッサハウジング53に導入されて、タービンホイールの回転に伴って回転駆動するコンプレッサホイールによって圧縮された後、吸気噴出管59からエンジン前後方向前側に噴き出され、インタークーラ21で冷却された後、吸気スロットル装置40を経由して、吸気マニホールドに送られ、還流された排気ガスと吸気マニホールド内で混合された後、各気筒に供給されるようになっている。
排気後処理装置(After Treatment Device)(以下、「ATD」ともいう。)60は、DPF70と、SCR80と、DPF70とSCR80とを接続するSCRパイプ61と、SCRパイプ61の上流寄りに設けられたドージングモジュール(尿素噴射装置)63と、を備えている。
DPF70は、酸化触媒(図示せず)とスートフィルタ(図示せず)とを直列に並べて、DPFケーシング71に収容した構造になっている。このDPF70では、排気導入口73からDPFケーシング71に流入した排気ガスがスートフィルタを通過する際に、排気ガス中の粒子状物質(Particulate Matter)がスートフィルタに捕集される。また、排気ガスが酸化触媒を通過する際、排気ガス温度が再生可能温度を超えていれば、酸化触媒の作用によって高温となった酸素により、スートフィルタに堆積した粒子状物質が燃焼除去され、スートフィルタが再生するようになっている。
SCR80は、尿素選択触媒還元用のSCR触媒(図示せず)と酸化触媒(図示せず)とを直列に並べて、SCRケーシング81に収容した構造になっている。SCRケーシング81の上流端部は、相対的に長いSCRパイプ61を介して、DPFケーシング71の下流端部と接続されている。SCRパイプ61では、DPF70から流入した排気ガスに、ドージングモジュール63から尿素水が噴射されることでアンモニアガスが発生し、相対的に長い当該SCRパイプ61を通過する間に、排気ガスとアンモニアガスとの混合が促進される。SCR80では、SCRケーシング81に流入した排気ガスおよびアンモニアガスがSCR触媒を通過する際に、排気ガス中の窒素酸化物がアンモニアと化学反応し、窒素と水に還元されるとともに、酸化触媒を通過する際に、アンモニアが低減される。
このようにして、DPF70で粒子状物質が除去されるとともに、SCR80で窒素酸化物が低減された排気ガスは、SCRケーシング81の下流端部に設けられたテールパイプ90から排出される。
-ターボ過給機およびATDのレイアウト-
次に、ディーゼルエンジン1におけるターボ過給機50およびATD60のレイアウトについて説明するが、それに先立ち、本発明を理解し易くするために、従来のディーゼルエンジンにおけるターボ過給機およびATDのレイアウトについて説明する。
次に、ディーゼルエンジン1におけるターボ過給機50およびATD60のレイアウトについて説明するが、それに先立ち、本発明を理解し易くするために、従来のディーゼルエンジンにおけるターボ過給機およびATDのレイアウトについて説明する。
図7は、従来のディーゼルエンジン101を模式的に示す図であり、同図(a)は平面図であり、同図(b)は断面図である。図7(a)および(b)に示すように、従来のディーゼルエンジン101でも、本実施形態のディーゼルエンジン1と同様、シリンダブロック105の上部にシリンダヘッド107が締結されたエンジン本体部103の、エンジン前後方向前側に冷却ファン117が設けられるとともに、エンジン前後方向後側にフライホイールハウジング115が設けられている。また、シリンダヘッド107が、エンジン幅方向左側を排気側とし、エンジン幅方向右側を吸気側として構成されている点も本実施形態のディーゼルエンジン1と同様である。
もっとも、従来のディーゼルエンジン101では、本実施形態のディーゼルエンジン1とは異なり、排気後処理装置としてのDPF170が、エンジン前後方向後側の端部に、フライホイールハウジング115の上方でエンジン幅方向に延びるように配置されている。また、吸気スロットル装置140に圧縮空気を供給する、ターボ過給機150の吸気噴出管159が、シリンダヘッド107を横切るように、シリンダヘッド107の上側でエンジン幅方向に延びている点も本実施形態のディーゼルエンジン1と異なっている。
ところで、ディーゼルエンジンを初めとするエンジンでは、エンジン前後方向の長さがエンジン幅方向の長さよりも長いのが一般的であり、また、DPFやSCRといったATDは相対的に(エンジン幅方向よりも)長尺であることが多い。
にもかかわらず、従来のディーゼルエンジン101のように、DPF170をエンジン幅方向に延びるように配置してしまうと、図7(a)に示すように、DPF170の長さでエンジン全幅が決まってしまい、エンジン全体のコンパクト化を図ることが困難となるという問題がある。また、図7(b)に示すように、DPF170がフライホイールハウジング115よりもエンジン前後方向後側に突出することで、エンジン全長が相対的に長くなってしまうという問題もある。
ここで、従来のディーゼルエンジン101において、相対的に長いDPF170をエンジン前後方向に延びるように配置することも考えられるが、例えば、DPF170をシリンダヘッド107とエンジン幅方向に並べて配置すると、エンジン全幅が広がってしまうという問題がある。また、例えば、DPF170をシリンダヘッド107上に配置すると、エンジン全幅が広がるのは抑えられるが、DPF170がシリンダヘッド107を横切る吸気噴出管159と干渉してしまうおそれがある。
そこで、本実施形態に係るディーゼルエンジン1では、ATD60をシリンダヘッド7上に配置するとともに、ターボ過給機50からの圧縮空気をインタークーラ21に向けてエンジン前後方向に噴き出すようにしている。
具体的には、本実施形態に係るディーゼルエンジン1では、シリンダヘッド7の上側に、エンジン前後方向に延びるように、DPF70およびSCR80を含むATD60を配置しているとともに、圧縮空気をエンジン前後方向における冷却ファン17側に噴き出すようにターボ過給機50を構成している。
より詳しくは、DPF70は、図2に示すように、エンジン前後方向に延びるような姿勢で、シリンダヘッド7上におけるエンジン幅方向左側に位置するとともに、エンジン前後方向の後端がフライホイールハウジング15の後端と略面一になるように、ブラケット75等でシリンダヘッド7に固定されている。一方、SCR80は、エンジン前後方向に延びるような姿勢で、シリンダヘッド7上におけるエンジン幅方向右側に位置するとともに、エンジン前後方向の後端がフライホイールハウジング15の後端と略面一になるように、ブラケット83,85等でシリンダヘッド7に固定されている。これらDPF70とSCR80とは、DPFケーシング71の前端(下流端)に接続され、エンジン前後方向前側に少し延びてから180度曲がってエンジン前後方向後側に延びた後、エンジン幅方向右側に曲がって、SCRケーシング81の後端部(上流端部)に接続されるSCRパイプ61によって連通されている。
このように、本実施形態のディーゼルエンジン1では、相対的に長いATD60を、エンジン前後方向に延びるようにシリンダヘッド7の上側に配置することから、換言すると、平面視で、相対的にエンジン前後方向に長いシリンダヘッド7と重なるようにATD60を配置することから、ATD60をエンジン幅方向に延びるように配置する場合や、ATD60をシリンダヘッド7とエンジン幅方向に並べて配置する場合に比して、エンジン全体のコンパクト化を図ることができる。
一方、ターボ過給機50は、シリンダヘッド7の排気側における、エンジン前後方向の冷却ファン17寄りに配置されていて、上述の如く、圧縮空気を噴出する吸気噴出管59がエンジン前後方向前側に延びている。より具体的には、ターボ過給機50の排気出口55は、エンジン前後方向における中央部に、換言すると、第2気筒と第3気筒との間に対応する位置に配置されている(図1におけるクランクシャフト10の位置を参照。)。そうして、ターボ過給機50は、エンジン前後方向の中央部よりも前側(冷却ファン17側)に配置されている。
また、DPF70の排気導入口73は、図1に示すように、フライホイールハウジング15の上方に設けられていて、かかるDPF70の排気導入口73と、エンジン前後方向の中央部に位置するターボ過給機50の排気出口55とは、シリンダヘッド7の排気側に設けられた、エンジン前後方向に延びる排気管41で接続されている。
このように、本実施形態のディーゼルエンジン1では、シリンダヘッド107をエンジン幅方向に横切るように、圧縮空気を噴き出す(吸気噴出管159が延びる)従来のターボ過給機150とは異なり、シリンダヘッド7の排気側に配置されたターボ過給機50を、圧縮空気をエンジン前後方向における冷却ファン17側に噴き出すように構成していることから、図3に示すように、シリンダヘッド7の上側に相対的に広いスペースSを確保することができ、これにより、ATD60をエンジン前後方向に延びるように配置することが可能となる。したがって、ATD60をシリンダヘッド7上でエンジン前後方向に延びるように配置しても、ATD60とターボ過給機50とが干渉するのを抑えることができる。
しかも、エンジン前後方向の冷却ファン17寄りにターボ過給機50を配置するとともに、圧縮空気をエンジン前後方向における冷却ファン17側(インタークーラ21側)に噴き出すことから、相対的に短い上流側吸気管27にて、圧縮空気を効率的に冷却することができる。
また、ターボ過給機50の排気出口55がエンジン前後方向の中央部に位置していることから、ATD60のエンジン前後方向における、前側(冷却ファン17側)に排気導入口73が設けられても、後側(冷却ファン17とは反対側)に排気導入口73が設けられても、排気出口55と排気導入口73とを接続する排気管41が、極端に長くなるのを抑えることができる。これにより、ターボ過給機50のレイアウトを変更することなく、換言すると、冷却ファン17寄りにターボ過給機50を配置したまま、排気管41の取り回しを容易に行うことができる。
さらに、ATD60の排気導入口73がフライホイールハウジング15の上方に設けられていることから、フライホイールハウジング15の上方のスペースを有効に活用して、フライホイールハウジング15を含めたエンジン全体のコンパクト化をより一層図ることができる。
(実施形態2)
本実施形態は、シリンダヘッド7上におけるATD60’の配置、ATD60’における排気導入口73’の位置、および、かかる排気導入口73’とターボ過給機50の排気出口55とを接続する排気管41’の形状が、上記実施形態1と異なるものである。以下、実施形態1と異なる点を中心に説明する。
本実施形態は、シリンダヘッド7上におけるATD60’の配置、ATD60’における排気導入口73’の位置、および、かかる排気導入口73’とターボ過給機50の排気出口55とを接続する排気管41’の形状が、上記実施形態1と異なるものである。以下、実施形態1と異なる点を中心に説明する。
図4、図5および図6は、本実施形態に係るディーゼルエンジン1’をそれぞれ模式的に示す側面図、平面図および斜視図である。なお、図を見易くするために、図5ではラジエータ19およびインタークーラ21を図示省略している。
ATD60’は、DPF70’と、SCR80’と、DPF70’とSCR80’とを接続するSCRパイプ61’と、SCRパイプ61’に設けられたドージングモジュール63’と、を備えている。なお、DPF70’、SCR80’、SCRパイプ61’およびドージングモジュール63’は、配置等を除けば、上記実施形態1における、DPF70、SCR80、SCRパイプ61およびドージングモジュール63と同様の構成ゆえ、個々の構成についての説明は省略する。
DPF70’は、図4および図5に示すように、エンジン前後方向に延びるような姿勢で、シリンダヘッド7上におけるエンジン幅方向左側に位置するとともに、エンジン前後方向の前端が、冷却ファン17とエンジン本体部3との間に位置するように、図6に示すブラケット77等でシリンダヘッド7に固定されている。一方、SCR80’は、エンジン前後方向に延びるような姿勢で、シリンダヘッド7上におけるエンジン幅方向右側に位置するとともに、エンジン前後方向の前端が、冷却ファン17とエンジン本体部3との間に位置するように、シリンダヘッド7に固定されている。これらDPF70’とSCR80’とは、DPFケーシング71’の後端(下流端)に接続され、エンジン前後方向後側に少し延びてから180度曲がってエンジン前後方向前側に延びた後、エンジン幅方向の右側に曲がって、SCRケーシング81’の前端部(上流端部)に接続されるSCRパイプ61’によって連通されている。なお、本実施形態では、上記実施形態1と異なり、テールパイプ90’がSCRケーシング81’の後端部に設けられている。
また、DPF70’の排気導入口73’は、図4に示すように、エンジン前後方向における冷却ファン17とターボ過給機50との間に設けられていて、かかるDPF70’の排気導入口73’と、エンジン前後方向の中央部に位置するターボ過給機50の排気出口55とは、シリンダヘッド7の排気側に設けられた排気管41’で接続されている。排気管41’は、図4に示すように、エンジン前後方向後側に少し延びてから180度曲がって、ターボ過給機50の下方でエンジン前後方向前側に延びた後、上方に曲がって、エンジン幅方向における上流側吸気管27の内側を通りながら、冷却ファン17とターボ過給機50との間に設けられたDPF70’の排気導入口73’に接続されている。
このように、本実施形態のディーゼルエンジン1’では、相対的に長いATD60’を、エンジン前後方向に延びるようにシリンダヘッド7の上側に配置することから、上記実施形態1と同様に、エンジン全体のコンパクト化を図ることができる。
また、ターボ過給機50の排気出口55がエンジン前後方向の中央部に位置していることから、ATD60’のエンジン前後方向における、前側(冷却ファン17側)に排気導入口73’が設けられても、排気出口55と排気導入口73’とを接続する排気管41’が、極端に長くなるのを抑えることができ、これにより、ターボ過給機50のレイアウトを変更することなく、排気管41’の取り回しを容易に行うことができる。
加えて、排気後処理装置60’の排気導入口73’を、冷却ファン17と冷却ファン17寄りに配置されたターボ過給機50との間に設けることで、排気後処理装置60’を冷却ファン17に近接させることができるので、図1と図4とを見比べれば分かるように、エンジン前後方向における、エンジン全体のコンパクト化を図ることができる。
(その他の実施形態)
本発明は、実施形態に限定されず、その精神又は主要な特徴から逸脱することなく他の色々な形で実施することができる。
本発明は、実施形態に限定されず、その精神又は主要な特徴から逸脱することなく他の色々な形で実施することができる。
上記各実施形態では、ディーゼルエンジン1,1’における、冷却ファン17側をエンジン前後方向前側とし、フライホイール13側をエンジン前後方向後側としたが、ディーゼルエンジン1,1’の前後方向と、ディーゼルエンジン1,1’が搭載される作業車両の前後方向とは、必ずしも一致する必要はない。例えば、ディーゼルエンジン1,1’の前後方向が、作業車両の前後方向と一致するように、ディーゼルエンジン1,1’を作業車両に搭載してもよいし、また、ディーゼルエンジン1,1’の前後方向が、作業車両の機体幅方向と一致するように、ディーゼルエンジン1,1’を作業車両に搭載してもよい。
また、上記各実施形態では、エンジン幅方向左側を排気側とし、エンジン幅方向右側を吸気側としてシリンダヘッド7を構成したが、これに限らず、エンジン幅方向右側を排気側とし、エンジン幅方向左側を吸気側としてシリンダヘッド7を構成してもよい。
さらに、上記各実施形態では、エンジン本体部3のエンジン前後方向前側にインタークーラ21を設けたが、圧縮空気をエンジン前後方向に噴き出すのであれば、これに限らず、例えばインタークーラ21を省略して、ターボ過給機50をインタークーラレスの過給機として構成してもよい。この場合にも、圧縮空気をエンジン前後方向に噴き出すようにターボ過給機50を構成していることから、ATD60,60’をシリンダヘッド7上でエンジン前後方向に延びるように配置しても、ATD60,60’とターボ過給機50とが干渉するのを抑えることができる。
このように、上述の実施形態はあらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。
この出願は、2020年9月30日に日本で出願された特願2020-165318に基づく優先権を請求する。これに言及することにより、その全ての内容は本出願に組み込まれるものである。
本発明によると、過給機と排気後処理装置とを備えていても、エンジン全体のコンパクト化を図ることができるので、過給機と排気後処理装置とを備えるディーゼルエンジンに適用して極めて有益である。
1 ディーゼルエンジン
1’ ディーゼルエンジン
3 エンジン本体部
5 シリンダブロック
7 シリンダヘッド
10 クランクシャフト(クランク軸)
13 フライホイール
15 フライホイールハウジング
17 冷却ファン
21 インタークーラ
41 排気管
41’ 排気管
50 ターボ過給機
55 排気出口
60 排気後処理装置
60’ 排気後処理装置
73 排気導入口
73’ 排気導入口
1’ ディーゼルエンジン
3 エンジン本体部
5 シリンダブロック
7 シリンダヘッド
10 クランクシャフト(クランク軸)
13 フライホイール
15 フライホイールハウジング
17 冷却ファン
21 インタークーラ
41 排気管
41’ 排気管
50 ターボ過給機
55 排気出口
60 排気後処理装置
60’ 排気後処理装置
73 排気導入口
73’ 排気導入口
Claims (5)
- シリンダブロックの上部にシリンダヘッドが締結されたエンジン本体部と、排気の流れを利用して吸気を圧縮する過給機と、排気を浄化する排気後処理装置と、を備えるディーゼルエンジンであって、
上記エンジン本体部の、クランク軸と平行な方向であるエンジン前後方向における一方側には、冷却ファンが設けられており、
上記シリンダヘッドは、エンジン前後方向と上下方向とに直交するエンジン幅方向の一方側を排気側とし、他方側を吸気側として構成されており、
上記排気後処理装置は、上記シリンダヘッドの上側に、エンジン前後方向に延びるように配置されており、
上記過給機は、上記シリンダヘッドの排気側に配置されていて、エンジン前後方向に圧縮空気を噴き出すように構成されていることを特徴とするディーゼルエンジン。 - 上記請求項1に記載のディーゼルエンジンにおいて、
上記エンジン本体部のエンジン前後方向における一方側には、上記過給機からの圧縮空気を冷却するインタークーラが設けられており、
上記過給機は、上記シリンダヘッドの排気側における、エンジン前後方向の冷却ファン寄りに配置されていて、エンジン前後方向における冷却ファン側に圧縮空気を噴き出すように構成されていることを特徴とするディーゼルエンジン。 - 上記請求項1または2に記載のディーゼルエンジンにおいて、
上記過給機の排気出口と上記排気後処理装置の排気導入口とは、シリンダヘッドの排気側に設けられた排気管で接続されており、
上記過給機の排気出口は、エンジン前後方向における中央部に位置していることを特徴とするディーゼルエンジン。 - 上記請求項3に記載のディーゼルエンジンにおいて、
上記エンジン本体部の、エンジン前後方向における他方側には、クランク軸と連結されるフライホイールを収容するフライホイールハウジングが設けられており、
上記排気後処理装置の排気導入口は、上記フライホイールハウジングの上方に設けられていることを特徴とするディーゼルエンジン。 - 上記請求項3に記載のディーゼルエンジンにおいて、
上記排気後処理装置の排気導入口は、エンジン前後方向における、上記冷却ファンと上記過給機との間に設けられていることを特徴とするディーゼルエンジン。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020237006076A KR20230078630A (ko) | 2020-09-30 | 2021-08-25 | 디젤 엔진 |
CN202180066932.4A CN116324138A (zh) | 2020-09-30 | 2021-08-25 | 柴油发动机 |
EP21874993.5A EP4223993A4 (en) | 2020-09-30 | 2021-08-25 | DIESEL ENGINE |
US18/041,875 US12098670B2 (en) | 2020-09-30 | 2021-08-25 | Diesel engine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020165318A JP7513480B2 (ja) | 2020-09-30 | 2020-09-30 | ディーゼルエンジン |
JP2020-165318 | 2020-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022070690A1 true WO2022070690A1 (ja) | 2022-04-07 |
Family
ID=80951309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/031119 WO2022070690A1 (ja) | 2020-09-30 | 2021-08-25 | ディーゼルエンジン |
Country Status (6)
Country | Link |
---|---|
US (1) | US12098670B2 (ja) |
EP (1) | EP4223993A4 (ja) |
JP (2) | JP7513480B2 (ja) |
KR (1) | KR20230078630A (ja) |
CN (1) | CN116324138A (ja) |
WO (1) | WO2022070690A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014168079A1 (ja) * | 2013-04-08 | 2014-10-16 | 日立建機株式会社 | 作業機械 |
JP2015014292A (ja) | 2014-10-22 | 2015-01-22 | ヤンマー株式会社 | エンジン |
WO2016059963A1 (ja) * | 2014-10-15 | 2016-04-21 | ヤンマー株式会社 | エンジン装置 |
EP3225749A1 (en) * | 2016-03-29 | 2017-10-04 | KCM Corporation | Work vehicle with an engine and an exhaust gas purifying device |
JP2020165318A (ja) | 2019-03-28 | 2020-10-08 | 八千代工業株式会社 | 燃料タンク用弁装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6226800B2 (ja) | 2014-03-28 | 2017-11-08 | 株式会社クボタ | 作業機 |
JP6438341B2 (ja) * | 2014-10-15 | 2018-12-12 | ヤンマー株式会社 | 作業車両 |
JP7143622B2 (ja) * | 2018-04-26 | 2022-09-29 | いすゞ自動車株式会社 | ラジエータガイド |
CN108999688B (zh) * | 2018-08-22 | 2024-04-02 | 东风商用车有限公司 | 一种组合式风扇车用冷却系统及其使用方法 |
JP6979593B2 (ja) * | 2019-03-22 | 2021-12-15 | ヤンマーパワーテクノロジー株式会社 | エンジン |
CN215109156U (zh) * | 2021-05-19 | 2021-12-10 | 南昌矿山机械有限公司 | 一种移动破碎筛分站用柴油发电机组 |
-
2020
- 2020-09-30 JP JP2020165318A patent/JP7513480B2/ja active Active
-
2021
- 2021-08-25 US US18/041,875 patent/US12098670B2/en active Active
- 2021-08-25 EP EP21874993.5A patent/EP4223993A4/en active Pending
- 2021-08-25 WO PCT/JP2021/031119 patent/WO2022070690A1/ja unknown
- 2021-08-25 KR KR1020237006076A patent/KR20230078630A/ko unknown
- 2021-08-25 CN CN202180066932.4A patent/CN116324138A/zh active Pending
-
2024
- 2024-06-27 JP JP2024104119A patent/JP2024114890A/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014168079A1 (ja) * | 2013-04-08 | 2014-10-16 | 日立建機株式会社 | 作業機械 |
WO2016059963A1 (ja) * | 2014-10-15 | 2016-04-21 | ヤンマー株式会社 | エンジン装置 |
JP2015014292A (ja) | 2014-10-22 | 2015-01-22 | ヤンマー株式会社 | エンジン |
EP3225749A1 (en) * | 2016-03-29 | 2017-10-04 | KCM Corporation | Work vehicle with an engine and an exhaust gas purifying device |
JP2020165318A (ja) | 2019-03-28 | 2020-10-08 | 八千代工業株式会社 | 燃料タンク用弁装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4223993A4 |
Also Published As
Publication number | Publication date |
---|---|
US12098670B2 (en) | 2024-09-24 |
EP4223993A4 (en) | 2024-10-09 |
KR20230078630A (ko) | 2023-06-02 |
JP7513480B2 (ja) | 2024-07-09 |
US20230313732A1 (en) | 2023-10-05 |
JP2024114890A (ja) | 2024-08-23 |
EP4223993A1 (en) | 2023-08-09 |
JP2022057192A (ja) | 2022-04-11 |
CN116324138A (zh) | 2023-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10047674B2 (en) | Exhaust device for engine | |
EP1770270A2 (en) | EGR system having reverse flow, internal combustion engine and method | |
JP6597737B2 (ja) | 車両用エンジンの吸排気装置 | |
CN103946511A (zh) | 带增压器的发动机 | |
WO2017169982A1 (ja) | ターボ過給機付エンジン | |
JP6969508B2 (ja) | 過給器付エンジンの吸気装置 | |
EP1186767A2 (en) | Exhaust gas recirculation system for internal combustion engine | |
JP2011069252A (ja) | 内燃機関 | |
WO2022070690A1 (ja) | ディーゼルエンジン | |
JP7151208B2 (ja) | 多気筒エンジンの吸気装置 | |
CN107448278B (zh) | 带涡轮增压器的发动机 | |
CN110578632A (zh) | 具有排气再循环装置的排气涡轮增压内燃发动机和用于操作所述类型的内燃发动机的方法 | |
CN107448276B (zh) | 带涡轮增压器的发动机 | |
JP6399028B2 (ja) | ターボ過給機付エンジン | |
JP2011080406A (ja) | エンジンの過給システム | |
JP6439731B2 (ja) | ターボ過給機付エンジン | |
JP7151209B2 (ja) | 多気筒エンジンの吸気装置 | |
JP7476662B2 (ja) | エンジンの吸気装置 | |
JP6460028B2 (ja) | ターボ過給機付エンジン | |
JP7230678B2 (ja) | 車両用エンジン | |
JP6531516B2 (ja) | 内燃機関の吸排気システム | |
JP6528558B2 (ja) | 内燃機関の吸排気システム | |
JP2022117032A (ja) | 内燃機関の排気エネルギー回収装置 | |
JP2011069256A (ja) | 内燃機関 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21874993 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021874993 Country of ref document: EP Effective date: 20230502 |