WO2022070666A1 - 基板コイル及びトランス - Google Patents

基板コイル及びトランス Download PDF

Info

Publication number
WO2022070666A1
WO2022070666A1 PCT/JP2021/030535 JP2021030535W WO2022070666A1 WO 2022070666 A1 WO2022070666 A1 WO 2022070666A1 JP 2021030535 W JP2021030535 W JP 2021030535W WO 2022070666 A1 WO2022070666 A1 WO 2022070666A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
substrate
coil
winding pattern
plan
Prior art date
Application number
PCT/JP2021/030535
Other languages
English (en)
French (fr)
Inventor
英一 大村
知之 博田
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2022070666A1 publication Critical patent/WO2022070666A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/10Single-phase transformers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor

Definitions

  • the present invention relates to a substrate coil and a transformer.
  • a printed circuit board with a built-in three-dimensional spiral inductor having a coil in which a coil conductor pattern made of a conductive material is electrically connected by a conductive through hole is known, and the printed circuit board with a built-in three-dimensional spiral inductor is known.
  • a printed circuit board it is possible to obtain a high inductance value in a small area (see, for example, Patent Document 2).
  • the substrate coil it is generally required that the size and height can be reduced, and that the substrate coil can obtain an appropriate reactance value and inductance value.
  • the arrangement of the via holes connecting the winding patterns is not optimized at the connection portion on the winding pattern, and the occupied area of the via hole arrangement area on the winding pattern is large. In this case, there is an inconvenience that a loss occurs in the winding length of the winding pattern. As a result, it becomes difficult to reduce the size and height of the substrate coil, and there is a risk that the manufacturing cost will increase.
  • the ultimate object of the present invention is to provide a technique capable of obtaining a high inductance value while reducing the size and height of the substrate coil.
  • the present invention for solving the above problems
  • a substrate coil formed by electrically connecting and laminating winding patterns provided on a plurality of layers constituting a multilayer substrate at a connection portion in the winding pattern.
  • the connection portion in the winding pattern has an elongated shape extending in either the radial direction or the circumferential direction of the winding pattern in a plan view, and the connection portions are perpendicular to the plane of the winding pattern.
  • the substrate coils are formed so as not to overlap in a plan view and to be aligned on the other side in the radial direction or the circumferential direction. It is a board coil.
  • connection portion in the winding pattern has an elongated shape extending in one of the radial direction or the circumferential direction of the winding pattern in a plan view in the substrate coil, and the connection portions are arranged in the direction perpendicular to the extending direction. Since the connecting portions are arranged in such a manner, the connecting portions are densely arranged and efficiently arranged, and the area that can be used as a coil on the winding pattern can be increased. As a result, it is possible to reduce the size and height of the substrate coil.
  • the via hole may be a substrate coil characterized in that, in the connection portion, the connection portion is arranged in a row or two in a row with respect to the extending direction. According to this, the via holes can be arranged in an orderly manner at the connection portion, the density of the via holes can be increased, and the area of each connection portion can be reduced.
  • the substrate coil has an input terminal and an output terminal
  • the connection portion is formed so as to be accommodated in a space between the input terminal and the output terminal in a plan view. May be. According to this, it is possible to suppress the loss of the number of turns of the winding pattern while increasing the degree of freedom in the arrangement of the connecting portion.
  • the magnetic core is provided so as to cover a part of the winding pattern in a plan view, and the connection portion is arranged in a portion where the magnetic core is not provided in a plan view. It may be used as a substrate coil, which is characterized by the above.
  • the magnetic core streamlines the flow of the magnetic field generated by the winding of the coil and increases the magnetic field.
  • the magnetic field generated by passing through the via hole has a different direction from the magnetic field generated by the winding of the coil, and may cause the magnetic field generated by the winding of the coil to be disturbed.
  • connection portion is arranged in the portion where the magnetic core is not provided in a plan view, the magnetic field passing through the via hole is suppressed from disturbing the flow of the magnetic field by the magnetic core. can. As a result, it is possible to more reliably improve and increase the efficiency of the flow of the magnetic field generated by the winding of the substrate coil.
  • a transformer is arranged so as to overlap a plurality of coils, input a current to one coil, and output an induced current flowing to another coil, and at least a part of the plurality of coils is a transformer.
  • the transformer may be characterized in that it is a substrate coil having the above-mentioned characteristics. According to this, it is possible to realize miniaturization and low profile of the transformer while maintaining the stabilization of the original function of the transformer.
  • the means for solving the above problems can be used in combination as much as possible.
  • the present invention it is possible to reduce the loss of the number of turns of the winding pattern, and as a result, it is possible to realize a miniaturization and a low profile of the substrate coil. Further, it is possible to obtain a high inductance value by suppressing the coil length and increasing the number of turns.
  • the board coil By making the board coil, it becomes possible to incorporate the coil, inductance, transformer, etc. directly into the electronic circuit board. As a result, it is possible to reduce the size of electronic devices, reduce the number of component mounting points, and reduce production costs.
  • FIG. 1 is a plan view of the substrate coil according to the first embodiment.
  • FIG. 2 is a cross-sectional view when a transformer is configured by using a substrate coil and a second substrate coil having a different number of turns.
  • FIG. 3 is a schematic view showing a state of connection of winding patterns from the first substrate to the ninth substrate.
  • FIG. 4 is a plan view for explaining a state of connection when the winding patterns of the respective boards from the first board to the ninth board are connected by a conventional method.
  • the connection points in the winding pattern of each layer of the multilayer board are arranged on the plane of each winding pattern, and the via holes are arranged in one row or two rows in the radial direction of the winding pattern at the connection points.
  • FIG. 6 is a perspective view when a magnetic core is combined with the substrate coil in the first embodiment.
  • 7A and 7B are plan views of the winding pattern on each substrate in Example 1 and the case where the substrate coil is combined with the magnetic core.
  • FIG. 8 is a schematic diagram showing a current flow in only one side when a high frequency current is applied to the substrate coil.
  • the connection points in the winding pattern of each layer of the multilayer board are arranged on the plane of each winding pattern, and the via holes are arranged in one row or two rows in the circumferential direction of the winding pattern at the connection points.
  • FIG. 9 is a schematic diagram of the board coil.
  • FIG. 10 is a schematic diagram showing a current flow in only one side when a high frequency current is applied to the substrate coil shown in FIG. 9.
  • 11A and 11B are plan views when the winding pattern in each layer in the second embodiment and the magnetic core are combined with the substrate coil.
  • 12A and 12B are cross-sectional views of the transformer in Example 3.
  • the substantially circular winding pattern is electrically connected to the winding pattern of another layer by a conductive hole called a via hole at the connection portion.
  • a conductive hole called a via hole at the connection portion.
  • those intended to electrically connect the layers of the winding pattern are called via holes.
  • the connection portion in the winding pattern has an elongated shape extending in the radial direction of the winding pattern in a plan view in the substrate coil.
  • the via holes are arranged in a row or two in the connecting portion in the direction in which the connecting portion extends.
  • the pair of connecting parts of two winding patterns that are overlapped and connected to each other and the pair of connecting parts of the two winding patterns that are connected next are formed at positions that do not overlap in a plan view on the substrate coil. ..
  • the area of the connecting portion due to the via hole can be suppressed, and the connecting portion can be densely arranged in a specific part of the winding pattern, thereby improving the problem of loss of the number of turns of the winding pattern. It becomes possible. As a result, it is possible to realize the miniaturization and low profile generally required for build-up multilayer boards.
  • the top winding pattern and the bottom winding pattern have an output terminal and an input terminal, respectively.
  • the connection portion is contained in the space between the output terminal and the input terminal in a plan view on the substrate coil. This makes it possible to increase the degree of freedom in arranging the connection portion on the winding pattern and to form a substrate coil having good winding efficiency.
  • the board coil may be equipped with a magnetic core that streamlines the flow of the magnetic field generated by the winding of the coil and increases the magnetic field.
  • a part of the winding pattern is covered with the magnetic core in a plan view, and the connection portion is arranged in the portion not covered with the magnetic core. This makes it possible to prevent the magnetic field passing through the via hole at the connection portion from disturbing the flow of the magnetic field by the magnetic core. As a result, it is possible to more reliably improve and increase the efficiency of the flow of the magnetic field generated by the winding of the substrate coil.
  • connection portion on the winding pattern may have an elongated shape extending in the circumferential direction of the winding pattern in the substrate coil in a plan view.
  • a high-frequency current that easily flows near the inner circumference of the winding pattern due to the skin effect is generated on the outer circumference of the winding pattern. It becomes easier to flow in the vicinity. As a result, it is possible to suppress overheating and deterioration of reliability due to the intensive passage of high-frequency current through a specific through hole.
  • the pair of connecting portions of the two winding patterns that are overlapped and connected to each other and the pair of connecting portions of the two winding patterns that are connected next are formed at positions where they do not overlap in a plan view on the substrate coil.
  • the point and the point where the connection part fits in the space between the output terminal and the input terminal in the plan view in the board coil, and the point where the connection part is placed in the part of the board coil which is not covered by the magnetic core in the plan view. Is common.
  • a transformer is formed in which a current is input to one coil and an induced current flowing through the other coils is output. It is also possible.
  • the other coils with different turns of the transformer do not have to be substrate coils.
  • FIG. 1 is a plan view of the substrate coil 10 according to the first embodiment.
  • the substrate coil 10 according to the first embodiment for example, nine layers of substrates from the first substrate 1 to the ninth substrate 9 provided with a winding pattern are stacked, and the winding patterns of two continuously overlapping substrates are overlapped with each other. By electrically connecting, a coil corresponding to 8 turns of turns is formed.
  • FIG. 1 shows a state in which the first substrate 1 arranged at the uppermost portion can be visually recognized.
  • the number of layers of the substrate is not limited to nine.
  • the substrates 1 to 9 correspond to a plurality of layers constituting the multilayer substrate in the present invention.
  • the first substrate 1 is provided with a first winding pattern 1a, which is an arcuate conductor pattern corresponding to the first layer of the coil. Then, the output terminal 1b connected to the first winding pattern 1a, the ninth winding pattern 9a in the ninth substrate 9 (not shown), and the output connected through the second substrate 2 to the eighth substrate 8. It has a terminal 1c. It also has openings 1f, 1g, and 1h for inserting a magnetic core (described later). This winding pattern and the opening for inserting the magnetic core are commonly provided in the second substrate 2 to the ninth substrate 9 (2a to 9a, 2f to 9f, 2g to 9g, 2h to). 9h).
  • FIG. 2 is a cross-sectional view when the transformer 30 is configured by using the substrate coil 10 and the second substrate coil 20 having different turns.
  • the number of turns of the substrate coil 10 and the number of turns of the second substrate coil 20 may be the same.
  • the transformer 30 is configured by magnetically coupling a 9-layer (8-turn) substrate coil 10 shown in FIG. 1 and a second substrate coil 20 having a different number of turns by a magnetic core 40.
  • the inductor element can be configured by combining the substrate coil 10 and the magnetic core 40.
  • both one coil and the other coil of the transformer 30 do not have to be substrate coils.
  • a normal winding coil may be used instead of the second substrate coil 20.
  • the winding pattern provided on each substrate of the substrate coil may be one winding (single turn) as in the first winding pattern 1a shown in FIG. 1, or may be multiple winding (multi-turn).
  • FIG. 3 is a schematic diagram showing the connection state of the winding patterns 1a to 9a from the first substrate 1 to the ninth substrate 9. As shown in the figure, in each board, since the connection point connecting to the upper board and the connection point connecting to the lower board are separated, one winding pattern forms one turn. By stacking nine substrates from the first substrate 1 to the ninth substrate 9, the substrate coil 10 having 8 turns is configured.
  • FIG. 4 is a plan view for explaining a connection state when the winding patterns 1a to 9a of the respective boards from the first board 1 to the ninth board 9 are connected by a conventional method.
  • the winding patterns of the respective boards are connected by a plurality of via holes.
  • the connection portion corresponds to the connection portion in the present invention.
  • connection point for connecting to the upper board and the connection point for connecting to the lower board are separated.
  • the winding efficiency was reduced.
  • connection points 1d to 8d were formed so as to be widely distributed on each winding pattern, the winding efficiency was further lowered by this as well.
  • connection points in the winding pattern of each layer of the multilayer board are arranged so as to have an elongated shape extending in the radial direction of each winding pattern, and the windings are arranged.
  • Via holes that conduct in the direction perpendicular to the plane of the pattern are arranged in one or two rows in the radial direction of the winding pattern, which is the direction in which the connection points extend, at the connection points.
  • the figure is an example of arranging them in a row.
  • connection points with the winding pattern of the lower substrate and the connection points with the winding pattern of the upper substrate are arranged so as to be arranged so as to sandwich the gap of the winding pattern. It was decided to. More specifically, in FIG. 5, on the second winding pattern 2a on the second substrate 2, the connection portion 2d for connecting to the connection portion 3e of the third winding pattern 3a on the third substrate 3 and the first The first winding pattern 1a (not shown) on the substrate 1 and the connection portion 2e for connecting are arranged so as to be arranged so as to sandwich the gaps at both ends of the winding pattern.
  • FIG. 6 is a perspective view when the magnetic core 40 is combined with the substrate coil 10 in the first embodiment. In the figure, for the sake of simplicity, only the coil portion formed by the winding pattern of each substrate is shown.
  • the magnetic core 40 has a shape that is point-symmetrical with respect to the center of the winding pattern in a plan view, and has a shape that spreads in a fan shape from the center of the winding pattern toward the outer peripheral side.
  • the first winding pattern 1a is partially covered with the magnetic core 40.
  • connection portion 1d is arranged in a portion not covered by the magnetic core 40.
  • FIG. 6 illustrates the first winding pattern 1a on the first substrate 1, the winding pattern is partially covered by the magnetic core 40 and the connection is also made for the other winding patterns. It is common that the portion is arranged in the portion not covered by the magnetic core 40.
  • FIG. 7A and 7B are a plan view of the winding pattern on each substrate in Example 1 and a plan view when the substrate coil 10 is combined with the magnetic core 40.
  • FIG. 7A is a plan view of each winding pattern 1a to 9a in the first substrate 1 to the ninth substrate 9.
  • FIG. 7B is a plan view when the winding patterns 1a to 9a are stacked in this order and the magnetic core 40 is combined with the substrate coil 10.
  • FIG. 7B in order to make the winding patterns 1a to 9a easier to see, only the cross sections of the center core 40a and the side cores 40b and 40c are displayed for the magnetic core 40.
  • the winding 10a in the substrate coil 10 is formed by overlapping the winding patterns 1a to 9a in the first substrate 1 to the ninth substrate 9.
  • Each of the winding patterns 1a to 9a is a pattern in which a gap is provided in a substantially circular shape, and the winding patterns 1a to 9a are gradually rotated counterclockwise in order in the plan view of the winding 10a. It is in the form of going. Further, in the plan view of the winding 10a, the output terminal 1b of the first winding pattern 1a and the input terminal 1i of the ninth winding pattern 9a are in an adjacent positional relationship.
  • connection points 1d on the counterclockwise side with a gap in the first winding pattern 1a and the connection points 2e on the clockwise side with a gap in the second winding pattern 2a are connected by via holes.
  • connection point 2d on the counterclockwise side across the gap in the second winding pattern 2a and the connection point 3e on the clockwise side across the gap in the third winding pattern 3a are connected by a via hole.
  • connection point 8d on the left counterclockwise side with the gap in the 8th winding pattern 8a sandwiched between the connection point 8d and the gap in the 9th winding pattern 9a is connected by a via hole.
  • the points 7d (8e) and the connection points 8d (9e) are closely contained in the space between the output terminal 1b and the input terminal 1i in the plan view of the winding 10a. And all the connection points are arranged outside the magnetic path by the magnetic core 40.
  • the influence of the magnetic field generated from the current flowing through the connection portion on the magnetic flow formed by the winding 10a and the magnetic core 40 is suppressed. Even if the winding 10a is rotated relative to the magnetic core 40 to some extent, the connection portion does not interfere with the magnetic core 40 in a plan view, so that the degree of freedom in arranging the connection portion can be increased.
  • connection points 1d (2e) to the connection points 8d (9e) are arranged counterclockwise in this order in the plan view of the winding 10a. Further, these eight connection points are arranged so as not to overlap in the plan view of the winding wire 10a.
  • Example 2 of the present invention will be described.
  • a via hole for connecting the winding patterns formed on each of the two continuous layers of the substrate is arranged at the connection point in the radial direction of the winding pattern.
  • the via holes are arranged in the radial direction of the winding pattern.
  • FIG. 8 is a schematic diagram showing a current flow in only one side when a high frequency current is applied to the substrate coil 100.
  • the thickness of the arrow indicates the magnitude of the current density.
  • the connection points are not shown.
  • the current density is concentrated on the via holes on the inner peripheral side of multiple via holes at the connection points in each winding pattern, and heat generation increases in some via holes.
  • inconveniences such as a decrease in reliability may occur.
  • there are also inconveniences such as an increase in variation in magnetic flux density at each connection location.
  • FIG. 8 shows the current flow on the first winding pattern 11a on the first substrate 11, the same can be said for the current flow on the other winding patterns.
  • the high frequency current is an alternating current, and a current in the direction opposite to the arrow in FIG. 8 also flows, but in FIG. 8, a current in only one side is shown.
  • connection points in the winding pattern of each layer of the multilayer board are set in the circumferential direction in which the connection points extend in the plane of each winding pattern. It is arranged so as to have an elongated shape, and via holes conducting in the direction perpendicular to the plane of the winding pattern are arranged in one or two rows in the circumferential direction of the winding pattern at the connection point.
  • the figure is an example of arranging them in a row.
  • the direction of arrangement of the via holes corresponds to the radial direction shown in FIG. 5 or the circumferential direction shown in FIG. 9 at the connection point.
  • connection points with the winding pattern of the lower substrate and the connection points with the winding pattern of the upper substrate are arranged so as to be aligned in the radial direction of the winding pattern.
  • the first winding pattern 11a (not shown) on the substrate 11 and the connection portion 21e for connecting are arranged so as to be aligned in the radial direction of the second winding pattern 21a in the direction from the outer circumference to the inner circumference of the winding pattern. bottom.
  • connection points in the winding pattern by arranging the connection points in the winding pattern so as to line up in the radial direction of the winding pattern and in the direction from the outer circumference to the inner circumference of the winding pattern, the connection points in the winding pattern can be arranged.
  • the radial position of each via hole at the connection point can be made uniform, so that excessive current is suppressed from concentrating on a specific via hole. can do.
  • FIG. 10 is a schematic diagram showing a current flow in only one side when a high frequency current is applied to the substrate coil shown in FIG.
  • the connection points 21d and 31e are simply shown. According to this, as shown in FIG. 10, even if the high-frequency current flowing through the winding pattern of each substrate is unevenly distributed toward the inner peripheral side of the winding pattern due to the skin effect, the vicinity of the outer periphery on the winding pattern It follows a trajectory of flowing on the outer peripheral side at the connection point arranged in and returning from the outer peripheral side to the inner peripheral side in the next winding pattern.
  • FIG. 10 illustrates the current flow on the second winding pattern 21a and the third winding pattern 31a, the same can be said for the current flow on other winding patterns.
  • the high-frequency current is an alternating current, and a current in the direction opposite to the arrow in FIG. 10 also flows, but in FIG. 10, a current in only one side is shown.
  • FIG. 11A and 11B are a plan view of the winding pattern on each substrate in the second embodiment and a plan view when the magnetic core 400 is combined with the substrate coil 100.
  • FIG. 11A is a plan view of each winding pattern 11a to 91a in the first substrate 11 to the ninth substrate 91.
  • FIG. 11B is a plan view when the winding patterns 11a to 91a are stacked in this order and the magnetic core 400 is combined with the substrate coil 100.
  • FIG. 11B in order to make the winding patterns 11a to 91a easier to see, only the cross sections of the center core 400a, the side cores 400b, and 400c are displayed for the magnetic core 400.
  • the winding 100a in the substrate coil 100 is formed by overlapping the winding patterns 11a to 91a in the first substrate 11 to the ninth substrate 91.
  • Each of the winding patterns 11a to 91a is a pattern in which a gap is provided in a substantially circular shape.
  • the output terminal 11b of the first winding pattern 11a and the input terminal 11i of the ninth winding pattern 91a are in an adjacent positional relationship.
  • the winding patterns 21a to 81a each have two connecting points in the radial direction of the winding pattern.
  • the inner connection point in the upper winding pattern and the outer connection point in the lower winding pattern are connected by via holes, respectively. ..
  • the connection point 11d which is the inner connection point in the first winding pattern 11a
  • the connection point 21e which is the outer connection point in the second winding pattern 21a
  • the connection point 21d which is the inner connection point in the second winding pattern 21a
  • the connection point 31e which is the outer connection point in the third winding pattern 31a
  • connection portion 81d which is the inner connection portion in the eighth winding pattern 81a, and the outer connection portion in the ninth winding pattern 91a.
  • a certain connection point 91e is connected by a via hole.
  • the portion 71d (81e) and the connection portion 81d (91e) are closely contained in the space between the output terminal 11b and the input terminal 11i in the plan view of the winding 100a. This makes it possible to increase the degree of freedom in arranging the connection points while suppressing the influence of the magnetic field generated from the current flowing through the connection points on the winding 100a.
  • connection points 11d (21e) to the connection points 81d (91e) are in this order in the radial direction of the winding 100a. They are lined up from the outer circumference to the inner circumference. Further, these eight connection points are arranged so as not to overlap in the plan view of the winding 100a. This makes it easier for current to flow around the outer circumference of the entire winding 100a.
  • Example 3 Next, Example 3 of the present invention will be described.
  • the transformer 30 provided with the substrate coils 10 and 20 in which only a part of the winding pattern is covered by the magnetic core 40 has been described.
  • the winding pattern is covered by the magnetic core.
  • a transformer having a non-board coil and a transformer having a path core structure applied between two types of coils will be described.
  • FIG. 12A and 12B are cross-sectional views of the transformer in the third embodiment.
  • FIG. 12A is a cross-sectional view of the transformer 301 including the substrate coil 101 and the second substrate coil 201 in which the winding pattern (not shown) is not covered by the magnetic core 401.
  • the magnetic core 401 is positioned so as to be surrounded by the winding pattern of each substrate.
  • the connection point (not shown) on the winding pattern is not covered by the magnetic core 401. Therefore, it avoids the disadvantage that the magnetic field generated from the current flowing on the winding pattern is disturbed and the amount of the magnetic field passing between the side cores (not shown) becomes non-uniform, and increases the degree of freedom in arranging the connection points. It is possible.
  • FIG. 12B is a cross-sectional view of a transformer 302 to which a path core structure is applied between the substrate coil 102 and the second substrate coil 202.
  • the resonance L is externally attached, and if the transformer and the resonance L are arranged side by side, the mounting area increases, and if they are stacked vertically, a shield is required, which has the disadvantage of increasing the height. .. Therefore, in any of the above cases, it is difficult to reduce the size and height of the transformer.
  • the magnetic core 402 is also inserted between the substrate coil 102 and the second substrate coil 202, and the path core structure is applied to reduce the size and height of the transformer 302 while reducing the height of the substrate coil. It is possible to induce resonance of the 102 and the second substrate coil 202.
  • the number of turns of the substrate coils 101 and 102 and the number of turns of the second substrate coils 201 and 202 may be the same or different, and instead of the second substrate coils 201 and 202, The point that a normal winding coil may be used is the same as that of the transformer 30 of the first embodiment.
  • FIG. 1 A substrate formed by electrically connecting and laminating winding patterns (1a to 9a) provided on a plurality of layers (1 to 9) constituting a multilayer substrate at a connection portion in the winding pattern.
  • the connection portion in the winding pattern has an elongated shape extending in either the radial direction or the circumferential direction of the winding pattern in a plan view, and the connection portions are perpendicular to the plane of the winding pattern.
  • the pair (1d to 9d, 1e to 9e) of the connection portion of the winding pattern is formed so as not to overlap in a plan view and to be aligned with the other in the radial direction or the circumferential direction in the substrate coil. Characteristic, Board coil.
  • Substrate 1a-9a Winding pattern 10a: Winding 1b, 1c: Output terminal 1d-9d: Connection point 1e-9e: Connection point 1f-9f: Opening 1g-9g: Opening 1h-9h: Opening 1i : Input terminals 10, 20: Board coil 30: Transformer 40: Magnetic core 40a: Center core 40b, 40c: Side core

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

巻き線パターンのターン数のロスの減少によって、小型化や低背化を図りつつ、高いインダクタンス値を得ることが可能な基板コイルを提供する。多層基板を構成する複数の層に設けられた巻き線パターンによって構成されている基板コイルは、巻き線パターン上において、ビアホールが基板コイルにおいて平面視で巻き線パターンの径方向または周方向の一方に延びた細長形状を有し、複数の層に設けられた巻き線パターンのうち、重ねられて互いに接続される二つの巻き線パターンの接続部の対と、次に接続される二つの巻き線パターンの接続部の対とは、基板コイルにおいて平面視で重ならない位置に、径方向または周方向の他方に並ぶように形成されていることを特徴とする。

Description

基板コイル及びトランス
 本発明は、基板コイル及びトランスに関する。
 従来より、ビルドアップ多層基板において、コイル用パターンを各層の表面に形成し、ビルドアップビアよって各層のコイル用パターンを接続し、全体として螺旋形状のコイルを形成する技術が提案されていた。この技術では、コイル部品を搭載しないため、コイルの小型化を図ることが可能であり、基板パターン上においてリアクタンス値を得ることが可能である(例えば、特許文献1参照)。
 また、多層基板の一種として、伝導性物質から成るコイル導体パターンを導電性スルーホールによって電気的に接続したコイルを有する3次元スパイラルインダクタ内蔵型プリント基板が公知であり、該3次元スパイラルインダクタ内蔵型プリント基板によって、小さな面積で高いインダクタンス値を得ることが可能である(例えば、特許文献2参照)。
特開2001-077538号公報 特開2006-190934号公報 特開2002-324962号公報 特開2020-013827号公報 特開2020-013826号公報 特開2020-013825号公報
 上記のような基板コイルにおいては、一般的に、小型化や低背化が実現され、且つ、該基板コイルによって適切なリアクタンス値やインダクタンス値が得られることが求められる。
 しかしながら、上記のような基板コイルは、巻き線パターン上における接続部において巻き線パターンどうしを接続するビアホールの配置が最適化されておらず、巻き線パターン上におけるビアホールの配置領域の専有面積が大きい場合には、巻き線パターンの巻き線長さにロスが生じる不都合があった。その結果、基板コイルの小型化や低背化の実現が困難になり、製造コストが増加する虞があった。
 本発明では、基板コイルの小型化や低背化を図りつつ、高いインダクタンス値を得ることが可能な技術を提供することを最終的な目的とする。
 上記の課題を解決するための本発明は、
 多層基板を構成する複数の層に設けられた巻き線パターンが該巻き線パターンにおける接続部において電気的に接続されるとともに積層されることで形成される基板コイルであって、
 前記巻き線パターンにおける前記接続部は、平面視で前記巻き線パターンの径方向または周方向の一方に延びた細長形状を有し、前記接続部どうしは、前記巻き線パターンの平面に対して垂直方向に導通するビアホールによって接続され、
 前記複数の層に設けられた前記巻き線パターンのうち、重ねられて互いに接続される二つの巻き線パターンの接続部の対と、次に接続される二つの巻き線パターンの接続部の対とは、前記基板コイルにおいて平面視で重ならないように、且つ、径方向または周方向の他方に並ぶように形成されることを特徴とする、
 基板コイルである。
 本発明によれば、巻き線パターンにおける接続部が基板コイルにおいて平面視で巻き線パターンの径方向または周方向の一方に延びた細長形状を有し、接続部が延びた方向に垂直方向に並ぶように配置されるため、接続部が密集して効率的に配置され、巻き線パターン上でコイルとして利用可能なエリアを大きくすることができる。その結果、基板コイルの小型化や低背化を実現することが可能である。
 また、本発明においては、前記ビアホールは、前記接続部において、該接続部が延びた方向に対して一列または二列に並列されていることを特徴とする、基板コイルとしてもよい。これによれば、接続部においてビアホールを整然と配置させることができ、ビアホールの密度を上げ、各接続部の面積を小さくすることが可能である。
 また、本発明においては、入力端子と出力端子を有し、前記接続部は、平面視で前記入力端子と前記出力端子の間のスペースに収まって形成されていることを特徴とする、基板コイルとしてもよい。これによれば、接続部の配置の自由度を高めつつ、巻き線パターンのターン数のロスを抑制することが可能である。
 また、本発明においては、平面視で前記巻き線パターンの一部を覆うように配置される磁気コアを備え、前記接続部は、平面視で前記磁気コアが設けられていない部分に配置されることを特徴とする、基板コイルとしてもよい。ここで、磁気コアは、コイルの巻き線によって生じる磁界の流れを効率化し磁界を増大させる。これに対し、ビアホールを通過することで生じる磁界は、コイルの巻き線によって生じる磁界と方向が異なり、コイルの巻き線によって生じる磁界を乱す原因となり得る。これに対し、本発明においては、前記接続部は、平面視で前記磁気コアが設けられていない部分に配置されるため、ビアホールを通過する磁界が、磁気コアによる磁界の流れを乱すことを抑制できる。その結果、基板コイルの巻き線により生じる磁界の流れをより確実に効率化し、増大させることが可能である。
 また、本発明においては、複数のコイルを重ねるように配置し、一のコイルに電流を入力し、他のコイルに流れる誘導電流を出力するトランスであって、前記複数のコイルの少なくとも一部は、上記の特徴を持つ基板コイルであることを特徴とする、トランスとしてもよい。これによれば、トランス本来の機能の安定化を維持しつつ、トランスの小型化や低背化を実現することが可能である。
 なお、本発明においては、上記の課題を解決するための手段は、可能なかぎり組み合わせて使用することが可能である。
 本発明によれば、巻き線パターンのターン数のロスを減少させ、その結果、基板コイルの小型化や低背化を実現することが可能である。また、コイル長さを抑え、巻き数を増加させることで高いインダクタンス値を得ることが可能である。基板コイル化により、電子回路基板へ直接、コイル、インダクタンス、トランス等を組込み内蔵化することが可能となる。その結果、電子機器の小型化、部品実装点数削減や生産コストの低減も可能となる。
図1は、実施例1に係る基板コイルの平面図である。 図2は、基板コイルと、巻き数の異なる第2の基板コイルとを利用してトランスを構成した場合の断面図である。 図3は、第1基板から第9基板までの巻き線パターンの接続の状態を示す概略図である。 図4は、第1基板から第9基板までの各基板の巻き線パターンを、従来の方法で接続した場合の、接続の状態について説明するための平面図である。 図5は、多層基板の各層の巻き線パターンにおける接続箇所を、各巻き線パターンの平面に配置するとともに、ビアホールを接続箇所において巻き線パターンの径方向に一列または二列に並べて構成することとした基板コイルの模式的な図である。 図6は、実施例1における基板コイルに磁気コアを組み合わせた場合の斜視図である。 図7A及び図7Bは、実施例1における各基板における巻き線パターン、及び基板コイルに磁気コアを組み合わせた場合の平面図である。 図8は、基板コイルに高周波電流を印加した場合の片側方向のみの電流の流れを示す模式的な図である。 図9は、多層基板の各層の巻き線パターンにおける接続箇所を、各巻き線パターンの平面に配置するとともに、ビアホールを接続箇所において巻き線パターンの周方向に一列または二列に並べて構成することとした基板コイルの模式的な図である。 図10は、図9に示す基板コイルに高周波電流を印加した場合の片側方向のみの電流の流れを示す模式的な図である。 図11A及び図11Bは、実施例2における各層における巻き線パターン、及び基板コイルに磁気コアを組み合わせた場合の平面図である。 図12A及び図12Bは、実施例3におけるトランスの断面図である。
〔適用例〕
 本適用例においては、複数の巻き線パターンから成り、各々の巻き線パターンのターン数が1ターンである螺旋形状の基板コイルをビルドアップ多層基板に適用した場合について説明する。
 概略円形の巻き線パターンは、接続部において、ビアホールと呼ばれる導電性のあるホールによって他層の巻き線パターンと電気的に接続されている。スルーホールの中でも特に巻き線パターンの層間を電気的に接続することを目的としたものは、ビアホールと呼ばれる。この構成の繰り返しによって、巻き線パターンが積層され、基板コイルが形成される。巻き線パターンにおける接続部は、基板コイルにおいて平面視で巻き線パターンの径方向に延びた細長形状を有する。ビアホールは、接続部において、接続部が延びた方向に対して一列または二列に並列されている。重ねられて互いに接続される二つの巻き線パターンの接続部の対と、次に接続される二つの巻き線パターンの接続部の対とは、基板コイルにおいて平面視で重ならない位置に形成される。このことで、ビアホールによる接続部の面積を抑制し、また、接続部を巻き線パターンの特定の部分に密集して配置することができるので、巻き線パターンのターン数のロスの問題を改善することが可能となる。その結果、一般的にビルドアップ多層基板に要求される小型化や低背化を実現することが可能となる。
 基板コイルにおいて、一番上の巻き線パターンと一番下の巻き線パターンは、それぞれ出力端子と入力端子を有する。接続部は、基板コイルにおいて平面視で出力端子と入力端子の間のスペースに収まっている。このことで、巻き線パターン上において、接続部の配置の自由度を高め、良好な巻き線効率を有する基板コイルの形成が可能である。
 基板コイルは、コイルの巻き線によって生じる磁界の流れを効率化し磁界を増大させる磁気コアを備えている場合がある。基板コイルにおいて平面視で巻き線パターンの一部は磁気コアに覆われており、接続部は、磁気コアに覆われていない部分に配置される。このことで、接続部におけるビアホールを通過する磁界が、磁気コアによる磁界の流れを乱すことを抑制できる。その結果、基板コイルの巻き線により生じる磁界の流れをより確実に効率化し、増大させることが可能である。
 また、巻き線パターン上における接続部については、基板コイルにおいて平面視で巻き線パターンの周方向に延びた細長形状を有するものとしてもよい。接続部が基板コイルにおいて平面視で巻き線パターンの径方向に延びた細長形状を有する基板コイルと比較すると、表皮効果によって巻き線パターンの内周付近を流れやすい高周波電流が、巻き線パターンの外周付近をも流れやすくなる。その結果、高周波電流が特定のスル―ホールを集中的に通過することによる過熱や信頼性の低下を抑制することができる。なお、重ねられて互いに接続される二つの巻き線パターンの接続部の対と次に接続される二つの巻き線パターンの接続部の対とが基板コイルにおいて平面視で重ならない位置に形成される点、及び接続部が基板コイルにおいて平面視で出力端子と入力端子の間のスペースに収まっている点、及び接続部が基板コイルにおいて平面視で磁気コアに覆われていない部分に配置される点については共通である。
 また、上記の特徴を有する基板コイルを少なくとも一つ含む、複数のコイルを重ねるように配置することで、一のコイルに電流を入力し、他のコイルに流れる誘導電流を出力するトランスを形成することも可能である。トランスの他の巻き数の異なるコイルは、基板コイルでなくてもよい。
〔実施例1〕
 以下、本発明の実施例1に係る基板コイル及びトランスについて、図面を用いて詳細に説明する。なお、本発明に係る基板コイル及びトランスは、以下の構成に限定する趣旨のものではない。
<装置構成>
 図1は、実施例1に係る基板コイル10の平面図である。実施例1に係る基板コイル10は、例えば、巻き線パターンが設けられた第1基板1から第9基板9の9層の基板を重ね、連続して重なる2枚の基板の巻き線パターンどうしを電気的に接続させることで、巻き数8ターンに相当するコイルを形成したものである。図1においては、一番上部に配置される第1基板1が視認できる状態が示されている。なお、基板の層数は9層に限らない。ここで、基板1~9は、本発明における多層基板を構成する複数の層に相当する。
 第1基板1には、コイルの第1層に相当する円弧状の導体パターンである第1巻き線パターン1aが設けられている。そして、第1巻き線パターン1aと接続される出力端子1b、及び不図示の第9基板9における第9巻き線パターン9aと第2基板2から第8基板8を貫通した形で接続される出力端子1cを有している。また、磁気コア(後述)が挿入されるための開口1f、1g、1hを有している。この巻き線パターンと、磁気コアが挿入されるための開口については、第2基板2~第9基板9にも共通に設けられている(2a~9a、2f~9f、2g~9g、2h~9h)。
 図2は、基板コイル10と、巻き数の異なる第2の基板コイル20とを利用してトランス30を構成した場合の断面図である。なお、基板コイル10の巻き数と、第2の基板コイル20の巻き数は、同じであってもよい。トランス30は、図1に示した9層(8ターン)の基板コイル10と、巻き数の異なる第2の基板コイル20とを、磁気コア40で磁気的に結合することで構成される。このように、基板コイル10、20を用いてトランス30を構成することで、小型化や低背化を実現することができる。なお、同様に、基板コイル10と磁気コア40とを組み合わせることでインダクタ素子を構成することも可能である。また、トランス30の一のコイルと他のコイルは、両方が基板コイルである必要はない。例えば、第2の基板コイル20の代わりに、通常の巻き線コイルを使用しても構わない。
 なお、基板コイルの各基板に設けられる巻き線パターンは、図1に示す第1巻き線パターン1aのような1回巻き(シングルターン)としてもよいし、多数巻き(マルチターン)としてもよい。巻き線パターンを1回巻きとすることで、基板コイルの巻き数を増やすために必要な基板数が増加してしまうが、パターンの太線化が可能で大電流が通電可能になるというメリットがある。
 図3は、第1基板1から第9基板9までの巻き線パターン1a~9aの接続の状態を示す概略図である。図に示すように、各基板においては、より上側の基板と接続する接続箇所と、より下側の基板と接続する接続箇所とが離れているために、1つの巻き線パターンで1ターンを形成することができず、第1基板1から第9基板9までの9枚の基板を重ねることで、巻き数が8ターンの基板コイル10が構成されている。
 図4は、第1基板1から第9基板9までの各基板の巻き線パターン1a~9aを、従来の方法で接続した場合の、接続の状態について説明するための平面図である。ここでは、各基板の巻き線パターンどうしはそれぞれ複数のビアホールで接続されている。実際には、基板コイル10の平面視において、第1巻き線パターン1aと第2巻き線パターン2aとを接続する接続箇所1dにおけるビアホールだけが視認でき、第2巻き線パターン2aと第3巻き線パターン3aとを接続する接続箇所2dから、第8巻き線パターン8aと第9巻き線パターン9aとを接続する接続箇所8dにおけるビアホールは、視認できないが、図においては、互いの位置関係を明示するために、接続箇所1dにおけるビアホールと同様に示す。ここで、接続箇所は、本発明における接続部に相当する。
 図4から明らかなように、従来は、各基板の巻き線パターンにおいて、より上側の基板と接続するための接続箇所と、より下側の基板と接続する接続箇所とが離れているために、巻き線効率が低下していた。また、各接続箇所1d~8dは、各巻き線パターン上において広く分布するように形成されていたので、このことによっても、巻き線効率がさらに低下していた。
 これに対し、実施例1では、図5に示すように、多層基板の各層の巻き線パターンにおける接続箇所を、各巻き線パターンの径方向に延びる細長形状となるように配置するとともに、巻き線パターンの平面に対して垂直方向に導通するビアホールを接続箇所において、接続箇所が延びた方向である巻き線パターンの径方向に一列または二列に並べて構成することとした。図は一列に並べて構成する例である。さらに、各基板の巻き線パターンにおいて、下側の基板の巻き線パターンとの接続箇所と、上側の基板の巻き線パターンとの接続箇所とを、巻き線パターンの隙間を挟んで並ぶように配置することとした。より具体的には図5において、第2基板2における第2巻き線パターン2a上に、第3基板3における第3巻き線パターン3aの接続箇所3eと接続するための接続箇所2dと、第1基板1における第1巻き線パターン1a(不図示)と接続するための接続箇所2eとを、巻き線パターンの両端の隙間を挟んで並ぶように配置した。
 図6は、実施例1における基板コイル10に磁気コア40を組み合わせた場合の斜視図である。図では、簡単のため、各基板の巻き線パターンによって形成されるコイル部分のみ示す。このように、磁気コア40は、平面視において、巻き線パターンの中心に対して点対称の形状を有しており、巻き線パターンの中心から外周側に向かって扇形状に広がる形状を有する。第1巻き線パターン1aは、一部のみ磁気コア40によって覆われている。
 接続箇所1dから第2巻き線パターン2a(不図示)に向かって流れる電流の向きは、第1巻き線パターン1a上を流れる電流の向きと異なるため、それらの電流から発生する磁力の向きもそれぞれ異なる。そのため、接続箇所1dの周辺に発生する磁界が増大すると、第1巻き線パターン1a上を流れる電流から発生する磁界に乱れが生じる。また、サイドコア(後述)どうしで通過する磁界の量が不均一になる。よって、接続箇所1dは、磁気コア40によって覆われていない部分に配置されている。なお、図6では第1基板1における第1巻き線パターン1aを例示しているが、他の巻き線パターンについても、巻き線パターンが一部のみ磁気コア40によって覆われている点、及び接続箇所が磁気コア40によって覆われていない部分に配置されている点は共通である。
 図7A及び図7Bは、実施例1における各基板における巻き線パターン、及び基板コイル10に磁気コア40を組み合わせた場合の平面図である。図7Aは、第1基板1~第9基板9における、各巻き線パターン1a~9aの平面図である。図7Bは、巻き線パターン1a~9aをこの順に重ね、基板コイル10に磁気コア40を組み合わせた場合の平面図である。なお、図7Bでは、巻き線パターン1a~9aを見易くするため、磁気コア40については、センターコア40aとサイドコア40b、40cの断面のみを表示している。
 実施例1においては、図7Aに示すように、第1基板1から第9基板9における、巻き線パターン1a~9aを重ねることで基板コイル10における巻き線10aが形成されている。各々の巻き線パターン1a~9aは、概略円形に隙間が設けられたパターンとなっており、巻き線パターン1a~9aは、巻き線10aの平面視において順番に反時計回りに徐々に回転していく形態となっている。また、巻き線10aの平面視において第1巻き線パターン1aが有する出力端子1bと第9巻き線パターン9aが有する入力端子1iは隣り合う位置関係にある。
 巻き線パターン1a~9aが反時計回りに徐々に回転していく形態について、より具体的には、巻き線10aの平面視において順番に接続箇所が反時計回りに徐々に回転していく形態となっている。接続箇所が第1巻き線パターン1aにおける隙間を挟んで反時計回り側の接続箇所1dと、第2巻き線パターン2aにおける隙間を挟んで時計回り側の接続箇所2eがビアホールによって接続されている。同様に、第2巻き線パターン2aにおける隙間を挟んで反時計回り側の接続箇所2dと、第3巻き線パターン3aにおける隙間を挟んで時計回り側の接続箇所3eがビアホールによって接続されている。以降、この構造の繰り返しによって、巻き線10aの一番下のビアホールについては、第8巻き線パターン8aにおける隙間を挟んで左反時計回り側の接続箇所8dと、第9巻き線パターン9aにおける隙間を挟んで右回り側の接続箇所9eがビアホールによって接続されている。
 図7Bに示すように、接続箇所1d(2e)、接続箇所2d(3e)、接続箇所3d(4e)、接続箇所4d(5e)、接続箇所5d(6e)、接続箇所6d(7e)、接続箇所7d(8e)、接続箇所8d(9e)は、巻き線10aの平面視において出力端子1bと入力端子1iの間のスペースに密に収まっている。そして、全ての接続箇所が磁気コア40による磁路の外側に配置されている。これによって、巻き線10a上において、接続箇所を流れる電流から生じる磁界が巻き線10a及び磁気コア40により形成される磁気の流れに与える影響を抑制している。そして、磁気コア40に対して巻き線10aを相対的にある程度回転させても、平面視において接続箇所が磁気コア40と干渉しないので、接続箇所の配置の自由度を高めることが可能である。
 また、図7Bでは不明瞭であるが、上述通り、巻き線10aの平面視において接続箇所1d(2e)から接続箇所8d(9e)までがこの順番で反時計回りに並んでいる。さらに、これら八箇所の接続箇所は、巻き線10aの平面視において重ならない配置で並んでいる。
〔実施例2〕
 次に、本発明の実施例2について説明する。実施例1では、連続する二層の基板のそれぞれに形成された巻き線パターンを接続するためのビアホールを接続箇所において、巻き線パターンの径方向に並べた例について説明したが、実施例2では、ビアホールを接続箇所において、巻き線パターンの周方向に並べた例について説明する。
 図8は、基板コイル100に高周波電流を印加した場合の片側方向のみの電流の流れを示す模式的な図である。矢印の太さは電流密度の大きさを表す。なお、接続箇所は図示を省略する。図に示すように、高周波電流の表皮効果で、各巻き線パターンにおける接続箇所において、複数のビアホールのうちの内周側のビアホールに電流密度が集中することとなり、一部のビアホールにおいて発熱が増大し、信頼性が低下する等の不都合が生じ得た。また、各接続箇所における磁束密度のバラツキが増大する等の不都合もあった。なお、図8では第1基板11における第1巻き線パターン11a上の電流の流れを図示しているが、他の巻き線パターン上の電流の流れについても同様のことが言える。また、高周波電流は交流電流であり、図8の矢印と逆方向の電流も流れるが、図8では片側方向のみの電流を示す。
 実施例1に対し、実施例2では、図9に示すように、多層基板の各層の巻き線パターンにおける接続箇所を、各巻き線パターンの平面において、接続箇所が延びた方向である周方向に細長形状となるように配置するとともに、巻き線パターンの平面に対して垂直方向に導通するビアホールを接続箇所において巻き線パターンの周方向に一列または二列に並べて構成することとした。図は一列に並べて構成する例である。ビアホールの並びの方向は接続箇所において、図5に示す径方向または図9に示す周方向の他方に相当する。さらに、各基板の巻き線パターンにおいて、下側の基板の巻き線パターンとの接続箇所と、上側の基板の巻き線パターンとの接続箇所とを、巻き線パターンの径方向において並ぶように配置することとした。より具体的には図9において、第2基板21における第2巻き線パターン21a上に、第3基板31における第3巻き線パターン31aの接続箇所31eと接続するための接続箇所21dと、第1基板11における第1巻き線パターン11a(不図示)と接続するための接続箇所21eとを、第2巻き線パターン21aの径方向に、巻き線パターンの外周から内周の方向に並ぶように配置した。
 図9に示すように、巻き線パターンにおける接続箇所が、巻き線パターンの径方向に、巻き線パターンの外周から内周の方向に並ぶように配置することで、巻き線パターンにおける接続箇所が、巻き線パターンの周方向に並ぶように配置する場合と比較して、接続箇所における各ビアホールの径方向の位置を均一化することができるため、特定のビアホールに過大な電流が集中することを抑制することができる。
 図10は、図9に示す基板コイルに高周波電流を印加した場合の片側方向のみの電流の流れを示す模式的な図である。なお、接続箇所21d、31eは簡略的に示す。これによれば、図10に示すように、各基板の巻き線パターンを流れる高周波電流が表皮効果によって巻き線パターンの内周側に偏って分布していたとしても、巻き線パターン上の外周付近に配置された接続箇所において外周側を流れ、次の巻き線パターンにおいて外周側から内周側に戻るという軌跡を辿る。このため、各基板の巻き線パターンにおいて外周側にも電流が流れやすく、接続箇所においても複数のビアホールに均等に電流が流れるため、特定のビアホールに電流密度が集中することを抑制できる。なお、図10では第2巻き線パターン21a上及び第3巻き線パターン31a上の電流の流れを図示しているが、他の巻き線パターン上の電流の流れについても同様のことが言える。また、高周波電流は交流電流であり、図10の矢印と逆方向の電流も流れるが、図10では片側方向のみの電流を示す。
 図11A及び図11Bは、実施例2における各基板における巻き線パターン、及び基板コイル100に磁気コア400を組み合わせた場合の平面図である。図11Aは、第1基板11~第9基板91における、各巻き線パターン11a~91aの平面図である。図11Bは、巻き線パターン11a~91aをこの順に重ね、基板コイル100に磁気コア400を組み合わせた場合の平面図である。なお、図11Bでは、巻き線パターン11a~91aを見易くするため、磁気コア400については、センターコア400aとサイドコア400b、400cの断面のみを表示している。
 実施例2においては、図11Aに示すように、第1基板11から第9基板91における、巻き線パターン11a~91aを重ねることで基板コイル100における巻き線100aが形成されている。各々の巻き線パターン11a~91aは、概略円形に隙間が設けられたパターンとなっている。また、巻き線100aの平面視において第1巻き線パターン11aが有する出力端子11bと第9巻き線パターン91aが有する入力端子11iは隣り合う位置関係にある。
 巻き線パターン21a~81aはそれぞれ、巻き線パターンの径方向における二箇所に、接続箇所を備えている。巻き線100aにおける重ねられて互いに接続される二つの巻き線パターンにおいて、上側の巻き線パターンにおける内側の接続箇所と、下側の巻き線パターンにおける外側の接続箇所とがそれぞれビアホールによって接続されている。具体的には、第1巻き線パターン11aにおける内側の接続箇所である接続箇所11dと、第2巻き線パターン21aにおける外側の接続箇所である接続箇所21eとがビアホールによって接続されている。同様に、第2巻き線パターン21aにおける内側の接続箇所である接続箇所21dと、第3巻き線パターン31aにおける外側の接続箇所である接続箇所31eがビアホールによって接続されている。以降、この構造の繰り返しによって、巻き線100aの一番下のビアホールについては、第8巻き線パターン81aにおける内側の接続箇所である接続箇所81dと、第9巻き線パターン91aにおける外側の接続箇所である接続箇所91eがビアホールによって接続されている。
 図11Bに示すように、接続箇所11d(21e)、接続箇所21d(31e)、接続箇所31d(41e)、接続箇所41d(51e)、接続箇所51d(61e)、接続箇所61d(71e)、接続箇所71d(81e)、接続箇所81d(91e)は、巻き線100aの平面視において出力端子11bと入力端子11iの間のスペースに密に収まっている。これによって、巻き線100a上において、接続箇所を流れる電流から生じる磁界の影響を抑制しつつ、接続箇所の配置の自由度を高めることが可能である。
 また、図11Bでは不明瞭であるが、上述通り、巻き線100aの平面視において接続箇所11d(21e)から接続箇所81d(91e)までが巻き線100aの径方向にこの順番で巻き線100aの外周から内周の方向に並んでいる。さらに、これら八箇所の接続箇所は、巻き線100aの平面視において重ならない配置で並んでいる。これによって、巻き線100a全体において電流が外周を流れやすくなる。
〔実施例3〕
 次に、本発明の実施例3について説明する。実施例1では、巻き線パターンの一部のみが磁気コア40によって覆われている基板コイル10、20を備えたトランス30について説明したが、実施例3では、巻き線パターンが磁気コアによって覆われていない基板コイルを備えたトランス、及び二種類のコイルの間にパスコア構造を適用したトランスについて説明する。
 図12A及び図12Bは、実施例3におけるトランスの断面図である。図12Aは、巻き線パターン(不図示)が磁気コア401によって覆われていない基板コイル101及び第2の基板コイル201を備えたトランス301の断面図である。磁気コア401は、各基板の巻き線パターンに囲まれるように位置する。図12Aの構成において、巻き線パターン上の接続箇所(不図示)が磁気コア401によって覆われることはない。従って、巻き線パターン上を流れる電流から発生する磁界に乱れが生じる欠点や、サイドコア(不図示)どうしで通過する磁界の量が不均一になる欠点を避け、接続箇所の配置の自由度を高めることが可能である。
 図12Bは、基板コイル102及び第2の基板コイル202の間にパスコア構造を適用したトランス302の断面図である。トランスの作動効率を向上させるために共振Lを外付けにあたり、トランスと共振Lを横に並べる場合は実装面積が増え、縦に積む場合はシールドが必要になり、高さが増大する不都合がある。よって、上記のいずれの場合もトランスの小型化や低背化が困難となる。図12Bの構成において、基板コイル102及び第2の基板コイル202の間にも磁気コア402を挿入し、パスコア構造を適用することで、トランス302の小型化や低背化を図りつつ、基板コイル102及び第2の基板コイル202の共振を誘起させることが可能となる。
 また、基板コイル101、102の巻き数と、第2の基板コイル201、202の巻き数は、同じであっても異なっていてもよい点、及び第2の基板コイル201、202の代わりに、通常の巻き線コイルを使用してもよい点は、実施例1のトランス30と同様である。
 なお、以下には本発明の構成要件と実施例の構成とを対比可能とするために、本発明の構成要件を図面の符号付きで記載しておく。
<発明1>
 多層基板を構成する複数の層(1~9)に設けられた巻き線パターン(1a~9a)が該巻き線パターンにおける接続部において電気的に接続されるとともに積層されることで形成される基板コイル(10、20)であって、
 前記巻き線パターンにおける前記接続部は、平面視で前記巻き線パターンの径方向または周方向の一方に延びた細長形状を有し、前記接続部どうしは、前記巻き線パターンの平面に対して垂直方向に導通するビアホールによって接続され、
 前記複数の層に設けられた前記巻き線パターンのうち、重ねられて互いに接続される二つの巻き線パターンの接続部の対(1d~9d、1e~9e)と、次に接続される二つの巻き線パターンの接続部の対(1d~9d、1e~9e)とは、前記基板コイルにおいて平面視で重ならないように、且つ、径方向または周方向の他方に並ぶように形成されることを特徴とする、
 基板コイル。
1―9    :基板
1a―9a  :巻き線パターン
10a    :巻き線
1b、1c  :出力端子
1d―9d  :接続箇所
1e―9e  :接続箇所
1f―9f  :開口
1g―9g  :開口
1h―9h  :開口
1i     :入力端子
10、20  :基板コイル
30     :トランス
40     :磁気コア
40a    :センターコア
40b、40c:サイドコア

Claims (5)

  1.  多層基板を構成する複数の層に設けられた巻き線パターンが該巻き線パターンにおける接続部において電気的に接続されるとともに積層されることで形成される基板コイルであって、
     前記巻き線パターンにおける前記接続部は、平面視で前記巻き線パターンの径方向または周方向の一方に延びた細長形状を有し、前記接続部どうしは、前記巻き線パターンの平面に対して垂直方向に導通するビアホールによって接続され、
     前記複数の層に設けられた前記巻き線パターンのうち、重ねられて互いに接続される二つの巻き線パターンの接続部の対と、次に接続される二つの巻き線パターンの接続部の対とは、平面視で重ならないように、且つ、径方向または周方向の他方に並ぶように形成されることを特徴とする、
     基板コイル。
  2.  前記ビアホールは、前記接続部において、該接続部が延びた方向に対して一列または二列に並列されていることを特徴とする、
     請求項1に記載の基板コイル。
  3.  入力端子と出力端子を有し、
     前記接続部は、平面視で前記入力端子と前記出力端子の間のスペースに収まって形成されていることを特徴とする、
     請求項1または2に記載の基板コイル。
  4.  平面視で前記巻き線パターンの一部を覆うように配置される磁気コアを備え、
     前記接続部は、平面視で前記磁気コアが設けられていない部分に配置されることを特徴とする、
     請求項1から3のいずれか一項に記載の基板コイル。
  5.  複数のコイルを重ねるように配置し、一のコイルに電流を入力し、他のコイルに流れる誘導電流を出力するトランスであって、
     前記複数のコイルの少なくとも一部は、請求項1から4のいずれか一項に記載の基板コイルであることを特徴とする、トランス。
PCT/JP2021/030535 2020-09-30 2021-08-20 基板コイル及びトランス WO2022070666A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020164878A JP2022056891A (ja) 2020-09-30 2020-09-30 基板コイル及びトランス
JP2020-164878 2020-09-30

Publications (1)

Publication Number Publication Date
WO2022070666A1 true WO2022070666A1 (ja) 2022-04-07

Family

ID=80949954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030535 WO2022070666A1 (ja) 2020-09-30 2021-08-20 基板コイル及びトランス

Country Status (2)

Country Link
JP (1) JP2022056891A (ja)
WO (1) WO2022070666A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628607U (ja) * 1985-06-28 1987-01-19
JPS63157906U (ja) * 1987-04-03 1988-10-17
JPH02256208A (ja) * 1988-12-16 1990-10-17 Murata Mfg Co Ltd 積層チップコイル
JPH0573906U (ja) * 1992-03-13 1993-10-08 昭和電線電纜株式会社 耐熱性絶縁コイル
JP2004349562A (ja) * 2003-05-23 2004-12-09 Keihin Corp トランス及びトランス用コイル

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628607U (ja) * 1985-06-28 1987-01-19
JPS63157906U (ja) * 1987-04-03 1988-10-17
JPH02256208A (ja) * 1988-12-16 1990-10-17 Murata Mfg Co Ltd 積層チップコイル
JPH0573906U (ja) * 1992-03-13 1993-10-08 昭和電線電纜株式会社 耐熱性絶縁コイル
JP2004349562A (ja) * 2003-05-23 2004-12-09 Keihin Corp トランス及びトランス用コイル

Also Published As

Publication number Publication date
JP2022056891A (ja) 2022-04-11

Similar Documents

Publication Publication Date Title
US8659379B2 (en) Magnetic components and methods of manufacturing the same
US8378777B2 (en) Magnetic electrical device
US6820321B2 (en) Method of making electronic transformer/inductor devices
KR102632343B1 (ko) 인덕터 어레이 부품 및 그의 실장 기판
KR100466976B1 (ko) 적층형 인덕터
JP2008177486A (ja) トランス
CN108695050B (zh) 线圈部件
KR20100069604A (ko) 인덕터 모듈 및 회로 모듈
CN106992056B (zh) 线圈部件
CN107768789B (zh) 定向耦合器及使用其的无线通信装置
JP7544942B2 (ja) コイル部品
CN213124016U (zh) 树脂多层基板以及致动器
WO2019235510A1 (ja) コイル部品及びその製造方法
JP2770750B2 (ja) インダクタンス素子
CN112466597B (zh) 电感器部件
WO2022070666A1 (ja) 基板コイル及びトランス
CN115413361A (zh) 变压器和包括该变压器的平板显示装置
JP6547655B2 (ja) コイル部品
JP7462525B2 (ja) 電子部品
WO2022070660A1 (ja) 基板コイル及びトランス
JPH0745932Y2 (ja) 積層型コイル
KR20200070836A (ko) 평면형 코일 및 이를 포함하는 자성 소자
JP4400092B2 (ja) 表面実装型インダクタ
JP2971943B2 (ja) 薄型トランス
WO2022070844A1 (ja) 基板コイル及びトランス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21874969

Country of ref document: EP

Kind code of ref document: A1