WO2022068937A1 - 核酸检测设备 - Google Patents

核酸检测设备 Download PDF

Info

Publication number
WO2022068937A1
WO2022068937A1 PCT/CN2021/122431 CN2021122431W WO2022068937A1 WO 2022068937 A1 WO2022068937 A1 WO 2022068937A1 CN 2021122431 W CN2021122431 W CN 2021122431W WO 2022068937 A1 WO2022068937 A1 WO 2022068937A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
nucleic acid
box
liquid
electrophoresis
Prior art date
Application number
PCT/CN2021/122431
Other languages
English (en)
French (fr)
Inventor
王冠华
江哲维
林原田
张炜炽
王裕民
黄鸿运
张登凯
张伃昇
刘明邦
王于青
蔡佳桦
詹师吉
陈铿元
杨肃健
叶光秤
黄怡仁
黄川慈
古健佑
徐唯洋
黄志伦
谢旻宜
张恩杰
陈仲耀
谢仁钦
李泰兴
黄俊翔
翁裕复
吴信洁
杨少甫
黄圣杰
卢廷杰
卢廷来
林俊仁
李俊畿
林志南
王智弘
黄富国
吴东育
童立宇
张嘉信
黄柏青
郑顺耀
徐炜桦
邱鹏宇
杨凯
陈俊志
黄晴助
廖本扬
张必圣
林俊宇
谢重仁
刘信显
林有旭
李庭竹
何思翰
吴长锦
王芯维
钟杰仲
马世勋
潘链翔
Original Assignee
富佳生技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110277711.3A external-priority patent/CN115077996A/zh
Priority claimed from CN202110604898.3A external-priority patent/CN114317250A/zh
Priority claimed from CN202110604892.6A external-priority patent/CN114317221A/zh
Priority claimed from CN202110602307.9A external-priority patent/CN114332850A/zh
Priority claimed from CN202110652134.1A external-priority patent/CN114317222A/zh
Priority claimed from CN202110693498.4A external-priority patent/CN114317223A/zh
Priority claimed from CN202110725615.0A external-priority patent/CN114324543A/zh
Priority claimed from CN202110726740.3A external-priority patent/CN115551216A/zh
Priority claimed from CN202110729574.2A external-priority patent/CN115551189A/zh
Priority claimed from CN202110746173.8A external-priority patent/CN114336511A/zh
Priority claimed from CN202110746172.3A external-priority patent/CN114317225A/zh
Application filed by 富佳生技股份有限公司 filed Critical 富佳生技股份有限公司
Publication of WO2022068937A1 publication Critical patent/WO2022068937A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/36Apparatus for enzymology or microbiology including condition or time responsive control, e.g. automatically controlled fermentors
    • C12M1/38Temperature-responsive control
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions

Definitions

  • the present application relates to nucleic acid detection equipment.
  • a nucleic acid detection host including a body, a detection box installation area, a heating area, a sample adding area, and an image acquisition device.
  • the detection box installation area is set on the body, and the detection box installation area is used for The test box is installed; the heating area is arranged on the body, and the heating area is used for accommodating and heating the detection liquid; the sample adding area is set on the body, and the sample adding area is It is located on the detection box installation area and communicated with the detection box installation area, and the sample adding area is used to add the detection liquid to the detection box in the detection box installation area; the image acquisition device is arranged in the detection box.
  • the detection box installation area is at one side away from the sample adding area, and the image acquisition device is used to capture the image of the detection box in the detection box installation area.
  • the nucleic acid detection host further includes a heating structure, the heating structure is arranged in the installation area of the detection box, and the heating structure is used to heat the detection box in the installation groove to heat the detection box.
  • the detection solution in the box causes the detection solution to undergo a nucleic acid amplification reaction.
  • a nucleic acid detection device including a host, a collection cup, a liquid transfer device and a detection box.
  • the host is the nucleic acid detection host as described above; a collection cup is detachably arranged in the heating zone, the collection cup is used to collect the detection liquid, and the collection cup is also used to heat the detection liquid; the liquid
  • the transfer device is detachably arranged on the collection cup or the sample adding area, and the liquid transfer device is used for quantitatively sucking the detection liquid from the collection cup, and passing the detection liquid through the sample adding area Add the test cartridge.
  • the detection box is detachably arranged in the detection box installation area, and the detection box is used for performing PCR amplification reaction and electrophoresis detection on the detection liquid.
  • the detection box includes: a box body, a sample inlet, a detection chip, an electrophoresis box, a detection window and a connector; the sample inlet is arranged on the side of the box body close to the sample application area; the detection chip is arranged Inside the box body, the detection chip is communicated with the sample addition area through the sample injection port; the electrophoresis box is communicated with the detection chip; the detection window is arranged on the side of the box body close to the image acquisition device and corresponding to the electrophoresis box; and a connector is arranged in the box body and is electrically connected with the detection chip and the electrophoresis box respectively.
  • the detection chip includes a first cover plate, a spacer layer and a second cover plate, two opposite surfaces of the spacer layer are respectively adjacent to the first cover plate and the second cover plate, and the first cover plate and the second cover plate are respectively adjacent.
  • the cover plate, the spacer layer, and the second cover plate are surrounded to form a channel, and the channel is used for carrying a detection solution, so that the detection solution performs a nucleic acid amplification reaction in the channel to obtain a nucleic acid amplification product.
  • the detection chip further includes a heating component disposed on a side of the first cover plate and/or the second cover plate away from the channel, and the heating component is electrically connected to the connector.
  • the heating component includes a substrate, a heating layer, a thermal conduction layer and a temperature sensing layer; the heating layer is arranged on the substrate, and the heating layer includes a heating zone; the thermal conduction layer is arranged on the substrate away from the heating layer. one side, and the heat-conducting layer corresponds to the heating area; and a temperature-sensing layer is disposed on the heating area and is electrically connected to the heating layer, wherein the heating layer is used for heating the heat-conducting layer, The temperature sensing layer is used for sensing the temperature of the heating zone.
  • the electrophoresis box includes an electrophoresis tank, two electrophoresis electrodes disposed at both ends of the electrophoresis tank, a gel medium disposed inside the electrophoresis tank, a liquid injection tank disposed at one end of the gel medium, and a capillary tube.
  • Each of the electrophoresis electrodes is electrically connected to the connector, one end of the capillary extends into the liquid injection tank, and the other end is connected to the detection chip.
  • the liquid transfer device includes a pressing mechanism and a liquid taking assembly
  • the pressing mechanism includes an upper casing and a lower casing
  • the upper casing includes a first side wall and a first top connected to the first side wall. wall, the first top wall is provided with a pressing part
  • the lower casing includes a second side wall and a second top wall, the second side wall is connected to the second top wall and is surrounded to form an accommodating
  • the upper casing is accommodated in the accommodating cavity
  • the liquid-taking assembly includes a liquid-taking tube, a liquid-taking head, and a first connecting part connecting the liquid-taking tube and the liquid-taking head, and the liquid-taking assembly It is used to extend into the accommodating cavity from the second top wall, so that the liquid taking tube is arranged corresponding to the pressing part, and the first connecting part is detachably arranged on the second top wall, so The liquid taking head is located outside the accommodating cavity.
  • the upper casing is used for reciprocating movement along the central axis of the accommodating cavity, thereby driving the pressing portion to move back and forth relative to the liquid taking tube, so that the pressing portion abuts or releases the taking-out tube.
  • the liquid pipe is deformed, so that the liquid pipe can release or absorb the liquid.
  • the nucleic acid detection device further includes a medicament bag, the medicament bag is used to contain a detection medicament, and the detection medicament and the nucleic acid sample form the detection solution.
  • the nucleic acid detection device provided in the embodiments of the present application can integrate the PCR amplification and electrophoresis detection of nucleic acid in one device through the cooperation of the nucleic acid detection host and the detection box.
  • the overall structure is simple, the detection operation is simple, and the operation process requires low professional requirements. , the detection efficiency is high, and the detection cost is greatly reduced; at the same time, the detection process is flexible and does not need to be carried out in a fixed laboratory, and the detection equipment is portable, which can realize community detection or home detection.
  • FIG. 1a is a schematic structural diagram of a nucleic acid detection host provided by an embodiment of the present invention.
  • FIG. 2a is a schematic diagram of the internal structure of a nucleic acid detection host provided by an embodiment of the present invention.
  • 3a is a schematic cross-sectional structural diagram of a nucleic acid detection host provided by an embodiment of the present invention.
  • FIG. 4a is a schematic structural diagram of a fixing mechanism provided by an embodiment of the present invention.
  • FIG. 5a is a schematic structural diagram of a detection box and an image acquisition device according to an embodiment of the present invention.
  • FIG. 6a is a schematic structural diagram of a nucleic acid detection device according to an embodiment of the present invention.
  • FIG. 7a is a schematic structural diagram of a detection box according to an embodiment of the present invention.
  • Fig. 8a is an exploded view of a detection box provided by an embodiment of the present invention.
  • FIG. 9a is a schematic structural diagram of a liquid transfer device according to an embodiment of the present invention.
  • FIG. 10a is a schematic structural diagram of a collection cup provided by an embodiment of the present invention.
  • FIG. 11a is a schematic structural diagram of a pharmaceutical package provided by an embodiment of the present invention.
  • 12a to 16a are schematic diagrams of the detection process of the nucleic acid detection device provided by an embodiment of the present invention.
  • Fig. 17a is a flowchart of a nucleic acid detection method provided by an embodiment of the present invention.
  • Fig. 1b is a schematic structural diagram of a nucleic acid detection device provided by an embodiment of the present invention.
  • FIG. 2b is a schematic structural diagram of a nucleic acid detection host provided by an embodiment of the present invention.
  • FIG. 3b is a cross-sectional view along III(b)-III(b) in FIG. 2 .
  • FIG. 4b is a cross-sectional view along IV(b)-IV(b) in FIG. 1b.
  • FIG. 5b is an enlarged view of part A in FIG. 4 .
  • FIG. 6b is a cross-sectional view along VI(b)-VI(b) in FIG. 2 .
  • FIG. 7b is an exploded view of a nucleic acid detection device provided by an embodiment of the present invention.
  • FIG. 8b is a schematic diagram of a front structure of a detection box provided by an embodiment of the present invention.
  • FIG. 9b is a schematic diagram of a rear structure of a detection box provided by an embodiment of the present invention.
  • Fig. 10b is an exploded view of a liquid transfer device provided by an embodiment of the present invention.
  • FIG. 11b is an assembly schematic diagram of a liquid transfer device according to an embodiment of the present invention.
  • Figure 12b is a schematic structural diagram of a collection cup and a medicine pack provided by an embodiment of the present invention.
  • 13b to 17b are schematic diagrams of detection processes of a nucleic acid detection device provided by an embodiment of the present invention.
  • FIG. 18b is a schematic diagram of a test result in an embodiment of the present invention.
  • 19b is a schematic structural diagram of a nucleic acid detection host provided by another embodiment of the present invention.
  • 20b is a schematic structural diagram of installing a pressing mechanism in a pressing mechanism storage area of a nucleic acid detection host provided by another embodiment of the present invention.
  • Fig. 1c is a schematic structural diagram of a nucleic acid detection cassette provided by an embodiment of the present invention.
  • Figure 2c is a cross-sectional view of a nucleic acid detection cartridge provided by an embodiment of the present invention.
  • FIG. 3c is a top view of a detection chip according to an embodiment of the present invention.
  • FIG. 4c is a schematic diagram of a fluorescent signal emitted by a product droplet in a detection chip provided by an embodiment of the present invention.
  • FIG. 5c is a top view of a detection chip provided by another embodiment of the present invention.
  • FIG. 6c is a top view of a detection chip according to another embodiment of the present invention.
  • Fig. 7c is a picture of the detection solution using the nucleic acid detection box provided by the present invention to perform fluorescence detection of three kinds of samples.
  • Figure 8c is a fluorescence image of fluorescence detection of three kinds of samples using the nucleic acid detection cartridge provided by the present invention.
  • FIG. 9c is a schematic structural diagram of a nucleic acid detection device provided by an embodiment of the present invention.
  • Fig. 1d is a schematic diagram of the front structure of a nucleic acid detection cartridge provided by an embodiment of the present invention.
  • FIG. 2d is a schematic diagram of the rear structure of a nucleic acid detection cartridge provided by an embodiment of the present invention.
  • Fig. 3d is an exploded view of a nucleic acid detection cartridge provided by an embodiment of the present invention.
  • FIG. 4d is a schematic diagram of the rear structure of the nucleic acid detection cassette provided by an embodiment of the present invention with the cassette body removed.
  • Fig. 5d is an exploded view of the nucleic acid detection cassette provided by an embodiment of the present invention with the cassette body removed.
  • FIG. 6d is a schematic cross-sectional view of a detection chip according to an embodiment of the present invention.
  • FIG. 7d is a schematic structural diagram of a TFT driving circuit in a detection chip according to an embodiment of the present invention.
  • FIG. 8d is a schematic structural diagram of an electrophoresis box according to an embodiment of the present invention.
  • FIG. 9d is a path diagram of the detection solution in the nucleic acid detection cartridge provided by an embodiment of the present invention.
  • FIG. 10d is a schematic diagram of the communication between the detection chip and the electrophoresis box through a capillary in an embodiment of the present invention.
  • FIG. 11d is a schematic diagram of the communication between the detection chip and the electrophoresis box through a capillary in another embodiment of the present invention.
  • FIG. 12d is a schematic diagram of the communication between the detection chip and the electrophoresis box through a capillary tube in another embodiment of the present invention.
  • Figure 13d is a schematic structural diagram of a nucleic acid detection cassette provided by another embodiment of the present invention.
  • Figure 14d is an exploded view of a nucleic acid detection cartridge provided by another embodiment of the present invention.
  • FIG. 15d is a schematic structural diagram of a nucleic acid detection device provided by an embodiment of the present invention.
  • FIG. 16d is a schematic structural diagram of a channel bubble discharge provided by an embodiment of the present invention.
  • FIG. 1e is a schematic diagram of the front structure of a nucleic acid detection cassette provided by an embodiment of the present invention.
  • FIG. 2e is a schematic diagram of the rear structure of a nucleic acid detection cartridge provided by an embodiment of the present invention.
  • Figure 3e is an exploded view of a nucleic acid detection cartridge provided by an embodiment of the present invention.
  • Fig. 4e is a partial exploded view of a nucleic acid detection cassette provided by an embodiment of the present invention.
  • FIG. 5e is a schematic structural diagram of a detection chip provided by an embodiment of the present invention.
  • FIG. 6e is a schematic cross-sectional view of a detection chip according to an embodiment of the present invention.
  • FIG. 7e is a schematic structural diagram of a TFT driving circuit in a detection chip according to an embodiment of the present invention.
  • FIG. 8e is a schematic structural diagram of an electrophoresis box according to an embodiment of the present invention.
  • FIG. 9e is a schematic structural diagram of the communication between the electrophoresis box and the channel according to another embodiment of the present invention.
  • FIG. 10e is a schematic structural diagram of the communication between the electrophoresis box and the channel according to an embodiment of the present invention.
  • FIG. 11e is a schematic structural diagram of a nucleic acid detection device according to an embodiment of the present invention.
  • FIG. 12e is a partial cross-sectional view of a nucleic acid detection device according to an embodiment of the present invention.
  • FIG. 13e is a schematic diagram of an electrophoresis detection result in nucleic acid according to an embodiment of the present invention.
  • FIG. 1 f is a schematic structural diagram of a detection chip provided by an embodiment of the present invention.
  • FIG. 2f is a schematic diagram of a circuit module of a dielectric wetting device according to an embodiment of the present invention.
  • FIG. 3f is a schematic circuit diagram of a dielectric wetting device according to an embodiment of the present invention.
  • FIG. 4f is a schematic diagram of an equivalent circuit of a driving circuit in a dielectric wetting device according to an embodiment of the present invention.
  • FIG. 5f is a curve of voltage variation with time of a driving loop in a dielectric wetting device according to an embodiment of the present invention.
  • FIG. 6f is a power supply voltage curve when the power supply voltage provided by an embodiment of the present invention is in the first time sequence, the second time sequence and the third time sequence, respectively.
  • FIG. 7f is a schematic diagram of a process of droplet driving and droplet detection provided by an embodiment of the present invention.
  • FIG. 8f is a schematic diagram of a process of droplet driving and droplet detection provided by another embodiment of the present invention.
  • FIG. 9f is a power supply voltage curve of a fourth time sequence and a fifth time sequence respectively provided by the power supply voltage according to an embodiment of the present invention.
  • FIG. 10f is a schematic diagram of a process of providing droplet driving and droplet detection according to yet another embodiment of the present invention.
  • 11f to 13f are schematic diagrams of detecting the size of droplets according to an embodiment of the present invention.
  • Fig. 1g is a schematic structural diagram of a nucleic acid detection cassette provided by an embodiment of the present invention.
  • 2g is a schematic structural diagram of another angle of the nucleic acid detection cassette provided by an embodiment of the present invention.
  • Figure 3g is an exploded view of a nucleic acid detection cartridge provided by an embodiment of the present invention.
  • 4g is an exploded view of the nucleic acid detection cassette provided by an embodiment of the present invention with the cassette body removed.
  • 5g is a schematic cross-sectional view of a detection chip according to an embodiment of the present invention.
  • 6g is a schematic structural diagram of a TFT driving circuit in a detection chip according to an embodiment of the present invention.
  • FIG. 7g is a schematic structural diagram of an electrophoresis box according to an embodiment of the present invention.
  • 8g is a schematic diagram of the nucleic acid amplification product entering the electrophoresis box from the connecting device according to an embodiment of the present invention.
  • 9g is a schematic diagram of the nucleic acid amplification product entering the electrophoresis box from the connecting device in another embodiment of the present invention.
  • Fig. 10g is a schematic diagram of the nucleic acid amplification product entering the electrophoresis box from the connecting device in another embodiment of the present invention.
  • FIG. 11g is a schematic structural diagram of a liquid outlet provided with a blocking structure according to an embodiment of the present invention.
  • FIG. 12g is a schematic structural diagram of a liquid outlet provided with a blocking structure according to another embodiment of the present invention.
  • 13g is a schematic structural diagram of a nucleic acid detection device provided by an embodiment of the present invention.
  • FIG. 1h is a schematic structural diagram of a nucleic acid detection cassette provided by an embodiment of the present invention.
  • FIG. 2h is a schematic structural diagram of another angle of the nucleic acid detection cassette provided by an embodiment of the present invention.
  • Figure 3h is an exploded view of a nucleic acid detection cartridge provided by an embodiment of the present invention.
  • 4h is an exploded view of the nucleic acid detection cassette provided by an embodiment of the present invention with the cassette body removed.
  • 5h is a schematic cross-sectional view of a detection chip according to an embodiment of the present invention.
  • FIG. 6h is a schematic structural diagram of a TFT driving circuit in a detection chip according to an embodiment of the present invention.
  • FIG. 7h is a schematic structural diagram of an electrophoresis box provided by an embodiment of the present invention.
  • FIG. 8h is a schematic diagram of the nucleic acid amplification product entering the electrophoresis box from the connecting device according to an embodiment of the present invention.
  • FIG. 9h is a schematic diagram of the nucleic acid amplification product entering the electrophoresis box from the connecting device in another embodiment of the present invention.
  • FIG. 10h is a schematic diagram of the nucleic acid amplification product entering the electrophoresis box from the connecting device in another embodiment of the present invention.
  • 11h is a cross-sectional structural view of a communication structure provided between the first opening and the second opening according to an embodiment of the present invention.
  • 12h is a schematic structural diagram of a communication structure provided between the first opening and the second opening according to an embodiment of the present invention.
  • 13h is a schematic structural diagram of a communication structure provided between the first opening and the second opening according to another embodiment of the present invention.
  • FIG. 14h is a schematic structural diagram of a nucleic acid detection device provided by an embodiment of the present invention.
  • FIG. 1i is a schematic structural diagram of a heating structure provided by an embodiment of the present invention.
  • 2i is a cross-sectional view of a heating structure provided by an embodiment of the present invention.
  • FIG. 3i is a schematic structural diagram of a heating layer in a heating structure provided by an embodiment of the present invention.
  • FIG. 4i is a schematic structural diagram of a thermally conductive layer in a heating structure according to an embodiment of the present invention.
  • FIG. 5i is a cross-sectional view of a detection chip according to an embodiment of the present invention.
  • FIG. 6i is a schematic structural diagram of a detection chip according to an embodiment of the present invention.
  • FIG. 7i is a schematic structural diagram of a detection path in a detection chip according to an embodiment of the present invention.
  • FIG. 8i and FIG. 9i are heating pictures of the detection chip when different heating zones are turned on according to an embodiment of the present invention.
  • FIG. 10i is a graph showing a temperature rise measurement curve of the detection chip provided by an embodiment of the present invention for saline liquid beads.
  • FIG. 11i is a schematic structural diagram of a nucleic acid detection cassette provided by an embodiment of the present invention.
  • FIG. 12i is a schematic structural diagram of a nucleic acid detection device provided by an embodiment of the present invention.
  • FIG. 1j is a schematic structural diagram of a detection chip according to an embodiment of the present invention.
  • 2j is a schematic diagram of a circuit module of a dielectric wetting device according to an embodiment of the present invention.
  • FIG. 3j is a schematic circuit diagram of a dielectric wetting device according to an embodiment of the present invention.
  • FIG. 4j is a schematic diagram of an equivalent circuit of a dielectric wetting device according to an embodiment of the present invention.
  • FIG. 5j is a voltage curve diagram of a dielectric wetting device provided by an embodiment of the present invention.
  • 6j is a schematic diagram of an equivalent circuit when an open circuit occurs in a circuit of a dielectric wetting device according to an embodiment of the present invention.
  • FIG. 7j is a voltage curve diagram when the circuit of the dielectric wetting device according to an embodiment of the present invention has an open circuit.
  • 8j is a schematic diagram of an equivalent circuit when a circuit of a dielectric wetting device provided by an embodiment of the present invention is short-circuited.
  • FIG. 9j is a voltage curve diagram when a circuit of a dielectric wetting device provided by an embodiment of the present invention is short-circuited.
  • FIG. 1k is a schematic structural diagram of a detection chip provided by an embodiment of the present invention.
  • FIG. 2k is a schematic cross-sectional structure diagram of a detection chip according to an embodiment of the present invention.
  • FIG. 3k is a schematic structural diagram of a driving circuit in a detection chip according to an embodiment of the present invention.
  • FIG. 4k is a schematic cross-sectional structure diagram of the detection chip provided by the second embodiment of the present invention.
  • FIG. 5k is a schematic cross-sectional structural diagram of a detection chip according to a third embodiment of the present invention.
  • FIG. 6k is a schematic cross-sectional structure diagram of a detection chip according to a fourth embodiment of the present invention.
  • FIG. 7k is a schematic cross-sectional structure diagram of a detection chip according to a fifth embodiment of the present invention.
  • FIG. 8k is a schematic cross-sectional structure diagram of a detection chip according to a sixth embodiment of the present invention.
  • FIG. 9k is a schematic structural diagram of the detection chip adsorbed on the conductive part in the detection chip according to an embodiment of the present invention.
  • FIG. 10k is a schematic structural diagram of the detection chip being driven away from the conductive part in the detection chip according to an embodiment of the present invention.
  • FIG. 11k is a schematic structural diagram of a nucleic acid detection cassette provided by an embodiment of the present invention.
  • FIG. 12k is a schematic structural diagram of a nucleic acid detection device according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a detection chip according to an embodiment of the present invention.
  • FIG. 21 is a schematic diagram of a circuit module of a dielectric wetting device according to an embodiment of the present invention.
  • FIG. 31 is a schematic circuit diagram of a dielectric wetting device according to an embodiment of the present invention.
  • FIG. 41 is a schematic diagram of an equivalent circuit of a dielectric wetting device according to an embodiment of the present invention.
  • FIG. 51 is a voltage curve diagram of a dielectric wetting device according to an embodiment of the present invention.
  • 61 is a schematic diagram of an equivalent circuit when an open circuit occurs in a circuit of a dielectric wetting device according to an embodiment of the present invention.
  • FIG. 71 is a voltage curve diagram when the circuit of the dielectric wetting device according to an embodiment of the present invention has an open circuit.
  • FIG. 81 is a schematic diagram of an equivalent circuit when a circuit of a dielectric wetting device provided by an embodiment of the present invention is short-circuited.
  • FIG. 91 is a voltage curve diagram when a circuit of a dielectric wetting device provided by an embodiment of the present invention is short-circuited.
  • FIG. 1m is a schematic diagram of a substrate and a composite heterogeneous screen provided by an embodiment of the present invention.
  • FIG. 2m is a schematic structural diagram of a composite heterogeneous screen plate provided by an embodiment of the present invention.
  • 3m is a cross-sectional view of a composite heterogeneous screen plate according to an embodiment of the present invention.
  • FIG. 4m is a schematic structural diagram of forming a radiation metal layer on the substrate provided in FIG. 1m.
  • FIG. 5m is a schematic cross-sectional structure diagram of a bending region according to an embodiment of the present invention.
  • FIG. 6m is a schematic structural diagram of connecting a feeder on the radiating metal layer provided in FIG. 4m to form a planar printed antenna.
  • FIG. 7m is a schematic structural diagram of a planar printed antenna provided by another embodiment of the present invention.
  • FIG. 8m and FIG. 9m are diagrams of gain test results of the planar printed antenna provided by an embodiment of the present invention.
  • FIG. 1n is a schematic diagram of a substrate provided by an embodiment of the present invention.
  • FIG. 2n is a schematic diagram of a front structure of a single-sided flexible circuit board provided by an embodiment of the present invention.
  • 3n is a schematic cross-sectional structural diagram of a bending region of a single-sided flexible circuit board according to an embodiment of the present invention.
  • FIG. 4n is a schematic diagram of a rear structure of a single-sided flexible circuit board provided by an embodiment of the present invention.
  • FIG. 5n and FIG. 6n are schematic diagrams of front and back structures of a single-sided flexible circuit board in a bent state according to an embodiment of the present invention, respectively.
  • FIG. 7n and FIG. 8n are schematic diagrams of front and back structures of a multilayer flexible circuit board provided by an embodiment of the present invention, respectively.
  • FIG. 9n is a curve diagram of the resistance value change of the single-sided flexible circuit board based on different substrates and the traditional FPC under different circuit thicknesses of the present invention.
  • 10n(a) to 10n(d) are comparison diagrams of resistance values of single-sided flexible circuit boards based on different substrates of the present invention before and after bending for different circuit thicknesses.
  • FIG. 11n is a picture of the bending area of the single-sided flexible circuit board based on different substrates and different circuit thicknesses when the line holes are not folded according to the present invention.
  • FIG. 12n is a picture of the single-sided flexible circuit board based on the PET substrate of the present invention that is not bent and bent for the same circuit thickness.
  • FIG. 13n is a comparison diagram of the percentage increase in resistance before and after the folding line hole of the single-sided flexible circuit board based on the PET substrate of the present invention.
  • FIG. 14n and FIG. 15n are respectively a curve diagram of the resistance value change of a single-sided flexible circuit board based on two circuit widths of different substrates according to the present invention.
  • FIG. 16n is a schematic structural diagram of a detection chip according to an embodiment of the present invention.
  • 17n is a schematic cross-sectional view of a detection chip according to an embodiment of the present invention.
  • FIG. 1o is a schematic structural diagram of a liquid transfer device provided by an embodiment of the present invention without being pressed.
  • FIG. 2o is a schematic structural diagram of a liquid transfer device provided by an embodiment of the present invention after being pressed.
  • FIG. 3o is an exploded view of a liquid transfer device provided by an embodiment of the present invention.
  • FIG. 4o is a cross-sectional view of the liquid transfer device provided in FIG. 1o along IV(o)-IV(o).
  • FIG. 5o is a cross-sectional view of the liquid transfer device provided in FIG. 2o along V(o)-V(o).
  • FIG. 6o is a perspective view of an upper casing provided by an embodiment of the present invention.
  • FIG. 7o is a perspective view of the upper casing provided by an embodiment of the present invention from another angle.
  • FIG. 8o is a schematic structural diagram of a lower casing provided by an embodiment of the present invention.
  • FIG. 9o is a cross-sectional view of a liquid transfer device provided by another embodiment of the present invention.
  • FIG. 1p is a schematic structural diagram of a liquid transfer device provided by an embodiment of the present invention without being pressed.
  • 2p is a schematic structural diagram of a liquid transfer device provided by an embodiment of the present invention after being pressed.
  • Fig. 3p is an exploded view of a liquid transfer device provided by an embodiment of the present invention.
  • Figure 4p is a cross-sectional view of the liquid transfer device provided in Figure 1p along IV(p)-IV(p).
  • FIG. 5p is a cross-sectional view of the liquid transfer device provided in FIG. 2p along V(p)-V(p).
  • 6p is a cross-sectional view of the liquid transfer device provided in FIG. 1p along VI(p)-VI(p).
  • Figure 7p is a cross-sectional view of the liquid transfer device provided in Figure 2p along VII(p)-VII(p).
  • FIG. 8p is a schematic structural diagram of a casing provided by an embodiment of the present invention.
  • FIG. 9p is a schematic structural diagram of a pressing mechanism provided by an embodiment of the present invention.
  • 10p is a cross-sectional view of a pressing mechanism provided by an embodiment of the present invention.
  • FIG. 11p is a schematic structural diagram of another angle of the pressing mechanism provided by an embodiment of the present invention.
  • 12p and 13p are schematic structural diagrams of a connector provided by an embodiment of the present invention.
  • FIG. 14p is a schematic structural diagram of a liquid sampling assembly provided by an embodiment of the present invention.
  • Fig. 15p is an assembly diagram of a pipetting device provided by an embodiment of the present invention.
  • FIG. 1q is a schematic structural diagram of a liquid transfer device provided by an embodiment of the present invention without being pressed.
  • 2q is a schematic structural diagram of a liquid transfer device provided by an embodiment of the present invention after being pressed.
  • FIG. 3q is an exploded view of a liquid transfer device provided by an embodiment of the present invention.
  • FIG. 4q is a cross-sectional view of the liquid transfer device provided in FIG. 1q along IV(q)-IV(q).
  • FIG. 5q is a cross-sectional view of the liquid transfer device provided in FIG. 2q along V(q)-V(q).
  • FIG. 6q is a cross-sectional view of the liquid transfer device provided in FIG. 1q along VI(q)-VI(q).
  • 7q is a cross-sectional view of a liquid transfer device provided by another embodiment of the present invention.
  • FIG. 8q is a schematic structural diagram of an upper casing provided by an embodiment of the present invention.
  • FIG. 9q is a schematic structural diagram of another angle of the upper casing provided by an embodiment of the present invention.
  • FIG. 10q is a schematic structural diagram of a lower case provided by an embodiment of the present invention.
  • FIG. 11q is a schematic structural diagram of another angle of the lower casing provided by an embodiment of the present invention.
  • FIG. 12q is a schematic structural diagram of a liquid transfer device provided by another embodiment of the present invention.
  • 13q is a cross-sectional view of a liquid transfer device provided by another embodiment of the present invention.
  • FIG. 1r is a schematic structural diagram of a liquid pipetting system according to an embodiment of the present invention.
  • Fig. 2r is an exploded view of a pipetting system provided by an embodiment of the present invention.
  • Figure 3r is a cross-sectional view of the pipetting system provided in Figure 1r along III(r)-III(r)
  • Fig. 4r is an exploded view of a transport device provided by an embodiment of the present invention.
  • FIG. 5r is a cross-sectional view of a first housing provided by an embodiment of the present invention.
  • FIG. 6r is an exploded view of a medicated assembly provided by an embodiment of the present invention.
  • FIG. 7r is a structural state diagram of the medicated assembly provided by an embodiment of the present invention without piercing the sealing membrane.
  • FIG. 8r is a structural state diagram of the first medicine box piercing the sealing film according to an embodiment of the present invention.
  • FIG. 9r is an exploded view of a reaction chamber provided by an embodiment of the present invention.
  • FIG. 10r is a schematic structural diagram of a connector provided by an embodiment of the present invention.
  • FIG. 11r is a schematic structural diagram of a collection device provided by an embodiment of the present invention.
  • FIG. 12r is a schematic structural diagram of a pharmaceutical box provided by an embodiment of the present invention.
  • FIG. 1s is a schematic structural diagram of a pH measurement electrode provided by an embodiment of the present invention.
  • FIG. 2s is a schematic structural diagram of a pH value measuring device provided by an embodiment of the present invention.
  • FIG. 3s is a schematic structural diagram of an electrophoresis electrode according to an embodiment of the present invention.
  • FIG. 4s is a schematic structural diagram of a gel electrophoresis device provided by an embodiment of the present invention.
  • 5s is a schematic diagram of a gel electrophoresis system provided by an embodiment of the present invention.
  • FIG. 6s is an exploded view of a nucleic acid detection cartridge provided by an embodiment of the present invention.
  • FIG. 7s is a schematic structural diagram of the nucleic acid detection cassette provided by an embodiment of the present invention without the cassette body.
  • FIG. 1t is a schematic diagram of a nucleic acid detector in a preferred embodiment of the present invention.
  • FIG. 2t is a schematic structural diagram of a nucleic acid detector in a preferred embodiment of the present invention after disassembly.
  • FIG. 3t is a hardware frame diagram of a nucleic acid detector in a preferred embodiment of the present invention.
  • Figure 4t(A) illustrates an image taken during electrophoretic analysis.
  • Figures 4t(B) and 4t(C) illustrate the marking of target areas on captured images.
  • Figure 5t(A) is a functional block diagram of a nucleic acid detection system according to a preferred embodiment of the present application.
  • Fig. 5t(B) is a flowchart of the nucleic acid detection method according to the preferred embodiment of the present application.
  • Figure 6t illustrates the marking of the region where the object is located in the object image.
  • Figure 7t illustrates the calculation of distances between different targets.
  • Figure 8t illustrates the marking of detection lines in the target image.
  • FIG. 9t illustrates the identification of nucleic acid detection results according to whether the detection line is effective or not.
  • a component when referred to as being “fixed on” or “mounted on” another component, it can be directly on the other component or there may also be an intervening component. When a component is considered to be “set on” another component, it may be directly set on the other component or there may be a co-existing centered component.
  • the term “and/or” includes all and any combinations of one or more of the associated listed items.
  • FIG. 1a and FIG. 2a are a nucleic acid detection host 10a provided in an embodiment of the present invention.
  • the nucleic acid detection host 10a includes a body 11a and a detection box mounting area 12a, a heating The zone 13a, the sample adding zone 14a, the image acquisition device 15a and the controller 16a, the controller 16a is electrically connected with the heating zone 13a and the image acquisition device 15a.
  • the heating zone 13a is used for collecting nucleic acid samples of the test subject, and mixing the nucleic acid samples with detection reagents (eg buffer solution) to form a detection solution.
  • the heating zone 13a is also used for heating the detection liquid under the control of the controller 16a.
  • the sample adding area 14a is located above the detection box installation area 12a and communicates with the detection box installation area 12a.
  • the detection box installation area 12a is used for installing the detection box 20a, and the detection box 20a is electrically connected with the controller 16a.
  • the sample adding area 14a is used for injecting the detection solution into the detection box in the detection box installation area 12a, so that the detection box 20a performs PCR amplification reaction and electrophoresis detection on the detection solution.
  • the image acquisition device 15a is disposed on the side of the detection box installation area 12a away from the sample adding area 14a, and the image acquisition device 15a is used to capture the detection box 20a in the detection box installation area 12a under the control of the controller 16a.
  • image is a fluorescent photo of electrophoresis detection, and the detection result can be obtained according to the fluorescent photo.
  • the body 11a includes a first surface 111a, a second surface 112a disposed opposite to the first surface 111a, a first sidewall 113a connecting the first surface 111a and the second surface 112a, and a first sidewall 113a connected to the first surface 111a
  • the side wall 113a is opposite to the second side wall 114a.
  • the opening of the detection box installation area 12a is located in the first side wall 113a, and the detection box 20a can be placed in the detection box installation area 12a through the opening of the first side wall 113a.
  • the openings of the sample application area 14a and the heating area 13a are located on the first surface 111a.
  • the detection box installation area 12a includes an installation groove 121a, an image capture port 122a disposed on the surface of the installation groove 121a away from the sample adding area 14a, and an image capture port 122a disposed close to the image capture port 122a
  • the first sensor 126a is disposed on the body 11a and is electrically connected to the controller 16a.
  • the detection box 20a is inserted into the installation slot 121a, and the fixing mechanism 125a passes through the detection box bayonet 124a and is engaged with the bottom of the detection box 20a, thereby detachably fixing the detection box 20a in the installation slot 121a.
  • the sample adding area 14a communicates with the mounting groove 121a through a through hole (not shown in the figure), so as to add sample to the detection box 20a.
  • the image capture device 15a is disposed in the fixed box 123a, and the image capture device 15a can capture the fluorescence photo of the detection box 20a through the image capture port 122a.
  • the first sensor 126a is used to sense whether the detection box 20a is inserted into the installation slot 121a and transmit a signal to the controller 16a, and the controller 16a controls the detection box 20a to perform nucleic acid detection.
  • the installation groove 121a is an inclined groove. Specifically, the end of the installation groove 121a close to the sample application area 14a is higher than the end of the installation groove 121a away from the sample addition area 14a. Since a large number of bubbles are generated during the PCR reaction, if the generated bubbles remain in the detection flow path, the movement path of the liquid beads in the detection flow path will be blocked by the bubbles, resulting in the inability of the liquid beads to move and the detection failure.
  • the installation groove 121a is designed to be inclined, so that the detection box 20a can be placed at an inclination, the sample adding end of the detection box 20a is higher than the end where the PCR amplification reaction occurs, and the air bubbles generated by the PCR reaction in the detection box 20a can naturally move to a high position , which is naturally discharged from the sample adding end of the detection box 20a and will not obstruct the movement path of the liquid bead.
  • the shape of the installation groove 121a is designed according to the shape of the detection box 20a. Specifically, the installation groove 121a is substantially a rectangular groove.
  • the fixing mechanism 125a includes a solenoid valve 1251a and a top block 1252a disposed on the solenoid valve 1251a, and the bottom surface of the detection box 20a is provided with a slot 25a that cooperates with the top block 1252a , the top block 1252a is located at the bayonet 124a of the detection box, and the solenoid valve 1251a is electrically connected to the controller 16a.
  • the first sensor 126a senses the detection box 20a, and transmits the detection signal to the controller 16a.
  • the controller 16a controls the solenoid valve 1251a to energize, and then pushes the top block 1252a to insert the card In the groove 25a, the detection box 20a is fixed; after the test, the controller 16a controls the solenoid valve 1251a to energize, and further lifts the top block 1252a to eject the detection box 20a from the installation slot 121a.
  • the solenoid valve 1251a and the first sensor 126a By arranging the solenoid valve 1251a and the first sensor 126a, automatic locking and automatic ejection of the detection box 20a can be realized. It can be understood that the automatic engagement and ejection of the detection box 20a can also be realized by other engagement methods.
  • the first sensor 126a is used to sense whether the box 20a is inserted into or ejected from the mounting slot 121a on the one hand, and the controller 16a can automatically start the program through the sensing of the first sensor 126a. That is, when it is detected that the detection cartridge 20a is inserted into the mounting slot 121a, a program for starting detection is started. When it is detected that the detection box 20a has been ejected, a program for ending the detection is started.
  • the image capturing port 122a is substantially rectangular, and the size setting needs to satisfy that the image capturing device 15a can collect the complete fluorescent photo obtained by the electrophoresis detection of the detection box 20a through the image capturing port 122a.
  • the cross-sectional width of the fixing box 123a gradually increases from the end close to the first surface 111a to the end far from the first surface 111a, that is, the fixing box 123a is approximately a Inverted conical funnel structure.
  • One end of the fixing box 123a close to the first surface 111a is communicated with the mounting groove 121a through the image capturing port 122a, the image capturing device 15a is disposed at the end of the fixing box 123a away from the first surface 111a, and the image capturing device 15a is located at the end of the fixing box 123a away from the first surface 111a.
  • the image capturing device 15a is located at the end of the fixing box 123a away from the first surface 111a.
  • the opening of the installation slot 121a is located on the first side wall 131a13a, and a front baffle 115a is disposed at the opening, and the front baffle 115a is used to close or open the opening .
  • the front baffle 115a is slidably disposed at the opening of the installation slot 121a. Specifically, the front baffle 115a can move along the first side wall 113a toward the second surface 112a to open the opening, and can also move along the first side wall 113a toward the second surface 112a to open the opening. A side wall 113a moves toward the first surface 111a to close the opening.
  • the heating area 13a includes a heating tank 131a and a heating device 132a disposed at the bottom of the heating tank 131a, the heating device 132a is electrically connected to the controller 16a, and the controller 16a can control the heating device 132a to achieve temperature rise, while
  • the heating temperature and time of the heating tank 131a are detected by a temperature sensor (not shown) and a time relay (not shown).
  • the heating temperature of the heating device 132a is about 95°C, and the heating time is about 5 minutes.
  • the heating device 132a is an aluminum block, a copper block or other thermally conductive materials. It can be understood that other heating devices (eg, heating wire, heating coating or heating sheet, etc.) can also be used to heat the heating tank 131a.
  • the heating zone 13a is also provided with a second sensor (not shown), the second sensor is electrically connected to the controller 16a, and the second sensor can be used to sense whether the detection liquid is contained in the heating tank 131a. The container is put in, and the induction signal is transmitted to the controller 16a, so that the controller 16a starts heating.
  • the opening of the heating groove 131a is located on the first surface 111a, and the cross section of the heating groove 131a along a direction parallel to the first surface 111a is substantially an elliptical structure.
  • the shape of the heating tank 131a can be specifically designed according to the shape of the container to be heated actually.
  • the sample adding area 14a includes a sample adding groove 141a and a sample adding channel 142a, wherein the opening of the sample adding groove 141a is located on the first surface 111a, and the sample adding channel 142a penetrates through the through hole of the sample adding area 14a and extends into the sample adding channel 142a.
  • the end of the sample addition channel 142a away from the sample addition groove 141a collides with the surface of the detection box 20a in the installation groove 121a, and the detection liquid enters the installation groove 121a from the sample addition groove 141a through the sample addition channel 142a inside the detection box 20a.
  • the sample adding tank 141a is specifically funnel-shaped.
  • the image capture device 15a includes a light source (not shown) and an image capture device 151a. Both the light source and the image capture device 151a are electrically connected to the controller 16a.
  • the light source is used to emit light to the image capturing port 122a under the control of the controller 16a to provide a light source for image acquisition.
  • the image collector 151a is used to collect the fluorescent photos obtained by the electrophoresis detection of the detection box 20a under the control of the controller 16a.
  • the image capturing device 15a is accommodated in the fixing box 123a, and the side wall of the fixing box 123a is inclined to achieve the purpose of condensing light, so that the light emitted by the light source can be collected at the image capturing port 122a, which is convenient for An image of the detection box 20a is acquired.
  • the inner wall of the fixing box 123a is provided with a reflective coating, which can be used to reflect light, so that the light can be reflected into the image capturing port 122a.
  • the controller 16a includes a main control board 161a, a power supply board 162a, a detection box control board 163a, and an image capture control board 164a.
  • the power supply board 162a is electrically connected to the main control board 161a, the detection box control board 163a and the image capture control board 164a, and is used to supply power to the entire device.
  • the detection box control board 163a is electrically connected to the detection box 20a for controlling the nucleic acid detection process of the detection box 20a.
  • the image acquisition control board 164a is electrically connected with the light source and the image acquisition device 151a, and is used for controlling the light source to emit the light source, and simultaneously controls the image acquisition device 151a to acquire the detection image of the detection box 20a.
  • the heating device 132a, the first sensor 126a and the second sensor are all electrically connected to the main control board 161a.
  • the image acquisition control board 164a includes an image processor (not shown).
  • the image collected by the image collector 151a will be transmitted to the image processor for processing, and the processed image will be further output.
  • the controller 16a further includes a memory (not shown in the figure), and the memory is used for storing detection results and detection process information.
  • the nucleic acid detection host 10a further includes a display screen 17a and a camera 18a, the display screen 17a and the camera 18a are both electrically connected to the main control board 161a of the controller 16a.
  • the display screen 17a is used for displaying the operation interface, setting the operating parameters, displaying the above-mentioned images, and so on.
  • the camera 18a is used to take a picture of the user's operation process, and at the same time, it can also collect relevant information corresponding to the detection solution (for example, information on the source of the nucleic acid sample).
  • the nucleic acid detection host 10a further includes a heat dissipation device 19a, and the heat dissipation device 19a is electrically connected to the main control board 161a of the controller 16a for dissipating heat for the entire host.
  • the heat dissipation device 19a is a heat dissipation fan.
  • the heat dissipation device 19a is disposed on the second side wall 114a.
  • the body 11a is provided with a plurality of heat dissipation vents to discharge heat inside the host.
  • the nucleic acid detection host 10a provided by the present invention can cooperate with the detection box 20a to realize PCR amplification and electrophoresis detection of nucleic acid, and the result displayed on the display screen 17a is the final electrophoresis detection result.
  • the host 10a integrates detection liquid heating, sample addition, detection and result output into one device, the overall structure is simple, portable, and has strong detection flexibility, convenient detection operation, simple operation process, and low professional requirements for the operation process, which can realize Home testing.
  • the present invention also provides a nucleic acid detection device 100a, including the nucleic acid detection host 10a described above, a detection box 20a, a collection cup 30a, and a liquid transfer device 40a.
  • the detection box 20a is detachably arranged in the detection box installation area 12a
  • the collection cup 30a is detachably arranged in the heating area 13a
  • the liquid transfer device 40a is detachably arranged in the sample adding area 14a
  • the liquid transfer The device 40a is detachably fixed to the collection cup 30a.
  • the collection cup 30a is used to place the detection liquid, and the collection cup 30a is also used to be placed in the heating zone 13a, so that the heating device 132a in the heating zone 13a heats the detection liquid.
  • the liquid transfer device 40a is used for quantitatively sucking the detection liquid from the collection cup 30a, and adding the detection liquid into the detection box 20a from the sample adding area 14a.
  • the detection box 20a is used to perform PCR amplification reaction and electrophoresis detection on the detection solution.
  • the detection box 20a in the present application integrates the PCR amplification process and the electrophoresis detection, and the detection solution directly enters the electrophoresis tank for electrophoresis after the PCR amplification is completed. detection.
  • the detection box 20a includes a box body 21a, a sample injection port 22a, a detection chip 23a, an electrophoresis box 24a, a detection window 26a and a connector 27a.
  • the sample adding port 22a is disposed on the side of the box body 21a close to the sample adding area 14a, and one end of the sample adding channel 142a away from the sample adding groove 141a is in contact with the sample adding port 22a.
  • the sample adding port 22a is used for feeding the sample A detection liquid is added to the detection chip 23a.
  • the detection chip 23a and the electrophoresis box 24a are disposed inside the box body 21a, the detection chip 23a is communicated with the electrophoresis box 24a, the detection chip 23a is used for PCR amplification reaction of the detection solution, and the electrophoresis box 24a is used for amplification
  • the detection solution after the increase is subjected to electrophoresis detection.
  • the detection window 26a is disposed on the side of the box body 21a close to the imaging port 122a and corresponds to the electrophoresis box 24a.
  • the image acquisition device 15a collects the fluorescence of the electrophoresis box 24a through the imaging port 122a and the detection window 26a photo.
  • a card slot 25a that cooperates with the fixing mechanism 125a of the detection box installation area 12a is provided on the side of the box body 21a close to the image capturing device 15a.
  • the connector 27a is disposed on the side of the box body 21a close to the detection box control board 163a, the connector 27a is electrically connected to the detection box control board 163a, and the connector 27a is electrically connected to the detection chip 23a and the electrophoresis box 24a.
  • the electrophoresis box 24a and the detection chip 23a are co-located in the same box body 21a. After the nucleic acid amplification reaction is completed, electrophoresis detection can be performed automatically.
  • the detection box 20a integrates the detection chip 23a and the electrophoresis box 24a in one box, and has a small size, which is suitable for the above-mentioned portable nucleic acid detection device 100a.
  • the detection box 20a is a one-time-use product, and one detection box 20a is used for each test sample. Therefore, the detection box 20a does not need a cleaning process.
  • the detection box 20a has a substantially cubic structure.
  • the collection cup 30a and the liquid transfer device 40a can be used together, and the two are connected together by snapping, and the collection cup 30a is used to collect nucleic acid samples (such as saliva or other liquid samples) , and mixed with the detection reagent to form a detection solution, which is also used to heat the heating zone 13a.
  • the liquid transfer device 40a is used to quantitatively draw the test liquid from the collection cup 30a, and add it into the test box 20a through the sample adding area 14a.
  • the collection cup 30a is provided with a conical groove inside, and after saliva is spit into the collection cup 30a, it can be concentrated under the conical groove, which facilitates the collection of a small amount of nucleic acid samples.
  • the liquid transfer device 40a includes a lower case 41a, an upper case 42a, a liquid-taking assembly 43a, and a pressing key 44a.
  • the upper case 42a is movably connected to the lower case 41a by snapping, the liquid sampling assembly 43a is arranged through the lower case 41a and the upper case 42a, and the pressing key 44a is arranged on the top of the upper case 42a.
  • the liquid taking assembly 43a includes an elastic bladder structure.
  • the upper shell 42a When it is necessary to take liquid, the upper shell 42a is moved downward along the lower shell 41a by pressing the pressing button 44a, and the upper shell 42a applies pressure to the liquid taking assembly 43a to deform the liquid taking assembly 43a, discharge the air inside the elastic bag, and then absorb
  • the liquid collection assembly 43a can push the upper shell 42a to automatically return to its original position; when the liquid needs to be discharged, press the button 44a again to move the upper shell 42a downward relative to the lower shell 41a, and further squeeze and remove the liquid.
  • the liquid component 43a is used to discharge the detection liquid in the elastic bag.
  • the liquid taking can be controlled by controlling the deformation of the elastic bladder, so as to achieve the purpose of quantitative liquid taking.
  • the overall structure of the liquid transfer device 40a is simple, the cost is low, the operation is convenient, and the purpose of quantitatively taking liquid can be achieved. It can be understood that the liquid transfer can also be performed by other liquid transfer devices capable of realizing quantitative liquid taking.
  • the nucleic acid detection apparatus 100a further includes a drug pack 50a, and the drug pack 50a stores a test drug (eg, Buffer), wherein the test drug is quantitatively put into the drug pack 50a.
  • the reagent pack 50a can be put into the collection cup 30a and mixed with the nucleic acid sample to form the above-mentioned detection solution.
  • the drug pack 50a is a groove-shaped structure and has a handle, the drug required for nucleic acid detection is placed in the groove-shaped structure, and the opening is sealed by a sealing film.
  • tear off the sealing film hold the handle, pour the medicine into the collection cup 30a containing the nucleic acid sample, shake well and place the collection cup 30a into the heating tank 131a for heating.
  • the detection box 20a, the liquid transfer device 40a, the collection cup 30a and the drug pack 50a are all housed in a dedicated packaging box.
  • Each set of the detection box 20a, the liquid transfer device 40a, the collection cup 30a and the drug pack 50a You can set a one-to-one corresponding identification code (such as a two-dimensional code) to avoid confusion. Since the detection box 20a and the reagent pack 50a are the same for the detection of the same virus, an identification code (such as a two-dimensional code) can also be set on the collection cup 30a to avoid confusion of the collected liquid to be detected.
  • the camera 18a can collect the two-dimensional code on the collection cup 30a, and the information of the two-dimensional code includes the source of the nucleic acid sample or the information of the relevant examinee.
  • the present invention also provides a method for nucleic acid detection using the above-mentioned nucleic acid detection device 100a, which specifically includes the following steps:
  • Step S11a referring to FIG. 12a in conjunction with parameter setting.
  • the host 10a and set the corresponding detection parameters, which may specifically include the heating temperature and heating time of the heating zone 13a, the corresponding parameters of the PCR amplification process in the detection box 20a, and the corresponding parameters of electrophoresis detection.
  • step S12a referring to FIG. 12a in combination, the detection sample information is entered and recording is started.
  • Step S13a referring to FIG. 13a, insert the detection box 20a into the detection box installation area 12a.
  • the first sensor 126a senses the insertion of the detection box 20a, and automatically locks the detection box 20a and automatically starts the preheating process in the detection process.
  • step S14a referring to FIG. 14a, a nucleic acid sample is collected to form a detection solution, and the detection solution is heated.
  • the collection cup 30a is used to collect saliva, and then the medicine in the medicine pack 50a is poured into the collection cup 30a. -5 times to obtain a well-mixed detection solution, which generally needs to be shaken 5 times.
  • the collection cup 30a containing the detection liquid into the heating area 13a, when the second sensor in the heating area 13a senses the insertion of the collection cup 30a, the next step is started to heat.
  • the heating temperature set by the general program is about 90-100 °C, heating for about 3-8 minutes, and cooling to room temperature or below a certain fixed temperature (for example, below 40 °C) after heating.
  • a temperature sensor and a time relay are used to sense the heating temperature and heating time.
  • the saliva is collected with the collection cup 30a, it is first put into the heating zone 13a for heating.
  • the heating temperature set by the general program is about 90-100 ° C, heating for about 3-8 minutes, and cooling to room temperature after heating. Or below a fixed temperature (for example, below 40°C), after cooling, the medicine in the medicine pack 50a is added to the saliva of the collecting cup 30a and mixed evenly to form a detection solution.
  • step S15a referring to Fig. 15a and Fig. 16a in combination, the detection solution is transferred to the detection box 20a for PCR amplification reaction and electrophoresis detection.
  • the liquid transfer device 40a uses the liquid transfer device 40a to quantitatively absorb 10-30 ⁇ l (preferably 20 ⁇ l) of the detection solution in the collection cup 30a, and add the detection solution into the detection chip 23a of the detection box 20a through the sample adding area 14a.
  • the detection solution containing the nucleic acid sample is subjected to PCR amplification reaction in the detection chip 23a, and after the amplification is completed, it is combined with the fluorescent reagent in the detection chip 23a to form a product with a fluorescent group, and the product enters the electrophoresis from the detection chip 23a.
  • Box 24a electrophoresis detection is performed in the electrophoresis box 24a.
  • step S16a an image (fluorescence photo) detected by electrophoresis is collected and output.
  • the image acquisition device 15a collects the electrophoresis image through the detection window 26a of the electrophoresis box 24a, and the image is processed by the image processor.
  • the processed image is displayed on the display screen 17, and the detection result can also be uploaded to Client, for relevant personnel to consult.
  • step S17a the detection is completed.
  • the collection cup 30a, the liquid transfer device 40a and the detection box 20a are removed from the nucleic acid detection host 10a, and put into a packaging box for recycling.
  • the nucleic acid detection device can integrate the PCR amplification and electrophoresis detection of nucleic acid in one device through the cooperation of the host and the detection box.
  • the overall structure is simple, the detection operation is simple, and the operation process is correct. It has low professional requirements and high testing efficiency, which greatly reduces the testing cost; at the same time, the testing process is flexible and does not need to be carried out in a fixed laboratory.
  • the testing equipment is portable, which can realize community testing or home testing.
  • the nucleic acid detection device 100b includes a nucleic acid detection host 10b, a detection box 20b, a collection cup 30b, and a liquid transfer device 40b.
  • the nucleic acid detection host 10b includes a body 11b and a detection box mounting area 12b, a heating area 13b, a sample addition tank 14b, a heating structure 17b, an image acquisition device 15b and a controller 16b disposed on the body 11b.
  • the controller 16b is electrically connected with the detection box installation area 12b, the heating area 13b, the heating structure 17b and the image acquisition device 15b.
  • the detection box 20b is detachably arranged in the detection box installation area 12b, the collection cup 30b is detachably arranged in the heating area 13b, the liquid transfer device 40b is detachably arranged in the sample adding tank 14b, the liquid transfer The device 40b is detachably fixed to the collection cup 30b.
  • the collection cup 30b is used for accommodating the detection liquid, and the collection cup 30b is also used for being placed in the heating area 13b, so that the heating area 13b heats the detection liquid.
  • the liquid transfer device 40b is used for quantitatively sucking the detection liquid from the collection cup 30b, and adding the detection liquid into the detection box 20b from the sample adding tank 14b.
  • the detection box 20b is used to realize PCR amplification reaction of the detection solution and electrophoresis detection.
  • the detection box installation area 12b includes an installation groove 121b and a cover plate 122b disposed on the installation groove 121b.
  • the installation slot 121b is used for detachably installing the detection box 20b, the detection box 20b is electrically connected with the controller 16b and the heating structure 17b, in the present invention, the detection box 20b can perform nucleic acid amplification reaction and electrophoresis detection.
  • the cover plate 122b can cover and open the installation slot 121b, so as to facilitate the insertion and removal of the detection box 20b.
  • the heating area 13b is used to accommodate the nucleic acid sample of the person to be tested, and the nucleic acid sample and the detection agent (eg buffer solution) can be mixed in the heating area 13b to form a detection solution.
  • the heating zone 13b is also used for preheating the detection liquid under the control of the controller 16b.
  • the sample addition groove 14b is located on the cover plate 122b and communicates with the installation groove 121b. The sample addition groove 14b is used for injecting the detection liquid into the detection box 20b in the installation groove 121b.
  • the heating structure 17b is disposed in the detection box installation area 12b, and the heating structure 17b is used to heat the detection box 20b in the installation groove 121b, so that the detection solution in the detection box 20b can perform nucleic acid amplification reaction.
  • the image capture device 15b is disposed on the side of the installation slot 121b away from the sample addition slot 14b, and the image capture device 15b is used to capture the image of the detection box 20b in the installation slot 121b under the control of the controller 16b.
  • the image is a fluorescent photo of electrophoresis detection, and the detection result can be obtained according to the fluorescent photo.
  • the body 11b includes a first surface 111b, a second surface 112b disposed opposite to the first surface 111b, and a side wall 113b connecting the first surface 111b and the second surface 112b.
  • the opening of the installation groove 121b is located on the first surface 111b, and the detection box 20b can be placed in the installation groove 121b through the opening of the installation groove 121b.
  • the installation groove 121b is a groove designed to be inclined relative to the first surface 111b of the body 11b. Specifically, when the nucleic acid detection device 100 is placed on a horizontal operating table, the installation groove 121b is close to the installation groove 121b. The height of one end of the sample tank 14b relative to the horizontal operating table is greater than that of the end of the installation groove 121b away from the sample addition tank 14b. Since a large number of air bubbles are generated during the nucleic acid amplification reaction, if the generated air bubbles remain in the detection flow path, the movement path of the liquid beads in the detection flow path will be blocked by the air bubbles, resulting in the inability of the liquid beads to move and the detection failure.
  • the installation groove 121b is designed to be inclined, so that the detection box 20b can be placed at an inclination, the sample adding end of the detection box 20b is higher than the end where the PCR amplification reaction occurs, and the air bubbles generated by the PCR reaction in the detection box 20b can naturally move to a high position , which is naturally discharged from the sample adding end of the detection box 20b, and will not hinder the movement path of the liquid bead.
  • the liquid outlet of the detection box 20b is arranged at the relatively low end of the installation groove 121b, which can facilitate the products obtained after the nucleic acid amplification reaction to enter the electrophoresis tank of the detection box 20b through the liquid outlet.
  • the shape of the installation groove 121b is designed according to the shape of the detection box 20b. Specifically, the installation groove 121b is substantially a rectangular groove.
  • the cover plate 122b is used to close or open the installation slot 121b.
  • the sample adding groove 14b is disposed at one end of the cover plate 122b, and the other end of the cover plate 122b away from the sample adding groove 14b is provided with a rotating connecting piece 123b, and the cover plate 122b is rotatably disposed in the installation groove through the rotating connecting piece 123b 121b on the side wall.
  • the cover plate 122b can be rotated to open the installation slot 121b, and can also be rotated to close the installation slot 121b.
  • a bayonet 124b is provided on the side wall of one end of the cover plate 122b close to the sample adding slot 14b, and the mounting slot 121b is provided with a latch 125b corresponding to the bayonet 124b, and the latch 125b can be latched into the latch
  • the cover plate 122b is prevented from being accidentally opened.
  • the cover 122b can be opened by pressing the blocking block 125b to make the blocking block 125b withdraw from the bayonet 124b.
  • the detection box installation area 12b further includes an image capturing port 126b disposed in the installation groove 121b, and a cover plate 122b adjacent to the installation groove 121b.
  • the image capturing port 126b enables the image capturing device 15b to capture the image of the detection box 20b in the installation slot 121b.
  • the host connector 127b is used for electrical connection with the detection box connector 26b of the detection box 20b, so as to control the detection box 20b to perform nucleic acid amplification reaction and electrophoresis detection.
  • the first sensor is used to sense whether the detection box 20b is inserted into the installation slot 121b and transmit a signal to the controller 16b, and the controller 16b controls the detection box 20b to perform nucleic acid detection.
  • the host connector 127b is a long structure
  • the corresponding detection box 20b is provided with a card slot 25b
  • the detection box connector 26b is arranged in the card slot 25b.
  • the cover plate 122b covers the installation slot 121b
  • the host connector 127b can be inserted into the card slot 25b of the detection box 20b to achieve electrical connection with the detection box connector 26b.
  • This design can further fix the detection box 20b to prevent the detection box 20b from moving in the installation slot 121b.
  • the installation groove 121b is provided with two fixed blocks 128b, and the two fixed blocks 128b are respectively disposed on opposite sides of the image capturing port 126b, and the two fixed blocks 128b are used to lock the detection box 20b to prevent detection
  • the cartridge 20b moves within the mounting groove 121b.
  • a space avoiding position 129b is respectively provided on the two fixed blocks 128b, which can facilitate the insertion and removal of the detection box 20b.
  • the distance between the two fixing blocks 128b is slightly larger than the width of the detection box 20b, which can stably fix the detection box 20b in the installation groove 121b.
  • the cover plate 122b is provided with a through hole (not shown) corresponding to the sample loading slot 14b, and the sample loading slot 14b communicates with the installation slot 121b through the through hole, thereby adding samples to the detection box 20b.
  • the first sensor is used to sense whether the box 20b is inserted into the installation slot 121b, and on the other hand, the controller 16b can automatically start the program through the sensing of the first sensor. That is, when it is detected that the detection cartridge 20b is inserted into the mounting slot 121b, a program for starting detection is started.
  • the image capturing port 126b has a substantially rectangular structure, and the size setting needs to satisfy that the image capturing device 15b can collect the complete fluorescent photo obtained by the electrophoresis detection of the detection box 20b through the image capturing port 126b.
  • the image capturing device 15b is located directly below the image capturing port 126b.
  • the two detection box installation areas 12b there are two detection box installation areas 12b, and the two detection box installation areas 12b are respectively located on both sides of the heating area 13b. Simultaneously setting two detection box installation areas 12b can simultaneously perform two sets of nucleic acid amplification and electrophoresis detection, which can improve detection efficiency and space utilization.
  • an isolation layer (not shown) is provided between the two detection cartridge installation areas 12b, and the isolation layer can The two detection box installation areas 12b are effectively isolated, the temperature accuracy of the nucleic acid amplification in the detection box installation area 12b is improved, and the temperature interference is avoided to affect the detection effect.
  • the heating area 13b includes a heating tank 131b and a heating device 132b disposed at the bottom of the heating tank 131b.
  • the heating device 132b is electrically connected to the controller 16b, and the controller 16b can control the heating device 132b to achieve temperature rise, while
  • the heating temperature and time of the heating tank 131b are detected by a temperature sensor (not shown) and a time relay (not shown).
  • the heating temperature of the heating device 132b is about 95°C, and the heating time is about 5 minutes.
  • the heating device 132b is an aluminum block, a copper block or other thermally conductive materials. It can be understood that other heating devices (eg, heating wire, heating coating or heating sheet, etc.) can also be used to heat the heating tank 131b.
  • the heating zone 13b is also provided with a second sensor (not shown), which is electrically connected to the controller 16b. The second sensor can be used to sense whether the detection liquid is contained in the heating tank 131b. The collection cup 30b is put in, and the induction signal is transmitted to the controller 16b, so that the controller 16b starts heating.
  • the opening of the heating tank 131b is located on the first surface 111b, and the cross section of the heating tank 131b along the direction parallel to the first surface 111b is substantially an elliptical structure.
  • the shape of the heating groove 131b can be specifically designed according to the shape of the collecting cup 30b that needs to be heated actually.
  • the heating tank 131b is provided with a first latching position 133b, and the first latching position 133b is used for engaging the collection cup 30b.
  • a sample addition channel 141b is provided on the bottom wall of the sample addition groove 14b.
  • the sample addition channel 141b penetrates through the through hole of the cover plate 122b and extends into the installation groove 121b, and the sample addition channel 141b is close to the installation groove 121b.
  • One end collides with the surface of the detection box 20b in the installation groove 121b, and the detection liquid enters the detection box 20b in the installation groove 121b from the sample addition groove 14b through the sample addition channel 141b.
  • the sample adding channel 141b is specifically funnel-shaped.
  • the sample adding groove 14b is further provided with a second latching position 142b, and the second latching position 142b is used for engaging the liquid transfer device 40b.
  • the heating structure 17b includes a first heating element 171b disposed in the installation groove 121b and a first heating element 171b disposed on a surface of the cover plate 122b near the installation groove 121b Two heating elements 172b.
  • the first heating element 171b and the second heating element 172b are both electrically connected to the controller 16b.
  • the heating structure 17b is arranged on the nucleic acid detection host 10b, and the detection box 20b does not need to be provided with a heating structure, which greatly reduces the cost of the detection box 20b.
  • the first heating assembly 171b includes a first circuit board 1711b and a plurality of first heaters 1712b disposed on the first circuit board 1711b, and the plurality of first heaters 1712b correspond to the nucleic acid amplification reaction of the detection cartridge 20b District settings.
  • the first circuit board 1711b is disposed on the side of the bottom surface of the mounting slot 121b away from the cover plate 122b, and the first heater 1712b protrudes from the bottom surface of the mounting slot 121b and the lower part of the detection box 20b in the mounting slot 121b surface conflict.
  • the second heating assembly 172b includes a second circuit board 1721b and a plurality of second heaters 1722b disposed on the second circuit board 1721b, and the plurality of second heaters 1722b correspond to the nucleic acid amplification reaction of the detection cartridge 20b District settings.
  • the second circuit board 1721b is disposed inside the cover plate 122b, and the second heater 1722b protrudes from the surface of the cover plate 122b near the mounting slot 121b and collides with the upper surface of the detection box 20b in the mounting slot 121b.
  • first heaters 1712b there may be two first heaters 1712b, and the corresponding heating temperature ranges are 40°C-75°C and 90°C-105°C respectively.
  • both the first heater 1712b and the second heater 1722b may be aluminum blocks, copper blocks, or other thermally conductive materials. It can be understood that other heating devices (eg, heating wire, heating coating or heating sheet, etc.) can also be used to heat the detection box 20b.
  • first heaters 1712b there may be three first heaters 1712b, and the corresponding heating temperature ranges are 40°C-65°C, 68°C-75°C, and 90°C-105°C, respectively.
  • the image acquisition device 15b includes a fixing box 151b disposed on the side of the mounting groove 121b away from the sample adding groove 14b, and a light source (not shown in the figure) disposed in the fixing box 151b.
  • a light source not shown in the figure
  • an image acquisition control board 153b, and an image acquisition device 152b are both electrically connected to the image acquisition control board 153b
  • the image acquisition control board 153b is electrically connected to the controller 16b.
  • the light source is used to emit light to the image capturing port 126b under the control of the image capture control board 153b to provide a light source for image capture.
  • the image acquisition device 152b is used to acquire fluorescent photos obtained by electrophoresis detection of the detection box 20b under the control of the image acquisition control board 153b.
  • the cross-sectional width of the fixing box 151b in the horizontal direction gradually increases from the end close to the first surface 111b to the end far from the first surface 111b, that is, the fixing box 151b is substantially an inverted conical funnel structure.
  • One end of the fixing box 151b close to the first surface 111b is communicated with the mounting groove 121b through the image capturing port 126b.
  • the inclined sidewall of the fixing box 151b can achieve the purpose of concentrating light, so that the light emitted by the light source can be collected at the image capturing port 126b, which is convenient for collecting the image of the detection box 20b.
  • the inner side wall of the fixing box 151b is provided with a reflective coating, which can be used to reflect light, so that the light can be reflected into the image capturing port 126b.
  • the controller 16b includes an image processor (not shown).
  • the image collected by the image collector 152b will be transmitted to the image processor for processing, and the processed image will be further output.
  • the controller 16b further includes a memory (not shown in the figure), and the memory is used for storing detection results and detection process information.
  • the nucleic acid detection host 10b further includes a display screen 18b and a camera 19b, and the display screen 18b and the camera 19b are both electrically connected to the controller 16b.
  • the display screen 18b is used for displaying the operation interface, setting the operating parameters, displaying the above-mentioned images, and so on.
  • the camera 19b is used to take a picture of the user's operation process, and at the same time, it can also collect relevant information corresponding to the above-mentioned detection solution (for example, information on the source of the nucleic acid sample).
  • the nucleic acid detection host 10b further includes a heat dissipation device 191b, and the heat dissipation device 191b is electrically connected to the controller 16b for dissipating heat for the entire host.
  • the heat dissipation device 191b is a heat dissipation fan.
  • the heat dissipation device 191b is disposed on the side wall 113b.
  • the body 11b is provided with a plurality of heat dissipation vents to discharge heat inside the host.
  • the nucleic acid detection host 10b provided by the present invention can cooperate with the detection box 20b to realize PCR amplification and electrophoresis detection of nucleic acid, and the result displayed on the display screen 18b is the final electrophoresis detection result.
  • the nucleic acid detection host 10b integrates detection liquid preheating, sample addition, and detection liquid circulating heating for nucleic acid amplification reaction, electrophoresis detection and result output into one device, with simple overall structure, portability, strong detection flexibility, and convenient detection operation. Moreover, the operation process is simple, the operation process has low professional requirements, and home testing can be realized.
  • the detection box 20b in the present application integrates the PCR amplification process and the electrophoresis detection, and the detection solution directly enters the electrophoresis tank for electrophoresis after the PCR amplification is completed. detection.
  • the detection box 20b includes a box body 21b, a sample introduction port 22b, a detection chip 23b, an electrophoresis box 24b, and a detection box connector 26b.
  • the sample adding port 22b is disposed on the side of the box body 21b close to the sample adding groove 14b, and one end of the sample adding channel 141b close to the installation groove 121b is in contact with the sample adding port 22b, and the sample adding port 22b is used for the detection A detection solution is added to the chip 23b.
  • the detection chip 23b is arranged inside the box body 21b, the electrophoresis box 24b is arranged outside the box body 21b, and the detection chip 23b communicates with the electrophoresis box 24b, and the detection chip 23b is used for PCR amplification of the detection solution reaction, the electrophoresis box 24b is used to perform electrophoresis detection on the detection solution after the amplification.
  • the electrophoresis box 24b is set corresponding to the image capture port 126b, and the image acquisition device 15b collects the fluorescence photo of the electrophoresis box 24b through the image capture port 126b.
  • the detection box 20b is provided with a card slot 25b, the detection box connector 26b is arranged in the card slot 25b, and the host connector 127 of the detection box installation area 12b can be inserted into the card slot 25b and the detection box connector 26b Electrical connection.
  • the detection box connector 26b is electrically connected to the detection chip 23b and the electrophoresis box 24b.
  • the detection box 20b integrates the detection chip 23b and the electrophoresis box 24b, and has a small size, which is suitable for the above-mentioned portable nucleic acid detection device 100b.
  • the detection box 20b is a one-time-use product, and one detection box 20b is used for each test sample. Therefore, the detection box 20b does not need a cleaning process.
  • the detection box 20b has a substantially cubic structure.
  • the collection cup 30b and the liquid transfer device 40b can be used together, and the two are connected together by snapping, and the collection cup 30b is used to collect nucleic acid samples (such as saliva or other fluids). physical examination sample), and mixed with the detection reagent to form a detection solution, which is also used to heat the heating zone 13b.
  • the liquid transfer device 40b is used for quantitatively sucking the test liquid from the collection cup 30b and adding it into the test box 20b through the sample adding tank 14b.
  • the collection cup 30b is provided with a conical groove inside. After saliva is spit into the collection cup 30b, it can be concentrated under the conical groove to facilitate the collection of a small amount of nucleic acid samples.
  • the liquid transfer device 40b includes an outer shell 41b, an inner shell 42b, a liquid sampling assembly 43b and a pressing key 44b.
  • the inner shell 42b is movably connected to the outer shell 41b by snapping, the liquid sampling assembly 43b is arranged through the outer shell 41b and the inner shell 42b, and the pressing key 44b is arranged on the top of the inner shell 42b.
  • the liquid taking assembly 43b includes a liquid taking pipe 431b and a liquid taking head 432b.
  • the inner shell 42b When the liquid needs to be taken, the inner shell 42b is moved downward along the outer shell 41b by pressing the pressing button 44b, and the inner shell 42b applies pressure to the liquid taking tube 431b, so that the liquid taking tube 431b is deformed and the air inside the liquid taking tube 431b is discharged, Then, the liquid sampling head 432b is made to absorb the detection liquid.
  • the liquid sampling tube 431b can push the inner shell 42b to automatically return to its original position; It moves down, and further squeezes the liquid sampling tube 431b, so that the detection liquid in the liquid sampling tube 431b is discharged.
  • the liquid taking two can be controlled by controlling the deformation amount of the liquid taking pipe 431b, so as to achieve the purpose of quantitative liquid taking, and can realize the transfer of a small amount of liquid. It can be understood that the liquid transfer can also be performed by other liquid transfer devices capable of realizing quantitative liquid taking.
  • the outer shell 41b, the inner shell 42b, and the pressing key 44b constitute the pressing mechanism 45b, and the liquid taking assembly 43b and the pressing mechanism 45b cooperate to form the liquid transfer device 40b.
  • the liquid-taking assembly 43b is detachably disposed on the pressing mechanism 45b, and the pressing mechanism 45b can be used multiple times.
  • the liquid-taking assembly 43b is a disposable consumable, which can be replaced at any time, thus saving costs. Therefore, as shown in FIG. 28b, the pressing mechanism 45b can be arranged in the pressing mechanism storage area 61a of the nucleic acid detection host 10b, which is convenient for storage.
  • the nucleic acid detection apparatus 100b further includes a reagent pack 50b, and the reagent pack 50b stores a detection reagent (eg, Buffer), wherein the detection reagent is quantitatively put into the reagent pack 50b.
  • the reagent pack 50b can be put into the collection cup 30b and mixed with the nucleic acid sample to form the above-mentioned detection solution.
  • the drug pack 50b is a groove-shaped structure and has a handle, the drug required for nucleic acid detection is placed in the groove-shaped structure, and the opening is sealed by a sealing film.
  • tear off the sealing film hold the handle, pour the medicine into the collection cup 30b containing the nucleic acid sample, shake well and place the collection cup 30b into the heating tank 131b for heating.
  • the medicine pack 50b is connected with the collection cup 30b. Before use, the medicine pack 50b is placed in the collection cup 30b.
  • This design facilitates the storage of the medicine pack 50b, avoids the loss of the medicine pack 50b, and can remind the operator Whether the detection agent in the drug pack 50b is added to the collection cup 30b.
  • the detection box 20b, the liquid transfer device 40b, the collection cup 30b and the drug pack 50b are all stored in a dedicated packaging box.
  • Each set of the detection box 20b, the liquid transfer device 40b, the collection cup 30b and the drug pack 50b You can set a one-to-one corresponding identification code (such as a two-dimensional code) to avoid confusion. Since the detection box 20b and the drug pack 50b are the same for the detection of the same virus, an identification code (such as a two-dimensional code) may be set only on the collection cup 30b to avoid confusion of the collected liquid to be detected.
  • the camera 19b can collect the two-dimensional code on the collection cup 30b, and the information of the two-dimensional code includes the source of the nucleic acid sample or the information of the relevant examinee. In addition, the camera 19b can also record the detection process of the operator.
  • the present invention also provides a method for nucleic acid detection using the above-mentioned nucleic acid detection device 100b, which specifically includes the following steps:
  • Step S11b in conjunction with FIG. 13b, parameter setting.
  • the host 10b and set the corresponding detection parameters, which may specifically include the preheating temperature and preheating time of the heating zone 13b, the corresponding parameters of the nucleic acid amplification reaction in the detection box 20b, and the corresponding parameters of electrophoresis detection.
  • step S12b referring to FIG. 13b, the detection sample information is entered and recording is started.
  • step S13b referring to FIG. 14b in combination, a nucleic acid sample is collected, and the nucleic acid sample is preheated.
  • the heating zone 13b for heating.
  • the heating temperature set by the general program is about 90-100°C, heating for about 3-8min, and then cooling to room temperature or Below a fixed temperature (for example, below 40°C), after cooling, the medicine in the medicine pack 50b is added to the saliva of the collecting cup 30b and mixed evenly to form a detection solution.
  • the collection cup 30b is used to collect saliva, and then the medicine in the medicine pack 50b is poured into the collection cup 30b. 3-5 times to get a well-mixed detection solution, generally need to shake 5 times to shake well. Next, put the collection cup 30b containing the detection liquid into the heating zone 13b, and when the second sensor in the heating zone 13b senses that the collection cup 30b is put in, the next step is started to perform heating.
  • the heating temperature set by the general program is about 90-100 °C, heating for about 3-8 minutes, and cooling to room temperature or below a certain fixed temperature (for example, below 40 °C) after heating.
  • a temperature sensor and a time relay are used to sense the heating temperature and heating time.
  • step S14b referring to FIG. 15b, the detection box 20b is inserted into the detection box installation area 12b.
  • the first sensor senses the insertion of the detection box 20b, and automatically starts the detection process.
  • step S15b referring to FIG. 16b and FIG. 17b in combination, the detection solution is transferred to the detection box 20b for nucleic acid amplification reaction and electrophoresis detection.
  • the liquid transfer device 40b uses the liquid transfer device 40b to quantitatively absorb 10-30 ⁇ l (preferably 20 ⁇ l) of the detection solution in the collection cup 30b, and add the detection solution into the detection chip 23b of the detection box 20b through the sample addition tank 14b.
  • the detection solution containing the nucleic acid sample undergoes a nucleic acid amplification reaction in the detection chip 23b, and after the amplification is completed, it combines with the fluorescent reagent in the detection chip 23b to form a product with a fluorescent group, and the product enters the electrophoresis from the detection chip 23b.
  • Box 24b electrophoresis detection is performed in the electrophoresis box 24b.
  • step S16b an image (fluorescence photo) detected by electrophoresis is collected and output.
  • the image acquisition device 15b collects the electrophoresis image of the electrophoresis box 24b, and processes the image through the image processor.
  • the processed image is displayed on the display screen 18b, and the detection result can also be uploaded to the client for related personnel review.
  • step S17b the detection is completed.
  • the collection cup 30b, the liquid transfer device 40b, and the detection box 20b are removed from the nucleic acid detection host 10b, and put into a packaging box for recovery.
  • FIG. 18b is a schematic diagram of a test result obtained by using the nucleic acid detection device 100b provided by the embodiment of the present invention.
  • the device can automatically identify the test result. Among them, if the marker position of the first line is within the predefined range, it can be determined that the nucleic acid sample contains human genes; if the marker position of the first line is not within the predefined range, it can be determined that the nucleic acid sample contains human genes. Human genes are not included.
  • the marker position of the second line is within the predefined range, it can be determined that the nucleic acid sample contains RNA replicase; if the marker position of the second line is not within the predefined range, it can be determined that the nucleic acid sample does not contain RNA replicase. Including RNA replicase. If the marker position of the third line is within the predefined range, it can be determined that the nucleic acid sample contains N protein; if the marker position of the third line is not within the predefined range, it can be determined that the nucleic acid sample does not contain N protein. N protein.
  • the nucleic acid detection host 60a provided by another embodiment of the present invention includes a detection box installation area 12b and a pressing mechanism storage area 61a, and the pressing mechanism storage area 61a is used to store the pressing mechanism 45b. It can be understood that, the pressing mechanism storage area 61a can also be designed as other functional areas, which can make full use of the space of the nucleic acid detection host 60a.
  • the nucleic acid detection device can integrate nucleic acid amplification reaction and electrophoresis detection in one device through the cooperation of the host and the detection box.
  • the overall structure is simple, the detection operation is simple, and the operation process is relatively professional. The requirements are low, the detection efficiency is high, and the detection cost is greatly reduced; at the same time, the detection process is flexible and does not need to be carried out in a fixed laboratory, and the detection equipment is portable, which can realize community detection or home detection.
  • the nucleic acid detection box 100c includes a box body 1c, a detection chip 2c and a laser emitting device 3c.
  • the detection chip 2c is disposed in the box body 1c.
  • the detection chip 2c includes a first cover plate 21c, a spacer layer 22c and a second cover plate 23c. The two opposite surfaces of the spacer layer 22c are respectively connected to the first cover plate 21c and the second cover plate 23c.
  • the second cover plate 23c is in contact with the first cover plate 21c, the spacer layer 22c and the second cover plate 23c to form a channel 5c, the channel 5c is used to carry the detection liquid 6c so that the detection liquid 6c can pass through the channel A nucleic acid amplification reaction is performed within 5c to obtain product beads 8c.
  • the first cover plate 21c is provided with an observation window 29c; the laser emitting device 3c is disposed outside the channel 5c, and the laser emitting device 3c is used to emit laser light 7c toward the inside of the channel 5c.
  • the laser light 7c is used to irradiate the product liquid bead 8c, so that the product liquid bead 8c emits a fluorescent signal 9c, and finally the fluorescent signal 9c can be obtained through the observation window 29c.
  • the box body 1c includes a first casing 11c, a second casing 12c, a sample injection port 13c disposed on the second casing 12c, and an opening disposed on the first casing 11c 14c.
  • the first casing 11c and the second casing 12c together form an accommodating cavity (not shown), and both the detection chip 2c and the laser emitting device 3c are accommodated in the accommodating cavity.
  • the sample introduction port 13c is provided corresponding to the detection chip 2c, and is used for adding the detection solution 6c containing the nucleic acid sample into the detection chip 2c.
  • the opening 14c is disposed corresponding to the observation window 29c, and the subsequent image acquisition device can collect the fluorescent signal 9c emitted by the product liquid bead 8c in the detection chip 2c through the opening 14c and the observation window 29c.
  • first casing 11c and the second casing 12c are connected by means of snapping, in addition, the first casing 11c and the second casing 12c can also be snapped together. It is fastened by screws around it to increase the connection firmness of the first casing 11c and the second casing 12c.
  • the side wall of the box body 1c is further provided with an installation port 15c, and the installation port 15c is used to install a connector 4c, wherein the connector 4c is connected with the detection chip 2c and the laser emitting device 3c For electrical connection, the detection chip 2c and the laser emitting device 3c are electrically connected to the external power supply through the connector 4c.
  • the connector 4c is integrally located in the accommodating cavity, and the box body 1c is exposed from the mounting opening 15c, so as to facilitate the electrical connection of the connector 4c with the external power supply.
  • the box body 1c is made of plastic material.
  • the detection chip 2c further includes a drive circuit 24c disposed on the side of the second cover plate 23c close to the first cover plate 21c, a drive circuit 24c disposed on the side of the drive circuit 24c close to the first cover plate 21c
  • the electrical layer 27c, the driving circuit 24c and the conductive layer 25c are all electrically connected to the connector 4c.
  • the driving circuit 24c includes a plurality of driving electrodes 241c arranged in an array and a control electrode 242c electrically connected to the driving electrodes 241c.
  • the control electrodes 242c and The connector 4c is electrically connected.
  • the driving circuit 24c is a thin film transistor (Thin Film Transistor, TFT) driving circuit, and since the detection liquid 6c has conductivity, combined with the principle of dielectric wetting (Electrowitting-On-Dielectric, EWOD), the detection liquid 6c can be realized. It moves according to a predetermined path in the channel 5c.
  • TFT Thi Film Transistor
  • the circuit between a certain driving electrode 241c and the conductive layer 25c can be selectively turned on or off, thereby changing the voltage between the driving electrode 241c and the conductive layer 25c to change the detection solution 6c and the first dielectric layer.
  • the wetting characteristics between 26c and the second dielectric layer 27c further control the movement of the detection liquid 6c in the channel 5c according to a predetermined path. As shown in FIG. 6c, the detection liquid 6c moves on the electrode I, the electrode H and the electrode G.
  • the detection liquid 6c When the detection liquid 6c is on the electrode H, a voltage is applied between the electrode G and the conductive layer 25c, and the voltage Vd is given to the electrode G, and at the same time The voltage between the electrode H and the conductive layer 25c is disconnected, and the wetting characteristics between the detection liquid 6c and the first dielectric layer 26c and the second dielectric layer 27c are changed, so that the electrode H and the detection liquid 6c are in contact with each other.
  • the liquid-solid contact angle between the electrodes becomes larger, and the liquid-solid contact angle between the electrode G and the detection liquid 6c becomes smaller, thereby promoting the movement of the detection liquid 6c from the electrode H to the electrode G.
  • the first dielectric layer 26c and the second dielectric layer 27c are both insulating and hydrophobic layers, specifically, a polytetrafluoroethylene coating. It can make the detection liquid 6c move more smoothly in the predetermined path, and prevent the liquid droplets from breaking during the movement.
  • the driving circuit 24c can be formed on the surface of the second cover plate 23c by a metal etching method or an electroplating method.
  • control electrode 242c is integrated on the same edge of the second cover plate 23c, and the connection between the detection chip 2c and the detection chip 2c is realized by inserting the side of the second cover plate 23c where the control electrode 242c is disposed into the connector 4c the electrical connection of the device 4c.
  • the driving circuit 24c can be divided into a plurality of areas according to different purposes, namely a sample adding area A, a plurality of nucleic acid amplification areas C and an observation area D.
  • the observation window 29c corresponds to the observation area D setting.
  • the sample adding area A on the detection chip 2c communicates with the sample adding port 13c on the box body 1c, and the detection solution 6c containing nucleic acid samples is added to the sample adding area A from the sample adding port 13c.
  • the nucleic acid amplification area C is used to realize the amplification reaction of the nucleic acid sample to obtain the nucleic acid amplification product, and the nucleic acid amplification product is combined with the fluorescent reagent to obtain the product liquid bead 8c, and the observation area D is used to observe the product liquid bead 8c under the irradiation of the laser 7c. Fluorescence signal 9c.
  • the detection solution 6c performs a nucleic acid amplification reaction in the nucleic acid amplification region C.
  • the nucleic acid amplification region C may include multiple regions, and the number of specific regions may be determined according to actual detection requirements.
  • the fluorescent signal 9c emitted by the product droplet 8c in the observation area D can be collected by the image acquisition device through the observation window 29c.
  • the principle of real-time quantitative PCR technology is: fluorescent reagents (fluorescent dyes or DNA probes) are designed to have fluorescent properties only after they are combined with specific DNA. Therefore, when the DNA is amplified by PCR, the quantity increases, and the activated fluorescence is activated. The more the substance, the more DNA bound to the fluorescent reagent, the stronger the fluorescence intensity. Therefore, the amplified specific DNA can be quantified only by detecting the intensity of the fluorescence.
  • the driving circuit 24c may further include a reagent storage area B, and the reagent storage area B is used to store fluorescent reagents (eg, fluorescent dyes or fluorescent probes).
  • the detection solution 6c contains at least nucleic acid samples and primers, but does not contain fluorescent reagents.
  • the fluorescent reagents (such as fluorescent dyes or DNA probes) are coated in the reagent storage area B in advance, and then combined with the fluorescent reagents after adding the detection solution 6c . This method can be mixed with the fluorescent reagent before nucleic acid amplification, or mixed with the fluorescent reagent after nucleic acid amplification, which is selected according to the actual situation.
  • the fluorescent reagent is arranged in the observation area D, and the observation area D is arranged on the side of the nucleic acid amplification area C away from the sample application area A.
  • the nucleic acid amplification product will bind to the fluorescent reagent in observation zone D.
  • the detection chip 2c further includes a heating element 28c disposed on the side of the first cover 21c and/or the second cover 23c away from the channel 5c, the heating element 28c is opposite to the heating element 28c.
  • the nucleic acid amplification area C should be set for heating the detection solution 6c.
  • the heating component 28c is provided with two heating regions corresponding to the nucleic acid amplification region C, and the specific heating temperature ranges are respectively 90°C-105°C and 40°C-75°C.
  • silicone oil is injected into the channel 5c, and the detection liquid 6c moves in the silicone oil according to a predetermined path.
  • the first cover plate 21c and the second cover plate 23c are both glass plates
  • the spacer layer 22c is a double-sided adhesive frame, which is pasted on the first cover plate 21c through the double-sided adhesive frame and the edge of the second cover plate 23c to form a sealed channel 5c together.
  • the capacity of the channel 5c can be adjusted by designing the spacer layers 22c with different thicknesses according to actual requirements.
  • the nucleic acid detection cartridge 100c has a substantially cubic structure.
  • the nucleic acid detection box 100c is a one-time-use item, and one nucleic acid detection box 100c is used for each detection sample. Therefore, the nucleic acid detection box 100c does not need a cleaning process.
  • the present invention can design the number and specific positions of the nucleic acid amplification area C, the reagent storage area B and the observation area D according to different requirements. In the actual detection process, the following three different implementations may be specifically included.
  • the number of the nucleic acid amplification areas C is two
  • the number of the observation area D is one
  • the observation area D is located between the two nucleic acid amplification areas C, the present
  • the reagent storage area B does not need to be provided.
  • the specific process of realizing real-time fluorescence quantitative PCR is: adding the detection solution 6c to the sample adding area A, and at this time, the detection solution 6c containing nucleic acid samples, primers, and fluorescent reagents (such as fluorescent dyes or DNA probes) can be added to the sample adding port. 13c is injected into the sample adding area A; the detection solution 6c containing the nucleic acid sample and the fluorescent reagent is driven by the driving electrode 241c to reciprocate between the two nucleic acid amplification areas C according to a prescribed path to carry out the amplification reaction to directly obtain the product liquid beads 8c During the amplification process, the product droplet 8c will pass through the observation area D.
  • the product droplet 8c will emit a fluorescent signal 9c under the irradiation of the laser 7c, and the observation area D can be collected by the image acquisition device through the observation window 29c
  • the fluorescent signal 9c emitted by the product droplet 8c combined with the fluorescent reagent at the place completes the process of real-time fluorescence quantitative PCR.
  • the fluorescence intensity increases continuously. When the fluorescence intensity reaches the maximum value, it does not increase, but tends to be stable. At this time, the PCR amplification reaction ends. Therefore, it is possible to The end time of the amplification reaction can be accurately judged according to the change of fluorescence intensity.
  • the laser emitting device 3c emits the laser light 7c from the side of the channel 5c, and the laser light 7c is transmitted in the channel 5c.
  • the fluorescent reagent in the product liquid bead 8c emits a fluorescent signal 9c
  • the image acquisition device detects and collects the fluorescent signal 9c through the opening 14c and the observation window 29c, and forms a fluorescent image, which is then displayed on the host display. .
  • the drive circuit 24c also includes a reagent storage area B.
  • the specific process of realizing real-time fluorescence quantitative PCR is: adding a detection solution 6c that does not contain fluorescent reagents to the sample application area A, the detection solution 6c contains at least nucleic acid samples and primers, and fluorescent reagents (such as fluorescent dyes or DNA probes) are added in advance Coated in the reagent storage area B; the detection solution 6c moves from the sample adding area A to the reagent storage area B under the drive of the driving electrode 241c to be mixed with the fluorescent reagent, and the detection solution 6c mixed with the reagent is then moved between the two according to the prescribed path. Reciprocating movement between the nucleic acid amplification regions C for amplification to obtain product beads 8c.
  • fluorescent reagents such as fluorescent dyes or DNA probes
  • the product beads 8c will pass through the observation region D. At this time, the product beads 8c will emit fluorescence under the irradiation of the laser 7c.
  • the fluorescent signal 9c emitted by the product droplet 8c in the observation area D can be collected by the image acquisition device through the observation window 29c to complete the process of real-time fluorescence quantitative PCR.
  • the fluorescence intensity increases continuously. When the fluorescence intensity reaches the maximum value, it does not increase, but tends to be stable. At this time, the PCR amplification reaction ends. Therefore, it is possible to The end time of the amplification reaction can be accurately judged according to the change of fluorescence intensity.
  • the number of nucleic acid amplification areas C is two
  • the number of observation areas D is one
  • the reagent storage area B is not provided, wherein the observation area D is located in two nucleic acid amplification areas.
  • the extension area C is far from the side of the sample adding area A
  • the observation area D includes three observation sites (D1, D2, D3), and different fluorescent reagents are respectively set on the three observation sites (D1, D2, D3). , which are specifically provided with different DNA probes required for gene detection.
  • two kinds of viral gene probes are set on the observation site D1 and the observation site D3, and human tissue internal reference gene probes are set on the observation site D2 ( Beta_actin gene probe).
  • the specific process of realizing real-time quantitative PCR is as follows: adding a detection solution 6c that does not contain fluorescent reagents to the sample adding area A, the detection solution 6c contains at least nucleic acid samples and primers, and the fluorescent reagents (specifically, gene probes) are set in advance to observe At different observation sites in the area D, in this embodiment, the detection solution 6c first moves back and forth between the two nucleic acid amplification areas C to perform a nucleic acid amplification reaction to obtain a nucleic acid amplification product, and then the nucleic acid amplification product moves to the observation area D.
  • the product beads 8c for color development, and then emit laser 7c through the laser emission device 3c, when the laser 7c intersects with the product beads 8c, the product
  • the DNA probe bound to the corresponding DNA in the liquid bead 8c emits a fluorescent signal 9c
  • the image acquisition device detects and collects the fluorescence emitted by the three observation points (D1, D2, D3) on the observation area D through the opening 14c and the observation window 29c.
  • the signal 9c forms a fluorescent image, which is finally displayed by the host.
  • Figure 44 uses three different detection solutions to perform fluorescence detection respectively.
  • the first sample is DNA with G108-G dye added first, and then PCR amplification is performed;
  • the second sample is DNA, which is PCR amplified first, and then G108-G dye is added;
  • the third sample is DNA without PCR amplification , but with the addition of G108-G dye.
  • Fluorescence detection was performed on the above three samples respectively, and the detection results as shown in Figure 8c were obtained. It can be seen from Fig. 8c that the fluorescence intensities of the first sample and the second sample are similar, and the third sample basically has no fluorescence reaction. The comparison between the first sample and the second sample shows that the fluorescent reagent can be added before or after PCR amplification, which has no effect on the detection result. Comparing the first sample and the second sample with the third sample, it can be seen that the fluorescent reagent needs to be combined with a specific DNA to have fluorescent properties, that is, even if the fluorescent reagent is added to the DNA without PCR amplification, there will be no fluorescent reaction.
  • the nucleic acid detection box 100c of this embodiment can realize real-time fluorescence quantitative nucleic acid amplification detection by combining the detection chip and the laser emission device; the detection solution can directly enter the fluorescence detection after the nucleic acid amplification reaction is completed in the detection chip.
  • the fluorescent image of the nucleic acid amplification product can be obtained in real time without electrophoresis detection of the nucleic acid amplification product; the requirements for operators are reduced, the detection cost is reduced, and the detection efficiency is greatly improved.
  • the size of the nucleic acid detection box is small, which is suitable for portable nucleic acid detection equipment.
  • the present invention also provides a nucleic acid detection device 200c, the nucleic acid detection device 200c includes a host 201c, the nucleic acid detection box 100c described above, and an image acquisition device 202c, the host 201c is provided with There is a detection box installation slot (not shown), and the nucleic acid detection box 100c is installed in the detection box installation slot.
  • the image acquisition device 202c is disposed on the side of the observation window 29c away from the channel 5c, and the image acquisition device 202c is used to collect the fluorescent signal 9c through the observation window 29c, and convert the fluorescent signal 9c into a fluorescent image,
  • the fluorescent image is transmitted to the host 201c for processing, and the host 201c displays the processed fluorescent image on a display screen (not shown), and a nucleic acid detection result can be obtained according to the fluorescent image.
  • the test results can also be uploaded to the client for reference by relevant personnel.
  • the nucleic acid detection device can realize fluorescence detection during the PCR process through the cooperation of the host, the nucleic acid detection box and the image acquisition device, and obtain a real-time fluorescence image.
  • the increased DNA can be quantified, and the amount of nucleic acid can be quantitatively detected in real time;
  • the overall structure of the nucleic acid detection equipment is simple, the detection operation is simple, the operation process has low professional requirements, and the detection efficiency is high, which greatly reduces the detection cost; at the same time, the detection process is flexible. It is strong and does not need to be carried out in a fixed laboratory, and the testing equipment is portable, which can realize community testing or home testing.
  • the nucleic acid detection box 100d includes a box body 1d, a detection chip 2d, an electrophoresis box 3d and a connection 4d.
  • the detection chip 2d is disposed in the box body 1d.
  • the detection chip 2d includes a first cover plate 21d, a spacer layer 22d and a second cover plate 23d. The two opposite surfaces of the spacer layer 22d are respectively connected to the first cover plate 21d and the second cover plate 23d.
  • the second cover plate 23d is adjacent to each other, and the first cover plate 21d, the spacer layer 22d and the second cover plate 23d are surrounded to form a channel 5d, and the channel 5d is used to carry the detection liquid a.
  • the electrophoresis box 3d is arranged in the box body 1d and communicates with the channel 5d.
  • the connector 4d is electrically connected to the detection chip 2d and the electrophoresis box 3d, respectively.
  • the nucleic acid detection box 100d is used for nucleic acid amplification reaction and electrophoresis detection, and the detection solution a containing nucleic acid samples is added into the channel 5d of the detection chip 2d.
  • the detection solution a in the channel 5d is a liquid bead If the detection solution a carries out nucleic acid amplification reaction in the channel 5d to obtain a nucleic acid amplification product b, the nucleic acid amplification product b directly enters the electrophoresis box 3d from the detection chip 2d for electrophoresis detection, and finally passes through the detection chip 2d.
  • the image acquisition device matched with the nucleic acid detection box 100d captures an image of the electrophoresis box 3d, wherein the image is a fluorescent photo of the electrophoresis detection.
  • the present invention integrates the detection chip 2d and the electrophoresis box 3d in a box body 1d, the overall structure is simple, the complex large-scale equipment is not required, the cost is low, and the detection solution a can directly enter the electrophoresis box 3d for electrophoresis detection after nucleic acid amplification is completed. , which simplifies the process of sample transfer and connection in different detection links, and improves the detection efficiency.
  • the box 1d includes a first casing 11d, a second casing 12d, a sample injection port 13d disposed on the second casing 12d, and a detection device disposed on the first casing 11d Window 14d.
  • the first casing 11d and the second casing 12d together form an accommodating cavity (not shown), and the detection chip 2d, the electrophoresis box 3d and the connector 4d are all accommodated in the accommodating cavity.
  • the sample adding port 13d is provided corresponding to the detection chip 2d, and is used for adding the detection solution a containing the nucleic acid sample into the detection chip 2d.
  • the detection window 14d is disposed corresponding to the electrophoresis box 3d, and the image acquisition device can collect the image of the electrophoresis box 3d through the detection window 14d.
  • the first casing 11d and the second casing 12d are connected by means of engagement.
  • they can be tightened around the The connection firmness of the first casing 11d and the second casing 12d.
  • the side wall of the box body 1d is further provided with an opening 17d, the opening 17d is used to install the connector 4d, the connector 4d is located in the accommodating cavity as a whole and is The opening 17d exposes the box body 1d, so as to facilitate the electrical connection between the connector 4d and the external control board.
  • the box body 1d further includes a card slot 15d disposed on the first housing 11d.
  • the card slot 15d enables the box body 1d to connect with the nucleic acid detection device.
  • the fixing structure (not shown) in the installation groove 20d of the detection box is snap-connected, and then the nucleic acid detection box 100d is fixed in the nucleic acid detection device 300d.
  • an indication mark 18d (such as an arrow) is further provided on the side of the second housing 12d away from the accommodating cavity. Referring to FIG. 15d in conjunction, the indication mark 18d is used to indicate the nucleic acid detection cartridge. 100d is inserted into the insertion direction of the nucleic acid detection device 300d to avoid wrong insertion.
  • the box body 1d is provided with a number of supporting structures 16d. Since the detection chip 2d, the electrophoresis box 3d and the connector 4d have different thicknesses in the structural design, they are installed in the box body 1d. It is necessary to design several supporting structures 16d of different heights to support the detection chip 2d, the electrophoresis box 3d and the connector 4d, so as to improve the connection stability between the detection chip 2d, the electrophoresis box 3d and the connector 4d.
  • the box body 1d is made of plastic material, wherein the support structure 16d is integrally formed with the first casing 11d and the second casing 12d.
  • nucleic acid detection box 200d is also provided.
  • the electrophoresis box 3d and the connector 4d in order to improve the stability of the connection between the detection chip 2d, the electrophoresis box 3d and the connector 4d
  • the box body 1d is also provided with a mounting bracket 19d, and the detection chip 2d, the electrophoresis box 3d and the connector 4d are mounted and fixed on the mounting bracket 19d.
  • the mounting bracket 19d includes a frame body 191d and a bracket cover 192d.
  • the frame body 191d includes a detection chip installation area 193d and an electrophoresis box installation area 194d, the detection chip 2d is installed and fixed in the detection chip installation area 193d, and the electrophoresis box 3d is installed in the electrophoresis box installation area 194d.
  • the bracket cover 192d is provided with a window 195d corresponding to the detection chip 2d, and the detection chip 2d is exposed from the window 195d, so that the detection chip 2d is electrically connected to the connector.
  • the connector can be provided with above the detection chip 2d.
  • bracket cover 192d and the frame body 191d are bonded and fixed by double-sided tape.
  • the detection chip 2d further includes a driving circuit 24d disposed on the side of the first cover 21d close to the second cover 23d, and a first cover 24d disposed on the side of the driving circuit 24d close to the second cover 23d
  • the driving circuit 24d and the conductive layer 25d are both electrically connected to the connector 4d, and the detection liquid a can be realized in the channel 5d according to the specified path by energizing or de-energizing the driving circuit 24d and the conductive layer 25d move.
  • the driving circuit 24d includes a plurality of driving electrodes 241d arranged in an array and a control electrode 242d electrically connected to all the driving electrodes 241d.
  • the control electrode 242d is electrically connected to the connector 4d sexual connection.
  • the driving circuit 24d is a thin film transistor (Thin Film Transistor, TFT) driving circuit, and because the detection liquid a has conductivity, combined with the principle of dielectric wetting (Electrowitting-On-Dielectric, EWOD), the detection liquid a can be realized. It moves according to a predetermined path in the channel 5d.
  • TFT Thi Film Transistor
  • the circuit between a certain driving electrode 241d and the conductive layer 25d can be selectively turned on or off, thereby changing the voltage between the driving electrode 241d and the conductive layer 25d to change the detection solution a and the first dielectric layer 26d and the second dielectric layer 27d wetting characteristics, and then control the detection liquid a in the channel 5d to move according to a predetermined path. As shown in FIG. 6d, the detection solution a moves on the electrode I, the electrode H and the electrode G.
  • the first dielectric layer 26d and the second dielectric layer 27d are both insulating and hydrophobic layers, and specifically, a polytetrafluoroethylene coating. It can make the detection liquid a move more smoothly in the predetermined path, and avoid the liquid bead breaking during the moving process.
  • the driving circuit 24d is disposed on the side of the first cover plate 21d close to the channel 5d.
  • the driving circuit 24d may be formed by a metal etching method or an electroplating method.
  • control electrode 242d is integrated on the same edge of the first cover plate 21d, and the connection between the detection chip 2d and the detection chip 2d is realized by inserting the side of the first cover plate 21d on which the control electrode 242d is disposed into the connector 4d The electrical connection of the device 4d.
  • the driving circuit 24d can be divided into multiple areas according to different purposes, namely a sample adding area A, a reagent storage area B, a plurality of nucleic acid amplification areas C and a liquid discharge area D.
  • the detection chip 2d is also provided with a chip sample adding groove 6d corresponding to the sample adding area A.
  • the chip sample adding groove 6d is communicated with the sample adding area A.
  • the detection solution a is added to the sample adding area A from the sample adding port 13d.
  • the reagent storage area B is used to store fluorescent reagents (eg, fluorescent dyes or fluorescent probes).
  • the detection solution a performs a nucleic acid amplification reaction in the nucleic acid amplification region C.
  • the nucleic acid amplification region C may include multiple regions, and the number of specific regions may be determined according to actual detection requirements.
  • the liquid outlet area D is communicated with the electrophoresis box 3d, and the nucleic acid amplification product b can enter the electrophoresis box 3d through the liquid outlet area D for electrophoresis detection.
  • the specific movement path of the detection solution a in the detection chip 2d is: after the detection solution a enters the sample adding area A, it moves to the nucleic acid amplification area C according to a prescribed path under the driving of the driving electrode 241d to perform an amplification reaction; When the amplification reaction is completed, the amplified product moves to the reagent storage area B to be mixed with the fluorescent reagent, thereby obtaining the nucleic acid amplification product b combined with the fluorescent reagent; the uniformly mixed nucleic acid amplification product b is driven by the driving electrode 241d Move to the liquid outlet area D, and enter the electrophoresis box 3d through the liquid outlet of the liquid outlet area D.
  • the nucleic acid amplification product b may move back and forth in the nucleic acid amplification region C under the driving of the driving electrode 241d, so that the amplification product and the fluorescent reagent are mixed evenly. It can also be understood that a separate mixing area can also be set to achieve sufficient mixing of the detection solution a and the fluorescent reagent in the nucleic acid amplification product b.
  • the number of the nucleic acid amplification regions C is two, and the heating temperatures of the two nucleic acid amplification regions C are different, so that different stages of the nucleic acid amplification reaction of the detection solution a at different temperatures can be realized.
  • the number of the nucleic acid amplification regions C may be three or more according to the specific nucleic acid amplification reaction stage.
  • the fluorescent reagent is pre-coated in the reagent storage area B when the detection chip 2d is assembled, and a fluorescent reagent does not need to be separately added subsequently.
  • the fluorescent reagent in the nucleic acid detection box 200d, can also be mixed with the amplification product by subsequent addition.
  • a reagent tank 7d is provided on the detection chip 2d corresponding to the reagent storage area B, and fluorescent reagents can be added to the reagent tank 7d during nucleic acid detection.
  • This design can select the type of fluorescent reagents according to actual needs, and improve the Flexibility in nucleic acid amplification reactions.
  • the detection chip 2d further includes a heating element 28d disposed on the side of the first cover plate 21d or the second cover plate 23d away from the channel 5d, and the heating element 28d corresponds to the nucleic acid
  • the amplification area C is set for heating the detection solution a.
  • the heating element 28d includes a heating layer 281d and a heating circuit board 282d electrically connected to the heating layer 281d.
  • the heating circuit board 282d is electrically connected to the connector 4d, and the heating circuit board 282d is energized to make the heating layer 281d energized.
  • the heating layer 281d heats a specific area of the channel 5d.
  • the area to be heated in the channel 5d may be the nucleic acid amplification area C and the reagent storage area B.
  • the heating layer 281d is a carbon nanotube heating layer. Due to the excellent thermal conductivity of carbon nanotubes, the heating can be more uniform, the heat loss is lower, and the heating efficiency is higher. Of course, other heating structures (eg, metal sheets, graphite sheets, etc.) can also be used.
  • the heating element 28d is disposed on the side of the second cover plate 23d away from the channel 5d.
  • the heating layer 281d is bonded to the surface of the second cover plate 23d by thermally conductive adhesive.
  • the heating circuit board 282d is provided with a circuit (not shown), which is consistent with the layout structure of the nucleic acid amplification area C and the reagent storage area B. After power-on, the circuit can accurately amplify the corresponding nucleic acid.
  • the area C and the reagent storage area B are heated, and the temperature of each nucleic acid amplification area C and the reagent storage area B is easy to control.
  • the heating layer 281d is provided with two regions corresponding to the nucleic acid amplification region C, and the specific heating temperature ranges are respectively 90°C-105°C and 40°C-75°C.
  • the heating layer 281d is provided with three regions corresponding to the nucleic acid amplification region C, and the specific heating temperature ranges are respectively 90°C-105°C, 68°C-75°C, and 40°C-65°C.
  • the heating circuit board 282d includes a first circuit board (not shown), a second circuit board (not shown), and a connection connecting the first circuit board and the second circuit board
  • the connecting part (not shown)
  • the first circuit board is located below the first cover plate 21d
  • the second circuit board is located above the second cover plate 23d
  • the first circuit board and the second circuit board are electrically connected
  • the first circuit board is inserted into the slot 41d of the connector 4d to realize the electrical connection between the heating circuit board 282d and the connector 4d.
  • the first circuit board, the second circuit board and the connecting portion are of an integrated structure.
  • the silicone oil d will be injected into the channel 5d, and the detection liquid a will move in the silicone oil d according to a predetermined path.
  • the first cover plate 21d and the second cover plate 23d are both glass plates
  • the spacer layer 22d is a double-sided adhesive frame, which is pasted on the first cover through the double-sided adhesive frame.
  • the edges of the cover plate 21d and the second cover plate 23d thus together form a sealed channel 5d.
  • the capacity of the channel 5d can be adjusted by designing the spacer layers 22d with different thicknesses according to actual needs.
  • the electrophoresis box 3d includes an electrophoresis tank 31d, an electrophoresis electrode 32d disposed at both ends of the electrophoresis tank 31d, a gel medium 33d disposed inside the electrophoresis tank 31d, and one end of the gel medium 33d.
  • the liquid injection tank 34d and the capillary 35d are examples of the electrophoresis tank 31d.
  • the electrophoresis electrode 32d is electrically connected to the connector 4d, one end of the capillary 35d extends into the liquid injection tank 34d, and the other end is connected to the channel 5d of the detection chip 2d, and the nucleic acid amplification product b will pass through the liquid outlet area D through The capillary 35d enters into the liquid injection tank 34d of the gel medium 33d to perform electrophoresis detection.
  • the electrophoresis tank 31d is located on the side of the first cover plate 21d away from the second cover plate 23d, and the opening of the electrophoresis tank 31d faces the first cover one side of the plate 21d, and the opening of the electrophoresis tank 31d faces the first cover plate 21d.
  • the electrophoresis tank 31d includes a transparent bottom plate 311d and a plurality of side walls 312d connected to the transparent bottom plate 311d.
  • the electrophoresis box 3d is sealed by using the first cover plate 21d as the cover plate of the electrophoresis tank 31d.
  • the above ingenious design can make the detection chip 2d better communicate with the electrophoresis box 3d, which is conducive to the transfer of the detection solution a from the detection chip 2d to the electrophoresis box 3d; The volume of the whole nucleic acid detection box 100d.
  • a sealing rubber ring (not shown) is disposed between the side wall 312d and the first cover plate 21d to improve the sealing performance of the electrophoresis box 3d.
  • the electrophoresis tank 31d further includes a plurality of latching positions 313d disposed on the transparent bottom plate 311d, the gel medium 33d is substantially a rectangular parallelepiped structure, and can be clamped between the plurality of the latching positions 313d, the The design of the clamping position 313d can prevent the gel medium 33d from moving and dislocating, thereby ensuring the accuracy of electrophoresis detection.
  • the transparent bottom plate 311d is a transparent glass plate, and the electrophoresis result can be observed.
  • the number of the latching positions 313d is four, and the four latching positions 313d are respectively located at four corners of the gel medium 33d of the rectangular parallelepiped structure, so as to fix the gel medium 33d.
  • the electrophoresis tank 31d further includes a liquid injection hole 36d, the liquid injection hole 36d is disposed at the position of the first cover plate 21d corresponding to the electrophoresis tank 3d, and the electrophoresis tank 31d can be injected into the electrophoresis tank 31d through the liquid injection hole 36d Inject a buffer (eg buffer).
  • a buffer eg buffer
  • one end of the capillary 35d penetrates the first cover plate 21d and enters the channel 5d, the capillary 35d includes a liquid inlet end 351d located in the channel 5d, and the capillary effect can be used to
  • the nucleic acid amplification product b in the channel 5d is allowed to enter the gel medium 33d of the electrophoresis box 3d.
  • the end surface of the liquid inlet end 351d needs to be flush with the liquid surface of the silicone oil d. Or, as shown in FIG. 11 and FIG.
  • the liquid inlet end 351d is provided with at least one inclined surface 352d, that is, the capillary 35d is inclined to the side wall of the liquid inlet end 351d, and the lowest point of the inclined surface 352d is connected to the channel.
  • the capillary 35d needs to be filled with buffer, and the buffer should be able to contact the surface of the liquid bead of the nucleic acid amplification product b at the liquid outlet D to form a continuous liquid flow , the capillary principle can be used to ensure that the nucleic acid amplification product b enters the capillary 35d smoothly.
  • the angle between the inclined surface 352d and the central axis c of the capillary 35d is 45°-60°. It has been verified by experiments that within this angle range, the nucleic acid amplification product b can smoothly enter the capillary 35d and then enter inside the gel medium 33d.
  • an inclined surface 352d with an inclination angle of 45°-60° is formed on the side of the liquid inlet end 351d of the capillary tube 35d.
  • the increased product b smoothly enters the capillary 35d and enters the gel medium 33d.
  • two opposite sides of the liquid inlet end 351d of the capillary 35d are respectively formed with an inclined plane 352d with an inclination angle of 45°-60°.
  • the capillary In principle, the nucleic acid amplification product b can be smoothly entered into the capillary 35d and into the gel medium 33d.
  • one end of the electrophoresis electrode 32d extends into the electrophoresis tank 31d, and the other end is electrically connected to the heating circuit board 282d of the heating element 28d.
  • the electrophoretic electrode 32d By directly connecting the electrophoretic electrode 32d to the heating circuit board 282d of the heating assembly 28d, complex circuit connections can be avoided, structural complexity can be reduced, circuit design difficulty can be reduced, and assembly can be facilitated.
  • the electrophoresis box 3d further includes an electrophoresis circuit board 37d, one end of the electrophoresis electrode 32d extends into the electrophoresis tank 31d, and the other end is electrically connected to the electrophoresis circuit board 37d. sexual connection.
  • the electrophoresis circuit board 37d is electrically connected to a connector (not shown). Specifically, one electrophoresis circuit board 37d is respectively provided corresponding to the two electrophoresis electrodes 32d.
  • the assembly process of the electrophoresis box 3d includes:
  • the electrophoresis electrodes 32d are installed on both ends of the electrophoresis tank 31d, one end of the electrophoresis electrodes 32d extends into the electrophoresis tank 31d, and the other end is electrically connected to the heating circuit board 282d of the heating element 28d.
  • the second step is to put the gel medium (agarin) 33d in the shape of a rectangular parallelepiped into the latching position of the electrophoresis tank 31d.
  • a liquid injection groove 34d needs to be prepared in advance on the agaric gum for injecting the detection liquid a.
  • the liquid injection groove 34d can be an elongated groove with an opening direction facing the detection chip 2d.
  • a buffer solution (Buffer) is injected into the electrophoresis tank 31d.
  • glue is applied to the end surface of the side wall 312d of the electrophoresis tank 31d close to the first cover plate 21d.
  • the fifth step is to cover the first cover plate 21d over the electrophoresis tank 31d.
  • the buffer solution (Buffer) is injected into the electrophoresis tank 31d again through the liquid injection hole 36d.
  • the seventh step is to cover the liquid injection hole 36d with a breathable film or a release film.
  • the use process of the nucleic acid detection box 100d includes the following steps:
  • step S11d referring to FIG. 3d, the detection solution a containing the nucleic acid sample is injected into the chip injection tank 6d through the injection port 13d.
  • step S12d referring to FIG. 15d, the pressure control chip a in the sample adding tank 6d enters the sample adding area A of the detecting chip 2d in the form of droplets.
  • step S13d referring to FIG. 15d, by adjusting the voltage between the corresponding driving electrode 241d and the conductive layer 25d in the driving circuit 24d, and then driving the detection solution a to move to the nucleic acid amplification area C according to the specified path in the channel 5d, the PCR is completed.
  • Amplification reaction Specifically, the number of nucleic acid amplification regions C is two, and the heating temperature ranges of the heating layer 281d corresponding to the two nucleic acid amplification regions C are 90°C-105°C and 40°C-75°C, respectively.
  • the specific PCR amplification reaction process sequentially includes: the first step, thermal denaturation at 90°C-105°C for 15-25min; the second step, RT reverse transcription at 45°-60° for 5-15min ; The third step, heating for 1-5min under the condition of 90°C-100°C; the fourth step, 20-50 seconds under the condition of 90°C-100°C, and 40-60 seconds under the condition of 55°C-65°C, the fourth step cycle 35-50 times (preferably 45 times) end the amplification reaction.
  • Temperature sensors and time relays can be used to sense heating temperature and heating time.
  • the specific PCR amplification reaction process sequentially includes: the first step, thermal denaturation at 90°C-105°C for 3-8 minutes; the second step, proliferation at 45°C-60°C for 3-8 minutes; Three steps, heating at 90°C-100°C for 3-8min; fourth step, amplification at 90°C-100°C for 3-8 seconds, amplification at 50°C-65°C for 10-20 seconds, 68°C- Amplify at 75°C for 10-20 seconds, in which the fourth step is cycled 35-50 times to end the amplification reaction.
  • the specific PCR amplification reaction process sequentially includes: the first step, thermal denaturation at 95°C-97°C for 3-5 minutes; the second step, proliferation at 55°C-60°C for 3-5 minutes; the third step, Heating at 95°C-97°C for 3-8min; the fourth step, amplification at 95°C-97°C for 3-5 seconds, at 55°C-60°C for 15-20 seconds, at 70°C-72°C Amplify for 15-20 seconds, wherein the fourth step is cycled 43-45 times (preferably 45 times) to end the amplification reaction.
  • step S14d referring to FIG. 3d, after the amplification, the amplified product is mixed with the fluorescent reagent pre-placed in the reagent storage area B, and then enters the electrophoresis box 3d after mixing evenly.
  • Step S15d the electrophoresis box 3d is controlled to perform electrophoresis detection.
  • the nucleic acid detection box 100d is a one-time-use product, and one detection box 100d is used for each detection sample. Therefore, the detection box 100d does not need a cleaning process.
  • the detection box 20 has a substantially cubic structure.
  • the nucleic acid detection box 100d of the present invention sets the electrophoresis box 3d and the detection chip 2d together in the same box body 1d, and the detection solution a can directly enter the electrophoresis after the nucleic acid amplification reaction is completed in the detection chip 2d. Electrophoresis detection is carried out in the box 3d, the process is smooth, no need to replace equipment, and no need for professionals to perform sample transfer operations, which greatly improves the detection efficiency. Moreover, the integration of the detection chip 2d and the electrophoresis box 3d in one box is small in size, and is suitable for the above-mentioned portable nucleic acid detection equipment.
  • the present invention also provides a nucleic acid detection device 300d, the nucleic acid detection device 300d includes a host 10d and the nucleic acid detection box 100d as described above, the host 10d is provided with a detection box installation slot 20d, the nucleic acid detection The cartridge 100d is mounted in the detection cartridge mounting groove 20d.
  • the nucleic acid detection device 300d further includes a host heating tank 30d, a host sample adding tank 40d, and an image acquisition window 50d.
  • the main heating tank 30d is used for accommodating and heating the detection liquid.
  • the host sample adding slot 40d is located on the detection box installation slot 20d and communicates with the detection box installation slot 20d.
  • the host sample addition slot 40d is used to add the detection solution to the nucleic acid detection box 100d in the detection box installation slot 20d.
  • the image acquisition window 50d is arranged on the side of the detection box installation area 20d away from the host sample adding slot 40d, and an image acquisition device (not shown) is provided on the side of the image acquisition window 50d away from the detection box installation slot 20d, The image acquisition device is used to acquire the image of the electrophoresis box 3d through the image acquisition window 50d and the detection window 14d on the nucleic acid detection box 100d.
  • the collected nucleic acid sample of the test subject is mixed with the detection agent (for example, buffer solution) to form a detection solution, which is added to the heating tank 30d of the main engine, and the heating tank 30d of the main engine is heated for the detection solution; after the detection solution is heated, it is transferred to
  • the host sample adding tank 40d adds the detection solution into the nucleic acid detection box 100d in the detection box installation slot 20d through the host sample adding tank 40d, so that the detection solution enters the nucleic acid detection box 100d for nucleic acid amplification reaction and electrophoresis detection; after the electrophoresis detection is completed
  • the image acquisition device acquires the image of the electrophoresis box 3d through the image acquisition window 50d and the detection window 14d.
  • the image is a fluorescent photo of electrophoresis detection, and a nucleic acid detection result can be obtained according to the fluorescent photo.
  • the detection box installation groove 20d is a groove designed to be inclined relative to the bottom surface or the top surface of the fuselage 10 .
  • the height of the end of the detection box installation slot 20d close to the host sample addition slot 40d from the horizontal operating table is higher than the end of the detection box installation slot 20d away from the host sample addition slot 40d.
  • the PCR reaction a large number of air bubbles will be generated in the silicone oil in the detection chip 2d. Especially after heating, the amount of air bubbles generated will increase.
  • the detection box installation groove 20d is designed to be inclined, so that the nucleic acid detection box 100d can be placed at an angle. Moving to a high position, it is naturally discharged from the sample adding end of the nucleic acid detection cartridge 100d, and will not obstruct the movement path of the detection solution a.
  • the nucleic acid detection device 300d further includes a display screen 60d for displaying the nucleic acid detection result and the set corresponding reaction parameters.
  • the nucleic acid detection device 300d further includes a camera 70d, and the camera 70d is used for collecting information of nucleic acid samples to be detected and recording the entire nucleic acid detection process.
  • the present invention also provides a method for nucleic acid detection using the above-mentioned nucleic acid detection device 300d, which specifically includes the following steps:
  • Step S21d parameter setting.
  • the host 10d and set the corresponding detection parameters, which may specifically include the heating temperature and heating time of the heating tank 30d of the host, the corresponding parameters of the PCR amplification process in the nucleic acid detection box 100d, and the corresponding parameters of electrophoresis detection, etc.
  • Step S22d insert the nucleic acid detection cartridge 100d into the detection cartridge installation slot 20d.
  • step S23d a nucleic acid sample is collected, the nucleic acid sample is mixed with a drug to form a detection solution, and the detection solution is heated in the heating tank 30 of the host.
  • step S24d the detection solution a is transferred to the host sample adding tank 40d and added to the nucleic acid detection box 100d through the host sample adding tank 40d for PCR amplification reaction and electrophoresis detection.
  • the specific nucleic acid amplification and electrophoresis detection steps are as described in the above steps S11d to S15d.
  • step S25 an image (fluorescence photo) detected by electrophoresis is collected and output.
  • the image acquisition device collects the electrophoresis image of the electrophoresis box 3d through the image acquisition window 50d and the detection window 14d, and processes the image by the image processor.
  • the processed image is displayed on the display screen 60d, and the detection The results are uploaded to the client for review by relevant personnel.
  • the nucleic acid detection device can integrate the PCR amplification and electrophoresis detection of nucleic acid in one device through the cooperation of the host and the nucleic acid detection box.
  • the overall structure is simple, the detection operation is simple, and the operation process is correct. It has low professional requirements and high testing efficiency, which greatly reduces the testing cost; at the same time, the testing process is flexible and does not need to be carried out in a fixed laboratory.
  • the testing equipment is portable, which can realize community testing or home testing.
  • the nucleic acid detection box 100e includes a box body 1e, a detection chip 2e, and an electrophoresis box 3e.
  • the detection chip 2e is arranged inside the box body 1e, and the electrophoresis box 3e is arranged outside the box body 1e.
  • the detection chip 2e includes a first cover plate 21e, a spacer layer 22e and a second cover plate 23e. The two opposite surfaces of the spacer layer 22e are respectively adjacent to the first cover plate 21e and the second cover plate 23e.
  • the plate 21e, the spacer layer 22e and the second cover plate 23e surround and form a channel 5e, and the channel 5e is used for carrying the detection liquid a.
  • the electrophoresis box 3e communicates with the channel 5e. Both the detection chip 2e and the electrophoresis box 3e are electrically connected to the external power source 7e.
  • the nucleic acid detection box 100e is used for nucleic acid amplification reaction and electrophoresis detection, and the detection solution a containing nucleic acid samples is added into the channel 5e of the detection chip 2e.
  • the detection solution a in the channel 5e is a liquid bead If the detection solution a carries out a nucleic acid amplification reaction in the channel 5e to obtain a nucleic acid amplification product (this nucleic acid amplification product is combined with a fluorescent reagent), the nucleic acid amplification product enters the electrophoresis directly from the detection chip 2e Electrophoresis detection is performed in the box 3e, and finally an image of the electrophoresis box 3e is captured by the image acquisition device matched with the nucleic acid detection box 100e, wherein the image is a fluorescent photo of the electrophoresis detection.
  • the present invention has a simple overall structure, does not require complex large-scale equipment, and has low cost.
  • the detection solution a can directly enter the electrophoresis box 3e for electrophoresis detection, which simplifies the different
  • the sample transfer in the detection link cooperates with the connection process to improve the detection efficiency.
  • the detection chip 2e further includes a driving circuit 24e disposed on the side of the first cover plate 21e close to the second cover plate 23e, and a first cover plate 24e disposed on the side of the driving circuit 24e close to the second cover plate 23e
  • a dielectric layer 26e, a conductive layer 25e disposed on the side of the second cover plate 23e close to the first cover plate 21e, and a second dielectric layer 27e disposed on the side of the conductive layer 25e close to the first cover plate 21e , this driving circuit 24e and this conductive layer 25e are all electrically connected with the external power supply 7e, through the external power supply 7e for this driving circuit 24e and this conductive layer 25e to be energized or powered off can realize this detection liquid a in this channel 5e according to regulations path to move.
  • the driving circuit 24e includes a plurality of driving electrodes 241e arranged in an array
  • the nucleic acid detection box 100e further includes a control board 4e, the control board 4e and each driving electrode 241e and the conductive layer 25e are electrically connected, the control board 4e is arranged on the side surface of the first cover plate 21e close to the second cover plate 23e, and the control board 4e is located outside the channel 5e, and can pass through the The control board 4e is uniformly electrically connected to the external power source 7e.
  • the driving circuit 24e is a thin film transistor (Thin Film Transistor, TFT) driving circuit, and since the detection liquid a has conductivity, combined with the principle of dielectric wetting (Electrowitting-On-Dielectric, EWOD), the detection can be realized.
  • the liquid a moves along a predetermined path in the channel 5e.
  • the circuit between a certain driving electrode 241e and the conductive layer 25e can be selectively turned on or off, thereby changing the voltage between the driving electrode 241e and the conductive layer 25e to change the detection solution a and the first dielectric layer
  • the wetting characteristics between 26e and the second dielectric layer 27e further control the movement of the detection liquid a in the channel 5e according to a predetermined path.
  • the detection solution a moves on the electrode I, the electrode H and the electrode G.
  • a voltage is applied between the electrode G and the conductive layer 25e to give the electrode G a voltage Vd, and at the same time
  • the voltage between the electrode H and the conductive layer 25e is disconnected, and the wetting characteristics between the detection liquid a and the first dielectric layer 26e and the second dielectric layer 27e are changed, so that the electrode H and the detection liquid a are in contact with each other.
  • the liquid-solid contact angle between the electrode G and the detection liquid a becomes larger, and the liquid-solid contact angle between the electrode G and the detection liquid a becomes smaller, thereby promoting the movement of the detection liquid a from the electrode H to the electrode G.
  • the first dielectric layer 26e and the second dielectric layer 27e are both insulating and hydrophobic layers, specifically, a polytetrafluoroethylene coating, which can play an insulating and hydrophobic role on the one hand, and also It can make the detection liquid a move more smoothly in the predetermined path, and avoid the liquid bead breaking during the moving process.
  • the driving circuit 24e is disposed on the side of the first cover plate 21e close to the channel 5e.
  • the driving circuit 24e may be formed by a metal etching method or an electroplating method.
  • the driving circuit 24e can be divided into multiple areas according to different uses, namely a sample adding area A, a reagent storage area B, at least one nucleic acid amplification area C and a liquid outlet area D.
  • the sample adding area A is used for adding detection solution a.
  • the reagent storage area B is used to store fluorescent reagents (eg, fluorescent dyes or fluorescent probes).
  • the detection solution a performs a nucleic acid amplification reaction in the nucleic acid amplification region C.
  • the nucleic acid amplification region C may include multiple regions, and the number of specific regions may be determined according to actual detection requirements.
  • the liquid outlet area D is in communication with the electrophoresis box 3e, and the nucleic acid amplification product combined with the fluorescent reagent can enter the electrophoresis box 3e through the liquid outlet area D for electrophoresis detection.
  • the specific movement path of the detection solution a in the detection chip 2e is: after the detection solution a enters the sample adding area A, it moves to the nucleic acid according to a specified path under the driving of the driving electrode 241e
  • the amplification reaction is carried out in the amplification area C; when the amplification reaction is completed, the amplified product moves to the reagent storage area B to be mixed with the fluorescent reagent, thereby obtaining the nucleic acid amplification product combined with the fluorescent reagent; the nucleic acid combined with the fluorescent reagent
  • the amplification product moves to the liquid outlet area D under the driving of the driving electrode 241, and enters the electrophoresis box 3e through the liquid outlet 51e of the liquid outlet area D.
  • the nucleic acid amplification product may move back and forth in the nucleic acid amplification region C under the driving of the driving electrode 241e, so that the amplification product and the fluorescent reagent are mixed evenly. It can also be understood that a separate mixing area can also be set to achieve sufficient mixing of the detection solution a and the fluorescent reagent in the nucleic acid amplification product.
  • the number of the nucleic acid amplification regions C is two, and the heating temperatures of the two nucleic acid amplification regions C are different, so that different stages of the nucleic acid amplification reaction of the detection solution a at different temperatures can be realized.
  • the specific heating temperature ranges of the two nucleic acid amplification regions C are 40°C-75°C and 90°C-105°C, respectively.
  • the number of the nucleic acid amplification regions C may also be three or more.
  • the heating temperature ranges corresponding to the nucleic acid amplification zone C are 40°C-65°C, 68°C-75°C, and 90°C-105°C, respectively.
  • the reagent storage area B is provided with a reagent capsule 6e
  • the reagent capsule 6e contains a fluorescent reagent
  • the reagent capsule 6e extends out of the first Two cover plates 23e are provided.
  • the box body 1e is provided with a reagent tank 16e corresponding to the reagent storage area B.
  • the reagent capsule 6e is accommodated in the reagent tank 16e.
  • the The reagent tank 16e is heated by an external heating device, so that the reagent capsule 6e is melted, so that the fluorescent reagent enters the channel 5e and combines with the amplified product.
  • the fluorescent reagent is pre-coated in the reagent storage area B when the detection chip 2e is assembled, and there is no need to separately add the fluorescent reagent or set the reagent capsule 6e subsequently.
  • silicone oil will be injected into the channel 5e through the injection hole of the sample adding area A, and the detection liquid a will move in the silicone oil according to a predetermined path.
  • the first cover plate 21e and the second cover plate 23e are both glass plates, and the spacer layer 22e is a double-sided adhesive frame, which is pasted on the first cover through the double-sided adhesive frame.
  • the edges of the cover plate 21e and the second cover plate 23e together form a sealed channel 5e.
  • the capacity of the channel 5e can be adjusted by designing spacer layers 22e with different thicknesses according to actual requirements.
  • the box body 1 includes a first shell 11e, a second shell 12e, a sample injection port 13e, a connection port 15e and a heating port 14e.
  • the first shell 11e and The second casings 12e together form an accommodating cavity (not shown), the detection chip 2e is accommodated in the accommodating cavity, and the electrophoresis box 3e is located on the side of the first casing 11e away from the second casing 12e.
  • the sample introduction port 13e and the connection port 15e are both provided on the second housing 12e, and the heating port 14e is provided on the first housing 11e and/or the second housing 12e.
  • the sample adding port 13e is disposed corresponding to the pressurizing area A of the detection chip 2e, and communicates with the sample adding area Ae, and is used for adding the detection solution a containing the nucleic acid sample into the detection chip 2e.
  • the connection port 15e is provided corresponding to the control board 4e, the control board 4e is exposed from the connection port 15e, and the external power source 7e can extend into the connection port 15e to abut and electrically connect with the control board 4e.
  • the heating port 14e is provided corresponding to the nucleic acid amplification area C of the detection chip 2e.
  • the outer surface of the detection chip 2e corresponding to the nucleic acid amplification area C is exposed from the heating port 14e.
  • An external heating device (not shown) extends into the heating port 14e and the heating port 14e. The surface of the detection chip 2e is contacted and the nucleic acid amplification region C is heated.
  • the reagent tank 16e is provided on the second shell 12e, and the external heating device is provided on the side of the second shell 12e away from the first shell 11e and abuts against the outer surface of the reagent tank 16e,
  • the reagent capsule 6e is melted by controlling the external heating device, so that the fluorescent reagent in the reagent capsule 6e is mixed with the nucleic acid amplification product.
  • the heating port 14e is provided on the first casing 11e and the second casing 12e, and the external heating device can heat the upper and lower surfaces of the detection chip 2e at the same time, so that the heating of the nucleic acid amplification region C is more efficient. Uniform, higher heating efficiency, and more sufficient nucleic acid amplification reaction.
  • the number of heating ports 14e may be determined according to the number of nucleic acid amplification regions C.
  • the number of nucleic acid amplification regions C is two, and the number of corresponding heating ports 14e is four.
  • first casing 11e and the second casing 12e are bonded by an adhesive. It can be understood that the first casing 11e and the second casing 12e can also be They are connected in a snap-fit manner, and at the same time, they are fastened by screws, so as to increase the connection firmness of the first casing 11e and the second casing 12e.
  • the box body 1e further includes two bumps 18e.
  • the two bumps 18e are opposite to the two side walls of the box body 1e. Insertion and removal of 100e in nucleic acid detection equipment.
  • the second casing 12e is provided with a plurality of through holes 17e, and the through holes 17e can facilitate the dissipation of heat in the box body 1e and ensure the normal detection of the detection chip 2e.
  • a cover film 19e is provided on the sample introduction port 13e to seal the sample introduction port 13e.
  • the electrophoresis box 3e includes an electrophoresis tank 31e, electrophoresis electrodes 32e disposed at both ends of the electrophoresis tank 31e, a gel medium 33e disposed between the two electrophoresis electrodes 32e, and a An injection groove 34e at one end of the gel medium 33e.
  • the electrophoresis electrode 32e is electrically connected to the external power source 7e, and the liquid injection tank 34e penetrates through the first casing 11e and communicates with the liquid outlet 51e, thereby realizing the connection between the electrophoresis box 3e and the channel 5e, and combining the nucleic acid amplification product of the fluorescent reagent
  • the liquid outlet area D will enter the gel medium 33e through the liquid injection groove 34e, so as to perform electrophoresis detection.
  • the electrophoresis tank 31e includes a bottom plate 311e and a plurality of side walls 312e connected to the bottom plate 311e, and the electrophoresis tank cover plate 35e is disposed at one end of the side wall 312e away from the bottom plate 311e.
  • the bottom plate 311e is a transparent plate, and the image acquisition device can collect the image of the electrophoresis detection result on the outside of the bottom plate 311e.
  • a sealing rubber ring (not shown) is disposed between the side wall 312e and the bottom surface of the first casing 11e, so as to improve the sealing performance of the electrophoresis box 3e.
  • an electrophoresis tank cover (not shown) is provided on the side of the electrophoresis tank 31e close to the box body 1e, wherein the electrophoresis tank cover is used to seal the electrophoresis tank 31e, and the liquid injection tank 34e penetrates through the electrophoresis tank cover and communicates with the liquid outlet 51e.
  • the electrophoresis tank 31e further includes a plurality of latching positions (not shown) disposed on the bottom plate 311e, and the gel medium 33e is substantially a rectangular parallelepiped structure, and can be clamped between the plurality of the latching positions , the design of the card position can prevent the gel medium 33e from moving and dislocating, thereby ensuring the accuracy of electrophoresis detection.
  • the bottom plate 311e is a transparent glass plate, and the electrophoresis result can be observed.
  • the number of the latching positions 313e is four, and the four latching positions 313e are respectively located at four corners of the gel medium 33e of the rectangular parallelepiped structure, so as to fix the gel medium 33e.
  • the gel medium 33e may be agarose, agarose gel or other gels for electrophoresis detection.
  • the liquid injection tank 34e is provided with a first porous adsorption block 38e.
  • the first porous adsorption block 38e carries a wetting liquid 39e.
  • One end of the first porous adsorption block 38e extends into the bottom of the liquid injection tank 34e, and the other end is flush with or protrudes from the surface of the liquid outlet 51e close to the channel 5e.
  • the nucleic acid amplification product moves to the liquid outlet area D, it will contact the first porous adsorption block 38e, dissolve in the wetting liquid 39e, and flow to the bottom of the liquid injection tank 34e through the pores of the first porous adsorption block 37e.
  • Electrophoresis detection The present application adopts the method of dry electrophoresis. It is only necessary to adsorb a small amount of wetting solution 39e on the first porous adsorption block 38e before assembly. Considering the assembly accuracy, the assembly process and assembly difficulty of the nucleic acid detection cartridge 100e are simplified, and it is also beneficial for the nucleic acid amplification product to successfully enter the liquid injection tank 34e.
  • the first porous adsorption block 38e may be sponge or other porous materials.
  • the liquid injection tank 34e is provided with a second porous adsorption block 36e, and the second porous adsorption block 36e carries a wetting liquid 39e.
  • the liquid outlet 51e is provided with an adsorption tube 52e, one end of the adsorption tube 52e is inserted into the second porous adsorption block 36e, and the other end is flush with or protrudes from the liquid outlet 51e close to the surface of the channel 5e, the second The wetting liquid 39e in the adsorption block 36e fills the adsorption tube 52e.
  • the nucleic acid amplification product moves to the liquid outlet area D, it will contact the adsorption tube 52e, dissolve in the wetting solution 39e, and enter the second adsorption block 36e through the adsorption tube 52e, and then enter the bottom of the liquid injection tank 34e.
  • Electrophoresis detection The present application adopts the method of dry electrophoresis. It is only necessary to adsorb a small amount of wetting solution 39e on the second porous adsorption block 36e before assembly. The assembly accuracy simplifies the assembly process and assembly difficulty of the nucleic acid detection box 100e, and facilitates the successful entry of nucleic acid amplification products into the liquid injection tank 34e.
  • a wetting solution eg buffer
  • the function of the wetting solution is mainly to enable the nucleic acid molecules in the nucleic acid amplification product to completely enter the gel medium 33e.
  • each electrophoresis electrode 32e includes an electrode body 321e and an electrode piece 322e electrically connected to the electrode body 321e.
  • the two electrode pieces 322e are disposed on the outer surface of the side wall 312e of the electrophoresis tank 31e, so as to facilitate connection with an external power source 7e Electrical connection.
  • the material of the two electrode bodies 321e may be metal, or may be a composite structure of metal, anion resin, and cation resin.
  • the electrode sheet 322e may be a metal sheet, specifically a copper sheet.
  • the electrophoresis box 3e further includes an electronic identification code 37e (specifically, a two-dimensional code) attached to the outer surface of the bottom plate 311e of the electrophoresis tank 31e.
  • the identification code 37e is recorded to facilitate the tracking of subsequent detection results.
  • the use process of the nucleic acid detection box 100e includes the following steps:
  • step S11e referring to FIG. 1e, the detection solution a containing the nucleic acid sample is injected into the sample application area A of the detection chip 2e through the injection port 13e.
  • step S12e referring to FIG. 7e, by adjusting the voltage between the corresponding driving electrode 241e and the conductive layer 25e in the driving circuit 24e, and then driving the detection solution a to move to the nucleic acid amplification area C according to the specified path in the channel 5e, the nucleic acid is completed.
  • Amplification reaction Specifically, the number of nucleic acid amplification regions C is two, and the temperatures that need to be heated are 90°C-105°C and 40°C-75°C respectively.
  • the specific nucleic acid amplification reaction process sequentially includes: the first step, thermal denaturation at 90°C-105°C for 15-25min; the second step, RT reverse transcription at 45°-60° for 5-15min ; The third step, heating for 1-5min under the condition of 90 °C-100 °C; the fourth step, heating under the condition of 90 °C-100 °C for 20-50 seconds, and heating under the condition of 55 °C-65 °C for 40-60 seconds, among which the fourth Step cycle 35-50 times (preferably 45 times) to end the amplification reaction.
  • Temperature sensors and time relays can be used to sense heating temperature and heating time.
  • the specific nucleic acid amplification reaction process sequentially includes: the first step, thermal denaturation at 90°C-105°C for 3-8 minutes; the second step, proliferation at 45°C-60°C for 3-8 minutes; Three steps, heating at 90°C-100°C for 3-8min; fourth step, amplification at 90°C-100°C for 3-8 seconds, amplification at 50°C-65°C for 10-20 seconds, 68°C- Amplify at 75°C for 10-20 seconds, in which the fourth step is cycled 35-50 times to end the amplification reaction.
  • the specific nucleic acid amplification reaction process sequentially includes: the first step, thermal denaturation at 95°C-97°C for 3-5 minutes; the second step, proliferation at 55°C-60°C for 3-5 minutes; the third step, Heating at 95°C-97°C for 3-8min; the fourth step, amplification at 95°C-97°C for 3-5 seconds, at 55°C-60°C for 15-20 seconds, at 70°C-72°C Amplify for 15-20 seconds, wherein the fourth step is cycled 43-45 times (preferably 45 times) to end the amplification reaction.
  • step S13e referring to FIG. 7e and FIG. 4e in combination, after the amplification, the nucleic acid amplification product is moved to the reagent storage area B under the driving of the driving electrode 241e, and the pressing member 6e is pressed to pierce the reagent capsule 6e, and the fluorescent reagent enters.
  • the reagent storage area B is mixed with the nucleic acid amplification product, and after the mixing is uniform, the liquid outlet 51e of the liquid outlet area D enters the electrophoresis box 3e.
  • Step S15e the electrophoresis box 3e is controlled to perform electrophoresis detection.
  • the nucleic acid detection box 100e is a disposable product, and each detection sample uses one detection box 20e. Therefore, the detection box 20e does not need a cleaning process.
  • the detection box 20e has a substantially cubic structure.
  • the nucleic acid detection box 100e of the present invention integrates the electrophoresis box 3e and the detection chip 2e, and the detection solution a can directly enter the electrophoresis box 3e for electrophoresis after the nucleic acid amplification reaction is completed in the detection chip 2e.
  • the detection process is smooth, and there is no need to replace the equipment, and no need for professionals to perform sample transfer operations, which greatly improves the detection efficiency.
  • the nucleic acid detection box 100e does not need to be provided with a heating device, which greatly simplifies the preparation difficulty and preparation cost of the detection chip 2e.
  • dry electrophoresis is used, and under the premise of ensuring the accuracy of electrophoresis detection results, there is no need to add buffer, which simplifies the assembly process and assembly difficulty.
  • the present invention also provides a nucleic acid detection device 200e, the nucleic acid detection device 200e includes a host 201e and the nucleic acid detection box 100e as described above, the host 201e is provided with at least one detection box installation area 202e, the nucleic acid detection box 100e is detachably installed in the detection box installation area 202e.
  • the host 201e further includes a host heating device 204e and a host connector 203e, and the host heating device 204e and the host connector 203e are both disposed in the detection box installation area 202e.
  • the host connector 203e can extend into the connection port 15e to abut and electrically connect with the control board 4e on the detection chip 2e, and the host heating device 204e can The heating port 14e extends into contact with the surface of the detection chip 2e, thereby heating the nucleic acid detection cartridge 100e.
  • the host 201e further includes an image acquisition device 205e, the image acquisition device 205e is disposed on the side of the detection box installation area 202e corresponding to the electrophoresis box 3e, and the image acquisition device 205e is used for collecting images of the electrophoresis box 3e.
  • the collected nucleic acid sample of the test subject is mixed with the detection agent (such as buffer solution) to form a detection solution and preheated; after the detection solution is preheated, the nucleic acid detection box 100e is heated so that the detection solution enters the nucleic acid detection box. 100e performs nucleic acid amplification reaction and electrophoresis detection; after the electrophoresis detection is completed, the image acquisition device 205e collects the image of the electrophoresis box 3e.
  • the image is a fluorescent photo of electrophoresis detection, and a nucleic acid detection result can be obtained according to the fluorescent photo.
  • the detection box installation area 202e includes an inclined design installation groove 206e.
  • the installation groove 206e is close to the nucleic acid detection box 100e
  • the height of one end of the sample addition port 13e away from the surface of the horizontal operating table is higher than the end of the installation groove 206e away from the sample addition port 13e.
  • the installation groove 206e is designed to be inclined, so that the nucleic acid detection box 100e can be placed at an inclination.
  • the sample adding end of the nucleic acid detection box 100e is higher than the end where the nucleic acid amplification reaction occurs, and the air bubbles generated in the nucleic acid detection box 100e can naturally move to a high position. , is naturally discharged from the sample adding end of the nucleic acid detection cartridge 100e, and will not hinder the movement path of the detection solution a.
  • the nucleic acid detection device 200e further includes a display screen 207e, and the display screen 207e is used to display the nucleic acid detection result and the corresponding set reaction parameters.
  • the nucleic acid detection device 200e further includes a camera 208e, and the camera 208e is used for collecting information of nucleic acid samples to be detected and recording the entire nucleic acid detection process.
  • the image acquisition device 205e collects the electrophoresis image of the electrophoresis box 3e, and processes the image through the image processor.
  • the processed image is displayed on the display screen 207e, and the detection result can also be uploaded to the client for reference by relevant personnel.
  • FIG. 13e is a schematic diagram of a test result obtained by using the nucleic acid detection device 200e provided by the embodiment of the present invention.
  • the device can automatically identify the test result. Among them, if the marker position of the first line is within the predefined range, it can be determined that the nucleic acid sample contains human genes; if the marker position of the first line is not within the predefined range, it can be determined that the nucleic acid sample contains human genes. Human genes are not included.
  • the marker position of the second line is within the predefined range, it can be determined that the nucleic acid sample contains RNA replicase; if the marker position of the second line is not within the predefined range, it can be determined that the nucleic acid sample does not contain RNA replicase. Including RNA replicase. If the marker position of the third line is within the predefined range, it can be determined that the nucleic acid sample contains N protein; if the marker position of the third line is not within the predefined range, it can be determined that the nucleic acid sample does not contain N protein. N protein.
  • the nucleic acid detection device can integrate the nucleic acid amplification reaction and electrophoresis detection of nucleic acid in one device through the cooperation of the host and the nucleic acid detection box.
  • the overall structure is simple, the detection operation is simple, and the operation process is simple. It has low professional requirements and high testing efficiency, which greatly reduces the testing cost; at the same time, the testing process is flexible and does not need to be carried out in a fixed laboratory.
  • the testing equipment is portable, which can realize community testing or home testing.
  • FIG. 1f is a detection chip 10f provided by the present invention.
  • the detection chip 10f includes a chip housing 1f, a channel 2f and a driving circuit 3f.
  • the channel 2f is provided in the chip housing 1f, and the channel 2f is used for carrying a droplet a containing a specimen (eg, a nucleic acid sample).
  • the droplet a is capable of performing a nucleic acid amplification reaction in the channel 2f.
  • the chip case 1f includes a first cover plate 11f, a spacer layer 12f and a second cover plate 13f, and two opposite surfaces of the spacer layer 12f are respectively adjacent to the first cover plate 11f and the second cover plate 13f.
  • the first cover plate 11f, the spacer layer 12f and the second cover plate 13f together surround and form the channel 2f.
  • the driving circuit 3f can drive the droplet a to move along a predetermined path, so as to complete the nucleic acid amplification reaction in the channel 2f.
  • the driving circuit 3f includes a plurality of driving electrodes 31f disposed on the surface of the first cover plate 11f near the channel 2f, and a first dielectric plate disposed on the side of the driving electrode 31f near the second cover plate 13 .
  • the driving electrode 31f and the detection electrode 32f are oppositely arranged on both sides of the channel 2f.
  • the driving circuit 3f includes a plurality of driving electrodes 31f arranged in an array and a conductive layer disposed on the surface of the second cover plate 13f near the channel 2f.
  • the conductive layer serves as the The detection electrode 32f is described.
  • the driving electrode 31f is disposed on the side of the first cover plate 11f close to the channel 2f.
  • the driving electrode 31f can be formed by a metal etching method or an electroplating method.
  • the driving circuit 3f is a thin film transistor (Thin Film Transistor, TFT) driving circuit.
  • TFT Thin Film Transistor
  • the droplet a since the droplet a has electrical conductivity, combined with the principle of dielectric wetting, the droplet a can be moved according to a predetermined path in the channel 2f.
  • the circuit between a certain driving electrode 31f and the detection electrode 32f can be selectively turned on or off, thereby changing the voltage between the driving electrode 31f and the detection electrode 32f, thereby changing the droplet a and the first dielectric
  • the wetting characteristics between the layer 33f and the second dielectric layer 34f control the movement of the droplet a in a predetermined path within the channel 2f.
  • the driving electrode 31f includes three electrodes, such as electrode A, electrode B and electrode C, as an example to illustrate the principle that the droplet a moves in a predetermined path in the channel 2f.
  • droplet a can move on electrode A, electrode B and electrode C.
  • a voltage is applied to the electrode B by applying a voltage between the electrode B and the detection electrode 32f, while the voltage between the electrode A and the detection electrode 32f is turned off.
  • the wetting characteristics between the droplet a and the first dielectric layer 33f and the second dielectric layer 34f are changed, so that the liquid-solid contact angle between the electrode A and the droplet a becomes larger, and the electrode B and the The liquid-solid contact angle between the droplets a becomes smaller, which promotes the movement of the droplets a from the electrode A to the electrode B.
  • the droplet driving principle in the above detection chip 10f is to use voltage to change the hydrophilicity and hydrophobicity of the dielectric layer, thereby changing the ability of the droplet a on the dielectric layer to adsorb the dielectric layer, thereby facilitating the movement of the droplet a. Therefore, when the detection chip 10f is in use, the droplet a needs to be detected to determine the specific position of the droplet a to ensure that the droplet a moves along a predetermined path and the size of the droplet a.
  • FIG. 2f and FIG. 3f are a dielectric wetting device 100f according to an embodiment of the present invention.
  • the dielectric wetting device 100f includes a detection chip 10f, a power switching module 20f, a detection module 30f and a judgment module 40f.
  • the power switching module 20f is electrically connected to a plurality of the driving electrodes 31f, and the power switching module 20f is used to output a power supply voltage V in to the designated driving electrodes 31f, wherein the power supply voltage V in includes the first voltage V 1 , at least one of the second voltage V 2 and the third voltage V 3 .
  • the first voltage V1 and the second voltage V2 are used to drive the droplet a to move.
  • the third voltage V3 is used for coupling between the driving electrode 31f and the detection electrode 32f, so that the detection electrode 32f outputs the detection voltage Vout (ie, the coupling voltage).
  • the detection module 30f is electrically connected to the detection electrode 32f for acquiring the detection voltage V out in real time, and calculating that the detection voltage V out returns from the peak voltage V P to the reference voltage V r within one voltage cycle The response time T.
  • the determination module 40f is signal-connected with the detection module 30f for acquiring the recovery time T, and determining the position of the droplet a according to the recovery time T.
  • the judgment module 40f judges the position of the droplet a in the detection chip 10f, it can further judge the size of the droplet a (refer to the detailed description later).
  • FIG. 4f is a schematic diagram of an equivalent circuit of the circuit shown in FIG. 3f.
  • the dielectric wetting device 100f includes the power switching module 20f, the detection module 30f, and the judgment module 40f, and the detection chip 10f of the first dielectric layer 33f, the second dielectric layer 34f and the All the air in the channel 2f will form an equivalent capacitance in the driving circuit 3f.
  • the first dielectric layer 33f will form an equivalent first dielectric layer capacitance C di-B in the driving loop 3f.
  • the second dielectric layer 34f will form an equivalent second dielectric layer capacitance C di-T in the driving loop 3f.
  • the channel 2f between the first dielectric layer 33f and the second dielectric layer 34f is filled with silicone oil, an equivalent air capacitance C air will be formed. If the channel 2f is filled with silicone oil, the value of the formed equivalent liquid capacitance C liquid-1 will change according to the addition of the silicone oil. If the droplet a exists on the driving electrode 31f, the value of the formed equivalent liquid capacitance C liquid-2 will change according to the addition of the droplet a.
  • the first dielectric layer capacitor C di-B , the air capacitor C air and the second dielectric layer capacitor C di-T are connected in series in sequence, and the first dielectric layer capacitor C di-T is connected in series. One end of the capacitor C di-B away from the air capacitor C air is connected to the driving electrode 31f, and one end of the second dielectric layer capacitor C di-T away from the air capacitor C air is connected to the detection electrode 32f.
  • the first voltage V1 is a positive voltage
  • the second voltage V2 is a negative voltage.
  • the third voltage V3 is a continuous square wave pulse voltage.
  • the power switching module 20f can selectively turn on a certain driving electrode 31f under the control of the controller (not shown in the figure), so as to detect all the driving electrodes 31f one by one, and the detection is accurate. It can accurately determine the position of droplet a and the size of droplet a.
  • the detection module 30f when the detection electrode 32f outputs the detection voltage Vout to the detection module 30f, the detection module 30f plots the relative time of the detection voltage Vout obtained in real time, and calculates the value in one voltage cycle (pulse cycle). ) within the recovery time T for the detection voltage V out to recover from the peak voltage V P to the reference voltage V r .
  • the detection module 30f outputs the recovery time T to the determination module 40f.
  • the determination module 40f determines which driving electrode 31f the droplet a is located on in the channel 2f according to the length of the recovery time T, and can further determine the size of the droplet a.
  • FIG. 4f and FIG. 5f Please refer to FIG. 4f and FIG. 5f, and referring to FIG. 2f and FIG. 3f in combination, the principle of droplet detection provided by the present invention is described in detail below.
  • the present invention adopts the self-capacitance capacitive sensing technology, and can determine the position and size of the droplet a according to the capacitance difference by sensing the capacitance difference of the driving loops 3f corresponding to different driving electrodes 31f.
  • C liquid is the capacitance of the liquid in the channel 2f
  • D liquid is the dielectric coefficient of the liquid in the channel 2f
  • S is the area of a single driving electrode 31f
  • d is the thickness of the liquid, usually the height of the channel 2f.
  • D liquid-1 is the dielectric constant of silicone oil, usually around 2.8.
  • D liquid-2 is the dielectric constant of droplet a, and D2 of conventional nucleic acid droplets is about 85.
  • C is the total capacitance of the different drive electrodes 31f.
  • the present invention according to the difference of the total capacitance C of different driving electrodes 31f, it can be determined whether there is a droplet a on the driving electrodes 31f.
  • the difference between the total capacitances can be determined according to the recovery time T from the peak voltage V P to the reference voltage V r in one voltage cycle according to the detection voltage V out formed by the third voltage V 3 through the coupling of the driving electrode 31 f and the detection electrode 32 f. to judge. Because the dielectric coefficient of droplet a is larger than that of silicone oil, the total capacitance of the circuit where the drive electrode 31f exists with droplet a is larger, and the recovery time T for the detection voltage Vout to recover from the peak voltage V P to the reference voltage V r is longer.
  • the total loop capacitance can further determine the number of driving electrodes 31f occupied by the droplet a, and then combine the area S of a single driving electrode 31f and the height d of the channel 2f to calculate the volume of the droplet a.
  • the plurality of the driving electrodes 31f are divided into three types of electrodes, and the three types of electrodes are respectively in the first time sequence T1, the second time sequence T2 and the third time sequence T3.
  • the three time sequences are fixed.
  • the power switching module 20f applies a positive voltage (ie, the first voltage V 1 ) to the driving electrode 31f; in the second time sequence T2, the power switching module 20f applies a negative voltage to the driving electrode 31f (ie, the second voltage V 2 ); at the third time sequence T3 , the power switching module 20f applies a continuous square wave pulse voltage (ie, the third voltage V 3 ) to the driving electrode 31f.
  • the driving electrodes 31f includes electrode A, electrode B, electrode C, electrode D, electrode E and electrode F as an example to illustrate the principle that droplet a moves in a predetermined path in channel 2f.
  • the drive electrode 31f includes an electrode A, an electrode B, an electrode C, an electrode D, an electrode E, and an electrode F.
  • the droplet a is located on the electrode A, then the electrode A, the electrode C, the electrode D, the electrode E and the electrode F are all in the second time sequence T2, the electrode B is in the first time sequence T1, and the power switching module 20f gives the electrode B a positive voltage At the same time, when a negative voltage is applied to electrode A, electrode C, electrode D, electrode E and electrode F, droplet a moves from electrode A to electrode B.
  • the power switching module 20f applies a positive voltage to the electrode C and simultaneously applies a negative voltage to the electrode B, the electrode D, the electrode E and the electrode F, the droplet moves from the electrode B to the electrode C, and then the power switching module 20f switches to the electrode A and gives the electrode A
  • the recovery time T can be used to judge whether the droplet a is on the electrode A, and then judge whether the droplet a moves successfully.
  • the nucleic acid amplification reaction is completed until the droplet a moves according to the specified path.
  • each group of the driving electrodes 31f includes three electrodes.
  • each group of drive electrodes 31f includes electrode A, electrode B, and electrode C.
  • the droplet a is located on the electrode A, then the electrode A and the electrode C are in the second time sequence T2, the electrode B is in the first time sequence T1, and the power switching module 20f applies the positive voltage to the electrode B and the negative voltage to the electrode A and the electrode C, Then drop a moves from electrode A to electrode B.
  • the power switching module 20f applies a positive voltage to the electrode C and a negative voltage to the electrode B, the droplet moves from the electrode B to the electrode C, and then the power switching module 20f switches to the electrode A to give the electrode A a continuous square wave pulse voltage.
  • the recovery time T can be used to determine whether the droplet a is on the electrode A, and then it can be judged whether the droplet a has moved successfully.
  • the plurality of the driving electrodes 31f are divided into two types of electrodes, which are respectively in the fourth time sequence T4 and the fifth time sequence T5.
  • the power switching module 20f simultaneously applies a positive voltage to the driving electrodes 31f (ie, the fourth time sequence T4). a voltage V 1 ) and a continuous square wave pulse voltage (ie the third voltage V 3 ); at the fifth time sequence T5, the power switching module 20f simultaneously applies a negative voltage (ie the second voltage V 2 ) and a continuous square wave to the driving electrode 31f Pulse voltage (ie, the third voltage V 3 ).
  • a positive voltage ie, the fourth time sequence T4
  • V 1 a voltage V 1
  • a continuous square wave pulse voltage ie the third voltage V 3
  • the power switching module 20f simultaneously applies a negative voltage (ie the second voltage V 2 ) and a continuous square wave to the driving electrode 31f Pulse voltage (ie, the third voltage V 3 ).
  • the drive electrode 31 f includes an electrode A, an electrode B, an electrode C, an electrode D, an electrode E, and an electrode F.
  • the droplet a is located on the electrode A, then the electrode A, the electrode C, the electrode D, the electrode E and the electrode F are all in the fifth time sequence T5, the electrode B is in the fourth time sequence T4, and the power switching module 20f simultaneously gives the electrode B a positive voltage and continuous square wave pulse voltage, and at the same time give negative voltage and continuous square wave pulse voltage to electrode A, electrode C, electrode D, electrode E and electrode F, then droplet a moves from electrode A to electrode B, according to the aforementioned droplet detection
  • the recovery time T can be used to determine whether the droplet a moves successfully.
  • the nucleic acid amplification reaction is completed until the droplet a moves according to the specified path.
  • the droplet a can be moved and detected at the same time, which can effectively improve the detection efficiency and detection accuracy.
  • the recovery time T can be used to determine the specific number of the driving electrodes 31f where the droplet a is located.
  • the volume size of the droplet a can be calculated from the area S of the driving electrode 31f and the height d of the channel 2f.
  • the driving electrodes 31f include electrode A, electrode B, electrode C, electrode D, electrode E, and electrode F, wherein the area S of each driving electrode 31f is equal.
  • the change of the total capacitance of the driving circuit 3f where the corresponding driving electrode 31f is located can be obtained.
  • the time T reflects the size of the area of the drive electrode 31f occupied by the droplet a.
  • droplet a is on electrode C, electrode D and electrode E, but the total capacitance change value detected on electrode E is about half of the capacitance of the complete droplet a, which is reflected in the recovery time T, then the corresponding value of electrode E
  • the volume size of droplet a can be determined synchronously, without the need to separately detect the volume size of droplet a, and the detection efficiency is high.
  • the dielectric wetting device 100f can use its own circuit to perform self-detection on the droplets a in the detection chip 10f, and no additional detection equipment is required.
  • the detection method is simple, easy to operate, accurate in detection and high in efficiency, and the specific position of the droplet a and the size of the droplet a are accurately judged.
  • a separate detection device capable of implementing the above-mentioned droplet detection process may also be used to perform droplet detection on the detection chip 10f.
  • the present invention also provides a droplet detection method, which can be used to detect the droplet a of the dielectric wetting device 100f. During detection, droplet movement and droplet detection are performed in time-sharing or at the same time. For the specific detection process, please refer to the foregoing description of the principles of droplet movement and droplet detection.
  • the step of controlling the movement of droplets includes:
  • the power switching module 20f is controlled to provide a first voltage V 1 and a second voltage V 2 to each of the driving electrodes 31 f, and the first voltage V 1 and the second voltage V 2 are used to control the voltage V 1 and the second voltage V 2 in the channel 2f.
  • the droplet a moves.
  • the first voltage V1 is a positive voltage
  • the second voltage V2 is a negative voltage.
  • the power switching module 20f provides a negative voltage to the driving electrode 31f where the droplet a is located, and provides a negative voltage to the next driving electrode 31f in the moving path of the droplet a A positive voltage is applied, while a negative voltage is applied to the remaining drive electrodes 31f, thereby causing the droplet a to move.
  • the step of controlling droplet detection includes:
  • the first step is to control the power switching module 20f to provide a third voltage V 3 to the designated driving electrode 31f, so that the detection electrode 32f is coupled with the driving electrode 31f, and outputs the output through the detection electrode 32f The detection voltage V out .
  • the detection module 30f acquires the detection voltage V out output by the detection electrode 32f in real time, and calculates the difference between the detection voltage V out and the reference voltage V r returned from the peak voltage V P in one voltage cycle. response time T.
  • the judging module 40f obtains the recovery time T, and determines the position of the droplet a according to the length of the recovery time T. In addition, when judging the position of the droplet a, the size of the droplet a is further determined.
  • the dielectric wetting device 100f Compared with the prior art, the dielectric wetting device 100f provided by the present invention utilizes its own circuit and adopts the self-capacitance capacitive sensing technology to detect the droplet a in the channel by itself. Specifically, it can pass the driving circuit 3f.
  • the length of the recovery time T of the detection voltage V out can be used to accurately determine whether the droplet a in the detection chip 10f moves successfully according to the predetermined path, as well as the specific position and size of the droplet a.
  • the droplet detection principle of the dielectric wetting device 100f is simple, the detection method is simple, the operation is convenient, the detection is accurate, and the efficiency is high.
  • the nucleic acid detection box 100g is used for nucleic acid detection.
  • the nucleic acid detection box 100g includes a box body 1g, a detection chip 2g, an electrophoresis box 3g and a connector 4g.
  • the detection chip 2g is disposed in the box body 1g.
  • the detection chip 2g includes a first cover plate 21g, a spacer layer 22g and a second cover plate 23g. The two opposite surfaces of the spacer layer 22g are respectively connected to the first cover plate 21g and the second cover plate 23g.
  • the second cover plate 23g is in contact.
  • the first cover plate 21g, the spacer layer 22g and the second cover plate 23g surround and form a channel 5g, and the channel 5g is used to carry the detection liquid a.
  • the electrophoresis box 3g is arranged in the box body 1g and communicates with the channel 5g.
  • the connector 4g is electrically connected with the detection chip 2g and the electrophoresis box 3g respectively, and the connector 4g is used for electrical connection with the external control board.
  • the nucleic acid detection box 100g is used for nucleic acid amplification reaction and electrophoresis detection.
  • the detection solution a containing nucleic acid samples is added to the channel 5g of the detection chip 2g.
  • the detection solution a in the channel 5g is a liquid bead If the detection solution a carries out nucleic acid amplification reaction in the channel 5g to obtain nucleic acid amplification product b, the nucleic acid amplification product b is directly entered into the electrophoresis box 3g from the detection chip 2g for electrophoresis detection, and finally passes through The image acquisition device matched with the nucleic acid detection box 100g captures an image of the electrophoresis box 3g, wherein the image is a fluorescent photo of the electrophoresis detection.
  • the invention integrates the detection chip 2g and the electrophoresis box 3g in a box body 1g, the overall structure is simple, the complex large-scale equipment is not required, and the cost is low.
  • the detection solution a can directly enter the electrophoresis box 3g for electrophoresis detection. , which simplifies the process of sample transfer and connection in different detection links, and improves the detection efficiency.
  • the box body 1g includes a first casing 11g, a second casing 12g, a sample injection port 13g disposed on the second casing 12g, and a detection device disposed on the first casing 11g Window 14g.
  • the first casing 11g and the second casing 12g together form an accommodating cavity (not shown), and the detection chip 2g, the electrophoresis box 3g and the connector 4g are all accommodated in the accommodating cavity.
  • the sample introduction port 13g is provided corresponding to the detection chip 2g, and is used for adding the detection solution a containing the nucleic acid sample into the detection chip 2g.
  • the detection window 14g is disposed corresponding to the electrophoresis box 3g, and the image acquisition device can collect the image of the electrophoresis box 3g through the detection window 14g.
  • the first casing 11g and the second casing 12g are connected by means of snapping.
  • the Fastening with screws increases the connection firmness of the first casing 11g and the second casing 12g.
  • the side wall of the box body 1g is further provided with an opening 17g, the opening 17g is used to install the connector 4g, the connector 4g is located in the accommodating cavity as a whole and is connected by the The opening 17g exposes the box body 1g, so as to facilitate the electrical connection between the connector 4g and the external control board.
  • the box body 1g further includes a card slot 15g provided on the first housing 11g. Since the nucleic acid detection box 100g needs to be installed in the nucleic acid detection device when in use, the card slot is designed 15g can facilitate the installation of the nucleic acid detection box 100g in the nucleic acid detection equipment used.
  • an indication mark 18g (such as an arrow) is further provided on the side of the second housing 12g away from the accommodating cavity. Referring to FIG. 13g, the indication mark 18g is used to indicate The nucleic acid detection box 100g is inserted into the insertion direction of the nucleic acid detection device 200g to avoid wrong insertion.
  • the box body 1g is provided with a number of supporting structures 16g. Since the detection chip 2g, the electrophoresis box 3g and the connector 4g have different thicknesses in the structural design, they are installed in the box body 1g. Several supporting structures 16g with different heights need to be designed to support the detection chip 2g, the electrophoresis box 3g and the connector 4g, and improve the connection stability between the detection chip 2g, the electrophoresis box 3g and the connector 4g.
  • the box body 1g is made of plastic material, wherein the support structure 16g is integrally formed with the first casing 11g and the second casing 12g.
  • the detection chip 2g further includes a drive circuit 24g disposed on the side of the first cover plate 21g close to the second cover plate 23g, and a drive circuit 24g disposed on the side of the drive circuit 24g close to the second cover plate 23g.
  • the electrical layer 27g, the drive circuit 24g and the conductive layer 25g are all electrically connected to the connector 4g, and the detection solution a can be implemented in the channel 5g by energizing or de-energizing the drive circuit 24g and the conductive layer 25g. specified path to move.
  • the driving circuit 24g includes a plurality of driving electrodes 241g arranged in an array and a control electrode 242g electrically connected to all the driving electrodes 241g. 242g is electrically connected to the connector 4g.
  • the driving circuit 24g is a thin film transistor (Thin Film Transistor, TFT) driving circuit, and because the detection liquid a has conductivity, combined with the principle of dielectric wetting (Electrowitting-On-Dielectric, EWOD), the detection liquid a can be realized. It moves according to a predetermined path in the channel 5g.
  • TFT Thi Film Transistor
  • the circuit between a certain driving electrode 241g and the conductive layer 25g can be selectively turned on or off, thereby changing the voltage between the driving electrode 241g and the conductive layer 25g to change the detection solution a and the first dielectric layer.
  • the wetting characteristics between 26g and the second dielectric layer 27g further control the movement of the detection liquid a in the channel 5g according to a predetermined path. As shown in Figure 5g, the detection solution a moves on the electrode I, the electrode H and the electrode G.
  • the first dielectric layer 26g and the second dielectric layer 27g are both insulating and hydrophobic layers, which may be polytetrafluoroethylene coatings. It can make the detection liquid a move more smoothly in the predetermined path, and avoid the liquid bead breaking during the moving process.
  • the driving circuit 24g is disposed on the side of the first cover plate 21g close to the channel 5g.
  • the driving circuit 24g can be formed by a metal etching method or an electroplating method.
  • control electrode 242g is integrated on the same edge of the first cover plate 21g, and the connection between the detection chip 2g and the detection chip 2g is realized by inserting the side of the first cover plate 21g where the control electrode 242g is disposed into the connector 4g The electrical connection of the device 4g.
  • the driving circuit 24g can be divided into multiple areas according to different purposes, namely the sample adding area A, the reagent storage area B, the multiple nucleic acid amplification areas C and the liquid discharge area. D.
  • the detection chip 2g is also provided with a chip sample adding groove 6g corresponding to the sample adding area A.
  • the chip sample adding groove 6g is communicated with the sample adding area A.
  • the detection solution a is added to the sample adding area A from the sample adding port 13g.
  • the reagent storage area B is used to store fluorescent reagents (eg, fluorescent dyes or fluorescent probes).
  • the detection solution a performs a nucleic acid amplification reaction in the nucleic acid amplification region C.
  • the nucleic acid amplification region C may include multiple regions, and the number of specific regions may be determined according to actual detection requirements.
  • the liquid outlet area D includes a liquid outlet 51g, the channel 5g communicates with the electrophoresis box 3g through the liquid outlet 51g, and the nucleic acid amplification product b can enter the electrophoresis box 3g in the liquid outlet area D through the liquid outlet 51g Perform electrophoresis detection.
  • the specific movement path of the detection solution a in the detection chip 2g is: after the detection solution a enters the sample adding area A, it is driven by the driving electrode 241g.
  • the amplification reaction is carried out in the extension zone C; when the amplification reaction is completed, the amplified product moves to the reagent storage zone B to be mixed with the fluorescent reagent, thereby obtaining the nucleic acid amplification product b combined with the fluorescent reagent; the nucleic acid amplification product that is evenly mixed b moves to the liquid outlet area D under the driving of the driving electrode 241g, and enters the electrophoresis box 3g through the liquid outlet 51g of the liquid outlet area D.
  • the number of the nucleic acid amplification regions C is two, and the heating temperatures of the two nucleic acid amplification regions C are different, so that different stages of the nucleic acid amplification reaction of the detection solution a at different temperatures can be realized.
  • the fluorescent reagent is pre-coated in the reagent storage area B when the detection chip 2g is assembled, and the fluorescent reagent does not need to be separately added subsequently.
  • the fluorescent reagent can also be mixed with the amplification product by subsequent addition.
  • a reagent tank 7g is set on the detection chip 2g corresponding to the reagent storage area B, and fluorescent reagents can be added to the reagent tank 7g during nucleic acid detection. This design can select the type of fluorescent reagents according to actual needs, and improve the Flexibility in nucleic acid amplification reactions.
  • the detection chip 2g further includes a heating element 28g disposed on the side of the first cover plate 21g and/or the second cover plate 23g away from the channel 5g, the heating element 28g is opposite to The nucleic acid amplification zone C should be set for heating the detection solution a.
  • the heating element 28g is electrically connected to the connector 4g, and a specific area of the channel 5g is heated by the heating element 28g.
  • the heating element 28g is disposed on the side of the first cover plate 21g and the second cover plate 23g away from the channel 5g.
  • the heating element 28g is bonded to the surfaces of the first cover plate 21g and the second cover plate 23g through thermally conductive adhesive.
  • the first cover plate 21g and the second cover plate 23g are both glass plates, and the spacer layer 22g is a double-sided adhesive frame, which is pasted on the first cover through the double-sided adhesive frame.
  • the edges of the cover plate 21g and the second cover plate 23g together form a sealed channel 5g.
  • the capacity of the channel 5g can be adjusted by designing the spacer layer 22g with different thicknesses according to actual needs.
  • silicone oil (not shown) will be injected into the channel 5g, and the detection liquid a will move in the silicone oil according to a predetermined path.
  • the electrophoresis box 3g includes an electrophoresis tank 31g, electrophoresis electrodes 32g disposed at both ends of the electrophoresis tank 31g, a gel medium 33g disposed inside the electrophoresis tank 31g, The liquid injection tank 34g at one end of the medium 33g, the connecting device 35g, and the wetting solution provided in the electrophoresis tank 31g.
  • the electrophoresis electrode 32 is electrically connected to the connector 4g.
  • the connection device 35 includes a first end 351g and a second end 352g. The first end 351g extends into the channel 5g through the liquid outlet 51g.
  • the electrophoresis tank 31g is located on the side of the first cover plate 2g1 away from the second cover plate 23g, and the opening of the electrophoresis tank 31g faces the One side of the first cover plate 21g, and the opening of the electrophoresis tank 31g faces the first cover plate 21g.
  • the electrophoresis tank 31g includes a transparent bottom plate 311g and a plurality of side walls 312g connected to the transparent bottom plate 311g.
  • the electrophoresis box 3g is sealed by using the first cover plate 21g as the cover plate of the electrophoresis tank 31g.
  • the above design makes a height difference ⁇ H 1 between the silicone oil in the detection chip 2g and the wetting solution in the electrophoresis box 3g, so that the nucleic acid amplification product b in the channel 5g can smoothly enter the electrophoresis box 3g; in addition, this structure
  • the design can improve the space utilization rate, which is conducive to reducing the volume of the overall nucleic acid detection box of 100g.
  • a sealing rubber ring (not shown) is disposed between the side wall 312g and the first cover plate 21g to improve the sealing performance of the electrophoresis box 3g.
  • the electrophoresis tank 31g further includes a plurality of latching positions 313g disposed on the transparent bottom plate 311g, the gel medium 33g is substantially a rectangular parallelepiped structure, and can be clamped between the plurality of the latching positions 313g, the The design of the clamping position 313g can prevent the gel medium 33g from moving and dislocating, thereby ensuring the accuracy of electrophoresis detection.
  • the transparent bottom plate 311g is a transparent glass plate, and the electrophoresis result can be observed.
  • the number of the latching positions 313g is four, and the four latching positions 313g are respectively located at four corners of the gel medium 33g of the rectangular parallelepiped structure, so as to fix the gel medium 33g.
  • the electrophoresis tank 31g further includes a liquid injection hole 36g, the liquid injection hole 36g is disposed at the position of the first cover plate 21g corresponding to the electrophoresis tank 3g, and the electrophoresis tank 31g can be injected into the electrophoresis tank 31g through the liquid injection hole 36g Inject a wetting fluid (eg buffer).
  • a wetting fluid eg buffer
  • the first end 351g of the connecting device 35g extends into the channel 5g through the liquid outlet 51g, and the liquid outlet 51g penetrates the first cover plate 21g.
  • the connecting device 35g is a capillary tube, and the nucleic acid amplification product b in the channel 5g can enter the gel medium 33g of the electrophoresis box 3g by the capillary effect. Therefore, in order to make the nucleic acid amplification product b enter the electrophoresis box 3g smoothly, the end surface of the first end 351g needs to be flush with the liquid level of the silicone oil, that is, the first end 351g includes a flat surface.
  • the first end 351g is provided with at least one inclined plane, that is, the first end 351g is inclined corresponding to the central axis c of the connecting device 35g, and the lowest point of the inclined plane There is a difference ⁇ H 2 between the lower surfaces of the channel 5g, and the liquid level of the silicone oil is located on this slope, which also enables the nucleic acid amplification product b to enter the connecting device 35g smoothly.
  • connection device 35g needs to be filled with a wetting solution, and the wetting solution should be able to contact the surface of the liquid bead of the nucleic acid amplification product b at the liquid outlet area D to form
  • the continuous liquid flow can ensure that the nucleic acid amplification product b can smoothly enter the connecting device 35g by using the capillary principle.
  • the angle between the inclined plane and the central axis c of the connection device 35g is 45°-60°. It has been verified by experiments that within this angle range, the nucleic acid amplification product b can smoothly enter the connection device 35g and then into the gel medium 33g.
  • the first end 351g of the connecting device 35g is formed with an inclined plane with an inclination angle ⁇ of 45°-60°.
  • an inclination angle
  • two opposite sides of the first end 351g of the connecting device 35g are respectively formed with an inclined plane with an inclination angle ⁇ of 45°-60°.
  • the nucleic acid amplification product b can be smoothly entered into the connecting device 35g and into the gel medium 33g.
  • one end of the electrophoresis electrode 32g extends into the electrophoresis tank 31g, and the other end is electrically connected to the connector 4g.
  • the nucleic acid detection box 100g when the nucleic acid detection box 100g is tilted, vibrated or has an internal pressure change during transportation, it can be simulated by high-altitude low pressure (0.2-0.7bar) and vibration tests, because the detection chip 2g has a channel 5g and a channel 5g. If there is pressure difference and vibration outside, the silicone oil in the channel 5g and the wetting solution in the electrophoresis box 3g will leak or the two will be mixed, which will seriously affect the performance of the nucleic acid detection box 100g, and may even cause the nucleic acid detection box. 100g is directly scrapped.
  • the present invention solves the above problem by adding a barrier structure 8g .
  • the blocking structure 8g includes a first state and a second state. In the first state, the blocking structure 8g is located on the side of the liquid outlet 51g close to the channel 5g, and the blocking structure 8g can block the channel 5g of the detection chip 2g and the channel 5g.
  • the electrophoresis box 3g is connected.
  • the blocking structure 8g is far away from the liquid outlet 51g, so that the channel 5g and the electrophoresis box 3g communicate with each other.
  • the barrier structure 8g that can change state it is ensured that the silicone oil in the channel 5g of the detection chip 2g and the wetting solution in the electrophoresis box 3g will not leak or mix before use.
  • the barrier structure 8g can change its state according to different external conditions such as temperature, pressure or solvent.
  • the state of the barrier structure 8g can be changed according to changes in temperature.
  • the barrier structure 8g when the temperature is 0°C to 35°C, the barrier structure 8g is in a first state, wherein the first state is a solid state. When the temperature exceeds 35°C, the barrier structure 8g is in a second state, wherein the second state is a molten state.
  • the blocking structure 8g needs to seal the first end 351g of the connecting device 35g.
  • the blocking structure 8g may include a blocking portion 81g and a sealing portion 82g.
  • the blocking portion 81g is arranged in the channel 5g to seal the liquid outlet 51g and the opening of the first end 351g; the sealing portion 82g extends into the connecting device 35g through the first end 351g to further strengthen the sealing effect.
  • the sealing portion 82g can extend to the surface of the first cover plate 21g to form a substantially T-shaped structure. This structure makes the adhesion area of the blocking structure 8g in the channel 5g and the connecting device 35g larger, and will not be affected by External force causes the blocking structure 8g to fall off unexpectedly, resulting in seal failure.
  • the barrier structure 8g can use one or more wax-like substances with low temperature formability such as paraffin wax, silicon wax, vegetable wax and white wax as the main agent, and add solvents with different fluidity to form a barrier effect.
  • polymer sealing material During the assembly process of the nucleic acid detection box 100g, the above-mentioned polymer sealing material is coated or dot-coated on the side of the liquid outlet 51g close to the channel 5g, and then the above-mentioned barrier structure 8g is formed to achieve the sealing effect.
  • Silicone wax is a waxy material with organosiloxane (Si-O-Si) functional group and other organic materials grafted and modified. Generally, the hardness is moderate, and it is lipophilic, hydrophobic, smooth, soft and shiny. effect.
  • Vegetable waxes usually refer to oily substances with fatty acids, monovalent or divalent fatty alcohols and higher melting points, such as wood wax, soybean wax, palm wax, rice bran wax, etc.
  • White wax oil is usually mineral oil, liquid paraffin and the like.
  • the solvent can be a common solvent that can be matched with the main agent.
  • the composition ratio of the polymer sealing material is roughly 0-40 wt % of the solvent, and 60-100 wt % of the main agent, which can be adjusted according to actual needs.
  • the polymer sealing material includes 80wt% to 99wt% of paraffin wax or silicon wax and 1wt% to 2wt% of mineral oil or lubricating oil.
  • the barrier structure 8g made of this polymer sealing material can ensure that the nucleic acid detection box 100g does not dissolve, fall or deform during transportation, etc. The silicone oil and the wetting solution in the electrophoresis box 3g will not leak or mix accidentally.
  • the storage environment temperature of the polymer sealing material is generally 0°C to 35°C.
  • the barrier structure 8g is in the first state (ie, solid state).
  • the melting temperature of the polymer sealing material is generally 35°C to 60°C or can be adjusted up and down depending on the performance requirements. Therefore, it can be dissolved after the nucleic acid amplification reaction starts, so that the barrier structure 8g is in the second state (that is, melted). state), so that the detection chip 2g communicates with the electrophoresis box 3g.
  • the polymer sealing material used in the barrier structure 8g of the present invention can achieve the purpose of barrier without affecting the normal operation of the nucleic acid detection box 100g.
  • the barrier structure 8g is liquid after melting, and due to the difference in specific gravity with silicone oil, it will float above the silicone oil or settle under the silicone oil, and its components are basically passive substances and will not react with the silicone oil. Even if it is mixed with silicone oil, since the silicone oil and the above-mentioned polymer sealing material have the same C-H or C-H-O-Si-O structure, it will not affect the biological reaction of the nucleic acid detection box 100g.
  • the wetting liquid in the electrophoresis box 3g is mainly a water-based buffer liquid, and oil and water are not mutually miscible, so it will not affect the electrophoresis detection process in the electrophoresis box 3g.
  • the above-mentioned method of blocking the detection chip 2g and the electrophoresis box 3g of the present invention is not limited to the application scenario of the nucleic acid detection box 100g of the present application, and can also be used in other related biomedical analyzers or sensors to isolate two kinds of liquids and avoid two kinds of liquids. accidental leakage or mixing of liquids.
  • the present invention also provides a nucleic acid detection device 200g, the nucleic acid detection device 200g includes a host 201g and the above-mentioned nucleic acid detection box 100g, the host 201g is provided with a detection box installation groove 202g, the nucleic acid detection The cartridge 100g is mounted in the detection cartridge mounting groove 202g.
  • the nucleic acid detection box provided by the present invention integrates nucleic acid amplification reaction and electrophoresis detection, the overall structure is simple, the detection operation is simple, the operation process has low professional requirements, the detection efficiency is high, and the detection efficiency is greatly reduced. cost; at the same time, the detection process is flexible and does not need to be carried out in a fixed laboratory.
  • the nucleic acid detection box is portable, which can realize community detection or home detection; the setting of the barrier structure can avoid the detection chip and the detection chip due to the movement or vibration of the nucleic acid detection box.
  • the liquid in the electrophoresis tank is mixed or leaked, which improves the reliability of the nucleic acid detection box.
  • the nucleic acid detection cartridge 100h is used for nucleic acid detection.
  • the nucleic acid detection box 100h includes a box body 1h, a detection chip 2h, an electrophoresis box 3h and a connector 4h.
  • the detection chip 2h is disposed in the box body 1h.
  • the detection chip 2h includes a first cover plate 21h, a spacer layer 22h and a second cover plate 23h. The two opposite surfaces of the spacer layer 22h are respectively connected to the first cover plate 21h and the second cover plate 23h.
  • the second cover plate 23h is in contact, and the first cover plate 21h, the spacer layer 22h and the second cover plate 23h are surrounded to form a channel 5h, and the channel 5h is used to carry the detection liquid a.
  • the electrophoresis box 3h is arranged in the box body 1h and communicates with the channel 5h.
  • the connector 4h is electrically connected with the detection chip 2h and the electrophoresis box 3h respectively, and the connector 4h is used for electrical connection with the external control board.
  • the nucleic acid detection box 100h is used for nucleic acid amplification reaction and electrophoresis detection.
  • the detection solution a containing nucleic acid samples is added to the channel 5h of the detection chip 2h.
  • the detection solution a in the channel 5h is a liquid bead. If the detection solution a carries out nucleic acid amplification reaction within 5 hours of the channel to obtain nucleic acid amplification product b, the nucleic acid amplification product b enters the electrophoresis box directly from the detection chip 2 hours for electrophoresis detection, and finally passes through the electrophoresis box for 3 hours.
  • the image acquisition device matched with the nucleic acid detection box 100h captures an image of the electrophoresis box 3h, wherein the image is a fluorescent photo of the electrophoresis detection.
  • the invention integrates the detection chip 2h and the electrophoresis box 3h into a box body 1h, the overall structure is simple, no complicated large-scale equipment is required, and the cost is low, and the detection solution a can directly enter the electrophoresis box after nucleic acid amplification for 3h for electrophoresis detection. , which simplifies the process of sample transfer, coordination and connection in different detection links, and improves the detection efficiency.
  • the box 1h includes a first casing 11h, a second casing 12h, a sample injection port 13h disposed on the second casing 12h, and a detection device disposed on the first casing 11h Window 14h.
  • the first casing 11h and the second casing 12h together form an accommodating cavity (not shown), and the detection chip 2h, the electrophoresis box 3h and the connector 4h are all accommodated in the accommodating cavity.
  • the sample adding port 13h is provided corresponding to the detection chip 2h, and is used for adding the detection solution a containing the nucleic acid sample into the detection chip 2h.
  • the detection window 14h is set corresponding to the electrophoresis box 3h, and the image acquisition device can collect the image of the electrophoresis box 3h through the detection window 14h.
  • the first casing 11h and the second casing 12h are connected by means of snapping.
  • the Fastening with screws increases the connection firmness of the first casing 11h and the second casing 12h.
  • the side wall of the box body 1h is further provided with an opening 17h, and the opening 17h is used to install the connector 4h.
  • the opening 17h exposes the box body 1h, so as to facilitate the electrical connection between the connector 4h and the external control board.
  • the box body 1h further includes a card slot 15h provided on the first housing 11h. Since the nucleic acid detection box 100h needs to be installed in the nucleic acid detection device during use, the card slot is designed 15h can facilitate the installation of the nucleic acid detection box 100h in the nucleic acid detection equipment used.
  • an indication mark 18h (such as an arrow) is further provided on the side of the second housing 12h away from the accommodating cavity. Referring to FIG. 13h in combination, the indication mark 18h is used to indicate The nucleic acid detection box 100h is inserted into the insertion direction of the nucleic acid detection device 200h to avoid wrong insertion.
  • the box body 1h is provided with a number of supporting structures 16h. Since the detection chip 2h, the electrophoresis box 3h and the connector 4h have different thicknesses in the structural design, they are installed in the box body 1h. It is necessary to design several support structures 16h with different heights to support the detection chip 2h, the electrophoresis box 3h and the connector 4h, so as to improve the connection stability between the detection chip 2h, the electrophoresis box 3h and the connector 4h.
  • the box body 1h is made of plastic material, wherein the support structure 16h is integrally formed with the first casing 11h and the second casing 12h.
  • the detection chip 2h further includes a drive circuit 24h disposed on the side of the first cover plate 21h close to the second cover plate 23h, a drive circuit 24h disposed on the side of the drive circuit 24h close to the second cover plate 23h
  • the electrical layer 27h, the drive circuit 24h and the conductive layer 25h are all electrically connected to the connector 4h, and the detection solution a can be implemented in the channel 5h by energizing or de-energizing the drive circuit 24h and the conductive layer 25h. specified path to move.
  • the driving circuit 24h includes a plurality of driving electrodes 241h arranged in an array and a control electrode 242h electrically connected to all the driving electrodes 241h. 242h is electrically connected to the connector 4h.
  • the driving circuit 24h is a thin film transistor (Thin Film Transistor, TFT) driving circuit, and since the detection liquid a has conductivity, combined with the principle of Electrowetting-On-Dielectric (EWOD), the detection liquid a can be realized. Move according to the specified path within the channel 5h.
  • TFT Thifilm Transistor
  • the circuit between a certain driving electrode 241h and the conductive layer 25h can be selectively turned on or off, thereby changing the voltage between the driving electrode 241h and the conductive layer 25h to change the detection solution a and the first dielectric layer 26h and the second dielectric layer 27h wetting characteristics, and then control the detection liquid a in the channel 5h to move according to a predetermined path. As shown in FIG. 5 , the detection solution a moves on the electrode I, the electrode H and the electrode G.
  • the first dielectric layer 26h and the second dielectric layer 27h are both insulating and hydrophobic layers, specifically, a polytetrafluoroethylene coating. On the one hand, it can play an insulating and hydrophobic role, and on the other hand It can make the detection liquid a move more smoothly in the predetermined path, and avoid the liquid bead breaking during the moving process.
  • the driving circuit 24h is disposed on the side of the first cover plate 21h close to the channel 5h.
  • the driving circuit 24h may be formed by a metal etching method or an electroplating method.
  • control electrode 242h is integrated on the same edge of the first cover plate 21h, and the connection between the detection chip 2h and the detection chip 2h is realized by inserting the side of the first cover plate 21h on which the control electrode 242h is disposed into the connector 4h The electrical connection of the device 4h.
  • the driving circuit 24h can be divided into multiple areas according to different purposes, namely the sample adding area A, the reagent storage area B, the multiple nucleic acid amplification areas C and the liquid discharge area. D.
  • the second cover plate 23h is provided with a first opening 29h corresponding to the sample adding area A, and the first opening 29h corresponds to the sample adding port 13h of the box body 1h.
  • An opening 29h adds the detection solution a to the sample adding area A.
  • the reagent storage area B is used to store fluorescent reagents (eg, fluorescent dyes or fluorescent probes).
  • the detection solution a performs a nucleic acid amplification reaction in the nucleic acid amplification region C.
  • the nucleic acid amplification region C may include multiple regions, and the number of specific regions may be determined according to actual detection requirements.
  • the liquid outlet area D includes a liquid outlet 51h, the channel 5h communicates with the electrophoresis box 3h through the liquid outlet 51h, and the nucleic acid amplification product b can enter the electrophoresis box 3h in the liquid outlet area D through the liquid outlet 51h Perform electrophoresis detection.
  • the specific movement path of the detection solution a in the detection chip 2h is: after the detection solution a enters the sample adding area A, it is driven by the driving electrode 241h.
  • the amplification reaction is carried out in the extension zone C; when the amplification reaction is completed, the amplified product moves to the reagent storage zone B to be mixed with the fluorescent reagent, thereby obtaining the nucleic acid amplification product b combined with the fluorescent reagent; the nucleic acid amplification product that is evenly mixed b moves to the liquid outlet area D under the driving of the driving electrode 241h, and enters the electrophoresis box 3h through the liquid outlet 51h of the liquid outlet area D.
  • the number of the nucleic acid amplification regions C is two, and the heating temperatures of the two nucleic acid amplification regions C are different, so that different stages of the nucleic acid amplification reaction of the detection solution a at different temperatures can be realized.
  • the fluorescent reagent is pre-coated in the reagent storage area B when the detection chip 2h is assembled, and the fluorescent reagent does not need to be separately added subsequently.
  • the fluorescent reagent can also be mixed with the amplification product by subsequent addition.
  • a reagent tank 7h is set on the detection chip 2h corresponding to the reagent storage area B, and a fluorescent reagent can be added to the reagent tank 7h when nucleic acid detection is performed. Flexibility in nucleic acid amplification reactions.
  • the detection chip 2h further includes a heating element 28h disposed on the side of the first cover plate 21h and/or the second cover plate 23h away from the channel 5h, the heating element 28h is opposite to The nucleic acid amplification area C should be set for heating the detection solution a.
  • the heating element 28h is electrically connected to the connector 4h, and a specific area of the channel 5h is heated by the heating element 28h.
  • the heating element 28h is disposed on the side of the first cover plate 21h and the second cover plate 23h away from the channel 5h.
  • the heating element 28h is bonded to the surfaces of the first cover plate 21h and the second cover plate 23h through thermally conductive adhesive.
  • the first cover plate 21h and the second cover plate 23h are both glass plates
  • the spacer layer 22h is a double-sided adhesive frame, which is pasted on the first cover through the double-sided adhesive frame.
  • the edges of the cover plate 21h and the second cover plate 23h together form a sealed channel 5h.
  • the capacity of the channel 5h can be adjusted by designing the spacer layers 22h with different thicknesses according to actual needs.
  • the silicone oil d will be injected into the channel 5h, and the detection liquid a will move in the silicone oil d according to a predetermined path.
  • the electrophoresis box 3h includes an electrophoresis tank 31h, electrophoresis electrodes 32h disposed at both ends of the electrophoresis tank 31h, a gel medium 33h disposed inside the electrophoresis tank 31h, and The liquid injection tank 34h at one end of the gel medium 33h, the connecting device 35h, and the wetting solution set in the electrophoresis tank 31h.
  • the electrophoresis electrode 32 is electrically connected to the connector 4.
  • the electrophoresis box 3h also has a liquid inlet 37h corresponding to the liquid outlet 51h.
  • the connection device 35h includes a first end 351h and a second end 352h.
  • the nucleic acid amplification product b will enter the liquid outlet area D through the liquid outlet 51h
  • the connecting means 35h Further, it enters into the liquid injection tank 34h of the gel medium 33h, so as to perform electrophoresis detection.
  • the electrophoresis tank 31h is located on the side of the first cover plate 21h away from the second cover plate 23h, and the opening of the electrophoresis tank 31h faces the One side of the first cover plate 21h.
  • the electrophoresis tank 31h includes a transparent bottom plate 311h and a plurality of side walls 312h connected to the transparent bottom plate 311h. One end of the side walls 312h away from the transparent bottom plate 311h is in contact with the lower surface of the first cover plate 21h, that is, the electrophoresis tank 31h
  • the electrophoresis box 3h is sealed by using the first cover plate 21h as the cover plate of the electrophoresis tank 31h.
  • the liquid outlet 51h and the liquid inlet 37h belong to the same through hole.
  • the above design makes a height difference ⁇ H 1 between the silicone oil d in the detection chip 2h and the wetting solution in the electrophoresis box 3h, so that the nucleic acid amplification product b in the channel 5h can smoothly enter the electrophoresis box 3h; in addition, this kind of The structural design can improve the space utilization rate, which is beneficial to reduce the 100h volume of the overall nucleic acid detection box.
  • a sealing rubber ring (not shown) is disposed between the side wall 312h and the first cover plate 21h to improve the sealing performance of the electrophoresis box 3h.
  • the electrophoresis tank 31h further includes a plurality of latching positions 313h disposed on the transparent bottom plate 311h, the gel medium 33h is substantially a rectangular parallelepiped structure, and can be clamped between the plurality of the latching positions 313h, the The design of the clamping position 313h can prevent the gel medium 33h from moving and dislocating, thereby ensuring the accuracy of electrophoresis detection.
  • the transparent bottom plate 311h is a transparent glass plate, and the result of electrophoresis can be observed.
  • the number of the latching positions 313h is four, and the four latching positions 313h are respectively located at four corners of the gel medium 33h of the rectangular parallelepiped structure, so as to fix the gel medium 33h.
  • the electrophoresis tank 31h further includes a second opening 36h, the second opening 36h is disposed at the position of the first cover plate 21h corresponding to the electrophoresis tank 3h, and the electrophoresis tank 31h can be connected to the electrophoresis tank 31h through the second opening 36h Inject a wetting fluid (eg buffer).
  • a wetting fluid eg buffer
  • the first end 351h of the connecting device 35h extends into the channel 5h through the liquid outlet 51h, and the liquid outlet 51h penetrates the first cover plate 21h.
  • the connecting device 35h is a capillary tube, and the capillary effect can make the nucleic acid amplification product b in the channel 5h enter into the gel medium 33h of the electrophoresis box 3h. As shown in FIG.
  • the end surface of the first end 351h needs to be flush with the liquid level of the silicone oil, that is, the first end 351h includes a flat surface.
  • the first end 351h is provided with at least one inclined plane, that is, the first end 351h is inclined correspondingly to the central axis c of the connecting device 35h, at this time, the lowest point of the inclined plane and the There is a difference ⁇ H 2 between the lower surfaces of the channel 5h, and the liquid level of the silicone oil is located on this slope, which can also enable the nucleic acid amplification product b to enter the connecting device 35h smoothly.
  • the connecting device 35h needs to be filled with a wetting solution, and the wetting solution should be able to contact the surface of the liquid bead of the nucleic acid amplification product b at the liquid outlet area D to form
  • the continuous liquid flow can ensure that the nucleic acid amplification product b can smoothly enter the connecting device within 35h by using the capillary principle.
  • the angle between the inclined plane and the central axis c of the connecting device 35h is 45°-60°. It has been verified by experiments that within this angle range, the nucleic acid amplification product b can smoothly enter the connecting device 35h and then Into the gel medium within 33h.
  • the first end 351h side of the connecting device 35h is formed with an inclined plane with an inclination angle ⁇ of 45°-60°.
  • the capillary principle can be used to make nucleic acid amplification
  • the increased product b smoothly entered the connecting device for 35h and entered the gel medium for 33h.
  • two opposite sides of the first end 351h of the connecting device 35h are respectively formed with inclined planes with an inclination angle ⁇ of 45°-60°.
  • the nucleic acid amplification product b can smoothly enter the connecting device for 35h and enter the gel medium for 33h.
  • one end of the electrophoresis electrode 32h extends into the electrophoresis tank 31h, and the other end is electrically connected to the connector 4h.
  • the nucleic acid detection box 100h tilts, vibrates or changes in internal pressure during transportation, it can be simulated by high-altitude low pressure (0.2-0.7bar) and vibration tests, because the detection chip 2h is in channel 5h and channel 5h.
  • There is a pressure difference outside the electrophoresis box and there will also be a pressure difference inside and outside the electrophoresis box for 3h, which will cause the silicone oil in the channel 5h and the wetting fluid in the electrophoresis box 3h to leak or mix the two, which will seriously affect the nucleic acid detection box 100h
  • the performance of the nucleic acid detection box may even lead to the direct scrapping of the nucleic acid detection box for 100 hours.
  • the present invention solves the above problem by adding a communication structure 8h .
  • One end of the communication structure 8h is connected to the first opening 29h, and the other end is connected to the second opening 36h, so that the channel 5h is communicated with the electrophoresis box 3h, so as to balance the pressure in the channel 5h and the electrophoresis box 3h, and avoid silicone oil and electrophoresis in the channel 5h.
  • the communication structure 8h includes a first connection end 81h communicating with the first opening 29h, a second connection end 82h communicating with the second opening 36h, and connecting the first connection end 81h and the second connection Connection cavity 83h at end 82h.
  • the communication structure 8h further includes a buffer cavity 84h, and the buffer cavity 84h is provided between the second connection end 82h and the connection cavity 83h.
  • the buffer chamber 84h is used to store the silicone oil d or the wetting solution, so as to prevent the extruded silicone oil d or the wetting solution from entering the electrophoresis box 3h or the channel 5h.
  • the electrophoresis box 3h is arranged below the detection chip 2h, and the electrophoresis box 3h and the detection chip 2h are dislocated. Along the other direction of the extension direction of the vertical channel 5h, the projected area of the electrophoresis box 3h is larger than that of the detection chip 2h. shadow area.
  • the communication structure 8h further includes a first side wall 85h, a second side wall 86h, a third side wall 87h, a bottom plate 88h and a top plate 89h.
  • the first side wall 85h is provided on the surface of the second cover plate 23h
  • the second side wall 86h and the third side wall 87h are both provided on the surface of the electrophoresis box 3h near the detection chip 2h
  • the third side wall 87h is disposed close to the spacer layer 22h
  • the second side wall 86h is disposed away from the spacer layer 22h
  • the bottom plate 88h is disposed on the surface of the second cover plate 23h and connected to the third side wall 87h
  • the The top plate 89h is disposed at one end of the first side wall 85h and the second side wall 86h away from the electrophoresis box 3h.
  • the first side wall 85h, the second side wall 86h, the third side wall 87h, the bottom plate 88h, the top plate 89h and the surface of the electrophoresis box 3h near the detection chip together form a cavity 9h, and the first opening 29h penetrates the bottom plate 88h is located in the cavity 9h, the second opening 36h is located in the cavity 9h, and the cavity 9h communicates with the channel 5h and the electrophoresis box 3h through the first opening 29h and the second opening 36h, respectively.
  • the first connection end 81h, the second connection end 82h, the connection cavity 83h and the buffer cavity 84h together form the cavity 9h.
  • the first cover plate 21h is covered at the opening of the electrophoresis tank 31h, and the area of the first cover plate 21h is larger than that of the second cover plate 23h .
  • the first cover plate 21h beyond the second cover plate 23h can be used as the bottom of the communication structure 8h, and together with the first side wall 85h, the second side wall 86h, the third side wall 87h, the bottom plate 88h and the top plate 89h form the the cavity 9h. In this way, the assembly can be facilitated, and the volume of the electrophoresis box 3h can be reduced, which is beneficial to the miniaturization of the nucleic acid detection box 100h.
  • the first opening 29h is also disposed through the top plate 89h, and then communicates with the sample adding port 13h, so that sample can be added to the sample adding area A.
  • the communication structure 8ah may also be a communication pipe. One end of a communication tube is communicated with the first opening 29h, and the other end is communicated with the second opening 36h, so as to achieve the purpose of balancing the pressure in the channel 5h and the electrophoresis box 3h.
  • the communication structure 8ah is simple and easy to assemble. If the connecting tube made of rubber material is used, it can be bent within 100 hours of the nucleic acid detection box without taking up too much space.
  • the present invention also provides a nucleic acid detection device 200h, the nucleic acid detection device 200h includes a host 201h and the nucleic acid detection box 100h as described above, the host 201h is provided with a detection box installation slot 202h, the nucleic acid detection The cartridge 100h is mounted in the detection cartridge mounting groove 202h.
  • the nucleic acid detection box provided by the present invention integrates nucleic acid amplification reaction and electrophoresis detection, the overall structure is simple, the detection operation is simple, the operation process has low professional requirements, the detection efficiency is high, and the detection efficiency is greatly reduced. cost; at the same time, the detection process is flexible and does not need to be carried out in a fixed laboratory.
  • the nucleic acid detection box is portable, which can realize community detection or home detection; the setting of the connected structure can avoid the detection chip and the detection chip due to the movement or vibration of the nucleic acid detection box.
  • the liquid in the electrophoresis tank is mixed or leaked, which improves the reliability of the nucleic acid detection box.
  • FIGS. 1i to 3i are a heating assembly 100i provided in an embodiment of the present invention.
  • the heating assembly 100i can be applied to a detection chip for nucleic acid amplification reaction, and the detection chip carries a detection solution containing nucleic acid samples , the heating component 100i is used to heat the detection solution to make it undergo an amplification reaction.
  • the heating assembly 100i includes a substrate 1i, a heating layer 2i, a heat conducting layer 3i and a temperature sensing layer 4i.
  • the heating layer 2i is disposed on the substrate 1i, and the heating layer 2i includes a heating area 21i.
  • the thermally conductive layer 3i is disposed on the side of the substrate 1i away from the heating layer 2i, and the thermally conductive layer 3i corresponds to the heating area 21i.
  • the temperature sensing layer 4i is disposed on the heating area 21i and is electrically connected to the heating layer 2i. Wherein, the heating layer 2i is used for heating the heat conducting layer 3i, and the temperature sensing layer 4i is used for sensing the temperature of the heating zone 21i.
  • the substrate 1i is made of insulating resin, specifically, the base layer 11i can be made of epoxy resin, polyphenylene oxide (PPO), polyimide (PI), polyparaphenylene One of resins such as Polyethylene Terephthalate (PET) and Polyethylene Naphthalate (PEN).
  • PPO polyphenylene oxide
  • PI polyimide
  • PET Polyethylene Terephthalate
  • PEN Polyethylene Naphthalate
  • the material of the substrate 1i may be polyimide (PI) or polyethylene terephthalate (PET). Selecting the PI film or the PET film as the substrate 1i can greatly reduce the cost of the heating assembly 100i while meeting the performance of the heating structure 100, and further reduce the cost of the detection chip.
  • PI polyimide
  • PET polyethylene terephthalate
  • the heating layer 2i further includes a heating layer circuit 22i and a heating resistor 23i disposed on the substrate 1i, the heating layer circuit 22i may include one or more heating areas 21i, each heating area 21i in Corresponding heating resistors 23i are provided, and the specific number of heating zones 21i can be designed according to actual needs.
  • the heating resistor 23i in a certain heating zone 21i can be controlled to energize and generate heat, so as to achieve the purpose of heating.
  • the heating layer circuit 22i is provided with a power electrode 221i and a ground electrode 222i corresponding to each heating zone 21i, wherein the power electrode 221i and the ground electrode 222i corresponding to each heating zone 21i are respectively disposed in the heating zone 21i
  • the opposite sides of the heating resistor 23i are beneficial to the uniform heating of the entire heating area 21i.
  • the heating layer 2i is provided with a plurality of heating zones 21i, two adjacent heating zones 21i are arranged at a distance, and each heating zone 21i is provided with a heat conducting layer 3i.
  • the plurality of heating zones 21i can be independently heated and the heating temperatures can be different from each other, so that amplification reactions at different temperature segments in the nucleic acid amplification process can be realized.
  • There is a certain distance between two adjacent heating zones 21i which can reduce the temperature interference between different heating zones 21i and facilitate precise temperature control of each heating zone 21i.
  • the heating layer circuit 22i can be formed on the substrate 1i by plane printing or 3D printing. It can be understood that, the heating layer circuit 22i can also be fabricated by conventional processes such as lamination, exposure, development, etching, and film removal.
  • the thermally conductive layer 3i includes a metal layer 31i and a first graphite layer 32i and a second graphite layer 33i disposed on opposite surfaces of the metal layer 31i.
  • the first graphite layer 32i is disposed toward the heating layer 2, that is, the first graphite layer 32i is disposed on the surface of the substrate 1i away from the heating layer 2i.
  • the second graphite layer 33i is disposed toward the application equipment that needs to be heated.
  • the thermal conduction layer 3i mainly utilizes the advantages of graphite's good heat uniformity in the horizontal direction and copper foil heat storage, etc., so that the heating area 21i is heated more uniformly and stably, and avoids too severe temperature changes.
  • a first thermally conductive adhesive layer 35i is disposed between the first graphite layer 32i and the substrate 1i, and a second thermally conductive adhesive layer 36i is disposed on the side of the second graphite layer 33i away from the substrate 1i. That is, the thermally conductive layer 3i is attached to the surface of the substrate 1i on the side away from the heating layer 2i through the first thermally conductive adhesive layer 35i, and is attached to the surface of the application device through the second thermally conductive adhesive layer 36i.
  • the thicknesses of the first thermally conductive adhesive layer 35i and the second thermally conductive adhesive layer 36i may both be about 0.1 mm.
  • a conventional thermally conductive double-sided adhesive can be selected as the first thermally conductive adhesive layer 35i or the second thermally conductive adhesive layer 36i.
  • the material of the first thermally conductive adhesive layer 35i may be an acrylic adhesive
  • the material of the second thermally conductive adhesive layer 36i may be a silicone adhesive
  • the thickness of the metal layer 31i is 0.05mm-0.15mm
  • the metal layer 31i may be copper foil.
  • the thicknesses of the first graphite layer 32i and the second graphite layer 33i are both 0.02 mm-0.03 mm. Due to the excellent thermal conductivity of graphite in the horizontal direction, the thermal conductivity can be more uniform, the heat loss is lower, and the heating efficiency is higher. Therefore, by adding the first graphite layer 32i and the second graphite layer 33i on the two surfaces of the metal layer 31i, the heat can be stored uniformly, so that the temperature change will not be too severe, so that the heat distribution in the heating zone 21i is more uniform, Lower heat loss, higher heating efficiency and more accurate temperature.
  • a third thermally conductive adhesive layer 34i is further provided between the metal layer 31i, the first graphite layer 32i and the second graphite layer 33i.
  • the two graphite layers are bonded to the two surfaces of the metal layer 31i through the two third thermal conductive adhesive layers 34i to form a composite thermal conductive layer structure.
  • the thermally conductive layer 3i can be obtained by cutting according to the area of different heating zones 21i, which is convenient for use.
  • the thickness of the third thermally conductive adhesive layer 34i is 0.01mm-0.03mm.
  • two release layers 37i are attached to the surfaces of the first adhesive layer 5i and the second adhesive layer 6i before the thermally conductive layer 3i is pasted on the heating zone 21i.
  • the temperature sensing layer 4i includes a temperature sensing circuit 41i and a temperature sensor 42i disposed on the surface of the heating area 21i, and the temperature of the heating area 21i can be sensed by the temperature sensor 42i.
  • the area of the temperature sensor 42i is approximately equal to the surface area of the heating area 21i, and the temperature sensor 42i is attached to the surface of the heating area 21i away from the thermally conductive layer 3i to sense the temperature changes around the heating area 21i, thereby ensuring that the Accuracy and stability of temperature control throughout heating zone 21i.
  • FIGS. 5i to 6i are a detection chip 200i provided in an embodiment of the present invention, and the detection chip 200i is used for nucleic acid detection.
  • the detection chip 200i includes a first cover plate 201i, a second cover plate 203i, a spacer layer 202i and the heating element 100i.
  • the two opposite surfaces of the spacer layer 202i are in contact with the first cover plate 201i and the second cover plate 203i respectively.
  • the first cover plate 201i, the spacer layer 202i and the second cover plate 203i are surrounded to form a channel 204i,
  • the channel 204i is used to carry the detection liquid 205i.
  • the heating element 100i is disposed on the surface of the first cover plate 201i and/or the second cover plate 203i away from the channel 204i, and the heating element 100i is used to heat the detection liquid 205i, so that the detection liquid 205i can undergo nucleic acid detection. Amplification reaction. As shown in FIG. 5 , in this embodiment, the surfaces of the first cover plate 201i and the second cover plate 203i away from the channel 204i are provided with the heating element 100i.
  • the surfaces of the first cover plate 201i and the second cover plate 203i away from the channel 204i are provided with one heating element 100i, and two heating elements 100i. They are electrically connected by a connecting portion 206i, and the two heating elements 100i and the connecting portion 206i are integrally formed.
  • the electrical connection between the two heating elements 100i is realized through a connecting portion 206i, so that the two heating elements 100i and the connecting portion 206i form an integral structure, which is more convenient for the assembly of the heating element 100i in the detection chip 200i.
  • One of the heating components 100i may be provided with a lead-out line, which is convenient for the lead-out of the line.
  • the heating element 100i may be bonded to the surface of the first cover plate 201i and/or the second cover plate 203i through the second thermally conductive adhesive layer 36i.
  • the material of the second thermally conductive adhesive layer 36i is a silicone adhesive
  • the first cover plate 201i and the second cover plate 203i can be glass cover plates
  • the silicone adhesive has excellent properties such as high temperature resistance and weather resistance, which can stabilize the heating assembly 100i glued to the glass cover.
  • the channel 204i includes a detection path 207i
  • the detection liquid 205i can flow in the preset detection path 207i
  • the detection path 207i can be divided into a plurality of areas according to different purposes, They are the sample adding area A, the reagent storage area B, the multiple nucleic acid amplification areas C, and the liquid outlet area D.
  • the sample adding area A is communicated with the outside through a sample adding port, and the detection liquid 205i is added to the sample adding area A through the sample adding port.
  • the reagent storage area B is used to store fluorescent reagents (eg, fluorescent dyes or fluorescent probes).
  • the detection solution 205i performs a nucleic acid amplification reaction in the nucleic acid amplification region C.
  • the nucleic acid amplification region C may include multiple regions, and the number of specific regions may be determined according to actual detection requirements.
  • the specific flow path of the detection liquid 205i in the detection chip 200i is as follows: after the detection liquid 205i enters the sample adding area A, it moves to the nucleic acid amplification area C according to the prescribed path for amplification reaction; when the amplification reaction is completed, the amplified product moves Mixing with the fluorescent reagent in the reagent storage area B to obtain the nucleic acid amplification product combined with the fluorescent reagent; the uniformly mixed nucleic acid amplification product enters the next step of detection (eg, electrophoresis detection).
  • the next step of detection eg, electrophoresis detection
  • the number of the nucleic acid amplification regions C is two, and each nucleic acid amplification region C is provided corresponding to one heating region 21i, that is, the heating assembly 100i includes two heating regions 21i and corresponding two heat conduction layers 3i .
  • the heating temperatures of the two nucleic acid amplification regions C are different, so that different stages of the nucleic acid amplification reaction of the detection solution 205i at different temperatures can be realized.
  • the specific heating temperature ranges of the heating zone 21i for the two nucleic acid amplification zones C are respectively 90°C-105°C and 40°C-75°C.
  • the number of the nucleic acid amplification regions C may also be three or more depending on the specific nucleic acid amplification reaction stage.
  • the specific heating temperature ranges for the three nucleic acid amplification regions C by the heating zone 21i are 90°C-105°C, 68°C-75°C, and 40°C-65°C, respectively.
  • the area to be heated in the detection path 207i may also include a reagent storage area B. After the reagent storage area B is heated, the reagents stored therein can be preheated.
  • FIG. 8i and FIG. 9i together with FIG. 3i and FIG. 7i, it is a schematic diagram of the detection path 207i including three heating zones 21i, the three heating zones 21i are respectively 90°C-105°C temperature zone, 68°C-75°C Temperature zone and 40°C-65°C temperature zone.
  • the three heating zones 21i are arranged at a distance from each other in terms of spatial structure and are not in contact. During the heating process, the three heating zones 21i can be heated at the same time, or a certain heating zone 21i can be heated first.
  • the temperature of the detection liquid 205 is 90°C-105°C.
  • the residence time in the zone is relatively long, and the temperature of the temperature zone of 90°C to 105°C can be heated first, and then the temperature of other heating zones 21i can be heated after the reaction is completed.
  • Fig. 8i and Fig. 9i it is a picture of the temperature rise when different numbers of heating zones 21i are turned on when the ambient temperature is 30°C.
  • Fig. 10i is the temperature rise measurement curve of the saline liquid bead. It can be seen from Fig. 9i that the temperature rises with the increase of time, there is not much fluctuation, and the temperature rises rapidly.
  • the present invention also provides a nucleic acid detection box 300i, the nucleic acid detection box 300i includes a box body 301i, a detection chip 200i and a connector 302i, the detection chip 200i is disposed in the box body 30i1, the detection chip 200i is electrically connected to the connector 302i.
  • the present invention also provides a nucleic acid detection device 400i, the nucleic acid detection device 400i includes a host 401i and the nucleic acid detection box 300i as described above, the host 401i includes an installation slot 402i, and the nucleic acid detection box 300i is detachably installed in the inside the installation groove 402i.
  • the heating assembly provided by the present invention can make the heating temperature of the heating zone more uniform by adding a heat-conducting layer between the heating layer and the temperature-sensing layer, and can accurately sense the temperature of the heating zone through the setting of the temperature-sensing layer.
  • the thermal conductive layer is attached with a graphite layer on both surfaces of the metal layer, which can make the temperature of the heating area more uniform, the temperature change will not be too severe, the heat loss will be lower, the heating efficiency will be higher, and the heating temperature will be more accurate.
  • FIG. 1j is a detection chip 10j provided by the present invention.
  • the detection chip 10j includes a chip housing 1j, a channel 2j and a driving circuit 3j.
  • the channel 2j is provided in the chip housing 1j, and the channel 2j is used for carrying a droplet a containing a specimen (eg, a nucleic acid sample).
  • the droplets aj are capable of performing nucleic acid amplification reactions in the channel 2j.
  • the chip housing 1j includes a first cover plate 11j, a spacer layer 12j and a second cover plate 13j.
  • the two opposite surfaces of the spacer layer 12j are respectively adjacent to the first cover plate 11j and the second cover plate 13j, and the first cover plate 11j, the spacer layer 12j and the second cover plate 13j together form the channel. 2j.
  • the driving circuit 3j can drive the droplet a to move along a predetermined path, so as to complete the nucleic acid amplification reaction in the channel 2j.
  • the driving circuit 3j includes a plurality of driving electrodes 31j disposed on the surface of the first cover plate 11j near the channel 2j, and a first interface disposed on the side of the driving electrodes 31j near the second cover plate 13j.
  • the driving electrode 31j and the detection electrode 32j are arranged on both sides of the channel 2j opposite to each other. By controlling the power-on or power-off of the driving electrode 31j and the detection electrode 32j, the droplet a can be controlled to move according to a prescribed path in the channel 2j.
  • the driving circuit 3j includes a plurality of driving electrodes 31j arranged in an array and a conductive layer disposed on the surface of the second cover plate 13j near the channel 2j.
  • the conductive layer serves as the The detection electrode 32j is described.
  • the driving electrode 31j is disposed on the side of the first cover plate 11j close to the channel 2j.
  • the driving electrode 31j can be formed by a metal etching method or an electroplating method.
  • the driving circuit 3j constitutes a thin film transistor (Thin Film Transistor, TFT) driving circuit.
  • TFT Thin Film Transistor
  • the droplet a since the droplet a has conductivity, combined with the principle of dielectric wetting, the droplet a can be moved in the channel 2j according to a predetermined path.
  • the circuit between a certain driving electrode 31j and the detecting electrode 32j can be selectively turned on or off, thereby changing the voltage between the driving electrode 31j and the detecting electrode 32j, thereby changing the droplet a and the first dielectric
  • the wetting characteristics between the layer 33j and the second dielectric layer 34j control the movement of the droplet a in a predetermined path within the channel 2j.
  • the driving electrode 31j includes three electrodes, such as electrode A, electrode B and electrode C, as an example to illustrate the principle that the droplet a moves in a predetermined path in the channel 2j.
  • droplet a can move on electrode A, electrode B and electrode C.
  • a voltage is applied to the electrode B by applying a voltage between the electrode B and the detection electrode 32j, while the voltage between the electrode A and the detection electrode 32j is turned off.
  • the wetting characteristics between the droplet a and the first dielectric layer 33j and the second dielectric layer 34j are changed, so that the liquid-solid contact angle between the electrode A and the droplet a becomes larger, and the electrode B and the The liquid-solid contact angle between the droplets a becomes smaller, which promotes the movement of the droplets a from the electrode A to the electrode B.
  • the droplet driving principle in the above detection chip 10j is to use voltage to change the hydrophilicity and hydrophobicity of the dielectric layer, thereby changing the ability of the droplet a on the dielectric layer to adsorb the dielectric layer, thereby facilitating the movement of the droplet a. Therefore, when the detection chip 10j is assembled and before use, circuit testing of the driving circuit 3j is required to confirm that the driving circuit 3j has no short circuit or open circuit problem, thereby ensuring the smooth progress of the nucleic acid amplification reaction.
  • FIG. 2j and FIG. 3j are a dielectric wetting device 100j according to an embodiment of the present invention.
  • the dielectric wetting device 100j includes a detection chip 10j, a power input module 20j, a switch module 30j, a detection module 40j and a judgment module 50j.
  • the power input module 20j is electrically connected to the detection chip 10j through a switch module 30j.
  • the power input module 20j is electrically connected to the driving electrode 31j of the detection chip 10j through the switch module 30j, for outputting the power supply voltage V in to the driving electrode 31j.
  • the switch module 30j is used to connect the drive electrode 31j to the power input module 20j.
  • the switch module 30j includes a plurality of switch units 4j, and each of the switch units 4j is electrically connected to a corresponding one of the driving electrodes 31j.
  • the detection electrode 32j When coupling occurs between the driving electrode 31j and the detection electrode 32j, the detection electrode 32j will receive and output the detection voltage V out (ie, the coupling voltage).
  • the detection module 40j is electrically connected to the detection electrode 32j for acquiring the detection voltage Vout output by the detection electrode 32j, and processing the detection voltage Vout to obtain the peak voltage of the detection voltage Vout VP .
  • the detection module 40j includes at least a peak detection circuit 41j.
  • the peak detection circuit 41j includes a first operational amplifier U 1 , a first diode D 1 , a second diode D 2 , a second operational amplifier U 2 , a first resistor R 1 , a second resistor R 2 and a first capacitor C 1 .
  • the forward input terminal of the first operational amplifier U1 is electrically connected to the detection electrode 32j.
  • the negative input end of the first operational amplifier U1 is respectively connected to the anode of the first diode D1 and one end of the second resistor R2.
  • the output terminals of the first operational amplifier U1 are respectively connected to the anode of the second diode D2 and the cathode of the first diode D1.
  • the cathode of the second diode D2 is connected to one end of the first resistor R1, and the other end of the first resistor R1 is connected to the forward input end of the second operational amplifier U2 and the first one end of capacitor C1.
  • the other end of the first capacitor C1 is grounded.
  • the negative input terminal of the second operational amplifier U2 is respectively connected to the other terminal of the second resistor R2 and the output terminal of the second operational amplifier U2.
  • the output terminal of the second operational amplifier U 2 is used as the output terminal of the detection module 40j to output the peak voltage V P of the detection voltage V out .
  • the judging module 50j is electrically connected to the detection module 40j for obtaining the peak voltage VP and comparing the peak voltage VP with a preset voltage value V r to judge the detection chip 10j whether a short circuit or an open circuit has occurred.
  • the judging module 50j judges that the detection chip 10j has a short circuit or an open circuit, it can further judge the position where the short circuit or the open circuit occurs.
  • the peak detection circuit 41j may include, but is not limited to, a peak detection circuit 41j (ie, a peak detector).
  • the detection module 40j may also include other circuits, such as filter circuits.
  • the first dielectric layer 33j and the second dielectric layer 34j are both insulating and hydrophobic layers, and specifically, may be a polytetrafluoroethylene coating. In this way, on the one hand, it can play the role of insulation and hydrophobicity, and on the other hand, it can also make the droplet a move more smoothly in the predetermined path, and prevent the droplet from breaking during the movement.
  • FIG. 4j is a schematic diagram of an equivalent circuit of the circuit shown in FIG. 3j.
  • the first dielectric layer 33j, the second dielectric layer 34j and the air in the channel 2j are detected in the chip 10j.
  • An equivalent capacitance will be formed in the driving loop 3j.
  • the first dielectric layer 33j will form an equivalent first dielectric layer capacitance C di-B in the driving loop 3j.
  • the second dielectric layer 34j will form an equivalent second dielectric layer capacitance C di-T in the driving circuit 3j.
  • the channel 2j between the first dielectric layer 33j and the second dielectric layer 34 is not filled with silicone oil, an equivalent air capacitance C air is formed. If the channel 2j is filled with silicone oil, the value of the formed equivalent air capacitance C air will change according to the amount of silicone oil added.
  • the first dielectric layer capacitor C di-B , the air capacitor C air and the second dielectric layer capacitor C di-T are connected in series in sequence, and the first dielectric layer capacitor C di-B is connected in series.
  • One end of the capacitor C di-B away from the air capacitor C air is connected to the driving electrode 31j, and one end of the second dielectric layer capacitor C di-T away from the air capacitor C air is connected to the detection electrode 32j.
  • the third resistor (R BA , R BB , R BC ) is connected in series with the second capacitor (C BA , C BB , C BC ), wherein the third One end of the resistors (R BA , R BB , R BC ) is connected to the switch module 30j, and the other end is connected to the second capacitors (C BA , C BB , C BC ) and the driving electrodes 31j, respectively.
  • the other ends of the capacitors (C BA , C BB , C BC ) are connected to ground.
  • the power supply voltage V in output by the power input module 20j is a continuous square wave pulse voltage. Therefore, the detection voltage V out output by the detection electrode 32j is also a continuous square wave pulse voltage.
  • the switch module 30j can select and turn on a certain driving electrode 31j under the control of the controller (not shown in the figure), and perform the detection of the individual driving electrodes 31j one by one, and the detection is accurate and accurate. It is determined whether or not the circuit formed between the driving electrode 31j and the detection electrode 32j has a short circuit or an open circuit, and the position where the short circuit occurs.
  • the peak detection circuit 41j processes (eg amplifies) the detection voltage Vout to obtain the peak voltage Vp .
  • the detection module 40j outputs the peak voltage VP to the determination module 50j .
  • the judgment module 50j judges and compares the peak voltage V P with the preset voltage value V r , so as to judge whether there is an open circuit or a short circuit in the driving circuit 3j through the difference between the two, and can further determine the specific occurrence of the short circuit or open circuit. Location.
  • the peak voltage of the driving circuit 3j under normal conditions needs to be detected in advance as the preset voltage value V r . That is, the preset voltage value V r is the peak voltage of the driving circuit 3j under normal conditions.
  • the circuit detection principle of the dielectric wetting device 100j provided by the present invention will be described in detail below.
  • the power supply input module 20j inputs the power supply voltage Vin (as shown in FIG. 5 , the input power supply voltage Vin is a continuous square wave pulse voltage) , the switch module 30j switches to the circuit where the designated drive electrode 31j is located, and then the detection voltage Vout is output through the detection electrode 32j.
  • the detection voltage Vout is amplified by the peak detection circuit 41j (peak detector) in the detection module 40j and obtained.
  • the detection module 40j outputs the peak voltage VP to the judgment module 50j for comparison and judgment.
  • the electrode A and the detection electrode 32j form a driving loop, and the continuous square wave pulse voltage output by the power input module 20j is passed through the equivalent resistance R BA (electrode A and the switch
  • R BA equivalent resistance
  • the detection electrode 32j will output the detection voltage Vout (ie, the coupling voltage), and then pass between the detection electrode 32j and the detection module 40j.
  • the trace resistance of reaches the peak detection circuit 41j (ie, the peak detector).
  • the peak detection circuit 41j then amplifies the detection voltage V out to obtain the peak voltage V P and outputs it to the judgment module 50j.
  • the judging module 50j obtains the peak voltage VP
  • the difference between the peak voltage VP and the preset voltage value V r of the normal circuit can be used to judge whether the circuit of the dielectric wetting device 100 is normal.
  • the normal peak voltage VP of the circuit of the dielectric wetting device 100j is shown as the peak point of the output voltage V out in FIG. 5j .
  • the voltage curve corresponding to the peak voltage VP overlaps with the voltage curve corresponding to the preset voltage value V r , and the peak voltage VP is equal to the preset voltage value V r , so it can be proved that the circuit of the dielectric wetting device 100j normal.
  • the circuit detection principle is the same as the detection principle when the channel 2j is air, and the difference is only in the size of the peak voltage VP after the injection of the silicone oil and the non-injection.
  • the peak voltage VP varies with silicone oil.
  • the power supply voltage Vin is input by the power input module 20j (as shown in FIG. 7j, the input power supply voltage Vin is a continuous square wave pulse voltage), and the switch module 30j switches to the circuit where the designated driving electrode 31j is located,
  • the power supply voltage V in cannot be switched to the circuit of the driving electrode 31j through the switch module 30j, nor can it reach the detection electrode 32j. Therefore, the peak detection circuit 41j (ie, the peak detector) of the detection module 40j cannot receive the output voltage V out , and cannot obtain the peak voltage V P from the output voltage V out , so the determination module 50j can easily determine the designated drive electrode 31j
  • the circuit it is in has an open circuit.
  • the detection module 40j cannot receive the output voltage V out and obtain the peak voltage V P . Therefore, at this time, it can be determined whether the circuit is open according to the voltage difference ⁇ V 1 between the open-circuit voltage value and the preset voltage value V r . As shown in Figure 7j, the peak point of the output voltage V out is the voltage curve corresponding to the normal preset voltage value V r , and the peak point of the output voltage V out is the voltage curve corresponding to the peak voltage VP after the open circuit occurs.
  • the 40j cannot receive the detection voltage V out , and thus cannot obtain the peak voltage V P , so the voltage curve corresponding to the peak voltage V P is a straight line, and the height difference between the peak voltage V P and the preset voltage value V r is the voltage difference ⁇ V 1 , at this time, the voltage difference ⁇ V 1 is relatively large, and it can be determined that the circuit where the electrode A is located is open by ⁇ V 1 and the shape of the curve c.
  • the power supply voltage Vin is input by the power input module 20j (as shown in FIG. 9j, the input power supply voltage Vin is a continuous square wave pulse voltage), and the switch module 30 is switched to the circuit where the designated driving electrode 31j is located, After that, the detection electrode 32j outputs the detection voltage V out , and the detection voltage V out is amplified by the peak detection circuit 41j (ie the peak detector) in the detection module 40j to obtain the peak voltage V P , and finally the peak detector outputs the peak voltage V P to The judgment module 50j performs comparison judgment.
  • the power supply voltage V in is input by the power input module 20j.
  • the wirings between the different driving electrodes 31j are connected to each other, which will lead to an increase in the impedance RC of driving a certain driving electrode 31j .
  • the variation of the peak voltage VP obtained by the peak detector is reduced, so at this time, it can be judged whether the circuit is short - circuited according to the voltage difference ⁇ V2 between the magnitude of the peak voltage VP obtained after short circuit and the normal preset voltage value V r .
  • the peak point of the output voltage V out is the voltage curve corresponding to the normal preset voltage value V r and the peak point of the output voltage V out is the voltage curve corresponding to the peak voltage VP.
  • the change of the peak voltage V P obtained by the detector is small, so the slope of the voltage curve corresponding to the peak voltage V P is smaller than the slope of the voltage curve corresponding to the normal preset voltage value V r .
  • the height difference between them is the voltage difference ⁇ V 2 .
  • the voltage difference ⁇ V 2 is smaller than the voltage difference ⁇ V 1 when the circuit is open.
  • the voltage curve shape corresponding to the voltage difference ⁇ V 2 and the peak voltage VP can determine where the designated driving electrode 31j is located. the circuit is short-circuited.
  • the circuit trace where electrode A is located and the circuit trace where electrode B are located are connected to each other, resulting in an increase in the impedance RC when driving electrode A or electrode B.
  • the slope of the voltage curve where the peak voltage VP obtained by the peak detector is located becomes smaller than the slope of the voltage curve of the normal preset voltage value V r , so at this time, the short-circuit peak voltage VP can be determined according to the magnitude of the short-circuit peak voltage VP and the normal preset voltage.
  • the voltage difference ⁇ V 2 between the values V r is used to judge that the circuit is short-circuited.
  • the dielectric wetting device 100j when testing the circuit of the dielectric wetting device 100j, it is first necessary to detect the circuit of the dielectric wetting device 100j in normal operation, so as to obtain the voltage curve diagram of the normal circuit as shown in FIG. 5 . In this way, when the dielectric wetting device 100j is abnormal during use, the change of the peak voltage VP obtained by the peak detector can directly determine whether an open circuit or a short circuit occurs in the circuit, and whether the short circuit or open circuit occurs. specific location.
  • the dielectric wetting device 100j in the present application can self-detect the detection chip 10j through its own circuit, and no additional detection equipment is required.
  • the detection method is simple, easy to operate, accurate in detection, high in efficiency, and accurate in fault point judgment.
  • a separate testing device capable of implementing the above circuit testing process may also be used to perform circuit testing on the testing chip 10j.
  • the present invention also provides a circuit detection method, which can be used to detect the circuit of the dielectric wetting device 100j.
  • the method includes at least the following steps:
  • the first step is to switch the switch module 30j to the designated drive electrode 31j, so that the power input module 20j supplies the power supply voltage V in to the designated drive electrode 31j.
  • the driving electrode 31j and the detection electrode 32j have a coupling reaction to generate a coupling voltage (ie, the detection voltage V out ), and the detection electrode 32j outputs the detection voltage V out to the detection module 40j.
  • the detection module 40j processes the detection voltage V out to obtain the peak voltage V P .
  • the judging module 50j obtains the peak voltage VP, compares the peak voltage VP with the preset voltage value V r , and judges whether a circuit designated in the driving circuit 3j is short-circuited or not. Open circuit, and can also determine the specific location of the short circuit or open circuit.
  • the dielectric wetting device 100j can realize circuit self-test to detect whether its internal circuit is normal. Specifically, by comparing the peak voltage and the preset voltage value, it can determine whether the circuit of the dielectric wetting device 100j is abnormal, and can accurately determine whether a short circuit or an open circuit occurs in the circuit, and the specific conditions of the short circuit or open circuit. Location.
  • the circuit detection principle of the dielectric wetting device 100j is simple, easy to operate, accurate in detection, high in efficiency, and accurate in fault point judgment.
  • FIGS. 1k to 3k are a detection chip 100k provided by an embodiment of the present invention.
  • the detection chip 100k includes a first cover plate 1k, a second cover plate 2k, a conductive portion 3k and two first driving electrodes 4k.
  • the conductive portion 3k includes a first surface 31k and a second surface 32k disposed opposite to each other, and the first surface 31k and the second surface 32k are respectively disposed adjacent to the first cover plate 1k and the second cover plate 2k,
  • the first cover plate 1k, the conductive portion 3k and the second cover plate 2k are surrounded to form a channel 5k, the channel 5k includes a detection path 6k, the channel 5k is used to carry a detection liquid 7k, and the detection liquid 7k is charged .
  • the two first driving electrodes 4k are both electrically connected to the conductive portion 3k, and are used to turn on or off the conductive portion 3k.
  • a driving force is generated between the conductive portion 3k and the detection liquid 7k after electrification, and the driving force is used to drive the detection liquid 7k to move in a direction away from the conductive portion 3k, so that the detection liquid 7k moves to the detection liquid 7k. on path 6k.
  • the detection chip 100k is used for nucleic acid amplification reaction, and the detection solution 7k containing nucleic acid samples is added into the channel 5k. It should be noted that the detection solution 7k exists in the form of liquid beads in the channel 5k.
  • the detection chip 100k further includes a driving component 9k
  • the driving component 9k includes a driving circuit 91k disposed on the side of the first cover plate 1k close to the second cover plate 2k
  • disposed in the driving circuit 91k includes a first dielectric layer 92k on a side close to the second cover plate 2k, a second conductive layer 93k disposed on a side of the second cover plate 2k close to the first cover plate 1k, and a second conductive layer 93k disposed on the second cover plate 2k
  • the driving circuit 91k includes a plurality of second driving electrodes 911k arranged in an array and a control electrode 912k electrically connected to all the second driving electrodes 911k.
  • the driving circuit 91k is a thin film transistor (Thin Film Transistor, TFT) driving circuit, and since the detection liquid 7k has conductivity, combined with the principle of dielectric wetting (Electrowitting-On-Dielectric, EWOD), the detection liquid 7k can be realized. It moves along the predetermined detection path 6k within the channel 5k.
  • TFT Thi Film Transistor
  • the circuit between a certain second driving electrode 911k and the second conductive layer 93k can be selectively turned on or off, thereby changing the voltage between the second driving electrode 911k and the second conductive layer 93k to change the detection
  • the wetting characteristics between the liquid 7k and the first dielectric layer 92k and the second dielectric layer 92k further control the movement of the detection liquid 7k along the predetermined detection path 6k in the channel 5k. As shown in FIG. 2k, the detection liquid 7k moves on the electrode I, the electrode H and the electrode G.
  • the detection liquid 7k When the detection liquid 7k is on the electrode H, a voltage is applied between the electrode G and the second conductive layer 93k to give the electrode G a voltage Vd , while disconnecting the voltage between the electrode H and the second conductive layer 93k, the wetting characteristics between the detection liquid 7k and the first dielectric layer 92k and the second dielectric layer 94k are changed, so that the electrode H and the The liquid-solid contact angle between the detection liquid 7k increases, and the liquid-solid contact angle between the electrode G and the detection liquid 7k becomes smaller, so that the detection liquid 7k moves from the electrode H to the electrode G.
  • the first dielectric layer 92k and the second dielectric layer 94k are both insulating and hydrophobic layers, specifically, a polytetrafluoroethylene coating, which can play an insulating and hydrophobic role on the one hand, and also It can make the detection liquid 7k move more smoothly in the predetermined path, and prevent the liquid droplets from breaking during the movement.
  • the driving circuit 91k is disposed on the surface of the first cover plate 1k close to the channel 5k.
  • the driving circuit 91k may be formed by a metal etching method or an electroplating method.
  • control electrode 912k is integrated on the same edge of the first cover plate 1k, which can facilitate the connection between the control electrode 912k and the connector.
  • the driving circuit 91k can be divided into a plurality of regions according to different purposes, namely a sample adding region A, a reagent storage region B, a plurality of nucleic acid amplification regions C and a liquid outlet region D.
  • the second cover plate 2k is also provided with a sample adding tank 22k corresponding to the sample adding area A.
  • the sample adding groove 22k is communicated with the sample adding area A.
  • the reagent storage area B is used to store fluorescent reagents (eg, fluorescent dyes or fluorescent probes).
  • the detection solution 7k performs a nucleic acid amplification reaction in the nucleic acid amplification region C.
  • the nucleic acid amplification region C may include multiple regions, and the number of specific regions may be determined according to actual detection requirements.
  • the specific movement path of the detection solution 7k in the detection chip 100k is as follows: after the detection solution 7k enters the sample adding area A, it moves to the nucleic acid amplification area C according to a specified path under the driving of the second driving electrode 911k Carry out the amplification reaction; when the amplification reaction is completed, the amplified product moves to the reagent storage area B to be mixed with the fluorescent reagent, thereby obtaining the nucleic acid amplification product combined with the fluorescent reagent; the mixed nucleic acid amplification product is evenly mixed in the second drive. Driven by the electrode 911k, the electrode 911k moves to the liquid outlet area D to enter the next step of detection.
  • the negative charge of the conductive part 3k will make the detection liquid 7k carry the positive charge.
  • the electric charge is neutralized, so that the detection liquid 7k is completely negatively charged, so that a repulsive driving force is formed between the detection liquid 7k and the conductive portion 3k, and the detection liquid 7k is driven away from the side wall of the conductive portion 3k under the action of the repulsive force. , and return to the detection path 6k again, so as to ensure the normal progress of the nucleic acid amplification reaction.
  • the design of the conductive portion 3k and the first driving electrode 4k of the present invention cleverly utilizes the principle of repulsion of the same charge, which solves the problem that the detection solution will accidentally leave the detection path and the amplification reaction cannot be performed normally.
  • the electrical connection between the first driving electrode 4k and the conductive portion 3k can be achieved in various ways.
  • the first driving electrode 4k is disposed between the first cover plate 1k and the first surface 31k of the conductive portion 3k, and the first driving electrode 4k is in contact with the conductive portion 3k and is electrically
  • a sealing material may be filled between the first surface 31k and the surface of the first cover plate 1k close to the second cover plate 2k.
  • the installation of the first driving electrode 4k and the connection with the external power supply are relatively easy to implement.
  • an opening 95k is formed on the first dielectric layer 92k, the first driving electrode 4k is embedded in the opening 95k, and the two opposite surfaces of the first driving electrode 4 are respectively opposite to the first surface 31k is in contact with the surface of the first cover plate 1k close to the second cover plate 2k, and the first dielectric layer 92k fills the gap between the first surface 31k and the first cover plate 1k so as to seal the channel 5k.
  • a protrusion 33k may be provided on the first surface 31k, and the protrusion 33k is embedded in the opening Within 95k, the contact and electrical connection with the first driving electrode 4k are realized.
  • the first driving electrode 4k may be an electrode sheet.
  • two first grooves 11k are formed in the area of the first cover plate 1k in contact with the first surface 31k, and each of the first grooves 11k is provided with two first grooves 11k.
  • One of the first driving electrodes 4k corresponding to the first surfaces 31k of the two first grooves 11k, protrudes toward the direction away from the second surface 32k to form two first bumps 34k, each of the first bumps 34k is accommodated in a corresponding one of the first grooves 11k, and the first bump 34k is in contact with and electrically connected to the first driving electrode 4k located in the first groove 11k.
  • the first cover plate 1k is provided with two first grooves 11k for accommodating the first driving electrodes 4k, and then the conductive parts 3k and the first driving electrodes 4k are realized by the first bumps 34k on the conductive parts 3k. contacts and electrical connections.
  • accommodating the first driving electrode 4k in the first groove 11k of the first cover plate 1k will not affect the sealing performance of the channel 5k, and the gap between the first driving electrode 4k and the conductive portion 3k will not be affected.
  • the connection stability is better.
  • the first driving electrode 4k is an electrode sheet.
  • a first groove 11k is provided in the area where the first cover plate 1k contacts the first surface 31k, and the second cover plate 2k and the second A second groove 21k is formed in the contact area of the surface 32k, wherein a first driving electrode 4k is formed in both the first groove 11k and the second groove 21k.
  • the first surface 31k protrudes in a direction away from the second surface 32k to form a first bump 34k, the first bump 34k is accommodated in the first groove 11k, and the first bump 34k is The bump 34k is in contact with and electrically connected to a first driving electrode 4k.
  • the second surface 32k protrudes toward the direction away from the first surface 31k to form a second bump 35k, the second bump 35k is accommodated in the second groove 21k, and the second bump 35k is connected with another bump 35k.
  • a first driving electrode 4k contacts and is electrically connected.
  • the first groove 11k and the second groove 21k are respectively provided on the first cover plate 1k and the second cover plate 2k, and the two first driving electrodes 4k are respectively accommodated in the grooves.
  • the upper and lower surfaces of the conductive portion 3k can be connected to a power source, so that a voltage can be applied to the conductive portion 3k.
  • accommodating the first driving electrode 4k in the first groove 11k and the second groove 21k will not affect the sealing performance of the channel 5k, and the gap between the first driving electrode 4k and the conductive portion 3k will not be affected.
  • the connection stability is better.
  • the first driving electrode 4k is an electrode sheet.
  • the conductive portion 3k is provided with two third grooves 36k, and the two first driving electrodes 4k are respectively disposed in the two third grooves 36k and are connected to the two third grooves 36k.
  • the conductive portion 3k contacts and is electrically connected.
  • two third grooves 36k are formed on the conductive portion 3k for accommodating the first driving electrodes 4k, so as to avoid opening the grooves on the first cover plate 1k and the second cover plate 2k, which is convenient for the third
  • the formation of the groove 36k also facilitates the assembly of the detection chip 100k.
  • the position of the third groove 36k on the conductive portion 3k can be specifically designed according to actual needs.
  • the opening of the third groove 36k can be provided on the first surface 31k and/or the second surface 32k. , can also be arranged on the side wall of the conductive portion 3k away from the channel 5k.
  • the opening of the third groove 36k is arranged on the side wall of the conductive portion 3k away from the channel 5k. This design is more convenient for the first driving electrode 4k to be electrically connected to the power supply, and will not affect the channel 5k. tightness.
  • the first driving electrode 4k is an electrode sheet.
  • the conductive portion 3k includes a conductive portion body 37k and a first conductive layer 38 disposed on a surface of the conductive portion body 37k close to the channel 5k.
  • the first conductive layer 38k and The two first driving electrodes 4k are electrically connected.
  • the conductive portion 3k does not need to be conductive as a whole, and only the sidewall of the conductive portion body 37k close to the channel 5k needs to be coated or attached to the first conductive layer 38k.
  • the first driving electrode 4k can be electrically connected to the first conductive layer 38k in any form, as long as the electrical connection between the first conductive layer 38k and the power source can be achieved and the sealing of the channel 5k can be ensured.
  • the first driving electrode 8k may also be a strip electrode with a certain aspect ratio, such as a needle-shaped or rod-shaped electrode, and one end of the first driving electrode 8k is fixed to the conductive portion 3k , and connect the other end to the power supply.
  • a certain aspect ratio such as a needle-shaped or rod-shaped electrode
  • the two first driving electrodes 4k (8k) of the present invention are respectively connected to the positive and negative electrodes of the power supply, and the conductive portion 3k is energized or powered off through the two first driving electrodes 4k (8k).
  • the two The first driving electrodes 4k (8k) apply a negative voltage to the conductive portion 3k, so that the conductive portion 3k is negatively charged after being energized, and the negative conductive portion 3k adsorbs the detection liquid 7k to the conductive portion 3k under the action of electrostatic force on the side wall near the channel 5k.
  • FIG. 2k the two The first driving electrodes 4k (8k) apply a negative voltage to the conductive portion 3k, so that the conductive portion 3k is negatively charged after being energized, and the negative conductive portion 3k adsorbs the detection liquid 7k to the conductive portion 3k under the action of electrostatic force on the side wall near the channel 5k.
  • the negative charge on the conductive portion 3k is neutralized with the positive charge of the detection liquid 7k, so that the detection liquid 7k is only negatively charged.
  • the same kinds of charges repel each other, and the detection liquid 7k will be pushed away from the side wall of the conductive part 3k by the repulsive force between the conductive part 3k and the detection liquid 7k, and enter the detection path 6k , carry out nucleic acid amplification reaction.
  • the present invention can avoid the problem that the detection liquid 7k is adsorbed on the side wall of the conductive part 3k and cannot enter the detection path, thereby failing to realize the subsequent nucleic acid amplification reaction by the arrangement of the conductive part 3k and the first driving electrode 4k.
  • the present invention further provides a nucleic acid detection cartridge 200k including the detection chip 100k, the nucleic acid detection cartridge 200k includes a cartridge body 201k and a connector 202k.
  • the detection chip 100k is disposed in the box body 201k, and the connector 202k is electrically connected to the first driving electrode 4k and the driving component 9k in the detection chip 100k, respectively.
  • the present invention also provides a nucleic acid detection device 300k, the nucleic acid detection device 300k includes a host 301k and the nucleic acid detection box 200k as described above, the host 301k is provided with a detection box installation slot 302k, the nucleic acid detection The cartridge 200k is mounted in the detection cartridge mounting groove 302k.
  • the detection chip provided by the present invention has a simple structure design and is easy to assemble. Through the design of the conductive part and the first driving electrode, the detection liquid adsorbed on the side wall of the conductive part can be returned to the detection path, thereby ensuring The normal progress of the nucleic acid amplification reaction.
  • FIG. 11 is a detection chip 101 provided by the present invention.
  • the detection chip 101 includes a chip housing 11 , a channel 21 and a driving circuit 31 .
  • the channel 21 is provided in the chip housing 11, and the channel 21 is used to carry the droplet a containing the specimen (eg, nucleic acid sample).
  • the droplet a is capable of performing a nucleic acid amplification reaction in the channel 21.
  • the chip housing 11 includes a first cover plate 111, a spacer layer 12l and a second cover plate 13l.
  • the two opposite surfaces of the spacer layer 12l are adjacent to the first cover plate 111 and the second cover plate 13l respectively, and the first cover plate 111, the spacer layer 12l and the second cover plate 13l together form the channel. 2l.
  • the driving circuit 31 can drive the droplet a to move along a predetermined path, so as to complete the nucleic acid amplification reaction in the channel 21.
  • the driving circuit 31 includes a plurality of driving electrodes 311 disposed on the surface of the first cover plate 111 close to the channel 21, and a first dielectric plate disposed on the side of the driving electrodes 31 close to the second cover plate 13l.
  • the driving electrode 31l and the detection electrode 32l are disposed on both sides of the channel 21 opposite to each other.
  • the driving circuit 31 includes a plurality of driving electrodes 311 arranged in an array and a conductive layer disposed on the surface of the second cover plate 131 close to the channel 21.
  • the conductive layer serves as the The detection electrode 32l is described.
  • the driving electrode 311 is disposed on the side of the first cover plate 111 close to the channel 21.
  • the driving electrode 31l may be formed by a metal etching method or an electroplating method.
  • the driving circuit 31 constitutes a thin film transistor (Thin Film Transistor, TFT) driving circuit.
  • TFT Thin Film Transistor
  • the droplet a since the droplet a has electrical conductivity, combined with the principle of dielectric wetting, the droplet a can be moved in the channel 2l according to a predetermined path.
  • the circuit between a certain driving electrode 31l and the detection electrode 32l can be selectively turned on or off, thereby changing the voltage between the driving electrode 311 and the detection electrode 32l, thereby changing the droplet a and the first dielectric
  • the wetting characteristics between the layer 33l and the second dielectric layer 34l control the movement of the droplet a in the channel 2l according to a predetermined path.
  • the driving electrode 311 includes three electrodes, such as electrode A, electrode B and electrode C, as an example to illustrate the principle that the droplet a moves along a predetermined path in the channel 21.
  • droplet a can move on electrode A, electrode B, and electrode C.
  • a voltage is applied to the electrode B by applying a voltage between the electrode B and the detection electrode 32l, while the voltage between the electrode A and the detection electrode 32l is turned off.
  • the wetting characteristics between the droplet a and the first dielectric layer 33l and the second dielectric layer 34l are changed, so that the liquid-solid contact angle between the electrode A and the droplet a becomes larger, and the electrode B and the The liquid-solid contact angle between the droplets a becomes smaller, which promotes the movement of the droplets a from the electrode A to the electrode B.
  • the droplet driving principle in the above detection chip 101 is to use voltage to change the hydrophilicity and hydrophobicity of the dielectric layer, thereby changing the ability of the droplet a on the dielectric layer to adsorb the dielectric layer, thereby promoting the movement of the droplet a. Therefore, when the detection chip 101 is assembled and before use, it is necessary to perform a circuit test on the driving circuit 31 to confirm that the driving circuit 31 has no short circuit or open circuit problem, thereby ensuring the smooth progress of the nucleic acid amplification reaction.
  • FIG. 21 and FIG. 31 are a dielectric wetting device 1001 according to an embodiment of the present invention.
  • the dielectric wetting device 1001 includes a detection chip 101, a power input module 201, a switch module 301, a detection module 401 and a judgment module 501.
  • the power input module 201 is electrically connected to the detection chip 101 through a switch module 301.
  • the power input module 201 is electrically connected to the driving electrode 311 of the detection chip 101 through the switch module 301, and is used for outputting the power supply voltage V in to the driving electrode 311 .
  • the switch module 301 is used to connect the driving electrode 311 to the power input module 201.
  • the switch module 301 includes a plurality of switch units 41, and each of the switch units 41 is electrically connected to a corresponding one of the driving electrodes 311.
  • the detection electrode 321 When coupling occurs between the driving electrode 311 and the detection electrode 321, the detection electrode 321 will receive and output the detection voltage V out (ie, the coupling voltage).
  • the detection module 401 is electrically connected to the detection electrode 321 for acquiring the detection voltage Vout output by the detection electrode 321, and accumulating the detection voltage Vout to obtain the accumulated voltage of the detection voltage Vout value V T . Accumulating the detection voltage V out can accumulate a small deviation signal, and output it when the set accumulated voltage value V T is reached, which can effectively eliminate the error and improve the detection accuracy.
  • the detection module 401 at least includes a voltage accumulation circuit 411.
  • the voltage accumulation circuit 411 includes an operational amplifier U and a first capacitor C 1 .
  • the output end of the detection electrode 321 is connected to the negative input end of the operational amplifier U and one end of the first capacitor C1 respectively, and the other end of the first capacitor C1 is connected to the operational amplifier
  • the output terminal of U, the forward input terminal of the operational amplifier U is grounded.
  • the output terminal of the operational amplifier U is used as the output terminal of the detection module 401 to output the accumulated voltage value V T of the detection voltage V out .
  • the voltage accumulation circuit 411 constitutes an integrator.
  • the determination module 501 is electrically connected to the detection module 401, and is used for acquiring the accumulated voltage value V T , and comparing the accumulated voltage value V T with a preset voltage value V r to determine the detection Whether the chip 10l is short-circuited or open-circuited.
  • the judging module 501 judges that the detection chip 101 has a short circuit or an open circuit, it can further judge the position where the short circuit or the open circuit occurs.
  • the voltage accumulation circuit 411 may include, but is not limited to, a voltage accumulation circuit 411 (ie, an integrator).
  • the detection module 401 may also include other circuits, such as filter circuits.
  • the first dielectric layer 33l and the second dielectric layer 34l are both insulating and hydrophobic layers, and specifically, may be a polytetrafluoroethylene coating. In this way, on the one hand, it can play the role of insulation and hydrophobicity, and on the other hand, it can also make the droplet a move more smoothly in the predetermined path, and prevent the droplet from breaking during the movement.
  • FIG. 41 is a schematic diagram of an equivalent circuit of the circuit shown in FIG. 31 .
  • the first dielectric layer 33l, the second dielectric layer 34l in the detection chip 10l and the air in the channel 2l are detected
  • An equivalent capacitance will be formed in the driving loop 3l.
  • the first dielectric layer 331 will form an equivalent first dielectric layer capacitance C di-B in the driving loop 31 .
  • the second dielectric layer 34l forms an equivalent second dielectric layer capacitance C di-T in the driving circuit 31 .
  • the channel 2l between the first dielectric layer 33l and the second dielectric layer 34l is not filled with silicone oil, an equivalent air capacitance C air is formed. If the channel 21 is filled with silicone oil, the value of the formed equivalent air capacitance C air will change according to the amount of silicone oil added.
  • the first dielectric layer capacitor C di-B , the air capacitor C air and the second dielectric layer capacitor C di-T are connected in series in sequence, and the first dielectric layer capacitor C di-B is connected in series.
  • One end of the capacitor C di-B away from the air capacitor C air is connected to the driving electrode 31l, and one end of the second dielectric layer capacitor C di-T away from the air capacitor C air is connected to the detection electrode 32l.
  • the first resistor (R BA , R BB , R BC ) is connected in series with the second capacitor (C BA , C BB , C BC ), where the first resistor (R BA , R BB , R BC ) is connected in series
  • One end of the resistor (R BA , R BB , R BC ) is connected to the switch module 301, and the other end is connected to the second capacitor (C BA , C BB , C BC ) and the driving electrode 311, respectively.
  • the other ends of the capacitors (C BA , C BB , C BC ) are connected to ground.
  • a second resistance ie, an equivalent resistance
  • the power supply voltage V in output by the power input module 201 is a continuous square wave pulse voltage. Therefore, the detection voltage V out output by the detection electrode 32l is also a continuous square wave pulse voltage.
  • the switch module 301 can selectively turn on a certain driving electrode 311 under the control of the controller (not shown in the figure), and perform the detection of the individual driving electrodes 311 one by one, and the detection is accurate and accurate. It is judged whether the circuit formed between the driving electrode 31l and the detection electrode 32l has a short circuit or an open circuit, and the position where the short circuit occurs.
  • the detection electrode 321 outputs the detection voltage V out to the voltage accumulation circuit 411
  • the voltage accumulation circuit 411 accumulates the detection voltage V out to obtain the accumulated voltage value V T .
  • the detection module 401 outputs the accumulated voltage value VT to the determination module 501.
  • the judgment module 501 judges and compares the accumulated voltage value V T with the preset voltage value V r , so as to judge whether there is an open circuit or a short circuit in the driving circuit 31 through the difference between the two, and can further determine whether the short circuit or open circuit occurs. specific location.
  • the preset voltage value V r is the accumulated voltage value V T under the normal condition of the circuit of the driving circuit 31 .
  • the power input module 201 inputs the power supply voltage Vin (as shown in FIG. 51 , the input power supply voltage Vin is a continuous square wave pulse voltage) , the switch module 301 switches to the circuit where the designated driving electrode 311 is located, and then the detection voltage Vout is output through the detection electrode 321, and the detection voltage Vout is accumulated and processed by the voltage accumulation circuit 411 (integrator) in the detection module 401, and the accumulation is obtained.
  • the voltage value V T (as shown in FIG. 5 ), and finally the detection module 401 outputs the accumulated voltage value V T to the determination module 501 for comparison and determination.
  • the electrode A and the detection electrode 321 form a driving loop, and the continuous square wave pulse voltage output by the power input module 201 is passed through the equivalent resistance R BA (electrode A and the switch The wiring resistance between the modules 301) reaches the electrode A.
  • the detection electrode 321 will output the detection voltage Vout (ie, the coupling voltage), and then pass between the detection electrode 321 and the detection module 401.
  • the resistance of the trace reaches the voltage accumulation circuit 41l (ie, the integrator).
  • the voltage accumulation circuit 411 then performs accumulation processing on the detected voltage V out to obtain the accumulated voltage value VP and outputs it to the judgment module 501.
  • the judging module 501 obtains the accumulated voltage value VP
  • the difference between the accumulated voltage value VT and the preset voltage value V r of the normal circuit can be used to judge whether the circuit of the dielectric wetting device 1001 is normal.
  • the normal cumulative voltage value VT of the circuit of the dielectric wetting device 1001 is shown as the peak point of the output voltage V out in FIG . 5 .
  • the voltage curve corresponding to the accumulated voltage value V T overlaps with the voltage curve corresponding to the preset voltage value V r , and the accumulated voltage value V T is equal to the preset voltage value V r , so it can be proved that the dielectric wetting device 1001 circuit is normal.
  • the circuit detection principle is the same as the detection principle when the channel 21 is filled with air, and the difference is only when the size of the accumulated voltage value VP after injection of the silicone oil is different from that of the previous circuit.
  • the accumulated voltage value V T when silicone oil is injected is different.
  • the following describes the detection principle when the circuit for testing the dielectric wetting device 1001 is open.
  • the power supply voltage Vin is input by the power input module 201 (as shown in FIG. 71, the input power supply voltage Vin is a continuous square wave pulse voltage), and the switch module 301 is switched to the circuit where the designated driving electrode 311 is located,
  • the power supply voltage V in cannot be switched to the circuit of the driving electrode 311 through the switch module 301, nor can it reach the detection electrode 321. Therefore, the voltage accumulating circuit 411 (ie, the integrator) of the detection module 401 cannot receive the output voltage V out , and cannot accumulate the output voltage V out to obtain the accumulated voltage value V T , so the judging module 501 can easily judge the specified drive
  • the circuit in which the electrode 31l is located is opened.
  • the detection module 401 cannot receive the output voltage V out and obtain the accumulated voltage value V T . Therefore, at this time, it can be determined whether the circuit is open according to the voltage difference ⁇ V 1 between the open-circuit voltage value and the preset voltage value V r . As shown in FIG. 7 , the output voltage V out is the voltage curve corresponding to the normal preset voltage value V r , and the output voltage V out is the voltage curve corresponding to the accumulated voltage value V T after the open circuit occurs.
  • the voltage curve corresponding to the accumulated voltage value V T is a straight line, and the height difference between the accumulated voltage value V T and the preset voltage value V r is the voltage difference ⁇ V 1 , At this time, the voltage difference ⁇ V 1 is relatively large, and it can be determined by ⁇ V 1 and the shape of the curve c that the circuit where the electrode A is located has an open circuit.
  • the power supply voltage Vin is input by the power input module 201 (as shown in FIG. 91 , the input power supply voltage Vin is a continuous square wave pulse voltage), and the switch module 301 switches to the circuit where the designated driving electrode 311 is located, After the detection electrode 321 outputs the detection voltage V out , the detection voltage V out is accumulated and processed by the voltage accumulation circuit 411 (ie the integrator) in the detection module 401 to obtain the accumulated voltage value V T , and finally the integrator outputs the accumulated voltage value V T to The judgment module 501 performs comparison judgment.
  • the power supply voltage V in is input by the power input module 201.
  • the wirings between the different driving electrodes 311 are connected to each other, which will lead to an increase in the impedance RC of driving a certain driving electrode 311 .
  • the variation of the accumulated voltage value V T obtained by the integrator is reduced, so at this time, it can be judged whether the circuit occurs according to the voltage difference ⁇ V 2 between the size of the accumulated voltage value V T obtained after the short circuit and the normal preset voltage value V r short circuit.
  • the output voltage V out is the voltage curve corresponding to the normal preset voltage value V r and the output voltage V out is the voltage curve corresponding to the accumulated voltage value VT .
  • the accumulated voltage obtained by the integrator The change of the value V T is small, so the slope of the voltage curve corresponding to the accumulated voltage value V T is smaller than the slope of the voltage curve corresponding to the normal preset voltage value V r , and the height difference between the peak points corresponding to the two voltage curves is the voltage difference ⁇ V 2 .
  • the voltage difference ⁇ V 2 is smaller than the voltage difference ⁇ V 1 when the circuit is open.
  • the voltage curve shape corresponding to the voltage difference ⁇ V 2 and the accumulated voltage value VP can be used to determine whether the circuit where the designated driving electrode 31l is located. A short circuit has occurred.
  • the circuit trace where electrode A is located and the circuit trace where electrode B are located are connected to each other, resulting in an increase in the impedance RC when driving electrode A or electrode B.
  • the slope of the voltage curve where the accumulated voltage value VT obtained by the integrator is located becomes smaller than the slope of the voltage curve of the normal preset voltage value V r , so at this time, the value of the short - circuit accumulated voltage value VT can be adjusted according to the size of the short-circuit accumulated voltage value VT and the normal preset voltage value V r .
  • the voltage difference ⁇ V 2 between the voltage values V r is used to judge that the circuit is short-circuited.
  • the dielectric wetting device 1001 when testing the circuit of the dielectric wetting device 1001, it is first necessary to detect the circuit of the dielectric wetting device 1001 in normal operation, so as to obtain the voltage curve of the normal circuit as shown in FIG. 5 . In this way, when the dielectric wetting device 100l is abnormal during use, it can be directly judged whether an open circuit or a short circuit occurs in the circuit, and whether a short circuit or an open circuit has occurred through the change of the accumulated voltage value VT obtained by the integrator directly . specific location.
  • the dielectric wetting device 1001 in the present application can self-detect the detection chip 101 through its own circuit, and no additional detection equipment is required.
  • the detection method is simple, easy to operate, accurate in detection, high in efficiency, and accurate in fault point judgment.
  • a separate detection device capable of implementing the above circuit detection process may also be used to perform circuit detection on the detection chip 101.
  • the present invention also provides a circuit detection method, which can be used to detect the circuit of the dielectric wetting device 1001.
  • the method includes at least the following steps:
  • the first step is to switch the switch module 301 to the designated driving electrode 311, so that the power input module 201 provides the power supply voltage V in to the designated driving electrode 311 .
  • the driving electrode 311 and the detection electrode 321 have a coupling reaction to generate a coupling voltage (ie, the detection voltage Vout ), and the detection electrode 321 outputs the detection voltage Vout to the detection module 401.
  • the detection module 401 accumulates the detection voltage V out to obtain the accumulated voltage value V T .
  • the judging module 501 obtains the accumulated voltage value V T , and compares the accumulated voltage value V T with the preset voltage value V r to determine whether a certain loop designated in the driving loop 31 has occurred.
  • Short circuit or open circuit and can also determine the specific location of the short circuit or open circuit.
  • the dielectric wetting device 1001 can realize circuit self-checking to check whether its internal circuit is normal. Specifically, it can judge whether the circuit of the dielectric wetting device 1001 is abnormal by comparing the accumulated voltage value and the preset voltage value, and can accurately judge whether a short circuit or an open circuit occurs in the circuit, and whether a short circuit or an open circuit occurs. specific location.
  • the circuit detection principle of the dielectric wetting device 100l is simple, easy to operate, accurate in detection, high in efficiency, and accurate in fault point judgment.
  • An embodiment of the present invention provides a method for manufacturing a planar printed antenna 100m, the method specifically includes the following steps:
  • step S11m referring to FIG. 1m, a substrate 1m is provided, and the substrate 1m includes a first surface 11m and a second surface 12m disposed opposite to each other.
  • the material of the substrate 1m is insulating resin.
  • the material of the substrate 1m can be selected from polyphenylene oxide (PPO), polyimide (PI), polyterephthalic acid One of resins such as Polyethylene Terephthalate (PET) and Polyethylene Naphthalate (PEN).
  • the material of the substrate 1 m is preferably PI or PET. Using PI or PET as the base material can reduce the manufacturing cost of the antenna.
  • Step S12m referring to FIG. 2m and FIG. 3m, provides a composite heterogeneous screen plate 7m, and the composite heterogeneous screen plate 7m includes a frame 71m, a hollow connection frame 72m arranged on the inner side of the frame 71m, and a The connecting frame 72m is away from the wire mesh 73m on the side of the frame 71m.
  • the wire mesh 73m is provided with a printed pattern 74m, and the hardness of the connection frame 72m is smaller than that of the wire mesh 73m.
  • connection frame 72m may be high molecular polymer
  • the material of the wire mesh 73m may be metal
  • Step S13m please refer to FIG. 4m, set the composite heterogeneous screen plate 7m on the first surface 11m, and print the printing pattern 74m on the first surface 11m by plane printing to form a radiation metal layer, so
  • the radiation metal layer 2m includes a first metal region 21m and a second metal region 22m electrically connected to the first metal region 21m, and the radiation metal region 2m further includes a metal region 21m that is electrically connected to the first metal layer 21m.
  • the substrate 1m forms a bending region 23m in the region between the first metal region 21m and the second metal region 22m.
  • the radiating metal layer 2m is formed by plane printing, which simplifies the process, saves materials, and the process is more environmentally friendly. Moreover, the plane printing is a low-temperature process, and the overall manufacturing cost is lower.
  • the composite heterogeneous screen plate 7m can quickly print the radiation metal layer 2m, and the connection frame 72m and the wire mesh 73m in the composite heterogeneous screen plate 7m are made of different materials, and the hardness of the connection frame 72m is smaller than that of the wire mesh 73m.
  • the connection frame 72m is made of high molecular polymer with certain resilience, which can ensure that the screen 73m and the first surface 11m of the substrate 1m are precisely attached during printing, and the indirect printing resistance of the composite heterogeneous screen plate 7m is low, so Improve the fineness and precision of printing, and at the same time improve the durability of the composite heterogeneous screen 7m.
  • using the connecting frame 72m to replace part of the wire mesh 73m can reduce the cost.
  • Using the composite heterogeneous screen plate 7m to print the radiation metal layer 2m by plane printing can simplify the process and reduce the manufacturing cost.
  • the radiant metal layer 2m is obtained by plane printing a conductive paste and then curing.
  • the radiation metal layer 2m is formed on the first surface 11m of the substrate 1m by planar printing using conductive pastes such as silver paste, copper paste, and carbon paste.
  • the thickness of the radiation metal layer 2m can be designed by printing conductive pastes with different layers according to different requirements.
  • the printed conductive paste is cured by sintering and curing according to the material properties of the substrate 1 m and the printed conductive paste.
  • the curing temperature is 70°C to 250°C.
  • part or all of the feeding end 24m is located in one of the second metal regions 22m.
  • step S14m please refer to FIG. 5m and FIG. 4m in conjunction with forming a plurality of folding line holes 3m on the bending area 23m, and the plurality of folding line holes 3m form a folding line 4m.
  • the folding line hole 3m is formed by laser drilling.
  • the cured product before forming the fold line hole 3m, the cured product can be cut and formed, the excess part is cut off, and then a plurality of fold line holes 3m are punched in the bending area 23m by laser drilling.
  • the folding line hole 3m is located in the bending region 23m (ie, the non-metallic region), and the folding line hole 3m penetrates through the substrate 1m.
  • the broken line hole 3m may be a round hole, a rectangular hole or a hole of other shapes, and a round hole is preferred in this embodiment.
  • the diameter of the broken line hole 3m is 0.05-0.5mm, and the hole diameter of the broken line hole 3m should not be too large. If the hole diameter is too large, it will affect the overall strength of the final flat printed antenna, but the hole diameter should not be too small. If it is small, it will not achieve the purpose of being easy to bend, and it will affect the bendability of the bending area of 23m.
  • step S15m please refer to FIG. 6m, a feeder 5m is provided, the feeder 5m is fixed by a fixing portion 6m and is electrically connected to the feed-in end 24m.
  • the feeder 5m is a radio frequency feeder, one end of the feeder 5m is connected to the feed end 24m of the radiating metal layer 2m, and the other end is provided with a radio frequency connector 51m, which is connected to the radio frequency communication module through the radio frequency connector , to achieve the purpose of radio frequency signal transmission.
  • the material of the fixing portion 6m may be conductive glue or solder.
  • the end of the feeder line 5m away from the radio frequency connector 51m may be fixed on the feed-in end 24m by dispensing conductive glue or low-temperature solder.
  • the low-temperature process is used to fix the feeder 5m on the radiant metal layer 2m.
  • the process has low difficulty and low energy consumption, which is conducive to reducing costs, and will not affect the performance of the feeder 5m due to the traditional high-temperature welding process.
  • the edge of the radiating metal layer 2m can also be cut to remove the redundant part.
  • step S16m referring to FIG. 6m again, the second metal region 22m is bent along the bending region 23m, thereby obtaining the planar printed antenna 100m.
  • the planar printed antenna 100m can attach the first metal area 21m and the second metal area 22m to different carriers of the main board (not shown) according to actual needs.
  • the planar printed antenna 100m includes a first metal area 21m and two second metal areas 22m, the planar printed antenna 100m is arranged on the edge of the main board, and the main board includes an upper surface and a lower surface.
  • the side surface at this time, the first metal area 21m can be attached to the side surface of the motherboard, and the two second metal areas 22m can be attached to the upper surface and the lower surface of the motherboard respectively.
  • first metal area 21m and the second metal area 22m are attached to the motherboard, an insulating dry or wet colloid (such as PET double-sided adhesive, PI double-sided adhesive, UV adhesive or pressure-sensitive adhesive can be used) glue, etc.), easy to fit and high efficiency.
  • the first metal area 21m and the second metal area 22m on the radiation metal layer 2m mainly play the role of radiating signals, and the radiation area can be increased by arranging multiple second metal areas 22m, and the antenna is packaged by the folding method of the present invention , while increasing the radiation area, it will not occupy too much packaging space, which is conducive to the miniaturization of the overall packaging structure.
  • the invention forms the radiation metal layer 2m on the flexible substrate 1m by means of plane printing, the process is simple, the molding cycle is short, the efficiency is high, the cost is low, the energy consumption of the low-temperature process is low, and the environment is environmentally friendly, and the width of the plane printing is not limited.
  • Multiple radiating metal layers 2m can be printed at the same time to prepare multiple planar printed antennas 100m, with high efficiency.
  • the design of the fold line hole 3m is conducive to the bending of the flat printed antenna 100m, and does not affect the signal transmission of the radiating metal layer 2m, which can reduce the warpage of the metal layer in the bending area and the separation of the radiating metal layer 2m and the substrate 1m.
  • the above-mentioned design can increase the radiation area of the planar printed antenna by 100m without occupying too much space of 8m on the main board, which is beneficial to the miniaturization of the overall package product.
  • the present invention also provides a flat printed antenna 100m
  • the flat printed antenna 100m includes: a substrate 1m, a radiating metal layer 2m, a plurality of broken line holes 3m and a feeder 5m.
  • the substrate 1m includes a first surface 11m and a second surface 12m disposed opposite to each other.
  • the radiation metal layer 2m is disposed on the first surface 11m, and the radiation metal layer 2m includes a first metal region 21m and at least one second metal region 22m electrically connected to the first metal region 21m.
  • the second metal region 22m includes a feeding end 24m, the substrate 1m is formed in a region between the first metal region 21m and the second metal region 22m, and a bending region 23m is formed.
  • a plurality of folding line holes 3m are provided in the bending area 23m, and a plurality of the folding line holes 3m form a folding line 4m.
  • the first metal region 21m can be bent relative to the first metal region 21m along the bending line 4m.
  • the feeding line 5m and the feeding end 24m are fixed and electrically connected by a fixing portion 6m.
  • the diameter of the broken line hole 3 m is 0.05-0.5 mm.
  • the material of the substrate 1 m is one of polyimide, polyphenylene ether, polyethylene terephthalate, and polyethylene naphthalate.
  • the material of the fixing portion 6m includes conductive glue or solder balls.
  • FIG. 8m and FIG. 9m are graphs of the signal detection results of the planar printed antenna 100 m.
  • the voltage standing wave ratio (VSWR) bandwidth obtained by using the planar printed antenna 100 m of the present invention is narrower, and the antenna gain and center The frequencies are all good and can meet the needs of the antenna.
  • the planar printing antenna uses a composite heterogeneous screen to form a radiating metal layer on a flexible substrate by planar printing, the process is simple, the molding cycle is short, the efficiency is high, the cost is low, environmental protection, and the plane
  • the printing format is not limited, and multiple radiating metal layers can be printed at the same time to prepare multiple planar printed antennas, with high efficiency; the printing accuracy of the composite heterogeneous screen is high; the design of the folding line is conducive to the bending of the planar printed antenna , and does not affect the signal transmission of the radiating metal layer, which can reduce the warping of the metal layer in the bending area, and the separation of the radiating metal layer and the substrate. space, which is conducive to the miniaturization of the overall package product.
  • an embodiment of the present invention provides a method for manufacturing a multilayer flexible circuit board 100n.
  • the method specifically includes the following steps:
  • step S11n referring to FIG. 1n, a substrate 1n is provided, and the substrate 1n includes a first surface 11n and a second surface 12n disposed opposite to each other.
  • the material of the substrate 1n is insulating resin.
  • the material of the substrate 1n can be selected from polyphenylene oxide (PPO), polyimide (PI), polyterephthalic acid One of resins such as Polyethylene Terephthalate (PET) and Polyethylene Naphthalate (PEN).
  • the material of the substrate 1n is preferably PI or PET.
  • Step S12n please refer to FIG. 2n, forming a circuit layer 2n on the first surface 11n, the circuit layer 2n including a first circuit area 21n and a second circuit area 22n electrically connected to the first circuit area 21n,
  • the substrate 1n forms a first bending region 23n in a region between the first wiring region 21n and the second wiring region 22n.
  • the circuit layer 2n is obtained by printing a conductive paste and then curing.
  • the circuit layer 2n is formed on the first surface 11n of the substrate 1n by printing using conductive pastes such as silver paste, copper paste, and carbon paste.
  • the printing method may be flat printing (eg screen printing, pad printing, inkjet) or 3D printing method printing.
  • the line width of the line layer 2n is 8-20 ⁇ m, preferably 8-10 ⁇ m, or 11-13 ⁇ m.
  • the thickness of the circuit layer 2n can be designed by printing different layers of conductive paste according to different requirements.
  • the printed conductive paste is cured by sintering and curing according to the material properties of the substrate 1n and the printed conductive paste.
  • the curing temperature is 70°C to 250°C.
  • step S13n please refer to FIG. 3n in conjunction with FIG. 2n, a plurality of folding line holes 3n are formed on the first bending region 23n, and the plurality of folding line holes 3n form a bending line 4n.
  • the folding line hole 3n is formed by laser drilling.
  • the cured product before forming the fold line hole 3n, the cured product can be cut and formed, the excess part is cut off, and then a plurality of fold line holes 3n are punched in the first bending area 23n by means of laser drilling .
  • the folding line hole 3n is located in the first bending region 23n (ie, the non-circuit region), and the folding line hole 3n penetrates the substrate 1n.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Clinical Laboratory Science (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

一种核酸检测设备,其通过核酸检测主机(10a)与检测盒(20a)的配合可以将核酸的PCR扩增和电泳检测集成在一个设备中进行,整体结构简单,检测操作简便,操作过程对专业要求低,检测效率高,极大降低了检测成本;同时,检测过程灵活性强,无需在固定的实验室中进行,检测设备便携,可以实现社区检测或家庭检测。

Description

核酸检测设备 技术领域
本申请涉及核酸检测设备。
背景技术
目前针对分子诊断、形态学、免疫学等的检测大多是在固定的实验室中进行,存在检测耗时长,检测效率低,灵活性差,无法实现随时随地检测的问题,尤其是携带强传染性病毒的患者在去往固定检测点的途中容易对他人造成感染,存在安全隐患。
发明内容
有鉴于此,为克服上述缺陷的至少之一,有必要提供一种核酸检测设备。
第一方面,提供一种核酸检测主机,包括机身、检测盒安装区、加热区、加样区以及图像采集装置,检测盒安装区设置于所述机身上,所述检测盒安装区用于安装检测盒;加热区设置于所述机身上,所述加热区用于容置检测液并为所述检测液进行加热;加样区设置于所述机身上,所述加样区位于所述检测盒安装区上且与所述检测盒安装区连通,所述加样区用于向所述检测盒安装区内的所述检测盒加入所述检测液;图像采集装置设置于所述检测盒安装区远离所述加样区的一侧,所述图像采集装置用于采集所述检测盒安装区内的所述检测盒的图像。
进一步地,所述核酸检测主机还包括加热结构,所述加热结构设置于所述检测盒安装区内,所述加热结构用于加热所述安装槽内的所述检测盒,以加热所述检测盒内的所述检测液使所述检测液进行核酸扩增反应。
第二方面,提供一种核酸检测设备,包括主机、收集杯、液体转移装置及检测盒。所述主机为如上所述的核酸检测主机;收集杯可拆卸地设置于所述加热区,所述收集杯用于收集所述检测液,所述收集杯还用于加热所述检测液;液体转移装置可拆卸地设置于所述收集杯或所述加样区,所述液体转移装置用于从所述收集杯内定量吸取所述检测液,并将所述检测液经由所述加样区加入所述检测盒。所述检测盒可拆卸地设置于所述检测盒安装区,所述检测盒用于对所述检测液进行PCR扩增反应以及电泳检测。
进一步地,所述检测盒包括:盒体、加样口、检测芯片、电泳盒、检测窗及连接器;加样口设置于所述盒体靠近所述加样区的一侧;检测芯片设置于所述盒体内部,所述检测芯片通过所述加样口与所述加样区连通;电泳盒与所述检测芯片连通;检测窗设置于所述盒体靠近所述图像采集装置一侧且与所述电泳盒对应;以及连接器设置于所述盒体内且分别与所述检测芯片以及所述电泳盒电性连接。
进一步地,所述检测芯片包括第一盖板、间隔层以及第二盖板,所述间隔层相对的两表面分别与所述第一盖板和所述第二盖板邻接,所述第一盖板、所述间隔层以及所述第二盖板围设形成通道,所述通道用于承载检测液以使所述检测液在所述通道内进行核酸扩增反应从而得到核酸扩增产物。
进一步地,所述检测芯片还包括设置于所述第一盖板和/或所述第二盖板远离所述通道一侧的加热组件,所述加热组件与所述连接器电性连接。
进一步地,所述加热组件包括基板、加热层、导热层及感温层;加热层设于所述基板上,所述加热层包括加热区;导热层设于所述基板远离所述加热层的一侧,且所述导热层与所述加热区对应;以及感温层设于所述加热区上且与所述加热层电性连接,其中,所述加热层用于加热所述导热层,所述感温层用于感测所述加热区的温度。
进一步地,所述电泳盒包括电泳槽、分别设置于所述电泳槽两端的两电泳电极、设置于所述电泳槽内部的凝胶介质、设置于所述凝胶介质一端的注液槽以及毛细管,每一所述电泳电极均与所述连接器电性连接,所述毛细管一端伸入所述注液槽内,另一端与所述检测芯片连通。
进一步地,所述液体转移装置包括按压机构和取液组件;按压机构包括上壳体和下壳体,所述上壳体包括第一侧壁及与所述第一侧壁连接的第一顶壁,所述第一顶壁上设有一挤压部,所述下壳体包括第二侧壁及第二顶壁,所述第二侧壁连接所述第二顶壁且围设形成一容纳腔,所述上壳体收容于所述容纳腔内;取液组件包括取液管、取液头及连通所述取液管与所述取液头的第一连接部,所述取液组件用于由所述第二顶壁伸入所述容纳腔,以使所述取液管对应所述挤压部设置,所述第一连接部可拆卸地设置于所述第二顶壁,所述取液头位于所述容纳腔的外侧。其中,所述上壳体用于沿所述容纳腔的中心轴往复移动,进而带动所述挤压部相对所述取液管往复移动,使所述挤压部抵持或松开所述取液管,以使所述取液管发生形变,从而使所述取液管释放或吸取液体。
进一步地,所述核酸检测设备还包括药剂包,所述药剂包用于承装检测药剂,所述检测药剂与核酸样本形成所述检测液。
本申请实施方式中提供的核酸检测设备通过核酸检测主机与检测盒的配合可以将核酸的PCR扩增和电泳检测集成在一个设备中进行,整体结构简单,检测操作简便,操作过程对专业要求低,检测效率高,极大降低了检测成本;同时,检测过程灵活性强,无需在固定的实验室中进行,检测设备便携,可以实现社区检测或家庭检测。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a为本发明一实施方式提供的核酸检测主机的结构示意图。
图2a为本发明一实施方式提供的核酸检测主机的内部结构示意图。
图3a为本发明一实施方式提供的核酸检测主机的剖面结构示意图。
图4a为本发明一实施方式提供的固定机构的结构示意图。
图5a为本发明一实施方式提供的检测盒与图像采集装置的结构示意图。
图6a为本发明一实施方式提供的核酸检测设备的结构示意图。
图7a为本发明一实施方式提供的检测盒的结构示意图。
图8a为本发明一实施方式提供的检测盒的爆炸图。
图9a为本发明一实施方式提供的液体转移装置的结构示意图。
图10a为本发明一实施方式提供的收集杯的结构示意图。
图11a为本发明一实施方式提供的药剂包的结构示意图。
图12a至图16a为本发明一实施方式提供的核酸检测设备的检测过程示意图。
图17a为本发明一实施方式提供的核酸检测方法流程图。
图1b为本发明一实施方式提供的核酸检测设备的结构示意图。
图2b为本发明一实施方式提供的核酸检测主机的结构示意图。
图3b为图2中沿III(b)-III(b)的剖面图。
图4b为图1b中沿IV(b)-IV(b)的剖面图。
图5b为图4中A部的放大图。
图6b为图2中沿VI(b)-VI(b)的剖面图。
图7b为本发明一实施方式提供的核酸检测设备的爆炸图。
图8b为本发明一实施方式提供的检测盒的正面结构示意图。
图9b为本发明一实施方式提供的检测盒的背面结构示意图。
图10b为本发明一实施方式提供的液体转移装置的爆炸图。
图11b为本发明一实施方式提供的液体转移装置的组装示意图。
图12b为本发明一实施方式提供的收集杯和药剂包的结构示意图。
图13b至图17b为本发明一实施方式提供的核酸检测设备的检测过程示意图。
图18b为本发明一实施方式中测试结果的示意图。
图19b为本发明另一实施方式提供的核酸检测主机的结构示意图。
图20b为本发明另一实施方式提供的核酸检测主机的按压机构存放区内安装按压机构的结构示意图。
图1c为本发明一实施方式提供的核酸检测盒的结构示意图。
图2c为本发明一实施方式提供的核酸检测盒的剖面图。
图3c为本发明一实施方式提供的检测芯片的俯视图。
图4c为本发明一实施方式提供的检测芯片内产物液珠发出荧光信号的示意图。
图5c为本发明另一实施方式提供的检测芯片的俯视图。
图6c为本发明又一实施方式提供的检测芯片的俯视图。
图7c为采用本发明提供的核酸检测盒进行三种样本的荧光检测的检测液图片。
图8c为采用本发明提供的核酸检测盒进行三种样本的荧光检测的荧光图像。
图9c为本发明一实施方式提供的核酸检测设备的结构示意图。
图1d为本发明一实施方式提供的核酸检测盒的正面结构示意图。
图2d为本发明一实施方式提供的核酸检测盒的背面结构示意图。
图3d为本发明一实施方式提供的核酸检测盒的爆炸图。
图4d为本发明一实施方式提供的核酸检测盒去掉盒体的背面结构示意图。
图5d为本发明一实施方式提供的核酸检测盒去掉盒体的爆炸图。
图6d为本发明一实施方式提供的检测芯片的剖面示意图。
图7d为本发明一实施方式提供的检测芯片中TFT驱动回路的结构示意图。
图8d为本发明一实施方式提供的电泳盒的结构示意图。
图9d为本发明一实施方式提供的核酸检测盒中检测液的路径图。
图10d为本发明一实施方式中检测芯片与电泳盒通过毛细管进行连通的示意图。
图11d为本发明另一实施方式中检测芯片与电泳盒通过毛细管进行连通的示意图。
图12d为本发明又一实施方式中检测芯片与电泳盒通过毛细管进行连通的示意图。
图13d为本发明另一实施方式提供的核酸检测盒的结构示意图。
图14d为本发明另一实施方式提供的核酸检测盒的爆炸图。
图15d为本发明一实施方式提供的核酸检测设备的结构示意图。
图16d为本发明一实施方式提供的通道气泡排出的结构示意图。
图1e为本发明一实施方式提供的核酸检测盒的正面结构示意图。
图2e为本发明一实施方式提供的核酸检测盒的背面结构示意图。
图3e为本发明一实施方式提供的核酸检测盒的爆炸图。
图4e为本发明一实施方式提供的核酸检测盒部分爆炸图。
图5e为本发明一实施方式提供的检测芯片的结构示意图。
图6e为本发明一实施方式提供的检测芯片的剖面示意图。
图7e为本发明一实施方式提供的检测芯片中TFT驱动回路的结构示意图。
图8e为本发明一实施方式提供的电泳盒的结构示意图。
图9e为本发明另一实施方式提供的电泳盒与通道连通的结构示意图。
图10e为本发明一实施方式提供的电泳盒与通道连通的结构示意图。
图11e为本发明一实施方式提供的核酸检测设备的结构示意图。
图12e为本发明一实施方式提供的核酸检测设备的局部剖面图。
图13e为本发明一实施方式提供的核酸中电泳检测结果的示意图。
图1f为本发明一实施方式提供的检测芯片的结构示意图。
图2f为本发明一实施方式提供的介电润湿装置的电路模块示意图。
图3f为本发明一实施方式提供的介电润湿装置的电路示意图。
图4f为本发明一实施方式提供的介电润湿装置中驱动回路的等效电路示意图。
图5f为本发明一实施方式提供的介电润湿装置中一个驱动回路的电压随时间的变化曲线。
图6f为本发明一实施方式提供的电源电压分别处于第一时序、第二时序和第三时序时的电源电压曲线。
图7f为本发明一实施方式提供的液滴驱动和液滴检测的过程示意图。
图8f为本发明另一实施方式提供的液滴驱动和液滴检测的过程示意图。
图9f为本发明一实施方式提供的电源电压分别处于第四时序和第五时序的电源电压曲线。
图10f为本发明又一实施方式提供液滴驱动和液滴检测的过程示意图。
图11f至图13f为本发明一实施方式提供的检测液滴大小的示意图。
图1g为本发明一实施方式提供的核酸检测盒的结构示意图。
图2g为本发明一实施方式提供的核酸检测盒另一角度的结构示意图。
图3g为本发明一实施方式提供的核酸检测盒的爆炸图。
图4g为本发明一实施方式提供的核酸检测盒去掉盒体的爆炸图。
图5g为本发明一实施方式提供的检测芯片的剖面示意图。
图6g为本发明一实施方式提供的检测芯片中TFT驱动回路的结构示意图。
图7g为本发明一实施方式提供的电泳盒的结构示意图。
图8g为本发明一实施方式中核酸扩增产物由连接装置进入电泳盒中的示意图。
图9g为本发明另一实施方式中核酸扩增产物由连接装置进入电泳盒中的示意图。
图10g为本发明又一实施方式中核酸扩增产物由连接装置进入电泳盒中的示意图。
图11g为本发明一实施方式提供的出液口设置阻隔结构的结构示意图。
图12g为本发明另一实施方式提供的出液口设置阻隔结构的结构示意图。
图13g为本发明一实施方式提供的核酸检测设备的结构示意图。
图1h为本发明一实施方式提供的核酸检测盒的结构示意图。
图2h为本发明一实施方式提供的核酸检测盒另一角度的结构示意图。
图3h为本发明一实施方式提供的核酸检测盒的爆炸图。
图4h为本发明一实施方式提供的核酸检测盒去掉盒体的爆炸图。
图5h为本发明一实施方式提供的检测芯片的剖面示意图。
图6h为本发明一实施方式提供的检测芯片中TFT驱动回路的结构示意图。
图7h为本发明一实施方式提供的电泳盒的结构示意图。
图8h为本发明一实施方式中核酸扩增产物由连接装置进入电泳盒中的示意图。
图9h为本发明另一实施方式中核酸扩增产物由连接装置进入电泳盒中的示意图。
图10h为本发明又一实施方式中核酸扩增产物由连接装置进入电泳盒中的示意图。
图11h为本发明一实施方式提供的第一开口与第二开口之间设置连通结构的剖面结构图。
图12h为本发明一实施方式提供的第一开口与第二开口之间设置连通结构的结构示意图。
图13h为本发明另一实施方式提供的第一开口与第二开口之间设置连通结构的结构示意图。
图14h为本发明一实施方式提供的核酸检测设备的结构示意图。
图1i为本发明一实施方式提供的加热结构的结构示意图。
图2i为本发明一实施方式提供的加热结构的剖面图。
图3i为本发明一实施方式提供的加热结构中加热层的结构示意图。
图4i为本发明一实施方式提供的加热结构中导热层的结构示意图。
图5i为本发明一实施方式提供的检测芯片的剖面图。
图6i为本发明一实施方式提供的检测芯片的结构示意图。
图7i为本发明一实施方式提供的检测芯片中检测路径的结构示意图。
图8i与图9i为本发明一实施方式提供的检测芯片开启不同加热区时的升温图片。
图10i为本发明一实施方式提供的检测芯片用于食盐水液珠的升温测量曲线图。
图11i为本发明一实施方式提供的核酸检测盒的结构示意图。
图12i为本发明一实施方式提供的核酸检测设备的结构示意图。
图1j为本发明一实施方式提供的检测芯片的结构示意图。
图2j为本发明一实施方式提供的介电润湿装置的电路模块示意图。
图3j为本发明一实施方式提供的介电润湿装置的电路示意图。
图4j为本发明一实施方式提供的介电润湿装置的等效电路示意图。
图5j为本发明一实施方式提供的介电润湿装置的电压曲线图。
图6j为本发明一实施方式提供介电润湿装置的电路出现开路时的等效电路示意图。
图7j为本发明一实施方式提供的介电润湿装置的电路出现开路时的电压曲线图。
图8j为本发明一实施方式提供的介电润湿装置的电路出现短路时的等效电路示意图。
图9j为本发明一实施方式提供的介电润湿装置的电路出现短路时的电压曲线图。
图1k为本发明一实施方式提供的检测芯片结构示意图。
图2k为本发明一实施方式提供的检测芯片的剖面结构示意图。
图3k为本发明一实施方式提供的检测芯片中驱动回路的结构示意图。
图4k为本发明第二实施方式提供的检测芯片的剖面结构示意图。
图5k为本发明第三实施方式提供的检测芯片的剖面结构示意图。
图6k为本发明第四实施方式提供的检测芯片的剖面结构示意图。
图7k为本发明第五实施方式提供的检测芯片的剖面结构示意图。
图8k为本发明第六实施方式提供的检测芯片的剖面结构示意图。
图9k为本发明一实施方式提供的检测芯片中检测液吸附在导电部上的结构示意图。
图10k为本发明一实施方式提供的检测芯片中检测液被驱离导电部上的结构示意图。
图11k为本发明一实施方式提供的核酸检测盒的结构示意图。
图12k为本发明一实施方式提供的核酸检测设备的结构示意图。
图1l为本发明一实施方式提供的检测芯片的结构示意图。
图2l为本发明一实施方式提供的介电润湿装置的电路模块示意图。
图3l为本发明一实施方式提供的介电润湿装置的电路示意图。
图4l为本发明一实施方式提供的介电润湿装置的等效电路示意图。
图5l为本发明一实施方式提供的介电润湿装置的电压曲线图。
图6l为本发明一实施方式提供介电润湿装置的电路出现开路时的等效电路示意图。
图7l为本发明一实施方式提供的介电润湿装置的电路出现开路时的电压曲线图。
图8l为本发明一实施方式提供的介电润湿装置的电路出现短路时的等效电路示意图。
图9l为本发明一实施方式提供的介电润湿装置的电路出现短路时的电压曲线图。
图1m为本发明一实施方式提供的基板和复合异质网版的示意图。
图2m为本发明一实施方式提供的复合异质网版的结构示意图。
图3m为本发明一实施方式提供的复合异质网版的剖面图。
图4m为在图1m提供的基板上形成辐射金属层的结构示意图。
图5m为本发明一实施方式提供的弯折区的剖面结构示意图。
图6m为在图4m提供的辐射金属层上连接馈线形成平面印刷天线的结构示意图。
图7m为本发明另一实施方式提供的平面印刷天线的结构示意图。
图8m与图9m为本发明一实施方式提供的平面印刷天线的增益测试结果图。
图1n为本发明一实施方式提供的基板的示意图。
图2n为本发明一实施方式提供的单面柔性线路板的正面结构示意图。
图3n为本发明一实施方式提供的单面柔性线路板的弯折区的剖面结构示意图。
图4n为本发明一实施方式提供的单面柔性线路板的背面结构示意图。
图5n与图6n分别为本发明一实施方式提供的单面柔性线路板弯折状态的正面和背面结构示意图。
图7n与图8n分别为本发明一实施方式提供的多层柔性线路板的正面和背面结构示意图。
图9n为本发明基于不同基板的单面柔性线路板以及传统FPC在不同线路厚度时的阻值变化曲线图。
图10n(a)至图10n(d)为本发明基于不同基板的单面柔性线路板针对不同线路厚度弯折前后的阻值对比图。
图11n为本发明基于不同基板及不同线路厚度的单面柔性线路板在未打折线孔时弯折区的图片。
图12n为本发明基于PET基板的单面柔性线路板针对同一线路厚度未弯折和弯折后的图片。
图13n为本发明基于PET基板的单面柔性线路板打折线孔前后的阻值增加百分比对比图。
图14n与图15n分别为本发明基于不同基板两种线路宽度的单面柔性线路板的阻值变化曲线图。
图16n为本发明一实施方式提供的检测芯片的结构示意图。
图17n为本发明一实施方式提供的检测芯片的剖面示意图。
图1o是本发明一实施方式提供的液体转移装置未按压的结构示意图。
图2o是本发明一实施方式提供的液体转移装置按压后的结构示意图。
图3o是本发明一实施方式提供的液体转移装置的爆炸图。
图4o是图1o提供的液体转移装置沿IV(o)-IV(o)的剖面图。
图5o是图2o提供的液体转移装置沿V(o)-V(o)的剖面图。
图6o是本发明一实施方式提供的上壳体的立体图。
图7o是本发明一实施方式提供的上壳体另一角度的立体图。
图8o是本发明一实施方式提供的下壳体的结构示意图。
图9o是本发明另一实施方式提供的液体转移装置的剖面图。
图1p是本发明一实施方式提供的液体转移装置未按压的结构示意图。
图2p是本发明一实施方式提供的液体转移装置按压后的结构示意图。
图3p是本发明一实施方式提供的液体转移装置的爆炸图。
图4p是图1p提供的液体转移装置沿IV(p)-IV(p)的剖面图。
图5p是图2p提供的液体转移装置沿V(p)-V(p)的剖面图。
图6p是图1p提供的液体转移装置沿VI(p)-VI(p)的剖面图。
图7p是图2p提供的液体转移装置沿VII(p)-VII(p)的剖面图。
图8p是本发明一实施方式提供的壳体的结构示意图。
图9p是本发明一实施方式提供的按压机构的结构示意图。
图10p是本发明一实施方式提供的按压机构的剖面图。
图11p是本发明一实施方式提供的按压机构另一角度的结构示意图。
图12p与图13p是本发明一实施方式提供的连接件的结构示意图。
图14p是本发明一实施方式提供的取液组件的结构示意图。
图15p是本发明一实施方式提供的移液装置的组装图。
图1q是本发明一实施方式提供的液体转移装置未按压的结构示意图。
图2q是本发明一实施方式提供的液体转移装置按压后的结构示意图。
图3q是本发明一实施方式提供的液体转移装置的爆炸图。
图4q是图1q提供的液体转移装置沿IV(q)-IV(q)的剖面图。
图5q是图2q提供的液体转移装置沿V(q)-V(q)的剖面图。
图6q是图1q提供的液体转移装置沿VI(q)-VI(q)的剖面图。
图7q是本发明另一实施方式提供的液体转移装置的剖面图。
图8q是本发明一实施方式提供的上壳体的结构示意图。
图9q是本发明一实施方式提供的上壳体另一角度的结构示意图。
图10q是本发明一实施方式提供的下壳体的结构示意图。
图11q是本发明一实施方式提供的下壳体另一角度的结构示意图。
图12q是本发明另一实施方式提供的液体转移装置的结构示意图。
图13q是本发明另一实施方式提供的液体转移装置的剖面图。
图1r是本发明一实施方式提供的一种移液系统的结构示意图。
图2r是本发明一实施方式提供的一种移液系统的爆炸图。
图3r是图1r提供的移液系统沿III(r)-III(r)的剖面图
图4r是本发明一实施方式提供的转运装置的爆炸图。
图5r是本发明一实施方式提供的第一壳体的剖面图。
图6r是本发明一实施方式提供的加药组件的爆炸图。
图7r是本发明一实施方式提供的加药组件未刺破密封膜的结构状态图。
图8r是本发明一实施方式提供的第一药剂盒刺破密封膜的结构状态图。
图9r是本发明一实施方式提供的反应室的爆炸图。
图10r是本发明一实施方式提供的连接头的结构示意图。
图11r是本发明一实施方式提供的收集装置的结构示意图。
图12r是本发明一实施方式提供的药剂盒的结构示意图。
图1s为本发明一实施方式提供的pH值量测电极的结构示意图。
图2s为本发明一实施方式提供的pH值测量设备的结构示意图。
图3s为本发明一实施方式提供的电泳电极的结构示意图。
图4s为本发明一实施方式提供的凝胶电泳设备的结构示意图。
图5s为本发明一实施方式提供的凝胶电泳系统的示意图
图6s为本发明一实施方式提供的核酸检测盒的爆炸图。
图7s为本发明一实施方式提供的核酸检测盒去掉盒体的结构示意图。
图1t为本发明一较佳实施方式中的核酸检测仪的示意图。
图2t为本发明一较佳实施方式中的核酸检测仪拆分后结构示意图。
图3t为本发明一较佳实施方式中的核酸检测仪的硬件框架图。
图4t(A)举例说明在电泳分析时所拍摄的影像。
图4t(B)和图4t(C)举例说明对所拍摄的影像进行目标区域的标记。
图5t(A)是本申请较佳实施例的核酸检测系统的功能模块图。
图5t(B)是本申请较佳实施例的核酸检测方法的流程图。
图6t举例说明在目标影像中对目标所在的区域进行标记。
图7t举例说明不同目标之间的距离的计算。
图8t举例说明在目标影像中对检测线的标记。
图9t举例说明根据检测线是否有效辨识核酸检测结果。
具体实施方式
以下将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,当组件被称为“固定于”、“安装于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“设置于”另一个组件,它可以是直接设置在另一个组件上或者可能同时存在居中组件。本文所使用的术语“及/或”包括一个或多个相关的所列项目的所有的和任意的组合。
实施例1
请参阅图1a与图2a所示,为本发明实施例提供的一种核酸检测主机10a,该核酸检测主机10a包括机身11a以及设置于所述机身11a上的检测盒安装区12a、加热区13a、加样区14a、图像采集装置15a以及控制器16a,该控制器16a与加热区13a和图像采集装置15a电性连接。
该加热区13a用于收集待试者的核酸样本,并将核酸样本与检测药剂(例如buffer液)混合形成检测液。该加热区13a还用于在该控制器16a的控制下为检测液进行加热。该加样区14a位于该检测盒安装区12a上方且与该检测盒安装区12a连通。该检测盒安装区12a用于安装检测盒20a,该检测盒20a与该控制器16a电性连接。该加样区14a用于向该检测盒安装区12a内的检测盒注入所述检测液,使该检测盒20a对检测液进行PCR扩增反应以及电泳检测。该图像采集装置15a设置于该检测盒安装区12a远离该加样区14a的一侧,该图像采集装置15a用于在该控制器16a的控制下采集该检测盒安装区12a内检测盒20a的图像。所述图像为电泳检测的荧光照片,根据该荧光照片可以得出检测结果。
请参阅图1a,该机身11a包括第一表面111a、与该第一表面111a相对设置的第二表面112a、连接第一表面111a和第二表面112a的第一侧壁113a以及与该第一侧壁113a相对设置的第二侧壁114a。该检测盒安装区12a的开口位于该第一侧壁113a,检测盒20a可经该第一侧壁113a的开口放置于该检测盒安装区12a内。该加样区14a和该加热区13a的开口 均位于该第一表面111a。
请参阅图3a,结合参阅图1a与图2a,该检测盒安装区12a包括安装槽121a、设置于安装槽121a远离加样区14a一侧表面的取像口122a、设置于取像口122a靠近第二表面112a一侧的固定盒123a、设置于安装槽121a远离加样区14a一侧表面的检测盒卡口124a、设置于检测盒卡口124a靠近第二表面112a一侧的固定机构125a以及设置于该机身11a上且与该控制器16a电性连接的第一感应器126a。该检测盒20a插入安装槽121a内,固定机构125a穿过检测盒卡口124a卡合在检测盒20a的底部,从而将检测盒20a可拆卸地固定在安装槽121a内。加样区14a通过一通孔(图未示)与该安装槽121a连通,进而为检测盒20a加样。图像采集装置15a设置于该固定盒123a内,且该图像采集装置15a可通过该取像口122a采集检测盒20a的荧光照片。该第一感应器126a用于感应该检测盒20a是否插入安装槽121a内并将信号传输至控制器16a,该控制器16a控制该检测盒20a进行核酸检测。
请参阅图3a,结合参阅图2a,安装槽121a为倾斜设计的槽,具体地,该安装槽121a靠近加样区14a的一端高于该安装槽121a远离加样区14a的一端。由于PCR反应过程会产生大量气泡,产生的气泡如果滞留在检测流路内,则会导致检测流路内液珠的动作路径被气泡阻碍,造成液珠无法移动,进而使检测失败。所以将安装槽121a设计成倾斜的,可以使检测盒20a倾斜摆放,检测盒20a的加样端高于PCR扩增反应发生的一端,检测盒20a内PCR反应产生的气泡能够自然向高位移动,由检测盒20a的加样端自然排出,不会阻碍液珠的动作路径。
本实施方式中,该安装槽121a的形状根据检测盒20a的形状进行设计,具体地,该安装槽121a大致为一矩形槽。
请参阅图4a,结合参阅图2a与图7a,固定机构125a包括一电磁阀1251a以及设置于电磁阀1251a上的顶块1252a,检测盒20a的底表面设置有与顶块1252a配合的卡槽25a,顶块1252a位于检测盒卡口124a处,该电磁阀1251a与控制器16a电性连接。当检测盒20a插入安装槽121a内后,第一感应器126a感应到检测盒20a,并将检测信号传输至控制器16a,控制器16a控制电磁阀1251a通电,进而将顶块1252a顶起插入卡槽25a内,将检测盒20a固定住;测试结束后,控制器16a控制电磁阀1251a通电,进一步将顶块1252a弹起,将检测盒20a弹出安装槽121a。通过设置电磁阀1251a和第一感应器126a可以实现检测盒20a的自动锁定和自动弹出。可以理解的是,还可以通过其他卡合的方式实现检测盒20a的自动卡合和弹出。
请参阅图3a,第一感应器126a一方面用于感应检测盒20a是否插入或弹出安装槽121a,另一方面,还可以通过第一感应器126a的感应来实现控制器16a自动启动程序。即,当检测到检测盒20a插入安装槽121a后,启动开始检测的程序。当检测到检测盒20a弹出后,启动结束检测的程序。
请参阅图3a,取像口122a大致为矩形结构,尺寸设置方面需要满足图像采集装置15a能够通过取像口122a采集到检测盒20a的电泳检测得到的完整的荧光照片。
请参阅图3a与图5a,结合参阅图1a,该固定盒123a的横截面宽度沿靠近第一表面111a的一端至远离第一表面111a的一端逐渐增大,即,该固定盒123a大致为一倒置的锥形漏斗结构。其中该固定盒123a靠近第一表面111a的一端通过该取像口122a与该安装槽121a连通,图像采集装置15a设置于该固定盒123a远离第一表面111a的一端,且该图像采集装置15a位于该取像口122a的正下方。
请参阅图1a与图3a,本实施方式中,该安装槽121a的开口位于该第一侧壁131a13a,且该开口处设置有一前挡板115a,该前挡板115a用于关闭或敞开该开口。该前挡板115a可滑动设置于安装槽121a的开口处,具体地,该前挡板115a可以沿该第一侧壁113a朝向该第二表面112a移动以敞开该开口,同时也可以沿该第一侧壁113a朝向该第一表面111a 移动以关闭该开口。
请参阅图2a与图3a,加热区13a包括一加热槽131a和设置于加热槽131a底部的加热装置132a,加热装置132a与控制器16a电连接,控制器16a可以控制加热装置132a实现升温,同时通过温度感测器(图未示)和时间继电器(图未示)来检测加热槽131a的加热温度和时间。本实施方式中,加热装置132a的加热温度为95℃左右,加热时间为5分钟左右,加热完成后进行冷却,冷却至室温或某一具体温度(例如40℃以下)。
本实施方式中,加热装置132a为铝块、铜块或者其他导热材料。可以理解的是,还可以采用其他加热装置(例如加热丝、加热涂层或加热片等)对加热槽131a进行加热。同时加热区13a还设置有第二感应器(图未示),第二感应器与控制器16a电性连接,该第二感应器可以用于感应加热槽131a内是否有承装所述检测液的容器放入,并将感应信号传输至控制器16a,从而控制器16a启动加热。
本实施方式中,该加热槽131a的开口位于第一表面111a,且该加热槽131a沿与第一表面111a平行的方向的横截面大致呈一椭圆结构。加热槽131a的形状可以根据实际需要加热的容器的形状具体设计。
请参阅图3a,加样区14a包括加样槽141a和加样通道142a,其中加样槽141a的开口位于该第一表面111a,该加样通道142a贯穿加样区14a的通孔伸入该安装槽121a内,且该加样通道142a远离该加样槽141a的一端与安装槽121a内的检测盒20a的表面抵触,检测液从加样槽141a经由该加样通道142a进入安装槽121a内的检测盒20a内。
本实施方式中,该加样槽141a具体为漏斗状。
请参阅图5a结合参阅图2a,图像采集装置15a包括光源(图未示)以及图像采集器151a,该光源和该图像采集器151a均与控制器16a电性连接。该光源用于在控制器16a的控制下发射光线至取像口122a,为图像采集提供光源。该图像采集器151a用于在控制器16a的控制下采集检测盒20a的电泳检测得到的荧光照片。
本实施方式中,该图像采集装置15a容置于该固定盒123a内,该固定盒123a的侧壁倾斜设置可以达到聚光的目的,能够使光源发射的光聚集在取像口122a处,便于采集检测盒20a的图像。另外,该固定盒123a的内侧壁设置有反射涂层,可以用于反射光线,使光线反射进入取像口122a。
请参阅图2a、图3a与图5a,控制器16a包括主控板161a、供电板162a、检测盒控制板163a以及图像采集控制板164a。其中,该供电板162a与主控板161a、检测盒控制板163a以及图像采集控制板164a电性连接,用于为整个设备供电。检测盒控制板163a与检测盒20a电性连接,用于控制检测盒20a的核酸检测过程。图像采集控制板164a与该光源和该图像采集器151a电性连接,用于控制光源发射光源,同时控制图像采集器151a采集检测盒20a的检测图像。加热装置132a、第一感应器126a以及第二感应器均与主控板161a电性连接。
本实施方式中,该图像采集控制板164a包括图像处理器(图未示)。图像采集器151a采集的图像会传输至图像处理器进行处理,处理后的图像进一步进行输出。
本实施方式中,该控制器16a还包含存储器(图未示),该存储器用于存储检测结果及检测过程信息等。
请参阅图1a与图2a,该核酸检测主机10a还包括显示屏17a和摄像头18a,该显示屏17a与该摄像头18a均与该控制器16a的主控板161a电性连接。该显示屏17a用于显示操作界面,设置运行参数以及显示上述图像等。该摄像头18a用于对用户操作流程进行摄像,同时还可以采集上述检测液对应的相关信息(例如核酸样本来源的信息)。
请参阅图2a,该核酸检测主机10a还包括散热装置19a,散热装置19a与控制器16a的主控板161a电性连接,用于为整个主机散热。
本实施方式中,散热装置19a为散热风扇。该散热装置19a设置于第二侧壁114a。同时该机身11a上设置有多处散热通风口,实现主机内部热量的排出。
本发明提供的核酸检测主机10a配合检测盒20a可以实现核酸的PCR扩增和电泳检测,显示屏17a显示的结果为最终的电泳检测结果。该主机10a将检测液加热、加样、检测以及结果输出集成在一个设备内,整体结构简单,便携且检测灵活性强,检测操作方便,且操作过程简单,操作过程对专业要求低,可以实现家庭检测。
请参阅图6a,本发明还提供了一种核酸检测设备100a,包括如上所述的核酸检测主机10a,检测盒20a、收集杯30a以及液体转移装置40a。该检测盒20a可拆卸地设置于该检测盒安装区12a内,该收集杯30a可拆卸地设置于该加热区13a,该液体转移装置40a可拆卸地设置于该加样区14a,该液体转移装置40a与该收集杯30a可拆卸式固定。该收集杯30a用于放置检测液,该收集杯30a还用于放入该加热区13a内,使加热区13a内的加热装置132a对检测液进行加热。该液体转移装置40a用于从该收集杯30a内定量吸取检测液,并将检测液由该加样区14a加入该检测盒20a内。该检测盒20a用于对检测液进行PCR扩增反应以及电泳检测。
请参阅图7a与图8a,结合参阅图2a与图5a,本申请中的检测盒20a将PCR扩增过程与电泳检测集成在一起,检测液在PCR扩增结束后直接进人电泳槽进行电泳检测。具体地,该检测盒20a包括一盒体21a、加样口22a、检测芯片23a、电泳盒24a、检测窗26a以及连接器27a。该加样口22a设置于该盒体21a靠近该加样区14a的一侧,加样通道142a远离加样槽141a的一端与该加样口22a抵接,该加样口22a用于向该检测芯片23a内加入检测液。该检测芯片23a与电泳盒24a设置于该盒体21a内部,该检测芯片23a与该电泳盒24a连通,该检测芯片23a用于对检测液进行PCR扩增反应,该电泳盒24a用于对扩增结束后的检测液进行电泳检测。该检测窗26a设置于该盒体21a靠近该取像口122a一侧且与该电泳盒24a相对应,该图像采集装置15a经由该取像口122a和该检测窗26a采集该电泳盒24a的荧光照片。与检测盒安装区12a的固定机构125a配合的卡槽25a设置在该盒体21a靠近图像采集装置15a一侧。该连接器27a设置在盒体21a靠近检测盒控制板163a的一侧,该连接器27a与检测盒控制板163a电性连接,且该连接器27a与检测芯片23a和电泳盒24a电性连接。电泳盒24a与检测芯片23a共同设置在同一盒体21a内,完成核酸扩增反应后,可以自动进行电泳检测,过程衔接流畅,不需要更换设备,加样精度控制精准。检测盒20a将检测芯片23a与电泳盒24a集成在一个盒子内,且尺寸较小,适用于上述便携式核酸检测设备100a。
本实施方式中,该检测盒20a是一次性使用品,每个检测样本使用一个检测盒20a,因此,检测盒20a无需清洗流程。
本实施方式中,该检测盒20a大致为一立方体结构。
请参阅图10a,结合参阅图6a,收集杯30a和液体转移装置40a可以配合使用,二者通过卡合的方式连接在一起,收集杯30a用于收集核酸样本(如口水或其他液体检样),并与检测试剂混合形成检测液,还用于将加热区13a进行加热。液体转移装置40a用于从收集杯30a处定量吸取检测液,并通过加样区14a加入检测盒20a内。
本实施方式中,收集杯30a内部设置有锥形槽,口水吐入收集杯30a内后,可以集中在锥形槽的下方,便于少量核酸样本的收集。
请参阅图9a,液体转移装置40a包括下壳41a、上壳42a、取液组件43a以及按压键44a。其中上壳42a通过卡合的方式可移动地与下壳41a连接,取液组件43a贯穿下壳41a和上壳42a设置,按压键44a设置于上壳42a的顶部。其中取液组件43a包括弹性囊结构。当需要取液时,通过按压按压键44a使上壳42a沿下壳41a向下移动,上壳42a对取液组件43a施加压力,以使取液组件43a变形,排出弹性囊内部空气,进而吸取检测液,取液结束 后,取液组件43a能推动上壳42a自动回复原位;当需要将液体排出时,再次按压按压键44a使上壳42a相对下壳41a向下移动,进一步挤压取液组件43a,以使弹性囊内的检测液排出。可以通过控制弹性囊的形变量来控制取液两,从而实现定量取液的目的。液体转移装置40a整体结构简单,成本低,操作方便,能够实现定量取液的目的。可以理解的是,还可以通过其他能够实现定量取液的液体转移装置进行液体转移。
请参阅图11a,该核酸检测设备100a还包括药剂包50a,该药剂包50a内存放有检测药剂(例如Buffer液),其中检测药剂是定量放入药剂包50a内的。该药剂包50a可以放入该收集杯30a内与核酸样本混合形成上述检测液。
本实施方式中,该药剂包50a是一个槽型结构,并且有一个把手,槽型结构内放置核酸检测所需要的药剂,开口处通过密封膜进行密封。使用时,将密封膜撕除,抓住把手,将药剂倒入装有核酸样本的收集杯30a内,摇匀后将收集杯30a放入加热槽131a内进行加热。
其中在检测前,检测盒20a、液体转移装置40a、收集杯30a以及药剂包50a均收纳在一专用的包装盒内,每一套检测盒20a、液体转移装置40a、收集杯30a以及药剂包50a都可以设置一一对应的识别码(例如二维码),避免混淆。由于针对同一病毒的检测,所使用的检测盒20a以及药剂包50a都是相同的,也可以只在收集杯30a上设置识别码(例如二维码),避免采集的待检测液混淆。
具体地,摄像头18a可以采集收集杯30a上的二维码,二维码的信息包括核酸样本的来源或相关受检人的信息。
请参阅图17a,本发明还提供了一种采用上述核酸检测设备100a进行核酸检测的方法,具体包括以下步骤:
步骤S11a,结合参阅图12a,参数设定。
将主机10a开启,并设置好相应的检测参数,具体可以包括加热区13a的加热温度及加热时间,检测盒20a内PCR扩增过程的相应参数,以及电泳检测的相应参数等。
步骤S12a,结合参阅图12a,录入检测样本信息并开启录像。
具体地,打开摄像头18a采集收集杯30a上的二维码,并对检测过程进行录像,打开装有检测盒20a、收集杯30a以及药剂包50a的包装盒,扫描收集杯30a上的二维码。采集的信息以及录像资料可以上传至客户端供相关人员查看。
步骤S13a,结合参阅图13a,将检测盒20a插入检测盒安装区12a。
将检测盒20a插入检测盒安装区12a的安装槽121a内,第一感应器126a感应到检测盒20a插入,便自动锁定检测盒20a,同时自动启动检测流程中的预热过程。
步骤S14a,结合参阅图14a,采集核酸样本形成检测液,并加热该检测液。
本实施方式中,用收集杯30a收集口水,再将药剂包50a内的药剂倒入收集杯30a内,药剂包50a倒扣在收集杯30a的开口处,将收集杯30a盖住,上下摇动3-5次,得到混合均匀的检测液,一般需要摇动5次便可摇匀。接着,将承装有检测液的收集杯30a放入加热区13a内,当加热区13a处的第二感应器感应到收集杯30a放入后,便启动下一步,进行加热。一般程序设定的加热温度为90-100℃左右,加热3-8min左右,加热后冷却至室温或某一固定温度以下(例如40℃以下)。具体采用温度感应器和时间继电器来感应加热温度以及加热时间。
另一实施方式中,用收集杯30a收集好口水后,先放入加热区13a内进行加热,一般程序设定的加热温度为90-100℃左右,加热3-8min左右,加热后冷却至室温或一固定温度以下(例如40℃以下),冷却后,再将药剂包50a内的药剂加入收集杯30a的口水中混合均匀形成检测液。
步骤S15a,结合参阅图15a与图16a,将检测液转移至检测盒20a进行PCR扩增反应 和电泳检测。
用液体转移装置40a定量吸取收集杯30a内的检测液10-30μl(优选20μl),并将检测液通过加样区14a加入检测盒20a的检测芯片23a内。具体地,含有核酸样本的检测液在检测芯片23a内进行PCR扩增反应,扩增结束后与检测芯片23a内的荧光试剂结合后形成带有荧光基团的产物,产物由检测芯片23a进入电泳盒24a,在电泳盒24a内进行电泳检测。
步骤S16a,采集电泳检测的图像(荧光照片)并输出。
电泳检测完成后,图像采集装置15a通过电泳盒24a的检测窗26a采集电泳的图像,并将图像通过图像处理器进行处理,处理后的图像显示在显示屏17上,还可以将检测结果上传到客户端,供相关人员查阅。
步骤S17a,完成检测。
将收集杯30a、液体转移装置40a以及检测盒20a从核酸检测主机10a上取下,并放入包装盒内回收。
相较于现有技术,本实施例提供的核酸检测设备通过主机与检测盒的配合可以将核酸的PCR扩增和电泳检测集成在一个设备中进行,整体结构简单,检测操作简便,操作过程对专业要求低,检测效率高,极大降低了检测成本;同时,检测过程灵活性强,无需在固定的实验室中进行,检测设备便携,可以实现社区检测或家庭检测。
实施例2
请参阅图1b至图4b,为本发明实施例提供的一种核酸检测设备100b,该核酸检测设备100b包括核酸检测主机10b,检测盒20b、收集杯30b以及液体转移装置40b。该核酸检测主机10b包括机身11b以及设置于所述机身11b上的检测盒安装区12b、加热区13b、加样槽14b、加热结构17b、图像采集装置15b以及控制器16b,该控制器16b与检测盒安装区12b、加热区13b、加热结构17b和图像采集装置15b电性连接。该检测盒20b可拆卸地设置于该检测盒安装区12b内,该收集杯30b可拆卸地设置于该加热区13b,该液体转移装置40b可拆卸地设置于该加样槽14b,该液体转移装置40b与该收集杯30b可拆卸式固定。该收集杯30b用于容置检测液,该收集杯30b还用于放入该加热区13b内,使加热区13b对检测液进行加热。该液体转移装置40b用于从该收集杯30b内定量吸取检测液,并将检测液由该加样槽14b加入该检测盒20b内。该检测盒20b用于實現检测液的PCR扩增反应以及电泳检测。
请参阅图1b至图4b,该检测盒安装区12b包括安装槽121b以及设于所述安装槽121b上的盖板122b。该安装槽121b用于可拆卸安装检测盒20b,该检测盒20b与该控制器16b及该加热结构17b电性连接,本发明中该检测盒20b内能够进行核酸扩增反应以及电泳检测。该盖板122b能够盖合和打开该安装槽121b,以方便检测盒20b的放入和取出。
该加热区13b用于收容待测试者的核酸样本,并可以在该加热区13b将核酸样本与检测药剂(例如buffer液)混合形成检测液。该加热区13b还用于在该控制器16b的控制下为检测液进行预热。该加样槽14b位于该盖板122b上且与该安装槽121b连通,该加样槽14b用于向该安装槽121b内的检测盒20b注入所述检测液。该加热结构17b设置于该检测盒安装区12b内,该加热结构17b用于加热该安装槽121b内的检测盒20b,以使检测盒20b内的检测液进行核酸扩增反应。该图像采集装置15b设置于该安装槽121b远离该加样槽14b的一侧,该图像采集装置15b用于在该控制器16b的控制下采集该安装槽121b内的检测盒20b的图像。所述图像为电泳检测的荧光照片,根据该荧光照片可以得出检测结果。
请参阅图3b,该机身11b包括第一表面111b、与该第一表面111b相对设置的第二表面112b及连接第一表面111b和第二表面112b的侧壁113b。该安装槽121b的开口位于该第一表面111b上,检测盒20b可经该安装槽121b的开口放置于该安装槽121b内。
请参阅图3b与图5b,安装槽121b为相对机身11b的第一表面111b倾斜设计的槽,具体地,当将该核酸检测设备100放置于水平操作台面上后,该安装槽121b靠近加样槽14b的一端相对水平操作台面的高度大于该安装槽121b远离加样槽14b的一端。由于核酸扩增反应过程会产生大量气泡,产生的气泡如果滞留在检测流路内,则会导致检测流路内液珠的动作路径被气泡阻碍,造成液珠无法移动,进而使检测失败。所以将安装槽121b设计成倾斜的,可以使检测盒20b倾斜摆放,检测盒20b的加样端高于PCR扩增反应发生的一端,检测盒20b内PCR反应产生的气泡能够自然向高位移动,由检测盒20b的加样端自然排出,不会阻碍液珠的动作路径。另外,检测盒20b的出液口设置在安装槽121b相对高度较低的一端,能够有利于核酸扩增反应后得到的产物由出液口进入检测盒20b的电泳槽内。
本实施方式中,该安装槽121b的形状根据检测盒20b的形状进行设计,具体地,该安装槽121b大致为一矩形槽。
请参阅图1b,本实施方式中,该盖板122b用于关闭或敞开该安装槽121b。该加样槽14b设置于该盖板122b的一端,该盖板122b远离该加样槽14b的另一端设置有旋转连接件123b,该盖板122b通过该旋转连接件123b旋转设置于该安装槽121b的侧壁上。具体地,该盖板122b可以旋转打开该安装槽121b,同时也可以旋转关闭该安装槽121b。
本实施方式中,该盖板122b靠近该加样槽14b的一端侧壁上设有卡口124b,该安装槽121b对应该卡口124b设有卡块125b,该卡块125b能够卡入该卡口124b内,以将该盖板122b固定在该安装槽121b的开口,避免该盖板122b意外打开。当需要打开盖板122b时,通过按压该卡块125b以使该卡块125b退出该卡口124b,盖板122b便可以打开。
请参阅图3b,结合参阅图1b、图2b与图8b,该检测盒安装区12b还包括设于该安装槽121b内的取像口126b、设于所述盖板122b靠近该安装槽121b一侧表面的主机连接器127b以及设于该安装槽121b内的第一感应器(图未示)。取像口126b能够使图像采集装置15b采集到安装槽121b内检测盒20b的图像。盖板122b盖合安装槽121b后,主机连接器127b用于与检测盒20b的检测盒连接器26b电性连接,从而控制检测盒20b进行核酸扩增反应及电泳检测。该第一感应器用于感应该检测盒20b是否插入安装槽121b内并将信号传输至控制器16b,该控制器16b控制该检测盒20b进行核酸检测。
本实施方式中,主机连接器127b为一长条结构,相应的检测盒20b上设有卡槽25b,卡槽25b内设有检测盒连接器26b,当盖板122b将安装槽121b盖合后,主机连接器127b可以插入检测盒20b的卡槽25b内与检测盒连接器26b实现电性连接。此种设计还可以进一步固定检测盒20b,防止检测盒20b在安装槽121b内发生移动。
本实施方式中,该安装槽121b内设有两固定挡块128b,两固定挡块128b分别设于取像口126b相对的两侧,两固定挡块128b用于卡住检测盒20b,防止检测盒20b在安装槽121b内移动。两固定挡块128b上分别设有一避空位129b,可以方便检测盒20b的放入和取出。
本实施方式中,两固定挡块128b之间的距离略大于检测盒20b的宽度,能够稳定地将检测盒20b固定在安装槽121b内。
本实施方式中,该盖板122b对应该加样槽14b设有一通孔(图未示),加样槽14b通过该通孔与该安装槽121b连通,进而为检测盒20b加样。
本实施方式中,第一感应器一方面用于感应检测盒20b是否插入安装槽121b,另一方面,还可以通过第一感应器的感应来实现控制器16b自动启动程序。即,当检测到检测盒20b插入安装槽121b后,启动开始检测的程序。
请参阅图3b,取像口126b大致为矩形结构,尺寸设置方面需要满足图像采集装置15b能够通过取像口126b采集到检测盒20b的电泳检测得到的完整的荧光照片。本实施方式中,该图像采集装置15b位于该取像口126b的正下方。
请参阅图1b,本实施方式中,该检测盒安装区12b为两个,两个所述检测盒安装区12b分别位于该加热区13b的两侧。同时设置两个检测盒安装区12b可以同时进行两组核酸扩增以及电泳检测,能够提高检测效率,同时提高空间利用率。
本实施方式中,为了避免两个所述检测盒安装区12b在核酸扩增过程中温度互相干扰,在两个检测盒安装区12b之间设置一隔离层(图未示),该隔离层能够有效隔离两个检测盒安装区12b,提高检测盒安装区12b内核酸扩增时的温度精准度,避免温度互相干扰,影响检测效果。
请参阅图6b与图7b,加热区13b包括一加热槽131b和设置于加热槽131b底部的加热装置132b,加热装置132b与控制器16b电连接,控制器16b可以控制加热装置132b实现升温,同时通过温度感测器(图未示)和时间继电器(图未示)来检测加热槽131b的加热温度和时间。本实施方式中,加热装置132b的加热温度为95℃左右,加热时间为5分钟左右,加热完成后进行冷却,冷却至室温或某一具体温度(例如40℃以下)。
本实施方式中,加热装置132b为铝块、铜块或者其他导热材料。可以理解的是,还可以采用其他加热装置(例如加热丝、加热涂层或加热片等)对加热槽131b进行加热。同时加热区13b还设置有第二感应器(图未示),第二感应器与控制器16b电性连接,该第二感应器可以用于感应加热槽131b内是否有承装所述检测液的收集杯30b放入,并将感应信号传输至控制器16b,从而控制器16b启动加热。
请结合参阅图3b与图7b,本实施方式中,该加热槽131b的开口位于第一表面111b,且该加热槽131b沿与第一表面111b平行的方向的横截面大致呈一椭圆结构。加热槽131b的形状可以根据实际需要加热的收集杯30b的形状具体设计。
请参阅图6b,本实施方式中,该加热槽131b内设有第一卡位133b,该第一卡位133b用于卡合收集杯30b。
请参阅图3b,加样槽14b的底壁设有一加样通道141b,该加样通道141b贯穿盖板122b的通孔伸入该安装槽121b内,且该加样通道141b靠近安装槽121b的一端与安装槽121b内的检测盒20b的表面抵触,检测液从加样槽14b经由该加样通道141b进入安装槽121b内的检测盒20b内。
本实施方式中,该加样通道141b具体为漏斗状。
本实施方式中,该加样槽14b内还设有第二卡位142b,该第二卡位142b用于卡合液体转移装置40b。
请参阅8b,结合参阅图1b、图2b与图5b,该加热结构17b包括设于该安装槽121b内的第一加热组件171b以及设于该盖板122b靠近该安装槽121b一侧表面的第二加热组件172b。该第一加热组件171b和该第二加热组件172b均与该控制器16b电性连接。通过设置两组加热组件,可以同时对安装槽121b内的检测盒20b上下表面进行加热,使检测盒20b内的检测液加热更均匀,核酸扩增反应更充分。另外,该加热结构17b设置于核酸检测主机10b上,检测盒20b无需设置加热结构,极大降低了检测盒20b的成本。
本实施方式中,第一加热组件171b包括第一线路板1711b以及设于第一线路板1711b上的多个第一加热器1712b,多个第一加热器1712b对应检测盒20b的核酸扩增反应区设置。其中该第一线路板1711b设于该安装槽121b底表面远离盖板122b的一侧,该第一加热器1712b凸伸出该安装槽121b的底表面与安装槽121b内的检测盒20b的下表面抵触。
本实施方式中,第二加热组件172b包括第二线路板1721b以及设于第二线路板1721b上的多个第二加热器1722b,多个第二加热器1722b对应检测盒20b的核酸扩增反应区设置。其中该第二线路板1721b设于该盖板122b内部,该第二加热器1722b凸伸出该盖板122b靠近安装槽121b一侧的表面与安装槽121b内的检测盒20b的上表面抵触。
本实施方式中,第一加热器1712b可以是两个,分别对应的加热温度范围为40℃-75℃ 和90℃-105℃。
本实施方式中,第二加热器1722b可以是两个,分别对应的加热温度范围为40℃-75℃和90℃-105℃。
本实施方式中,第一加热器1712b和第二加热器1722b均可以为铝块、铜块或者其他导热材料。可以理解的是,还可以采用其他加热装置(例如加热丝、加热涂层或加热片等)对检测盒20b进行加热。
另一实施方式中,第一加热器1712b可以是三个,分别对应的加热温度范围为40℃-65℃、68℃-75℃和90℃-105℃。
另一实施方式中,第二加热器1722b可以是三个,分别对应的加热温度范围为40℃-65℃、68℃-75℃和90℃-105℃。
请参阅图3b与图4b,结合参阅图2b,图像采集装置15b包括设于该安装槽121b远离该加样槽14b一侧的固定盒151b、设于所述固定盒151b内的光源(图未示)、图像采集控制板153b以及图像采集器152b,该光源和该图像采集器152b均与图像采集控制板153b电性连接,该图像采集控制板153b与控制器16b电性连接。该光源用于在图像采集控制板153b的控制下发射光线至取像口126b,为图像采集提供光源。该图像采集器152b用于在图像采集控制板153b的控制下采集检测盒20b的电泳检测得到的荧光照片。
本实施方式中,该固定盒151b沿水平方向的横截面宽度由靠近第一表面111b的一端至远离第一表面111b的一端逐渐增大,即,该固定盒151b大致为一倒置的锥形漏斗结构。其中该固定盒151b靠近第一表面111b的一端通过该取像口126b与该安装槽121b连通。该固定盒151b的侧壁倾斜设置可以达到聚光的目的,能够使光源发射的光聚集在取像口126b处,便于采集检测盒20b的图像。
本实施方式中,该固定盒151b的内侧壁设置有反射涂层,可以用于反射光线,使光线反射进入取像口126b。
本实施方式中,该控制器16b包括图像处理器(图未示)。图像采集器152b采集的图像会传输至图像处理器进行处理,处理后的图像进一步进行输出。
本实施方式中,该控制器16b还包含存储器(图未示),该存储器用于存储检测结果及检测过程信息等。
请参阅图1b与图2b,该核酸检测主机10b还包括显示屏18b和摄像头19b,该显示屏18b与该摄像头19b均与该控制器16b电性连接。该显示屏18b用于显示操作界面,设置运行参数以及显示上述图像等。该摄像头19b用于对用户操作流程进行摄像,同时还可以采集上述检测液对应的相关信息(例如核酸样本来源的信息)。
请参阅图3b,该核酸检测主机10b还包括散热装置191b,散热装置191b与控制器16b电性连接,用于为整个主机散热。
本实施方式中,散热装置191b为散热风扇。该散热装置191b设置于侧壁113b。同时该机身11b上设置有多处散热通风口,实现主机内部热量的排出。
本发明提供的核酸检测主机10b配合检测盒20b可以实现核酸的PCR扩增和电泳检测,显示屏18b显示的结果为最终的电泳检测结果。该核酸检测主机10b将检测液预热、加样、检测液循环加热进行核酸扩增反应、电泳检测以及结果输出集成在一个设备内,整体结构简单,便携且检测灵活性强,检测操作方便,且操作过程简单,操作过程对专业要求低,可以实现家庭检测。
请参阅图8b与图9b,结合参阅图1b与图3b,本申请中的检测盒20b将PCR扩增过程与电泳检测集成在一起,检测液在PCR扩增结束后直接进人电泳槽进行电泳检测。具体地,该检测盒20b包括一盒体21b、加样口22b、检测芯片23b、电泳盒24b以及检测盒连接器26b。该加样口22b设置于该盒体21b靠近该加样槽14b的一侧,加样通道141b靠近 安装槽121b的一端与该加样口22b抵接,该加样口22b用于向该检测芯片23b内加入检测液。该检测芯片23b设置于盒体21b的内部,该电泳盒24b设置于该盒体21b的外部,且该检测芯片23b与该电泳盒24b连通,该检测芯片23b用于对检测液进行PCR扩增反应,该电泳盒24b用于对扩增结束后的检测液进行电泳检测。当将检测盒20b放入安装槽121b内后,该电泳盒24b对应该取像口126b设置,该图像采集装置15b经由该取像口126b采集该电泳盒24b的荧光照片。该检测盒20b上设有一卡槽25b,该检测盒连接器26b设于该卡槽25b内,检测盒安装区12b的主机连接器127能够卡入该卡槽25b内与该检测盒连接器26b电性连接。该检测盒连接器26b与检测芯片23b和电泳盒24b电性连接。当在检测芯片23b内完成核酸扩增反应后,可以自动进行入电泳盒24b内进行电泳检测,过程衔接流畅,不需要更换设备,加样精度控制精准。检测盒20b将检测芯片23b与电泳盒24b集成在一起,且尺寸较小,适用于上述便携式核酸检测设备100b。
本实施方式中,该检测盒20b是一次性使用品,每个检测样本使用一个检测盒20b,因此,检测盒20b无需清洗流程。
本实施方式中,该检测盒20b大致为一立方体结构。
请参阅图10b至图12b,结合参阅图1b,收集杯30b和液体转移装置40b可以配合使用,二者通过卡合的方式连接在一起,收集杯30b用于收集核酸样本(如口水或其他液体检样),并与检测试剂混合形成检测液,还用于将加热区13b进行加热。液体转移装置40b用于从收集杯30b处定量吸取检测液,并通过加样槽14b加入检测盒20b内。
本实施方式中,收集杯30b内部设置有锥形槽,口水吐入收集杯30b内后,可以集中在锥形槽的下方,便于少量核酸样本的收集。
请参阅图10b与图11b,液体转移装置40b包括外壳41b、内壳42b、取液组件43b以及按压键44b。其中内壳42b通过卡合的方式可移动地与外壳41b连接,取液组件43b贯穿外壳41b和内壳42b设置,按压键44b设置于内壳42b的顶部。其中取液组件43b包括取液管431b和取液头432b。当需要取液时,通过按压该按压键44b使内壳42b沿外壳41b向下移动,内壳42b对取液管431b施加压力,以使取液管431b变形,排出取液管431b内部空气,进而使取液头432b吸取检测液,取液结束后,取液管431b能推动内壳42b自动回复原位;当需要将液体排出时,再次按压该按压键44b使内壳42b相对外壳41b向下移动,进一步挤压取液管431b,以使取液管431b内的检测液排出。可以通过控制取液管431b的形变量来控制取液两,从而实现定量取液的目的,且可以实现微量液体的转移。可以理解的是,还可以通过其他能够实现定量取液的液体转移装置进行液体转移。
本实施方式中,其中外壳41b、内壳42b、按压键44b构成了按压机构45b,取液组件43b和按压机构45b配合形成液体转移装置40b。取液组件43b可拆卸地设置于按压机构45b,按压机构45b可以多次使用,取液组件43b为一次性耗材,能随时更换,节约成本。因此,如图28b所示,可以将按压机构45b设置于核酸检测主机10b的按压机构存放区61a内,方便收纳。
请再次参阅图12b,该核酸检测设备100b还包括药剂包50b,该药剂包50b内存放有检测药剂(例如Buffer液),其中检测药剂是定量放入药剂包50b内的。该药剂包50b可以放入该收集杯30b内与核酸样本混合形成上述检测液。
本实施方式中,该药剂包50b是一个槽型结构,并且有一个把手,槽型结构内放置核酸检测所需要的药剂,开口处通过密封膜进行密封。使用时,将密封膜撕除,抓住把手,将药剂倒入装有核酸样本的收集杯30b内,摇匀后将收集杯30b放入加热槽131b内进行加热。
本实施方式中,该药剂包50b与收集杯30b连接在一起,使用前,药剂包50b放置于收集杯30b内,此设计便于药剂包50b的收纳,避免药剂包50b丢失,而且能够提醒操作 者是否将药剂包50b内的检测药剂加入收集杯30b内。
其中在检测前,检测盒20b、液体转移装置40b、收集杯30b以及药剂包50b均收纳在一专用的包装盒内,每一套检测盒20b、液体转移装置40b、收集杯30b以及药剂包50b都可以设置一一对应的识别码(例如二维码),避免混淆。由于针对同一病毒的检测,所使用的检测盒20b以及药剂包50b都是相同的,也可以只在收集杯30b上设置识别码(例如二维码),避免采集的待检测液混淆。
具体地,摄像头19b可以采集收集杯30b上的二维码,二维码的信息包括核酸样本的来源或相关受检人的信息。另外,摄像头19b还可以对操作人员的检测过程进行录像。
本发明还提供了一种采用上述核酸检测设备100b进行核酸检测的方法,具体包括以下步骤:
步骤S11b,结合参阅图13b,参数设定。
将主机10b开启,并设置好相应的检测参数,具体可以包括加热区13b的预热温度及预热时间,检测盒20b内核酸扩增反应的相应参数,以及电泳检测的相应参数等。
步骤S12b,结合参阅图13b,录入检测样本信息并开启录像。
具体地,打开摄像头19b采集收集杯30b上的二维码,并对检测过程进行录像,打开装有检测盒20b、收集杯30b以及药剂包50b的包装盒,扫描收集杯30b上的二维码。采集的信息以及录像资料可以上传至客户端供相关人员查看。
步骤S13b,结合参阅图14b,采集核酸样本,并对核酸样本进行预热。
本实施方式中,用收集杯30b收集好口水后,先放入加热区13b内进行加热,一般程序设定的加热温度为90-100℃左右,加热3-8min左右,加热后冷却至室温或一固定温度以下(例如40℃以下),冷却后,再将药剂包50b内的药剂加入收集杯30b的口水中混合均匀形成检测液。
另一实施方式中,用收集杯30b收集口水,再将药剂包50b内的药剂倒入收集杯30b内,药剂包50b倒扣在收集杯30b的开口处,将收集杯30b盖住,上下摇动3-5次,得到混合均匀的检测液,一般需要摇动5次便可摇匀。接着,将承装有检测液的收集杯30b放入加热区13b内,当加热区13b处的第二感应器感应到收集杯30b放入后,便启动下一步,进行加热。一般程序设定的加热温度为90-100℃左右,加热3-8min左右,加热后冷却至室温或某一固定温度以下(例如40℃以下)。具体采用温度感应器和时间继电器来感应加热温度以及加热时间。
步骤S14b,结合参阅图15b,将检测盒20b插入检测盒安装区12b。
将检测盒20b插入检测盒安装区12b的安装槽121b内,第一感应器感应到检测盒20b插入,自动启动检测流程。
步骤S15b,结合参阅图16b与图17b,将检测液转移至检测盒20b进行核酸扩增反应和电泳检测。
用液体转移装置40b定量吸取收集杯30b内的检测液10-30μl(优选20μl),并将检测液通过加样槽14b加入检测盒20b的检测芯片23b内。具体地,含有核酸样本的检测液在检测芯片23b内进行核酸扩增反应,扩增结束后与检测芯片23b内的荧光试剂结合后形成带有荧光基团的产物,产物由检测芯片23b进入电泳盒24b,在电泳盒24b内进行电泳检测。
步骤S16b,采集电泳检测的图像(荧光照片)并输出。
电泳检测完成后,图像采集装置15b采集电泳盒24b的电泳图像,并将图像通过图像处理器进行处理,处理后的图像显示在显示屏18b上,还可以将检测结果上传到客户端,供相关人员查阅。
步骤S17b,完成检测。
将收集杯30b、液体转移装置40b以及检测盒20b从核酸检测主机10b上取下,并放入 包装盒内回收。
请参阅图18b所示,为采用本发明实施例提供的核酸检测设备100b得到的测试结果的示意图。本实施方式中,通过预先定义出标准的荧光照片上各条线的范围,当得到测试结果后,设备便可自动辨识检测结果。其中,若第一条线的标记位置在预先定义的范围内时,便可以确定核酸样本中包括人类基因,若第一条线的标记位置不在预先定义的范围内时,便可以确定核酸样本中不包括人类基因。若第二条线的标记位置在预先定义的范围内时,便可以确定核酸样本中包括RNA复制酶,若第二条线的标记位置不在预先定义的范围内时,便可以确定核酸样本中不包括RNA复制酶。若第三条线的标记位置在预先定义的范围内时,便可以确定核酸样本中包括N蛋白,若第三条线的标记位置不在预先定义的范围内时,便可以确定核酸样本中不包括N蛋白。
请参阅图19b与图20b,本发明另一实施方式提供的核酸检测主机60a包括一个所述检测盒安装区12b和一按压机构存放区61a,该按压机构存放区61a用于存放按压机构45b。可以理解的是,按压机构存放区61a还可以设计为其他功能区域,可以充分利用核酸检测主机60a的空间。
相较于现有技术,本实施例提供的核酸检测设备通过主机与检测盒的配合可以将核酸扩增反应和电泳检测集成在一个设备中进行,整体结构简单,检测操作简便,操作过程对专业要求低,检测效率高,极大降低了检测成本;同时,检测过程灵活性强,无需在固定的实验室中进行,检测设备便携,可以实现社区检测或家庭检测。
实施例3
请参阅图1c至图4c,为本发明实施例提供的一种核酸检测盒100c,该核酸检测盒100c包括一盒体1c、检测芯片2c以及激光发射装置3c。该检测芯片2c设置于该盒体1c内,该检测芯片2c包括第一盖板21c、间隔层22c及第二盖板23c,该间隔层22c相对的两表面分别与该第一盖板21c和该第二盖板23c接触,该第一盖板21c、该间隔层22c以及该第二盖板23c围设形成通道5c,该通道5c用于承载检测液6c以便该检测液6c可在该通道5c内进行核酸扩增反应从而得到产物液珠8c。该第一盖板21c设有观察窗29c;该激光发射装置3c设置于该通道5c的外侧,该激光发射装置3c用于朝向该通道5c内发射激光7c。该激光7c用以照射该产物液珠8c,以使所述产物液珠8c发出荧光信号9c,最终经由所述观察窗29c可以获取所述荧光信号9c。
请参阅图1c至图4c,该盒体1c包括第一壳体11c、第二壳体12c、设置于该第二壳体12c的加样口13c以及设置于该第一壳体11c上的开口14c。该第一壳体11c与该第二壳体12c共同围设形成一容纳腔(图未示),该检测芯片2c和该激光发射装置3c均容置于该容纳腔内。该加样口13c对应该检测芯片2c设置,用于向该检测芯片2c内加入含有核酸样本的检测液6c。该开口14c对应该观察窗29c设置,后续图像采集装置能够经由该开口14c和该观察窗29c采集该检测芯片2c中产物液珠8c发射出的荧光信号9c。
请参阅图3c,本实施方式中,该第一壳体11c和该第二壳体12c通过卡合的方式连接,另外,该第一壳体11c和该第二壳体12c卡合后还可以在四周通过螺丝进行紧固,增加该第一壳体11c与该第二壳体12c的连接牢固性。
请参阅图1c,本实施方式中,该盒体1c的侧壁还设置有一安装口15c,该安装口15c用于安装一连接器4c,其中该连接器4c与检测芯片2c和激光发射装置3c电性连接,通过该连接器4c实现检测芯片2c与激光发射装置3c与外界电源电性连接。该连接器4c整体位于该容纳腔内并由该安装口15c露出该盒体1c,从而方便该连接器4c与外界的电源电性连接。
本实施方式中,该盒体1c为塑料材质。
请参阅图2c与图3c,该检测芯片2c还包括设置于该第二盖板23c靠近该第一盖板21c一侧的驱动回路24c、设置于该驱动回路24c靠近该第一盖板21c一侧的第一介电层26c、设置于该第一盖板21c靠近该第二盖板23c一侧的导电层25c以及设置于该导电层25c靠近该第二盖板23c一侧的第二介电层27c,该驱动回路24c和该导电层25c均与该连接器4c电性连接,通过为该驱动回路24c和该导电层25c通电或断电可以实现该检测液6c在该通道5c内按照规定的路径移动。
本实施方式中,请参阅图3c,结合参阅图2c,该驱动回路24c包括多个呈阵列排布的驱动电极241c以及与所述驱动电极241c电性连接的控制电极242c,该控制电极242c与该连接器4c电性连接。具体地,该驱动回路24c为薄膜晶体管(Thin Film Transistor,TFT)驱动回路,又由于检测液6c具有导电性,结合介电润湿原理(Electrowetting-On-Dielectric,EWOD),能够实现检测液6c在通道5c内按预定路径进行移动。利用TFT原理,能够选择性开启或关闭某个驱动电极241c与导电层25c之间的电路,从而改变该驱动电极241c与导电层25c之间的电压来改变该检测液6c与第一介电层26c和第二介电层27c之间的润湿特性,进而控制该检测液6c在通道5c内按预定的路径移动。如图6c所示,检测液6c在电极I、电极H和电极G上移动,当检测液6c在电极H上时,对电极G和导电层25c之间施加电压,给予电极G电压Vd,同时断开电极H和导电层25c之间的电压,此时检测液6c与第一介电层26c和第二介电层27c之间的润湿特性发生改变,以使电极H与检测液6c之间的液-固接触角变大,电极G与检测液6c之间的液-固接触角变小,从而促使检测液6c从电极H往电极G移动。
本实施方式中,该第一介电层26c和该第二介电层27c均为绝缘疏水层,具体可以是聚四氟乙烯涂层,一方面可以起到绝缘疏水的作用,另一方面还能够使检测液6c在规定路径内移动的更顺畅,避免移动过程中液珠破裂。
本实施方式中,结合参阅图3c,该驱动回路24c可以采用金属刻蚀的方法或电镀的方法形成于该第二盖板23c的表面。
本实施方式中,该控制电极242c集成在该第二盖板23c的同一边缘,通过将该第二盖板23c设置该控制电极242c的一边插入该连接器4c内实现该检测芯片2c与该连接器4c的电性连接。
请参阅图3c与图4c,本实施方式中,该驱动回路24c根据不同的用途可以分为多个区域,分别是加样区A,多个核酸扩增区C以及观察区D,该观察窗29c对应该观察区D设置。该检测芯片2c上的该加样区A与盒体1c上的加样口13c连通,通过从该加样口13c向该加样区A加入包含核酸样本的检测液6c。核酸扩增区C用于实现核酸样本的扩增反应得到核酸扩增产物,核酸扩增产物与荧光试剂结合得到产物液珠8c,观察区D用于观察产物液珠8c在激光7c照射下的荧光信号9c。
检测液6c在该核酸扩增区C进行核酸扩增反应,该核酸扩增区C包括可以包括多个区域,具体区域的数量可以根据实际的检测需求而定。该观察区D内的产物液珠8c发射的荧光信号9c可经由该观察窗29c被图像采集装置采集。实时荧光定量PCR技术的原理是:荧光试剂(荧光染料或DNA探针)被设计成需要跟特定的DNA结合后才会有荧光特性,因此,当DNA通过PCR扩增后数量增多,被活化荧光物质就越多,与荧光试剂结合的DNA数量增多,则荧光强度越强,因此,只需要检测荧光的强度便可以对扩增的特定DNA进行定量。
请参阅图5c,另一实施方式中,该驱动回路24c还可以包括试剂存储区B、该试剂存储区B用于存储荧光试剂(例如荧光染料或荧光探针)。该检测液6c至少包含核酸样本和引物,并不包含荧光试剂,而荧光试剂(例如荧光染料或DNA探针)被提前涂覆在试剂存储区B内,加入检测液6c后再与荧光试剂结合。此方式可以在核酸扩增前与荧光试剂混合, 也可以在核酸扩增后与荧光试剂混合,具体根据实际情况选择。
请参阅图6c,又一实施方式中,荧光试剂设置于观察区D内,观察区D设置于核酸扩增区C远离加样区A的一侧,本实施方式中,核酸扩增结束后,核酸扩增产物将与观察区D内的荧光试剂结合。
请参阅图3c、图5c与图6c,该检测芯片2c还包括设置于该第一盖板21c和/或该第二盖板23c远离该通道5c一侧的加热组件28c,该加热组件28c对应该核酸扩增区C设置,用于为检测液6c加热。
本实施方式中,该加热组件28c对应该核酸扩增区C设置有两个加热区域,具体加热温度范围分别为90℃-105℃和40℃-75℃。
本实施方式中,在组装好该检测芯片2c后会在通道5c内注入硅油,检测液6c会在硅油内按规定路径移动。
请参阅图2c,本实施方式中,该第一盖板21c和该第二盖板23c均为玻璃板,该间隔层22c为双面胶框,通过双面胶框粘贴在第一盖板21c和第二盖板23c的边缘,从而共同组成一密封的通道5c。其中,可以根据实际需求通过设计不同厚度的间隔层22c来调整该通道5c的容量。
本实施方式中,该核酸检测盒100c大致为一立方体结构。
本实施方式中,该核酸检测盒100c是一次性使用品,每个检测样本使用一个核酸检测盒100c,因此,核酸检测盒100c无需清洗流程。
本发明可以根据不同的需求设计核酸扩增区C、试剂存储区B和观察区D的数量和具体位置。在实际检测过程中,具体可以包括以下三种不同的实施方式。
一实施方式中,请参阅图2c至图4c,该核酸扩增区C的数量为两个,该观察区D的数量为一个,该观察区D位于两个核酸扩增区C之间,本实施方式中不需要设置试剂存储区B。
具体实现实时荧光定量PCR的过程为:向加样区A加入检测液6c,此时可以将同时包含核酸样本、引物、荧光试剂(例如荧光染料或DNA探针)的检测液6c由加样口13c注入加样区A内;包含核酸样本和荧光试剂的检测液6c在驱动电极241c的驱动下按照规定路径在两个核酸扩增区C之间往复移动进行扩增反应直接得到产物液珠8c,在扩增过程中,产物液珠8c会经过观察区D,此时,产物液珠8c在激光7c的照射下会发出荧光信号9c,便可以通过图像采集装置经由观察窗29c采集观察区D处结合荧光试剂的产物液珠8c发出的荧光信号9c,完成实时荧光定量PCR的过程。本实施方式中,随着PCR扩增反应的进行,荧光强度不断增大,当荧光强度达到最大值后不再增大,而是趋于稳定,此时,PCR扩增反应结束,因此,可以根据荧光强度的变化来准确判断扩增反应的结束时间。
本实施方式中,激光发射装置3c从通道5c的侧面发射激光7c,激光7c在通道5c内传递,具体地,激光7c的光谱为200nm~480nm,荧光试剂发出的荧光的光谱为500nm~700nm。当激光7c与产物液珠8c交会,产物液珠8c内的荧光试剂发出荧光信号9c,图像采集装置经过开口14c和观察窗29c侦测并采集荧光信号9c,形成荧光图像再通过主机显示器进行显示。
另一实施方式中,请参阅图2c、图4c与图5c,该核酸扩增区C的数量为两个,该观察区D的数量为一个,该观察区D位于两个核酸扩增区C之间,同时该驱动回路24c还包括一个试剂存储区B。
具体实现实时荧光定量PCR的过程是:向加样区A加入未包含荧光试剂的检测液6c,该检测液6c至少包含核酸样本和引物,而荧光试剂(例如荧光染料或DNA探针)被提前涂覆在试剂存储区B内;检测液6c在驱动电极241c的驱动下由加样区A移动至试剂存储区B与荧光试剂混合,混合了应该试剂的检测液6c再按照规定路径在两个核酸扩增区C 之间往复移动进行扩增得到产物液珠8c,在扩增过程中,产物液珠8c会经过观察区D,此时,产物液珠8c在激光7c的照射下会发出荧光信号9c,便可以通过图像采集装置经由观察窗29c采集观察区D处的产物液珠8c发出的荧光信号9c,完成实时荧光定量PCR的过程。本实施方式中,随着PCR扩增反应的进行,荧光强度不断增大,当荧光强度达到最大值后不再增大,而是趋于稳定,此时,PCR扩增反应结束,因此,可以根据荧光强度的变化来准确判断扩增反应的结束时间。
又一实施方式中,请参阅图2c与图6c,该核酸扩增区C的数量为两个,观察区D的数量为一个,未设置试剂存储区B,其中观察区D位于两个核酸扩增区C远离加样区A的一侧,且该观察区D包含三个观察位点(D1,D2,D3),三个观察位点(D1,D2,D3)上分别设置不同的荧光试剂,具体设置有基因检测需要的不同DNA探针。
本实施方式中,观察位点D1和观察位点D3上分别设置两种病毒基因探针(具体为RdRp基因探针、N基因探针),观察位点D2上设置人组织内参基因探针(Beta_actin基因探针)。
具体实现实时荧光定量PCR的过程是:向加样区A加入不包含荧光试剂的检测液6c,该检测液6c至少包含核酸样本和引物,而荧光试剂(具体为基因探针)被提前设置观察区D的不同观察位点上,本实施方式是检测液6c先在两个核酸扩增区C之间往复移动进行核酸扩增反应得到核酸扩增产物,核酸扩增产物再移动至观察区D与三个不同观察位点(D1,D2,D3)上的不同探针结合形成产物液珠8c进行显色,再通过激光发射装置3c发射激光7c,当激光7c与产物液珠8c交会,产物液珠8c内与相应DNA结合的DNA探针发出荧光信号9c,图像采集装置经由开口14c和观察窗29c侦测并采集观察区D上三个观察位点(D1,D2,D3)发出的荧光信号9c,形成荧光图像,最后通过主机进行显示。
为了验证荧光试剂在核酸扩增前后添加对荧光检测的影响,图44采用三种不同的检测液分别进行荧光检测。图7c中第一样本为DNA先加G108-G染料,再进行PCR扩增;第二样本为DNA先进行PCR扩增,再加G108-G染料;第三样本为DNA不进行PCR扩增,但有添加G108-G染料。
对以上三个样本分别进行荧光检测,得到如图8c的检测结果。从图8c可以看出,第一样本和第二样本的荧光强度类似,第三样本基本没有荧光反应。第一样本和第二样本的对比说明在PCR扩增之前或之后添加荧光试剂均可,对检测结果无影响。第一样本和第二样本与第三样本对比可知,荧光试剂需要与特定DNA结合后才具有荧光特性,也就是不经过PCR扩增的DNA即便添加了荧光试剂,也不会有荧光反应。通过以上三样本荧光检测结果的对比可知,采用本申请的上述核酸检测盒100c进行实时荧光定量PCR能够实现实时检测和精确定量,检测结果准确,检测速度快,且操作方便。
相较于现有技术,本实施例的核酸检测盒100c通过结合检测芯片和激光发射装置能够实现实时荧光定量核酸扩增检测;检测液在检测芯片内完成核酸扩增反应后可以直接进入荧光检测,无需将核酸扩增产物进行电泳检测便可以实时得到核酸扩增产物的荧光图像;降低了对操作人员的要求,降低了检测成本,极大提升了检测效率。而且核酸检测盒的尺寸较小,适用于便携式核酸检测设备。
请参阅图9c,结合参阅图2c,本发明还提供了一种核酸检测设备200c,该核酸检测设备200c包括主机201c、如上所述的核酸检测盒100c以及图像采集装置202c,该主机201c上设置有一检测盒安装槽(图未示),该核酸检测盒100c安装在该检测盒安装槽内。该图像采集装置202c设置于所述观察窗29c远离所述通道5c的一侧,该图像采集装置202c用于通过该观察窗29c采集所述荧光信号9c,并将荧光信号9c转化为荧光图像,并将荧光图像传输至主机201c进行处理,主机201c将处理后的荧光图像通过显示屏(图未示)进行显示,根据该荧光图像可以得出核酸检测结果。还可以将检测结果上传到客户端,供相关 人员查阅。
相较于现有技术,本实施例提供的核酸检测设备通过主机、核酸检测盒以及图像采集装置的配合可以实现在PCR过程中进行荧光检测,得到实时荧光图像,根据荧光强度大小可以对PCR扩增后的DNA进行定量,可以实现实时定量检测核酸的量;核酸检测设备整体结构简单,检测操作简便,操作过程对专业要求低,检测效率高,极大降低了检测成本;同时,检测过程灵活性强,无需在固定的实验室中进行,检测设备便携,可以实现社区检测或家庭检测。
实施例4
请参阅图1d、图3d、图5d和图6d所示,为本发明实施例提供的一种核酸检测盒100d,该核酸检测盒100d包括一盒体1d、检测芯片2d、电泳盒3d以及连接器4d。该检测芯片2d设置于该盒体1d内,该检测芯片2d包括第一盖板21d、间隔层22d以及第二盖板23d,该间隔层22d相对的两表面分别与该第一盖板21d和该第二盖板23d邻接,该第一盖板21d、该间隔层22d以及该第二盖板23d围设形成通道5d,该通道5d用于承载检测液a。该电泳盒3d设置于该盒体1d内且与该通道5d连通。该连接器4d分别与该检测芯片2d以及该电泳盒3d电性连接。该核酸检测盒100d用于进行核酸扩增反应和电泳检测,将含有核酸样本的检测液a加入该检测芯片2d的通道5d内,需要说明的是,检测液a在通道5d内是以液珠的形式存在的,该检测液a在该通道5d内进行核酸扩增反应得到核酸扩增产物b,该核酸扩增产物b由该检测芯片2d直接进入该电泳盒3d内进行电泳检测,最后通过与该核酸检测盒100d配合的图像采集装置拍摄电泳盒3d的图像,其中该图像为电泳检测的荧光照片。本发明通过将检测芯片2d与电泳盒3d集成在一个盒体1d内,整体结构简单,不需要复杂的大型设备,成本低,检测液a完成核酸扩增后可以直接进入电泳盒3d进行电泳检测,简化了不同检测环节的样品转移配合衔接过程,提高了检测效率。
请参阅图1d至图3d,该盒体1d包括第一壳体11d、第二壳体12d、设置于该第二壳体12d的加样口13d以及设置于该第一壳体11d上的检测窗14d。该第一壳体11d与该第二壳体12d共同围设形成一容纳腔(图未示),该检测芯片2d、该电泳盒3d和该连接器4d均容置于该容纳腔内。该加样口13d对应该检测芯片2d设置,用于向该检测芯片2d内加入含有核酸样本的检测液a。该检测窗14d对应该电泳盒3d设置,图像采集装置能够通过该检测窗14d采集该电泳盒3d的图像。
请参阅图3d,本实施方式中,该第一壳体11d和该第二壳体12d通过卡合的方式连接,另外,两壳体卡合后还可以在四周通过螺丝进行紧固,增加该第一壳体11d与该第二壳体12d的连接牢固性。
请参阅图1d至图3d,本实施方式中,该盒体1d的侧壁还设置有一开口17d,该开口17d用于安装该连接器4d,该连接器4d整体位于该容纳腔内并由该开口17d露出该盒体1d,从而方便该连接器4d与外界控制板电性连接。
请参阅图2d,本实施方式中,该盒体1d还包括设置于该第一壳体11d上的卡槽15d,结合图15所示,该卡槽15d能够使该盒体1d与核酸检测设备300d中检测盒安装槽20d内的固定结构(图未示)卡合连接,进而将该核酸检测盒100d固定在核酸检测设备300d内。
请参阅图1d,本实施方式中,该第二壳体12d远离该容纳腔的一侧还设有一指示标识18d(例如箭头),结合参阅图15d,该指示标识18d用于指示该核酸检测盒100d插入核酸检测设备300d的插入方向,避免插错。
请参阅图3d,本实施方式中,该盒体1d内设置有若干支撑结构16d,由于检测芯片2d、电泳盒3d以及连接器4d在结构设计上存在厚度差异,因此在安装进盒体1d内时需要设计高度不一的若干支撑结构16d用于支撑检测芯片2d、电泳盒3d以及连接器4d,提高检测 芯片2d、电泳盒3d以及连接器4d之间的连接稳定性。
本实施方式中,该盒体1d为塑料材质,其中支撑结构16d与第一壳体11d和第二壳体12d为一体成型结构。
请参阅图13d与图14d,在其它实施方式中,还提供了另一核酸检测盒200d,在该核酸检测盒200d内,为了提高检测芯片2d、电泳盒3d以及连接器4d之间的连接稳定性,该盒体1d内还设置有安装支架19d,检测芯片2d、电泳盒3d以及连接器4d安装固定在该安装支架19d上。
该实施方式中,该安装支架19d包括架体191d以及支架盖板192d。该架体191d包括检测芯片安装区193d以及电泳盒安装区194d,检测芯片2d安装固定在该检测芯片安装区193d,电泳盒3d安装在电泳盒安装区194d。
该支架盖板192d对应该检测芯片2d设置有一窗口195d,该检测芯片2d由该窗口195d露出,便于该检测芯片2d与连接器电性连接,具体地,本实施方式中,该连接器可以设置于该检测芯片2d的上方。
该实施方式中,该支架盖板192d与该架体191d通过双面胶进行粘接固定。
请参阅图6d,该检测芯片2d还包括设置于该第一盖板21d靠近该第二盖板23d一侧的驱动回路24d、设置于该驱动回路24d靠近该第二盖板23d一侧的第一介电层26d、设置于该第二盖板23d靠近该第一盖板21d一侧的导电层25d以及设置于该导电层25d靠近该第一盖板21d一侧的第二介电层27d,该驱动回路24d和该导电层25d均与该连接器4d电性连接,通过为该驱动回路24d和该导电层25d通电或断电可以实现该检测液a在该通道5d内按照规定的路径移动。
本实施方式中,如图6d所示,该驱动回路24d包括多个呈阵列排布的驱动电极241d以及与所有驱动电极241d电性连接的控制电极242d,该控制电极242d与该连接器4d电性连接。具体地,该驱动回路24d为薄膜晶体管(Thin Film Transistor,TFT)驱动回路,又由于检测液a具有导电性,结合介电润湿原理(Electrowetting-On-Dielectric,EWOD),能够实现检测液a在通道5d内按规定路径进行移动。利用TFT原理,能够选择性开启或关闭某个驱动电极241d与导电层25d之间的电路,从而改变该驱动电极241d与导电层25d之间的电压来改变该检测液a与第一介电层26d和第二介电层27d之间的润湿特性,进而控制该检测液a在通道5d内按预定的路径移动。如图6d所示,检测液a在电极I、电极H和电极G上移动,当检测液a在电极H上时,对电极G和导电层25d之间施加电压,给予电极G电压Vd,同时断开电极H和导电层25d之间的电压,此时检测液a与第一介电层26d和第二介电层27d之间的润湿特性发生改变,以使电极H与检测液a之间的液-固接触角变大,电极G与检测液a之间的液-固接触角变小,从而促使检测液a从电极H往电极G移动。
本实施方式中,该第一介电层26d和该第二介电层27d均为绝缘疏水层,具体可以是聚四氟乙烯涂层,一方面可以起到绝缘疏水的作用,另一方面还能够使检测液a在规定路径内移动的更顺畅,避免移动过程中液珠破裂。
本实施方式中,结合参阅图7d,该驱动回路24d设置于该第一盖板21d靠近该通道5d的一侧。具体可以采用金属刻蚀的方法或电镀的方法形成该驱动回路24d。
本实施方式中,该控制电极242d集成在该第一盖板21d的同一边缘,通过将该第一盖板21d设置该控制电极242d的一边插入该连接器4d内实现该检测芯片2d与该连接器4d的电性连接。
请参阅图7d,该驱动回路24d根据不同的用途可以分为多个区域,分别是加样区A,试剂存储区B、多个核酸扩增区C以及出液区D。该检测芯片2d对应该加样区A还设有一芯片加样槽6d,该芯片加样槽6d与该加样区A连通,同时该芯片加样槽6d与该第二盖板 23d上的加样口13d对应,通过从该加样口13d向该加样区A加入检测液a。该试剂存储区B用于存储荧光试剂(例如荧光染料或荧光探针)。检测液a在该核酸扩增区C进行核酸扩增反应,该核酸扩增区C包括可以包括多个区域,具体区域的数量可以根据实际的检测需求而定。该出液区D与电泳盒3d连通,核酸扩增产物b可经由该出液区D进入电泳盒3d内进行电泳检测。
请参阅图9d,检测芯片2d内检测液a的具体移动路径为:检测液a进入加样区A后,在驱动电极241d的驱动下按照规定路径移动至核酸扩增区C进行扩增反应;当扩增反应完成后扩增后的产物移动至试剂存储区B与荧光试剂混合,从而得到结合了荧光试剂的核酸扩增产物b;混合均匀的核酸扩增产物b在驱动电极241d的驱动下移动至出液区D,并通过出液区D的出液口进入电泳盒3d。
可以理解的是,为了混合更充分,核酸扩增产物b可以在驱动电极241d的驱动下在核酸扩增区C来回移动,以使扩增产物与荧光试剂混合均匀。还可以理解的是,也可以单独设置混合区,实现核酸扩增产物b中检测液a与荧光试剂的充分混合。
本实施方式中,该核酸扩增区C的数量为两个,两个所述核酸扩增区C的加热温度不同,能够实现检测液a在不同温度下的核酸扩增反应的不同阶段。
请结合参阅图13d,在其它实施方式中,在核酸检测盒200d内,根据具体核酸扩增反应阶段的不同,该核酸扩增区C的数量也可以是三个或更多个。
本实施方式中,该荧光试剂是在检测芯片2d组装时预先涂覆在该试剂存储区B内的,后续无需单独添加荧光试剂。
请结合参阅图13d,在其它实施方式中,在核酸检测盒200d内,该荧光试剂也可以通过后续加入与扩增产物实现混合。具体地,对应该试剂存储区B在该检测芯片2d上设置一试剂槽7d,可以在进行核酸检测时向该试剂槽7d内添加荧光试剂,此设计能够根据实际需要选择荧光试剂的种类,提高了核酸扩增反应的灵活性。
请参阅图3d、图5d与图6d,该检测芯片2d还包括设置于该第一盖板21d或该第二盖板23d远离该通道5d一侧的加热组件28d,该加热组件28d对应该核酸扩增区C设置,用于为检测液a加热。该加热组件28d包括加热层281d以及与该加热层281d电性连接的加热线路板282d,该加热线路板282d与该连接器4d电性连接,通过该加热线路板282d为该加热层281d通电使该加热层281d为该通道5d的特定区域加热。
本实施方式中,该通道5d需要加热的区域可以是核酸扩增区C和试剂存储区B。
本实施方式中,该加热层281d为碳纳米管加热层,由于碳纳米管的优良导热性能,可以使加热更均匀,热损失更低,加热效率更高。当然,也可以采用其他加热结构(例如金属片、石墨片等)。
本实施方式中,该加热组件28d设置于该第二盖板23d远离该通道5d的一侧。
本实施方式中,该加热层281d通过导热胶粘接在该第二盖板23d表面。
本实施方式中,该加热线路板282d上设置有线路(图未示),该线路与核酸扩增区C和试剂存储区B的布局结构一致,通电后,该线路可以精准对相应核酸扩增区C和试剂存储区B进行加热,各个核酸扩增区C和试剂存储区B的温度易于控制。
本实施方式中,该加热层281d对应该核酸扩增区C设置有两个区域,具体加热温度范围分别为90℃-105℃和40℃-75℃。
另一实施方式中,该加热层281d对应该核酸扩增区C设置有三个区域,具体加热温度范围分别为90℃-105℃、68℃-75℃和40℃-65℃。
本实施方式中,结合参阅图4d与图5d,该加热线路板282d包括第一线路板(图未示)、第二线路板(图未示)以及连接第一线路板和第二线路板的连接部(图未示),第一线路板位于该第一盖板21d的下方,第二线路板位于该第二盖板23d的上方,该第一线路板和该 第二线路板电性连接,该第一线路板插入连接器4d的插槽41d内实现该加热线路板282d与该连接器4d的电性连接。通过在两部分线路板上对应需要加热的区域分布设置热电阻,可以由通道5d的两侧对需要加热的区域进行加热。能提升需要加热区域温度的均一性。
本实施方式中,该第一线路板、第二线路板以及连接部为一体式结构。
本实施方式中,在组装好该检测芯片2d后会在通道5d内注入硅油d,检测液a会在硅油d内按规定路径移动。
请参阅图5d与图6d,本实施方式中,该第一盖板21d和该第二盖板23d均为玻璃板,该间隔层22d为双面胶框,通过双面胶框粘贴在第一盖板21d和第二盖板23d的边缘,从而共同组成一密封的通道5d。其中,可以根据实际需求通过设计不同厚度的间隔层22d来调整该通道5d的容量。
请参阅图3d至图5d以及图8d,该电泳盒3d包括电泳槽31d、设置于电泳槽31d两端的电泳电极32d、设置于电泳槽31d内部的凝胶介质33d、设置在凝胶介质33d一端的注液槽34d以及毛细管35d。该电泳电极32d与该连接器4d电性连接,该毛细管35d一端伸入该注液槽34d内,另一端与该检测芯片2d的通道5d连通,核酸扩增产物b将在出液区D经由该毛细管35d进入该凝胶介质33d的注液槽34d内,从而进行电泳检测。
请参阅图3d、图5d与图8d,本实施方式中,该电泳槽31d位于该第一盖板21d远离该第二盖板23d的一侧,且该电泳槽31d的开口朝向该第一盖板21d的一侧,且该电泳槽31d的开口朝向该第一盖板21d。该电泳槽31d包括透明底板311d以及与该透明底板311d连接的多个侧壁312d,该侧壁312d远离该透明底板311d的一端与第一盖板21d的下表面接触,也就是该电泳槽31d利用该第一盖板21d作为电泳槽31d的盖板实现该电泳盒3d的密封。上述巧妙的设计能够使检测芯片2d与电泳盒3d更好地连通,有利于检测液a由检测芯片2d内转移至电泳盒3d内;另外,此种结构设计能够提高空间利用率,有利于降低整体核酸检测盒100d的体积。
本实施方式中,该侧壁312d与该第一盖板21d之间设置有密封胶圈(图未示),以提高电泳盒3d的密封性。
请参阅图8d,该电泳槽31d还包括设置于该透明底板311d上的多个卡位313d,该凝胶介质33d大致为一长方体结构,能够卡在多个所述卡位313d之间,该卡位313d的设计能够防止该凝胶介质33d移动错位,进而保证电泳检测的准确性。
结合参阅图3d,本实施方式中,该透明底板311d为透明玻璃板,可以观察到电泳结果。
本实施方式中,该卡位313d的数量为四个,四个卡位313d分别位于长方体结构的凝胶介质33d的四个角,从而将凝胶介质33d固定住。
请再次参阅图5d,该电泳槽31d还包括注液孔36d,该注液孔36d设置于该第一盖板21d对应该电泳盒3d的位置,通过该注液孔36d可以向该电泳槽31d内注入缓冲液(例如buffer)。
请参阅图10d至图12d,结合参阅图5d,该毛细管35d的一端贯穿该第一盖板21d进入该通道5d内,该毛细管35d包括位于该通道5d内的进液端351d,利用毛细管效应能够使通道5d内的核酸扩增产物b进入电泳盒3d的凝胶介质33d内。如图10所示,为了能够使核酸扩增产物b顺利进入电泳盒3d内,该进液端351d的端面需要与硅油d的液面平齐。或者,如图11和图12所示该进液端351d设有至少一斜面352d,也即该毛细管35d对应该进液端351d的侧壁倾斜设置,此时该斜面352d的最低点与该通道5d的下表面之间存在一段差ΔH,硅油d的液面位于该斜面352d上,也能够使核酸扩增产物b顺利进入毛细管35d内。在毛细管35d和检测芯片2d的组装设计过程中,需要使毛细管35d内充满缓冲液,并且缓冲液要能够与出液区D处的核酸扩增产物b的液珠表面接触,形成连续的液流,利用毛细原理才能保证核酸扩增产物b顺利进入毛细管35d内。
本实施方式中,该斜面352d与该毛细管35d的中心轴c之间的夹角为45°-60°,经试验验证,在这个角度范围内,核酸扩增产物b能够顺利进入毛细管35d进而进入凝胶介质33d内。
本实施方式中,如图11d所示,该毛细管35d的进液端351d一侧做了一个倾斜角度为45°-60°的斜面352d,通过斜面352d的设计,利用毛细管原理,可以使核酸扩增产物b顺利进入毛细管35d内并进入凝胶介质33d内。
另一实施方式中,如图12d所示,该毛细管35d的进液端351d相对的两侧分别做了一个倾斜角度为45°-60°的斜面352d,通过两个斜面352d的设计,利用毛细管原理,可以使核酸扩增产物b顺利进入毛细管35d内并进入凝胶介质33d内。
请参阅图4d,该电泳电极32d的一端伸入电泳槽31d内,另一端与加热组件28d的加热线路板282d电性连接。通过将电泳电极32d直接连接至加热组件28d的加热线路板282d上,可以避免复杂的电路连接,降低结构复杂度,同时减低电路设计难度,便于组装。
请参阅图13d,在其他实施方式中,在核酸检测盒200d内,该电泳盒3d还包括电泳线路板37d,该电泳电极32d一端伸入电泳槽31d内,另一端与该电泳线路板37d电性连接。该电泳线路板37d与连接器(图未示)电性连接。具体地,对应两根电泳电极32d分别设置一个电泳线路板37d。
请参阅图8d,本实施方式中,该电泳盒3d的组装过程包括:
第一步,将电泳电极32d安装在电泳槽31d的两端,电泳电极32d一端伸入电泳槽31d内,另一端与加热组件28d的加热线路板282d电性连接。
第二步,将呈长方体结构的凝胶介质(洋菜胶)33d放入电泳槽31d的卡位,洋菜胶要摆正,卡入卡位313d内,防止洋菜胶跑偏。具体地,洋菜胶上需要提前制作出注液槽34d,用于注入检测液a,该注液槽34d可以是一个长条形的槽,开口方向朝向检测芯片2d。
第三步,向电泳槽31d内注入缓冲液(Buffer)。
第四步,在电泳槽31d的侧壁312d靠近第一盖板21d的端面涂胶。
第五步,将第一盖板21d盖在电泳槽31d上方。
第六步,再经由注液孔36d向电泳槽31d内再次注入缓冲液(Buffer)。
第七步,用透气膜或者离型膜覆盖住注液孔36d。
组装好改核酸检测盒100d后,实际使用时,该核酸检测盒100d的使用过程包括以下步骤:
步骤S11d,结合参阅图3d,将含有核酸样本的检测液a有加样口13d注入芯片加样槽6d内。
步骤S12d,结合参阅图15d,通过压力控制芯片加样槽6d内的检测液a以液珠的形式进入检测芯片2d的加样区A。
步骤S13d,结合参阅图15d,通过调节驱动回路24d中相应驱动电极241d与导电层25d之间的电压,进而驱动检测液a在通道5d内按照规定的路径移动至核酸扩增区C,完成PCR扩增反应。具体地,核酸扩增区C的数量为两个,加热层281d对应两个核酸扩增区C的加热温度范围不同,分别为90℃-105℃和40℃-75℃。
一实施方式中,具体PCR扩增反应过程依次包括:第一步,在90℃-105℃条件下热变性15-25min;第二步,45°-60°条件下进行RT逆转录5-15min;第三步,90℃-100℃条件下加热1-5min;第四步,90℃-100℃条件下20-50秒,55℃-65℃条件下40-60秒,其中第四步循环35-50次(优选45次)结束扩增反应。可以采用温度感应器和时间继电器来感应加热温度以及加热时间。
另一实施方式中,具体PCR扩增反应过程依次包括:第一步,在90℃-105℃条件下热变性3-8min;第二步,45℃-60℃条件下增生3-8min;第三步,90℃-100℃条件下加热3-8min; 第四步,90℃-100℃条件下扩增3-8秒,50℃-65℃条件下扩增10-20秒,68℃-75℃条件下扩增10-20秒,其中第四步循环35-50次结束扩增反应。优选地,具体PCR扩增反应过程依次包括:第一步,在95℃-97℃条件下热变性3-5min;第二步,55℃-60℃条件下增生3-5min;第三步,95℃-97℃条件下加热3-8min;第四步,95℃-97℃条件下扩增3-5秒,55℃-60℃条件下扩增15-20秒,70℃-72℃条件下扩增15-20秒,其中第四步循环43-45次(优选45次)结束扩增反应。
步骤S14d,结合参阅图3d,扩增结束后,扩增产物与试剂存储区B内预先放置的荧光试剂混合,混合均匀后进入电泳盒3d内。
步骤S15d,控制电泳盒3d进行电泳检测。
本实施方式中,该核酸检测盒100d是一次性使用品,每个检测样本使用一个检测盒100d,因此,检测盒100d无需清洗流程。
本实施方式中,该检测盒20大致为一立方体结构。
相较于现有技术,本发明的核酸检测盒100d将电泳盒3d和检测芯片2d共同设置在同一盒体1d内,检测液a在检测芯片2d内完成核酸扩增反应后,可以直接进入电泳盒3d内进行电泳检测,过程衔接流畅,不需要更换设备,也无需专业人员进行样品转移操作,极大提升了检测效率。而且将检测芯片2d与电泳盒3d集成在一个盒子内尺寸较小,适用于上述便携式核酸检测设备。
请参阅图15d,本发明还提供了一种核酸检测设备300d,该核酸检测设备300d包括主机10d以及如上所述的核酸检测盒100d,该主机10d上设置有一检测盒安装槽20d,该核酸检测盒100d安装在该检测盒安装槽20d内。
该核酸检测设备300d还包括主机加热槽30d、主机加样槽40d以及图像采集窗50d。该主机加热槽30d用于容置检测液并为该检测液进行加热。该主机加样槽40d位于该检测盒安装槽20d上且与该检测盒安装槽20d连通,该主机加样槽40d用于向该检测盒安装槽20d内的核酸检测盒100d加入该检测液。该图像采集窗50d设置于该检测盒安装区20d远离该主机加样槽40d的一侧,该图像采集窗50d远离该检测盒安装槽20d的一侧设置有图像采集装置(图未示),该图像采集装置用于经由图像采集窗50d和核酸检测盒100d上的检测窗14d采集电泳盒3d的图像。
实际检测时,将收集的待试者的核酸样本与检测药剂(例如buffer液)混合形成检测液加入该主机加热槽30d,该主机加热槽30d为检测液进行加热;检测液加热好后转移至主机加样槽40d,经由主机加样槽40d将检测液加入检测盒安装槽20d内的核酸检测盒100d内,使检测液进入核酸检测盒100d进行核酸扩增反应和电泳检测;电泳检测完成后该图像采集装置经由图像采集窗50d和检测窗14d采集电泳盒3d的图像。所述图像为电泳检测的荧光照片,根据该荧光照片可以得出核酸检测结果。
请参阅图15d与图16d,该检测盒安装槽20d为相对机身10的底表面或顶表面倾斜设计的槽,具体地,当该核酸检测设备300放置于水平操作台面(图未示)上时,该检测盒安装槽20d靠近主机加样槽40d的一端距离水平操作台面的高度高于该检测盒安装槽20d远离主机加样槽40d的一端。由于PCR反应过程中检测芯片2d内的硅油中会产生大量气泡,尤其是加热后,产生的气泡量会加剧,产生的气泡如果滞留在通道5d内,则会导致通道5d内检测液a的动作路径被气泡阻碍,造成检测液a无法移动,进而使检测失败。所以将检测盒安装槽20d设计成倾斜的,可以使核酸检测盒100d倾斜摆放,核酸检测盒100d的加样端高于PCR扩增反应发生的一端,核酸检测盒100d内产生的气泡能够自然向高位移动,由核酸检测盒100d的加样端自然排出,不会阻碍检测液a的动作路径。
该核酸检测设备300d还包括显示屏60d,用于显示核酸检测结果和设定的相应反应参数。
该核酸检测设备300d还包括摄像头70d,该摄像头70d用于采集待检测核酸样本信息以及对整个核酸检测过程进行录像。
结合参阅图15d,本发明还提供了一种采用上述核酸检测设备300d进行核酸检测的方法,具体包括以下步骤:
步骤S21d,参数设定。
将主机10d开启,并设置好相应的检测参数,具体可以包括主机加热槽30d的加热温度及加热时间,核酸检测盒100d内PCR扩增过程的相应参数,以及电泳检测的相应参数等。
步骤S22d,将核酸检测盒100d插入检测盒安装槽20d。
步骤S23d,采集核酸样本,将核酸样本与药剂混合形成检测液,并在主机加热槽30加热该检测液。
步骤S24d,将检测液a转移至主机加样槽40d并经由主机加样槽40d加入核酸检测盒100d内进行PCR扩增反应和电泳检测。
定量吸取检测液10-30μl(优选20μl),并将检测液通过主机加样槽40d加入核酸检测盒100d的检测芯片2d内。具体核酸扩增和电泳检测步骤如上步骤S11d至步骤S15d所述。
步骤S25,采集电泳检测的图像(荧光照片)并输出。
电泳检测完成后,图像采集装置经由图像采集窗50d和检测窗14d采集电泳盒3d的电泳图像,并将图像通过图像处理器进行处理,处理后的图像显示在显示屏60d上,还可以将检测结果上传到客户端,供相关人员查阅。
相较于现有技术,本发明提供的核酸检测设备通过主机与核酸检测盒的配合可以将核酸的PCR扩增和电泳检测集成在一个设备中进行,整体结构简单,检测操作简便,操作过程对专业要求低,检测效率高,极大降低了检测成本;同时,检测过程灵活性强,无需在固定的实验室中进行,检测设备便携,可以实现社区检测或家庭检测。
实施例5
请参阅图1e至图7e所示,为本发明实施例提供的一种核酸检测盒100e,该核酸检测盒100e包括一盒体1e、检测芯片2e和电泳盒3e。该检测芯片2e设置于该盒体1e内,电泳盒3e设置于盒体1e外。该检测芯片2e包括第一盖板21e、间隔层22e以及第二盖板23e,该间隔层22e相对的两表面分别与该第一盖板21e和该第二盖板23e邻接,该第一盖板21e、该间隔层22e以及该第二盖板23e围设形成通道5e,该通道5e用于承载检测液a。该电泳盒3e与该通道5e连通。该检测芯片2e和该电泳盒3e均与外界电源7e电性连接。该核酸检测盒100e用于进行核酸扩增反应和电泳检测,将含有核酸样本的检测液a加入该检测芯片2e的通道5e内,需要说明的是,检测液a在通道5e内是以液珠的形式存在的,该检测液a在该通道5e内进行核酸扩增反应得到核酸扩增产物(此核酸扩增产物结合了荧光试剂),该核酸扩增产物由该检测芯片2e直接进入该电泳盒3e内进行电泳检测,最后通过与该核酸检测盒100e配合的图像采集装置拍摄电泳盒3e的图像,其中该图像为电泳检测的荧光照片。本发明通过将检测芯片2e与电泳盒3e集成在一起,整体结构简单,不需要复杂的大型设备,成本低,检测液a完成核酸扩增后可以直接进入电泳盒3e进行电泳检测,简化了不同检测环节的样品转移配合衔接过程,提高了检测效率。
请参阅图6e,该检测芯片2e还包括设置于该第一盖板21e靠近该第二盖板23e一侧的驱动回路24e、设置于该驱动回路24e靠近该第二盖板23e一侧的第一介电层26e、设置于该第二盖板23e靠近该第一盖板21e一侧的导电层25e以及设置于该导电层25e靠近该第一盖板21e一侧的第二介电层27e,该驱动回路24e和该导电层25e均与外界电源7e电性连接,通过外界电源7e为该驱动回路24e和该导电层25e通电或断电可以实现该检测液a 在该通道5e内按照规定的路径移动。
本实施方式中,如图6e与图7e所示,该驱动回路24e包括多个呈阵列排布的驱动电极241e,该核酸检测盒100e还包括控制板4e,该控制板4e与每一个驱动电极241e和导电层25e电性连接,所述控制板4e设于该第一盖板21e靠近所述第二盖板23e的一侧表面,且该控制板4e位于该通道5e的外侧,可以通过该控制板4e统一与外界电源7e电性连接。
本实施方式中,该驱动回路24e为薄膜晶体管(Thin Film Transistor,TFT)驱动回路,又由于检测液a具有导电性,结合介电润湿原理(Electrowetting-On-Dielectric,EWOD),能够实现检测液a在通道5e内按规定路径进行移动。利用TFT原理,能够选择性开启或关闭某个驱动电极241e与导电层25e之间的电路,从而改变该驱动电极241e与导电层25e之间的电压来改变该检测液a与第一介电层26e和第二介电层27e之间的润湿特性,进而控制该检测液a在通道5e内按预定的路径移动。如图6e所示,检测液a在电极I、电极H和电极G上移动,当检测液a在电极H上时,对电极G和导电层25e之间施加电压,给予电极G电压Vd,同时断开电极H和导电层25e之间的电压,此时检测液a与第一介电层26e和第二介电层27e之间的润湿特性发生改变,以使电极H与检测液a之间的液-固接触角变大,电极G与检测液a之间的液-固接触角变小,从而促使检测液a从电极H往电极G移动。
本实施方式中,该第一介电层26e和该第二介电层27e均为绝缘疏水层,具体可以是聚四氟乙烯涂层,一方面可以起到绝缘疏水的作用,另一方面还能够使检测液a在规定路径内移动的更顺畅,避免移动过程中液珠破裂。
本实施方式中,结合参阅图7e,该驱动回路24e设置于该第一盖板21e靠近该通道5e的一侧。具体可以采用金属刻蚀的方法或电镀的方法形成该驱动回路24e。
请参阅图7e,结合参阅图4e,该驱动回路24e根据不同的用途可以分为多个区域,分别是加样区A,试剂存储区B、至少一个核酸扩增区C以及出液区D。该加样区A用于加入检测液a。该试剂存储区B用于存储荧光试剂(例如荧光染料或荧光探针)。检测液a在该核酸扩增区C进行核酸扩增反应,该核酸扩增区C可以包括多个区域,具体区域的数量可以根据实际的检测需求而定。该出液区D与电泳盒3e连通,与荧光试剂结合的核酸扩增产物可经由该出液区D进入电泳盒3e内进行电泳检测。
请再次参阅图7e,结合参阅图4e与图6e,检测芯片2e内检测液a的具体移动路径为:检测液a进入加样区A后,在驱动电极241e的驱动下按照规定路径移动至核酸扩增区C进行扩增反应;当扩增反应完成后扩增后的产物移动至试剂存储区B与荧光试剂混合,从而得到结合了荧光试剂的核酸扩增产物;结合了荧光试剂的的核酸扩增产物在驱动电极241的驱动下移动至出液区D,并通过出液区D的出液口51e进入电泳盒3e。
可以理解的是,为了混合更充分,核酸扩增产物可以在驱动电极241e的驱动下在核酸扩增区C来回移动,以使扩增产物与荧光试剂混合均匀。还可以理解的是,也可以单独设置混合区,实现核酸扩增产物中检测液a与荧光试剂的充分混合。
本实施方式中,该核酸扩增区C的数量为两个,两个所述核酸扩增区C的加热温度不同,能够实现检测液a在不同温度下的核酸扩增反应的不同阶段。
本实施方式中,两个核酸扩增区C具体加热温度范围分别为40℃-75℃和90℃-105℃。
在其它实施方式中,根据具体核酸扩增反应阶段的不同,该核酸扩增区C的数量也可以是三个或更多个。具体地,对应该核酸扩增区C的加热温度范围分别为40℃-65℃、68℃-75℃和90℃-105℃。
请结合参阅图3e与图4e,结合参阅图7e,本实施方式中,该试剂存储区B内设置有试剂囊6e,该试剂囊6e内容置有荧光试剂,该试剂囊6e伸出所述第二盖板23e设置,该盒体1e对应该试剂存储区B设有试剂槽16e,该试剂囊6e收容于该试剂槽16e内,检测过 程中,核酸扩增产物需要与荧光试剂结合时,通过外部加热装置对该试剂槽16e进行加热,从而使该试剂囊6e熔融,以使所述荧光试剂进入通道5e与扩增后的产物结合。
另一实施方式中,该荧光试剂是在检测芯片2e组装时预先涂覆在该试剂存储区B内的,后续无需单独添加荧光试剂或设置试剂囊6e。
本实施方式中,在组装好该检测芯片2e后会通过加样区A的注入孔向通道5e内注入硅油,检测液a会在硅油内按规定路径移动。
请参阅图5e与图6e,本实施方式中,该第一盖板21e和该第二盖板23e均为玻璃板,该间隔层22e为双面胶框,通过双面胶框粘贴在第一盖板21e和第二盖板23e的边缘,从而共同组成一密封的通道5e。其中,可以根据实际需求通过设计不同厚度的间隔层22e来调整该通道5e的容量。
请参阅图1e至图3e,结合参阅图4e,该盒体1包括第一壳体11e、第二壳体12e、加样口13e、连接口15e及加热口14e,该第一壳体11e与该第二壳体12e共同形成一容纳腔(图未示),该检测芯片2e收容于该容纳腔内,该电泳盒3e位于该第一壳体11e远离该第二壳体12e的一侧。该加样口13e和连接口15e均设于第二壳体12e上,该加热口14e设于第一壳体11e和/或第二壳体12e上。该加样口13e对应检测芯片2e的加压区A设置,并与该加样区Ae连通,用于向该检测芯片2e内加入含有核酸样本的检测液a。该连接口15e对应该控制板4e设置,该控制板4e由该连接口15e露出,外界电源7e可以伸入该连接口15e与该控制板4e抵接并电性连接。该加热口14e对应检测芯片2e的核酸扩增区C设置,检测芯片2e对应核酸扩增区C的外表面由该加热口14e露出,外部加热装置(图未示)伸入该加热口14e与检测芯片2e的表面接触进而为该核酸扩增区C进行加热。
本实施方式中,该试剂槽16e设于第二壳体12e上,外部加热装置设于该第二壳体12e远离第一壳体11e的一侧且与该试剂槽16e的外表面抵接,当核酸扩增产物需要与荧光试剂混合时,通过控制外部加热装置便使该试剂囊6e熔融,使试剂囊6e内的荧光试剂与核酸扩增产物混合。
本实施方式中,该加热口14e设于第一壳体11e和第二壳体12e上,外部加热装置可以对检测芯片2e的上下两个表面同时进行加热,使核酸扩增区C的加热更均匀,加热效率更高,核酸扩增反应更充分。具体地,加热口14e的数量可以根据核酸扩增区C的数量而定。
本实施方式中,核酸扩增区C为两个,对应的加热口14e为四个。
请参阅图3e,本实施方式中,该第一壳体11e和该第二壳体12e通过胶粘剂进行粘接,可以理解的是,该第一壳体11e和该第二壳体12e还可以通过卡合的方式连接,同时通过螺丝进行紧固,增加该第一壳体11e与该第二壳体12e的连接牢固性。
请参阅图1e与图3e,本实施方式中,该盒体1e还包括两凸块18e,两凸块18e相对设于该盒体1e的两侧壁,该凸块18e可以方便在核酸检测盒100e在核酸检测设备内的放入和取出。
本实施方式中,该第二壳体12e上设有多个通孔17e,该通孔17e可以有利于盒体1e内热量的散失,保证检测芯片2e的正常检测。
本实施方式中,该加样口13e上设有一覆盖膜19e,将加样口13e封住。
请参阅图2e至图4e以及图8e与图9e,该电泳盒3e包括电泳槽31e、设置于电泳槽31e内部两端的电泳电极32e、设置于两电泳电极32e之间的凝胶介质33e以及设置在凝胶介质33e一端的注液槽34e。该电泳电极32e与外界电源7e电性连接,该注液槽34e贯穿第一壳体11e与出液口51e连通,从而实现电泳盒3e与通道5e的连通,结合了荧光试剂的核酸扩增产物将在出液区D经由该注液槽34e进入该凝胶介质33e内,从而进行电泳检测。
本实施方式中,该电泳槽31e包括底板311e以及与该底板311e连接的多个侧壁312e, 电泳槽盖板35e设于侧壁312e远离底板311e的一端。该底板311e为透明板,图像采集装置可以在底板311e的外侧采集电泳检测结果的图像。
本实施方式中,该侧壁312e与该第一壳体11e的底表面之间设置有密封胶圈(图未示),以提高电泳盒3e的密封性。
另一实施方式中,设于所述电泳槽31e靠近该盒体1e一侧设有电泳槽盖板(图未示),其中电泳槽盖板用于密封电泳槽31e,另,该注液槽34e贯穿该电泳槽盖板与出液口51e连通。
本实施方式中,该电泳槽31e还包括设置于该底板311e上的多个卡位(图未示),该凝胶介质33e大致为一长方体结构,能够卡在多个所述卡位之间,该卡位的设计能够防止该凝胶介质33e移动错位,进而保证电泳检测的准确性。
结合参阅图3e,本实施方式中,该底板311e为透明玻璃板,可以观察到电泳结果。
本实施方式中,该卡位313e的数量为四个,四个卡位313e分别位于长方体结构的凝胶介质33e的四个角,从而将凝胶介质33e固定住。
本实施方式中,该凝胶介质33e可以是洋菜胶、琼脂糖凝胶或其他电泳检测用凝胶。
请参阅图8e与图9e,结合参阅图7e,为了能够使核酸扩增产物顺利进入电泳盒3内,该注液槽34e内设有第一多孔吸附块38e,该第一多孔吸附块38e内承载有润湿液39e,该第一多孔吸附块38e一端伸入该注液槽34e的底部,另一端平齐或凸出该出液口51e靠近该通道5e的表面。当核酸扩增产物移动到出液区D后会接触第一多孔吸附块38e,进而溶于润湿液39e,并经由第一多孔吸附块37e的孔隙流至注液槽34e的底部进行电泳检测。本申请采用干式电泳的方式,只需在组装前将第一多孔吸附块38e吸附少量的润湿液39e便可,无需在电泳槽31e内添加大量润湿液,也无需设置毛细管,无需考虑组装精度,简化了核酸检测盒100e的组装流程和组装难度,而且有利于核酸扩增产物成功进入注液槽34e内。
本实施方式中,该第一多孔吸附块38e可以是海绵或其他多孔材料。
另一实施方式中,请参阅图8e与图10e,结合参阅图7e,该注液槽34e内设有第二多孔吸附块36e,该第二多孔吸附块36e内承载有润湿液39e,该出液口51e处设有吸附管52e,该吸附管52e一端插入该第二多孔吸附块36e中,另一端平齐或凸出该出液口51e靠近该通道5e的表面,第二吸附块36e内的润湿液39e充满该吸附管52e。当核酸扩增产物移动到出液区D后会接触吸附管52e,进而溶于润湿液39e,并经由吸附管52e进入到第二吸附块36e内,进而进入到注液槽34e的底部进行电泳检测。本申请采用干式电泳的方式,只需在组装前将第二多孔吸附块36e吸附少量的润湿液39e便可,无需在电泳槽31e内添加大量润湿液,无需考虑吸附管52e的组装精度,简化了核酸检测盒100e的组装流程和组装难度,而且有利于核酸扩增产物成功进入注液槽34e内。
又一实施方式中,注液槽34e内可以添加润湿液(例如buffer),润湿液的作用主要是为了能够使核酸扩增产物中的核酸分子完全进入凝胶介质33e内。
请参阅图4e,每一个电泳电极32e均包括电极本体321e及与电极本体321e电性连接的电极片322e,两电极片322e设于电泳槽31e的侧壁312e的外表面,从而方便与外界电源7e电性连接。
本实施方式中,两个电极本体321e的材质可以是金属,也可以是金属与阴离子树脂和阳离子树脂的复合结构。
本实施方式中,电极片322e可以是金属片,具体为铜片。
本实施方式中,该电泳盒3e还包括贴附与电泳槽31e的底板311e外表面的电子识别码37e(具体可以是二维码),图像采集装置在采集电泳检测图像是,可以通过识别电子识别码37e进行记录,便于后续检测结果的追踪。
组装好改核酸检测盒100e后,实际使用时,该核酸检测盒100e的使用过程包括以下步骤:
步骤S11e,结合参阅图1e,将含有核酸样本的检测液a有加样口13e注入检测芯片2e的加样区A。
步骤S12e,结合参阅图7e,通过调节驱动回路24e中相应驱动电极241e与导电层25e之间的电压,进而驱动检测液a在通道5e内按照规定的路径移动至核酸扩增区C,完成核酸扩增反应。具体地,核酸扩增区C的数量为两个,分别需要加热的温度为90℃-105℃和40℃-75℃。
一实施方式中,具体核酸扩增反应过程依次包括:第一步,在90℃-105℃条件下热变性15-25min;第二步,45°-60°条件下进行RT逆转录5-15min;第三步,90℃-100℃条件下加热1-5min;第四步,90℃-100℃条件下加热20-50秒,55℃-65℃条件下加热40-60秒,其中第四步循环35-50次(优选45次)结束扩增反应。可以采用温度感应器和时间继电器来感应加热温度以及加热时间。
另一实施方式中,具体核酸扩增反应过程依次包括:第一步,在90℃-105℃条件下热变性3-8min;第二步,45℃-60℃条件下增生3-8min;第三步,90℃-100℃条件下加热3-8min;第四步,90℃-100℃条件下扩增3-8秒,50℃-65℃条件下扩增10-20秒,68℃-75℃条件下扩增10-20秒,其中第四步循环35-50次结束扩增反应。优选地,具体核酸扩增反应过程依次包括:第一步,在95℃-97℃条件下热变性3-5min;第二步,55℃-60℃条件下增生3-5min;第三步,95℃-97℃条件下加热3-8min;第四步,95℃-97℃条件下扩增3-5秒,55℃-60℃条件下扩增15-20秒,70℃-72℃条件下扩增15-20秒,其中第四步循环43-45次(优选45次)结束扩增反应。
步骤S13e,结合参阅图7e与图4e,扩增结束后,核酸扩增产物在驱动电极241e的驱动下移动至试剂存储区B,按压该按压件6e将试剂囊6e刺破,是荧光试剂进入试剂存储区B并与核酸扩增产物混合,混合均匀后由出液区D的出液口51e进入电泳盒3e内。
步骤S15e,控制电泳盒3e进行电泳检测。
本实施方式中,该核酸检测盒100e是一次性使用品,每个检测样本使用一个检测盒20e,因此,检测盒20e无需清洗流程。
本实施方式中,该检测盒20e大致为一立方体结构。
相较于现有技术,本发明的核酸检测盒100e将电泳盒3e和检测芯片2e集成在一起,检测液a在检测芯片2e内完成核酸扩增反应后,可以直接进入电泳盒3e内进行电泳检测,过程衔接流畅,不需要更换设备,也无需专业人员进行样品转移操作,极大提升了检测效率。而且核酸检测盒100e无需设置加热装置,极大简化了检测芯片2e的制备难度和制备成本。另外,采用干式电泳,在保证电泳检测结果的精准性的前提下,无需添加缓冲液,简化了组装过程和组装难度。
请参阅图11e与图12e,本发明还提供了一种核酸检测设备200e,该核酸检测设备200e包括主机201e以及如上所述的核酸检测盒100e,该主机201e上设置有至少一检测盒安装区202e,该核酸检测盒100e可拆卸安装在该检测盒安装区202e内。
该主机201e还包括主机加热装置204e和主机连接器203e,该主机加热装置204e和该主机连接器203e均设于该检测盒安装区202e内。当核酸检测盒100e放置进检测盒安装区202e内后,该主机连接器203e能够伸入该连接口15e与检测芯片2e上的控制板4e抵接并实现电性连接,该主机加热装置204e能够伸入该加热口14e与该检测芯片2e的表面接触,从而为核酸检测盒100e进行加热。
该主机201e还包括图像采集装置205e,该图像采集装置205e设置于该检测盒安装区202e对应该电泳盒3e的一侧,该图像采集装置205e用于采集电泳盒3e的图像。
实际检测时,将收集的待试者的核酸样本与检测药剂(例如buffer液)混合形成检测液并进行预热;检测液预热好后加热核酸检测盒100e内,使检测液进入核酸检测盒100e进行核酸扩增反应和电泳检测;电泳检测完成后该图像采集装置205e采集电泳盒3e的图像。所述图像为电泳检测的荧光照片,根据该荧光照片可以得出核酸检测结果。
请参阅图12e,该检测盒安装区202e包括一倾斜设计的安装槽206e,具体地,当该核酸检测设备200放置于水平操作台(图未示)时,该安装槽206e靠近核酸检测盒100e的加样口13e的一端距离该水平操作台的表面高度高于该安装槽206e远离加样口13e的一端。由于PCR反应过程中检测芯片2e内的硅油中会产生大量气泡,尤其是加热后,产生的气泡量会加剧,产生的气泡如果滞留在通道5e内,则会导致通道5e内检测液a的动作路径被气泡阻碍,造成检测液a无法移动,进而使检测失败。所以安装槽206e设计成倾斜的,可以使核酸检测盒100e倾斜摆放,核酸检测盒100e的加样端高于核酸扩增反应发生的一端,核酸检测盒100e内产生的气泡能够自然向高位移动,由核酸检测盒100e的加样端自然排出,不会阻碍检测液a的动作路径。
请再次参阅图11e,该核酸检测设备200e还包括显示屏207e,该显示屏207e用于显示核酸检测结果和设定的相应反应参数。该核酸检测设备200e还包括摄像头208e,该摄像头208e用于采集待检测核酸样本信息以及对整个核酸检测过程进行录像。
图像采集装置205e采集电泳盒3e的电泳图像,并将图像通过图像处理器进行处理,处理后的图像显示在显示屏207e上,还可以将检测结果上传到客户端,供相关人员查阅。
请参阅图13e,为采用本发明实施例提供的核酸检测设备200e得到的测试结果的示意图。本实施方式中,通过预先定义出标准的荧光照片上各条线的范围,当得到测试结果后,设备便可自动辨识检测结果。其中,若第一条线的标记位置在预先定义的范围内时,便可以确定核酸样本中包括人类基因,若第一条线的标记位置不在预先定义的范围内时,便可以确定核酸样本中不包括人类基因。若第二条线的标记位置在预先定义的范围内时,便可以确定核酸样本中包括RNA复制酶,若第二条线的标记位置不在预先定义的范围内时,便可以确定核酸样本中不包括RNA复制酶。若第三条线的标记位置在预先定义的范围内时,便可以确定核酸样本中包括N蛋白,若第三条线的标记位置不在预先定义的范围内时,便可以确定核酸样本中不包括N蛋白。
相较于现有技术,本发明提供的核酸检测设备通过主机与核酸检测盒的配合可以将核酸的核酸扩增反应和电泳检测集成在一个设备中进行,整体结构简单,检测操作简便,操作过程对专业要求低,检测效率高,极大降低了检测成本;同时,检测过程灵活性强,无需在固定的实验室中进行,检测设备便携,可以实现社区检测或家庭检测。
实施例6
请参阅图1f,为本发明提供的一种检测芯片10f,所述检测芯片10f包括芯片壳体1f、通道2f以及驱动回路3f。所述通道2f设于所述芯片壳体1f内,所述通道2f用于承载包含检体(例如核酸样本)的液滴a。所述液滴a能够在通道2f内进行核酸扩增反应。所述芯片壳体1f包括第一盖板11f、间隔层12f以及第二盖板13f,该间隔层12f相对的两表面分别与该第一盖板11f和该第二盖板13f邻接。该第一盖板11f、该间隔层12f以及该第二盖板13f共同围设形成所述通道2f。所述驱动回路3f能够驱动液滴a沿预定路径移动,从而在通道2f内完成核酸扩增反应。
所述驱动回路3f包括设于所述第一盖板11f靠近所述通道2f一侧表面的多个驱动电极31f、设于所述驱动电极31f靠近该第二盖板13一侧的第一介电层33f、设于该第二盖板13f靠近所述通道2f一侧表面的检测电极32f以及设于所述检测电极32f靠近所述第一盖板11f一侧的第二介电层34f。显然,该驱动电极31f和该检测电极32f相对设置于通道2f的两侧。 通过控制该驱动电极31f和该检测电极32f通电或断电可以实现液滴a在该通道2f内按照规定的路径移动。
本实施方式中,如图1f所示,该驱动回路3f包括多个呈阵列排布的驱动电极31f和设于第二盖板13f靠近通道2f一侧表面的一导电层,该导电层作为所述检测电极32f。
本实施方式中,所述驱动电极31f设置于该第一盖板11f靠近该通道2f的一侧。具体可以采用金属刻蚀的方法或电镀的方法形成该驱动电极31f。
具体地,该驱动回路3f为薄膜晶体管(Thin Film Transistor,TFT)驱动回路。又由于液滴a具有导电性,结合介电润湿原理,能够实现液滴a在通道2f内按规定路径进行移动。利用TFT原理,能够选择性开启或关闭某个驱动电极31f与检测电极32f之间的电路,从而改变该驱动电极31f与检测电极32f之间的电压,进而改变该液滴a与第一介电层33f和第二介电层34f之间的润湿特性,控制该液滴a在通道2f内按预定的路径移动。以下实施例中,为描述方便,以驱动电极31f包括三个电极,例如电极A、电极B和电极C为例说明液滴a在通道2f内按预定的路径移动的原理。
如图1f所示,液滴a可以在电极A、电极B和电极C上移动。当液滴a在电极A上时,通过在电极B和检测电极32f之间施加电压,给予电极B电压,同时断开电极A和检测电极32f之间的电压。此时液滴a与第一介电层33f和第二介电层34f之间的润湿特性发生改变,以使电极A与液滴a之间的液-固接触角变大,电极B与液滴a之间的液-固接触角变小,从而促使液滴a从电极A往电极B移动。
显然,上述检测芯片10f中液滴驱动原理是利用电压改变介电层的亲疏水性,进而使介电层上的液滴a吸附介电层的能力发生变化,从而促成液滴a移动。因此,当检测芯片10f在使用过程中,需要对液滴a进行检测以确定液滴a的具体位置确保液滴a按预定路径移动以及液滴a的大小。
请参阅图2f与图3f,为本发明实施例提供的一种介电润湿装置100f。该介电润湿装置100f包括检测芯片10f、电源切换模块20f、检测模块30f以及判断模块40f。
所述电源切换模块20f与多个所述驱动电极31f电性连接,所述电源切换模块20f用于向指定的所述驱动电极31f输出电源电压V in,其中电源电压V in包括第一电压V 1、第二电压V 2和第三电压V 3中的至少之一。所述第一电压V 1和第二电压V 2用于驱动所述液滴a移动。所述第三电压V 3用于使所述驱动电极31f与所述检测电极32f之间发生耦合,以使检测电极32f输出检测电压V out(即耦合电压)。
所述检测模块30f与所述检测电极32f电性连接,用于实时获取所述检测电压V out,并计算在一个电压周期内所述检测电压V out由峰值电压V P回复至参考电压V r的回复时间T。
所述判断模块40f与所述检测模块30f信号连接,用于获取所述回复时间T,并根据所述回复时间T的长短判断所述液滴a的位置。当然,当判断模块40f判断检测芯片10f中液滴a的位置时,其还可进一步判断液滴a的大小(参后详述)。
请参阅图4f,为图3f所示电路的等效电路示意图。显然,本申请中,介电润湿装置100f除包括所述电源切换模块20f,检测模块30f,判断模块40f之外,检测芯片10f内的第一介电层33f、第二介电层34f以及通道2f内的空气都会在驱动回路3f中形成等效电容。具体地,所述第一介电层33f在驱动回路3f中会形成等效的第一介电层电容C di-B。所述第二介电层34f在驱动回路3f中会形成等效的第二介电层电容C di-T。第一介电层33f与第二介电层34f之间的通道2f内若填充硅油,则形成等效的空气电容C air。若通道2f内填充硅油,则形成的等效的液体电容C liquid-1的值会根据硅油的添加而改变。若驱动电极31f上存在液滴a,则形成的等效液体电容C liquid-2的值会根据液滴a的添加而改变。其中,每个驱动电极31f所在的驱动回路3f中,第一介电层电容C di-B、空气电容C air和第二介电层电容C di-T依次串联,所述第一介电层电容C di-B远离空气电容C air的一端连接所述驱动电极31f,所 述第二介电层电容C di-T远离空气电容C air的一端连接所述检测电极32f。
本实施方式中,所述第一电压V 1为正电压,所述第二电压V 2为负电压,通过对液滴a所在的驱动电极31f施加负电压,对液滴a所在驱动电极31f的下一个驱动电极31f施加正电压,则通过介电润湿原理,液滴a将按照预定的路径进行移动。所述第三电压V 3为连续方波脉冲电压,通过对某个驱动电极31f施加连续方波脉冲电压便可以判断液滴a是否在该驱动电极31f上,进而确定液滴a的位置和大小。
可以理解,在本申请实施例中,所述电源切换模块20f可以在控制器(图未示)的控制下选择接通某一个驱动电极31f,从而对所有驱动电极31f进行逐一检测,检测准确,能够精准判断液滴a所在的位置以及液滴a的大小。
可以理解,当所述检测电极32f输出检测电压V out至所述检测模块30f时,检测模块30f通过对实时获取的检测电压V out的相对时间做曲线,并计算出在一个电压周期(脉冲周期)内所述检测电压V out由峰值电压V P回复至参考电压V r的回复时间T。接着,检测模块30f将回复时间T输出至判断模块40f。判断模块40f再根据回复时间T的长短来判断通道2f内液滴a具体位于哪个驱动电极31f上,并能够进一步确定液滴a的大小。
请参阅图4f与图5f,结合参阅图2f与图3f,下面详细介绍本发明提供的液滴检测的原理。
本发明采用自容式电容感应技术,通过感应不同驱动电极31f对应的驱动回路3f的电容差异,便可以根据电容差异判断液滴a的位置及大小。
具体电容的计算公式如下:
C liquid=(D liquid×S)/d   (1)
C liquid-1=(D liquid1×S)/d   (2)
C liquid-2=(D liquid2×S)/d   (3)
C=C di-B+C di-T+C liquid-1/C liquid-2   (4)
其中,C liquid为通道2f内液体的电容,D liquid为通道2f内液体的介电系数,S为单个驱动电极31f的面积,d为液体的厚度,通常为通道2f的高度。D liquid-1为硅油的介电常数,通常为2.8左右。D liquid-2为液滴a的介电常数,常规核酸液滴的D 2为85左右。C为不同的驱动电极31f的总电容。
本发明根据不同的驱动电极31f的总电容C的差异,便可以判断驱动电极31f上是否存在液滴a。以电极A和电极B为例,电极A上为硅油,电极B上为液滴a,则电极A所在的回路总电容C A=C di-B+C di-T+2.8,电极B所在的回路总电容C B=C di-B+C di-T+85,C A和C B之间存在较大差异,因此只要比较电极A和电极B所在回路的总电容之间的差异就可以判断液滴a的具体位置。而总电容之间的差异可以根据第三电压V 3经过驱动电极31f与检测电极32f耦合后形成的检测电压V out在一个电压周期内由峰值电压V P回复至参考电压V r的回复时间T来判断。因液滴a的介电系数比硅油大,有液滴a存在的驱动电极31f所在的回路总电容较大,检测电压V out由峰值电压V P回复至参考电压V r的回复时间T较长,因此,有液滴a存在的驱动回路3f对应的回复时间T与没有液滴a存在的驱动回路3f对应的回复时间T之间存在一个时间差ΔT,所以只要比较回复时间T就可以判断液滴a所在的位置。另外,通过回路总电容还可以进一步判断液滴a所占用的驱动电极31f的个数,再结合单个驱动电极31f的面积S以及通道2f的高度d,进而计算出液滴a的体积大小。
请参阅图3与图4及图6,首先介绍在所述介电润湿装置100f内控制液滴移动步骤和控制液滴检测步骤分时进行的原理。
其中,将多个所述驱动电极31f分为三类电极,三类电极分别处于第一时序T1、第二时序T2以及第三时序T3。三种时序是固定的,处于第一时序T1时,电源切换模块20f给予驱动电极31f正电压(即第一电压V 1);处于第二时序T2时,电源切换模块20f给予驱 动电极31f负电压(即第二电压V 2);处于第三时序T3时,电源切换模块20f给予驱动电极31f连续方波脉冲电压(即第三电压V 3)。但是随着液滴a的移动,处于各个时序的驱动电极31f是变化的,处于液滴a正下方的驱动电极31f处于第二时序T2,位于液滴a移动路径前方和后方的两个驱动电极31f分别处于第一时序T1和第三时序T3。为描述方便,以下实施方式中,以驱动电极31f包括电极A、电极B、电极C、电极D、电极E和电极F为例说明液滴a在通道2f内按预定的路径移动的原理。
请参阅图6f与图7f,结合参阅图4f,一实施方式中,对所有驱动电极31f不进行分组,每个驱动电极31f均单独驱动。例如驱动电极31f包括电极A、电极B、电极C、电极D、电极E和电极F。开始时,液滴a位于电极A上,则电极A、电极C、电极D、电极E和电极F均处于第二时序T2,电极B处于第一时序T1,电源切换模块20f给予电极B正电压同时给予电极A、电极C、电极D、电极E和电极F负电压,则液滴a由电极A移动至电极B。进一步地,电源切换模块20f给予电极C正电压同时给予电极B、电极D、电极E和电极F负电压,液滴由电极B移动至电极C,之后电源切换模块20f切换至电极A给予电极A连续方波脉冲电压,根据前述液滴检测原理,利用回复时间T可以判断液滴a是否在电极A上,进而判断液滴a是否移动成功。以此类推,直至液滴a按规定路径移动结束完成核酸扩增反应。
请参阅图6f与图8f,结合参阅图4f,另一实施方式中,对所有驱动电极31f进行分组,每一组驱动电极31f中均包括三个电极。例如每一组驱动电极31f均包括电极A、电极B和电极C。开始时,液滴a位于电极A上,则电极A和电极C处于第二时序T2,电极B处于第一时序T1,电源切换模块20f给予电极B正电压同时给予电极A和电极C负电压,则液滴a由电极A移动至电极B。进一步地,电源切换模块20f给予电极C正电压同时给予电极B负电压,液滴由电极B移动至电极C,之后电源切换模块20f切换至电极A给予电极A连续方波脉冲电压,根据前述液滴检测原理,利用回复时间T可以判断液滴a是否在电极A上,进而判断液滴a是否移动成功。液滴a移动至下一组驱动电极31f时重复上述过程,多组驱动电极31f中的所有电极A、所有电极B和所有电极C均同步通电或断电,因此可以减少控制端引脚数量,从而降低成本。
请参阅图9f与图10f,结合参阅图4f,接下来介绍在所述介电润湿装置100f内控制液滴移动步骤和控制液滴检测步骤同时进行的原理。
其中,将多个所述驱动电极31f分为两类电极,分别处于第四时序T4和第五时序T5,其中处于第四时序T4时,电源切换模块20f同时给予驱动电极31f正电压(即第一电压V 1)和连续方波脉冲电压(即第三电压V 3);处于第五时序T5时,电源切换模块20f同时给予驱动电极31f负电压(即第二电压V 2)和连续方波脉冲电压(即第三电压V 3)。例如,如图10所示,驱动电极31f包括电极A、电极B、电极C、电极D、电极E和电极F。开始时,液滴a位于电极A上,则电极A、电极C、电极D、电极E和电极F均处于第五时序T5,电极B处于第四时序T4,电源切换模块20f同时给予电极B正电压和连续方波脉冲电压,同时给予电极A、电极C、电极D、电极E和电极F负电压和连续方波脉冲电压,则液滴a由电极A移动至电极B,根据前述液滴检测原理,利用回复时间T可以判断液滴a是否移动成功。以此类推,直至液滴a按规定路径移动结束完成核酸扩增反应。通过本实施方式可以同时对液滴a进行移动和检测,能有效提高检测效率和检测精准度。
请参阅图11f至图13f,结合参阅图4f,最后介绍在所述介电润湿装置100f内液滴a的体积大小的检测原理。
其中,通过给予每个驱动电极31f连续方波脉冲电压(即第三电压V 3),根据前述液滴检测原理,利用回复时间T可以判断液滴a所在的驱动电极31f的具体数量,根据单个驱动电极31f的面积S和通道2f的高度d便可以计算出液滴a的体积大小。例如,驱动电极 31f包括电极A、电极B、电极C、电极D、电极E和电极F,其中,每个驱动电极31f的面积S均相等。
第一种实施方式,如图11f所示,液滴a仅在电极C上,其他电极没有检测到液滴a,则液滴a的体积v=1S×d。第二种实施方式,如图12f所示,液滴a在电极C和电极D上,其他电极没有检测到液滴a,则液滴a的体积v=2S×d。
第三种实施方式,如图13f所示,另外,在检测所述液滴a的位置时会得到相应驱动电极31f所在驱动回路3f的总电容变化情况,可以根据总电容的变化情况(通过回复时间T体现)确定液滴a占驱动电极31f的面积大小。例如,液滴a在电极C、电极D和电极E上,但检测到电极E上的总电容变化值约为完整液滴a的电容的一半,体现在回复时间T上,则电极E对应的驱动回路3f中,检测电压V out的峰值电压V P回复至参考电压V r的回复时间T是电极C或电极D对应的回复时间T的一半,则液滴a的体积v=2.5S×d。
可以理解的是,在液滴移动和液滴检测同时进行的过程中,便可以同步确定液滴a的体积大小,无需单独检测液滴a的体积大小,检测效率高。
本申请中,介电润湿装置100f可利用自带的电路对检测芯片10f内的液滴a进行自行检测,无需额外设置检测设备。检测方法简单,便于操作,检测精准,效率高,而且液滴a的具体位置以及液滴a的大小判断准确。
可以理解的是,在其他实施方式中,也可以采用单独的能够实现上述液滴检测过程的检测设备对检测芯片10f进行液滴检测。
可以理解,本发明还提供一种液滴检测方法,可用于对介电润湿装置100f的液滴a进行检测。检测时,液滴移动和液滴检测分时进行或同时进行,具体的检测过程参见前述液滴移动和液滴检测的原理描述。
其中,所述控制液滴移动步骤包括:
控制所述电源切换模块20f以向各个所述驱动电极31f提供第一电压V 1和第二电压V 2,通过所述第一电压V 1和第二电压V 2控制位于所述通道2f内的所述液滴a进行移动。
其中,第一电压V 1为正电压,第二电压V 2为负电压,电源切换模块20f向液滴a所在的驱动电极31f提供负电压,向液滴a移动路径的下一个驱动电极31f提供正电压,同时向其余驱动电极31f提供负电压,从而使液滴a进行移动。
所述控制液滴检测步骤包括:
第一步,控制所述电源切换模块20f向指定的所述驱动电极31f提供第三电压V 3,以使所述检测电极32f与所述驱动电极31f发生耦合,并通过所述检测电极32f输出检测电压V out
第二步,所述检测模块30f实时获取所述检测电极32f输出的所述检测电压V out,并计算在一个电压周期内所述检测电压V out由峰值电压V P回复至参考电压V r的回复时间T。
第三步,所述判断模块40f获取所述回复时间T,并根据所述回复时间T的长短判断所述液滴a的位置。另外,在判断所述液滴a的位置时,进一步确定液滴a的大小。
相较于现有技术,本发明提供的介电润湿装置100f利用自带的电路,采用自容式电容感应技术自行对通道内的液滴a进行检测,具体地,其可通过驱动回路3f中检测电压V out的回复时间T的长短来精确判断检测芯片10f中的液滴a是否按预定路径成功移动,以及液滴a的具体位置和液滴的大小。该介电润湿装置100f的液滴检测原理简单,检测方法简单,便于操作,检测精准,效率高。
实施例7
请参阅图1g、图3g至图5g所示,结合参阅图8g,为本发明实施例提供的一种核酸检测盒100g,该核酸检测盒100g用于进行核酸检测。该核酸检测盒100g包括一盒体1g、检 测芯片2g、电泳盒3g以及连接器4g。该检测芯片2g设置于该盒体1g内,该检测芯片2g包括第一盖板21g、间隔层22g以及第二盖板23g,该间隔层22g相对的两表面分别与该第一盖板21g和该第二盖板23g接触,该第一盖板21g、该间隔层22g以及该第二盖板23g围设形成通道5g,该通道5g用于承载检测液a。该电泳盒3g设置于该盒体1g内且与该通道5g连通。该连接器4g分别与该检测芯片2g以及该电泳盒3g电性连接,该连接器4g用于与外界控制板电性连接。该核酸检测盒100g用于进行核酸扩增反应和电泳检测,将含有核酸样本的检测液a加入该检测芯片2g的通道5g内,需要说明的是,检测液a在通道5g内是以液珠的形式存在的,该检测液a在该通道5g内进行核酸扩增反应得到核酸扩增产物b,该核酸扩增产物b由该检测芯片2g直接进入该电泳盒3g内进行电泳检测,最后通过与该核酸检测盒100g配合的图像采集装置拍摄电泳盒3g的图像,其中该图像为电泳检测的荧光照片。本发明通过将检测芯片2g与电泳盒3g集成在一个盒体1g内,整体结构简单,不需要复杂的大型设备,成本低,检测液a完成核酸扩增后可以直接进入电泳盒3g进行电泳检测,简化了不同检测环节的样品转移配合衔接过程,提高了检测效率。
请参阅图1g至图5g,该盒体1g包括第一壳体11g、第二壳体12g、设置于该第二壳体12g的加样口13g以及设置于该第一壳体11g上的检测窗14g。该第一壳体11g与该第二壳体12g共同围设形成一容纳腔(图未示),该检测芯片2g、该电泳盒3g和该连接器4g均容置于该容纳腔内。该加样口13g对应该检测芯片2g设置,用于向该检测芯片2g内加入含有核酸样本的检测液a。该检测窗14g对应该电泳盒3g设置,图像采集装置能够通过该检测窗14g采集该电泳盒3g的图像。
请参阅图3g,本实施方式中,该第一壳体11g和该第二壳体12g通过卡合的方式连接,另外,第一壳体11g和第二壳体12g卡合后还可以在四周通过螺丝进行紧固,增加该第一壳体11g与该第二壳体12g的连接牢固性。
请参阅图1g与图2g,本实施方式中,该盒体1g的侧壁还设置有一开口17g,该开口17g用于安装该连接器4g,该连接器4g整体位于该容纳腔内并由该开口17g露出该盒体1g,从而方便该连接器4g与外界控制板电性连接。
请参阅图2g,本实施方式中,该盒体1g还包括设置于该第一壳体11g上的卡槽15g,由于核酸检测盒100g在使用时需要安装在核酸检测设备内,设计该卡槽15g能够方便该核酸检测盒100g安装在所使用的核酸检测设备内。
请参阅图1g,结合图13g,本实施方式中,该第二壳体12g远离该容纳腔的一侧还设有一指示标识18g(例如箭头),结合参阅图13g,该指示标识18g用于指示该核酸检测盒100g插入核酸检测设备200g的插入方向,避免插错。
请参阅图3g,本实施方式中,该盒体1g内设置有若干支撑结构16g,由于检测芯片2g、电泳盒3g以及连接器4g在结构设计上存在厚度差异,因此在安装进盒体1g内时需要设计高度不一的若干支撑结构16g用于支撑检测芯片2g、电泳盒3g以及连接器4g,提高检测芯片2g、电泳盒3g以及连接器4g之间的连接稳定性。
本实施方式中,该盒体1g为塑料材质,其中支撑结构16g与第一壳体11g和第二壳体12g为一体成型结构。
请参阅图4g与图5g,该检测芯片2g还包括设置于该第一盖板21g靠近该第二盖板23g一侧的驱动回路24g、设置于该驱动回路24g靠近该第二盖板23g一侧的第一介电层26g、设置于该第二盖板23g靠近该第一盖板21g一侧的导电层25g以及设置于该导电层25g靠近该第一盖板21g一侧的第二介电层27g,该驱动回路24g和该导电层25g均与该连接器4g电性连接,通过为该驱动回路24g和该导电层25g通电或断电可以实现该检测液a在该通道5g内按照规定的路径移动。
请参阅图5g与图6g,结合参阅图1g,本实施方式中,该驱动回路24g包括多个呈阵 列排布的驱动电极241g以及与所有驱动电极241g电性连接的控制电极242g,该控制电极242g与该连接器4g电性连接。具体地,该驱动回路24g为薄膜晶体管(Thin Film Transistor,TFT)驱动回路,又由于检测液a具有导电性,结合介电润湿原理(Electrowetting-On-Dielectric,EWOD),能够实现检测液a在通道5g内按规定路径进行移动。利用TFT原理,能够选择性开启或关闭某个驱动电极241g与导电层25g之间的电路,从而改变该驱动电极241g与导电层25g之间的电压来改变该检测液a与第一介电层26g和第二介电层27g之间的润湿特性,进而控制该检测液a在通道5g内按预定的路径移动。如图5g所示,检测液a在电极I、电极H和电极G上移动,当检测液a在电极H上时,对电极G和导电层25g之间施加电压,给予电极G电压Vd,同时断开电极H和导电层25g之间的电压,此时检测液a与第一介电层26g和第二介电层27g之间的润湿特性发生改变,以使电极H与检测液a之间的液-固接触角变大,电极G与检测液a之间的液-固接触角变小,从而促使检测液a从电极H往电极G移动。
本实施方式中,该第一介电层26g和该第二介电层27g均为绝缘疏水层,具体可以是聚四氟乙烯涂层,一方面可以起到绝缘疏水的作用,另一方面还能够使检测液a在规定路径内移动的更顺畅,避免移动过程中液珠破裂。
本实施方式中,结合参阅图5g,该驱动回路24g设置于该第一盖板21g靠近该通道5g的一侧。具体可以采用金属刻蚀的方法或电镀的方法形成该驱动回路24g。
本实施方式中,该控制电极242g集成在该第一盖板21g的同一边缘,通过将该第一盖板21g设置该控制电极242g的一边插入该连接器4g内实现该检测芯片2g与该连接器4g的电性连接。
请参阅图6g,结合图3g与图8g,该驱动回路24g根据不同的用途可以分为多个区域,分别是加样区A,试剂存储区B、多个核酸扩增区C以及出液区D。该检测芯片2g对应该加样区A还设有一芯片加样槽6g,该芯片加样槽6g与该加样区A连通,同时该芯片加样槽6g与该第二盖板23g上的加样口13g对应,通过从该加样口13g向该加样区A加入检测液a。该试剂存储区B用于存储荧光试剂(例如荧光染料或荧光探针)。检测液a在该核酸扩增区C进行核酸扩增反应,该核酸扩增区C包括可以包括多个区域,具体区域的数量可以根据实际的检测需求而定。该出液区D包括一出液口51g,该通道5g通过该出液口51g与电泳盒3g连通,核酸扩增产物b可在该出液区D经由该出液口51g进入电泳盒3g内进行电泳检测。
请参阅图5g与图6g,结合参阅图8g,检测芯片2g内检测液a的具体移动路径为:检测液a进入加样区A后,在驱动电极241g的驱动下按照规定路径移动至核酸扩增区C进行扩增反应;当扩增反应完成后扩增后的产物移动至试剂存储区B与荧光试剂混合,从而得到结合了荧光试剂的核酸扩增产物b;混合均匀的核酸扩增产物b在驱动电极241g的驱动下移动至出液区D,并通过出液区D的出液口51g进入电泳盒3g。
本实施方式中,该核酸扩增区C的数量为两个,两个所述核酸扩增区C的加热温度不同,能够实现检测液a在不同温度下的核酸扩增反应的不同阶段。
本实施方式中,该荧光试剂是在检测芯片2g组装时预先涂覆在该试剂存储区B内的,后续无需单独添加荧光试剂。
请结合参阅图3g,在其它实施方式中,该荧光试剂也可以通过后续加入与扩增产物实现混合。具体地,对应该试剂存储区B在该检测芯片2g上设置一试剂槽7g,可以在进行核酸检测时向该试剂槽7g内添加荧光试剂,此设计能够根据实际需要选择荧光试剂的种类,提高了核酸扩增反应的灵活性。
请参阅图3g、图5g与图6g,该检测芯片2g还包括设置于该第一盖板21g和/或该第二盖板23g远离该通道5g一侧的加热组件28g,该加热组件28g对应该核酸扩增区C设置, 用于为检测液a加热。该加热组件28g与该连接器4g电性连接,通过该加热组件28g为该通道5g的特定区域加热。
本实施方式中,该加热组件28g设置于该第一盖板21g和第二盖板23g远离该通道5g的一侧。
本实施方式中,该加热组件28g通过导热胶粘接在该第一盖板21g和第二盖板23g的表面。
请参阅图3g与图5g,本实施方式中,该第一盖板21g和该第二盖板23g均为玻璃板,该间隔层22g为双面胶框,通过双面胶框粘贴在第一盖板21g和第二盖板23g的边缘,从而共同组成一密封的通道5g。其中,可以根据实际需求通过设计不同厚度的间隔层22g来调整该通道5g的容量。
本实施方式中,在组装好该检测芯片2g后会在通道5g内注入硅油(图未示),检测液a会在硅油内按规定路径移动。
请参阅图3g、图4g、图7g及图8g,该电泳盒3g包括电泳槽31g、设置于电泳槽31g两端的电泳电极32g、设置于电泳槽31g内部的凝胶介质33g、设置在凝胶介质33g一端的注液槽34g、连接装置35g以及设置于所述电泳槽31g内的润湿液。该电泳电极32与该连接器4g电性连接,该连接装置35包括第一端351g和第二端352g,该第一端351g经由该出液口51g伸入通道5g内,该第二端352g伸入该注液槽34g内,核酸扩增产物b将在出液区D经由出液口51g进入该连接装置35g。进而进入该凝胶介质33g的注液槽34g内,从而进行电泳检测。
请参阅图3g、图4g、图7g及图8g,本实施方式中,该电泳槽31g位于该第一盖板2g1远离该第二盖板23g的一侧,且该电泳槽31g的开口朝向该第一盖板21g的一侧,且该电泳槽31g的开口朝向该第一盖板21g。该电泳槽31g包括透明底板311g以及与该透明底板311g连接的多个侧壁312g,该侧壁312g远离该透明底板311g的一端与第一盖板21g的下表面接触,也就是该电泳槽31g利用该第一盖板21g作为电泳槽31g的盖板实现该电泳盒3g的密封。上述设计使得检测芯片2g内的硅油与电泳盒3g内的润湿液之间存在一高度差ΔH 1,能够使通道5g内的核酸扩增产物b顺利进入电泳盒3g内;另外,此种结构设计能够提高空间利用率,有利于降低整体核酸检测盒100g的体积。
本实施方式中,该侧壁312g与该第一盖板21g之间设置有密封胶圈(图未示),以提高电泳盒3g的密封性。
请参阅图7g,该电泳槽31g还包括设置于该透明底板311g上的多个卡位313g,该凝胶介质33g大致为一长方体结构,能够卡在多个所述卡位313g之间,该卡位313g的设计能够防止该凝胶介质33g移动错位,进而保证电泳检测的准确性。
结合参阅图3g,本实施方式中,该透明底板311g为透明玻璃板,可以观察到电泳结果。
本实施方式中,该卡位313g的数量为四个,四个卡位313g分别位于长方体结构的凝胶介质33g的四个角,从而将凝胶介质33g固定住。
请再次参阅图4g,该电泳槽31g还包括注液孔36g,该注液孔36g设置于该第一盖板21g对应该电泳盒3g的位置,通过该注液孔36g可以向该电泳槽31g内注入润湿液(例如buffer)。
请参阅图8g至图10g,结合参阅图4g,该连接装置35g的第一端351g经由出液口51g伸入该通道5g内,该出液口51g贯穿该第一盖板21g。其中该连接装置35g为一毛细管,利用毛细管效应能够使通道5g内的核酸扩增产物b进入电泳盒3g的凝胶介质33g内。如图8所以,为了能够使核酸扩增产物b顺利进入电泳盒3g内,该第一端351g的端面需要与硅油的液面平齐,即该第一端351g包括一平面。或者,如图9g和图10g所示,该第一端351g设有至少一斜面,也即该第一端351g对应该连接装置35g的中心轴c倾斜设置, 此时该斜面的最低点与该通道5g的下表面之间存在一段差ΔH 2,硅油的液面位于该斜面上,也能够使核酸扩增产物b顺利进入连接装置35g内。在连接装置3g5和检测芯片2g的组装设计过程中,需要使连接装置35g内充满润湿液,并且润湿液要能够与出液区D处的核酸扩增产物b的液珠表面接触,形成连续的液流,利用毛细原理才能保证核酸扩增产物b顺利进入连接装置35g内。
本实施方式中,该斜面与该连接装置35g的中心轴c之间的夹角为45°-60°,经试验验证,在这个角度范围内,核酸扩增产物b能够顺利进入连接装置35g进而进入凝胶介质33g内。
本实施方式中,如图9g所示,该连接装置35g的第一端351g一侧做了一个倾斜角度α为45°-60°的斜面,通过斜面的设计,利用毛细管原理,可以使核酸扩增产物b顺利进入连接装置35g内并进入凝胶介质33g内。
另一实施方式中,如图10g所示,该连接装置35g的第一端351g相对的两侧分别做了一个倾斜角度α为45°-60°的斜面,通过两个斜面的设计,利用毛细管原理,可以使核酸扩增产物b顺利进入连接装置35g内并进入凝胶介质33g内。
请参阅图4g,该电泳电极32g的一端伸入电泳槽31g内,另一端与连接器4g电性连接。
请参阅图3g所示,结合参阅图8g,由于检测芯片2g与电泳盒3g之间存在一高度差ΔH 1,正常平稳的情况下,电泳盒3g内的润湿液不会通过连接装置35g进入通道5g内。又由于连接装置35g的第一端351g的表面正好与硅油的液面平齐,在平稳的情况下通道5g内的硅油也不会通过连接装置35g进入电泳盒3g内。但,当该核酸检测盒100g在运送过程中发生倾斜、震动或内部压力变化时,具体可以通过高空低压(0.2~0.7bar)及振动测试进行模拟,因检测芯片2g的通道5g内和通道5g外存在压差及振动,则会导致通道5g内的硅油和电泳盒3g内的润湿液出现泄漏或者两者出现混合的现象,将严重影响核酸检测盒100g的性能,甚至可能导致核酸检测盒100g直接报废。
请参阅图11g,结合参阅图1g,为了避免在上述特殊情况下造成通道5g内硅油和电泳盒3g内润湿液意外泄漏或二者意外混合,本发明通过增加一阻隔结构8g来解决上述问题。该阻隔结构8g包括第一状态和第二状态,在第一状态时,该阻隔结构8g位于出液口51g靠近通道5g的一侧,该阻隔结构8g能够阻隔该检测芯片2g的通道5g与该电泳盒3g连通,在第二状态时,该阻隔结构8g远离该出液口51g,以使该通道5g和该电泳盒3g连通。通过设置可以变换状态的阻隔结构8g从而确保在使用之前检测芯片2g的通道5g内的硅油和电泳盒3g内的润湿液不会泄漏或者混合。
该阻隔结构8g可以根据温度或压力或溶剂等不同的外部条件改变自身的状态,本实施方式中,可以根据温度的变化来改变阻隔结构8g的状态。
本实施方式中,当温度为0℃~35℃时,阻隔结构8g处于第一状态,其中第一状态为固态。当温度超过35℃时,阻隔结构8g处于第二状态,其中第二状态为熔融态。
本实施方式中,该阻隔结构8g需要将连接装置35g的第一端351g封住。
请参阅图12g,另一实施方式中,为了更好的实现密封的作用,在第一状态时,阻隔结构8g可以包括阻隔部81g和密封部82g。其中,该阻隔部81g设于该通道5g内,将出液口51g以及第一端351g的开口封住;该密封部82g经由第一端351g伸入连接装置35g内,进一步加强密封的作用。该密封部82g最好能延伸到第一盖板21g的表面,形成一大致呈T型的结构,这种结构使得阻隔结构8g在通道5g以及连接装置35g内的附着面积变大,不会因外力而使阻隔结构8g意外脱落,造成密封失效。
本实施方式中,该阻隔结构8g可以采用石蜡、硅蜡、植物蜡和白蜡等一种或多种具有低温成型性的蜡状物质作为主剂,添加具有不同流动性的溶剂混合形成具有阻隔作用的高分子密封材料。在核酸检测盒100g组装过程中,将上述高分子密封材料涂布或点涂在出液 口51g靠近通道5g的一侧,进而形成上述阻隔结构8g,达到密封的作用。其中,石蜡分子式为CnH 2(n+2),其中n=20~40,其由天然或人造石油的含蜡馏分用冷榨或溶剂脱蜡、发汗等方法制得。硅蜡为带有有机硅氧烷(Si-O-Si)官能基与其他有机材料接枝改构而成的蜡状材料,一般硬度适中,具有亲油疏水、滑爽、柔软、亮泽的功效。植物蜡通常是指带有脂肪酸、一价或二价的脂醇和熔点较高的油状物质,常见有木蜡、大豆蜡、棕榈蜡、米糠蜡等。白蜡油通常为矿物油、液体石蜡等。溶剂则采用常见的可与主剂相匹配的溶剂均可。
本实施方式中,该高分子密封材料的组成比例大致为溶剂占比0~40wt%,主剂占比60~100wt%,此比例可以视实际需求进行调配。
本实施方式中,该高分子密封材料包括80wt%~99wt%的石蜡或硅蜡和1wt%~2wt%的矿物油或润滑油。此种高分子密封材料制成的阻隔结构8g能够保证核酸检测盒100g在运输搬运等过程中不溶解、不掉落且不形变,同时可承受高空低压内压差,从而确保检测芯片2g内的硅油与电泳盒3g内的润湿液不会意外泄露或混合。
本实施方式中,上述高分子密封材料的储放环境温度一般为0℃~35℃,在核酸检测盒100g未使用时,阻隔结构8g处于第一状态(即固态)。此高分子密封材料的熔融温度一般为35℃~60℃或视性能要求可作上下调整,因此,在核酸扩增反应开始后便可以将其溶解,使阻隔结构8g处于第二状态(即熔融态),从而使检测芯片2g与电泳盒3g实现连通。
本发明的阻隔结构8g所采用的高分子密封材料能够实现阻隔的目的同时又不影响核酸检测盒100g的正常工作。阻隔结构8g熔化后呈液态,与硅油因比重的差异,会漂浮在硅油上方或沉降在硅油下方,而且其成分基本为钝性物质,不会与硅油发生反应。即便与硅油混合在一起,由于硅油和上述高分子密封材料同为C-H或是C-H-O-Si-O结构,不会影响核酸检测盒100g的生物反应。至于电泳盒3g内的润湿液则主要是水基的buffer液,油水不互溶,因此也不会影响电泳盒3g内的电泳检测过程。
本发明上述阻隔检测芯片2g与电泳盒3g的方法不局限于本申请的核酸检测盒100g的应用场景,还可以用于其他相关生医检定器或传感器中,用于隔离两种液体,避免两种液体意外泄漏或混合。
请参阅图13g,本发明还提供了一种核酸检测设备200g,该核酸检测设备200g包括主机201g以及如上所述的核酸检测盒100g,该主机201g上设置有一检测盒安装槽202g,该核酸检测盒100g安装在该检测盒安装槽202g内。
相较于现有技术,本发明提供的核酸检测盒将核酸扩增反应和电泳检测集成在一起,整体结构简单,检测操作简便,操作过程对专业要求低,检测效率高,极大降低了检测成本;同时,检测过程灵活性强,无需在固定的实验室中进行,核酸检测盒便携,可以实现社区检测或家庭检测;阻隔结构的设置,可以避免因核酸检测盒移动或震动使检测芯片和电泳槽内的液体混合或泄露,提高了核酸检测盒的可靠性。
实施例8
请参阅图1h、图3h至图5h所示,结合参阅图8h,为本发明实施例提供的一种核酸检测盒100h,该核酸检测盒100h用于进行核酸检测。该核酸检测盒100h包括一盒体1h、检测芯片2h、电泳盒3h以及连接器4h。该检测芯片2h设置于该盒体1h内,该检测芯片2h包括第一盖板21h、间隔层22h以及第二盖板23h,该间隔层22h相对的两表面分别与该第一盖板21h和该第二盖板23h接触,该第一盖板21h、该间隔层22h以及该第二盖板23h围设形成通道5h,该通道5h用于承载检测液a。该电泳盒3h设置于该盒体1h内且与该通道5h连通。该连接器4h分别与该检测芯片2h以及该电泳盒3h电性连接,该连接器4h用于与外界控制板电性连接。该核酸检测盒100h用于进行核酸扩增反应和电泳检测,将含有核酸样本的检测液a加入该检测芯片2h的通道5h内,需要说明的是,检测液a在通道5h 内是以液珠的形式存在的,该检测液a在该通道5h内进行核酸扩增反应得到核酸扩增产物b,该核酸扩增产物b由该检测芯片2h直接进入该电泳盒3h内进行电泳检测,最后通过与该核酸检测盒100h配合的图像采集装置拍摄电泳盒3h的图像,其中该图像为电泳检测的荧光照片。本发明通过将检测芯片2h与电泳盒3h集成在一个盒体1h内,整体结构简单,不需要复杂的大型设备,成本低,检测液a完成核酸扩增后可以直接进入电泳盒3h进行电泳检测,简化了不同检测环节的样品转移配合衔接过程,提高了检测效率。
请参阅图1h至图5h,该盒体1h包括第一壳体11h、第二壳体12h、设置于该第二壳体12h的加样口13h以及设置于该第一壳体11h上的检测窗14h。该第一壳体11h与该第二壳体12h共同围设形成一容纳腔(图未示),该检测芯片2h、该电泳盒3h和该连接器4h均容置于该容纳腔内。该加样口13h对应该检测芯片2h设置,用于向该检测芯片2h内加入含有核酸样本的检测液a。该检测窗14h对应该电泳盒3h设置,图像采集装置能够通过该检测窗14h采集该电泳盒3h的图像。
请参阅图3h,本实施方式中,该第一壳体11h和该第二壳体12h通过卡合的方式连接,另外,第一壳体11h和第二壳体12h卡合后还可以在四周通过螺丝进行紧固,增加该第一壳体11h与该第二壳体12h的连接牢固性。
请参阅图1h与图2h,本实施方式中,该盒体1h的侧壁还设置有一开口17h,该开口17h用于安装该连接器4h,该连接器4h整体位于该容纳腔内并由该开口17h露出该盒体1h,从而方便该连接器4h与外界控制板电性连接。
请参阅图2h,本实施方式中,该盒体1h还包括设置于该第一壳体11h上的卡槽15h,由于核酸检测盒100h在使用时需要安装在核酸检测设备内,设计该卡槽15h能够方便该核酸检测盒100h安装在所使用的核酸检测设备内。
请参阅图1h,结合图13h,本实施方式中,该第二壳体12h远离该容纳腔的一侧还设有一指示标识18h(例如箭头),结合参阅图13h,该指示标识18h用于指示该核酸检测盒100h插入核酸检测设备200h的插入方向,避免插错。
请参阅图3h,本实施方式中,该盒体1h内设置有若干支撑结构16h,由于检测芯片2h、电泳盒3h以及连接器4h在结构设计上存在厚度差异,因此在安装进盒体1h内时需要设计高度不一的若干支撑结构16h用于支撑检测芯片2h、电泳盒3h以及连接器4h,提高检测芯片2h、电泳盒3h以及连接器4h之间的连接稳定性。
本实施方式中,该盒体1h为塑料材质,其中支撑结构16h与第一壳体11h和第二壳体12h为一体成型结构。
请参阅图4h与图5h,该检测芯片2h还包括设置于该第一盖板21h靠近该第二盖板23h一侧的驱动回路24h、设置于该驱动回路24h靠近该第二盖板23h一侧的第一介电层26h、设置于该第二盖板23h靠近该第一盖板21h一侧的导电层25h以及设置于该导电层25h靠近该第一盖板21h一侧的第二介电层27h,该驱动回路24h和该导电层25h均与该连接器4h电性连接,通过为该驱动回路24h和该导电层25h通电或断电可以实现该检测液a在该通道5h内按照规定的路径移动。
请参阅图5h与图6h,结合参阅图1h,本实施方式中,该驱动回路24h包括多个呈阵列排布的驱动电极241h以及与所有驱动电极241h电性连接的控制电极242h,该控制电极242h与该连接器4h电性连接。具体地,该驱动回路24h为薄膜晶体管(Thin Film Transistor,TFT)驱动回路,又由于检测液a具有导电性,结合介电润湿原理(Electrowetting-On-Dielectric,EWOD),能够实现检测液a在通道5h内按规定路径进行移动。利用TFT原理,能够选择性开启或关闭某个驱动电极241h与导电层25h之间的电路,从而改变该驱动电极241h与导电层25h之间的电压来改变该检测液a与第一介电层26h和第二介电层27h之间的润湿特性,进而控制该检测液a在通道5h内按预定的路径移动。如 图5所示,检测液a在电极I、电极H和电极G上移动,当检测液a在电极H上时,对电极G和导电层25h之间施加电压,给予电极G电压Vd,同时断开电极H和导电层25h之间的电压,此时检测液a与第一介电层26h和第二介电层27h之间的润湿特性发生改变,以使电极H与检测液a之间的液-固接触角变大,电极G与检测液a之间的液-固接触角变小,从而促使检测液a从电极H往电极G移动。
本实施方式中,该第一介电层26h和该第二介电层27h均为绝缘疏水层,具体可以是聚四氟乙烯涂层,一方面可以起到绝缘疏水的作用,另一方面还能够使检测液a在规定路径内移动的更顺畅,避免移动过程中液珠破裂。
本实施方式中,结合参阅图5h,该驱动回路24h设置于该第一盖板21h靠近该通道5h的一侧。具体可以采用金属刻蚀的方法或电镀的方法形成该驱动回路24h。
本实施方式中,该控制电极242h集成在该第一盖板21h的同一边缘,通过将该第一盖板21h设置该控制电极242h的一边插入该连接器4h内实现该检测芯片2h与该连接器4h的电性连接。
请参阅图6h,结合图3h与图8h,该驱动回路24h根据不同的用途可以分为多个区域,分别是加样区A,试剂存储区B、多个核酸扩增区C以及出液区D。所述第二盖板23h对应所述加样区A设有第一开口29h,所述第一开口29h与所述盒体1h的加样口13h对应,通过从该加样口13h经由该第一开口29h向该加样区A加入检测液a。该试剂存储区B用于存储荧光试剂(例如荧光染料或荧光探针)。检测液a在该核酸扩增区C进行核酸扩增反应,该核酸扩增区C包括可以包括多个区域,具体区域的数量可以根据实际的检测需求而定。该出液区D包括一出液口51h,该通道5h通过该出液口51h与电泳盒3h连通,核酸扩增产物b可在该出液区D经由该出液口51h进入电泳盒3h内进行电泳检测。
请参阅图5h与图6h,结合参阅图8h,检测芯片2h内检测液a的具体移动路径为:检测液a进入加样区A后,在驱动电极241h的驱动下按照规定路径移动至核酸扩增区C进行扩增反应;当扩增反应完成后扩增后的产物移动至试剂存储区B与荧光试剂混合,从而得到结合了荧光试剂的核酸扩增产物b;混合均匀的核酸扩增产物b在驱动电极241h的驱动下移动至出液区D,并通过出液区D的出液口51h进入电泳盒3h。
本实施方式中,该核酸扩增区C的数量为两个,两个所述核酸扩增区C的加热温度不同,能够实现检测液a在不同温度下的核酸扩增反应的不同阶段。
本实施方式中,该荧光试剂是在检测芯片2h组装时预先涂覆在该试剂存储区B内的,后续无需单独添加荧光试剂。
请结合参阅图3h,在其它实施方式中,该荧光试剂也可以通过后续加入与扩增产物实现混合。具体地,对应该试剂存储区B在该检测芯片2h上设置一试剂槽7h,可以在进行核酸检测时向该试剂槽7h内添加荧光试剂,此设计能够根据实际需要选择荧光试剂的种类,提高了核酸扩增反应的灵活性。
请参阅图3h、图5h与图6h,该检测芯片2h还包括设置于该第一盖板21h和/或该第二盖板23h远离该通道5h一侧的加热组件28h,该加热组件28h对应该核酸扩增区C设置,用于为检测液a加热。该加热组件28h与该连接器4h电性连接,通过该加热组件28h为该通道5h的特定区域加热。
本实施方式中,该加热组件28h设置于该第一盖板21h和第二盖板23h远离该通道5h的一侧。
本实施方式中,该加热组件28h通过导热胶粘接在该第一盖板21h和第二盖板23h的表面。
请参阅图3h与图5h,本实施方式中,该第一盖板21h和该第二盖板23h均为玻璃板,该间隔层22h为双面胶框,通过双面胶框粘贴在第一盖板21h和第二盖板23h的边缘,从 而共同组成一密封的通道5h。其中,可以根据实际需求通过设计不同厚度的间隔层22h来调整该通道5h的容量。
本实施方式中,在组装好该检测芯片2h后会在通道5h内注入硅油d,检测液a会在硅油d内按规定路径移动。
请参阅图3h、图4h、图7h、图8h及图11h,该电泳盒3h包括电泳槽31h、设置于电泳槽31h两端的电泳电极32h、设置于电泳槽31h内部的凝胶介质33h、设置在凝胶介质33h一端的注液槽34h、连接装置35h以及设置于所述电泳槽31h内的润湿液。该电泳电极32与该连接器4电性连接,该电泳盒3h对应该出液口51h还设有一进液口37h,该连接装置35h包括第一端351h和第二端352h,该第一端351h经由该进液口37h和该出液口51h伸入通道5h内,该第二端352h伸入该注液槽34h内,核酸扩增产物b将在出液区D经由出液口51h进入该连接装置35h。进而进入该凝胶介质33h的注液槽34h内,从而进行电泳检测。
请参阅图3h、图4h、图7h及图8h,本实施方式中,该电泳槽31h位于该第一盖板21h远离该第二盖板23h的一侧,且该电泳槽31h的开口朝向该第一盖板21h的一侧。该电泳槽31h包括透明底板311h以及与该透明底板311h连接的多个侧壁312h,该侧壁312h远离该透明底板311h的一端与第一盖板21h的下表面接触,也就是该电泳槽31h利用该第一盖板21h作为电泳槽31h的盖板实现该电泳盒3h的密封,此时,该出液口51h与进液口37h属于同一通孔。上述设计使得检测芯片2h内的硅油d与电泳盒3h内的润湿液之间存在一高度差ΔH 1,能够使通道5h内的核酸扩增产物b顺利进入电泳盒3h内;另外,此种结构设计能够提高空间利用率,有利于降低整体核酸检测盒100h的体积。本实施方式中,该侧壁312h与该第一盖板21h之间设置有密封胶圈(图未示),以提高电泳盒3h的密封性。
请参阅图7h,该电泳槽31h还包括设置于该透明底板311h上的多个卡位313h,该凝胶介质33h大致为一长方体结构,能够卡在多个所述卡位313h之间,该卡位313h的设计能够防止该凝胶介质33h移动错位,进而保证电泳检测的准确性。
结合参阅图3h,本实施方式中,该透明底板311h为透明玻璃板,可以观察到电泳结果。
本实施方式中,该卡位313h的数量为四个,四个卡位313h分别位于长方体结构的凝胶介质33h的四个角,从而将凝胶介质33h固定住。
请再次参阅图4h,该电泳槽31h还包括第二开口36h,该第二开口36h设置于该第一盖板21h对应该电泳盒3h的位置,通过该第二开口36h可以向该电泳槽31h内注入润湿液(例如buffer)。
请参阅图8h至图10h,结合参阅图4h,该连接装置35h的第一端351h经由出液口51h伸入该通道5h内,该出液口51h贯穿该第一盖板21h。其中该连接装置35h为一毛细管,利用毛细管效应能够使通道5h内的核酸扩增产物b进入电泳盒3h的凝胶介质33h内。如图8所示,为了能够使核酸扩增产物b顺利进入电泳盒3h内,该第一端351h的端面需要与硅油的液面平齐,即该第一端351h包括一平面。或者,如图9h和图10h所示,该第一端351h设有至少一斜面,也即该第一端351h对应该连接装置35h的中心轴c倾斜设置,此时该斜面的最低点与该通道5h的下表面之间存在一段差ΔH 2,硅油的液面位于该斜面上,也能够使核酸扩增产物b顺利进入连接装置35h内。在连接装置35h和检测芯片2h的组装设计过程中,需要使连接装置35h内充满润湿液,并且润湿液要能够与出液区D处的核酸扩增产物b的液珠表面接触,形成连续的液流,利用毛细原理才能保证核酸扩增产物b顺利进入连接装置35h内。
本实施方式中,该斜面与该连接装置35h的中心轴c之间的夹角为45°-60°,经试验验证,在这个角度范围内,核酸扩增产物b能够顺利进入连接装置35h进而进入凝胶介质33h内。
本实施方式中,如图9h所示,该连接装置35h的第一端351h一侧做了一个倾斜角度α为45°-60°的斜面,通过斜面的设计,利用毛细管原理,可以使核酸扩增产物b顺利进入连接装置35h内并进入凝胶介质33h内。
另一实施方式中,如图10h所示,该连接装置35h的第一端351h相对的两侧分别做了一个倾斜角度α为45°-60°的斜面,通过两个斜面的设计,利用毛细管原理,可以使核酸扩增产物b顺利进入连接装置35h内并进入凝胶介质33h内。
请参阅图4h,该电泳电极32h的一端伸入电泳槽31h内,另一端与连接器4h电性连接。
请参阅图3h所示,结合参阅图8h,由于检测芯片2h与电泳盒3h之间存在一高度差ΔH 1,正常平稳的情况下,电泳盒3h内的润湿液不会通过连接装置35h进入通道5h内。又由于连接装置35h的第一端351h的表面正好与硅油的液面平齐,在平稳的情况下通道5h内的硅油也不会通过连接装置35h进入电泳盒3h内。但,当该核酸检测盒100h在运送过程中发生倾斜、震动或内部压力变化时,具体可以通过高空低压(0.2~0.7bar)及振动测试进行模拟,因检测芯片2h的通道5h内和通道5h外存在压差,同时电泳盒3h内外也会存在压差,则会导致通道5h内的硅油和电泳盒3h内的润湿液出现泄漏或者两者出现混合的现象,将严重影响核酸检测盒100h的性能,甚至可能导致核酸检测盒100h直接报废。
请参阅图11h,结合参阅图1h,为了避免在上述特殊情况下造成通道5h内硅油和电泳盒3h内润湿液意外泄漏或二者意外混合,本发明通过增加一连通结构8h来解决上述问题。该连通结构8h一端连接第一开口29h,另一端连接第二开口36h,以使该通道5h和该电泳盒3h连通,从而平衡通道5h和电泳盒3h内的压力,避免通道5h内硅油和电泳盒3h内润湿液意外泄漏或二者通过连接装置35h意外混合。
请参阅图11h,该连通结构8h包括与该第一开口29h连通的第一连接端81h、与该第二开口36h连通的第二连接端82h及连接该第一连接端81h和该第二连接端82h的连接腔83h。通过在第一开口29h和第二开口36h之间连接该连通结构8h,可以实现通道5h和电泳盒3h的连通,进而平衡通道5h和电泳盒3h内的压力,当通道5h内的压力大于电泳盒3h内的压力时,压力会将部分硅油d经由第一开口29h挤压进入连接腔83h内;当电泳盒3h内压力大于通道5h内的压力时,会将部分润湿液经由第二开口36h挤压进入连接腔83h内,从而使通道5h和电泳盒3h内的压力得到平衡,从而避免通道5h内硅油和电泳盒3h内润湿液意外泄漏或二者通过连接装置35h意外混合在一起。
本实施方式中,请参阅图12h,结合参阅图11h,该连通结构8h还包括缓冲腔84h,该缓冲腔84h设于该第二连接端82h与该连接腔83h之间。该缓冲腔84h用于存储硅油d或者润湿液,避免挤压出来的硅油d或润湿液进入电泳盒3h或通道5h内。
请参阅图11h,电泳盒3h设于检测芯片2h的下方,且电泳盒3h与检测芯片2h错位设置,沿垂直通道5h的延伸方向的另一方向,电泳盒3h的投影面积大于检测芯片2h的投影面积。该连通结构8h还包括第一侧壁85h、第二侧壁86h、第三侧壁87h、底板88h以及顶板89h。所述第一侧壁85h设于所述第二盖板23h的表面,所述第二侧壁86h和该第三侧壁87h均设于该电泳盒3h靠近该检测芯片2h一侧的表面,该第三侧壁87h靠近该间隔层22h设置,该第二侧壁86h远离该间隔层22h设置,该底板88h设于该第二盖板23h的表面且与该第三侧壁87h连接,该顶板89h设于该第一侧壁85h和该第二侧壁86h远离该电泳盒3h的一端。第一侧壁85h、第二侧壁86h、第三侧壁87h、底板88h、顶板89h以及电泳盒3h靠近检测芯片一侧的表面共同围成一腔体9h,该第一开口29h贯穿该底板88h且位于该腔体9h内,该第二开口36h位于该腔体9h内,该腔体9h通过该第一开口29h和该第二开口36h分别与该通道5h和该电泳盒3h连通。其中,所述第一连接端81h、第二连接端82h、连接腔83h以及缓冲腔84h共同组成了所述腔体9h。
本实施方式中,请结合参阅图4h与图11h,所述第一盖板21h盖设于所述电泳槽31h 的开口处,且第一盖板21h的面积较大,超出第二盖板23h。此时超出第二盖板23h的第一盖板21h可以作为连通结构8h的底部,与第一侧壁85h、第二侧壁86h、第三侧壁87h、底板88h和顶板89h共同形成所述的腔体9h。此方式,可以方便组装,且缩小电泳盒3h的体积,有利于核酸检测盒100h的小型化。
本实施方式中,请结合参阅图3h与图11h,该第一开口29h还贯穿该顶板89h设置,进而与加样口13h连通,从而可以向加样区A进行加样。
另一实施方式中,请参阅图13h,所述连通结构8ah还可以是一连通管。将一根连通管一端与第一开口29h连通,另一端与第二开口36h连通,进而实现平衡通道5h和电泳盒3h内压力的目的。而且连通结构8ah简单,组装方便。若采用橡胶材质制作的连通管,在核酸检测盒100h内可以弯折,不占用过多空间。
请参阅图14h,本发明还提供了一种核酸检测设备200h,该核酸检测设备200h包括主机201h以及如上所述的核酸检测盒100h,该主机201h上设置有一检测盒安装槽202h,该核酸检测盒100h安装在该检测盒安装槽202h内。
相较于现有技术,本发明提供的核酸检测盒将核酸扩增反应和电泳检测集成在一起,整体结构简单,检测操作简便,操作过程对专业要求低,检测效率高,极大降低了检测成本;同时,检测过程灵活性强,无需在固定的实验室中进行,核酸检测盒便携,可以实现社区检测或家庭检测;连通结构的设置,可以避免因核酸检测盒移动或震动使检测芯片和电泳槽内的液体混合或泄露,提高了核酸检测盒的可靠性。
实施例9
请参阅图1i至图3i所示,为本发明实施例提供的一种加热组件100i,该加热组件100i可应用于核酸扩增反应用的检测芯片,检测芯片中承载有包含核酸样本的检测液,该加热组件100i用于为检测液进行加热,使其发生扩增反应。该加热组件100i包括基板1i、加热层2i、导热层3i以及感温层4i。该加热层2i设于该基板1i上,该加热层2i包括加热区21i。该导热层3i设于该基板1i远离该加热层2i的一侧,且所述导热层3i与所述加热区21i对应。该感温层4i设于该加热区21i上且与该加热层2i电性连接。其中,该加热层2i用于加热该导热层3i,该感温层4i用于感应该加热区21i的温度。
该基板1i的材质为绝缘树脂,具体地,基层11i的材质可以选自环氧树脂(epoxy resin)、聚苯醚(Polyphenylene Oxide,PPO)、聚酰亚胺(polyimide,PI)、聚对苯二甲酸乙二醇酯(Polyethylene Terephthalate,PET)以及聚萘二甲酸乙二醇酯(Polyethylene Naphthalate,PEN)等树脂中的一种。
本实施方式中,该基板1i的材质可以是聚酰亚胺(polyimide,PI)或聚对苯二甲酸乙二醇酯(Polyethylene Terephthalate,PET)。选择PI膜或PET膜作为该基板1i可以在满足加热结构100使用性能的同时极大降低加热组件100i的成本,进一步降低检测芯片的成本。
请参阅图2i与图3i,该加热层2i还包括设于基板1i上的加热层线路22i以及加热电阻23i,该加热层线路22i可以包括一个或多个加热区21i,每一个加热区21i内设有相应的加热电阻23i,具体加热区21i的数量可以根据实际需求设计。当加热层线路22i通电后,可以控制某个加热区21i内的加热电阻23i通电并产生热量,实现加热的目的。
本实施方式中,该加热层线路22i对应每一加热区21i设有电源电极221i和接地电极222i,其中,每个加热区21i对应的电源电极221i和接地电极222i分别设置于该加热区21i内的加热电阻23i相对的两侧,有利于整个加热区21i均匀加热。
本实施方式中,加热层2i上设有多个加热区21i,相邻两个加热区21i相距设置,每一个加热区21i均设有一个导热层3i。多个加热区21i可独立加热且加热温度可以相互不同,因此可以实现核酸扩增过程中不同温度段的扩增反应。相邻两个加热区21i之间存在一定 间距,可以减少不同加热区21i之间的温度干扰,便于每个加热区21i的精准控温。
本实施方式中,该加热层线路22i可以采用平面印刷或3D印刷的方式形成于基板1i上。可以理解的是,加热层线路22i也可以通过传统的压膜、曝光、显影、蚀刻、去膜等制程制作。
请参阅图4i,该导热层3i包括金属层31i以及设置于该金属层31i相对两表面的第一石墨层32i和第二石墨层33i。该第一石墨层32i朝向该加热层2设置,即第一石墨层32i设置于该基板1i远离加热层2i的表面。该第二石墨层33i朝向需要加热的应用设备设置。该导热层3i主要利用石墨水平方向均热性佳及铜箔储热等优点,使加热区21i加热更均匀、更稳定,避免温度变化太剧烈。
本实施方式中,该第一石墨层32i与该基板1i之间设置有第一导热胶层35i,该第二石墨层33i远离基板1i的一侧设有第二导热胶层36i。即,导热层3i通过第一导热胶层35i粘贴在基板1i远离加热层2i的一侧表面,通过第二导热胶层36i粘贴在应用设备的表面。
本实施方式中,该第一导热胶层35i和第二导热胶层36i的厚度均可以是0.1mm左右。具体地,可以选择传统导热双面胶作为该第一导热胶层35i或第二导热胶层36i。
本实施方式中,所述第一导热胶层35i的材质可以是丙烯酸类胶粘剂,所述第二导热胶层36i的材质可以是硅胶胶粘剂。
本实施方式中,该金属层31i的厚度为0.05mm-0.15mm,
本实施方式中,该金属层31i可以是铜箔。
本实施方式中,该第一石墨层32i和该第二石墨层33i的厚度均为0.02mm-0.03mm。由于石墨水平方向上的优良导热性能,可以使导热更均匀,热损失更低,加热效率更高。因此,通过在该金属层31i的两表面增加第一石墨层32i和第二石墨层33i,能够起到均匀储存热量,从而使温度变化不会过于剧烈,使加热区21i的热量分布更均匀,热损失更低,加热效率更高,温度更准确。
本实施方式中,该金属层31i与第一石墨层32i和第二石墨层33i之间还均设有第三导热胶层34i。通过两层第三导热胶层34i将两层石墨层粘接在金属层31i的两表面,形成复合导热层结构,复合方法简单,整体导热层3i的厚度均匀,能够保证均匀热量的效果,且可以根据不同的加热区21i的面积进行裁切得到该导热层3i,方便使用。
本实施方式中,该第三导热胶层34i的厚度为0.01mm-0.03mm。
本实施方式中,该导热层3i在粘贴在加热区21i上之前第一胶粘层5i和第二胶粘层6i的表面还贴附两层离型层37i。
请再次参阅图1i,结合参阅图3i,该感温层4i包括温度感应线路41i以及设置于加热区21i的表面的温度传感器42i,通过温度传感器42i可以感应加热区21i的温度。
本实施方式中,该温度传感器42i的面积大致与加热区21i的表面积相等,将温度传感器42i贴在加热区21i远离导热层3i的表面,可以感应加热区21i各处的温度变化,从而保证对加热区21i各处温度控制的准确性和稳定性。
请参阅图5i至图6i所示,为本发明实施例提供的一种检测芯片200i,该检测芯片200i用于核酸检测。该检测芯片200i包括第一盖板201i、第二盖板203i、间隔层202i以及该加热组件100i。该间隔层202i相对的两表面分别与该第一盖板201i和该第二盖板203i接触,该第一盖板201i、该间隔层202i以及该第二盖板203i围设形成一通道204i,该通道204i用于承载检测液205i。该加热组件100i设置于该第一盖板201i和/或该第二盖板203i远离该通道204i一侧的表面,该加热组件100i用于加热该检测液205i,以使该检测液205i进行核酸扩增反应。如图5所示,在本实施方式中,该第一盖板201i和该第二盖板203i远离该通道204i一侧的表面均设有该加热组件100i。
请参阅图5i与图6i,本实施方式中,该第一盖板201i和该第二盖板203i远离该通道 204i一侧的表面均设有一个该加热组件100i,两个所述加热组件100i之间通过一连接部206i电性连接,两个加热组件100i以及该连接部206i为一体结构。通过在通道204i的上下两侧均设置加热组件100i,可以使通道204i内的检测液205i加热更均匀,确保检测液205i扩增反应的正常进行。另,通过一连接部206i实现两个加热组件100i的电性连接,使连个加热组件100i与连接部206i构成一体结构,更便于加热组件100i在检测芯片200i内的组装,而且,只需要在其中一个加热组件100i上布设引出线路便可,便于线路的引出。
本实施方式中,该加热组件100i可以通过所述第二导热胶层36i粘接在第一盖板201i和/或第二盖板203i的表面。具体地,该第二导热胶层36i的材质为硅胶胶粘剂,第一盖板201i和第二盖板203i可以是玻璃盖板,硅胶胶粘剂具有耐高温及耐候等优异性能,能够使加热组件100i稳定地粘接在玻璃盖板上。
请参阅图7i,结合参阅图5i,所述通道204i包括一检测路径207i,检测液205i能够在预先设定的检测路径207i内流动,该检测路径207i根据不同的用途可以分为多个区域,分别是加样区A,试剂存储区B、多个核酸扩增区C以及出液区D。该加样区A与外界通过一加样口连通,通过该加样口向该加样区A加入检测液205i。该试剂存储区B用于存储荧光试剂(例如荧光染料或荧光探针)。检测液205i在该核酸扩增区C进行核酸扩增反应,该核酸扩增区C可以包括多个区域,具体区域的数量可以根据实际的检测需求而定。
检测芯片200i内检测液205i的具体流动路径为:检测液205i进入加样区A后,按照规定路径移动至核酸扩增区C进行扩增反应;当扩增反应完成后扩增后的产物移动至试剂存储区B与荧光试剂混合,从而得到结合了荧光试剂的核酸扩增产物;混合均匀的核酸扩增产物进入下一步检测(例如电泳检测)。
本实施方式中,该核酸扩增区C的数量为两个,每个核酸扩增区C对应一个加热区21i设置,即该加热组件100i包括两个加热区21i及对应的两个导热层3i。两个所述核酸扩增区C的加热温度不同,能够实现检测液205i在不同温度下的核酸扩增反应的不同阶段。
本实施方式中,该加热区21i可以对两个核酸扩增区C具体的加热温度范围分别为90℃-105℃和40℃-75℃。
在其它实施方式中,还可以根据具体核酸扩增反应阶段的不同,该核酸扩增区C的数量也可以是三个或更多个。该加热区21i可以对三个核酸扩增区C具体的加热温度范围分别为90℃-105℃、68℃-75℃和40℃-65℃。
另一实施方式中,该检测路径207i需要加热的区域还包括可以是试剂存储区B。该试剂存储区B加热后可以对存储在内的试剂进行预热处理。
请参阅图8i与图9i,结合参阅图3i与图7i,为检测路径207i中包含三个加热区21i的示意图,三个加热区21i分别为90℃-105℃温区、68℃-75℃温区和40℃-65℃温区。三个加热区21i在空间结构上相距设置,并非接触,在加热过程中三个加热区21i可以同时进行升温,也可以先升温某一加热区21i,一般检测液205在90℃-105℃温区停留时间较长,可以先升温90℃-105℃温区,反应结束后再升温其他加热区21i。如图8i与图9i所示,为环境温度在30℃时开启不同数量的加热区21i时的升温图片,可以看出当三个加热区21i(95℃、72℃和60℃)全部开启(如图8i所示)与单独开启其中一个加热区21i(95℃)(如图9i所示)相比,95℃的加热区21i的温度基本相同,说明当同时开启多个加热区21i时,各个加热区21i之间的温度互相干扰的情况较小,因此,本发明提供的加热结构100能够准确控制不同加热区21i的加热温度。
请参阅图10i所示,为食盐水液珠的升温测量曲线,由图9i可以看出,随着时间的增加温度上升,没有太大的波动,而且升温快。
请参阅图11i,本发明还提供了一种核酸检测盒300i,该核酸检测盒300i包括盒体301i、检测芯片200i以及连接器302i,该检测芯片200i设于该盒体30i1内,该检测芯片200i与 该连接器302i电性连接。
本发明还提供一种核酸检测设备400i,该核酸检测设备400i包括:主机401i和如上所述的核酸检测盒300i,所述主机401i包括一安装槽402i,所述核酸检测盒300i可拆卸设于所述安装槽402i内。
相较于现有技术,本发明提供的加热组件通过在加热层和感温层之间增加导热层,可以使加热区的加热温度更均匀,通过感温层的设置能够精确感应加热区的温度,便于加热区的温度控制;导热层在金属层两表面贴石墨层,可以使加热区的温度更均匀,温度变化不会过于剧烈,热损失更低,加热效率更高,加热温度更准确。
实施例10
请参阅图1j所示,为本发明提供的一种检测芯片10j,所述检测芯片10j包括芯片壳体1j、通道2j以及驱动回路3j。所述通道2j设于所述芯片壳体1j内,所述通道2j用于承载包含检体(例如核酸样本)的液滴a。所述液滴aj能够在通道2j内进行核酸扩增反应。
所述芯片壳体1j包括第一盖板11j、间隔层12j以及第二盖板13j。该间隔层12j相对的两表面分别与该第一盖板11j和该第二盖板13j邻接,该第一盖板11j、该间隔层12j以及该第二盖板13j共同围设形成所述通道2j。
所述驱动回路3j能够驱动液滴a沿预定路径移动,从而在通道2j内完成核酸扩增反应。所述驱动回路3j包括设于所述第一盖板11j靠近所述通道2j一侧表面的多个驱动电极31j、设于所述驱动电极31j靠近该第二盖板13j一侧的第一介电层33j、设于该第二盖板13j靠近所述通道2j一侧表面的检测电极32j以及设于所述检测电极32j靠近所述第一盖板11j一侧的第二介电层34j。显然,该驱动电极31j和该检测电极32j相对设置于通道2j的两侧。通过控制该驱动电极31j和该检测电极32j通电或断电,可以控制液滴a在该通道2j内按照规定的路径移动。
本实施方式中,如图1所示,该驱动回路3j包括多个呈阵列排布的驱动电极31j和设于第二盖板13j靠近通道2j一侧表面的一导电层,该导电层作为所述检测电极32j。
本实施方式中,所述驱动电极31j设置于该第一盖板11j靠近该通道2j的一侧。具体可以采用金属刻蚀的方法或电镀的方法形成该驱动电极31j。
具体地,该驱动回路3j构成薄膜晶体管(Thin Film Transistor,TFT)驱动回路。又由于液滴a具有导电性,结合介电润湿原理,能够实现液滴a在通道2j内按规定路径进行移动。利用TFT原理,能够选择性开启或关闭某个驱动电极31j与检测电极32j之间的电路,从而改变该驱动电极31j与检测电极32j之间的电压,进而改变该液滴a与第一介电层33j和第二介电层34j之间的润湿特性,控制该液滴a在通道2j内按预定的路径移动。以下实施例中,为描述方便,以驱动电极31j包括三个电极,例如电极A、电极B和电极C为例说明液滴a在通道2j内按预定的路径移动的原理。
如图1j所示,液滴a可以在电极A、电极B和电极C上移动。当液滴a在电极A上时,通过在电极B和检测电极32j之间施加电压,给予电极B电压,同时断开电极A和检测电极32j之间的电压。此时液滴a与第一介电层33j和第二介电层34j之间的润湿特性发生改变,以使电极A与液滴a之间的液-固接触角变大,电极B与液滴a之间的液-固接触角变小,从而促使液滴a从电极A往电极B移动。
显然,上述检测芯片10j中液滴驱动原理是利用电压改变介电层的亲疏水性,进而使介电层上的液滴a吸附介电层的能力发生变化,从而促成液滴a移动。因此,当检测芯片10j组装完成以及在使用前,均需要对驱动回路3j进行电路检测,以确定驱动回路3j没有短路或开路问题,从而确保核酸扩增反应的顺利进行。
请参阅图2j与图3j,为本发明实施例提供的一种介电润湿装置100j。该介电润湿装置 100j包括检测芯片10j、电源输入模块20j、开关模块30j、检测模块40j以及判断模块50j。所述电源输入模块20j通过开关模块30j电连接至所述检测芯片10j。具体地,电源输入模块20j通过开关模块30j电连接至所述检测芯片10j的驱动电极31j,用于向所述驱动电极31j输出电源电压V in
所述开关模块30j用于将所述驱动电极31j连接至所述电源输入模块20j。具体地,本实施方式中,所述开关模块30j包括多个开关单元4j,每一所述开关单元4j均与对应的一个所述驱动电极31j电性连接。当所述驱动电极31j与所述检测电极32j之间发生耦合,所述检测电极32j将接收到检测电压V out(即耦合电压)并输出。
所述检测模块40j与所述检测电极32j电性连接,用于获取所述检测电极32j输出的检测电压V out,并对所述检测电压V out进行处理,以得到检测电压V out的峰值电压V P
具体地,本实施方式中,所述检测模块40j至少包括峰值检测电路41j。峰值检测电路41j包括第一运算放大器U 1、第一二极管D 1、第二二极管D 2、第二运算放大器U 2、第一电阻R 1、第二电阻R 2以及第一电容C 1。其中,第一运算放大器U 1的正向输入端与所述检测电极32j电性连接。所述第一运算放大器U 1的负向输入端分别连接所述第一二极管D 1的正极和所述第二电阻R 2的一端。所述第一运算放大器U 1的输出端分别连接第二二极管D 2的正极和所述第一二极管D 1的负极。所述第二二极管D 2的负极连接所述第一电阻R 1的一端,所述第一电阻R 1的另一端分别连接所述第二运算放大器U 2的正向输入端和第一电容C 1的一端。第一电容C 1的另一端接地。所述第二运算放大器U 2的负向输入端分别连接所述第二电阻R 2的另一端和所述第二运算放大器U 2的输出端。所述第二运算放大器U 2的输出端作为检测模块40j的输出端,用以输出所述检测电压V out的峰值电压V P
所述判断模块50j与所述检测模块40j电性连接,用于获取所述峰值电压V P,并将所述峰值电压V P与预设电压值V r进行比较,以判断所述检测芯片10j是否发生短路或开路。当然,当判断模块50j判断检测芯片10j发生短路或开路时,其还可进一步判断短路或开路发生的位置。
可以理解的是,本实施方式中,所述峰值检测电路41j可以包括但不限于峰值检测电路41j(即峰值检波器)。当然,所述检测模块40j还可以包括其他电路,例如滤波电路。
本实施方式中,所述第一介电层33j和该第二介电层34j均为绝缘疏水层,具体可以是聚四氟乙烯涂层。如此,一方面可以起到绝缘疏水的作用,另一方面还能够使液滴a在规定路径内移动的更顺畅,避免移动过程中液珠破裂。
请参阅图4j,为图3j所示电路的等效电路示意图。显然,本申请中,除包括所述电源输入模块20j,开关模块30j,峰值检测电路41j之外,检测芯片10j内的第一介电层33j、第二介电层34j以及通道2j内的空气都会在驱动回路3j中形成等效电容。具体地,所述第一介电层33j在驱动回路3j中会形成等效的第一介电层电容C di-B。所述第二介电层34j在驱动回路3j中会形成等效的第二介电层电容C di-T。第一介电层33j与第二介电层34之间的通道2j内若不填充硅油,则形成等效的空气电容C air。若通道2j内填充硅油,则形成的等效的空气电容C air的值会根据硅油的添加量而改变。其中,每个驱动电极31j所在的驱动回路3j中,第一介电层电容C di-B、空气电容C air和第二介电层电容C di-T依次串联,所述第一介电层电容C di-B远离空气电容C air的一端连接所述驱动电极31j,所述第二介电层电容C di-T远离空气电容C air的一端连接所述检测电极32j。
另外,本实施方式中,当所述开关单元4j与对应的驱动电极31j通过走线连接时,所述开关单元4j与对应的所述驱动电极31j之间会因为走线的存在而产生第三电阻(即等效电阻)(R BA,R BB,R BC)和第二电容(即等效电容)(C BA,C BB,C BC)。其中,每个驱动电极31j所在的驱动回路3j中,所述第三电阻(R BA,R BB,R BC)和所述第二电容串联(C BA,C BB,C BC),其中第三电阻(R BA,R BB,R BC)的一端连接所述开关模块30j,另一端分别连接所述 第二电容(C BA,C BB,C BC)和所述驱动电极31j,所述第二电容(C BA,C BB,C BC)的另一端接地。
本实施方式中,所述电源输入模块20j输出的所述电源电压V in为连续方波脉冲电压。因此,检测电极32j输出的检测电压V out也为连续方波脉冲电压。
可以理解,在本申请实施例中,所述开关模块30j可以在控制器(图未示)的控制下选择接通某一个驱动电极31j,进行单个驱动电极31j的逐一检测,检测准确,能够精准判断该驱动电极31j和检测电极32j之间构成的回路是否发生短路或开路以及短路发生的位置。
可以理解,当所述检测电极32j输出检测电压V out至所述峰值检测电路41j时,峰值检测电路41j通过对检测电压V out进行处理(例如放大处理),以得到峰值电压V P。接着,检测模块40j将峰值电压V P输出至判断模块50j。判断模块50j再将峰值电压V P与预设电压值V r进行判断比较,以通过两者之间的差异来判断驱动回路3j中是否出现开路或短路,并能够进一步确定短路或开路发生的具体位置。
可以理解,检测前需要预先检测出驱动回路3j电路正常情况下的峰值电压,作为预设电压值V r。即预设电压值V r为驱动回路3j电路正常情况下的峰值电压。下面详细介绍本发明提供的介电润湿装置100j的电路检测原理。
请参阅图4j与图5j,首先测试介电润湿装置100j的电路是否正常的检测原理。
其中,在检测芯片10j的通道2j内尚未灌入硅油时,如图4j所示,由电源输入模块20j输入电源电压V in(如图5,输入电源电压V in为一连续方波脉冲电压),经开关模块30j切换到指定的驱动电极31j所在的电路,后经检测电极32j输出检测电压V out,检测电压V out经检测模块40j中的峰值检测电路41j(峰值检波器)放大处理并得到峰值电压V P(如图5所示),最后检测模块40j将峰值电压V P输出至判断模块50j进行比较判断。
例如,当开关模块30j中的开关单元4j切换到电极A时,电极A与检测电极32j构成一个驱动回路,电源输入模块20j输出的连续方波脉冲电压经等效电阻R BA(电极A与开关模块30j之间的走线电阻)到达电极A,电极A与检测电极32j发生耦合反应后,检测电极32j会输出检测电压V out(即耦合电压),再经检测电极32j与检测模块40j之间的走线电阻到达峰值检测电路41j(即峰值检波器)。峰值检测电路41j再将检测电压V out进行放大处理并得到峰值电压V P并输出至判断模块50j。判断模块50j获取该峰值电压V P后,可利用峰值电压V P与正常电路的预设电压值V r之间的差异来判断介电润湿装置100的电路是否正常。
如图5j所示,一个方波电压周期内,介电润湿装置100j的电路正常的峰值电压V P如图5j中输出电压V out的峰值点所示。本实施方式中,峰值电压V P对应的电压曲线与预设电压值V r对于的电压曲线重叠,峰值电压V P与预设电压值V r相等,因此可以证明介电润湿装置100j的电路正常。
可以理解的是,当检测芯片10j的通道2j内注入硅油后,其电路检测原理与上述通道2j内为空气时检测原理相同,差别只在当注入硅油后的峰值电压V P的大小与未注入硅油时的峰值电压V P有所不同。
请参阅图6j与图7j,接下来介绍测试介电润湿装置100j的电路发生开路时的检测原理。
如图6j所示,由电源输入模块20j输入电源电压V in(如图7j,输入电源电压V in为一连续方波脉冲电压),经开关模块30j切换到指定的驱动电极31j所在的电路,当电路出现开路时,电源电压V in无法经开关模块30j切换到驱动电极31j的电路,也无法到达检测电极32j。因此,检测模块40j的峰值检测电路41j(即峰值检波器)无法收到输出电压V out,也无法对输出电压V out得到峰值电压V P,则判断模块50j很容易判断出指定的驱动电极31j所在的电路发生了开路。
以电极A所在的电路走线开路为例,由于走线开路导致检测模块40j无法收到输出电压V out并得到峰值电压V P。故,此时就可以根据开路电压值的大小与预设电压值V r值之间的电压差异ΔV 1来判断电路是否发生开路。如图7j,给出了输出电压V out的峰值点为正常预设电压值V r对应的电压曲线,输出电压V out的峰值点为发生开路后峰值电压V P对应的电压曲线,由于检测模块40j无法接收到检测电压V out,进而无法得到峰值电压V P,因此峰值电压V P对应的电压曲线为一条直线,峰值电压V P和预设电压值V r之间的高度差为电压差ΔV 1,此时,电压差ΔV 1较大,通过ΔV 1以及曲线c的形状便可以判断电极A所在的电路出现开路。
可以理解的是,当其他驱动电极31j走线或检测电极32j走线发生开路也可根据上述原理进行判断。
请参阅图8j与图9j,最后介绍测试介电润湿装置100j的电路发生短路时的检测原理。
如图8j所示,由电源输入模块20j输入电源电压V in(如图9j,输入电源电压V in为一连续方波脉冲电压),经开关模块30切换到指定的驱动电极31j所在的电路,后经检测电极32j输出检测电压V out,检测电压V out经检测模块40j中的峰值检测电路41j(即峰值检波器)放大处理得到峰值电压V P,最后峰值检波器将峰值电压V P输出至判断模块50j进行比较判断。由电源输入模块20j输入电源电压V in,当指定的驱动电极31j所在的电路出现短路时,不同驱动电极31j之间走线互相连通,这会导致驱动某一个驱动电极31j的阻抗R C增加,峰值检波器得到的峰值电压V P的变化减少,故此时就可以根据短路后得到的峰值电压V P的大小与正常预设电压值V r值之间的电压差ΔV 2来判断电路是否发生短路。如图9j示出了,输出电压V out的峰值点为正常预设电压值V r对应的电压曲线和输出电压V out的峰值点为峰值电压V P对应的电压曲线,发生短路后,由于峰值检波器得到的峰值电压V P的变化较小,因此峰值电压V P对应的电压曲线(的斜率较正常预设电压值V r对应的电压曲线的斜率要小,两电压曲线对应的峰值点之间的高度差为电压差ΔV 2,此时,电压差ΔV 2比开路时的电压差ΔV 1要小,通过电压差ΔV 2和峰值电压V P对应的电压曲线形状可以判断指定驱动电极31j所在的电路是否出现短路。
以电极A所在的电路走线短路为例,由于走线短路导致电极A所在的电路走线与电极B所在的电路走线互相连通,从而导致驱动电极A或电极B时的阻抗R C增加,使得峰值检波器得到的峰值电压V P所在的电压曲线的斜率相较于正常预设电压值V r的电压曲线斜率变小,故此时就可以根据短路峰值电压V P的大小与正常预设电压值V r之间的电压差ΔV 2来判断电路发生了短路。
可以理解的是,当需要检测其他驱动电极31j所在的电路走线或检测电极32j所在的电路走线是否出现短路时也可以根据上述原理进行判断。
显然,在对介电润湿装置100j的电路进行检测时,首先需要检测介电润湿装置100j正常工作时的电路,以得到如图5所示的正常电路的电压曲线图。如此,当介电润湿装置100j在使用过程中出现异常时,可直接通过峰值检波器得到的峰值电压V P的变化便可以直接判断电路中是否发生了开路或短路,以及短路或开路发生的具体位置。本申请中的介电润湿装置100j可通过自带的电路对其检测芯片10j进行自行检测,无需额外设置检测设备。其检测方法简单,便于操作,检测精准,效率高,而且故障点判断准确。
可以理解的是,在其他实施例中,也可以采用单独的能够实现上述电路检测过程的检测设备对检测芯片10j进行电路检测。
可以理解,本发明还提供一种电路检测方法,可用于对介电润湿装置100j的电路进行检测。所述方法至少包括以下步骤:
第一步,将所述开关模块30j切换至指定的所述驱动电极31j,以使所述电源输入模块20j向指定的所述驱动电极31j提供所述电源电压V in
第二步,所述驱动电极31j与所述检测电极32j发生耦合反应,以产生耦合电压(即检测电压V out),所述检测电极32j输出该检测电压V out至所述检测模块40j。
第三步,所述检测模块40j将检测电压V out进行处理后,得到峰值电压V P
第四步,所述判断模块50j获取所述峰值电压V P,并将所述峰值电压V P与预设电压值V r进行比较,并判断驱动回路3j中指定的某一回路是否发生短路或开路,同时还能够确定短路或开路发生的具体位置。
可以理解,所述方法的具体判断过程参见前述关于检测原理的描述,在此不再赘述。
相较于现有技术,本发明提供的介电润湿装置100j能够实现电路自检,以检测其内部电路是否正常。具体地,其可通过对比峰值电压与预设电压值,便可以判断介电润湿装置100j的电路是否发生异常,且能够准确判断电路中是发生了短路还是开路,以及短路或开路发生的具体位置。该介电润湿装置100j的电路检测原理简单,便于操作,检测精准,效率高,而且故障点判断准确。
实施例11
请参阅图1k至图3k,为本发明实施例提供的一种检测芯片100k,该检测芯片100k包括第一盖板1k、第二盖板2k、导电部3k以及两个第一驱动电极4k。该导电部3k包括相对设置的第一表面31k和第二表面32k,所述第一表面31k和所述第二表面32k分别与所述第一盖板1k和该第二盖板2k邻接设置,所述第一盖板1k、该导电部3k以及该第二盖板2k围设形成通道5k,该通道5k包括检测路径6k,该通道5k用于承载检测液7k,该检测液7k带有电荷。两个所述第一驱动电极4k均与该导电部3k电性连接,用于使该导电部3k通电或断电。其中,该导电部3k通电后与该检测液7k之间产生一驱动力,该驱动力用于驱动该检测液7k朝向远离该导电部3k的方向移动,以使该检测液7k移动至该检测路径6k上。该检测芯片100k用于进行核酸扩增反应,将含有核酸样本的检测液7k加入所述通道5k内,需要说明的是,检测液7k在通道5k内是以液珠的形式存在。
请参阅图2k与图3k,该检测芯片100k还包括驱动组件9k,该驱动组件9k包括设置于该第一盖板1k靠近该第二盖板2k一侧的驱动回路91k、设置于该驱动回路91k靠近该第二盖板2k一侧的第一介电层92k、设置于该第二盖板2k靠近该第一盖板1k一侧的第二导电层93k以及设置于该第二导电层93k靠近该第一盖板1k一侧的第二介电层94k,其中,该第一介电层92k与该第二介电层94k之间形成所述通道5k,所述驱动回路91k形成所述检测路径6k。通过为该驱动回路91k和该第二导电层93k通电或断电可以实现该检测液7k在该通道5k内按照上述规定的检测路径6k移动。
本实施方式中,如图2k与图3k所示,该驱动回路91k包括多个呈阵列排布的第二驱动电极911k以及与所有第二驱动电极911k电性连接的控制电极912k。具体地,该驱动回路91k为薄膜晶体管(Thin Film Transistor,TFT)驱动回路,又由于检测液7k具有导电性,结合介电润湿原理(Electrowetting-On-Dielectric,EWOD),能够实现检测液7k在通道5k内按规定的检测路径6k进行移动。利用TFT原理,能够选择性开启或关闭某个第二驱动电极911k与第二导电层93k之间的电路,从而改变该第二驱动电极911k与第二导电层93k之间的电压来改变该检测液7k与第一介电层92k和第二介电层92k之间的润湿特性,进而控制该检测液7k在通道5k内按预定的检测路径6k移动。如图2k所示,检测液7k在电极I、电极H和电极G上移动,当检测液7k在电极H上时,对电极G和第二导电层93k之间施加电压,给予电极G电压Vd,同时断开电极H和第二导电层93k之间的电压,此时检测液7k与第一介电层92k和第二介电层94k之间的润湿特性发生改变,以使电极H与检测 液7k之间的液-固接触角变大,电极G与检测液7k之间的液-固接触角变小,从而促使检测液7k从电极H往电极G移动。
本实施方式中,该第一介电层92k和该第二介电层94k均为绝缘疏水层,具体可以是聚四氟乙烯涂层,一方面可以起到绝缘疏水的作用,另一方面还能够使检测液7k在规定路径内移动的更顺畅,避免移动过程中液珠破裂。
本实施方式中,结合参阅图2k,该驱动回路91k设置于该第一盖板1k靠近该通道5k的表面。具体可以采用金属刻蚀的方法或电镀的方法形成该驱动回路91k。
本实施方式中,结合参阅图3k,该控制电极912k集成在该第一盖板1k的同一边缘,能够方便控制电极912k与连接器的连接。
请参阅图3k,该驱动回路91k根据不同的用途可以分为多个区域,分别是加样区A,试剂存储区B、多个核酸扩增区C以及出液区D。该第二盖板2k对应该加样区A还设有一加样槽22k,该加样槽22k与该加样区A连通,通过从该加样槽22k向该加样区A加入检测液7k。该试剂存储区B用于存储荧光试剂(例如荧光染料或荧光探针)。检测液7k在该核酸扩增区C进行核酸扩增反应,该核酸扩增区C包括可以包括多个区域,具体区域的数量可以根据实际的检测需求而定。
请参阅图2k与图3k,检测芯片100k内检测液7k的具体移动路径为:检测液7k进入加样区A后,在第二驱动电极911k的驱动下按照规定路径移动至核酸扩增区C进行扩增反应;当扩增反应完成后扩增后的产物移动至试剂存储区B与荧光试剂混合,从而得到结合了荧光试剂的核酸扩增产物;混合均匀的核酸扩增产物在第二驱动电极911k的驱动下移动至出液区D进入下一步检测。检测液7k在检测路径6k上移动的过程中,如果由于操作问题或者静电吸引作用检测液7k吸附在了导电部3k的侧壁上,则导电部3k的负电荷将检测液7k所带的正电荷中和掉,使检测液7k完全带负电,这样检测液7k与导电部3k之间会形成一个排斥的驱动力,检测液7k在该排斥力的作用下被驱离导电部3k的侧壁,再次回到检测路径6k上,从而保证核酸扩增反应的正常进行。本发明导电部3k和第一驱动电极4k的设计,巧妙地利用同种电荷相斥的原理,解决了检测液会意外脱离检测路径,无法正常进行扩增反应的问题。
该第一驱动电极4k与该导电部3k之间可以通过多种方式实现电性连接。请参阅图2k,本实施方式中,该第一驱动电极4k设置于第一盖板1k与导电部3k的第一表面31k之间,且该第一驱动电极4k与导电部3k接触并电性连接,为了保证通道5k的密封性,可以在第一表面31k与第一盖板1k靠近第二盖板2k的表面之间填充密封材料。本实施方式,第一驱动电极4k的安装和与外界电源的连接都比较容易实现。
本实施方式中,所述第一介电层92k上开设一开口95k,所述第一驱动电极4k嵌入所述开口95k内,且所述第一驱动电极4相对的两表面分别与第一表面31k和第一盖板1k靠近第二盖板2k的表面接触,第一介电层92k填充在第一表面31k与第一盖板1k之间的缝隙,以便于实现通道5k的密封。
本实施方式中,为了使第一驱动电极4k能够充分与第一表面31k接触,保证电性连接的稳定性,可以使第一表面31k上设有一凸起部33k,该凸起部33k嵌入开口95k内,实现与第一驱动电极4k的接触并电性连接。
本实施方式中,该第一驱动电极4k可以是电极片。
请参阅图4k,第二实施方式中,该第一盖板1k与该第一表面31k接触的区域设有两个第一凹槽11k,每个所述的第一凹槽11k内均设有一个所述的第一驱动电极4k,对应两个第一凹槽11k的第一表面31k朝向远离第二表面32k的方向凸起形成两个第一凸块34k,每一个所述第一凸块34k容置于相应的一个所述第一凹槽11k内,且第一凸块34k与位于第一凹槽11k内的第一驱动电极4k接触并电性连接。也就是,第一盖板1k上设置两个用于 容纳第一驱动电极4k的第一凹槽11k,再通过将导电部3k上的第一凸块34k实现导电部3k与第一驱动电极4k之间的接触和电性连接。本实施方式中,将第一驱动电极4k容置于第一盖板1k的第一凹槽11k内,不会影响所述通道5k的密封性,而且,第一驱动电极4k与导电部3k之间的连接稳定性更好。
本实施方式中,该第一驱动电极4k为电极片。
请参阅图5k,第三实施方式中,在该第一盖板1k与该第一表面31k接触的区域设有一个所述的第一凹槽11k,在该第二盖板2k与该第二表面32k接触的区域设有一个第二凹槽21k,其中该第一凹槽11k和该第二凹槽21k内均设有一个第一驱动电极4k。另外,该第一表面31k朝向远离该第二表面32k的方向凸起形成一个所述的第一凸块34k,该第一凸块34k容置于该第一凹槽11k内,且该第一凸块34k与一个第一驱动电极4k接触并电性连接。该第二表面32k朝向远离该第一表面31k的方向凸起形成一个第二凸块35k,该第二凸块35k容置于该第二凹槽21k内,且该第二凸块35k与另一个第一驱动电极4k接触并电性连接。本实施方式中,通过在第一盖板1k和第二盖板2k上分别设置第一凹槽11k和第二凹槽21k,同时将两个第一驱动电极4k分别容置于上述凹槽内,能够实现导电部3k的上下表面连接电源的目的,从而给该导电部3k施加电压。本实施方式中,将第一驱动电极4k容置于第一凹槽11k和第二凹槽21k内,不会影响所述通道5k的密封性,而且,第一驱动电极4k与导电部3k之间的连接稳定性更好。
本实施方式中,该第一驱动电极4k为电极片。
请参阅图6k,第四实施方式中,所述导电部3k设有两个第三凹槽36k,两个第一驱动电极4k分别设置于两个所述第三凹槽36k内且与所述导电部3k接触并电性连接。本实施方式中,通过在导电部3k上形成两个第三凹槽36k,用于容置第一驱动电极4k,避免在第一盖板1k和第二盖板2k上开槽,便于第三凹槽36k的成型,同时便于该检测芯片100k的组装。另外,第三凹槽36k设置在该导电部3k上的位置可以根据实际需求而具体设计,具体地,该第三凹槽36k的开口可以设置在第一表面31k和/或第二表面32k上,也可以设置在导电部3k远离通道5k的侧壁上。
本实施方式将第三凹槽36k的开口设置在导电部3k远离通道5k的侧壁上,此种设计,更便于第一驱动电极4k引出与电源实现电性连接,而且不会影响通道5k的密封性。
本实施方式中,该第一驱动电极4k为电极片。
请参阅图7k,第五实施方式中,该导电部3k包括导电部本体37k以及设置于该导电部本体37k靠近该通道5k一侧表面上的第一导电层38,该第一导电层38k与两个该第一驱动电极4k电性连接。本实施方式中,导电部3k无需整体导电,只需要将导电部本体37k靠近通道5k的侧壁上涂覆或贴合第一导电层38k即可。另外,此时第一驱动电极4k可以采用任意形式与第一导电层38k电性连接,只要能够实现第一导电层38k与电源的电性连接,保证通道5k的密封性便可。
请参阅图8k,第六实施方式中,该第一驱动电极8k还可以是具有一定长径比的长条型电极,例如针状或棒状电极,将第一驱动电极8k一端固定在导电部3k上,另一端连接电源。采用本实施方式的第一驱动电极8k,无需开设凹槽,降低成型难度,降低成本,另外组装便捷,导电部3k的电路引出更方便。
本发明两个第一驱动电极4k(8k)分别连接电源的正极和负极,通过两个第一驱动电极4k(8k)使导电部3k通电或断电,具体地,如图2k所示,两个第一驱动电极4k(8k)为所述导电部3k通负电压,使导电部3k在通电后带负电荷,带负的导电部3k在静电力作用下将检测液7k吸附到导电部3k靠近通道5k的侧壁上。如图9k所示,导电部3k上的负电荷与检测液7k的正电荷中和,使检测液7k只带负电荷。如图10k所示,结合图3k,此时,同种电荷相斥,检测液7k会被导电部3k与检测液7k之间的排斥力推离导电部3k的 侧壁,进入检测路径6k上,进行核酸扩增反应。本发明通过导电部3k和第一驱动电极4k的设置,可以避免检测液7k吸附在导电部3k的侧壁上,无法进入检测路径,从而无法实现后续核酸扩增反应的问题。
请参阅图11k,本发明还提供了一种包含上述检测芯片100k的核酸检测盒200k,该核酸检测盒200k包括一盒体201k以及连接器202k。该检测芯片100k设置于该盒体201k内,该连接器202k分别与该检测芯片100k内的第一驱动电极4k以及驱动组件9k电性连接。
请参阅图12k,本发明还提供了一种核酸检测设备300k,该核酸检测设备300k包括主机301k以及如上所述的核酸检测盒200k,该主机301k上设置有一检测盒安装槽302k,该核酸检测盒200k安装在该检测盒安装槽302k内。
相较于现有技术,本发明提供的检测芯片结构设计简单,组装方便,通过导电部和第一驱动电极的设计,能够使吸附在导电部侧壁上的检测液回到检测路径,从而保证核酸扩增反应的正常进行。
实施例12
请参阅图1l所示,为本发明提供的一种检测芯片10l,所述检测芯片10l包括芯片壳体1l、通道2l以及驱动回路3l。所述通道2l设于所述芯片壳体1l内,所述通道2l用于承载包含检体(例如核酸样本)的液滴a。所述液滴a能够在通道2l内进行核酸扩增反应。
所述芯片壳体1l包括第一盖板11l、间隔层12l以及第二盖板13l。该间隔层12l相对的两表面分别与该第一盖板11l和该第二盖板13l邻接,该第一盖板11l、该间隔层12l以及该第二盖板13l共同围设形成所述通道2l。
所述驱动回路3l能够驱动液滴a沿预定路径移动,从而在通道2l内完成核酸扩增反应。所述驱动回路3l包括设于所述第一盖板11l靠近所述通道2l一侧表面的多个驱动电极31l、设于所述驱动电极31靠近该第二盖板13l一侧的第一介电层33l、设于该第二盖板13l靠近所述通道2l一侧表面的检测电极32l以及设于所述检测电极32l靠近所述第一盖板11l一侧的第二介电层34l。显然,该驱动电极31l和该检测电极32l相对设置于通道2l的两侧。通过控制该驱动电极31l和该检测电极32l通电或断电,可以控制液滴a在该通道2l内按照规定的路径移动。
本实施方式中,如图1l所示,该驱动回路3l包括多个呈阵列排布的驱动电极31l和设于第二盖板13l靠近通道2l一侧表面的一导电层,该导电层作为所述检测电极32l。
本实施方式中,所述驱动电极31l设置于该第一盖板11l靠近该通道2l的一侧。具体可以采用金属刻蚀的方法或电镀的方法形成该驱动电极31l。
具体地,该驱动回路3l构成薄膜晶体管(Thin Film Transistor,TFT)驱动回路。又由于液滴a具有导电性,结合介电润湿原理,能够实现液滴a在通道2l内按规定路径进行移动。利用TFT原理,能够选择性开启或关闭某个驱动电极31l与检测电极32l之间的电路,从而改变该驱动电极31l与检测电极32l之间的电压,进而改变该液滴a与第一介电层33l和第二介电层34l之间的润湿特性,控制该液滴a在通道2l内按预定的路径移动。以下实施例中,为描述方便,以驱动电极31l包括三个电极,例如电极A、电极B和电极C为例说明液滴a在通道2l内按预定的路径移动的原理。
如图1所示,液滴a可以在电极A、电极B和电极C上移动。当液滴a在电极A上时,通过在电极B和检测电极32l之间施加电压,给予电极B电压,同时断开电极A和检测电极32l之间的电压。此时液滴a与第一介电层33l和第二介电层34l之间的润湿特性发生改变,以使电极A与液滴a之间的液-固接触角变大,电极B与液滴a之间的液-固接触角变小,从而促使液滴a从电极A往电极B移动。
显然,上述检测芯片10l中液滴驱动原理是利用电压改变介电层的亲疏水性,进而使 介电层上的液滴a吸附介电层的能力发生变化,从而促成液滴a移动。因此,当检测芯片10l组装完成以及在使用前,均需要对驱动回路3l进行电路检测,以确定驱动回路3l没有短路或开路问题,从而确保核酸扩增反应的顺利进行。
请参阅图2l与图3l,为本发明实施例提供的一种介电润湿装置100l。该介电润湿装置100l包括检测芯片10l、电源输入模块20l、开关模块30l、检测模块40l以及判断模块50l。所述电源输入模块20l通过开关模块30l电连接至所述检测芯片10l。具体地,电源输入模块20l通过开关模块30l电连接至所述检测芯片10l的驱动电极31l,用于向所述驱动电极31l输出电源电压V in
所述开关模块30l用于将所述驱动电极31l连接至所述电源输入模块20l。具体地,本实施方式中,所述开关模块30l包括多个开关单元4l,每一所述开关单元4l均与对应的一个所述驱动电极31l电性连接。当所述驱动电极31l与所述检测电极32l之间发生耦合,所述检测电极32l将接收到检测电压V out(即耦合电压)并输出。
所述检测模块40l与所述检测电极32l电性连接,用于获取所述检测电极32l输出的检测电压V out,并对所述检测电压V out进行累计,以得到检测电压V out的累计电压值V T。将检测电压V out进行累计可以积累微小的偏差信号,到达设定累计电压值V T时输出,能够有效消除误差,提高检测的准确性。
具体地,本实施方式中,所述检测模块40l至少包括电压累计电路41l。电压累计电路41l包括运算放大器U和第一电容C 1。其中,所述检测电极32l的输出端分别连接至所述运算放大器U的负向输入端和所述第一电容C 1的一端,所述第一电容C 1的另一端连接至所述运算放大器U的输出端,所述运算放大器U的正向输入端接地。所述运算放大器U的输出端作为检测模块40l的输出端,用以输出所述检测电压V out的累计电压值V T
本实施方式中,所述电压累计电路41l构成积分器。
所述判断模块50l与所述检测模块40l电性连接,用于获取所述累计电压值V T,并将所述累计电压值V T与预设电压值V r进行比较,以判断所述检测芯片10l是否发生短路或开路。当然,当判断模块50l判断检测芯片10l发生短路或开路时,其还可进一步判断短路或开路发生的位置。
可以理解的是,本实施方式中,所述电压累计电路41l可以包括但不限于电压累计电路41l(即积分器)。当然,所述检测模块40l还可以包括其他电路,例如滤波电路。
本实施方式中,所述第一介电层33l和该第二介电层34l均为绝缘疏水层,具体可以是聚四氟乙烯涂层。如此,一方面可以起到绝缘疏水的作用,另一方面还能够使液滴a在规定路径内移动的更顺畅,避免移动过程中液珠破裂。
请参阅图4l,为图3l所示电路的等效电路示意图。显然,本申请中,除包括所述电源输入模块20l,开关模块30l,电压累计电路41l之外,检测芯片10l内的第一介电层33l、第二介电层34l以及通道2l内的空气都会在驱动回路3l中形成等效电容。具体地,所述第一介电层33l在驱动回路3l中会形成等效的第一介电层电容C di-B。所述第二介电层34l在驱动回路3l中会形成等效的第二介电层电容C di-T。第一介电层33l与第二介电层34l之间的通道2l内若不填充硅油,则形成等效的空气电容C air。若通道2l内填充硅油,则形成的等效的空气电容C air的值会根据硅油的添加量而改变。其中,每个驱动电极31l所在的驱动回路3l中,第一介电层电容C di-B、空气电容C air和第二介电层电容C di-T依次串联,所述第一介电层电容C di-B远离空气电容C air的一端连接所述驱动电极31l,所述第二介电层电容C di-T远离空气电容C air的一端连接所述检测电极32l。
另外,本实施方式中,当所述开关单元4l与对应的驱动电极31l通过走线连接时,所述开关单元4l与对应的所述驱动电极31l之间会因为走线的存在而产生第一电阻(即等效电阻)(R BA,R BB,R BC)和第二电容(即等效电容)(C BA,C BB,C BC)。其中,每个驱动电极 31l所在的驱动回路3l中,所述第一电阻(R BA,R BB,R BC)和所述第二电容串联(C BA,C BB,C BC),其中第一电阻(R BA,R BB,R BC)的一端连接所述开关模块30l,另一端分别连接所述第二电容(C BA,C BB,C BC)和所述驱动电极31l,所述第二电容(C BA,C BB,C BC)的另一端接地。
本实施方式中,当所述检测电极32l与检测模块40l通过走线连接时,所述检测电极32l与所述检测模块40l之间会因为走线的存在而产生第二电阻(即等效电阻)R T
本实施方式中,所述电源输入模块20l输出的所述电源电压V in为连续方波脉冲电压。因此,检测电极32l输出的检测电压V out也为连续方波脉冲电压。
可以理解,在本申请实施例中,所述开关模块30l可以在控制器(图未示)的控制下选择接通某一个驱动电极31l,进行单个驱动电极31l的逐一检测,检测准确,能够精准判断该驱动电极31l和检测电极32l之间构成的回路是否发生短路或开路以及短路发生的位置。
可以理解,当所述检测电极32l输出检测电压V out至所述电压累计电路41l时,电压累计电路41l通过对检测电压V out进行累计,以得到累计电压值V T。接着,检测模块40l将累计电压值V T输出至判断模块50l。判断模块50l再将累计电压值V T与预设电压值V r进行判断比较,以通过两者之间的差异来判断驱动回路3l中是否出现开路或短路,并能够进一步确定短路或开路发生的具体位置。
可以理解,检测前需要预先检测出驱动回路3l电路正常情况下的累计电压值,作为预设电压值V r。即预设电压值V r为驱动回路3l电路正常情况下的累计电压值V T。下面详细介绍本发明提供的介电润湿装置100l的电路检测原理。
请参阅图4l与图5l,首先测试介电润湿装置100l的电路是否正常的检测原理。
其中,在检测芯片10l的通道2l内尚未灌入硅油时,如图4l所示,由电源输入模块20l输入电源电压V in(如图5l,输入电源电压V in为一连续方波脉冲电压),经开关模块30l切换到指定的驱动电极31l所在的电路,后经检测电极32l输出检测电压V out,检测电压V out经检测模块40l中的电压累计电路41l(积分器)累计处理并得到累计电压值V T(如图5所示),最后检测模块40l将累计电压值V T输出至判断模块50l进行比较判断。
例如,当开关模块30l中的开关单元4l切换到电极A时,电极A与检测电极32l构成一个驱动回路,电源输入模块20l输出的连续方波脉冲电压经等效电阻R BA(电极A与开关模块30l之间的走线电阻)到达电极A,电极A与检测电极32l发生耦合反应后,检测电极32l会输出检测电压V out(即耦合电压),再经检测电极32l与检测模块40l之间的走线电阻到达电压累计电路41l(即积分器)。电压累计电路41l再将检测电压V out进行累计处理并得到累计电压值V P并输出至判断模块50l。判断模块50l获取该累计电压值V P后,可利用累计电压值V T与正常电路的预设电压值V r之间的差异来判断介电润湿装置100l的电路是否正常。
如图5l所示,一个方波电压周期内,介电润湿装置100l的电路正常的累计电压值V T如图5中输出电压V out的峰值点所示。本实施方式中,累计电压值V T对应的电压曲线与预设电压值V r对于的电压曲线重叠,累计电压值V T与预设电压值V r相等,因此可以证明介电润湿装置100l的电路正常。
可以理解的是,当检测芯片10l的通道2l内注入硅油后,其电路检测原理与上述通道2l内为空气时检测原理相同,差别只在当注入硅油后的累计电压值V P的大小与未注入硅油时的累计电压值V T有所不同。
请参阅图6l与图7l,接下来介绍测试介电润湿装置100l的电路发生开路时的检测原理。
如图6l所示,由电源输入模块20l输入电源电压V in(如图7l,输入电源电压V in为一连续方波脉冲电压),经开关模块30l切换到指定的驱动电极31l所在的电路,当电路出现 开路时,电源电压V in无法经开关模块30l切换到驱动电极31l的电路,也无法到达检测电极32l。因此,检测模块40l的电压累计电路41l(即积分器)无法收到输出电压V out,也无法对输出电压V out进行累计得到累计电压值V T,则判断模块50l很容易判断出指定的驱动电极31l所在的电路发生了开路。
以电极A所在的电路走线开路为例,由于走线开路导致检测模块40l无法收到输出电压V out并得到累计电压值V T。故,此时就可以根据开路电压值的大小与预设电压值V r值之间的电压差异ΔV 1来判断电路是否发生开路。如图7,给出了输出电压V out为正常预设电压值V r对应的电压曲线,输出电压V out为发生开路后累计电压值V T对应的电压曲线,由于检测模块40l无法接收到检测电压V out,进而无法得到累计电压值V T,因此累计电压值V T对应的电压曲线为一条直线,累计电压值V T和预设电压值V r之间的高度差为电压差ΔV 1,此时,电压差ΔV 1较大,通过ΔV 1以及曲线c的形状便可以判断电极A所在的电路出现开路。
可以理解的是,当其他驱动电极31l走线或检测电极32l走线发生开路也可根据上述原理进行判断。
请参阅图8l与图9l,最后介绍测试介电润湿装置100l的电路发生短路时的检测原理。
如图8l所示,由电源输入模块20l输入电源电压V in(如图9l,输入电源电压V in为一连续方波脉冲电压),经开关模块30l切换到指定的驱动电极31l所在的电路,后经检测电极32l输出检测电压V out,检测电压V out经检测模块40l中的电压累计电路41l(即积分器)累计处理得到累计电压值V T,最后积分器将累计电压值V T输出至判断模块50l进行比较判断。由电源输入模块20l输入电源电压V in,当指定的驱动电极31l所在的电路出现短路时,不同驱动电极31l之间走线互相连通,这会导致驱动某一个驱动电极31l的阻抗R C增加,积分器得到的累计电压值V T的变化减少,故此时就可以根据短路后得到的累计电压值V T的大小与正常预设电压值V r值之间的电压差ΔV 2来判断电路是否发生短路。如图9l示出了,输出电压V out为正常预设电压值V r对应的电压曲线和输出电压V out为累计电压值V T对应的电压曲线,发生短路后,由于积分器得到的累计电压值V T的变化较小,因此累计电压值V T对应的电压曲线(的斜率较正常预设电压值V r对应的电压曲线的斜率要小,两电压曲线对应的峰值点之间的高度差为电压差ΔV 2,此时,电压差ΔV 2比开路时的电压差ΔV 1要小,通过电压差ΔV 2和累计电压值V P对应的电压曲线形状可以判断指定驱动电极31l所在的电路是否出现短路。
以电极A所在的电路走线短路为例,由于走线短路导致电极A所在的电路走线与电极B所在的电路走线互相连通,从而导致驱动电极A或电极B时的阻抗R C增加,使得积分器得到的累计电压值V T所在的电压曲线的斜率相较于正常预设电压值V r的电压曲线斜率变小,故此时就可以根据短路累计电压值V T的大小与正常预设电压值V r之间的电压差ΔV 2来判断电路发生了短路。
可以理解的是,当需要检测其他驱动电极31l所在的电路走线或检测电极32l所在的电路走线是否出现短路时也可以根据上述原理进行判断。
显然,在对介电润湿装置100l的电路进行检测时,首先需要检测介电润湿装置100l正常工作时的电路,以得到如图5所示的正常电路的电压曲线图。如此,当介电润湿装置100l在使用过程中出现异常时,可直接通过积分器得到的累计电压值V T的变化便可以直接判断电路中是否发生了开路或短路,以及短路或开路发生的具体位置。本申请中的介电润湿装置100l可通过自带的电路对其检测芯片10l进行自行检测,无需额外设置检测设备。其检测方法简单,便于操作,检测精准,效率高,而且故障点判断准确。
可以理解的是,在其他实施例中,也可以采用单独的能够实现上述电路检测过程的检测设备对检测芯片10l进行电路检测。
可以理解,本发明还提供一种电路检测方法,可用于对介电润湿装置100l的电路进行检测。所述方法至少包括以下步骤:
第一步,将所述开关模块30l切换至指定的所述驱动电极31l,以使所述电源输入模块20l向指定的所述驱动电极31l提供所述电源电压V in
第二步,所述驱动电极31l与所述检测电极32l发生耦合反应,以产生耦合电压(即检测电压V out),所述检测电极32l输出该检测电压V out至所述检测模块40l。
第三步,所述检测模块40l将检测电压V out进行累计后,得到累计电压值V T
第四步,所述判断模块50l获取所述累计电压值V T,并将所述累计电压值V T与预设电压值V r进行比较,以判断驱动回路3l中指定的某一回路是否发生短路或开路,同时还能够确定短路或开路发生的具体位置。
可以理解,所述方法的具体判断过程参见前述关于检测原理的描述,在此不再赘述。
相较于现有技术,本发明提供的介电润湿装置100l能够实现电路自检,以检测其内部电路是否正常。具体地,其可通过对比累计电压值与预设电压值,便可以判断介电润湿装置100l的电路是否发生异常,且能够准确判断电路中是发生了短路还是开路,以及短路或开路发生的具体位置。该介电润湿装置100l的电路检测原理简单,便于操作,检测精准,效率高,而且故障点判断准确。
实施例13
本发明一实施例提供一种平面印刷天线100m的制造方法,该方法具体包括以下步骤:
步骤S11m,请参阅图1m,提供一基板1m,所述基板1m包括相对设置的第一表面11m和第二表面12m。
本实施方式中,所述基板1m的材质为绝缘树脂,具体地,基板1m的材质可以选自聚苯醚(Polyphenylene Oxide,PPO)、聚酰亚胺(polyimide,PI)、聚对苯二甲酸乙二醇酯(Polyethylene Terephthalate,PET)以及聚萘二甲酸乙二醇酯(Polyethylene Naphthalate,PEN)等树脂中的一种。
本实施方式中,所述基板1m的材质优选为PI或PET。采用PI或PET作为基材能够降低天线的制造成本。
步骤S12m,请参阅图2m与图3m,提供一复合异质网版7m,所述复合异质网版7m包括框架71m、设于所述框架71m内侧的中空的连接框72m、以及设于所述连接框72m远离所述框架71m一侧的丝网73m。所述丝网73m上设有印刷图形74m,所述连接框72m的硬度小于所述丝网73m的硬度。
本实施方式中,所述连接框72m的材质可以为高分子聚合物,所述丝网73m的材质可以为金属。
步骤S13m,请参阅图4m,于所述第一表面11m设置所述复合异质网版7m,通过平面印刷的方式将所述印刷图形74m印刷于所述第一表面11m形成辐射金属层,所述辐射金属层2m包括第一金属区21m以及与所述第一金属区21m电性连接的第二金属区22m,所述辐射金属区2m还包括与所述第一金属层21m电性连接的馈入端24m,所述基板1m于所述第一金属区21m与所述第二金属区22m之间的区域形成弯折区23m。采用平面印刷的方式形成辐射金属层2m相较于传统的FPC或PCB制程,简化了制程,节省材料,制程更环保,而且平面印刷为低温制程,整体制造成本更为低廉。
采用所述复合异质网版7m能够快速印刷所述辐射金属层2m,而且复合异质网板7m中连接框72m与丝网73m为异质材料,连接框72m的硬度小于丝网73m的硬度,连接框72m采用具有一定回弹性的高分子聚合物,能够在印刷时,保证丝网73m与基板1m的第一表面11m精密贴合,复合异质网版7m的间接耐印力低,从而提高印刷的精细度及精准 度,同时还能提高复合异质网版7m的耐用度。另外,采用连接框72m替代部分丝网73m可以降低成本。采用复合异质网版7m通过平面印刷的方式印刷辐射金属层2m,能够简化制程,降低制造成本。
本实施方式中,所述辐射金属层2m通过平面印刷导电浆料后固化得到。
本实施方式中,所述辐射金属层2m是采用银浆、铜浆、碳浆等导电浆料通过平面印刷的方式形成在基板1m的第一表面11m上。
本实施方式中,所述辐射金属层2m的厚度可以根据不同的需求通过印刷不同层数的导电浆料来设计。
本实施方式中,根据基板1m和印刷导电浆料的材料特性通过烧结固化的方式将印刷的导电浆料进行固化。
本实施方式中,固化温度为70℃~250℃。
本实施方式中,所述馈入端24m部分或全部位于一个所述第二金属区22m。
步骤S14m,请参阅图5m,结合参阅图4m,于所述弯折区23m上形成多个折线孔3m,多个所述折线孔3m形成弯折线4m。
本实施方式中,通过激光打孔方式形成所述折线孔3m。
本实施方式中,在形成折线孔3m之前,可先对固化后的产品进行切割成型,将多余的部分切除,然后,通过激光打孔的方式在弯折区23m打出多个折线孔3m。其中折线孔3m位于弯折区23m(即非金属区),所述折线孔3m贯穿基板1m。
本实施方式中,所述折线孔3m可以是圆孔、矩形孔或其它形状的孔,本实施方式优选圆孔。
本实施方式中,所述折线孔3m的孔径在0.05~0.5mm,折线孔3m的孔径不能太大,孔径太大会影响最终形成的平面印刷天线的整体强度,但孔径也不能太小,孔径太小则达不到易弯折的目的,影响弯折区23m的弯折性。
步骤S15m,请参阅图6m,提供一馈线5m,将所述馈线5m通过一固定部6m固定且电连接在所述馈入端24m上。
本实施方式中,所述馈线5m为射频馈线,所述馈线5m的一端与辐射金属层2m的馈入端24m连接,另一端设有一射频连接器51m,通过射频连接器与射频通信模组连接,实现射频信号传输的目的。
本实施方式中,所述固定部6m的材质可以是导电胶或焊锡。可以通过点导电胶或低温焊锡的方式将所述馈线5m远离射频连接器51m的一端固定在所述馈入端24m上。采用低温制程将馈线5m固定在辐射金属层2m上,制程的难度低,能耗低,有利于降低成本,不会因传统的高温焊接制程影响馈线5m的性能。
本实施方式中,在焊接完馈线5m后还可以对辐射金属层2m的边缘进行裁切,将多余的部分去除。
步骤S16m,请再次参阅图6m,将所述第二金属区22m沿所述弯折区23m进行弯折,从而得到所述平面印刷天线100m。
请参阅图6m与图7m,结合参阅图5m,封装时,所述平面印刷天线100m可以根据实际需要将第一金属区21m和第二金属区22m贴附在主板(图未示)的不同承载面,例如,如图6所示,所述平面印刷天线100m包括一个第一金属区21m和两个第二金属区22m,将平面印刷天线100m设置在主板的边缘,主板包括上表面、下表面以及侧面,此时可以将第一金属区21m贴附在主板的侧面,两个第二金属区22m分别贴附在主板的上表面和下表面。具体地,所述第一金属区21m与所述第二金属区22m在与主板贴合时可以采用绝缘的干式或湿式胶体(例如PET双面胶、PI双面胶、UV胶或压敏胶等),贴合简单,效率高。辐射金属层2m上的第一金属区21m和第二金属区22m主要起到辐射信号的作用,通过设 置多个第二金属区22m可以增大辐射面积,而且采用本发明的折叠的方式封装天线,在增大辐射面积的同时,不会占用过多封装空间,有利于整体封装结构的小型化。本发明通过平面印刷的方式在柔性的基板1m上形成辐射金属层2m,工艺简单,成型周期短,效率高,成本低,低温制程的能耗低,环保,而且平面印刷的幅面不受限制,可以同时印刷多个辐射金属层2m以制备多个平面印刷天线100m,效率高。折线孔3m的设计,有利于平面印刷天线100m的弯折,且不影响辐射金属层2m的信号传输,能够减少弯折区金属层翘曲、辐射金属层2m与基板1m分离等不良。上述设计可以增大平面印刷天线100m的辐射面积,而且不会占用过多主板8m的空间,有利于整体封装产品的轻薄短小化。
请参阅图6m与图7m,结合参阅图5m,本发明还提供一种平面印刷天线100m,该平面印刷天线100m包括:基板1m、辐射金属层2m、多个折线孔3m以及馈线5m。所述基板1m包括相对设置的第一表面11m和第二表面12m。所述辐射金属层2m设于所述第一表面11m,所述辐射金属层2m包括第一金属区21m和与所述第一金属区21m电性连接的至少一第二金属区22m,一个所述第二金属区22m包括一馈入端24m,所述基板1m于所述第一金属区21m与所述第二金属区22m之间的区域形成,弯折区23m。多个折线孔3m设于所述弯折区23m,多个所述折线孔3m形成弯折线4m。所述第一金属区21m可沿所述弯折线4m相对于所述第一金属区21m弯折。所述馈线5m与所述馈入端24m通过一固定部6m固定且电性连接。
本申请实施方式中,所述折线孔3m的孔径为0.05~0.5mm。
本申请实施方式中,所述基板1m的材质为聚酰亚胺、聚苯醚、聚对苯二甲酸乙二醇酯以及聚萘二甲酸乙二醇酯中的一种。
本申请实施方式中,所述固定部6m的材质包括导电胶或锡球。
请参阅图8m与图9m所示,为所述平面印刷天线100m的信号检测结果图,使用本发明的所述平面印刷天线100m得到的电压驻波比(VSWR)带宽较窄,天线增益与中心频率均较好,能够满足天线的使用需求。
综上所述,本发明提供的平面印刷天线采用复合异质网版通过平面印刷的方式在柔性的基板上形成辐射金属层,工艺简单,成型周期短,效率高,成本低,环保,而且平面印刷的幅面不受限制,可以同时印刷多个辐射金属层以制备多个平面印刷天线,效率高;复合异质网版的印刷精度高;制作折线孔的设计,有利于平面印刷天线的弯折,且不影响辐射金属层的信号传输,能够减少弯折区金属层翘曲、辐射金属层与基板分离等不良,上述设计可以增大平面印刷天线的辐射面积,而且不会占用过多主板的空间,有利于整体封装产品的轻薄短小化。
实施例14
请参阅图1n至图8n,本发明一实施例提供一种多层柔性线路板100n的制造方法,该方法具体包括以下步骤:
步骤S11n,请参阅图1n,提供一基板1n,所述基板1n包括相对设置的第一表面11n和第二表面12n。
本实施方式中,所述基板1n的材质为绝缘树脂,具体地,基板1n的材质可以选自聚苯醚(Polyphenylene Oxide,PPO)、聚酰亚胺(polyimide,PI)、聚对苯二甲酸乙二醇酯(Polyethylene Terephthalate,PET)以及聚萘二甲酸乙二醇酯(Polyethylene Naphthalate,PEN)等树脂中的一种。
本实施方式中,所述基板1n的材质优选为PI或PET。
步骤S12n,请参阅图2n,于所述第一表面11n形成线路层2n,所述线路层2n包括第一线路区21n以及与所述第一线路区21n电性连接的第二线路区22n,所述基板1n于所述 第一线路区21n与所述第二线路区22n之间的区域形成第一弯折区23n。
本实施方式中,所述线路层2n通过印刷导电浆料后固化得到。
本实施方式中,所述线路层2n是采用银浆、铜浆、碳浆等导电浆料通过印刷的方式形成在基板1n的第一表面11n上。
本实施方式中,印刷方式可以是平面印刷(例如网版印刷、移印、喷墨)或3D打印方法印刷。
本实施方式中,所述线路层2n的线路线宽为8~20μm,优选为8~10μm,或11~13μm。
本实施方式中,所述线路层2n的线路厚度可以根据不同的需求通过印刷不同层数的导电浆料来设计所述线路层2n的厚度。
本实施方式中,根据基板1n和印刷导电浆料的材料特性通过烧结固化的方式将印刷的导电浆料进行固化。
本实施方式中,固化温度为70℃~250℃。
步骤S13n,请参阅图3n,结合参阅图2n,于所述第一弯折区23n上形成多个折线孔3n,多个所述折线孔3n形成弯折线4n。
本实施方式中,通过激光打孔方式形成所述折线孔3n。
本实施方式中,在形成折线孔3n之前,可先对固化后的产品进行切割成型,将多余的部分切除,然后,通过激光打孔的方式在第一弯折区23n打出多个折线孔3n。其中折线孔3n位于第一弯折区23n(即非线路区),所述折线孔3n贯穿基板1n。
本实施方式中,所述折线孔3n可以是圆孔、矩形孔或其它形状的孔,本实施方式优选圆孔。
本实施方式中,所述折线孔3n的孔径在0.05~0.5mm,折线孔3n的孔径不能太大,孔径太大会影响最终形成的多层柔性线路板的整体强度,但孔径也不能太小,孔径太小则达不到易弯折的目的,影响第一弯折区23n的弯折性。折线孔的设计,有利于线路板的弯折,形成多层柔性线路板,且不影响线路层的线路传输,能够减少弯折区翘曲、线路层2n与基板1n分离等不良。
步骤S14n,请参阅图4n,结合参阅图2n,于所述第二表面12n(即,基板1n的非线路面)上设置功能件5n,功能件5n对应第一线路区21n和第二线路区22n中的至少一者,从而得到单面柔性线路板10n。
通过在基板1n的非线路面设置功能件5n,不会占用线路层2n的空间,也不影响线路层2n的印刷,而且便于功能件5n的安装,有利于实现线路板的多功能化。
单面柔性线路板单面柔性线路板本实施方式中,所述功能件5n可以是导热铜箔和电磁屏蔽器件等。如所述功能件5n是导热铜箔,则可以起到导热散热的作用,如所述功能件5n是电磁屏蔽器件,则可以起到电磁屏蔽的作用。
步骤S15n,请参阅图5n至8n,将所述单面柔性线路板10n沿所述第一弯折区23n进行弯折,使所述第二线路区22n与所述第一线路区21n层叠设置,从而得到所述多层柔性线路板100n。
即,本发明将上述制备的2D的单面柔性线路板10n的第一线路区21n和第二线路区22n对折并贴合在一起,进而形成3D的多层柔性线路板100n。本发明首先通过印刷方式在柔性的基板1n上形成线路层2n,以制备出单面柔性线路板10n,在基板1n的单面进行线路印刷,工艺简单,成型周期短,效率高,而且单面柔性线路板10n的幅面不受限制,可以根据实际需要进行设计。
本实施方式中,所述第二线路区22n可以是多个,将所述第一线路区21n对应的第二表面12n与第二线路区22n对应的第二表面12n贴合在一起,后将其他第二线路区22n对应的第二表面12n依次层叠贴合在前面一个第二线路区22n的线路层2n上,从而形成多层 柔性线路板100n。
本实施方式中,所述第一线路区21n的数量也可以是多个,相邻两个所述第一线路区21n之间设有第二弯折区24n且电性连接,每个所述第一线路区21n的四周均可以设置第二线路区22n,也可以不设置第二线路区22n,此时在层叠时,如果有第二线路区22n,将每个所述第一线路区21n以及相应的第二线路区22n均层叠贴合,形成多层柔性线路板100n。在后续应用过程中,可以将多个电性连接的第一线路区21n(包括与第一线路区21n叠设的第二线路区22n)置于不同的应用平面上,不同的应用平面可以位于同一平面,也可以位于不同的平面,当位于不同的平面时,第二弯折区24n可以处于弯折状态,以使多个第一线路区21n可以处于不同的平面。利用本实施方式的多层柔性线路板100n,可以减少同一应用设备使用线路板的数量,简化线路引出的复杂度。
本实施方式中,所述第一线路区21n与所述第二线路区22n在贴合时可以采用绝缘的干式或湿式胶体(例如PET双面胶、PI双面胶、UV胶或压敏胶等),并进行固化(热固化、感压型固化、UV固化等)得到多层柔性线路板100n。
请参阅图7n与图8n,结合参阅图2n至图3n,本发明还提供一种多层柔性线路板100n,该多层柔性线路板100n包括:基板1n、线路层2n以及多个折线孔3n。所述基板1n包括相对设置的第一表面11n和第二表面12n。所述线路层2n设于所述第一表面11n,所述线路层2n包括第一线路区21n和与所述第一线路区21n电性连接的第二线路区22n,所述基板1n于所述第一线路区21n与所述第二线路区22n之间的区域形成第一弯折区23n。多个折线孔3n设于所述第一弯折区23n,多个所述折线孔3n形成弯折线4n。所述第一线路区21n相对于所述第一线路区弯折并与所述第二线路区22n层叠设置。
本实施方式中,所述第二表面12n上设有功能件5n,所述功能件与所述第一线路区和所述第二线路区中的至少一者对应。
本实施方式中,所述折线孔3n的孔径为0.05~0.5mm。
本实施方式中,所述基板1n的材质为聚酰亚胺、聚苯醚、聚对苯二甲酸乙二醇酯以及聚萘二甲酸乙二醇酯中的一种。
本实施方式中,所述第一线路区21n的数量为多个,多个所述第一线路区21n电性连接,相邻两个所述第一线路区21n之间设有第二弯折区24n。
以下通过具体实施方式,进一步对本发明制备的单面柔性线路板10n进行阻值分析。其中,实施例的基板1n采用PET或PI,不同基板1n的厚度相同,线路层2n为银胶层,对比例为传统FPC(铜箔线路)。
请参阅图9n所示,为采用本发明上述方法制备的基于不同基板的单面柔性线路板以及传统FPC在不同线路厚度时的阻值变化曲线图。从图9n可以看出,对于同一基板(PET或PI),随着线路厚度增加,阻值降低。针对不同基板(PET与PI),同一线路厚度,其中PI基板的单面柔性线路板阻值要比PET基板的单面柔性线路板阻值小,说明基板的电性能对单面柔性线路板的阻值也有一定影响,其中PI的电性能优于PET,因此选择PI作为柔性线路板的基板,柔性线路板的电性能更优良。虽然采用本方案制作的单面柔性线路板的阻值要比传统FPC铜箔线路板的阻值略高,但完全能够满足单次使用的性能要求,综合性能也能够满足使用需求,而且相较于传统FPC制备工艺简单,成本低廉,成型周期短,非常适用于一次性可抛弃产品的应用。
请参阅图10n(a)至图10n(d)所示,为采用本发明的上述方法基于PET基板和PI基板制作的单面柔性线路板,针对不同线路厚度弯折前后的阻值对比图。具体提高的比例是,PET基板单层银胶线路折弯后阻值相较于没有折弯提高了12.09%,双层银胶线路折弯后阻值相较于没有折弯提高了16.53%;PI基板单层银胶线路折弯后阻值相较于没有折弯提高了1.11%,双层银胶线路折弯后阻值相较于没有折弯提高了3.95%。由此可以看出,对于同一 基板同一线路厚度,有弯折线的单面柔性线路板的阻值要比没有弯折线的阻值稍微提高,但对单面柔性线路板的功能影响不大,尤其是采用PI基板单层银胶线路,弯折前后阻值相差不大。
请参阅图11n所示,为采用本发明上述方法基于不同基板及不同线路厚度制作出的单面柔性线路板在未打折线孔时弯折区的图片。
请参阅图12n所示,为采用本发明上述方法基于PET基板制造的单面柔性线路板同一线路厚度未弯折、弯折后的放大图片。
请结合参阅图10n(a)至图12n,可以看出,采用PET基板和PI基板制备单面柔性线路板,弯折区线路层都不会出现线路层与基板分离,线路龟裂等不良。不过,PET基板相对于PI基板在弯折区存在出现折痕的风险,PET基板制作的单面柔性线路板在弯折前后阻值的升高可能与PET基板弯折后自身出现的折痕有关。这也说明,基板本身的耐弯折性对阻值具有一定影响,采用PET作为基板时,则需要关注弯折区PET的弯折状况,产品良率可能会有所下降,而PI相较于PET作为基板,没有弯折区出现折痕的风险,产品良率会更高,而且电性能更优良。
请参阅图13n所示,为采用本发明的上述方法基于PET基板制作的单面柔性线路板打折线孔前后的阻值增加百分比对比图。从图13n可以看出,PET基板未打折线孔弯折后较弯折前阻值提供12.90%,一实施方式中PET基板打折线孔弯折后较弯折前阻值提供12.03%,另一实施方式中PET基板打折线孔弯折后较弯折前阻值提供14.02%。由此可看出,打弯折孔前后阻值变化不明显,说明打弯折孔对单面柔性线路板的阻值影响不大。
请参阅图14n与图15n,分别为采用本发明上述方法制备的基于PET和PI针对两种线路宽度的单面柔性线路板的阻值变化曲线图。其中,基板为PET和PI,第一版线宽为8~10μm,第二版线宽为11~13μm,由图16n可以看出,线路宽度较宽时,阻值降低。本发明的线路层2n的线宽可以做到8~20μm,可以根据实际使用需要,具体设置线路宽度。
请参阅图16n与图17n,本发明还提供一种检测芯片200n,该检测芯片200n用于核酸检测,该检测芯片200n包括:第一盖板201n、第二盖板202n、间隔层203n以及多层柔性线路板100n。所述间隔层203n相对的两表面分别与所述第一盖板201n和所述第二盖板202n邻接设置,所述第一盖板201n、所述间隔层203n以及所述第二盖板202n围设形成通道204n。多层柔性线路板100n设于所述第一盖板201n和/或所述第二盖板202n远离所述通道204n的一侧,所述多层柔性线路板100n为如上所述的多层柔性线路板100n。
本实施方式中,所述多层柔性线路板100n与所述第一盖板201n和/或所述第二盖板202n之间通过胶粘贴在一起。
请参阅图16n与图17n,结合参阅图2n,本实施方式中,所述多层柔性线路板100n包括两个第一线路区21n,每个其中一个所述第一线路区21n相邻设有两个第二线路区22n,此第一线路区21n和两个第二线路区22n设于第一盖板201n远离通道204n的表面。另一个所述第一线路区21n相邻设有一个第二线路区22n,此第一线路区21n和一个第二线路区22n设于第二盖板202n远离通道204n的表面。本实施方式中,该多层柔性线路板100n用于为所述通道204n加热,因此在通道204n相对的两侧设置加热线路,有利于通道204n加热温度的均匀性。此时,通道204n相对两侧设置的多层柔性线路板100n,只需要在一侧的线路层2n上设置输出线路便可,便于多层柔性线路板100n的线路引出,同时也有能节省线路板的安装空间。
本实施方式中,可以采用双面胶(例如导热双面胶)将多层柔性线路板100n粘贴在第一盖板201n和/或第二盖板202n的表面。
综上所述,本发明提供通过将单面柔性线路板沿弯折线弯折形成多层柔性线路板,较传统的多层柔性线路板的制备方法简单,本申请成本低,广泛适用于一次性使用产品。
实施例15
请参阅图1o至图5o所示,为本发明实施例提供的一种液体转移装置100o,该液体转移装置100o包括上壳体1o、下壳体2o以及取液组件3o。其中,该上壳体1o包括第一侧壁11o、第一顶壁16o和挤压部12o,该第一侧壁11o连接该第一顶壁16o且围设形成第一容纳腔13o,该挤压部12o设置于该第一顶壁16o且容置于该第一容纳腔13o内。该下壳体2o包括第二侧壁21o和第二顶壁24o,该第二侧壁21o连接该第二顶壁24o且围设形成第二容纳腔22o,该上壳体1o收容于该第二容纳腔22o内且用于沿该第二容纳腔22o的中心轴co往复移动。
该取液组件3o包括取液管31o和与该取液管31o连接的取液头32o,该取液管31o设于该第一顶壁16o和该第二顶壁24o之间且对应该挤压部12o设置,该取液头32o伸出该第二顶壁24o,该挤压部12o用于抵持该取液管31o。其中,该上壳体1o沿该第二容纳腔22o的中心轴c往复移动,进而带动该挤压部12o相对该取液管31o沿该第二容纳腔22o的中心轴c往复移动,以使该取液管31o发生形变,从而使所述取液管31o释放液体或吸取液体。
请参阅图6o与图7o,结合参阅图4o与图5o,该挤压部12o包括第三侧壁121o和第四侧壁122o。该第三侧壁121o一端与该第一顶壁16o连接,另一端与该第四侧壁122o连接。该第三侧壁121o围设形成第一取液通孔124o,该第四侧壁122o围设形成第二取液通孔125o。该第一取液通孔124o与该第二取液通孔125o连通且均与该第二容纳腔22o同轴,该第二取液通孔125o的孔径小于该第一取液通孔124o的孔径,且该第二取液通孔125o的孔径沿远离该第一取液通孔124o的方向递减。该第二容纳腔22o通过该第一取液通孔124o及该第二取液通孔125o与该第一容纳腔13o连通。该取液管31o用于经由该第一取液通孔124o伸入或退出该第二取液通孔125o,该第四侧壁122o用于抵持或松开该取液管31o的侧壁,以使该取液管31o变形或恢复形变以释放液体或吸取液体。
本实施方式中,该第四侧壁122o靠近该第二取液通孔125o的表面设置有挤压块126o。该取液管31o依次穿过该第二容纳腔22o和该第一取液通孔124o,最后进入该第二取液通孔125o,该挤压块126o抵持该取液管31o的侧壁,以使该取液管31o变形,排出该取液管31o内部的空气或液体。当该取液管31o反向退出该第二取液通孔125o后,该取液管31o恢复形变以吸取液体。
本实施方式中,该挤压块126o的数量为两个,两个该挤压块126o分别设置于该第四侧壁122o相对的内表面,两挤压块126o用于从取液管31o相对的两侧挤压该取液管31o,可以使该取液管31o变形均匀,通过取液管31o的形变量可以实现定量取液,而取液管31o的形变量可以通过两挤压块126o之间的距离来设定。可以理解的是,该挤压块126o还可以设置成一体式的挤压块126o,即在第四侧壁122o设置一圈挤压块126o。
请参阅图6o与图7o,该上壳体1o还包括设置于第一侧壁11o远离第一顶壁16o一端的第五侧壁14o、连接该第五侧壁14o和该第一侧壁11o的第一平台部15o、设置于该第一顶壁16o上的定位通孔17o、设置于该第一侧壁11o上的第一滑杆18o以及设置于该第一滑杆18远离该第五侧壁14o一端的第一卡勾19o。在该上壳体1o相对该下壳体2o沿该第二容纳腔22o的中心轴c往复移动的过程中,该第二侧壁21o的端面可以抵持在该第一平台部15o靠近该第一侧壁11o的表面,该第一平台部15o对该第二侧壁21o能够起到限位的作用。该第一顶壁16o对应该第一取液通孔124o设置有第三取液通孔161o,该第三取液通孔161o、该第一取液通孔124o与该第二取液通孔125o同轴,且该第三取液通孔161o与该第一取液通孔124o的孔径相同。
本实施方式中,该第一滑杆18o为两个,两个第一滑杆18o分别设置于该第一侧壁11o 相对的两边。
本实施方式中,该第一顶壁16o上分布有四个定位通孔17o。
请参阅图8o,结合参阅图4o至图7o,该下壳体2o还包括设置于该第二侧壁21o上的滑槽23o、设置于该第二顶壁24o且对应该第三取液通孔161o的第四取液通孔28o、设置于该第二顶壁24o靠近该第二容纳腔22o一侧的第二滑杆25、设置于该第二滑杆25o靠近该第一顶壁16o一端的第二卡勾26o以及设置于该第二顶壁24o靠近该第二容纳腔22o一侧的导向柱27o。该第四取液通孔28o与该第三取液通孔161o同轴且孔径相同。第一滑杆18o用于相对该滑槽23o上下移动,该第一卡勾19o用于卡入该滑槽23o内并在该第一滑杆18o的带动下在该滑槽23o内移动,以实现该第一侧壁11o与该第二侧壁21o移动式卡合连接。该第一顶壁16o与该第二顶壁24o相对设置,该第二滑杆25o用于穿过该第一顶壁16o上的定位通孔17o,并相对该定位通孔17o上下移动,该第二卡勾26o用于卡在该第一顶壁16o对应该定位通孔17o的内表面,防止上下壳体在移动过程中脱离。该导向柱27o用于穿过该第一顶壁16o上的导向孔,从而在上壳体1o与下壳体2o相对移动过程中起到导向的作用,另外,该导向柱27o靠近该第一顶壁16o的一端可拆卸地设有定位头(图未示,具体可以是螺丝),该定位头用于旋进该导向柱27o,可以避免导向柱27o脱出第一顶壁16o上的导向孔,从而导致上下壳体意外脱离。
请参阅图4o与图5o,该取液管31o为一端开口的中空管状结构且横截面大致为一圆形,该取液头32o为两端开口的中空管状结构,该取液头32o的一端与该取液管31o的开口端连接,以使该取液管31o与该取液头32o连通。该取液管31o远离该取液头32o的一端用于在第二取液通孔125o内沿该第二容纳腔22o的中心轴co往复移动,该取液头32o远离该取液管31o的一端由该第四取液通孔28o伸出该下壳体2o。
本实施方式中,该取液管31o的材质为橡胶材质,该取液管31o沿垂直该第二容纳腔22o的中心轴c的横截面由靠近该取液头32o一端至远离该取液头32o的一端逐渐减小,即该取液管31o大致呈一倒置的锥形结构。
请参阅图3o、图4o与图5o,该取液组件3o还包括套设于该取液管31o上的弹性件33o以及垫圈34o。该弹性件33o一端抵持该挤压部12o,另一端抵持该第二顶壁24o。在上壳体1o相对下壳体2o向下移动的过程中,该弹性件33o被压缩,当松开上壳体1o后,弹性件33o恢复形变,弹性件33o的形变恢复力带动该上壳体1o自动归位。该垫圈34o套设于该取液管31o对应该第四取液通孔28o处,实现固定取液组件3o以及密封的作用。
本实施方式中,为了固定该弹性件33o,该挤压部12o还包括第二平台部123o,该第二平台部123o一端与该第三侧壁121o远离第一顶壁16o的一端连接,另一端与该第四侧壁122o靠近该第一顶壁16o的一端连接,该弹性件33o一端抵持该第二平台部123o,另一端抵持该第二顶壁24o。
请参阅图1o至图3o,该取液组件3o还包括取液头盖35o,取液头盖35o用于盖在取液头32o远离取液管31o的一端,防止取液头32o被污染。
请参阅图3o至图5o,该液体转移装置100o在组装过程中,该取液组件3o由下壳体2o的第二容纳腔22o穿过第四取液通孔28o,再将垫圈34o套设在取液组件3o靠近第二容纳腔22o的一侧,实现取液组件3o与下壳体2o的连接固定。上壳体1o和下壳体2o组装好后,取液组件3o被安装在上下壳体内部不能取出。
请参阅图4o与图5o,具体地液体转移装置100o定量取液的原理是:取液管31o的锥型部分远离取液头32o的一端的内径d1o小,称为小内径端a,靠近取液头32o的一端的内径d2大,称为大内径端b。如图4o所示,当取液管31o未被压缩时,其小内径端a处位于两挤压块126o的底部,两挤压块126o的表面接触取液管31o的顶端。如图5o所示,当上壳体1o向下移动,取液管31o伸入两挤压块126o之间,从而取液管31o被压缩,最终取 液管31o的小内径端a处伸入第二取液通孔125o的顶部,大内径端b位于两挤压块126o的底部,两挤压块126o挤压取液管31o的侧壁,将取液管31o进行压缩,进而将取液管31o内部的定量空气排出。将取液头32o插入液体内部后,松开上壳体1o,弹性件33o的回弹力将上壳体1o弹回原位,从而取液管31o由两挤压块126o之间退出,取液管31o的形变恢复,实现吸取液体的目的。通过设计取液管31o锥型结构的d1和d2值、两挤压块126o之间的距离、两挤压块126o与取液管31o的接触面积以及上壳体1o相对下壳体2o的移动行程等参数,从而实现定量取液的目的。
请参阅图4o,该液体转移装置100o还包括按压键4o,该按压键4o盖在上壳体1o的第五侧壁14o远离第一侧壁11o的一端,用于与上壳体1o卡合,通过按压该按压键4o从而实现上壳体1o相对下壳体2o运动的目的。
请再次参阅图4o与图5o,使用时,按压该按压键4o,可以将上壳体1o向下按,使第一侧壁11o沿第二侧壁21o向下移动,挤压部12o相对取液管31o向下移动,此时,弹性件33o被压缩,挤压块126o按压取液管31o,将取液管31o内部的空气排出;将取液头32o的一端插入液体中,放开按压键4o,上壳体1o在弹性件33o的回弹力带动下恢复至原位,挤压块126o相对取液管31o向上移动松开取液管31o,检测液将被吸入取液管31o内,实现定量取液的目的。再次按压该按压建4o可以将取液管31o内的液体释放。
本发明提供的液体转移装置100o可以被用来进行多种液体样本的转移,例如液体样本可以包括生物样本,患者样本,兽医样本,或环境样本。
在一些实施例中,本发明提供的液体转移装置100o可以用于收集和调配体积在1μl~5ml之间的量(例如1微升1μl,2μl,4μl,5μl,10μl,20μl,50μl,100微升,200μl,500μl,1ml,2ml和5ml中的任何两个数字之间的数)的液体。
请参阅图9o,为另一实施例提供的液体转移装置200o的结构示意图,本实施方式提供的液体转移装置200o与第一实施方式提供的液体转移装置100o的主要区别在于,该液体转移装置200o还包括围绕该取液组件201o设置的多个弹性组件204o,该弹性组件204o包括设置于该第二顶壁24o靠近该第二容纳腔22o一侧的弹簧导柱205o、套设于该弹簧导柱205o上的复位弹簧206o以及设置于该弹簧导柱205o远离该第二顶壁24o一端的限位件207o,该弹簧导柱205o贯穿该第一顶壁16o,该限位件207o位于该第一容纳腔13o,该复位弹簧206o一端抵持该第一顶壁16o,另一端抵持该第二顶壁24o,该复位弹簧206o的弹性恢复力用于使该上壳体202o远离该下壳体203o移动。需要说明的是,在本发明的精神或基本特征的范围内,适用于第一实施方式中的各具体方案也可以相应的适用于第二实施方式中,为节省篇幅及避免重复起见,在此就不再赘述。将弹性组件204o围绕取液组件201o设置,可以方便取液组件201o的安装,而且采用多组弹性组件204o能够使上壳体202o受力更均匀,回弹过程更稳定。
相较于现有技术,本发明提供的液体转移装置结构简单,操作简便,能够实现定量吸取液体,可以实现微量液体的转移,而且成本低。
实施例16
请参阅图1p至图7p所示,为本发明实施例提供的一种液体转移装置100p,该液体转移装置100p包括壳体1p、按压机构2p、取液组件3p以及连接件4p。该按压机构2p包括按压本体21p、设于该按压本体21p一端的第一顶壁25p以及设于该第一顶壁25p远离该按压本体21p的挤压部22p。该壳体1p包括第一侧壁11p和第二顶壁12p,该第一侧壁11p连接该第二顶壁12p且围设形成一容纳腔17p,该按压机构2p收容于该容纳腔17p内且用于沿该容纳腔17p的中心轴a往复移动。该连接件4p包括第二侧壁41p和第一连接部44p,该第一连接部44p连接该第二侧壁41p,该第二侧壁41p可拆卸连接该第一侧壁11p靠近该 第二顶壁12p的一端。该取液组件3p包括取液管31p、取液头32p及连通该取液管31p与该取液头32p的第二连接部33p,该取液组件3p用于由该第二顶壁12p伸入所述容纳腔17p,以使该取液管31p对应该挤压部22p设置,该取液头32p位于该容纳腔17p的外侧,该第二连接部33p可拆卸连接该第一连接部44p。其中,该按压机构2p用于沿该容纳腔17p的中心轴a往复移动,进而带动该挤压部22p相对该取液管31p往复移动,使该挤压部22p抵持或松开该取液管31p,以使该取液管31p发生形变,进而使所述取液管31p释放或吸取液体。
请参阅图1p与图3p,该壳体1p还包括设置于该第二顶壁12p上的第一取液通孔13p、设于该第一侧壁11p上的卡槽16p,该取液管31p经由该第一取液通孔13p伸入该容纳腔17p。
本实施方式中,该连接件4p与该壳体1p可以是卡合连接。
本实施方式中,该第二侧壁41p上设有至少一卡块45p,对应该卡块45p该第一侧壁11p靠近第二顶壁12p的一端外表面设有卡槽16p,将卡块45p滑入卡槽16p内,从而使连接件4p可拆卸连接在壳体1p上。可以理解的是,该连接件4p与该壳体1p还可以是螺纹连接。
请参阅图14p,该第二连接部33p包括连接部本体331p、设置于连接部本体331p上的第二卡位332p、设置于连接部本体331p上的导向杆333p以及设置于导向杆333p上的卡勾334p。
请参阅图12p与图13p,结合参阅图14p与图15p,该连接件4p还包括连接该第二侧壁41p的第三顶壁42p以及贯穿该第三顶壁42p的第二取液通孔43p,该第一连接部44p位于该第二取液通孔43p的周围,该第一连接部44p包括贯穿该第三顶壁42p的第一卡口441p、贯穿所述第三顶壁42p且与所述第一卡口441p连通的第二卡口442p以及第一卡位443p。其中,取液管31p经由第二取液通孔43p和第一取液通孔13p伸入容纳腔17p内,导向杆333p由第三顶壁42p远离容纳腔17p的一侧伸入第二卡口442p并卡入第二卡口442p内,所述卡勾334p卡在第一卡位443p靠近容纳腔17p的一侧,第二卡位332p卡在第一卡位443p远离容纳腔17p的一侧,此时,第二卡位332p和卡勾334p从第一卡位443p相对的两侧将第一卡位443p卡住,从而使第一连接部44p与第二连接部33p可拆卸连接。
另一实施方式中,第二连接部33p的外侧壁设置有外螺纹,第一连接部44p靠近第二取液通孔43p的侧壁设置有内螺纹,以使第一连接部44p与第二连接部33p螺纹连接。
请参阅图9p至图11p,结合参阅图4p与图5p,该挤压部22p包括第三侧壁221p。该第三侧壁121p一端与该第一顶壁25p连接。该第三侧壁221p围设形成取液槽222p,取液槽222p与第一取液通孔13p及第二取液通孔43p同轴。该取液管31p用于伸入或退出该取液槽222p,该第三侧壁221p用于抵持或松开该取液管31p的侧壁,以使该取液管31p变形或恢复形变以释放液体或吸取液体。
本实施方式中,该取液槽222p的孔径沿远离该第二顶壁12p的方向递增,也即该取液槽222p为一锥型腔。
本实施方式中,该第三侧壁221p靠近该取液槽222p的表面设置有挤压块223p。该取液管31p伸入该取液槽222p,该挤压块223p抵持该取液管31p的侧壁,以使该取液管31p变形,排出该取液管31p内部的空气或液体。当该取液管31p反向退出该取液槽222p后,该取液管31p恢复形变以吸取液体。
本实施方式中,该第三侧壁221p相对的两侧朝向该取液槽222p一侧靠拢,形成两挤压块223p,两挤压块223p用于从取液管31p相对的两侧挤压该取液管31p,可以使该取液管31p变形均匀,通过取液管31p的形变量可以实现定量取液,而取液管31p的形变量可以通过两挤压块223p之间的距离来设定。可以理解的是,该挤压块223p还可以设置成一 体式的挤压块223p,即在第三侧壁221p设置一圈挤压块223p。
请参阅图8p与图9p,该壳体1p还包括设置于第一侧壁11p内表面的滑槽15p,该滑槽15p沿所述容纳腔17p的中心轴a延伸,该按压机构2p的按压本体21p靠近该壳体1p的表面设有导向条24p。当按压机构2p置于壳体1p的容纳腔17p内并沿容纳腔17p的中心轴a往复移动时,该导向条24p可以卡入该滑槽15p内并沿滑槽15p往复移动,该滑槽15p和导向条24p的配合可以对按压机构2p起到导向和限位的作用。
请参阅图8p至图10p,结合参阅图4p与图5p,该液体转移装置100p还包括定位件5p,该定位件5p包括滑动部52p和定位部51p,该定位部51p设于该第一侧壁11p,该滑动部52p收容于该容纳腔17p内。该按压机构2p对应该滑动部52p还包括滑动轨道23p,该滑动轨道23p沿容纳腔17p的中心轴a延伸,该滑动部52p用于沿该滑动轨道23p往复移动,进而限制该按压机构2p沿容纳腔17p的中心轴a往复移动的距离,同时对壳体1p和按压机构2p起到连接的作用。
本实施方式中,该壳体1p的第一侧壁11p上对应该定位部51p设有定位孔14p,该定位部51p卡入该定位孔14p内实现定位件5p与壳体1p的连接。
本实施方式中,该定位部51p与该滑动部52p之间设有连接部53p。
本实施方式中,定位件5p包括两个定位部51p,对应的第一侧壁11p上设有两个定位孔14p,因此连接部53p也有两个。
本实施方式中,两个定位部51p、两个连接部53p和滑动部52p组成一U型结构,滑动轨道23p为贯穿按压本体21p的一长条型开口,定位件5p的滑动部52p嵌入此开口内移动,此设计可以更好地限定按压机构2p的移动。
请参阅图3p、图4p至图7p,该液体转移装置100p还包括容置于该容纳腔17p内的弹性件6p。该弹性件6p一端抵持该第一顶壁25p,另一端抵持该第二顶壁12p。在按压机构2p相对壳体1p向下移动的过程中,该弹性件6p被压缩,当松开按压机构2p后,弹性件6p恢复形变,弹性件6p的形变恢复力带动该按压机构2p自动归位。该弹性件6p可以在组装壳体1p、按压机构2p时安装在容纳腔17p内,不会影响后期更换取液组件3p。
结合参阅图4p至图7p,配合定位件5p,当按压机构2p向下按压,弹性件6p处于压缩状态时,滑动部52p位于滑动轨道23p行程的上端;当按压机构2p回复初始状态,弹性件6p处于自然伸长状态时,滑动部52p位于滑动轨道23p行程的下端。因此通过定位件5p和弹性件6p的配合,可以准确限定按压机构2p往复移动的行程,实现定量取液,同时可以保证按压机构2p自动回复。
本实施方式中,弹性件6p套设于挤压部22p的外部,可以使按压机构2p在向下移动时,挤压部22p对取液管31p的挤压力更均衡,提高取液精度。
另一实施方式中,该弹性件6p可以是多个,多个弹性件6p围绕挤压部22p设置,可以平衡按压力,从而使取液管31p所受到的挤压力均匀,有助于定量取液。
请参阅图14p,结合参阅图4p与图5p,该取液管31p为一端开口的中空管状结构且横截面大致为一圆形,该第二连接部33p大致为一圆环,该取液头32p为两端开口的中空管状结构,第二连接部33p一端与该取液头32p的一端连接,另一端与该取液管31p的开口端连接,以使该取液管31p通过第二连接部33p与该取液头32p连通。
本实施方式中,该第二连接部33p与取液头32p为一体结构,该取液管31p可拆卸地安装在第二连接部33p上,从而使取液头32p与取液管31p连通。具体地,可以通过注塑成型工艺将取液组件3p一起成型,注塑过程中,成型第二连接部33p和取液头32p的型腔与成型取液管31p的型腔连通,可以同时进行注塑成型,缩短成型周期,提供效率,同时降低取液组件3p的制造成本。成型后,取液管31p的开口端与第二连接部33p的连接部本体331p通过一塑料条连接,在使用时可以将塑料条弄断,将取液管31p盖在第二连接部33p 处,组装得到取液组件3p待用。
本实施方式中,该取液管31p为橡胶材质,可以将取液管31p的开口端外径设计的比第二连接部33p的内径略大,使二者通过过盈配合实现密封连接。
本实施方式中,该取液管31p沿垂直该容纳腔17p的中心轴a的横截面由靠近该取液头32p一端至远离该取液头32p的一端逐渐减小,即该取液管31p大致呈一倒置的圆锥体结构。
本实施方式中,该取液组件3p还包括取液头盖(图未示),取液头盖用于盖在取液头32p远离取液管31p的一端,防止取液头32p被污染。
可以理解的是,在另一实施方式中,该取液组件3p的取液头(图未示)也可以为一端开口,另一端封闭的管状结构,取液头的开口端与第二连接部33p连接,进而与取液管31p连通,在使用时将取液头的封闭端折断插入液体进行取液,取液头的上述设计避免单独设计取液头盖,取液头一次开模成型便可,有利于降低成本。
请参阅图4p,该按压机构2p还包括按压部26p,该按压部26p设于该按压本体21p远离第一顶壁25p的一端,通过按压该按压部26p从而实现按压机构2p相对壳体1p运动的目的。
本实施方式中,该按压部26p沿垂直容纳腔17p的中心轴a的方向的横截面大于该第一侧壁11p远离第二顶壁12p一端的开口尺寸,从而保证在按压该按压部26p时,不会使按压部26p进入容纳腔17p内。
请参阅图15p,结合参阅图3p至图5p,该液体转移装置100p的具体组装过程如下:
第一步,将弹性件6p放入壳体1p的容纳腔17p内,再将按压机构2p与壳体1p卡合好,使弹性件6p固定住。
第二步,将连接件4p安装在壳体1p上;
第三步,将取液管31p与第二连接部33p之间的塑料条弄断,将取液管31盖在第二连接部33p处。
第四步,将取液组件3p依次经由第二取液通孔43p和第一取液通孔13p伸入容纳腔17p内,并将第二连接部33p与连接件4p的第一连接部44p卡合,将取液组件3p固定在连接件4p上,完成组装。
另外,当一次取液完成后,需要更换取液组件3p,可以将取液组件3p从连接件4p上取下,更换新的取液组件3p,安装方法同上。
请参阅图4p与图5p,具体地液体转移装置100p定量取液的原理是:取液管31p的锥型部分远离取液头32p的一端的内径d1小,称为小内径端b,靠近取液头32p的一端的内径d2大,称为大内径端c。如图4所示,当取液管31p未被压缩时,其小内径端b处位于两挤压块223p的底部,两挤压块223p的表面接触取液管31p的顶端。如图5p所示,当按压机构2p向下移动,取液管31p的小内径端b处伸入取液槽222p内,取液管31p伸入两挤压块223p之间,两挤压块223p挤压取液管31p的侧壁,从而取液管3p1被压缩,取液管31p进一步伸入取液槽222p内,一直到两挤压块223p挤压到取液管31p的大内径端c,进而将取液管31p内部的定量空气排出。将取液头32p插入液体内部后,松开上壳体1p,弹性件6p的回弹力将按压机构2p弹回原位,从而取液管31p由两挤压块223p之间退出,取液管31p的形变恢复,实现吸取液体的目的。通过设计取液管31p锥型结构的d1和d2值、两挤压块223p之间的距离、两挤压块223p与取液管31p的接触面积、取液槽222p的内经以及按压机构2p相对壳体1p的移动行程等参数,从而实现定量取液的目的。
请再次参阅图4p与图5p,结合参阅图6p与图7p,使用时,按压该按压部26p,可以将按压机构2p向下按,滑动部52p相对滑动轨道23p向上移动,移动至滑动轨道23p行程的顶端,挤压部22p相对取液管31p向下移动,此时,弹性件6p被压缩,挤压块223p按 压取液管31p,将取液管31p内部的空气排出;将取液头32p的一端插入液体中,放开按压部26p,按压机构2p在弹性件6p的回弹力带动下恢复至原位,滑动部52p相对滑动轨道23p向下移动,移动至滑动轨道23p行程的低端,挤压块223p相对取液管31p向上移动松开取液管31p,检测液将被吸入取液管31p内,实现定量取液的目的。再次按压该按压部26p可以将取液管31p内的液体释放。
本发明壳体1p、按压机构2p与连接件4p预先组装好,取液组件3p从连接件4p的外侧由伸入容纳腔17p,实现可拆卸地安装在连接件4p上,方便随时更换取液组件3p。具体地,取液组件3p可以是一次性消耗品,根据实际需要随时更换取液组件3p,壳体1p、按压机构2p与连接件4p可以重复使用,能够降低成本。
本发明提供的液体转移装置100p可以被用来进行多种液体样本的转移,例如液体样本可以包括生物样本,患者样本,兽医样本,或环境样本。
在一些实施例中,本发明提供的液体转移装置100p可以用于收集和调配体积在1μl~5ml之间的量(例如1微升1μl,2μl,4μl,5μl,10μl,20μl,50μl,100微升,200μl,500μl,1ml,2ml和5ml中的任何两个数字之间的数)的液体。
相较于现有技术,本发明提供的液体转移装置结构简单,操作简便,能够实现定量吸取液体,可以实现微量液体的转移;且取液组件与按压机构可拆卸设置,按压机构可以多次使用,取液组件为一次性耗材,能随时更换,节约成本。
实施例17
请参阅图1q至图6q所示,为本发明实施例提供的一种液体转移装置100q,该液体转移装置100q包括按压机构10q以及取液组件3q。该按压机构10q包括上壳体1q和下壳体2q,该上壳体1q包括第一侧壁11q及与第一侧壁11q连接的第一顶壁13q,该第一顶壁13q上设有一挤压部12q,该下壳体2q包括第二侧壁21q及第二顶壁22q,该第二侧壁21q连接该第二顶壁22q且围设形成一容纳腔4q,该上壳体1q收容于该容纳腔4q内。该取液组件3q包括取液管31q、取液头32q及连通该取液管31q与该取液头32q的第一连接部33q,该取液组件3q用于由第二顶壁22q远离容纳腔4q的一侧伸入该容纳腔4q,以使该取液管31q对应挤压部12q设置,该第一连接部33q可拆卸地设置于第二顶壁22q,该取液头32q位于该第二顶壁22q远离该容纳腔4q的一侧。其中,上壳体1q用于沿容纳腔4q的中心轴a往复移动,进而带动挤压部12q相对取液管31q往复移动,使挤压部12q抵持或松开取液管31q,以使取液管31q发生形变,从而使所述取液管31q释放或吸取液体。本发明按压机构10q预先组装好,取液组件3q从按压机构10q的外侧由第一取液通孔23q伸入容纳腔4q,实现可拆卸地安装在按压机构10q上,方便随时更换取液组件3q。具体地,取液组件3q可以是一次性消耗品,根据实际需要随时更换取液组件3q,按压机构10q可以重复使用,能够降低成本。
请参阅图10q与图11q,该下壳体2q还包括设置于该第二顶壁22q上的第一取液通孔23q以及第二连接部24q,该第二连接部24q设置于该第二顶壁22q上且位于该第一取液通孔23q的周围。当取液管31q经由第一取液通孔23伸入该容纳腔4q时,第一连接部33q与第二连接部24q可拆卸连接。
本实施方式中,所述第一连接部33q包括连接部本体331q、设置于连接部本体331q上的第一卡位332q、设置于连接部本体331q上的导向杆333q以及设置于导向杆333q上的卡勾334q。第二连接部24q包括贯穿第二顶壁22q的第一卡口241q、贯穿第二顶壁22q且与第一卡口241q连通的第二卡口242q以及第二卡位243q。其中,导向杆333q由第二顶壁22q远离容纳腔4的一侧伸入第一卡口241q并卡入第二卡口242q内,所述卡勾334q卡在第二卡位243q靠近容纳腔4q的一侧,第一卡位332q卡在第二卡位243q远离容纳腔4q的 一侧,此时,第一卡位332q和卡勾334q从第二卡位243q相对的两侧将第二卡位243q卡住,从而使第一连接部33q与第二连接部24q可拆卸连接。
另一实施方式中,第一连接部33q的外侧壁设置有外螺纹,第二连接部24q靠近第一取液通孔23q的侧壁设置有内螺纹,以使第一连接部33q与第二连接部24q螺纹连接。
请参阅图8q与图9q,结合参阅图4q与图5q,该挤压部12q包括第三侧壁121q。该第三侧壁121q一端与该第一顶壁13q连接。该第三侧壁121q围设形成第二取液通孔122q,第二取液通孔122q与第一取液通孔23q同轴。该第二取液通孔122q的孔径沿远离该第一取液通孔23q的方向递减。该取液管31q用于经由该第一取液通孔23q伸入或退出该第二取液通孔122q,该第三侧壁121q用于抵持或松开该取液管31q的侧壁,以使该取液管31q变形或恢复形变以释放液体或吸取液体。
本实施方式中,该第三侧壁121q靠近该第二取液通孔122q的表面设置有挤压块123q。该取液管31q依次穿过该第一取液通孔23q和容纳腔4q,最后伸入该第二取液通孔122q,该挤压块123q抵持该取液管31q的侧壁,以使该取液管31q变形,排出该取液管31q内部的空气或液体。当该取液管31q反向退出该第二取液通孔122q后,该取液管31q恢复形变以吸取液体。
本实施方式中,该挤压块123q的数量为两个,两个该挤压块123q分别设置于该第三侧壁121q相对的内表面,两挤压块123q用于从取液管31q相对的两侧挤压该取液管31q,可以使该取液管31q变形均匀,通过取液管31q的形变量可以实现定量取液,而取液管31q的形变量可以通过两挤压块123q之间的距离来设定。可以理解的是,该挤压块123q还可以设置成一体式的挤压块123q,即在第三侧壁121q设置一圈挤压块123q。
请参阅图8q与图9q,该上壳体1q还包括设置于第一侧壁11q远离第一顶壁13q一端的第四侧壁14q以及连接该第四侧壁14q和该第一侧壁11q的平台部15q。下壳体2q的第二侧壁21q套设在上壳体1q的第一侧壁11q外侧,第二侧壁21q的端面抵持该平台部15q,在上壳体1q沿容纳腔4q的中心轴a相对下壳体2q往复移动时起到限位的作用。
请参阅图8q与图9q,该上壳体1q还包括设置于该第一顶壁13q上的定位通孔16q以及设置于第一侧壁11q外表面的滑槽17q。该下壳体2q的第二侧壁21q对应该滑槽17q设置有导向条25q,该导向条25q能够卡入滑槽17q内。该下壳体2q的第二顶壁22q对应定位通孔16q设置有定位杆26q,定位杆26q能够伸入定位通孔16q内并卡在第二顶壁22q的表面。在上壳体1q相对下壳体2q往复移动时,导向条25q能够沿滑槽17q移动,定位杆26q能够沿定位通孔16q移动,从而使上壳体1q和下壳体2q不会脱离。
请参阅图3q、图6q与图7q,该按压机构10q还包括弹性件5q。该弹性件5q一端抵持该第一顶壁13q,另一端抵持该第二顶壁22q。在上壳体1q相对下壳体2q向下移动的过程中,该弹性件5q被压缩,当松开上壳体1q后,弹性件5q恢复形变,弹性件5q的形变恢复力带动该上壳体1q自动归位。该弹性件5q可以在组装按压机构10q时安装在容纳腔4q内,不会影响后期更换取液组件3q。
本实施方式中,该弹性件5q可以是弹簧,为了固定该弹性件5q,该第一顶壁13q上设置有第一定位槽18q,该第二顶壁22q上设置有弹簧导杆27q,该弹簧导杆27q能够伸入该第一定位槽18q内。该弹性件5q一端套设于该弹簧导杆27q上,另一端伸入该第一定位槽18q内。该第一定位槽18q的深度与该弹簧导杆27q的高度之和等于该弹性件5q自然状态下的长度,当上壳体1q带动第一定位槽18q朝向弹簧导杆27q移动,弹簧导杆27q伸入第一定位槽18q内,弹性件5q被压缩,这样第一定位槽18q能够对弹性件5q未套设在弹簧导杆27q的部分起到限位的作用,避免在弹性件5q压缩的过程中出现偏移。
本实施方式中,该弹性件5q可以是多个,多个弹性件5q围绕取液管31q设置,可以平衡按压力,从而使取液管31q所受到的挤压力均匀,有助于定量取液。
另一实施方式中,所述第一顶壁13q朝向背离所述容纳腔4q的一侧凸起形成第二定位槽19q,挤压部12q贯穿第二定位槽19q的底部,弹性件5q套设于挤压部12q的外部并嵌入第二定位槽19q内,一端抵持第二定位槽19q的底表面,另一端抵持第二顶壁22q。在安装取液组件3q时,取液管31q经由第一取液通孔23q穿过弹性件5q伸入挤压部12q的第二取液通孔123q。如此设计,在更换取液组件3q时,弹性件5q不受影响。可以理解的是,如图7所示,也可以同时在第一定位槽18q和第二定位槽19q内设置弹性件5q,可以使上壳体1q在向下移动时,挤压部12q对取液管31q的挤压力更均衡,提高取液精度。
请参阅图12q,结合参阅图4q与图5q,该取液管31q为一端开口的中空管状结构且横截面大致为一圆形,该第一连接部33q大致为一圆环,该取液头32q为两端开口的中空管状结构,第一连接部33q一端与该取液头32q的一端连接,另一端与该取液管31q的开口端连接,以使该取液管31q通过第一连接部33q与该取液头32q连通。
本实施方式中,该第一连接部33q与取液头32q为一体结构,该取液管31q可拆卸地安装在第一连接部33q上,从而使取液头32q与取液管31q连通。具体地,可以通过注塑成型工艺将取液组件3q一起成型,注塑过程中,成型第一连接部33q和取液头32q的型腔与成型取液管31q的型腔连通,可以同时进行注塑成型,缩短成型周期,提供效率,同时降低取液组件3q的制造成本。成型后,取液管31q的开口端与第一连接部33q的连接部本体331q通过一塑料条连接,在使用时可以将塑料条弄断,将取液管31q盖在第一连接部33q处,组装得到取液组件3q,待用。
本实施方式中,该取液管31q为橡胶材质,可以将取液管31q的开口端外径设计的比第一连接部33q的内径略大,使二者通过过盈配合实现密封连接。
本实施方式中,该取液管31q沿垂直该容纳腔4q的中心轴a的横截面由靠近该取液头32q一端至远离该取液头32q的一端逐渐减小,即该取液管31q大致呈一倒置的圆锥体结构。
请参阅图1q至图3q,该取液组件3q还包括取液头盖34q,取液头盖34q用于盖在取液头32q远离取液管31q的一端,防止取液头32q被污染。
可以理解的是,在另一实施方式中,该取液组件3q的取液头(图未示)也可以为一端开口,另一端封闭的管状结构,取液头的开口端与第一连接部33q连接,进而与取液管31q连通,在使用时将取液头的封闭端折断插入液体进行取液,取液头的上述设计避免单独设计取液头盖,取液头一次开模成型便可,有利于降低成本。
请参阅图4q,该液体转移装置100q还包括按压键6q,该按压键6q盖在上壳体1q的第四侧壁14q远离第一侧壁11q的一端,用于与上壳体1q卡合,通过按压该按压键6q从而实现上壳体1q相对下壳体2q运动的目的。
请参阅图13q,结合参阅图3q至图5q,该液体转移装置100q的具体组装过程如下:
第一步,组装按压机构10q,先将弹性件5q放入下壳体2q内,再将上壳体1q与下壳体2q卡合好,使弹性件5q固定住,之后将按压键6q安装在上壳体1q上。
第二步,组装取液组件3q,将取液管31q与第一连接部33q之间的塑料条弄断,将取液管31q盖在第一连接部33q处。
第三步,将取液组件3q经由第一取液通孔23q伸入按压机构10q的容纳腔4q,并将第一连接部33q与下壳体2q的第二连接部24q卡合,将取液组件3q固定在按压机构10q上,完成组装。
另外,当一次取液完成后,需要更换取液组件3q,可以将取液组件3q从按压机构10q上取下,更换新的取液组件3q,安装方法同上。
请再次参阅图4q与图5q,使用时,按压按压键6q,可以将上壳体1q向下按,使第一侧壁11q沿第二侧壁21q向下移动,挤压部12q相对取液管31q向下移动,此时,弹性件5q被压缩,挤压块123q按压取液管31q,将取液管31q内部的空气排出;将取液头32q的 一端插入液体中,放开按压键6q,上壳体1q在弹性件5q的回弹力带动下恢复至原位,挤压块123q相对取液管31q向上移动松开取液管31q,检测液将被吸入取液管31q内,实现定量取液的目的。再次按压按压键6q可以将取液管31q内的液体释放。
请参阅图4q与图5q,具体地液体转移装置100q定量取液的原理是:取液管31q的锥型部分远离取液头32q的一端的内径d1小,称为小内径端b,靠近取液头32q的一端的内径d2大,称为大内径端c。如图4q所示,当取液管31q未被压缩时,其小内径端b处位于两挤压块123q的底部,两挤压块123q的表面接触取液管31q的顶端。如图5q所示,当上壳体1q向下移动,取液管31q的小内径端b处伸入第二取液通孔122q内,取液管31q伸入两挤压块123q之间,两挤压快123q挤压取液管31q的侧壁,从而取液管31q被压缩,取液管31q进一步伸入第二取液通孔122q内,一直到两挤压快123q挤压到取液管31q的大内径端c,进而将取液管31q内部的定量空气排出。将取液头32q插入液体内部后,松开上壳体1q,弹性件5q的回弹力将上壳体1q弹回原位,从而取液管31q由两挤压块123q之间退出,取液管31q的形变恢复,实现吸取液体的目的。通过设计取液管31q锥型结构的d1和d2值、两挤压块123q之间的距离、两挤压块123q与取液管31q的接触面积以及上壳体1q相对下壳体2q的移动行程等参数,从而实现定量取液的目的。
本发明提供的液体转移装置100q可以被用来进行多种液体样本的转移,例如液体样本可以包括生物样本,患者样本,兽医样本,或环境样本。
在一些实施例中,本发明提供的液体转移装置100q可以用于收集和调配体积在1μl~5ml之间的量(例如1微升1μl,2μl,4μl,5μl,10μl,20μl,50μl,100微升,200μl,500μl,1ml,2ml和5ml中的任何两个数字之间的数)的液体。
一实施方式中,所述液体转移装置100q用于核酸检测过程中转移包含核酸样本的液体,所述取液头32q还可以用于承装核酸检测用的药剂,所述药剂为贴附在取液头32q内壁上的一层药膜。在使用时,取液头32q按照上述使用方法吸取含有核酸样本的溶液,溶液在取液头32q内与药膜混合,这样能够使药剂与含有核酸样本的溶液混合的更均匀。
相较于现有技术,本发明提供的液体转移装置结构简单,操作简便,能够实现定量吸取液体,可以实现微量液体的转移;且取液组件与按压机构可拆卸设置,按压机构可以多次使用,取液组件为一次性耗材,能随时更换,节约成本。
实施例18
请参阅图1r至图3r所示,为本发明实施例提供的一种移液系统1000r,该移液系统1000r包括转运装置10r、反应室20r和收集装置30r。该收集装置30r用于存放受试者的待检测样本;该转运装置10r包括活塞组件11r、移液管12r以及加药组件13r,部分该活塞组件11r位于该移液管12r内部,且该活塞组件11r用于在该移液管12r内运动,以使该移液管12r吸取液体或释放液体;该加药组件13r用于存放药剂。
本发明最优选的方式为,该转运装置10r、该反应室20r和该收集装置30r中的任一者均能够与其余二者之间可拆卸地相互固定,使得该移液系统1000r能够在第一状态、第二状态和第三装状态之间切换。其中,第一状态为该转运装置10r位于该收集装置30r上方,该转运装置10r也可以与该收集装置30r相固定。该第二状态为该转运装置10r位于该反应室20r上方且与该反应室20r相固定。第三状态为该反应室20r固定于该转运装置10r和该收集装置30r之间。
当该移液系统1000r处于该第一状态时,该活塞组件11r用于背离该收集装置30r运动,以使该移液管12r吸取该收集装置30r内的该待检测样本。当该移液系统1000r处于该第二状态时,该活塞组件11r用于朝向该反应室20r运动,以使该移液管12r将该待检测样本释放入该反应室20r,该加药组件13r用于将该药剂加入该反应室20r,以使该药剂与该待检 测样本混合形成混合液,该活塞组件11r还用于背离该反应室20r运动,以使该移液管12r吸取该混合液并将该混合液转移至核酸检测仪(图未示)。当该移液系统1000r处于该第三状态时,该移液系统1000r未使用,此时该反应室20r可以固定于该转运装置10r和该收集装置30r之间,便于收纳。
使用该移液系统1000r进行液体转移的具体过程为:最初,该移液系统1000r处于第三状态(即该反应室20r可以固定于该转运装置10r和该收集装置30r之间),将该收集装置30r从该反应室20r上取下,将该转运装置10r从该反应室20r上取下;接着,将受试者的待检测样本放置于该收集装置30r内;将该移液系统1000r切换至第一状态(即该转运装置10r与该收集装置30r锁合),使该活塞组件11r相对于该移液管12r背离该收集装置30r运动,以使该移液管12r吸取该待检测样本;再将该移液系统1000r切换至第二状态(即该转运装置10r与该反应室20r锁合),使该活塞组件11r相对于该移液管12r朝向该反应室20r运动,以使该移液管12r将该待检测样本释放入该反应室20r;然后,将该加药组件13r内的药剂加入该反应室20r,以使该药剂与该待检测样本混合形成混合液;再使该活塞组件11r相对于该移液管12r背离该反应室20r运动,以使该移液管12r吸取该混合液;最后,该转运装置10r将该混合液转移至核酸检测仪(图未示)进行检测。
请参阅图4r和图5r,该活塞组件11r包括第一壳体111r、设置于该第一壳体111r一端的顶盖112r、设于所述第一壳体111r内的活塞113r、贯穿该第一壳体111r且与该活塞113r靠近该顶盖112r一端抵接的推动机构114、设置于该顶盖112r与该活塞113r之间的弹性件115r、设置于活塞113r相对两侧壁的两弹性臂116r、设置于该弹性臂116r远离该活塞113r一端的凸块117r、设置于该第一壳体111r侧壁的第一卡口118r、设置于该第一壳体111r侧壁且位于该第一卡口118r远离该顶盖112r一侧的第二卡口119r。该移液管12r设置于该第一壳体111r远离该顶盖112r的一端,且与部分该活塞113r密封连接,即部分该活塞113r被密封在该移液管12r的内部,该活塞113r用于相对该移液管12r进行运动。当活塞113r在下部位置(即远离该顶盖112r的位置)时,凸块117r插入第二卡口119r内。当活塞113r在上部位置(即靠近该顶盖112r的位置)时,凸块117r插入第一卡口118r内。当凸块117r插入第一卡口118r内时,弹性件115r处于压缩状态,当凸块117r插入第二卡口119r时,弹性件115r处于自然状态。当按压该凸块117r使其退出该第一卡口118r时,该活塞113r在弹性件115r的弹性恢复力的作用下向下(远离顶盖112r的方向)移动,使凸块117r卡入第二卡口119r内,此时,活塞113r移动进入移液管12r内的部分增加,使移液管12r内空气或液体被排出。推动机构114r用于推动活塞113r向上(靠近顶盖112r的方向)移动,凸块117r退出第二卡口119r并卡入第一卡口118r内,此时,位于移液管12r内部的活塞113r逐渐退出移液管12r,从而使移液管12r内部与外界形成气压差,从而将液体吸入移液管12r内。即,当凸块117r由第一卡口118r进入第二卡口119r后,活塞113r向下运动,排出移液管12r内的气体/液体;当凸块117r由第二卡口119r进入第一卡口118r后,活塞113r向上运动,向移液管12r内吸入液体。
请参阅图3r至图5r,本实施方式中,该第一壳体111r为中空的筒状结构且横截面大致为椭圆形,该顶盖112r盖合于该第一壳体111r的一端,该移液管12r设置于该第一壳体111r远离该顶盖112r的一端,且该移液管12r可与该第一壳体111r一体成型。该第一壳体111r远离该顶盖112r的一端包括一开口1111r,该开口1111r设置于该移液管12r一侧,该加药组件13r一端贯穿该顶盖112r,另一端穿过该开口1111r。该第一壳体111r内还包括多个档条1112r,该档条1112r用于固定该活塞113r,并引导该活塞113r在第一壳体111r内上下移动。
请参阅图5,本实施方式中,该活塞113r包括活塞本体1131r、设置于所述活塞本体1131r靠近所述顶盖112r一端的导杆1132r、设置于所述导杆1132r相对两侧的两导向板 1133r以及设置于该活塞本体1131r远离该顶盖112r一端的活塞杆1134r。弹性件115r套设于该导杆1132r上,该弹性件115r的一端抵持该顶盖112r,另一端抵持该活塞本体1131r。该活塞杆1134r通过一个密封环(图未示)与移液管12r实现密封连接,且该活塞杆1134r可以相对移液管12r上下移动。
请参阅图3r与图4r,该推动机构114r包括第一按压头1141r和移动滑块1142r,该移动滑块1142r贯穿该第一壳体111r的侧壁,该第一按压头1141r设置于该第一壳体111r的外侧且与该移动滑块1142r卡接,该移动滑块1142r远离该第一按压头1141r的一端与该导向板1133r上的导轨1135r抵接。按压该第一按压头1141r,可以推动该移动滑块1142r相对该导轨1135r移动,以使该活塞113r向上移动。通过该推动机构114r可以将水平方向的作用力转变为垂直方向的作用力,以实现活塞113r沿垂直方向的运动。
请参阅图3r、图4r与图6r至图8r,该加药组件13r包括贯穿盖顶盖112r设置的压杆131r、设置于该压杆131r远离该顶盖112r一端的药管132r、由该药管132r一端伸入该药管132r内部的插件133r、设于该插件133r与该药管132r之间的密封环134r、设于该药管132r另一端的密封膜135r以及套设于该药管132r外侧的固定管136r。该固定管136r的两端均敞开,一端靠近该压杆131r,另一端靠近该反应室20r。该压杆131r的底端抵住该插件133r的顶端。如图7所示,初始状态时,该插件133r的尖端未刺破该密封膜135r;如图8所示,在压杆131r的推动作用下,该插件133r朝向反应室20r移动,进而使该插件133r的尖端刺破该密封膜135r使得该药管132r内的药剂流出至反应室20r。
本实施方式中,该药管132r为双管设计,即药管132r内设有并排设置的两个管腔,分别用于盛放两种药剂。相应地,插件133r包括两个插杆,两个插杆分别伸入到两个并排设置的管腔内,可以实现不同试剂的盛放和加样,使整个反应更便捷,操作更方便,无需单独打开装置向所述反应室20r内加样,避免反应系统被污染,影响检测结果。
请参阅图3r、如图9r与图10r所示,该反应室20r包括第二壳体21r、设于该第二壳体21r内的收集器22r、设于该收集器22r下方的连接头23r以及设于该连接头23r下方的反应杯24r。
本实施方式中,该第二壳体21r包括相对设置的两弹片211r、分别设于两所述弹片211r内侧的突出部212r以及分别设于两所述弹片211r外侧的第二按压头213r。当该反应室20r和该转运装置10r配合时,两突出部212r与第一壳体111r的两第一卡口118r对齐,通过按压第二按压头213r,可以使弹片211r向内弯曲,从而使突出部212r抵压第一卡口118r内的凸块117r使该凸块117r退出第一卡口118r。
本实施方式中,该连接头23r对应该移液管12r和该加药组件13r设有两通孔231r,两通孔231r将该收集器22r和该反应杯24连通。两通孔231r内均设有挡片232r。当该移液管12r或该加药组件13r未插入时,该挡片232r是闭合的,可以将该反应杯24r密封住,当需要加样时,通过该移液管12r或该加药组件13r将该挡片232r顶开伸入该反应杯24r内。如图10所示,本实施方式中,该挡片232r包括四片拼合在一起的片叶,所述片叶具有弹性,当该移液管12r或该加药组件13r插入通孔231r内后,可以将片叶撑开,从而伸入到反应杯24r内。
本实施方式中,该反应杯24r大致为锥形杯,开口截面积大,底部截面积小,有利于微量样品反应。
请参阅图2r与图11r,该收集装置30r包括第三壳体31r、设于该第三壳体31r内侧壁的第三卡口32r、设于第三壳体31r内部的收集杯33r以及设于收集杯33r内的刺穿部34r。转运装置10r和反应室20r相对于该第三卡口32r均设有卡位35r,通过将所述卡位35r卡入所述第三卡口32r内实现收集装置30r与转运装置10r或反应室20r的锁合。
请参阅图12r所示,该收集装置30r还包括一药剂盒36r,该药剂盒36r能够放入该收 集杯33r内并通过该刺穿部34r将该药剂盒36r刺破,使内部的药剂进入该收集杯33r内。
本实施方式中,该药剂盒36r包括加药口361r、设于该加药口361r下方的一圈垫片362r以及设于该垫片下方且与该加药口361r连通的药剂包363r,该药剂包363r是通过可以方便刺破的材质做成,例如锡箔纸、塑料薄膜等。
请参阅图2r、图5r与图9r,该移液系统1000r的三个部分在配对和组装时,通过第二壳体21r上设置的卡勾214r卡入第一壳体111r上设置的卡槽1113r,实现转运装置10r与反应室20r的锁合转运装置10r。相似的,通过反应室20r或转运装置10r的卡位35r插入收集装置30r的第三卡口32r中,反应室20r或转运装置10r可以锁进收集装置30r。另外,需要说明的是,在组装的接缝处都设置有密封圈来进行密封处理。在整个配合组装过程中,受试者的待检测样品和任何被扩增的核苷酸被密封在所述移液系统1000r中来防止污染。
请再次参阅图1r至图10r,采用该移液系统1000r进行反应的操作过程具体包括以下步骤:
步骤S1r,按压转运装置10r侧面的第二按压头213r,凸块117r退出第一卡口118r,在弹性件115r的弹性恢复力的作用下活塞113r向下移动,凸块117r卡入第二卡口119r,从而排出移液管12r内部的气体。
步骤S2r,将转运装置10r上的卡位35r卡入装有待检测样本的收集装置30r上的第三卡口32r内,使转运装置10r与收集装置30r锁合,二者锁合后,移液管12r伸入收集装置30r的收集杯33r内。
步骤S3r,按压推动机构114r,以使凸块117r退出第二卡口119r向上移动卡入第一卡口118r,此时,活塞113r被带动向上移动,从而将收集杯33r内的定量部分待检测样本吸入移液管12r内。
步骤S4r,转运装置10r与收集装置30r分离,并与反应室20r锁合,使移液管12r经由收集器22r以及连接头23r上的一个通孔231r插入反应杯24r,同时加药组件13r经由收集器22r以及连接头23r上的另一个通孔231插入反应杯24r。
步骤S5r,再次第二按压头213r,凸块117r退出第一卡口118r,在弹性件115r的弹性恢复力的作用下活塞113r向下移动,凸块117r卡入第二卡口119r,从而将移液管12r内部的待检测样本注入到反应杯24r内。
步骤S6r,按压加药组件13r上的压杆131r将插件133r向下移动刺破药管132r底端的密封膜135r,使药管132r内的药剂进入反应杯24r内。
本发明提供的移液系统1000r可以被用来进行各种反应,例如利用生物组分进行的反应。在一些实施例中,反应包括核苷酸产物的(例如在核苷酸扩增反应中。
本发明提供的移液系统1000r可以被用来进行多种样品的反应,例如样品可以包括生物样品,患者样品,兽医样品,或环境样品。反应可以被用于检测或监控样品中特异靶标的存在或存在数量。
在一些实施例中,本发明提供的移液系统1000r被配置用于收集和调配体积在1μl~5ml之间的量(例如1微升1μl,2μl,4μl,5μl,10μl,20μl,50μl,100微升,200μl,500μl,1ml,2ml和5ml中的任何两个数字之间的数)。
相较于现有技术,本发明提供的移液系统的三个部分拆装配合简单方便,活塞组件和液体转移装置内置于转运装置,可以避免在反应过程中打开系统进行加样,提高了反应系统密封性能,避免反应受到不必要的影响和污染,提高了检测的准确性,同时也提高了检测效率,有利于实现便携式检测;另外,活塞组件和液体转移装置独立设置,待检测样本和药剂的加入独立操作,互不影响,使用更灵活。
实施例19
凝胶电泳设备可采用pH值量测电极对缓冲液进行pH值测量,同时采用电泳电极实现凝胶电泳设备与电源的电性连接。pH值量测电极采用的基材为玻璃,通过物理气相沉积(Physical Vapor Deposition,PVD)技术,在玻璃基材上通过化学蒸镀Ti(钛)/Pt(铂)等金属形成复合金属镀层,利用金属镀层的导电性来达到测量pH值的目的。但是,该类pH值量测电极为玻璃电极,在使用时易碎,不具有可挠性,一旦成型,规格和形状固定,需要根据实际需求设计出多种规格和形状,适应性差;而且,PVD技术需要抽真空,而且贵金属价格昂贵,制造成本高。电泳电极也是通过PVD技术,在基材(可以是金属基材或其他不导电的基材)上通过化学蒸镀Ti/Pt等金属形成复合金属镀层,实现凝胶电泳设备与电源的电性连接,但是,该类电泳电极需要采用PVD技术以及镀贵金属,成本非常高。
请参阅图1s,为本发明实施例提供的一种pH值量测电极10s,所述pH值量测电极10s用于凝胶电泳设备用缓冲液的pH值测量,所述缓冲液的pH值为7-9,所述pH值量测电极10s包括金属丝1s,所述金属丝1s的材质包括但不限于钛、铂、钛/铱氧化物和不锈钢等导电金属。本发明采用导电金属丝制作出同时具有可挠性与测量可靠性的pH值量测电极10s,制造简单,可随意弯折,适应多种应用场景,而且价格低廉,材料易得。尤其针对小型的凝胶电泳设备内缓冲液pH值的测量,测量准确性与传统玻璃白金电极相当,能够取代传统的玻璃白金电极。
本实施方式中,所述金属丝1s优选为不锈钢。不锈钢的价格低廉,与传统的玻璃白金电极相比,极大地降低了成本。
本实施方式中,所述不锈钢的型号包括SUS 304、SUS 312和SUS 316,具体地,所述不锈钢的型号优选SUS 304。
所述pH值量测电极10s直径的选择也会影响到电极的性能,本发明常用所述pH值量测电极10s的直径为0.2mm-1.0mm。
本实施方式中,所述pH值量测电极10s的直径包括但不限于0.25mm、0.3mm、0.48mm、0.5mm和0.8mm。由于电极的直径过大,电阻也会增加,影响测量效果,因此电极的直径不易过大,所述pH值量测电极10s的直径优选为0.3mm。
请再次参阅图1s,所述pH值量测电极10s还包括设于所述金属丝1s表面的表面处理层2s。通过金属表面处理工艺,在金属丝1s的表面形成表面处理层2s,能够提高金属丝1s的耐腐蚀性、保障金属丝1s的电性能稳定,进一步提高pH值的测量精准度。
本实施方式中,所述表面处理层2s的材质包括但不限于锌、锡、镍和铬中的一种。
以下结合具体实施例和对比例对本发明进行详细说明。
实施例1
pH值量测电极10s采用钛金属丝制作,直径φ为0.25mm。
实施例2
pH值量测电极10s采用SUS 304线材制作,直径φ为0.3mm。
对比例
采用传统的玻璃白金电极。
具体pH值测量方法为:将缓冲液或标准液放置于小型的凝胶电泳设备的电泳槽中,首先采用对比例的玻璃白金电极进行pH值的测量,之后分别将实施例1和实施例2的金属丝电极安装在原本玻璃白金电极的位置,架设好pH值测量设备,进行pH值的测量。其中,Buffer缓冲液的组成包括:Tris缓冲液(Tris(hydroxymethyl)aminomethane):242g/l;醋酸:58.1g/l;EDTA:18.6g/l。
如表1s所示,为采用对比例和实施例1-2的电极进行凝胶电泳槽内缓冲液pH值测量得到的测量结果。
表1s
pH值 已知值 对比例 实施例1 实施例2
缓冲液(25℃) 8.2 8.2-8.3 8.3-8.4 8.2-8.3
标准液(H 2O,25℃) 7.0-7.5 7.2-7.3 7.4-7.5 7.1-7.2
表1s中给出了三种电极用于在Buffer缓冲液中、空白条件下测得的pH值,从表1s的测试结果可以看出,本发明提供的实施例1-2中的两种金属丝做成的pH值量测电极10s相较于对比例的玻璃白金电极的测试结果的准确性差异并不大,尤其是SUS 304不锈钢电极相较于对比例的玻璃白金电极的测试结果的准确性非常相似,表现出与玻璃白金电极类似的pH测量值准确性。因此,将SUS 304不锈钢电极替代传统玻璃白金电极成为了可能,因此优选SUS 304(φ0.3mm)作为工作电极的材料。
本发明提供的pH值量测电极10s,尤其是不锈钢材质的pH值量测电极10s最佳的使用条件为测试液体为弱碱性,温度不超过80℃,在上述条件下,不锈钢金属丝不会被氧化,而且pH值量测电极10s使用过程中的测量准确性与传统玻璃白金电极无差别。因此,本发明提供的pH值量测电极10s特别适用于小型的凝胶电泳设备,此类凝胶电泳设备通常应用于便携式核酸检测仪。其中电泳槽内缓冲液的pH值在7-9之间,属于弱碱性,使用温度通常在80℃以下,因此,利用本发明提供的金属丝制成的pH值量测电极10s替代传统玻璃白金电极成为可能,极大地降低了成本。
请参阅图2s,本发明还提供了一种pH值测量设备100s,所述pH值测量设备100s包括检测主机101s和电极,所述电极为如上所述的pH值量测电极10s。
pH测量过程中,需要将两个所述pH值量测电极10s的一端均与检测主机101s电性连接,其中一个所述pH值量测电极10s作为检测电极插入凝胶电泳设备的缓冲液内,另一个所述pH值量测电极10s作为参比电极插入标准液中,通过检测缓冲液与标准液的电势差得出缓冲液的pH值。
请参阅图3s,本发明还提供了一种电泳电极20s,所述电泳电极20s用于实现凝胶电泳设备与电源的电性连接,所述电泳电极20s包括金属丝3s。
具体地,所述金属丝3s的表面形成有表面处理层4s。所述金属丝3s和所述表面处理层4s的材质与所述pH值量测电极10s的金属丝1和表面处理层2s的材质分别相同。适用于pH值量测电极10s的实施方式均适用于所述电泳电极20s,此处不做过多赘述。
本发明提供的采用金属丝制作的电泳电极20s主要应用于凝胶电泳设备中,其具有可挠性,具有尺寸多样性,能够满足多种设备规格要求,并且常用金属丝的价格低廉,材料易得,极大降低了电泳电极20s的成本,尤其适合小型一次性使用的凝胶电泳设备。
请参阅图4s,本发明还提供了一种凝胶电泳设备200s,所述凝胶电泳设备200s包括电泳槽30s、设于所述电泳槽30s内的缓冲液40s、设于所述电泳槽30s内且浸在所述缓冲液40s内的凝胶介质50s以及分别设于所述电泳槽30s两端的上述电泳电极20s。两个所述电泳电极20s分别位于所述凝胶介质50s相对的两端。每一所述电泳电极20s的一端均设于电泳槽30s内并伸入所述缓冲液40s,另一端与控制板电性连接,通过两电泳电极20s可以为凝胶电泳设备200s通电。
本实施方式中,所述电泳槽30s包括底板11s、与所述底板11s连接的多个侧壁12s以及盖设于所述侧壁12s远离底板11s一端的盖板(图未示)。所述底板11s、多个所述侧壁12s和所述盖板共同形成一槽体。所述凝胶介质50s和所述缓冲液40s均位于所述槽体内。
本实施方式中,一个所述侧壁12s上设有两通孔13s,两个所述电泳电极20s分别穿过两个所述通孔13s伸入所述缓冲液40s内。
本实施方式中,每一所述通孔13s外均设有固定件14s,所述固定件14s固定在所述通孔13s便于的所述侧壁12s上,所述电泳电极20s穿过所述固定件14s并通过所述固定件 14s固定在通孔13s处,避免电泳电极20s晃动或移位,从而影响电性连接效果。
本发明提供的电泳电极20s无须更凝胶电泳设备200s的结构,只需在安装传统电极的位置安装所述电泳电极20s便可,有效降低了成本;而且,本发明提供的电泳电极20s结构简单,安装便捷,可随意弯折,适应多种应用场景。
请参阅图5s,本发明还提供了一种凝胶电泳系统1000s,该凝胶电泳系统1000s包括上述pH值测量设备100s和和凝胶电泳设备200s。由于pH值量测电极10s和电泳电极20s的材质相同且作用不同,因此,本发明可采用一套电极同时实现缓冲液40s进行pH值测量以及实现凝胶电泳设备200s与电源的电性连接。如此,有利于进一步降低凝胶电泳设备200s的整体成本。
请参阅图6s与图7s,本发明还提供一种核酸检测盒300s,所述核酸检测盒300s包括盒体301s、检测芯片302s、如上所述的凝胶电泳设备200s以及连接器303s,所述检测芯片302s、所述凝胶电泳设备200s和所述连接器303s均设于所述盒体301s内,所述检测芯片302s与所述凝胶电泳设备200s连通,所述检测芯片302s和所述凝胶电泳设备200s均与所述连接器303s电性连接。该核酸检测盒300s用于进行核酸扩增反应和电泳检测,将含有核酸样本的检测液加入该检测芯片302s的通道内进行核酸扩增反应得到产物,产物由该检测芯片302s直接进入凝胶电泳设备200s内进行电泳检测,最后通过与该核酸检测盒300s配合的图像采集装置拍摄凝胶电泳设备200s的图像,其中该图像为电泳检测的荧光照片。本发明通过将检测芯片302s与凝胶电泳设备200s集成在一个盒体301s内,整体结构简单,不需要复杂的大型设备,成本低,检测液完成核酸扩增后可以直接进入凝胶电泳设备200s进行电泳检测,简化了不同检测环节的样品转移配合衔接过程,提高了检测效率。
本实施方式中,所述检测芯片302s的表面设有加热线路板304s,所述加热线路板304s与所述连接器303s电性连接,所述加热线路板304s用于为所述检测芯片302s进行加热。所述凝胶电泳设备200s上的电泳电极20s远离所述电泳槽30s的一端连接至所述加热线路板304s上,并实现与连接器303s的电性连接。通过将电泳电极20s直接连接在加热线路板304s上,结构简单,组装方便,能够简化核酸检测盒300s的结构。
本实施方式中,所述电泳电极20s通过卡扣305s卡在所述加热线路板304s上,进而实现与加热线路板304s的电性连接。
相较于现有技术,本发明提供的电极具有多种用途,可以作为凝胶电泳设备的pH值量测电极10s,也可以用作凝胶电泳设备的电泳电极20s,极大地降低了凝胶电泳设备的成本;另外,金属丝制作的电极结构简单、可挠性好,可以根据实际凝胶电泳设备的结构进行弯折,适应多种应用场景。
实施例20
图1t为本发明一较佳实施方式中的核酸检测仪的示意图。图2t为本发明一较佳实施方式中的核酸检测仪拆分后结构示意图。图3t为本发明一较佳实施方式中的核酸检测仪的硬件框架图。
请同时参阅图1t、图2t以及图3t,本实施例中,核酸检测仪100t包括主机10t、检测盒20t、收集杯30t、加样器40t。本实施例中,所述收集杯30t还配置有杯盖50t。
需要说明的是,在检测前,所述检测盒20t、收集杯30t、加样器40t、杯盖50t可收纳在一专用的包装盒(图中未示意)内。本实施例中,所述检测盒20t、收集杯30t、加样器40t分别设置有识别码(编码信息),通过所述识别码可以将所述检测盒20t、收集杯30t、加样器40t进行关联,避免不同受试者(也可以称为“待测者”或“待试者”)的生物样本(也可以称为“核酸样本”)例如唾液的混淆。
在一个实施例中,所述识别码可以为二维码、条形码(Bar Code),或者其他任何适用 于本申请的识别码。本实施例中,所述核酸检测仪100t还包括一加热槽101t、加样槽102t、抽屉(也可以称为“检测盒抽屉”)103t,以及互相之间通讯连接的显示屏104t、第一摄像头105t、第二摄像头106t、第一传感器107t、第二传感器108t、多个时间继电器109t、多个温度传感器110t、处理器111t以及存储器112t。
本实施例中,所述收集杯30t可拆卸地设置于所述加热槽101t内。所述加样槽102t与所述抽屉103t连通。所述检测盒20t可拆卸地设置于所述抽屉103t内。
本实施例中,所述收集杯30t用于收集受试者的生物样本。当所述收集杯30t收集的所述生物样本与检测药剂(例如Buffer液)混合形成检测液后,将所述收集杯30t安装于所述加热槽101t,并利用所述加热槽101t以第一温度(例如95摄氏度)对所述检测液加热第一预定时长(预定时间)例如20分钟。然后利用所述加样器40t从该收集杯30t内定量吸取所述检测液,并利用所述加样器40t将所吸取的检测液经由所述加样槽102t加入到设置于所述抽屉103t内的所述检测盒20t内。
本实施例中,所述显示屏104t可以为具有触摸功能的显示屏,用于提供一个交互界面以实现用户与所述核酸检测仪100t的交互。例如,所述显示屏104t可以用于显示受试者的核酸检测结果。
本实施例中,所述第一摄像头105t可以用以扫描所述收集杯30t的识别码以及扫描所述加样器40t的识别码。所述处理器111t可以将所述第一摄像头105t扫描获得的识别码进行存储,例如存储至所述存储器112t中。
在本发明一较佳的实施方式,所述第一摄像头105t还用于对操作者(也可以称为“用户”)的操作过程进行拍摄。所述处理器11t还将所述第一摄像头105t拍摄该操作过程的影像进行存储,例如存储在所述存储器112t中。
本实施例中,所述第二摄像头106t用于拍摄核糖核酸试剂与检测液反应后的结果的影像(也即是核酸检测过程中电泳分析的影像)。在本发明的一较佳实施方式中,所述第二摄像头106t所拍摄的影像为黑白影像。在其他实施例中,所述第二摄像头106t所拍摄的影像为彩色影像。本实施例中,所述第二摄像头106t还可以用于扫描所述检测盒20t的识别码。在一个实施例中,所述第二摄像头106t所拍摄的电泳分析的影像还可以包括所述检测盒20t的识别码。
本实施例中,所述第一传感器107t用于侦测所述收集杯30t是否置放于所述加热槽101t中。
在本实施例中,所述第一传感器107t可以为按压开关器。具体地,当所述收集杯30t是放置于所述加热槽101t中时,所述第一传感器107t则处于通电状态;而当所述收集杯30t没有放置于所述加热槽101t中时,所述第一传感器107t则处于断电状态,由此,可以根据该第一传感器107t是否处于通电状态来侦测所述收集杯30t是否放置于所述加热槽101t中。
本实施例中,所述第二传感器108t用于侦测检测盒20t是否置放于所述抽屉103t中。
在本实施例中,所述第二传感器108t可以为按压开关器。具体地,当所述检测盒20t置放于所述抽屉103t中时,所述第二传感器108t则处于通电状态;而当所述检测盒20t没有置放于所述抽屉103t中时,所述第二传感器108t则处于断电状态,由此,可以根据该第二传感器108t是否处于通电状态来侦测所述检测盒20t是否置放于所述抽屉103t中。本实施例中,所述抽屉103t内设有液珠电路芯片与电泳槽,该液珠电路芯片用于执行PCR(Polymerase chain reaction,聚合酶链式反应)转变过程,核酸检测仪100t利用该电泳槽对所述检测盒20t内的检测液执行电泳。
本实施例中,所述多个时间继电器109t包括用于计算所述加热槽101t的加热时间的时间继电器,以及用于计算PCR的反应时间的时间继电器。
本实施例中,所述多个温度传感器110t包括设置于所述加热槽101t内的温度传感器及设 置于所述加样槽102t内的温度传感器,用以测量加热温度。
本实施例中,所述检测盒20t包括上层201t和下层202t。所述检测盒20t用于对检测液进行PCR扩增反应。具体地,通过在设定的第二温度(例如60摄氏度)与第三温度(例如95摄氏度)之间重复加热循环预设次数(例如40次),使得所述检测液在所述检测盒20t的上层201t完成PCR扩增反应。具体地,从所述第二温度值开始加热所述检测盒20t,直至温度达到所述第三温度值,然后再逐渐降温至所述第二温度值,此为一个加热循环,重复该加热循环预设次数,则所述检测液完成PCR扩增反应。所述检测液在该检测盒20t的上层201t完成所述PCR扩增反应后,滴入到所述检测盒20t的下层。然后将所述检测液与荧光染料结合再利用设置在所述检测盒20t的下层的凝胶例如洋菜胶(agarose gel)进行电泳(electrophoresis)。本申请利用所述第二摄像头106t拍摄电泳执行过程中的影像,
在一较佳实施方式,所述检测盒20t的上层的检测液在完成PCR扩增反应后,滴入到所述检测盒20t的下层进行电泳。在所述电泳进行了第二预设时长时,所述第二摄像头106t每隔第三预设时长例如1分钟拍摄电泳过程中的影像,由此获得多张影像如图4t(A)所示。所述第二摄像头106t拍摄得到多张影像后,再利用预先训练获得的辨识模型(也可以称为“AI影像辨识程序”)对所述多张影像进行辨识后,根据预设的范围出现的标示结果从所述多张影像中选定一张影像并标示出辨识结果如图4B或图4t(C)所示。
在一个实施例中,所述第二预设时长可以为12到15分钟中的任意一个值例如14分钟。在其他实施例中,所述第二预设时长可以为15到20分钟中的任意一个值例如16分钟。电泳进行的时间长度是依据荧光染料是否到达指定的区域来确定的,如果荧光染料到达指定的区域,则可以停止电泳,如荧光染料还没有到达指定的区域,则继续电泳。具体细节后面结合图5t(B)来介绍。
本实施例中,所述处理器111t可以由集成电路组成。例如,可以由单个封装的集成电路所组成,也可以是由多个相同功能或不同功能封装的集成电路所组成,包括一个或者多个中央处理器(Central Processing unit,CPU)、微处理器、数字处理芯片、图形处理器及各种控制芯片的组合等。所述处理器111t是所述核酸检测仪100t的控制核心(Control Unit),利用各种接口和线路连接整个所述核酸检测仪100t的各个部件,通过执行存储在所述存储器112t内的程序或者模块或者指令,以及调用存储在所述存储器112t内的数据,以执行所述核酸检测仪100t的各种功能和处理数据,例如,进行核酸检测的功能(具体细节参后面对图5t(B)的介绍)。
所述存储器112t可以是核酸检测仪100t本身的存储器,也可以是外部存储器。在一些实施例中,所述存储器112t可以用于存储计算机程序的程序代码和各种数据。例如,所述存储器112t可以用于存储安装在所述核酸检测仪100t中的核酸检测系统1001t,并在核酸检测仪100t的运行过程中实现高速、自动地完成程序或数据的存取。所述存储器112t可以是包括只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable Read-Only Memory,PROM)、可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、一次可编程只读存储器(One-time Programmable Read-Only Memory,OTPROM)、电子擦除式可复写只读存储器(Electrically-Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储器、磁盘存储器、磁带存储器、或者任何其他能够用于携带或存储数据的非易失性的计算机可读的存储介质。
在本实施例中,所述核酸检测系统1001t可以被分割成一个或多个模块,所述一个或多个模块存储在所述存储器112t中,并由一个或多个处理器(例如处理器111t)执行,以实现本申请所提供的功能。参阅图5t(A)所示,本实施例中,所述核酸检测系统1001t可以分割成获取模块1011t、执行模块1012t。本申请所称的模块是能够完成一特定功能的计算机程序段。 关于各模块的详细功能将在下面结合图5t(B)作具体描述。
图5t(B)是本发明较佳实施例提供的基于影像的核酸检测方法的流程图。
在本实施例中,可以直接在该核酸检测仪100t上集成本发明的方法所提供的用于核酸检测的功能,或者以软件开发工具包(Software Development Kit,SDK)的形式运行在所述核酸检测仪100t上。
如图5t(b)所示,所述核酸检测仪100t方法具体包括以下步骤,根据不同的需求,该流程图中步骤的顺序可以改变,某些步骤可以省略。
步骤S101t,利用所述收集杯30t收集受试者的生物样本例如唾液,并将生物样本与检测药剂(例如Buffer液)混合形成检测液。然后将所述收集杯30t安装于加热槽101t上。执行模块1012t控制所述加热槽101t以预设的第一温度对所述收集杯30t中的检测液加热第一预设时长。执行完步骤S101t后执行步骤S102t。
本发明一较佳实施例,所述预设的温度为95摄氏度,所述第一预设时长为20分钟。即利用所述加热槽101t以95摄氏度的温度对所述收集杯30t加热20分钟。具体地,所述执行模块1012t可以利用所述时间继电器109t计算所述加热槽101t的加热时长,当加热时长达到所述第一预设时长时,所述执行模块1012t则控制所述加热槽101t停止对所述收集杯30t加热。
需要说明的是,本实施例中,在将所述收集杯30t收集了生物样本之后,所述获取模块1011t利用所述第一摄像头105t扫描所述收集杯30t的识别码,并将所述收集杯30t的识别码存储到所述存储器112t中。所述获取模块1011t还利用所述第一摄像头105t扫描所述加样器40t的识别码,并将所述加样器40t的识别码存储到所述存储器112t中。
步骤S102t,利用加样器40t从所述收集杯30t内定量吸取检测液,并利用所述加样器40t将所吸取的检测液经由所述加样槽102t加入到设置于所述抽屉103t内的所述检测盒20t内,利用所述检测盒20t对所述检测液执行PCR扩增反应。于所述检测液完成PCR扩增反应后,执行步骤S103t。
具体地,操作者通过操作所述加样器40t,则可以将所述检测液经由所述加样槽102t加入到所述检测盒20t的上层。
具体地,可通过在设定的第二温度(例如60摄氏度)与第三温度(例如95摄氏度)之间对设置于所述抽屉103t内的所述检测盒20t重复加热循环预设次数(例如40次),使得所述检测液完成PCR扩增反应。具体地,从所述第二温度值开始加热设置于所述抽屉103t内的所述检测盒20t,直至温度达到所述第三温度值,然后再逐渐降温至所述第二温度值,此为一个加热循环,重复该加热循环预设次数,则所述检测液完成PCR扩增反应。
步骤S103t,在所述检测液中添加荧光染料,然后再利用凝胶(例如洋菜胶)对所述检测液执行电泳(electrophoresis)。
具体地,所述检测盒20t的检测液在检测盒20t的上层完成PCR扩增反应后,滴入到所述检测盒20t的下层,所述检测盒20t下层设置有所述凝胶。因此,所述执行模块1012t可以通过控制施加给所述检测盒20t的电压来对检测液执行电泳或者停止电泳。
需要说明的是,电泳的过程实际上是于所述电泳槽的两端,给正负极电压。凝胶能发生电泳现象,是因为凝胶的胶体粒子带有电荷,一般来说,是由于胶体粒子具有相对较大的表面积,能吸附离子的原因引起的。利用不同物质分子表面所带有的不均匀电荷而形成的偶极矩强度的不同,使得分子对于外加电荷和移动介质的吸引力各有所差异,导致在移动介质中的运动速度不同,由此将不同大小片段的DNA分离。
步骤S104t,所述获取模块1011t控制所述第二摄像头106t拍摄所述检测液执行电泳时的多张影像。
在本实施例中,所述获取模块1011t可以控制所述时间继电器109t计算所述电泳的时长。
在一较佳实施方式中,在所述电泳进行了第二预设时长例如15-20分钟时,所述获取模 块1011t控制所述第二摄像头106t每隔第三预设时长例如1分钟拍摄至少一张影像,由此获得多张影像。
在一个实施例中,所述多张影像分别为黑白影像如图4t(A)所示。在其他实施例中,所述多张影像分别为彩色影像。
在一个实施例中,所述多张影像中的每张影像包括所述检测盒20t的识别码。
步骤S105t,所述执行模块1012t识别所述多张影像中是否存在目标影像。当所述多张影像中存在目标影像时,执行步骤S106t。当所述多张影像中不存在目标影像时,回到步骤S103t。需要说明的是,当从步骤S105t回到步骤S103t时,则直接控制所述检测盒20t继续利用凝胶电泳进行电泳。即无需再添加荧光染料。
在一个实施例中,所述执行模块1012t在对所述多张影像进行识别之前还首先识别每张影像所包括识别码是否与所述收集杯30t、加样器40t的识别码一致。当任意一张影像所包括识别码与所述收集杯30t、加样器40t的识别码不一致时,发出警示。当每张影像所包括识别码与所述收集杯30t、加样器40t的识别码一致时,则开始对所述多张影像进行识别。
在一个实施例,所述识别所述多张影像中是否存在目标影像包括(a1)-(a2):
(a1)利用预先训练得到的辨识模型(也可以称为“AI影像辨识程序”)对所述多张影像中的每张影像的多个目标区域进行识别,并利用预设的记号对识别到的每个目标区域进行标记。
本实施例中,参阅图4t(B)或者图4t(C)所示,所述多个目标区域包括:注入口的区域、检测线(也可以称为“显影条”)的区域、荧光染料的区域,以及凝胶例如洋菜胶的区域。其中,所述检测线的区域包括第一线的区域、第二线的区域以及第三线的区域。所述第一线存在则表示所述检测液中存在人类基因。所述第二线存在则表示存在RNA复制酶(RNA-dependent RNA polymerase)。所述第三线存在则表示存在N蛋白(protein)。
在一个实施例中,所述执行模块1012t可以利用不同颜色的方框分别对所述多个目标区域进行标记。例如,利用红框32t标记所述注入口的区域;利用绿框33t标记所述检测线的区域;利用蓝框34t标记所述荧光染料的区域;利用黄框31标记所述凝胶例如洋菜胶的区域。
在一个实施例中,所述利用预先训练得到的辨识模型(AI影像辨识模型)对所述多张影像中的每张影像的多个目标区域进行识别包括:利用所述预先训练得到的辨识模型对所述多张影像中的第一张影像的所述多个目标区域进行识别,根据凝胶例如所述洋菜胶在所述第一张影像中所占区域的位置及大小对所述多张影像中的所有其他影像进行裁切(所述洋菜胶在所述第一张影像中所占区域也可以称为“整体检测区域”);然后再利用所述预先训练得到的辨识模型对经过裁剪的所有其他影像中的每张其他影像的所述多个目标区域进行识别并对所识别的每个目标区域进行标记。例如,图6t示意了对经过裁剪的一张其他影像的每个目标区域进行标记。
为便于说明,以下将“经过裁剪的所述其他影像”称为“裁剪影像”。
在一个实施例中,所述第一张影像可以为所述多张影像中,拍摄时间最早的一张影像。所述多张影像中的所有其他影像是指所述多张影像中,除所述第一张影像之外的所有影像。
需要说明的是,本申请对所述其他影像进行裁切,舍去所述其他影像中的多余信息,即可以过滤影像中可能包含错误信息的区域(如卡夹上与线条形状相似的反光),由此可降低辨识模型对影像的分辨率的要求,达到减少模型参数量、加快模型计算速度的有益结果。
(a2)根据对所述多张影像中的每张影像的预定位置范围内是否出现指定目标的判断,从所述多张影像中确定目标影像。
本实施例中,所述指定目标是指荧光染料,所述预定位置范围是(0.65~0.75)。也即所述目标影像是指所述多张影像中,在所述预定位置范围内包括了所述荧光染料的影像。
在一个实施例中,所述根据对所述多张影像中的每张影像的预定位置范围内是否出现 指定目标的判断,从所述多张影像中确定目标影像包括:计算每张影像的荧光染料的位置值,其中,每张影像的荧光染料的位置值等于每张影像的荧光染料的位置与注入口的位置之间距离除以每张影像的凝胶的长度;当任意一张影像的荧光染料的位置值属于所述预定的位置范围之内时,确定该任意一张影像为目标影像;及当任意一张影像的荧光染料的位置值不属于所述预定的位置范围之内时,确定该任意一张影像不是目标影像。
以所述任意一张影像为图4t(B)或4t(C)所示的影像为例,假设利用红框32t标记所述注入口的区域,利用蓝框34t标记所述荧光染料的区域,利用黄框31t标记所述凝胶例如洋菜胶的区域为例,则所述任意一张影像的荧光染料的位置为所述篮筐34t的横向中心线所在的位置。所述任意一张影像的注入口的位置为所述红框32t的横向中心线所在的位置。所述任意一张影像的凝胶的长度为所述黄框31t的顶端到低端的距离。
在其他实施例中,所述执行模块1012t还可以利用所述辨识模型对所述多张影像中的每张影像计算影像高维特征值,得到每张影像的每个目标区域的中心位置、长宽比例,以及该每个目标区域的信心分数(信心分为为0-1之间的一个值)。所述执行模块1012t还可以根据每张影像的每个目标区域的信心分数过滤所述多张影像。例如,当所述多张影像中的任意一张影像的任意一个目标区域的信心分数小于预设分值例如0.1时,则过滤掉该任意一张影像,即不考虑将该任意一张影像作为目标影像,由此可过滤掉因为影像噪声及/或光线变化等因素所造成的对目标区域的误判。换句话来讲,所述目标影像是指所述多张影像中,在所述预定位置范围内包括了所述荧光染料的影像,且该影像的每个目标区域的信心分数大于所述预设值。
在其他本实施例中,所述执行模块1012t还可以利用所述辨识模型计算每个目标区域内的像素值的平均亮度。在其他本实施例中,所述目标影像是指所述多张影像中,在所述预定位置范围内包括了所述荧光染料的影像,且该影像的每个目标区域的信心分数大于所述预设值,且该影像的每个目标区域的像素值的平均亮度大于预设的亮度值。
还需要说明的是,若存在多张影像分别在所述预定位置范围内包括了所述荧光染料,则所述执行模块1012t可以将所述多张影像中,所有目标区域的信心分数的总值最大,且所有目标区域的像素值的平均亮度的总值最大的影像作为所述目标影像。
在一个实施例中,所述执行模块1012t训练所述辨识模型的方法包括(a11)-(a13):
(a11)获取预设数量(例如1万张)的样本影像,该预设数量的样本影像中的每张样本影像包括所述多个目标区域的标记,所述多个目标区域包括注入口的区域、检测线的区域、荧光染料的区域,以及凝胶例如洋菜胶的区域,不同的区域利用不同的记号进行标记。所述检测线的区域包括第一线的区域、第二线的区域以及第三线的区域。
在一个实施例中,所述不同的区域可以分别利用不同颜色的方框作为记号分别进行标记。例如,利用红框标记所述注入口的区域;利用绿框标记所述检测线的区域;利用蓝框标记所述荧光染料的区域;利用黄框标记所述洋菜胶的区域。
本实施例中,所述预设数量的样本影像可以为利用数十台核酸检测仪100t进行核酸检测时在执行电泳分析过程中所拍摄的影像。
(a12)将所述预设数量的样本影像随机分成训练集和验证集,利用所述训练集训练深度神经网络获得所述辨识模型,并利用所述验证集验证所述辨识模型的准确率;及
若所述准确率大于或者等于预设准确率时,则结束训练;若所述准确率小于所述预设准确率时,则增加样本影像重新训练深度神经网络直至重新获得的所述辨识模型的所述准确率大于或者等于所述预设准确率。
因此,所述执行模块1012t可以利用所述辨识模型对所述多张影像中的每张影像的注入口的区域、检测线的区域、荧光染料的区域,以及凝胶例如洋菜胶的区域进行标记。
步骤S106t,所述执行模块1012t基于所述目标影像分析核酸检测结果。所述执行模块 1012t还输出所述核酸检测结果。例如,在所述显示屏104t显示所述核酸检测结果。
在一个实施例中,所述执行模块1012t还将所述核酸检测结果上载到区块链。
在本实施例中,所述基于所述目标影像分析核酸检测结果包括(c1)-(c4):
(c1)根据所述目标影像中的所述多个目标区域中的每个目标区域对应的所述预设的记号(例如所述不同颜色的方框)确定多个目标的位置。所述多个目标的位置包括注入口的位置、荧光染料的位置、检测线的位置以及凝胶例如洋菜胶的位置,其中,所述检测线包括第一线、第二线以及第三线。
需要说明的是,所述多个目标也即是注入口、荧光染料、检测线、凝胶。
以所述目标影像为图4Bt或4Ct所示的影像为例,假设利用黄框31t标记所述凝胶例如洋菜胶的区域,利用红框32t标记所述注入口的区域,利用绿框33t标记所述检测线的区域,以及利用蓝框34t标记所述荧光染料的区域为例,则所述目标影像的凝胶的长度为所述黄框31t的顶端到低端的直线距离。所述目标影像的注入口的位置为所述红框32t的横向中心线所在的位置。所述目标影像的每条检测线的位置为每个绿框33t的横向中心线所在的位置。所述目标影像的荧光染料的位置为所述篮筐34t的横向中心线所在的位置。
(c2)根据所述多个目标的位置计算所述检测线的位置值。
在一个实施例中,所述检测线的位置值P0=d1/d2,其中,d1代表所述注入口的位置与所述检测线的位置之间的距离,所述d2等于所述注入口的位置到所述荧光染料的位置之间的距离。在一个实施例中,参阅图7t所示,可以将所述洋菜胶所对应的区域的顶端到低端均分为100个刻度,由此实现d1和d2的计算。在其他实施例中,也可以将所述注入口的位置到所述荧光染料的位置之间的距离作为一个整数1,然后均分为多个刻度,由此实现d1和d2的计算。
具体地,所述第一线的位置值P1=d11/d2(所述第一线的位置值P0也可以记为“IC”),所述第二线的位置值P2=d12/d2,所述第三线的位置值P3=d13/d2,其中,d11代表所述第一线的位置与所述注入口的位置之间的距离,d12代表所述第二线的位置与所述注入口的位置之间的距离,d13代表所述第三线的位置与所述注入口的位置之间的距离,所述d2等于所述注入口的位置到所述荧光染料的位置之间的距离。
(c3)根据所述检测线的位置值与预设的有效数据范围的比较确定所述检测线是否有效,即判断所述检测线是有效检测线还是无效检测线。
本实施例中,当所述检测线的位置值P0落入预设的有效数据范围时,则确定所述检测线有效。当所述检测线的位置值P0不在所述预设的有效数据范围之内时,则确定所述检测线有效。
还需要说明的是,当从所述目标影像中没有识别到所述检测线时,所述执行模块1012t则直接认定所述检测线无效。举例而言,当从所述目标影像中没有识别到所述第一线时,则直接认定所述第一线无效。类似地,当从所述目标影像中没有识别到所述第二线时,则直接认定所述第二线无效。当从所述目标影像中没有识别到所述第三线时,则直接认定所述第三线无效。
本实施例中,所述第一线对应的预设的第一有效数据范围为[A,B],较佳地,A=62.0%;B=77.0%。
本实施例中,所述执行模块1012t根据所述第一线的位置值P1分别为所述第二线和第三线设定有效数据范围。
具体地,为所述第二线预设第二有效数据范围为[A1,B 1],其中,A1=P1+C1;B 1=P1+C2;优选地,C1=6%;C2=12%。
为所述第三线预设第三有效数据范围为[A2,B2],其中,A2=P 1+C2;B2=P1+C3;优选地,C3=18%。
本实施例中,当所述第一线的位置值P1落入所述预设的第一有效数据范围时,则确定所述第一线有效。当所述第一线的位置值P1没有落入所述预设的第一有效数据范围时,则确定所述第一线无效。
当所述第二线的位置值P2落入所述预设的第二有效数据范围时,则确定所述第二线有效。当所述第二线的位置值P2没有落入所述预设的第二有效数据范围时,则确定所述第二线无效。
当所述第三线的位置值P3落入所述预设的第三有效数据范围时,则确定所述第三线有效。当所述第三线的位置值P3没有落入所述预设的第三有效数据范围时,则确定所述第三线无效。
举例而言,假设所述第一线的第一有效数据范围为[62.0%-77.0%],计算得到所述第一线的位置值为64.4%,落入所述第一有效数据范围,则确定该第一线有效,并以IC(Internal Control)在所述目标影像中进行标示。如图8所示,本实施例中,所述第一线用于判断是否为人类基因存在于所述检测液。即当所述第一线存在则表示所述检测液中存在人类基因。
再如,第一检测线的第二有效数据范围[70.4%-76.4%],第二线用于判断是否存在RNA复制酶(RNA-dependent RNA polymerase)。再如,第三线的第二有效数据范围[76.4%-82.4%],该第三线用于检测是否存在N蛋白(protein)。
(c4)根据所述检测线是否有效确定核酸检测结果。
具体地,参阅图9t所示,(1)代表第一线,(2)代表第二线,(3)代表第三线。当所述目标影像中出现有效的第一线时,代表为所述检测液包含人类基因。当所述目标影像中未出现有效的第一线时,代表所述检测液未包含人类基因。类似地,当所述目标影像中出现有效的第二线时,代表所述检测液包含RNA复制酶RNA-dependent RNA polymerase。当所述目标影像中未出现有效的第二线时,代表所述检测液未包含RNA复制酶RNA-dependent RNA polymerase。当所述目标影像中出现有效的第三线时,代表所述检测液包含表N蛋白(protein)。当所述目标影像中未出现有效的第三线时,代表所述检测液未包表N蛋白(protein)。
所述检测液经过核酸检测仪100的影像判读结果可以判断检测液是否包含人类基因,且检验结果呈阳性反应或阴性反应,其判断依据如下:
当所述目标影像出现有效的第一线、第二线、第三线,则核酸检测结果为:所述检测液含人类基因,呈阳性反应。
当所述目标影像出现有效的第一线、第二线,但是未出现第三线时,则核酸检测结果为:所述检测液含人类基因,呈阳性反应。
当所述目标影像出现有效的第一线、第三线,但是未出现第二线时,则核酸检测结果为:所述检测液含人类基因,呈阳性反应。
当所述目标影像出现有效的第一线,但是未出现第二线和第三线时,则核酸检测结果为:所述检测液含人类基因,呈阴性反应。
当所述目标影像出现有效的第二线,但是未出现第一线和第三线时,则核酸检测结果为:所述检测液不含人类基因,无法判断阳性反应或阴性反应。
当所述目标影像出现有效的第三线,但是未出现第一线和第二线时,则核酸检测结果为:所述检测液不含人类基因,无法判断阳性反应或阴性反应。
当所述目标影像出现有效的第二线、第三线,但是未出现第二线时,则核酸检测结果为:所述检测液不含人类基因,无法判断阳性反应或阴性反应。
最后所应说明的是,以上实施例仅用以说明本申请的技术方案而非限制,尽管参照以上较佳实施例对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换,而不脱离本申请技术方案的精神和范围。
最后应说明的是,以上实施例仅用以说明本申请的技术方案而非限制,尽管参照较佳实施例对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换,而不脱离本申请技术方案的精神和范围。

Claims (10)

  1. 一种核酸检测主机,其特征在于,包括:
    机身;
    检测盒安装区,设置于所述机身上,所述检测盒安装区用于安装检测盒;
    加热区,设置于所述机身上,所述加热区用于容置检测液并为所述检测液进行加热;
    加样区,设置于所述机身上,所述加样区位于所述检测盒安装区上且与所述检测盒安装区连通,所述加样区用于向所述检测盒安装区内的所述检测盒加入所述检测液;以及
    图像采集装置,设置于所述检测盒安装区远离所述加样区的一侧,所述图像采集装置用于采集所述检测盒安装区内的所述检测盒的图像。
  2. 如权利要求1所述的核酸检测主机,其特征在于,所述核酸检测主机还包括加热结构,所述加热结构设置于所述检测盒安装区内,所述加热结构用于加热所述安装槽内的所述检测盒,以加热所述检测盒内的所述检测液使所述检测液进行核酸扩增反应。
  3. 一种核酸检测设备,其特征在于,包括:
    主机,所述主机为如权利要求1或2所述的核酸检测主机;
    收集杯,可拆卸地设置于所述加热区,所述收集杯用于收集所述检测液,所述收集杯还用于加热所述检测液;
    液体转移装置,可拆卸地设置于所述收集杯或所述加样区,所述液体转移装置用于从所述收集杯内定量吸取所述检测液,并将所述检测液经由所述加样区加入所述检测盒;以及
    检测盒,可拆卸地设置于所述检测盒安装区,所述检测盒用于对所述检测液进行PCR扩增反应以及电泳检测。
  4. 如权利要求3所述的核酸检测设备,其特征在于,所述检测盒包括:
    盒体;
    加样口,设置于所述盒体靠近所述加样区的一侧;
    检测芯片,设置于所述盒体内部,所述检测芯片通过所述加样口与所述加样区连通;
    电泳盒,与所述检测芯片连通;
    检测窗,设置于所述盒体靠近所述图像采集装置一侧且与所述电泳盒对应;以及
    连接器,设置于所述盒体内且分别与所述检测芯片以及所述电泳盒电性连接。
  5. 如权利要求4所述的核酸检测设备,其特征在于,所述检测芯片包括第一盖板、间隔层以及第二盖板,所述间隔层相对的两表面分别与所述第一盖板和所述第二盖板邻接,所述第一盖板、所述间隔层以及所述第二盖板围设形成通道,所述通道用于承载检测液以使所述检测液在所述通道内进行核酸扩增反应从而得到核酸扩增产物。
  6. 如权利要求5所述的核酸检测设备,其特征在于,所述检测芯片还包括设置于所述第一盖板和/或所述第二盖板远离所述通道一侧的加热组件,所述加热组件与所述连接器电性连接。
  7. 如权利要求6所述的核酸检测设备,其特征在于,所述加热组件包括:
    基板;
    加热层,设于所述基板上,所述加热层包括加热区;
    导热层,设于所述基板远离所述加热层的一侧,且所述导热层与所述加热区对应;以及
    感温层,设于所述加热区上且与所述加热层电性连接,
    其中,所述加热层用于加热所述导热层,所述感温层用于感测所述加热区的温度。
  8. 如权利要求4所述的核酸检测设备,其特征在于,所述电泳盒包括电泳槽、分别设置于所述电泳槽两端的两电泳电极、设置于所述电泳槽内部的凝胶介质、设置于所述凝胶介质一端的注液槽以及毛细管,每一所述电泳电极均与所述连接器电性连接,所述毛细管一端伸入所述注液槽内,另一端与所述检测芯片连通。
  9. 如权利要求3所述的核酸检测设备,其特征在于,所述液体转移装置包括:
    按压机构,包括上壳体和下壳体,所述上壳体包括第一侧壁及与所述第一侧壁连接的第一顶壁,所述第一顶壁上设有一挤压部,所述下壳体包括第二侧壁及第二顶壁,所述第二侧壁连接所述第二顶壁且围设形成一容纳腔,所述上壳体收容于所述容纳腔内;以及
    取液组件,包括取液管、取液头及连通所述取液管与所述取液头的第一连接部,所述取液组件用于由所述第二顶壁伸入所述容纳腔,以使所述取液管对应所述挤压部设置,所述第一连接部可拆卸地设置于所述第二顶壁,所述取液头位于所述容纳腔的外侧,
    其中,所述上壳体用于沿所述容纳腔的中心轴往复移动,进而带动所述挤压部相对所述取液管往复移动,使所述挤压部抵持或松开所述取液管,以使所述取液管发生形变,从而使所述取液管释放或吸取液体。
  10. 如权利要求3所述的核酸检测设备,其特征在于,所述核酸检测设备还包括药剂包,所述药剂包用于承装检测药剂,所述检测药剂与核酸样本形成所述检测液。
PCT/CN2021/122431 2020-09-30 2021-09-30 核酸检测设备 WO2022068937A1 (zh)

Applications Claiming Priority (58)

Application Number Priority Date Filing Date Title
US202063085385P 2020-09-30 2020-09-30
US202063085377P 2020-09-30 2020-09-30
US202063085368P 2020-09-30 2020-09-30
US63/085,377 2020-09-30
US63/085,368 2020-09-30
US63/085,385 2020-09-30
US202063091521P 2020-10-14 2020-10-14
US63/091,521 2020-10-14
US202163137597P 2021-01-14 2021-01-14
US63/137,597 2021-01-14
US202163138980P 2021-01-19 2021-01-19
US202163138974P 2021-01-19 2021-01-19
US63/138,980 2021-01-19
US63/138,974 2021-01-19
US202163140466P 2021-01-22 2021-01-22
US63/140,466 2021-01-22
US202163146219P 2021-02-05 2021-02-05
US63/146,219 2021-02-05
CN202110277711.3A CN115077996A (zh) 2021-03-15 2021-03-15 移液系统
CN202110277711.3 2021-03-15
CN202110602285.6 2021-05-31
CN202110604887.5 2021-05-31
CN202110602307.9A CN114332850A (zh) 2020-09-30 2021-05-31 核酸检测仪及基于影像的核酸检测方法
CN202110604898.3A CN114317250A (zh) 2020-09-30 2021-05-31 加热结构、检测芯片、核酸检测盒及核酸检测设备
CN202110604898.3 2021-05-31
CN202110604882.2 2021-05-31
CN202110604892.6 2021-05-31
CN202110604892.6A CN114317221A (zh) 2020-09-30 2021-05-31 核酸检测主机及核酸检测设备
CN202110604893.0A CN114308147A (zh) 2020-09-30 2021-05-31 检测芯片、核酸检测盒及核酸检测设备
CN202110602307.9 2021-05-31
CN202110604887.5A CN114308169A (zh) 2020-09-30 2021-05-31 液体转移装置
CN202110604893.0 2021-05-31
CN202110602285.6A CN114317220A (zh) 2020-09-30 2021-05-31 核酸检测盒及核酸检测设备
CN202110604882.2A CN114308168A (zh) 2020-09-30 2021-05-31 液体转移装置
CN202110652134.1 2021-06-09
CN202110652134.1A CN114317222A (zh) 2020-09-30 2021-06-09 核酸检测盒及核酸检测设备
CN202110693498.4 2021-06-22
CN202110693498.4A CN114317223A (zh) 2020-09-30 2021-06-22 核酸检测盒及核酸检测设备
CN202110725615.0A CN114324543A (zh) 2020-09-30 2021-06-29 电极及其应用
CN202110726740.3 2021-06-29
CN202110726740.3A CN115551216A (zh) 2021-06-29 2021-06-29 平面印刷天线及其制造方法
CN202110729574.2 2021-06-29
CN202110725615.0 2021-06-29
CN202110729574.2A CN115551189A (zh) 2021-06-29 2021-06-29 多层柔性线路板的制造方法、多层柔性线路板及其应用
CN202110737712.1A CN114308170A (zh) 2020-09-30 2021-06-30 液体转移装置
CN202110737712.1 2021-06-30
CN202110735243.XA CN114317224A (zh) 2020-09-30 2021-06-30 核酸检测主机及核酸检测设备
CN202110735245.9 2021-06-30
CN202110735243.X 2021-06-30
CN202110735245.9A CN114317238A (zh) 2020-09-30 2021-06-30 核酸检测盒及核酸检测设备
CN202110746173.8A CN114336511A (zh) 2020-09-30 2021-07-01 介电润湿装置及其电路检测方法
CN202110744774.5A CN114336510A (zh) 2020-09-30 2021-07-01 介电润湿装置及其电路检测方法
CN202110746172.3 2021-07-01
CN202110744774.5 2021-07-01
CN202110746169.1A CN114324064A (zh) 2020-09-30 2021-07-01 介电润湿装置及液滴检测方法
CN202110746169.1 2021-07-01
CN202110746172.3A CN114317225A (zh) 2020-09-30 2021-07-01 核酸检测盒及核酸检测设备
CN202110746173.8 2021-07-01

Publications (1)

Publication Number Publication Date
WO2022068937A1 true WO2022068937A1 (zh) 2022-04-07

Family

ID=80951276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122431 WO2022068937A1 (zh) 2020-09-30 2021-09-30 核酸检测设备

Country Status (1)

Country Link
WO (1) WO2022068937A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116376668A (zh) * 2023-03-24 2023-07-04 中国科学院空间应用工程与技术中心 一种全集成核酸检测芯片及其层叠结构和检测方法
CN117645923A (zh) * 2024-01-29 2024-03-05 昆明建新园食品销售有限公司 一种肉制品上的病毒细菌检测装置及其检测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1325028A (zh) * 2001-07-10 2001-12-05 重庆大学 压电基因诊断实时定量分析方法与仪器
JP2003274925A (ja) * 2002-03-26 2003-09-30 Juki Corp 自動核酸調製装置及びこれを用いたサンプル中の核酸検出方法
CN1940559A (zh) * 2005-09-30 2007-04-04 横河电机株式会社 化学反应盒及其使用方法
US20080233634A1 (en) * 2007-03-23 2008-09-25 Jun Okada Nucleic acid detection device
CN104204229A (zh) * 2012-02-10 2014-12-10 株式会社百奥尼 用于自动分析生物试样的设备以及方法
CN208995502U (zh) * 2018-10-17 2019-06-18 河南省产品质量监督检验院 一种高通量的转基因检测装置
CN110741262A (zh) * 2017-05-16 2020-01-31 Sk电信有限公司 用于核酸提取的盒和核酸提取方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1325028A (zh) * 2001-07-10 2001-12-05 重庆大学 压电基因诊断实时定量分析方法与仪器
JP2003274925A (ja) * 2002-03-26 2003-09-30 Juki Corp 自動核酸調製装置及びこれを用いたサンプル中の核酸検出方法
CN1940559A (zh) * 2005-09-30 2007-04-04 横河电机株式会社 化学反应盒及其使用方法
US20080233634A1 (en) * 2007-03-23 2008-09-25 Jun Okada Nucleic acid detection device
CN104204229A (zh) * 2012-02-10 2014-12-10 株式会社百奥尼 用于自动分析生物试样的设备以及方法
CN110741262A (zh) * 2017-05-16 2020-01-31 Sk电信有限公司 用于核酸提取的盒和核酸提取方法
CN208995502U (zh) * 2018-10-17 2019-06-18 河南省产品质量监督检验院 一种高通量的转基因检测装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116376668A (zh) * 2023-03-24 2023-07-04 中国科学院空间应用工程与技术中心 一种全集成核酸检测芯片及其层叠结构和检测方法
CN117645923A (zh) * 2024-01-29 2024-03-05 昆明建新园食品销售有限公司 一种肉制品上的病毒细菌检测装置及其检测方法
CN117645923B (zh) * 2024-01-29 2024-03-26 昆明建新园食品销售有限公司 一种肉制品上的病毒细菌检测装置及其检测方法

Similar Documents

Publication Publication Date Title
WO2022068937A1 (zh) 核酸检测设备
US11549959B2 (en) Automated pipetting apparatus having a combined liquid pump and pipette head system
CN102620959B (zh) 检定盒及其使用方法
US11320366B2 (en) Assay cartridges and methods of using the same
JP2014130151A (ja) アッセイ装置、方法、および試薬
CA2849104A1 (en) Systems and methods for multi-analysis
US20210308673A1 (en) Portable Diagnostic Apparatus and the Method Thereof
JP6466598B2 (ja) 流体試験セル用ライトガイド
CN104994955B (zh) 用于操纵液滴中的样品的系统
US11235331B2 (en) Functionally versatile cassettes
JP4059105B2 (ja) 膜上固相化物の抽出方法及び装置
CN211348255U (zh) 一种荧光免疫分析仪
CN217628334U (zh) 一种生物芯片一体机
CN116008526B (zh) 微流控生物分子化学发光多联检测装置和多联检测方法
JP2004077490A (ja) マイクロピペット及び分注装置
WO2023225106A1 (en) System and method for automated digital polymerase chain reaction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21874591

Country of ref document: EP

Kind code of ref document: A1