WO2022068885A1 - 功率控制方法、装置及终端设备 - Google Patents

功率控制方法、装置及终端设备 Download PDF

Info

Publication number
WO2022068885A1
WO2022068885A1 PCT/CN2021/121770 CN2021121770W WO2022068885A1 WO 2022068885 A1 WO2022068885 A1 WO 2022068885A1 CN 2021121770 W CN2021121770 W CN 2021121770W WO 2022068885 A1 WO2022068885 A1 WO 2022068885A1
Authority
WO
WIPO (PCT)
Prior art keywords
path loss
parameter
transmission
power
path
Prior art date
Application number
PCT/CN2021/121770
Other languages
English (en)
French (fr)
Inventor
曾裕
纪子超
王欢
刘思綦
刘是枭
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP21874540.4A priority Critical patent/EP4224950A4/en
Priority to KR1020237014680A priority patent/KR20230078778A/ko
Priority to JP2023519500A priority patent/JP7575583B2/ja
Publication of WO2022068885A1 publication Critical patent/WO2022068885A1/zh
Priority to US18/126,314 priority patent/US20230239807A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0296Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level switching to a backup power supply
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/281TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission taking into account user or data type priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/383TPC being performed in particular situations power control in peer-to-peer links
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communication technologies, and in particular, to a power control method, device and terminal equipment.
  • NR New Radio
  • UE User Equipment
  • PSFCH Physical SideLink Feedback Channel
  • Embodiments of the present application provide a power control method, apparatus, and terminal device, which can solve the problem of low power control accuracy in an SL transmission scenario.
  • a power control method applied to a first terminal device, including:
  • the first path loss is determined according to the secondary link SL path loss, or the first path loss is determined according to the SL path loss and the downlink DL path loss;
  • the transmit power of the target transmission on the secondary link is controlled.
  • a power control apparatus applied to a first terminal device, including:
  • a first obtaining module configured to obtain the first path loss, where the first path loss is determined according to the secondary link SL path loss, or the first path loss is determined according to the SL path loss and the downlink DL path loss ;
  • a terminal device in a third aspect, includes a processor, a memory, and a program or instruction stored in the memory and executable on the processor, the program or instruction being executed by the processor When executed, the steps of the method as described in the first aspect are implemented.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method according to the first aspect are implemented.
  • a chip in a fifth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the method according to the first aspect .
  • the first path loss is obtained, where the first path loss is determined according to the secondary link SL path loss, or the first path loss is determined according to the SL path loss and the downlink DL path loss ; control the transmit power of the target transmission on the secondary link according to the first path loss.
  • This embodiment of the present application can control the transmit power of the target transmission on the secondary link based on the SL path loss. For example, the power during unicast is calculated through the SL path loss between users, so that the power control method matches the current communication scenario. In the SL transmission scenario, the power control accuracy can be avoided, and additional transmission power overhead can be avoided, thereby achieving the purpose of energy saving.
  • FIG. 1 shows a structural diagram of a network system to which an embodiment of the present application can be applied
  • FIG. 2 shows a schematic flowchart of a power control method according to an embodiment of the present application
  • FIG. 3 shows a schematic flowchart of a power control apparatus according to an embodiment of the present application
  • FIG. 4 shows a structural block diagram of a communication device according to an embodiment of the present application
  • FIG. 5 shows a structural block diagram of a terminal device according to an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the numerals so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and uses NR terminology in most of the description below, but the techniques can also be applied to applications other than NR system applications, such as 6th generation (6th generation ) Generation, 6G) communication system.
  • 6th generation 6th generation
  • 6G 6th generation
  • FIG. 1 shows a block diagram of a wireless communication system to which the embodiments of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network-side device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (VUE), pedestrian terminal (PUE) and other terminal-side devices, wearable devices include: bracelets, headphones, glasses, etc.
  • PDA Personal Digital Assistant
  • the network side device 12 may be a base station or a core network, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Send Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms.
  • the base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • a) UE calculates the intermediate quantity P PSFCH,one according to the path loss PL and p0-DL-PSFCH between the base station and the user;
  • the UE obtains the PSFCH transmission power P PSFCH,k (i) in different situations according to the relationship between the scheduled PSFCH transmission numbers N sch, Tx, PSFCH and the maximum PSFCH transmission number N max supported by the UE, PSFCH.
  • the specific categories are:
  • P PSFCH one +10log 10 (N sch, Tx, PSFCH )>P CMAX ;
  • PCMAX is the maximum output power configured by the UE.
  • P PSFCH,k (i) P CMAX -10log 10 ( NTx,PSFCH );
  • PCMAX is the maximum output power configured by the UE.
  • Secondary link (Sidelink, SL) HARQ feedback.
  • NR V2X introduces SL HARQ.
  • the sending node sends data or a transport block (TB) to the receiving node, and the receiving node determines whether the data reception is successful. If the receiving node is successful, the receiving node feeds back ACK to the sending node, otherwise, it feeds back NACK.
  • ACK or NACK transmission occurs on the corresponding PSFCH resource (ie corresponding PSFCH).
  • the UE transmits the PSFCH carrying HARQ-ACK information on one or more sub-channels in response to PSSCH reception.
  • period PSFCH resource periodicPSFCH resource
  • the UE If the UE receives the Physical SideLink Shared Channel (PSSCH) in the resource pool, and the Sidelink Control Information (SCI) format 0_2 schedules PSSCH reception to instruct the UE to report the HARQ-ACK information, the UE will The HARQ-ACK information will be carried on the resources used for PSFCH transmission.
  • the resource block (Resource Block, RB) used for PSFCH transmission in the resource pool is divided according to the slot index and the sub-channel index.
  • HARQ-ACK information is only transmitted on the PSFCH resource corresponding to the starting subchannel in the subchannel occupied by the PSSCH data;
  • Manner 2 HARQ-ACK information is transmitted on PSFCH resources corresponding to all subchannels occupied by PSSCH data.
  • the UE determines the resource index used for PSFCH transmission according to the receiving ID and the sending ID, and introduces a cyclic shift pair, that is, the code division technology is used to expand the PSFCH transmission resources.
  • LTE Long Term Evolution
  • the UE sends the SCI through the Physical Sidelink Control Channel (PSCCH), and schedules the transmission of the Physical Sidelink Shared Channel (PSSCH) to send data.
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • the transmission is carried out in the form of broadcast, and the receiving end does not feedback whether the reception is successful to the transmitting end.
  • the LTE sidelink design supports two resource allocation modes, namely the Scheduled resource allocation mode (usually called mode-1) and the autonomous resource selection mode.
  • the former is controlled by the network side equipment and allocates resources to each UE, and the latter is independently selected by the UE.
  • LTE supports sidelink carrier aggregation (CA).
  • CA of the LTE sidelink is different from the Uu interface (that is, the downlink and the uplink), and there is no distinction between the primary component carrier (PCC) and the secondary component carrier (SCC).
  • PCC primary component carrier
  • SCC secondary component carrier
  • the UE in the autonomous resource selection mode independently performs resource sensing and resource reservation on each CC.
  • LTE sidelink is suitable for specific public safety affairs (such as emergency communication in fire sites or disaster sites such as earthquakes), or vehicle to everything (V2X) communication.
  • Vehicle networking communication includes various services, such as basic safety communication, advanced (autonomous) driving, formation, sensor expansion, and so on. Since LTE sidelink only supports broadcast communication, it is mainly used for basic security communication, and other advanced V2X services will be supported by NR sidelink.
  • the 5G NR system can be used in the working frequency band above 6GHz that is not supported by LTE, and supports a larger working bandwidth.
  • the NR system also supports Sidelink interface communication for direct communication between terminals.
  • Sidelink transmission is mainly divided into broadcast, multicast, and unicast transmission forms.
  • Unicast as its name implies, is one-to-one transmission.
  • Multicast is a one-to-many transmission.
  • Broadcasting is also a one to many transmission, but broadcasting does not have the concept that UEs belong to the same group.
  • the PSCCH on the sidelink carries the SCI, and the SCI is used to schedule the PSSCH. Transmission resources can be indicated in the SCI and reserved for future transmissions.
  • PSFCH is used to feed back sidelink HARQ-ACK information. After determining the sidelink HARQ information, the user can further send the sidelink HARQ information to the base station through PUCCH or PUSCH.
  • NR sidelink supports three transmission modes: broadcast, multicast and unicast.
  • the multicast of NR sidelink supports connection-based multicast and connectionless multicast.
  • the connection-based multicast means that a connection is established between the multicast UEs, and the connectionless mode means that the multicast UE does not know the other UE, no connection is established.
  • multiple receivers support two mechanisms when performing HARQ feedback:
  • NACK only feedback or connection-less mechanism: If the data is received but cannot be solved, NACK is fed back, and no feedback is given in other cases. In this case, if the receiver does not receive a NACK, it is considered that all receivers have successfully received and decoded the data, but one disadvantage of this mechanism is that the sender may confuse the data received successfully and the receiver did not successfully receive it. There are two cases of SCI, that is, although the receiver did not successfully receive the SCI and data, the sender thought that the receiver received it successfully. This method is suitable for connectionless multicast scenarios.
  • the UE can only control the transmission power of the physical secondary link feedback channel PSFCH according to the path loss between the base station and the user, but this power control method may be different from the current communication scenarios (such as unicast and/or multicast scenarios). ) do not match, resulting in lower power control accuracy and additional transmit power overhead.
  • an embodiment of the present application provides a power control method, which is executed by a first terminal device, and the method includes:
  • Step 201 Obtain a first path loss, where the first path loss is determined according to the secondary link SL path loss, or the first path loss is determined according to the SL path loss and the downlink DL path loss.
  • the first path loss used for controlling the transmit power of the target transmission on the secondary link may be selected based on the SL path loss and the DL path loss according to the communication scenario. For example, the power in unicast is calculated by the SL path loss between users.
  • Step 202 Control the transmit power of the target transmission on the secondary link according to the first path loss.
  • the target transmission may be feedback, SSB, discovery (discovery) signal, data, control or reference signal (Reference Signal, RS) and the like.
  • discovery discovery
  • RS Reference Signal
  • the first path loss is obtained, where the first path loss is determined according to the secondary link SL path loss, or the first path loss is determined according to the SL path loss and the downlink DL path loss; According to the first path loss, the transmit power of the target transmission on the secondary link is controlled.
  • This embodiment of the present application can control the transmit power of the target transmission on the secondary link based on the SL path loss. For example, the power during unicast is calculated through the SL path loss between users, so that the power control method matches the current communication scenario. In the SL transmission scenario, the power control accuracy can be avoided, and additional transmission power overhead can be avoided, thereby achieving the purpose of energy saving.
  • the secondary link SL path loss is obtained by at least one of the following:
  • the second terminal device is a terminal device that communicates with the first terminal device
  • the SL path loss is determined according to the path loss notified by the third terminal device.
  • the third terminal device may be a scheduling UE or a head user (header UE).
  • the head user is the head of the fleet, and the head user except for In addition to the communication function of ordinary users, it can also manage user groups and/or assist in scheduling users in the user group to conduct SL communication;
  • the SL path loss is determined according to the preconfigured path loss.
  • the calculating the SL path loss according to the reference signal received power RSRP includes:
  • the SL path loss is calculated according to the RSRP measured by the first terminal device and the transmit power of at least part of the second terminal device.
  • the transmit power of the second terminal device is pre-configured
  • the transmit power of the second terminal device is sent by the second terminal device to the first terminal device; for example, the transmit power is carried or indicated by PSSCH, PSCCH, SCI or RS;
  • the transmit power of the second terminal device is notified by the third terminal device to the first terminal device.
  • Method 1 At least some users in a unicast transmission relationship with the first user transmit their measured RSRP values to the first user respectively, and the first user calculates the path loss corresponding to each transmission respectively;
  • PL_SL_uni1(m) Pt_uni1(m)-RSRP_uni1(m);
  • RSRP_uni1(m) represents the RSRP value measured by user m in a unicast relationship with the first user
  • Pt_uni1(m) represents the transmit power of the first user
  • PL_SL_uni1(m) represents the path between the first user and user m damage.
  • Method 2 The first user performs RSRP measurement, obtains the RSRP of the transmission information of at least some users in a unicast transmission relationship with the first user, and calculates the corresponding transmission for each transmission according to the transmit power of at least some of the users communicating with the first user. road damage.
  • PL_SL_uni2(m) Pt_uni2(m)-RSRP_uni2(m);
  • RSRP_uni2(m) represents the RSRP value measured by user m in a unicast relationship with the first user
  • Pt_uni2(m) represents the transmit power of user m
  • PL_SL_uni2(m) represents the path loss between the first user and user m .
  • Method 1 (Applicable to the above mechanism 2): At least some users in a multicast transmission relationship with the first user transmit their measured RSRP values to the first user, and the first user calculates the path loss corresponding to each transmission. :
  • PL_SL_group1(m) Pt_group1(m)-RSRP_group1(m);
  • RSRP_group1(m) represents the RSRP value measured by user m in a multicast relationship with the first user
  • Pt_group1(m) represents the transmit power of the first user
  • PL_SL_group1(m) represents the path between the first user and user m damage.
  • Method 2 (both the above-mentioned mechanism 1 and mechanism 2 are applicable): the first user performs RSRP measurement, obtains the RSRP of the transmission information of at least some users in a multicast transmission relationship with the first user, and according to at least part of the communication with the first user The transmit power of the user calculates the path loss corresponding to each transmission separately.
  • PL_SL_group2(m) Pt_group2(m)-RSRP_group2(m);
  • RSRP_group2(m) represents the RSRP value measured by user m in a multicast relationship with the first user
  • Pt_group2(m) represents the transmit power of user m
  • PL_SL_group2(m) represents the path loss between the first user and user m .
  • Method 1 (Applicable to the above mechanism 2): At least some users in a unicast transmission relationship with the first user and at least some users in a multicast transmission relationship with the first user transmit their measured RSRP values to the first user respectively. The user and the first user respectively calculate the path loss corresponding to each transmission;
  • PL_SL_uni1(p) Pt_uni1(p)-RSRP_uni1(p);
  • PL_SL_group1(q) Pt_group1(q)-RSRP_group1(q);
  • RSRP_uni1(p) represents the RSRP value measured by the user p in the unicast relationship with the first user
  • RSRP_group1(q) represents the RSRP value measured by the user q in the multicast relationship with the first user
  • PL_SL_uni1(p) represents the path loss between the first user and user p
  • PL_SL_group1(q) represents the path loss between the first user and user q
  • Pt_uni1(p) represents the transmit power of the first user to user P
  • Pt_group1(q) represents the first User to user q transmit power.
  • Method 2 (Applicable to the above mechanism 1 and mechanism 2): The first user performs RSRP measurement, and obtains the data of at least some users in a unicast transmission relationship with the first user and at least some users in a multicast transmission relationship with the first user. RSRP of the transmission information, and calculate the path loss corresponding to each transmission according to the transmission power of at least some users communicating with the first user;
  • PL_SL_uni2(p) Pt_uni2(p)-RSRP_uni2(p);
  • PL_SL_group2(q) Pt_group2(q)-RSRP_group2(q);
  • RSRP_uni2(p) represents the RSRP value measured by the user p in the unicast relationship with the first user
  • RSRP_group2(q) represents the RSRP value measured by the user q in the multicast relationship with the first user
  • PL_SL_uni2(p) represents the path loss between the first user and user p
  • PL_SL_group2(q) represents the path loss between the first user and user q
  • Pt_uni2(p) represents the transmit power of the first user to user P
  • Pt_group2(q) represents the first User to user q transmit power.
  • the above-mentioned transmission power may be the transmission power of the data channel or the control channel or the feedback channel or the synchronization channel, or the above-mentioned transmission power may be the transmission power of the data signal or the control signal or the feedback signal or the synchronization signal, or the above-mentioned transmission power is The transmission power of data signaling or control signaling or feedback signaling or synchronization signaling; or, the above-mentioned transmission power is the transmission power of the reference signal RS related to the data channel or control channel or feedback channel or synchronization channel, or the above-mentioned transmission power is The transmit power of the reference signal RS related to the data signal or control signal or feedback signal or synchronization signal, or the above transmit power is the transmit power of the reference signal RS related to the data signaling or control signaling or feedback signaling or synchronization signaling, for example , transmit power of PSSCH DMRS, transmit power of periodic or aperiodic RS, transmit power of requested RS, RS mentioned in this application
  • the user in a unicast transmission relationship with the first user can be at least one of the following:
  • a user who has a PC5RRC connection with the first user A user who has a PC5RRC connection with the first user.
  • the user in the multicast transmission relationship with the first user can be at least one of the following
  • determining the first path loss according to at least one of the SL path loss and the downlink DL path loss includes at least one of the following:
  • the path loss set select the path loss corresponding to the N4 transmissions with the longest or shortest remaining packet delay budget PDB as the first path loss;
  • the path losses corresponding to N5 transmissions that meet the preset distance requirement or are located in the preset geographic location select the path losses corresponding to N5 transmissions that meet the preset distance requirement or are located in the preset geographic location, as the first path loss, for example, select N5 transmissions with the shortest or farthest communication distance.
  • the first path loss for example, select N5 transmissions with the shortest or farthest communication distance.
  • the path loss corresponding to the transmission with the transmission priority less than or equal to the first threshold is selected as the first path loss
  • the path loss corresponding to the transmission whose transmission priority is greater than or equal to the second threshold is selected as the first path loss
  • the first path loss set includes at least one SL path loss and/or at least one DL path loss.
  • the selected SL path loss, as the first path loss includes at least one of the following:
  • the SL path loss is selected as the first path loss, and the resource set is the same as the preset time slot and preset subchannel.
  • the SL path loss is selected as the first path loss, where the resource interval for sending PSFCH may refer to the resource interval actually used for sending PSFCH;
  • the SL path loss set at least one SL path loss is selected as the first path loss, the SL path loss set includes at least two SL path losses, and any two SL path losses in the SL path loss set
  • the difference between the path losses is less than the fifth threshold; here, after the SL path loss is obtained above, the SL path loss of the fifth threshold of the path loss difference cell is selected from the obtained SL path losses to obtain the above SL path loss set.
  • the SL path loss corresponding to at least one transmit power is selected as the first path loss
  • the first transmit power set includes at least two transmit powers
  • the first transmit power set is The difference between any two transmit powers is less than the sixth threshold
  • each transmit power corresponds to an SL path loss; here, after obtaining the SL path loss, a transmit power is calculated according to each SL path loss, and the calculated transmit power Among them, select the transmission power whose difference between the transmission powers is less than the sixth threshold to obtain the first transmission power set.
  • the SL path loss corresponding to at least one PSD is selected as the first path loss
  • the first PSD set includes at least two PSDs
  • any two PSDs in the first PSD set are selected as the first path loss.
  • the difference between the PSDs is less than the seventh threshold, and each PSD corresponds to an SL path loss; here, a PSD is obtained according to each SL path loss, and then a PSD whose difference is less than the seventh threshold is selected from the obtained PSDs.
  • PSD to obtain the above-mentioned first PSD set.
  • the SL path loss is selected as the first path loss.
  • N1, N2, N3, N4 or N5 is equal to 1.
  • the path loss used to calculate the transmission power of each PSFCH is the same.
  • N1, N2, N3, N4 or N5 is greater than 1 (the path loss used to calculate the transmit power of each PSFCH is different);
  • the number of resources included in the PSFCH resource set is greater than the eighth threshold, and the resource set is time-frequency domain resources corresponding to preset time slots and preset subchannels;
  • the resource interval for sending PSFCH is greater than the ninth threshold, and the resource interval is counted by the above-mentioned number of resources.
  • the resource interval for sending PSFCH may refer to the resource interval actually used for sending PSFCH;
  • the path loss set includes at least two path losses, and the at least two path losses are SL path losses and/or DL path losses
  • the path loss set includes at least two path losses, and the at least two path losses are SL path losses and/or DL path losses
  • a path loss whose difference between the two path losses is less than the tenth threshold may be selected to obtain the above-mentioned second path loss set;
  • the second transmit power set includes at least two transmit powers, each transmit power corresponds to a path loss, and the SL path loss and After the DL path loss, a transmit power is calculated according to each obtained path loss, and a transmit power whose difference between the transmit powers is less than the eleventh threshold is selected from the calculated transmit powers to obtain the above-mentioned second transmit power set;
  • the first PSD set includes at least two PSDs, and each PSD corresponds to a path loss; after obtaining the SL path loss and the DL path loss, A PSD is obtained according to each obtained path loss, and then a PSD whose difference between the PSDs is smaller than the twelfth threshold is selected from the obtained PSDs to obtain the above-mentioned second PSD set.
  • controlling the transmit power of the target transmission on the secondary link according to the first path loss including:
  • the first parameter is calculated according to the SL path loss and the first SL power parameter value
  • the second parameter is calculated according to the first DL power parameter value when the first DL power parameter value is provided.
  • the above-mentioned first parameter is specifically calculated according to the SL path loss, the first SL power parameter value, the sidelink subcarrier spacing, and the third parameter ( ⁇ SL, PSFCH ).
  • the above-mentioned second parameter is specifically calculated according to the first DL power parameter, the DL path loss, the sidelink subcarrier spacing, and the fourth parameter ( ⁇ DL, PSFCH ).
  • obtaining the target parameter according to at least one of the first parameter and the second parameter includes:
  • the target parameter is obtained by at least one of the following;
  • the first value is the product of the first parameter and the first weight value
  • the second value is the product of the second parameter and the second weight value
  • the average value of the first parameter and the second parameter is used as the target parameter.
  • the first parameter is used as the target parameter.
  • the second parameter is used as the target parameter.
  • obtaining the target parameter according to at least one of the first parameter and the second parameter includes:
  • the second parameter is determined as the target parameter.
  • the obtaining the target parameter according to at least one of the first parameter and the second parameter includes: in the case that the value of the first DL power parameter is provided, determining the second parameter as the target parameter. describe the target parameters;
  • the first parameter is determined as the target parameter.
  • the above-mentioned first parameter P PSFCH,SL,one is calculated according to the following formula:
  • P PSFCH,SL,one P O,SL,PSFCH +10log 10 (2 ⁇ )+ ⁇ SL,PSFCH ⁇ PL SL ;
  • P O, SL, PSFCH is the value of the first SL power parameter
  • ⁇ SL, PSFCH is the value of the third parameter
  • PL SL is the path loss selected by the user for power control in the SL path loss.
  • the above-mentioned second parameter P PSFCH,DL,one is calculated according to the following formula, and power control is performed based on the second parameter;
  • P PSFCH,DL,one PO ,DL,PSFCH +10log 10 (2 ⁇ )+ ⁇ DL,PSFCH ⁇ PLDL ;
  • P O, DL, PSFCH is the first DL power parameter value
  • ⁇ DL, PSFCH is the value of the fourth parameter
  • PL DL is the path loss between the base station and the user.
  • the first parameter is calculated according to the first SL power parameter value, and power control is performed based on the first parameter.
  • the above-mentioned first SL power parameter value may be the SL initial power, the SL default power, the SL initial transmit power, or the expected receive power.
  • the above-mentioned first DL power parameter value may be DL initial power, DL default power, DL initial transmit power or expected receive power.
  • controlling the transmit power of the target transmission on the secondary link according to the first path loss includes:
  • the transmission power of the secondary link synchronization signal block S-SSB/physical secondary link broadcast channel PSBCH transmission is controlled.
  • the transmission power of S-SSB/PSBCH transmission is controlled by the following formula
  • P CMAX is the first power
  • P O is the value of the fifth parameter
  • ⁇ S-SSB is the value of the sixth parameter
  • PL is the first path loss.
  • the first path loss is a DL path loss or an SL path loss.
  • the target transmission includes at least one transmission
  • the controlling the transmit power of the target transmission on the secondary link according to the first path loss includes:
  • the transmission is abandoned according to at least one of the following until the total power of the target transmission is less than or is equal to the first power
  • M4 transmissions that meet the preset distance requirement or are in the preset geographical location are discarded, for example, in the case that only unicast or multicast communication mode exists, the transmission distance is discarded The farthest or nearest M4 transmissions;
  • the transmission that needs to be discarded is selected among all the transmissions.
  • the selection of the transmission to be abandoned includes at least one of the following:
  • the above-mentioned first power may be the maximum output power limited by the UE capability, or the size of the first power may be determined according to the user capability, or the first power may be the configured, pre-configured or other transmission power indicated by the UE or The maximum transmission power, or the first power is the power limited for sidelink transmission.
  • a UE that has N sch, Tx, PSFCH scheduled PSFCH transmissions and can transmit N max, PSFCH PSFCH at most, determines the number of PSFCHs N Tx, PSFCH to transmit simultaneously on a resource pool of PSFCH transmission opportunity i according to the following method, And the power P PSFCH,k (i) of PSFCH transmission k (1 ⁇ K ⁇ N Tx,PSFCH ):
  • P PSFCH,DL,one PO ,DL,PSFCH +10log 10 (2 ⁇ )+ ⁇ DL,PSFCH ⁇ PLDL ;
  • PL DL is the path loss value corresponding to the transmission.
  • PL DL PL b,f,c (q d ), that is, PL DL is the downlink path loss calculated by the UE using the reference signal with index q d for the activated downlink bandwidth part of the carrier f of the serving cell c, and the unit is dB.
  • reference signal may be:
  • the UE When the UE is configured to monitor the PDCCH to detect DCI format 0_0 or DCI format 0_1 or DCI format 0_2 or DCI format 3_0 or DCI format 3_1, the UE is used to determine whether the DCI format 0_0 or DCI format 0_1 or DCI format 0_2 or DCI format 3_0 or the RS resource of the PUSCH transmission power scheduled by DCI format 3_1, and/or,
  • the UE is not configured to monitor the PDCCH to detect DCI format 0_0 or DCI format 0_1 or DCI format 0_2 or DCI format 3_0 or DCI format 3_1, the UE is used to obtain the RS resource corresponding to the SS/PBCH block of the MIB;
  • P PSFCH,SL,one P O,SL,PSFCH +10log 10 (2 ⁇ )+ ⁇ SL,PSFCH ⁇ PL SL ;
  • the seventh parameter is referenceSignalPower
  • the eighth parameter is higer layer filtered RSRP.
  • referenceSignalPower is the PSSCH transmit power of each RE of each antenna port of the UE obtained by filtering the higher layer across PSSCH transmission occasions using the filter configuration provided by filterCoefficient-SL, and
  • the higer layer filtered RSRP is obtained from the PSSCH DM-RS using the filter configuration provided by filterCoefficient-SL and reported to the UE by the UE receiving the PSCCH-PSSCH transmission.
  • P PSFCH,k (i) P CMAX -10log 10 ( NTx,PSFCH );
  • the UE autonomously determines the N Tx, PSFCH PSFCH transmissions in ascending priority order according to the rules of simultaneous transmission or reception of PSFCH, so that N Tx, PSFCH ⁇ 1, and determines the maximum transmission supported by the user for the N Tx, PSFCH PSFCH transmissions power P CMAX ;
  • P PSFCH,one min(P O,DL,PSFCH ,P O,SL,PSFCH );
  • P PSFCH,one P O,DL,PSFCH ;
  • P PSFCH,one P O,SL,PSFCH .
  • P PSFCH one +10log 10 (N sch, Tx, PSFCH ) ⁇ P CMAX , where P CMAX is the maximum transmit power supported by the user determined for N sch, Tx, PSFCH PSFCH transmissions;
  • the UE autonomously decides the N Tx, PSFCH and PSFCH transmissions in ascending priority order according to the rules of simultaneous transmission/reception of PSFCH, so that where Mi is the number of PSFCHs with transmission priority i , and K is defined as:
  • P CMAX is the maximum transmit power supported by the user to transmit all PSFCHs with priorities 1, 2, ..., K (if any).
  • P PSFCH,k (i) min(P CMAX -10log 10 ( NTx,PSFCH ),P PSFCH,one );
  • P CMAX is the maximum transmission power supported by the user, which is used for the transmission of N Tx, PSFCH and PSFCH;
  • the UE autonomously decides N max, PSFCH PSFCH transmissions in ascending priority order according to the rules of simultaneous transmission/reception of PSFCH;
  • the UE autonomously determines the N Tx, PSFCH and PSFCH transmissions in ascending priority order according to the rules of simultaneous transmission/reception of PSFCH, so that where Mi is the number of PSFCHs with transmission priority i , and K is defined as:
  • P CMAX is the maximum transmit power supported by the user to transmit all PSFCHs with priorities 1, 2, ..., K (if any).
  • P PSFCH,k (i) min(P CMAX -10log 10 ( NTx,PSFCH ),P PSFCH,one );
  • PCMAX is the maximum transmit power supported by the user, which is used for the transmission of N Tx, PSFCH and PSFCH.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • a UE that has N sch, Tx, PSFCH scheduled PSFCH transmissions and can transmit N max, PSFCH PSFCH at most, determines the number of PSFCHs N Tx, PSFCH to transmit simultaneously on a resource pool of PSFCH transmission opportunity i according to the following method, And the power P PSFCH,k (i) of PSFCH transmission k (1 ⁇ K ⁇ N Tx,PSFCH ):
  • P PSFCH,DL,one PO ,DL,PSFCH +10log 10 (2 ⁇ )+ ⁇ DL,PSFCH ⁇ PLDL ;
  • PL DL PL b,f,c (q d ), that is, PL DL is the downlink path loss calculated by the UE using the reference signal indexed by q d for the active downlink bandwidth part of the carrier f of the serving cell c, and the unit is dB.
  • reference signal may be:
  • the UE When the UE is configured to monitor the PDCCH to detect DCI format 0_0 or DCI format 0_1 or DCI format 0_2 or DCI format 3_0 or DCI format 3_1, the UE is used to determine whether the DCI format 0_0 or DCI format 0_1 or DCI format 0_2 or DCI format 3_0 or the RS resource of the PUSCH transmission power scheduled by DCI format 3_1, and/or,
  • the UE is not configured to monitor the PDCCH to detect DCI format 0_0 or DCI format 0_1 or DCI format 0_2 or DCI format 3_0 or DCI format 3_1, the UE is used to obtain the RS resource corresponding to the SS/PBCH block of the MIB;
  • the UE autonomously decides the N Tx, PSFCH and PSFCH transmissions in ascending priority order according to the rules of simultaneous transmission/reception of PSFCH, so that where Mi is the number of PSFCHs with transmission priority i , and K is defined as:
  • P CMAX is the maximum transmit power supported by the user to transmit all PSFCHs with priorities 1, 2, ..., K (if any).
  • P PSFCH,k (i) min(P CMAX -10log 10 ( NTx,PSFCH ),P PSFCH,one );
  • P CMAX is the maximum transmit power supported by the user, which is used for N Tx, PSFCH and PSFCH
  • the UE autonomously decides N max, PSFCH PSFCH transmissions in ascending priority order according to the rules for simultaneous transmission/reception of PSFCH;
  • the UE autonomously decides N Tx, PSFCH and PSFCH transmissions in ascending priority order according to the rules of simultaneous transmission/reception of PSFCH, so that where Mi is the number of PSFCHs with transmission priority i , and K is defined as:
  • P CMAX is the maximum transmit power supported by the user to transmit all PSFCHs with priorities 1, 2, ..., K (if any).
  • P PSFCH,k (i) min(P CMAX -10log 10 ( NTx,PSFCH ),P PSFCH,one );
  • P CMAX is the maximum transmission power supported by the user, which is used for the transmission of N Tx, PSFCH and PSFCH;
  • P PSFCH,SL,one P O,SL,PSFCH +10log 10 (2 ⁇ )+ ⁇ SL,PSFCH ⁇ PL SL ;
  • the seventh parameter is referenceSignalPower
  • the eighth parameter is higer layer filtered RSRP.
  • referenceSignalPower is the PSSCH transmit power of each RE of each antenna port of the UE obtained by filtering the higher layer across PSSCH transmission occasions using the filter configuration provided by filterCoefficient-SL, and
  • the higer layer filtered RSRP is obtained from the PSSCH DM-RS using the filter configuration provided by filterCoefficient-SL and reported to the UE by the UE receiving the PSCCH-PSSCH transmission.
  • P PSFCH one +10log 10 (N sch, Tx, PSFCH ) ⁇ P CMAX , where P CMAX is the maximum transmit power supported by the user determined for N sch, Tx, PSFCH PSFCH transmissions;
  • the UE autonomously decides the N Tx, PSFCH and PSFCH transmissions in ascending priority order according to the rules of simultaneous transmission/reception of PSFCH, so that where Mi is the number of PSFCHs with transmission priority i , and K is defined as:
  • P CMAX is the maximum transmit power supported by the user to transmit all PSFCHs with priorities 1, 2, ..., K (if any).
  • P PSFCH,k (i) min(P CMAX -10log 10 ( NTx,PSFCH ),P PSFCH,one );
  • P CMAX is the maximum transmission power supported by the user, which is used for the transmission of N Tx, PSFCH and PSFCH;
  • the UE autonomously decides N max, PSFCH PSFCH transmissions in ascending priority order according to the rules for simultaneous transmission/reception of PSFCH;
  • P PSFCH one +10log 10 (N max, PSFCH ) ⁇ P CMAX , where P CMAX is the maximum transmit power supported by the user for the transmission of N max, PSFCH PSFCHs,
  • the UE autonomously decides N Tx, PSFCH and PSFCH transmissions in ascending priority order according to the rules of simultaneous transmission/reception of PSFCH, so that where Mi is the number of PSFCHs with transmission priority i , and K is defined as:
  • P CMAX is the maximum transmit power supported by the user to transmit all PSFCHs with priorities 1, 2, ..., K (if any).
  • P PSFCH,k (i) min(P CMAX -10log 10 ( NTx,PSFCH ),P PSFCH,one );
  • PCMAX is the maximum transmit power supported by the user, which is used for the transmission of N Tx, PSFCH and PSFCH.
  • P PSFCH,k (i) P CMAX -10log 10 ( NTx,PSFCH );
  • the UE autonomously determines the N Tx, PSFCH PSFCH transmissions in ascending priority order according to the rules of simultaneous transmission/reception of PSFCH, so that N Tx, PSFCH ⁇ 1, and determines the maximum transmission supported by the user for the N Tx, PSFCH PSFCH transmissions Power P CMAX .
  • the UE determines the power P S-SSB (i) of the S-SSB transmission opportunity on time slot i as follows:
  • P CMAX is the maximum transmit power supported by the user
  • PL is the path loss value corresponding to the transmission.
  • PL PL b,f,c (q d ), that is, PL is the downlink path loss calculated by the UE using the reference signal with index q d for the activated downlink bandwidth part of the carrier f of the serving cell c, and the unit is dB.
  • reference signal may be:
  • the UE When the UE is configured to monitor the PDCCH to detect DCI format 0_0, the RS resource used by the UE to determine the PUSCH transmission power scheduled by the DCI format 0_0, and/or,
  • the UE When the UE is not configured to monitor the PDCCH to detect DCI format 0_0, the UE is used to obtain the RS resource corresponding to the SS/PBCH block of the MIB;
  • the UE will send N sch,Tx,PSFCH ⁇ N max,PSFCH PSFCH and receive N sch,Rx,PSFCH PSFCH,and the transmission of N sch,Tx,PSFCH PSFCH will be the same as N sch,Rx,PSFCH PSFCH
  • the UE only sends or receives a group of PSFCHs corresponding to the minimum priority threshold value, wherein the minimum priority threshold value is determined by the first group of SCI format 1 associated with the N sch, Tx, PSFCH PSFCHs respectively.
  • the UE If the UE will send N sch, Tx, PSFCH PSFCHs at one PSFCH sending occasion, the UE sends the minimum N Tx, PSFCH priority domain values indicated by all SCI formats 1-A associated with the PSFCH sending occasion. N Tx, PSFCH PSFCH.
  • the first path loss is obtained, where the first path loss is determined according to the secondary link SL path loss, or the first path loss is determined according to the SL path loss and the downlink DL path loss; According to the first path loss, the transmit power of the target transmission on the secondary link is controlled.
  • This embodiment of the present application can control the transmit power of the target transmission on the secondary link based on the SL path loss. For example, the power during unicast is calculated through the SL path loss between users, so that the power control method matches the current communication scenario. In the SL transmission scenario, the power control accuracy can be avoided, and additional transmission power overhead can be avoided, thereby achieving the purpose of energy saving.
  • the execution body may be a power control apparatus, or a control module in the power control apparatus for executing the power control method.
  • the power control device provided by the embodiment of the present application is described by taking the power control method performed by the power control device as an example.
  • an embodiment of the present application further provides a power control apparatus 300, which is applied to the first terminal device and includes:
  • a first obtaining module 301 configured to obtain a first path loss, where the first path loss is determined according to the secondary link SL path loss, or the first path loss is determined according to the SL path loss and the downlink DL path loss of;
  • the control module 302 is configured to control the transmit power of the target transmission on the secondary link according to the first path loss.
  • the apparatus of the embodiment of the present application further includes: a second acquisition module
  • the second obtaining module is configured to perform at least one of the following:
  • the second terminal device is a terminal device that communicates with the first terminal device
  • the third terminal device is a scheduling terminal or a head user
  • the SL path loss is determined according to the preconfigured path loss.
  • the first obtaining module is configured to calculate the SL path loss according to at least part of the RSRP sent by the second terminal device;
  • the SL path loss is calculated according to the RSRP measured by the first terminal device and the transmit power of at least part of the second terminal device.
  • the transmit power of the second terminal device is preconfigured
  • the transmit power of the second terminal device is sent by the second terminal device to the first terminal device;
  • the transmit power of the second terminal device is notified by the third terminal device to the first terminal device.
  • the first obtaining module is configured to execute at least one of the following:
  • the path losses corresponding to the N4 transmissions with the longest or shortest remaining packet delay budget PDB as the first path loss
  • the path loss set select the path loss corresponding to the N5 transmissions with the closest or farthest communication distance as the first path loss;
  • the path loss set select the path losses corresponding to N6 transmissions that meet the preset distance requirement or are located in the preset geographic location, as the first path loss;
  • the path loss corresponding to the transmission with the transmission priority less than or equal to the first threshold is selected as the first path loss
  • the path loss corresponding to the transmission whose transmission priority is greater than or equal to the second threshold is selected as the first path loss
  • the first path loss set includes at least one SL path loss and/or at least one DL path loss.
  • the first obtaining module is configured to execute at least one of the following:
  • the SL path loss set at least one SL path loss is selected as the first path loss, the SL path loss set includes at least two SL path losses, and any two SL path losses in the SL path loss set The difference between is less than the fifth threshold;
  • the SL path loss corresponding to at least one transmit power is selected as the first path loss, the first transmit power set includes at least two transmit powers, and in the first transmit power set The difference between any two transmit powers is less than the sixth threshold, and each transmit power corresponds to an SL path loss;
  • the SL path loss corresponding to at least one PSD is selected as the first path loss
  • the first PSD set includes at least two PSDs, and any two PSDs in the first PSD set are selected as the first path loss.
  • the difference between the PSDs is less than the seventh threshold, and each PSD corresponds to an SL path loss;
  • the SL path loss is selected as the first path loss.
  • N1, N2, N3, N4, or N5 is greater than 1 under the condition that at least one of the following is satisfied;
  • the number of resources included in the PSFCH resource set is greater than the eighth threshold, and the resource set is time-frequency domain resources corresponding to preset time slots and preset subchannels;
  • the resource interval for sending the PSFCH is greater than the ninth threshold
  • the path loss set includes at least two path losses, and the at least two path losses are SL path losses and/or DL path losses damage;
  • the second transmit power set includes at least two transmit powers, and each transmit power corresponds to a path loss
  • the difference between any two PSDs in the second PSD set is smaller than the twelfth threshold, the first PSD set includes at least two PSDs, and each PSD corresponds to one path loss.
  • the second obtaining submodule is configured to obtain the target parameter by at least one of the following when the first parameter and the second parameter coexist;
  • the first value is the product of the first parameter and the first weight value
  • the second value is the product of the second parameter and the second weight value
  • the average value of the first parameter and the second parameter is used as the target parameter.
  • the control module includes:
  • a first obtaining submodule configured to obtain a first parameter according to the first path loss
  • a second obtaining submodule configured to obtain the target parameter according to at least one of the first parameter and the second parameter
  • control submodule configured to control the transmit power of the target transmission on the secondary link according to the target parameter
  • the first parameter is calculated according to the SL path loss and the first SL power parameter value
  • the second parameter is calculated according to the first DL power parameter value under the condition that the first DL power parameter value is provided.
  • the second acquisition submodule includes:
  • a first obtaining unit configured to determine the first parameter as the target parameter when the first SL power parameter value is provided
  • the second parameter is determined as the target parameter.
  • the second acquisition submodule includes:
  • a second obtaining unit configured to determine a second parameter as the target parameter when the first DL power parameter value is provided
  • the first parameter is determined as the target parameter.
  • control module is configured to control the transmission power of the secondary link synchronization signal block S-SSB/physical secondary link broadcast channel PSBCH transmission according to the first path loss.
  • the target transmission includes at least one transmission
  • the control module is configured to perform at least one of the following:
  • the transmission is abandoned according to at least one of the following until the total power of the target transmission is less than or is equal to the first power
  • the transmission that needs to be discarded is selected among all the transmissions.
  • control module is specifically configured to execute at least one of the following:
  • the apparatus in this embodiment of the present application acquires the first path loss, where the first path loss is determined according to the secondary link SL path loss, or the first path loss is determined according to the SL path loss and the downlink DL path loss ; control the transmit power of the target transmission on the secondary link according to the first path loss.
  • This embodiment of the present application can control the transmit power of the target transmission on the secondary link based on the SL path loss. For example, the power during unicast is calculated through the SL path loss between users, so that the power control method matches the current communication scenario. In the SL transmission scenario, the power control accuracy can be avoided, and additional transmission power overhead can be avoided, thereby achieving the purpose of energy saving.
  • the power control device in this embodiment of the present application may be a device, or may be a component, an integrated circuit, or a chip in a terminal.
  • the device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the power control device in this embodiment of the present application may be a device with an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the information determination apparatus provided in the embodiment of the present application can implement each process implemented by the method embodiment of FIG. 2 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • an embodiment of the present application further provides a communication device 400 , including a processor 401 , a memory 402 , and a program or instruction stored in the memory 402 and executable on the processor 401
  • a communication device 400 including a processor 401 , a memory 402 , and a program or instruction stored in the memory 402 and executable on the processor 401
  • the communication device 400 is a terminal
  • the program or instruction is executed by the processor 401
  • each process of the above-mentioned embodiment of the power control method applied to the first terminal device can be realized, and the same technical effect can be achieved. In order to avoid repetition , which will not be repeated here.
  • FIG. 5 is a schematic diagram of a hardware structure of a terminal device implementing an embodiment of the present application.
  • the terminal device 500 includes but is not limited to: a radio frequency unit 501, a network module 502, an audio output unit 503, an input unit 504, a sensor 505, a display unit 506, a user input unit 507, an interface unit 508, a memory 509, and a processor 510, etc. part.
  • the terminal device 500 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 510 through a power management system, so that the power management system can manage charging, discharging, and power management. consumption management and other functions.
  • a power supply such as a battery
  • the terminal device structure shown in FIG. 5 does not constitute a limitation on the terminal, and the terminal device may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 504 may include a graphics processor (Graphics Processing Unit, GPU) 5041 and a microphone 5042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 506 may include a display panel 5061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 507 includes a touch panel 5071 and other input devices 5072 .
  • the touch panel 5071 is also called a touch screen.
  • the touch panel 5071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 5072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which are not described herein again.
  • the radio frequency unit 501 receives the downlink data from the network side device, and then processes it to the processor 510; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 501 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 509 may be used to store software programs or instructions as well as various data.
  • the memory 509 may mainly include a storage program or instruction area and a storage data area, wherein the stored program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 509 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 510 may include one or more processing units; optionally, the processor 510 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 510.
  • the processor 510 is configured to obtain the first path loss, where the first path loss is determined according to the secondary link SL path loss, or the first path loss is determined according to the SL path loss and the downlink DL path loss ; control the transmit power of the target transmission on the secondary link according to the first path loss.
  • the terminal device in this embodiment of the present application acquires the first path loss, where the first path loss is determined according to the secondary link SL path loss, or the first path loss is determined according to the SL path loss and the downlink DL path loss ; control the transmit power of the target transmission on the secondary link according to the first path loss.
  • This embodiment of the present application can control the transmit power of the target transmission on the secondary link based on the SL path loss. For example, the power during unicast is calculated through the SL path loss between users, so that the power control method matches the current communication scenario. In the SL transmission scenario, the power control accuracy can be avoided, and additional transmission power overhead can be avoided, thereby achieving the purpose of energy saving.
  • processor 510 is configured to execute at least one of the following:
  • the second terminal device is a terminal device that communicates with the first terminal device
  • the third terminal device is a scheduling terminal or a head user
  • the SL path loss is determined according to the preconfigured path loss.
  • the processor 510 is further configured to calculate the SL path loss according to the RSRP sent by at least part of the second terminal device; or, according to the RSRP measured by the first terminal device and the transmit power of at least part of the second terminal device, Calculate the SL path loss.
  • the transmit power of the second terminal device is preconfigured
  • the transmit power of the second terminal device is sent by the second terminal device to the first terminal device;
  • the transmit power of the second terminal device is notified by the third terminal device to the first terminal device.
  • processor 510 is further configured to execute at least one of the following:
  • the path loss set select the path losses corresponding to the N4 transmissions with the longest or shortest remaining packet delay budget PDB as the first path loss;
  • the path loss set select the path losses corresponding to N5 transmissions that meet the preset distance requirement or are located in the preset geographic location, as the first path loss;
  • the path loss corresponding to the transmission with the transmission priority less than or equal to the first threshold is selected as the first path loss
  • the path loss corresponding to the transmission whose transmission priority is greater than or equal to the second threshold is selected as the first path loss
  • the first path loss set includes at least one SL path loss and/or at least one DL path loss.
  • processor 510 is further configured to execute at least one of the following:
  • the SL path loss set at least one SL path loss is selected as the first path loss, the SL path loss set includes at least two SL path losses, and any two SL path losses in the SL path loss set The difference between is less than the fifth threshold;
  • the SL path loss corresponding to at least one transmit power is selected as the first path loss, the first transmit power set includes at least two transmit powers, and in the first transmit power set The difference between any two transmit powers is less than the sixth threshold, and each transmit power corresponds to an SL path loss;
  • the SL path loss corresponding to at least one PSD is selected as the first path loss
  • the first PSD set includes at least two PSDs, and any two PSDs in the first PSD set are selected as the first path loss.
  • the difference between the PSDs is less than the seventh threshold, and each PSD corresponds to an SL path loss;
  • the SL path loss is selected as the first path loss.
  • N1, N2, N3, N4 or N5 is greater than 1 when at least one of the following is satisfied;
  • the number of resources included in the PSFCH resource set is greater than the eighth threshold, and the resource set is time-frequency domain resources corresponding to preset time slots and preset subchannels;
  • the resource interval for sending the PSFCH is greater than the ninth threshold
  • the path loss set includes at least two path losses, and the at least two path losses are SL path losses and/or DL path losses damage;
  • the second transmit power set includes at least two transmit powers, and each transmit power corresponds to a path loss
  • the difference between any two PSDs in the second PSD set is smaller than the twelfth threshold, the first PSD set includes at least two PSDs, and each PSD corresponds to one path loss.
  • the processor 510 when the first path loss is the SL path loss, is further configured to obtain a first parameter according to the first path loss;
  • the first parameter is calculated according to the SL path loss and the first SL power parameter value
  • the second parameter is calculated according to the first DL power parameter value under the condition that the first DL power parameter value is provided.
  • the processor 510 is further configured to obtain the target parameter by at least one of the following when the first parameter and the second parameter exist at the same time;
  • the first value is the product of the first parameter and the first weight value
  • the second value is the product of the second parameter and the second weight value
  • the average value of the first parameter and the second parameter is used as the target parameter.
  • the processor 510 is further configured to determine the first parameter as the target parameter when the first SL power parameter value is provided;
  • the processor 510 is further configured to determine a second parameter as the target parameter when the first DL power parameter value is provided;
  • the first parameter is determined as the target parameter.
  • the processor 510 is further configured to control the transmit power of the secondary link synchronization signal block S-SSB/physical secondary link broadcast channel PSBCH transmission according to the first path loss.
  • the target transmission includes at least one transmission
  • the controlling the transmit power of the target transmission on the secondary link according to the first path loss includes:
  • the transmission is abandoned according to at least one of the following until the total power of the target transmission is less than or is equal to the first power
  • the transmission that needs to be discarded is selected among all the transmissions.
  • processor 510 is further configured to execute at least one of the following:
  • the terminal device in this embodiment of the present application acquires the first path loss, where the first path loss is determined according to the secondary link SL path loss, or the first path loss is determined according to the SL path loss and the downlink DL path loss ; control the transmit power of the target transmission on the secondary link according to the first path loss.
  • This embodiment of the present application can control the transmit power of the target transmission on the secondary link based on the SL path loss. For example, the power during unicast is calculated through the SL path loss between users, so that the power control method matches the current communication scenario. In the SL transmission scenario, the power control accuracy can be avoided, and additional transmission power overhead can be avoided, thereby achieving the purpose of energy saving.
  • Embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each process of the foregoing power control method embodiment can be achieved, and the same In order to avoid repetition, the technical effect will not be repeated here.
  • the processor is the processor in the terminal device in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the power control method embodiments described above.
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is configured to run a program or an instruction to implement the power control method embodiments described above.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种功率控制方法、装置及终端设备,属于通信技术领域。本申请的功率控制方法包括:获取第一路损,所述第一路损是根据副链路SL路损确定的,或者,所述第一路损是根据SL路损和下行DL路损确定的;根据所述第一路损,对副链路上目标传输的发送功率进行控制。

Description

功率控制方法、装置及终端设备
相关申请的交叉引用
本申请主张在2020年9月30日在中国提交的中国专利申请号No.202011065169.7的优先权,其全部内容通过引用包含于此。
技术领域
本发明涉及通信技术领域,特别涉及一种功率控制方法、装置及终端设备。
背景技术
新空口(New Radio,NR)车用无线通信技术(vehicle to X,V2X)通信中,用户设备(User Equipment,UE,也称为终端)只能根据基站与用户间的路损,对物理副链路反馈信道(Physical SideLink Feedback Channel,PSFCH)的发送功率进行控制,但这种功率控制方式可能与当前的通信场景(如单播和/或组播场景)并不匹配,并且在同时发送多个PSFCH时,根据基站与用户间的路损来进行功率控制的方式,功控的准确度较低。
发明内容
本申请实施例提供了一种功率控制方法、装置及终端设备,能够解决SL传输场景下功控准确度较低的问题。
第一方面,提供了一种功率控制方法,应用于第一终端设备,包括:
获取第一路损,所述第一路损是根据副链路SL路损确定的,或者,所述第一路损是根据SL路损和下行DL路损确定的;
根据所述第一路损,对副链路上目标传输的发送功率进行控制。
第二方面,提供了一种功率控制装置,应用于第一终端设备,包括:
第一获取模块,用于获取第一路损,所述第一路损是根据副链路SL路损确定的,或者,所述第一路损是根据SL路损和下行DL路损确定的;
控制模块,用于根据所述第一路损,对副链路上目标传输的发送功率进 行控制。
第三方面,提供了一种终端设备,该终端设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第五方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
在本申请实施例中,获取第一路损,所述第一路损是根据副链路SL路损确定的,或者,所述第一路损是根据SL路损和下行DL路损确定的;根据所述第一路损,对副链路上目标传输的发送功率进行控制。本申请实施例能够基于SL路损对副链路上目标传输的发送功率进行控制,例如,单播时的功率通过用户间的SL路损计算,使得功率控制方式与当前通信场景匹配,在提升SL传输场景下功率控制准确度的同时,能够避免额外的发送功率开销,从而达到节能的目的。
附图说明
图1表示本申请实施例可应用的一种网络系统的结构图;
图2表示本申请实施例的功率控制方法的流程示意图;
图3表示本申请实施例的功率控制装置的流程示意图;
图4表示本申请实施例的通信设备的结构框图;
图5表示本申请实施例的终端设备的结构框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数字在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收 发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
为使本领域技术人员能够更好地理解本申请实施例,先进行如下说明。
1、PSFCH功率控制技术。
1)若提供了参数p0-DL-PSFCH给UE;
a)UE根据基站与用户间的路损PL和p0-DL-PSFCH计算中间量P PSFCH,one
b)UE根据调度的PSFCH传输数N sch,Tx,PSFCH和UE支持的最大PSFCH传输数N max,PSFCH间的大小关系,得到不同情况下PSFCH的传输功率P PSFCH,k(i)。具体的分类为:
N sch,Tx,PSFCH≤N max,PSFCH,P PSFCH,one+10log 10(N sch,Tx,PSFCH)≤P CMAX
Figure PCTCN2021121770-appb-000001
P PSFCH,one+10log 10(N sch,Tx,PSFCH)>P CMAX
N sch,Tx,PSFCH>N max,PSFCH,P PSFCH,one+10log 10(N sch,Tx,PSFCH)≤P CMAX
N sch,Tx,PSFCH>N max,PSFCH,P PSFCH,one+10log 10(N sch,Tx,PSFCH)≤P CMAX
其中,P CMAX是UE配置的最大输出功率。
2)若未提供参数p0-DL-PSFCH给UE;
P PSFCH,k(i)=P CMAX-10log 10(N Tx,PSFCH);
其中,P CMAX是UE配置的最大输出功率。
2、副链路(Sidelink,SL)HARQ反馈。
为了提高Sidelink传输的可靠性和有效性,NR V2X引入了SL HARQ。在SL上,发送节点向接收节点发送数据或传输块(Transport Block,TB),接收节点判断数据接收是否成功,如果接收成功,接收节点向发送节点反馈ACK,反之,反馈NACK。ACK或NACK传输发生在相应的PSFCH资源上(即corresponding PSFCH)。
UE在一个或者多个子信道(sub-channel)上传输携带HARQ-ACK信息 的PSFCH,作为对PSSCH接收的应答。UE通过参数,如周期PSFCH资源(periodPSFCHresource),获取PSFCH资源周期,其值N=0/1/2/4slots,当该参数值为0时,UE不传输PSFCH。
如果UE在资源池收到了物理副链路共享信道(Physical SideLink Shared Channel,PSSCH),且副链路控制信息(Sidelink Control Information,SCI)format 0_2调度PSSCH接收指示UE上报HARQ-ACK信息,则UE将在用于PSFCH传输的资源上承载HARQ-ACK信息。UE接收PSSCH数据的最后一个时隙与传输对应PSFCH的时隙之间的处理时延通过参数MinTimeGapPSFCH获得,其值k=2或3slots。
资源池中用于PSFCH传输的资源块(Resource Block,RB)根据时隙索引和子信道索引进行划分,PSSCH与对应的PSFCH反馈资源间存在两种映射方式:
方式1、HARQ-ACK信息仅在PSSCH数据占用的子信道中起始子信道对应的PSFCH资源上传输;
方式2、HARQ-ACK信息在PSSCH数据占用的全部子信道对应的PSFCH资源上传输。
UE根据接收ID和发送ID决定用于PSFCH传输的资源索引,并引入循环移位对,即采用码分技术扩充PSFCH传输资源。
3、sidelink介绍。
长期演进(Long Term Evolution,LTE)系统从第12个发布版本开始支持副链路(或译为侧链路,边链路等),UE之间不通过网络设备进行直接数据传输。
UE通过物理副链路控制信道(Physical Sidelink Control Channel,PSCCH)发送SCI,调度物理副链路共享信道(Physical Sidelink Shared Channel,PSSCH)的传输以发送数据。该传输是以广播形式进行的,接收端并不向发送端反馈接收是否成功。
LTE sidelink设计支持两种资源分配模式,分别是调度资源分配(Scheduled resource allocation)模式(通常称为mode-1)与自主资源选择(autonomous resource selection)模式。前者由网络侧设备控制并为每个UE 分配资源,后者由UE自主选择资源。
从第15个发布版本开始,LTE支持sidelink载波汇聚(Carrier Aggregation,CA)。LTE sidelink的CA与Uu接口(即downlink与uplink)不同,没有主载波(Primary component carrier,PCC)与辅载波(Secondary component carrier,SCC)之分。自主资源选择模式的UE在每个CC上独立进行资源感知(sensing)与资源预留。
LTE sidelink的设计适用于特定的公共安全事务(如火灾场所或地震等灾难场所进行紧急通讯),或车联网(vehicle to everything,V2X)通信等。车联网通信包括各种业务,例如,基本安全类通信,高级(自动)驾驶,编队,传感器扩展等等。由于LTE sidelink只支持广播通信,因此主要用于基本安全类通信,其他高级V2X业务将通过NR sidelink支持。
5G NR系统可用于LTE所不支持的6GHz以上工作频段,支持更大的工作带宽,NR系统也支持终端之间直接通信的Sidelink接口通信。
sidelink传输主要分广播,组播,单播几种传输形式。单播顾名思义就是one to one的传输。组播为one to many的传输。广播也是one to many的传输,但是广播并没有UE属于同一个组的概念。
Sidelink上PSCCH承载SCI,SCI用于调度PSSCH。SCI中可以指示传输资源,并预留这些资源用于未来的传输。PSFCH用于反馈sidelink HARQ-ACK信息。用户确定sidelink HARQ信息后可以进一步地通过PUCCH或者PUSCH将sidelink HARQ信息发送给基站。
4、Cast类型和HARQ反馈模式
NR sidelink支持广播,组播和单播三种传输方式。NR sidelink的组播支持基于连接的组播与无连接的组播两种用例,基于连接的组播是指组播的UE间建立了连接,无连接模式是指组播UE不知道组内其他UE,没有建立连接的场景。对于组播的情况,多个收端在进行HARQ反馈的时候支持两种机制:
机制1(NACK only反馈,或者无连接机制connetion-less):如果收到该数据但是无法解出来,反馈NACK,其他情况下不反馈。这种情况下收方如果没有收到NACK,则认为所有收端都成功收到并解出了该数据,但是这个机制的一个缺点是发方可能会混淆成功接收数据和收方没有成功收到SCI的 两种情况,即虽然收方没有成功收到SCI与数据,但发方以为收方接收成功了。该方式适用于无连接的组播场景。
机制2(ACK/NACK反馈,或者基于连接机制connetion-based):如果收到该数据但是无法解出来或者收到SCI但是没有收到数据,反馈NACK,如果收到该数据并且正确解出来,反馈ACK。此时如果发方收到某个发送端用户发来的NACK或没有收到ACK或NACK,则发方认为发送给这个用户的传输失败,收到某个发送端发来的ACK,则发方认为发送给这个用户的传输成功。该方式适用于基于连接的组播场景。
相关技术中,UE只能根据基站与用户间的路损对物理副链路反馈信道PSFCH发送功率进行控制,但这种功率控制方式可能与当前的通信场景(如单播和/或组播场景)并不匹配,导致功控的准确度较低,以及额外的发送功率开销。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的功率控制方法进行详细地说明。
如图2所示,本申请实施例提供了一种功率控制方法,由第一终端设备执行,该方法包括:
步骤201:获取第一路损,所述第一路损是根据副链路SL路损确定的,或者,所述第一路损是根据SL路损和下行DL路损确定的。
本申请实施例中,可以根据通信场景,基于SL路损和DL路损,选择用于对副链路上目标传输的发送功率进行控制的第一路损。例如,单播时的功率通过用户间的SL路损计算。
步骤202:根据所述第一路损,对副链路上目标传输的发送功率进行控制。
本步骤中,目标传输可以是反馈、SSB、发现(discovery)信号、数据、控制或参考信号(Reference Signal,RS)等。上述对目标传输的发送功率进行控制可以理解为计算所述目标传输的发送功率。
本申请实施例中,获取第一路损,所述第一路损是根据副链路SL路损确定的,或者,所述第一路损是根据SL路损和下行DL路损确定的;根据所述第一路损,对副链路上目标传输的发送功率进行控制。本申请实施例能够基 于SL路损对副链路上目标传输的发送功率进行控制,例如,单播时的功率通过用户间的SL路损计算,使得功率控制方式与当前通信场景匹配,在提升SL传输场景下功率控制准确度的同时,能够避免额外的发送功率开销,从而达到节能的目的。
可选地,所述副链路SL路损通过以下至少一项获取:
根据参考信号接收功率RSRP,计算所述SL路损;
根据至少部分第二终端设备发送的路损,确定所述SL路损,所述第二终端设备为与所述第一终端设备通信的终端设备;
根据第三终端设备通知的路损,确定所述SL路损,该第三终端设备可以是调度终端(scheduling UE)或者头用户(header UE),例如,头用户为车队的头,头用户除了具有普通用户的通信功能以外,还可以管理用户群组和/或辅助调度用户群组中的用户进行SL通信;
根据协议约定,获取所述SL路损;
根据基站配置的路损,确定所述SL路损;
根据预配置的路损,确定所述SL路损。
进一步可选地,所述根据参考信号接收功率RSRP,计算所述SL路损,包括:
根据至少部分第二终端设备发送的RSRP,计算所述SL路损;
或者,根据第一终端设备测量的RSRP和至少部分第二终端设备的发送功率,计算所述SL路损。
其中,所述第二终端设备的发送功率是预配置的;
或者,所述第二终端设备的发送功率是第二终端设备发送给所述第一终端设备的;例如,通过PSSCH、PSCCH、SCI或RS携带或指示发送功率;
或者,所述第二终端设备的发送功率是第三终端设备通知给所述第一终端设备的。
下面结合具体的通信场景,对计算第一路损的过程进行说明。
单播场景:
方法1:与第一用户成单播传输关系的至少部分用户分别将其测得的RSRP值传输至第一用户,第一用户分别计算每个传输对应的路损;
PL_SL_uni1(m)=Pt_uni1(m)-RSRP_uni1(m);
其中,RSRP_uni1(m)表示与第一用户成单播关系的用户m测得的RSRP值,Pt_uni1(m)表示第一用户的发送功率,PL_SL_uni1(m)表示第一用户和用户m间的路损。
方法2:第一用户进行RSRP测量,获得与第一用户成单播传输关系的至少部分用户的传输信息的RSRP,并根据与第一用户通信的至少部分用户的发送功率分别计算每个传输对应的路损。
PL_SL_uni2(m)=Pt_uni2(m)-RSRP_uni2(m);
其中,RSRP_uni2(m)表示与第一用户成单播关系的用户m测得的RSRP值,Pt_uni2(m)表示用户m的发送功率,PL_SL_uni2(m)表示第一用户和用户m间的路损。
组播场景:
方法1:(适用于上述机制2):与第一用户成组播传输关系的至少部分用户分别将其测得的RSRP值传输至第一用户,第一用户分别计算每个传输对应的路损:
PL_SL_group1(m)=Pt_group1(m)-RSRP_group1(m);
其中,RSRP_group1(m)表示与第一用户成组播关系的用户m测得的RSRP值,Pt_group1(m)表示第一用户的发送功率,PL_SL_group1(m)表示第一用户和用户m间的路损。
方法2(上述机制1和机制2均适用):第一用户进行RSRP测量,获得与第一用户成组播传输关系的至少部分用户的传输信息的RSRP,并根据与第一用户通信的至少部分用户的发送功率分别计算每个传输对应的路损。
PL_SL_group2(m)=Pt_group2(m)-RSRP_group2(m);
其中,RSRP_group2(m)表示与第一用户成组播关系的用户m测得的RSRP值,Pt_group2(m)表示用户m的发送功率,PL_SL_group2(m)表示第一用户和用户m间的路损。
单播+组播场景:
方法1:(适用于上述机制2):与第一用户成单播传输关系的至少部分用户和与第一用户成组播传输关系的至少部分用户分别将其测得的RSRP值传 输至第一用户,第一用户分别计算每个传输对应的路损;
PL_SL_uni1(p)=Pt_uni1(p)-RSRP_uni1(p);
PL_SL_group1(q)=Pt_group1(q)-RSRP_group1(q);
其中,RSRP_uni1(p)表示与第一用户成单播关系的用户p测得的RSRP值,RSRP_group1(q)表示与第一用户成组播关系的用户q测得的RSRP值,PL_SL_uni1(p)表示第一用户和用户p间的路损,PL_SL_group1(q)表示第一用户和用户q间的路损,Pt_uni1(p)表示第一用户对用户P的发送功率,Pt_group1(q)表示第一用户对用户q的发送功率。
方法2:(适用于上述机制1和机制2):第一用户进行RSRP测量,获得与第一用户成单播传输关系的至少部分用户和与第一用户成组播传输关系的至少部分用户的传输信息的RSRP,并根据与第一用户通信的至少部分用户的发送功率分别计算每个传输对应的路损;
PL_SL_uni2(p)=Pt_uni2(p)-RSRP_uni2(p);
PL_SL_group2(q)=Pt_group2(q)-RSRP_group2(q);
其中,RSRP_uni2(p)表示与第一用户成单播关系的用户p测得的RSRP值,RSRP_group2(q)表示与第一用户成组播关系的用户q测得的RSRP值,PL_SL_uni2(p)表示第一用户和用户p间的路损,PL_SL_group2(q)表示第一用户和用户q间的路损,Pt_uni2(p)表示第一用户对用户P的发送功率,Pt_group2(q)表示第一用户对用户q的发送功率。
需要说明的是,上述发送功率可以为数据信道或控制信道或反馈信道或同步信道的发送功率,或者上述发送功率为数据信号或控制信号或反馈信号或同步信号的发送功率,或者上述发送功率为数据信令或控制信令或反馈信令或同步信令的发送功率;或者,上述发送功率为数据信道或控制信道或反馈信道或同步信道相关的参考信号RS的发送功率,或者上述发送功率为数据信号或控制信号或反馈信号或同步信号相关的参考信号RS的发送功率,或者上述发送功率为数据信令或控制信令或反馈信令或同步信令相关的参考信号RS的发送功率,例如,PSSCH DMRS的发送功率,周期或非周期RS的发送功率,请求的RS的发送功率,本申请提及的RS可以是解调参考信号、定位参考信号、相位跟踪参考信号、探测参考信号、信道状态信息-参考信号、 副链路辅同步信号(S-SSS)、副链路主同步信号(S-PSS)、discovery的参考信号中的至少一项。
关于上述传输关系的解释:
1)与第一用户成单播传输关系的用户可以为以下至少一项:
与第一用户成单播传输关系的用户;
与第一用户存在PC5RRC连接的用户。
与第一用户成组播传输关系的用户可以为以下至少一项
与第一用户成组播传输关系的用户,
与第一用户间存在组播传输的用户;
对应预设组ID的用户;
对应预设成员ID的用户;
对应预设目标destination id的用户。
可选地,所述根据所述SL路损和下行DL路损中的至少一项,确定第一路损包括以下至少一项:
在第一路损集合中,随机选择N1个路损,作为所述第一路损;
在第一路损集合中,选择最大的N2个路损,作为所述第一路损;
在第一路损集合中,选择最小的N3个路损,作为所述第一路损;
选择至少两个所述SL路损的平均值,作为所述第一路损;
选择至少两个所述DL路损的平均值,作为所述第一路损;
选择所述SL路损和所述DL路损的平均值,作为所述第一路损;
在第一路损集合中,选择剩余数据包时延预算PDB最长或最短的N4个传输对应的路损,作为所述第一路损;
在第一路损集合中,选择满足预设距离要求或处于预设地理位置的N5个传输对应的路损,作为所述第一路损,例如,选择通信距离最近或最远的N5个传输对应的路损;
在第一路损集合中,选择传输优先级小于或者等于第一阈值的传输对应的路损,作为所述第一路损;
在第一路损集合中,选择传输优先级大于或者等于第二阈值的传输对应的路损,作为所述第一路损;
选择SL路损,作为所述第一路损;
选择DL路损,作为所述第一路损;
其中,所述第一路损集合包括至少一个SL路损和/或至少一个DL路损。
进一步可选地,所述选择SL路损,作为所述第一路损包括以下至少一项:
在物理副链路反馈信道PSFCH资源集包含的资源数大于第三阈值的情况下,选择SL路损,作为所述第一路损,所述资源集是与预设时隙和预设子信道对应的时频域资源;
在发送PSFCH的资源间隔大于第四阈值的情况下,选择SL路损,作为所述第一路损,这里发送PSFCH的资源间隔可以是指实际用于发送PSFCH的资源间隔;
在SL路损集合中,选择至少一个SL路损,作为所述第一路损,所述SL路损集合包括至少两个所述SL路损,且所述SL路损集合中任意两个SL路损之间的差值小于第五阈值;这里,上述获取SL路损后,在获取的SL路损中选择路损差值小区第五阈值的SL路损,得到上述SL路损集合。在第一发送功率集合中,选择至少一个发送功率对应的SL路损,作为所述第一路损,所述第一发送功率集合包括至少两个发送功率,且所述第一发送功率集合中任意两个发送功率之间的差值小于第六阈值,每个发送功率对应一个SL路损;这里,获取SL路损后,根据每个SL路损计算一个发送功率,在计算得到的发送功率中选择发送功率间的差值小于第六阈值的发送功率,得到上述第一发送功率集合。
在第一功率谱密度PSD集合中,选择至少一个PSD对应的SL路损,作为所述第一路损,所述第一PSD集合包括至少两个PSD,且所述第一PSD集合中任意两个PSD之间的差值小于第七阈值,每个PSD对应一个SL路损;这里,根据每个SL路损得到一个PSD,然后在得到的PSD中选择PSD间的差值小于第七阈值的PSD,得到上述第一PSD集合。
在不存在PSFCH码分多路复用CDM资源配置或不存在特定CDM没资源配置的情况下,选择SL路损,作为所述第一路损。
可选地,N1、N2、N3、N4或N5等于1。
也就是说,用于计算每个PSFCH的发送功率的路损相同。
可选地,在满足以下至少一项的情况下,N1、N2、N3、N4或N5大于1(用于计算每个PSFCH的发送功率的路损不相同);
PSFCH资源集包含的资源数大于第八阈值,所述资源集是与预设时隙和预设子信道对应的时频域资源;
发送PSFCH的资源间隔大于第九阈值,该资源间隔通过上述资源数进行统计,这里,发送PSFCH的资源间隔可以是指实际用于发送PSFCH的资源间隔;
第二路损集合中任意两个路损之间的差值小于第十阈值,所述路损集合包括至少两个路损,且所述至少两个路损为SL路损和/或DL路损,这里,可在上述获取的SL路损和/或DL路损中,选择两个路损之间的差值小于第十阈值的路损,得到上述第二路损集合;
第二发送功率集合中任意两个发送功率之间的差值小于第十一阈值,所述第二发送功率集合包括至少两个发送功率,每个发送功率对应一个路损,获取SL路损和DL路损后,根据获取的每个路损计算一个发送功率,在计算得到的发送功率中选择发送功率间的差值小于第十一阈值的发送功率,得到上述第二发送功率集合;
第二PSD集合中任意两个PSD之间的差值小于第十二阈值,所述第一PSD集合包括至少两个PSD,每个PSD对应一个路损;获取SL路损和DL路损后,根据获取的每个路损得到一个PSD,然后在得到的PSD中选择PSD间的差值小于第十二阈值的PSD,得到上述第二PSD集合。
可选地,在所述第一路损为SL路损的情况下,根据所述第一路损,对副链路上目标传输的发送功率进行控制,包括:
根据所述第一路损,得到第一参数;
根据所述第一参数和第二参数中的至少一项,得到目标参数;
根据所述目标参数,对副链路上的目标传输的发送功率进行控制;
其中,所述第一参数是根据所述SL路损和第一SL功率参数值计算得到的;
所述第二参数是在第一DL功率参数值被提供的情况下,根据第一DL功 率参数值计算得到的。
本申请实施例中,上述第一参数具体是根据所述SL路损、第一SL功率参数值、sidelink子载波间隔以及第三参数(α SL,PSFCH)计算得到的。
上述第二参数具体是根据第一DL功率参数、DL路损、sidelink子载波间隔以及第四参数(α DL,PSFCH)计算得到的。
可选地,所述根据所述第一参数和第二参数中的至少一项,得到目标参数,包括:
在所述第一参数和所述第二参数同时存在的情况下,通过以下至少一项得到所述目标参数;
将所述第一参数作为所述目标参数;
将所述第二参数作为所述目标参数;
选取所述第一参数和所述第二参数中的较小值,作为所述目标参数;
选取所述第一参数和所述第二参数中的较大值,作为所述目标参数;
将第一数值和第二数值的和,作为所述目标参数,所述第一数值为第一参数与第一权重值的乘积,所述第二数值为第二参数与第二权重值的乘积;
将所述第一参数和所述第二参数的平均值,作为所述目标参数。
可选地,在仅存在第一参数的情况下,将所述第一参数作为所述目标参数。
可选地,在仅存在第二参数的情况下,将所述第二参数作为所述目标参数。
可选地,所述根据所述第一参数和第二参数中的至少一项,得到目标参数,包括:
在所述第一SL功率参数值被提供的情况下,将第一参数确定为所述目标参数;
和/或,在所述第一SL功率参数值未被提供,且所述第一DL功率参数值被提供的情况下,将所述第二参数确定为所述目标参数。
可选地,所述根据所述第一参数和第二参数中的至少一项,得到目标参数,包括:在所述第一DL功率参数值被提供的情况下,将第二参数确定为所述目标参数;
和/或,在所述第一DL功率参数值未被提供,且所述第一SL功率参数值被提供的情况下,将所述第一参数确定为所述目标参数。
例如,若用户被提供了第一SL功率参数值,则根据以下公式计算上述第一参数P PSFCH,SL,one
P PSFCH,SL,one=P O,SL,PSFCH+10log 10(2 μ)+α SL,PSFCH·PL SL
其中,P O,SL,PSFCH第一SL功率参数值,μ=0/1/2/3对应sidelink子载波间隔15/30/60/120kHz,α SL,PSFCH是第三参数的值,PL SL是用户在SL路损中选择的用于功率控制的路损。
又例如,若用户被提供了第一DL功率参数值,则根据以下公式计算上述第二参数P PSFCH,DL,one,并基于第二参数进行功率控制;
P PSFCH,DL,one=P O,DL,PSFCH+10log 10(2 μ)+α DL,PSFCH·PL DL
其中,P O,DL,PSFCH第一DL功率参数值,μ=0/1/2/3对应sidelink子载波间隔15/30/60/120kHz,α DL,PSFCH是第四参数的值,PL DL是基站与用户之间的路损。
若用户未被提供上述第一DL功率参数值,且被提供了第一SL功率参数值,则根据第一SL功率参数值计算上述第一参数,并基于第一参数进行功率控制。
本申请实施例中的,上述第一SL功率参数值可以是SL初始功率、SL默认功率、SL初始发送功率或期望接收功率。
上述第一DL功率参数值可以是DL初始功率、DL默认功率、DL初始发送功率或期望接收功率。
可选地,所述根据所述第一路损,对副链路上目标传输的发送功率进行控制,包括:
根据所述第一路损,对副链路同步信号块S-SSB/物理副链路广播信道PSBCH传输的发送功率进行控制。
具体的,通过以下公式对S-SSB/PSBCH传输的发送功率进行控制;
Figure PCTCN2021121770-appb-000002
其中,P CMAX是第一功率,P O,S-SSB是第五参数的值,u=0/1/2/3对应sidelink子载波间隔15/30/60/120kHz,
Figure PCTCN2021121770-appb-000003
是一个S-SSB所占的RB数,α S-SSB是第六参数的值,PL为第一路损。可选的,该第一路损为DL路损,或者SL路损。
可选地,所述目标传输包括至少一个传输;
所述根据所述第一路损,对副链路上目标传输的发送功率进行控制,包括:
在根据所述第一路损确定的所述目标传输的总功率大于所述第一终端设备的第一功率的情况下,根据以下至少一项放弃传输,直至所述目标传输的总功率小于或者等于所述第一功率;
在仅存在单播或组播通信方式的情况下,随机放弃M1个传输;
在仅存在单播或组播通信方式的情况下,放弃优先级最高或最低的M2个传输;
在仅存在单播或组播通信方式的情况下,放弃路损最大或最小的M3个传输;
在仅存在单播或组播通信方式的情况下,放弃满足预设距离要求或处于预设地理位置的M4个传输,例如,在仅存在单播或组播通信方式的情况下,放弃传输距离最远或最近的M4个传输;
在仅存在单播或组播通信方式的情况下,放弃剩余PDB最长或最短的M5个传输;
在仅存在单播或组播通信方式的情况下,放弃传输优先级大于十三阈值的传输;
在仅存在单播或组播通信方式的情况下,放弃传输优先级小于十四阈值的传输;
在同时存在单播通信方式和组播通信方式的情况下,在单播传输中选择需要放弃的传输;
在同时存在单播通信方式和组播通信方式的情况下,在组播传输中选择需要放弃的传输;
在同时存在单播通信方式和组播通信方式的情况下,在所有的传输中选择需要放弃的传输。
进一步可选地,所述选择需要放弃的传输包括以下至少一项:
随机放弃W1个传输;
放弃优先级最高或最低的W2个传输;
放弃路损最大或最小的W3个传输;
放弃满足预设距离要求或处于预设地理位置的W4个传输,例如,放弃传输距离最远或最近的W4个传输;
放弃剩余PDB最长或最短的W5个传输;
放弃传输优先级大于十五阈值的传输;
放弃传输优先级小于十六阈值的传输。
需要说明的是,上述第一功率可以是UE能力限制的最大输出功率,或者第一功率的大小根据用户能力确定,或者,所述第一功率为配置、预配置或其他UE指示的传输功率或最大传输功率,或者,所述第一功率为针对sidelink传输限制的功率。
下面结合具体的实施例,对本申请的功率控制方法进行说明。
实施例一:
一个具有N sch,Tx,PSFCH个被调度的PSFCH传输且最大能够传输N max,PSFCH个PSFCH的UE,根据如下方式决定在PSFCH传输时机i的一个资源池上同时传输的PSFCH数量N Tx,PSFCH,以及PSFCH传输k(1≤K≤N Tx,PSFCH)的功率P PSFCH,k(i):
如果p0-DL-PSFCH被提供,
P PSFCH,DL,one=P O,DL,PSFCH+10log 10(2 μ)+α DL,PSFCH·PL DL
其中,P O,DL,PSFCH是p0-DL-PSFCH的值,α DL,PSFCH是alpha-DL-PSFCH的值(如果alpha-DL-PSFCH被提供);否则,α DL,PSFCH=1;
PL DL是传输对应的路径损耗值,一种实现方式如下:
PL DL=PL b,f,c(q d),即PL DL为UE使用索引为q d的参考信号为服务小区c的载波f的激活下行带宽部分计算的下行路径损耗,单位为dB。
进一步地,参考信号可能是:
1.当UE被配置监视PDCCH以检测DCI格式0_0或DCI格式0_1或DCI格式0_2或DCI格式3_0或DCI格式3_1时,UE用于确定由DCI格式0_0或DCI格式0_1或DCI格式0_2或DCI格式3_0或DCI格式3_1调度的PUSCH传输功率的RS资源,和/或,
2.当UE未被配置UE监视PDCCH以检测DCI格式0_0或DCI格式0_1 或DCI格式0_2或DCI格式3_0或DCI格式3_1时,UE用于获得MIB的SS/PBCH块相对应的RS资源;
如果p0-SL-PSFCH被提供,
P PSFCH,SL,one=P O,SL,PSFCH+10log 10(2 μ)+α SL,PSFCH·PL SL
其中,P O,SL,PSFCH是p0-SL-PSFCH的值,α SL,PSFCH是alpha-SL-PSFCH的值(如果alpha-SL-PSFCH被提供);否则,α SL,PSFCH=1;
PL SL=第七参数-第八参数;
其中,第七参数为referenceSignalPower,第八参数为higer layer filtered RSRP。
referenceSignalPower是使用filterCoefficient-SL提供的滤波器配置,跨PSSCH传输场合过滤高层获得的UE的每个天线端口的每个RE的PSSCH发送功率,以及
higer layer filtered RSRP是使用filterCoefficient-SL提供的滤波器配置从PSSCH DM-RS获得的,且由接收PSCCH-PSSCH传输的UE报告给UE。
如果p0-DL-PSFCH和p0-SL-PSFCH都没有被提供,
P PSFCH,k(i)=P CMAX-10log 10(N Tx,PSFCH);
其中,UE按照同时发送或接收PSFCH的规则自主决定按优先级升序的N Tx,PSFCH个PSFCH传输,从而使N Tx,PSFCH≥1,并为N Tx,PSFCH个PSFCH传输确定用户支持的最大发送功率P CMAX
否则,如果p0-DL-PSFCH和p0-SL-PSFCH被提供,P PSFCH,one=min(P O,DL,PSFCH,P O,SL,PSFCH);
否则如果p0-DL-PSFCH被提供,P PSFCH,one=P O,DL,PSFCH
否则P PSFCH,one=P O,SL,PSFCH
如果N sch,Tx,PSFCH≤N max,PSFCH
如果P PSFCH,one+10log 10(N sch,Tx,PSFCH)≤P CMAX,其中P CMAX是为N sch,Tx,PSFCH个PSFCH传输确定的用户支持的最大发送功率;
N Tx,PSFCH=N sch,Tx,PSFCH且P PSFCH,k(i)=P PSFCH,one
否则UE按照同时发送/接收PSFCH的规则自主决定按优先级升序的N Tx,PSFCH个PSFCH传输,从而使
Figure PCTCN2021121770-appb-000004
其中M i是传输优 先级为i的PSFCH数量,K被定义为:
满足
Figure PCTCN2021121770-appb-000005
的最大值,其中P CMAX是用户支持的最大发送功率,用以传输优先级为1,2,…,K(如果有)的所有PSFCH。
否则,K=0;
以及,P PSFCH,k(i)=min(P CMAX-10log 10(N Tx,PSFCH),P PSFCH,one);
其中,P CMAX是用户支持的最大发送功率,用于N Tx,PSFCH个PSFCH的传输;
否则UE按照同时发送/接收PSFCH的规则自主决定按优先级升序的N max,PSFCH个PSFCH传输;
如果P PSFCH,one+10log 10(N max,PSFCH)≤P CMAX,其中P CMAX是用户支持的最大发送功率,用于N max,PSFCH个PSFCH的传输,N Tx,PSFCH=N sch,Tx,PSFCH且P PSFCH,k(i)=P PSFCH,one
否则,
UE按照同时发送/接收PSFCH的规则自主决定按优先级升序的N Tx,PSFCH个PSFCH传输,从而使
Figure PCTCN2021121770-appb-000006
其中M i是传输优先级为i的PSFCH数量,K被定义为:
满足
Figure PCTCN2021121770-appb-000007
的最大值,其中P CMAX是用户支持的最大发送功率,用以传输优先级为1,2,…,K(如果有)的所有PSFCH。
否则,K=0,
以及,P PSFCH,k(i)=min(P CMAX-10log 10(N Tx,PSFCH),P PSFCH,one);
其中,P CMAX是用户支持的最大发送功率,用于N Tx,PSFCH个PSFCH的传输。
实施例二:
一个具有N sch,Tx,PSFCH个被调度的PSFCH传输且最大能够传输N max,PSFCH个PSFCH的UE,根据如下方式决定在PSFCH传输时机i的一个资源池上同时传输的PSFCH数量N Tx,PSFCH,以及PSFCH传输k(1≤K≤N Tx,PSFCH)的功率P PSFCH,k(i):
如果p0-DL-PSFCH被提供,
P PSFCH,DL,one=P O,DL,PSFCH+10log 10(2 μ)+α DL,PSFCH·PL DL
其中,P O,DL,PSFCH是p0-DL-PSFCH的值,α DL,PSFCH是alpha-DL-PSFCH的值(如果alpha-DL-PSFCH被提供);否则,α DL,PSFCH=1;
PL DL=PL b,f,c(q d),即PL DL为UE使用q d索引为的参考信号为服务小区c的载波f的激活下行带宽部分计算的下行路径损耗,单位为dB。
进一步地,参考信号可能是:
1.当UE被配置监视PDCCH以检测DCI格式0_0或DCI格式0_1或DCI格式0_2或DCI格式3_0或DCI格式3_1时,UE用于确定由DCI格式0_0或DCI格式0_1或DCI格式0_2或DCI格式3_0或DCI格式3_1调度的PUSCH传输功率的RS资源,和/或,
2.当UE未被配置UE监视PDCCH以检测DCI格式0_0或DCI格式0_1或DCI格式0_2或DCI格式3_0或DCI格式3_1时,UE用于获得MIB的SS/PBCH块相对应的RS资源;
如果N sch,Tx,PSFCH≤N max,PSFCH
如果P PSFCH,one+10log 10(N sch,Tx,PSFCH)≤P CMAX,其中P CMAX是为N sch,Tx,PSFCH个PSFCH传输确定的用户支持的最大发送功率;N Tx,PSFCH=N sch,Tx,PSFCH且P PSFCH,k(i)=P PSFCH,one
否则UE按照同时发送/接收PSFCH的规则自主决定按优先级升序的N Tx,PSFCH个PSFCH传输,从而使
Figure PCTCN2021121770-appb-000008
其中M i是传输优先级为i的PSFCH数量,K被定义为:
满足
Figure PCTCN2021121770-appb-000009
的最大值,其中P CMAX是用户支持的最大发送功率,用以传输优先级为1,2,…,K(如果有)的所有PSFCH。
否则,K=0,
以及,P PSFCH,k(i)=min(P CMAX-10log 10(N Tx,PSFCH),P PSFCH,one);
其中,P CMAX是用户支持的最大发送功率,用于N Tx,PSFCH个PSFCH
的传输;
否则,UE按照同时发送/接收PSFCH的规则自主决定按优先级升序的N max,PSFCH个PSFCH传输;
如果P PSFCH,one+10log 10(N max,PSFCH)≤P CMAX,其中P CMAX是用户支持的最大发送功率,用于N max,PSFCH个PSFCH的传输,N Tx,PSFCH=N max,PSFCH且P PSFCH,k(i)=P PSFCH,one
否则,UE按照同时发送/接收PSFCH的规则自主决定按优先级升序的N Tx,PSFCH个PSFCH传输,从而使
Figure PCTCN2021121770-appb-000010
其中M i是传输优先级为i的PSFCH数量,K被定义为:
满足
Figure PCTCN2021121770-appb-000011
的最大值,其中P CMAX是用户支持的最大发送功率,用以传输优先级为1,2,…,K(如果有)的所有PSFCH。
否则,K=0,
以及,P PSFCH,k(i)=min(P CMAX-10log 10(N Tx,PSFCH),P PSFCH,one);
其中,P CMAX是用户支持的最大发送功率,用于N Tx,PSFCH个PSFCH的传输;
否则,如果p0-SL-PSFCH被提供,P PSFCH,SL,one=P O,SL,PSFCH+10log 10(2 μ)+α SL,PSFCH·PL SL
其中,P O,SL,PSFCH是p0-SL-PSFCH的值,α SL,PSFCH是alpha-SL-PSFCH的值(如果alpha-SL-PSFCH被提供);否则,α SL,PSFCH=1;
PL SL=第七参数-第八参数;
其中,第七参数为referenceSignalPower,第八参数为higer layer filtered RSRP。
referenceSignalPower是使用filterCoefficient-SL提供的滤波器配置,跨PSSCH传输场合过滤高层获得的UE的每个天线端口的每个RE的PSSCH发送功率,以及
higer layer filtered RSRP是使用filterCoefficient-SL提供的滤波器配置从PSSCH DM-RS获得的,且由接收PSCCH-PSSCH传输的UE报告给UE。
如果N sch,Tx,PSFCH≤N max,PSFCH
如果P PSFCH,one+10log 10(N sch,Tx,PSFCH)≤P CMAX,其中P CMAX是为N sch,Tx,PSFCH个PSFCH传输确定的用户支持的最大发送功率;
否则UE按照同时发送/接收PSFCH的规则自主决定按优先级 升序的N Tx,PSFCH个PSFCH传输,从而使
Figure PCTCN2021121770-appb-000012
其中M i是传输优先级为i的PSFCH数量,K被定义为:
满足
Figure PCTCN2021121770-appb-000013
的最大值,其中P CMAX是用户支持的最大发送功率,用以传输优先级为1,2,…,K(如果有)的所有PSFCH。
否则,K=0,
以及,P PSFCH,k(i)=min(P CMAX-10log 10(N Tx,PSFCH),P PSFCH,one);
其中,P CMAX是用户支持的最大发送功率,用于N Tx,PSFCH个PSFCH的传输;
否则,UE按照同时发送/接收PSFCH的规则自主决定按优先级升序的N max,PSFCH个PSFCH传输;
如果P PSFCH,one+10log 10(N max,PSFCH)≤P CMAX,其中P CMAX是用户支持的最大发送功率,用于N max,PSFCH个PSFCH的传输,
N Tx,PSFCH=N max,PSFCH且P PSFCH,k(i)=P PSFCH,one
否则,UE按照同时发送/接收PSFCH的规则自主决定按优先级升序的N Tx,PSFCH个PSFCH传输,从而使
Figure PCTCN2021121770-appb-000014
其中M i是传输优先级为i的PSFCH数量,K被定义为:
满足
Figure PCTCN2021121770-appb-000015
的最大值,其中P CMAX是用户支持的最大发送功率,用以传输优先级为1,2,…,K(如果有)的所有PSFCH。
否则,K=0,
以及,P PSFCH,k(i)=min(P CMAX-10log 10(N Tx,PSFCH),P PSFCH,one);
其中,P CMAX是用户支持的最大发送功率,用于N Tx,PSFCH个PSFCH的传输。
否则,P PSFCH,k(i)=P CMAX-10log 10(N Tx,PSFCH);
其中,UE按照同时发送/接收PSFCH的规则自主决定按优先级升序的N Tx,PSFCH个PSFCH传输,从而使N Tx,PSFCH≥1,并为N Tx,PSFCH个PSFCH传输确定用户支持的最大发送功率P CMAX
实施例三:
UE根据如下方式决定时隙i上S-SSB传输时机的功率P S-SSB(i):
Figure PCTCN2021121770-appb-000016
其中,
P CMAX是用户支持的最大发送功率;
P O,S-SSB是p0-DL-S-SSB的值(若被提供);否则,P S-SSB(i)=P CMAX
α S-SSB是alpha-DL-S-SSB的值(若被提供);否则,α S-SSB=1
PL是传输对应的路径损耗值,一种实现方式如下:
PL=PL b,f,c(q d),即PL为UE使用索引为q d的参考信号为服务小区c的载波f的激活下行带宽部分计算的下行路径损耗,单位为dB。
进一步地,参考信号可能是:
1.当UE被配置监视PDCCH以检测DCI格式0_0时,UE用于确定由DCI格式0_0调度的PUSCH传输功率的RS资源,和/或,
2.当UE未被配置UE监视PDCCH以检测DCI格式0_0时,UE用于获得MIB的SS/PBCH块相对应的RS资源;
Figure PCTCN2021121770-appb-000017
是一个S-SSB/PSBCH传输在SCS配置u下所包含的RB数。
需要说明的是,本申请实施例中,同时发送或解锁PSFCH的规则如下:
如果UE将发送N sch,Tx,PSFCH≤N max,PSFCH个PSFCH并接收N sch,Rx,PSFCH个PSFCH,且N sch,Tx,PSFCH个PSFCH的发送将会和N sch,Rx,PSFCH个PSFCH的接收在时间上重叠,则UE仅发送或接收对应最小优先级域值的一组PSFCH,其中最小优先级域值分别由与N sch,Tx,PSFCH个PSFCH相关联的第一组SCI格式1-A和与N sch,Rx,PSFCH个PSFCH相关联的第二组SCI格式1-A决定。
如果UE将在一个PSFCH发送时机发送N sch,Tx,PSFCH个PSFCH,则UE发送与PSFCH发送时机相关联的所有SCI格式1-A指示的最小的N Tx,PSFCH个优先级域值相对应的N Tx,PSFCH个PSFCH。
本申请实施例中,获取第一路损,所述第一路损是根据副链路SL路损确定的,或者,所述第一路损是根据SL路损和下行DL路损确定的;根据所述第一路损,对副链路上目标传输的发送功率进行控制。本申请实施例能够基于SL路损对副链路上目标传输的发送功率进行控制,例如,单播时的功率通过用户间的SL路损计算,使得功率控制方式与当前通信场景匹配,在提升 SL传输场景下功率控制准确度的同时,能够避免额外的发送功率开销,从而达到节能的目的。
需要说明的是,本申请实施例提供的功率控制方法,执行主体可以为功率控制装置,或者,该功率控制装置中的用于执行功率控制方法的控制模块。本申请实施例中以功率控制装置执行功率控制方法为例,说明本申请实施例提供的功率控制装置。
如图3所示,本申请实施例还提供了一种功率控制装置300,应用于第一终端设备,包括:
第一获取模块301,用于获取第一路损,所述第一路损是根据副链路SL路损确定的,或者,所述第一路损是根据SL路损和下行DL路损确定的;
控制模块302,用于根据所述第一路损,对副链路上目标传输的发送功率进行控制。
本申请实施例的装置,还包括:第二获取模块;
所述第二获取模块用于执行以下至少一项:
根据参考信号接收功率RSRP,计算所述SL路损;
根据至少部分第二终端设备发送的路损,确定所述SL路损,所述第二终端设备为与所述第一终端设备通信的终端设备;
根据第三终端设备通知的路损,确定所述SL路损,所述第三终端设备为调度终端或头用户;
根据协议约定,获取所述SL路损;
根据基站配置的路损,确定所述SL路损;
根据预配置的路损,确定所述SL路损。
本申请实施例的装置,所述第一获取模块用于根据至少部分第二终端设备发送的RSRP,计算所述SL路损;
或者,根据第一终端设备测量的RSRP和至少部分第二终端设备的发送功率,计算所述SL路损。
本申请实施例的装置,所述第二终端设备的发送功率是预配置的;
或者,所述第二终端设备的发送功率是第二终端设备发送给所述第一终端设备的;
或者,所述第二终端设备的发送功率是第三终端设备通知给所述第一终端设备的。
本申请实施例的装置,所述第一获取模块用于执行以下至少一项:
在第一路损集合中,随机选择N1个路损,作为所述第一路损;
在第一路损集合中,选择最大的N2个路损,作为所述第一路损;
在第一路损集合中,选择最小的N3个路损,作为所述第一路损;
选择至少两个所述SL路损的平均值,作为所述第一路损;
选择至少两个所述DL路损的平均值,作为所述第一路损;
选择所述SL路损和所述DL路损的平均值,作为所述第一路损;
在第一路损集合中,选择剩余数据包时延预算PDB最长或最短的N4个传输对应的路损,作为所述第一路损;
在第一路损集合中,选择通信距离最近或最远的N5个传输对应的路损,作为所述第一路损;
在第一路损集合中,选择满足预设距离要求或处于预设地理位置的N6个传输对应的路损,作为所述第一路损;
在第一路损集合中,选择传输优先级小于或者等于第一阈值的传输对应的路损,作为所述第一路损;
在第一路损集合中,选择传输优先级大于或者等于第二阈值的传输对应的路损,作为所述第一路损;
选择SL路损,作为所述第一路损;
选择DL路损,作为所述第一路损;
其中,所述第一路损集合包括至少一个SL路损和/或至少一个DL路损。
本申请实施例的装置,所述第一获取模块用于执行以下至少一项:
在物理副链路反馈信道PSFCH资源集包含的资源数大于第三阈值的情况下,选择SL路损,作为所述第一路损;
在发送PSFCH的资源间隔大于第四阈值的情况下,选择SL路损,作为所述第一路损;
在SL路损集合中,选择至少一个SL路损,作为所述第一路损,所述SL路损集合包括至少两个SL路损,且所述SL路损集合中任意两个SL路损之 间的差值小于第五阈值;
在第一发送功率集合中,选择至少一个发送功率对应的SL路损,作为所述第一路损,所述第一发送功率集合包括至少两个发送功率,且所述第一发送功率集合中任意两个发送功率之间的差值小于第六阈值,每个发送功率对应一个SL路损;
在第一功率谱密度PSD集合中,选择至少一个PSD对应的SL路损,作为所述第一路损,所述第一PSD集合包括至少两个PSD,且所述第一PSD集合中任意两个PSD之间的差值小于第七阈值,每个PSD对应一个SL路损;
在不存在PSFCH码分多路复用CDM资源配置或不存在特定CDM没资源配置的情况下,选择SL路损,作为所述第一路损。
本申请实施例的装置,在满足以下至少一项的情况下,N1、N2、N3、N4或N5大于1;
PSFCH资源集包含的资源数大于第八阈值,所述资源集是与预设时隙和预设子信道对应的时频域资源;
发送PSFCH的资源间隔大于第九阈值;
第二路损集合中任意两个路损之间的差值小于第十阈值,所述路损集合包括至少两个路损,且所述至少两个路损为SL路损和/或DL路损;
第二发送功率集合中任意两个发送功率之间的差值小于第十一阈值,所述第二发送功率集合包括至少两个发送功率,每个发送功率对应一个路损;
第二PSD集合中任意两个PSD之间的差值小于第十二阈值,所述第一PSD集合包括至少两个PSD,每个PSD对应一个路损。
本申请实施例的装置,所述第二获取子模块用于在所述第一参数和所述第二参数同时存在的情况下,通过以下至少一项得到所述目标参数;
将所述第一参数作为所述目标参数;
将所述第二参数作为所述目标参数;
选取所述第一参数和所述第二参数中的较小值,作为所述目标参数;
选取所述第一参数和所述第二参数中的较大值,作为所述目标参数;
将第一数值和第二数值的和,作为所述目标参数,所述第一数值为第一参数与第一权重值的乘积,所述第二数值为第二参数与第二权重值的乘积;
将所述第一参数和所述第二参数的平均值,作为所述目标参数。
本申请实施例的装置,在所述第一路损为SL路损的情况下,所述控制模块包括:
第一获取子模块,用于根据所述第一路损,得到第一参数;
第二获取子模块,用于根据所述第一参数和第二参数中的至少一项,得到目标参数;
控制子模块,用于根据所述目标参数,对副链路上的目标传输的发送功率进行控制;
其中,所述第一参数是根据所述SL路损和第一SL功率参数值计算得到的;
所述第二参数是在第一DL功率参数值被提供的情况下,根据第一DL功率参数值计算得到的。
本申请实施例的装置,所述第二获取子模块包括:
第一获取单元,用于在所述第一SL功率参数值被提供的情况下,将第一参数确定为所述目标参数;
和/或,在所述第一SL功率参数值未被提供,且所述第一DL功率参数值被提供的情况下,将所述第二参数确定为所述目标参数。
本申请实施例的装置,所述第二获取子模块包括:
第二获取单元,用于在所述第一DL功率参数值被提供的情况下,将第二参数确定为所述目标参数;
和/或,在所述第一DL功率参数值未被提供,且所述第一SL功率参数值被提供的情况下,将所述第一参数确定为所述目标参数。
本申请实施例的装置,所述控制模块用于根据所述第一路损,对副链路同步信号块S-SSB/物理副链路广播信道PSBCH传输的发送功率进行控制。
本申请实施例的装置,所述目标传输包括至少一个传输;
所述控制模块用于执行以下至少一项:
在根据所述第一路损确定的所述目标传输的总功率大于所述第一终端设备的第一功率的情况下,根据以下至少一项放弃传输,直至所述目标传输的总功率小于或者等于所述第一功率;
在仅存在单播或组播通信方式的情况下,随机放弃M1个传输;
在仅存在单播或组播通信方式的情况下,放弃优先级最高或最低的M2个传输;
在仅存在单播或组播通信方式的情况下,放弃路损最大或最小的M3个传输;
在仅存在单播或组播通信方式的情况下,放弃满足预设距离要求或处于预设地理位置的M4个传输;
在仅存在单播或组播通信方式的情况下,放弃剩余PDB最长或最短的M5个传输;
在仅存在单播或组播通信方式的情况下,放弃传输优先级大于十三阈值的传输;
在仅存在单播或组播通信方式的情况下,放弃传输优先级小于十四阈值的传输;
在同时存在单播通信方式和组播通信方式的情况下,在单播传输中选择需要放弃的传输;
在同时存在单播通信方式和组播通信方式的情况下,在组播传输中选择需要放弃的传输;
在同时存在单播通信方式和组播通信方式的情况下,在所有的传输中选择需要放弃的传输。
本申请实施例的装置,所述控制模块具体用于执行以下至少一项:
随机放弃W1个传输;
放弃优先级最高或最低的W2个传输;
放弃路损最大或最小的W3个传输;
放弃满足预设距离要求或处于预设地理位置的W4个传输;
放弃剩余PDB最长或最短的W5个传输;
放弃传输优先级大于十五阈值的传输;
放弃传输优先级小于十六阈值的传输。
本申请实施例的装置,获取第一路损,所述第一路损是根据副链路SL路损确定的,或者,所述第一路损是根据SL路损和下行DL路损确定的;根据 所述第一路损,对副链路上目标传输的发送功率进行控制。本申请实施例能够基于SL路损对副链路上目标传输的发送功率进行控制,例如,单播时的功率通过用户间的SL路损计算,使得功率控制方式与当前通信场景匹配,在提升SL传输场景下功率控制准确度的同时,能够避免额外的发送功率开销,从而达到节能的目的。
本申请实施例中的功率控制装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的功率控制装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的信息确定装置能够实现图2方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图4所示,本申请实施例还提供了一种通信设备400,包括处理器401,存储器402,存储在存储器402上并可在所述处理器401上运行的程序或指令,例如,该通信设备400为终端时,该程序或指令被处理器401执行时实现上述应用于第一终端设备的功率控制方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图5为实现本申请实施例的一种终端设备的硬件结构示意图。
该终端设备500包括但不限于:射频单元501、网络模块502、音频输出单元503、输入单元504、传感器505、显示单元506、用户输入单元507、接口单元508、存储器509、以及处理器510等部件。
本领域技术人员可以理解,终端设备500还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器510逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图5中示出的终端设备结构并不构成对终端的限定,终端设备可以包括比图示更多或更 少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元504可以包括图形处理器(Graphics Processing Unit,GPU)5041和麦克风5042,图形处理器5041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元506可包括显示面板5061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板5061。用户输入单元507包括触控面板5071以及其他输入设备5072。触控面板5071,也称为触摸屏。触控面板5071可包括触摸检测装置和触摸控制器两个部分。其他输入设备5072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元501将来自网络侧设备的下行数据接收后,给处理器510处理;另外,将上行的数据发送给网络侧设备。通常,射频单元501包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器509可用于存储软件程序或指令以及各种数据。存储器509可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器509可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器510可包括一个或多个处理单元;可选的,处理器510可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器510中。
其中,处理器510,用于获取第一路损,所述第一路损是根据副链路SL路损确定的,或者,所述第一路损是根据SL路损和下行DL路损确定的;根 据所述第一路损,对副链路上目标传输的发送功率进行控制。
本申请实施例的终端设备,获取第一路损,所述第一路损是根据副链路SL路损确定的,或者,所述第一路损是根据SL路损和下行DL路损确定的;根据所述第一路损,对副链路上目标传输的发送功率进行控制。本申请实施例能够基于SL路损对副链路上目标传输的发送功率进行控制,例如,单播时的功率通过用户间的SL路损计算,使得功率控制方式与当前通信场景匹配,在提升SL传输场景下功率控制准确度的同时,能够避免额外的发送功率开销,从而达到节能的目的。
可选的,处理器510,用于执行以下至少一项:
根据参考信号接收功率RSRP,计算所述SL路损;
根据至少部分第二终端设备发送的路损,确定所述SL路损,所述第二终端设备为与所述第一终端设备通信的终端设备;
根据第三终端设备通知的路损,确定所述SL路损,所述第三终端设备为调度终端或头用户;
根据协议约定,获取所述SL路损;
根据基站配置的路损,确定所述SL路损;
根据预配置的路损,确定所述SL路损。
可选的,处理器510,还用于根据至少部分第二终端设备发送的RSRP,计算所述SL路损;或者,根据第一终端设备测量的RSRP和至少部分第二终端设备的发送功率,计算所述SL路损。
可选的,所述第二终端设备的发送功率是预配置的;
或者,所述第二终端设备的发送功率是第二终端设备发送给所述第一终端设备的;
或者,所述第二终端设备的发送功率是第三终端设备通知给所述第一终端设备的。
可选的,处理器510,还用于执行以下至少一项:
在第一路损集合中,随机选择N1个路损,作为所述第一路损;
在第一路损集合中,选择最大的N2个路损,作为所述第一路损;
在第一路损集合中,选择最小的N3个路损,作为所述第一路损;
选择至少两个所述SL路损的平均值,作为所述第一路损;
选择至少两个所述DL路损的平均值,作为所述第一路损;
选择所述SL路损和所述DL路损的平均值,作为所述第一路损;
在第一路损集合中,中,选择剩余数据包时延预算PDB最长或最短的N4个传输对应的路损,作为所述第一路损;
在第一路损集合中,选择满足预设距离要求或处于预设地理位置的N5个传输对应的路损,作为所述第一路损;
在第一路损集合中,选择传输优先级小于或者等于第一阈值的传输对应的路损,作为所述第一路损;
在第一路损集合中,选择传输优先级大于或者等于第二阈值的传输对应的路损,作为所述第一路损;
选择SL路损,作为所述第一路损;
选择DL路损,作为所述第一路损;
其中,所述第一路损集合包括至少一个SL路损和/或至少一个DL路损。
可选的,处理器510,还用于执行以下至少一项:
在物理副链路反馈信道PSFCH资源集包含的资源数大于第三阈值的情况下,选择SL路损,作为所述第一路损;
在发送PSFCH的资源间隔大于第四阈值的情况下,选择SL路损,作为所述第一路损;
在SL路损集合中,选择至少一个SL路损,作为所述第一路损,所述SL路损集合包括至少两个SL路损,且所述SL路损集合中任意两个SL路损之间的差值小于第五阈值;
在第一发送功率集合中,选择至少一个发送功率对应的SL路损,作为所述第一路损,所述第一发送功率集合包括至少两个发送功率,且所述第一发送功率集合中任意两个发送功率之间的差值小于第六阈值,每个发送功率对应一个SL路损;
在第一功率谱密度PSD集合中,选择至少一个PSD对应的SL路损,作为所述第一路损,所述第一PSD集合包括至少两个PSD,且所述第一PSD集合中任意两个PSD之间的差值小于第七阈值,每个PSD对应一个SL路损;
在不存在PSFCH码分多路复用CDM资源配置或不存在特定CDM资源配置的情况下,选择SL路损,作为所述第一路损。
可选的,在满足以下至少一项的情况下,N1、N2、N3、N4或N5大于1;
PSFCH资源集包含的资源数大于第八阈值,所述资源集是与预设时隙和预设子信道对应的时频域资源;
发送PSFCH的资源间隔大于第九阈值;
第二路损集合中任意两个路损之间的差值小于第十阈值,所述路损集合包括至少两个路损,且所述至少两个路损为SL路损和/或DL路损;
第二发送功率集合中任意两个发送功率之间的差值小于第十一阈值,所述第二发送功率集合包括至少两个发送功率,每个发送功率对应一个路损;
第二PSD集合中任意两个PSD之间的差值小于第十二阈值,所述第一PSD集合包括至少两个PSD,每个PSD对应一个路损。
可选的,处理器510,在所述第一路损为SL路损的情况下,还用于根据所述第一路损,得到第一参数;
根据所述第一参数和第二参数中的至少一项,得到目标参数;
根据所述目标参数,对副链路上的目标传输的发送功率进行控制;
其中,所述第一参数是根据所述SL路损和第一SL功率参数值计算得到的;
所述第二参数是在第一DL功率参数值被提供的情况下,根据第一DL功率参数值计算得到的。
可选的,处理器510,还用于在所述第一参数和所述第二参数同时存在的情况下,通过以下至少一项得到所述目标参数;
将所述第一参数作为所述目标参数;
将所述第二参数作为所述目标参数;
选取所述第一参数和所述第二参数中的较小值,作为所述目标参数;
选取所述第一参数和所述第二参数中的较大值,作为所述目标参数;
将第一数值和第二数值的和,作为所述目标参数,所述第一数值为第一参数与第一权重值的乘积,所述第二数值为第二参数与第二权重值的乘积;
将所述第一参数和所述第二参数的平均值,作为所述目标参数。
可选的,处理器510,还用于在所述第一SL功率参数值被提供的情况下,将第一参数确定为所述目标参数;
和/或,在所述第一SL功率参数值未被提供,且所述第一DL功率参数值被提供的情况下,将所述第二参数确定为所述目标参数;
可选的,处理器510,还用于在所述第一DL功率参数值被提供的情况下,将第二参数确定为所述目标参数;
和/或,在所述第一DL功率参数值未被提供,且所述第一SL功率参数值被提供的情况下,将所述第一参数确定为所述目标参数。
可选的,处理器510,还用于根据所述第一路损,对副链路同步信号块S-SSB/物理副链路广播信道PSBCH传输的发送功率进行控制。
可选的,所述目标传输包括至少一个传输;
所述根据所述第一路损,对副链路上目标传输的发送功率进行控制,包括:
在根据所述第一路损确定的所述目标传输的总功率大于所述第一终端设备的第一功率的情况下,根据以下至少一项放弃传输,直至所述目标传输的总功率小于或者等于所述第一功率;
在仅存在单播或组播通信方式的情况下,随机放弃M1个传输;
在仅存在单播或组播通信方式的情况下,放弃优先级最高或最低的M2个传输;
在仅存在单播或组播通信方式的情况下,放弃路损最大或最小的M3个传输;
在仅存在单播或组播通信方式的情况下,放弃满足预设距离要求或处于预设地理位置的M4个传输;
在仅存在单播或组播通信方式的情况下,放弃剩余PDB最长或最短的M6个传输;
在仅存在单播或组播通信方式的情况下,放弃传输优先级大于十三阈值的传输;
在仅存在单播或组播通信方式的情况下,放弃传输优先级小于十四阈值 的传输;
在同时存在单播通信方式和组播通信方式的情况下,在单播传输中选择需要放弃的传输;
在同时存在单播通信方式和组播通信方式的情况下,在组播传输中选择需要放弃的传输;
在同时存在单播通信方式和组播通信方式的情况下,在所有的传输中选择需要放弃的传输。
可选的,处理器510,还用于执行以下至少一项:
随机放弃W1个传输;
放弃优先级最高或最低的W2个传输;
放弃路损最大或最小的W3个传输;
放弃满足预设距离要求或处于预设地理位置的W4个传输;
放弃剩余PDB最长或最短的W5个传输;
放弃传输优先级大于十五阈值的传输;
放弃传输优先级小于十六阈值的传输。
本申请实施例的终端设备,获取第一路损,所述第一路损是根据副链路SL路损确定的,或者,所述第一路损是根据SL路损和下行DL路损确定的;根据所述第一路损,对副链路上目标传输的发送功率进行控制。本申请实施例能够基于SL路损对副链路上目标传输的发送功率进行控制,例如,单播时的功率通过用户间的SL路损计算,使得功率控制方式与当前通信场景匹配,在提升SL传输场景下功率控制准确度的同时,能够避免额外的发送功率开销,从而达到节能的目的。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述功率控制方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述终端设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述功率控制方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (32)

  1. 一种功率控制方法,应用于第一终端设备,包括:
    获取第一路损,所述第一路损是根据副链路SL路损确定的,或者,所述第一路损是根据SL路损和下行DL路损确定的;
    根据所述第一路损,对副链路上目标传输的发送功率进行控制。
  2. 根据权利要求1所述的方法,其中,所述根据所述第一路损,对副链路上目标传输的发送功率进行控制,包括:
    根据所述第一路损,对副链路同步信号块S-SSB/物理副链路广播信道PSBCH传输的发送功率进行控制。
  3. 根据权利要求2所述的方法,其中,根据所述第一路损,对副链路同步信号块S-SSB传输的发送功率进行控制包括:
    根据公式
    Figure PCTCN2021121770-appb-100001
    确定所述S-SSB传输的发送功率P S-SSB(i);其中,
    P CMAX为用户支持的最大发送功率;
    P O,S-SSB为配置的p0-DL-S-SSB的值;否则,P S-SSB(i)=P CMAX
    α S-SSB为配置的alpha-DL-S-SSB的值;否则,α S-SSB=1;
    PL=PL b,f,c(q d),为索引为q d的参考信号为服务小区c的载波f的激活下行带宽部分计算的下行路径损耗。
  4. 根据权利要求3所述的方法,其中,所述参考信号的资源包括:
    当所述第一终端设备被配置为监听PDCCH以检测DCI格式0_0时,所述第一终端设备确定由所述DCI格式0_0调度的PUSCH传输功率所采用的资源,和/或,
    当所述第一终端设备未被配置为监听PDCCH以检测DCI格式0_0时,所述第一终端获得MIB所采用的与SS/PBCH块相对应的资源。
  5. 根据权利要求1所述的方法,其中,所述副链路SL路损通过以下至少一项获取:
    根据参考信号接收功率RSRP,计算所述SL路损;
    根据至少部分第二终端设备发送的路损,确定所述SL路损,所述第二终 端设备为与所述第一终端设备通信的终端设备;
    根据第三终端设备通知的路损,确定所述SL路损,所述第三终端设备为调度终端或头用户;
    根据协议约定,获取所述SL路损;
    根据基站配置的路损,确定所述SL路损;
    根据预配置的路损,确定所述SL路损。
  6. 根据权利要求5所述的方法,其中,所述根据参考信号接收功率RSRP,计算所述SL路损,包括:
    根据至少部分第二终端设备发送的RSRP,计算所述SL路损;
    或者,根据所述第一终端设备测量的RSRP和至少部分第二终端设备的发送功率,计算所述SL路损。
  7. 根据权利要求6所述的方法,其中,
    所述第二终端设备的发送功率是预配置的;
    或者,所述第二终端设备的发送功率是第二终端设备发送给所述第一终端设备的;
    或者,所述第二终端设备的发送功率是第三终端设备通知给所述第一终端设备的。
  8. 根据权利要求1所述的方法,其中,所述根据所述SL路损和下行DL路损中的至少一项,确定第一路损包括以下至少一项:
    在第一路损集合中,随机选择N1个路损,作为所述第一路损;
    在第一路损集合中,选择最大的N2个路损,作为所述第一路损;
    在第一路损集合中,选择最小的N3个路损,作为所述第一路损;
    选择至少两个所述SL路损的平均值,作为所述第一路损;
    选择至少两个所述DL路损的平均值,作为所述第一路损;
    选择所述SL路损和所述DL路损的平均值,作为所述第一路损;
    在第一路损集合中,中,选择剩余数据包时延预算PDB最长或最短的N4个传输对应的路损,作为所述第一路损;
    在第一路损集合中,,选择满足预设距离要求或处于预设地理位置的N5个传输对应的路损,作为所述第一路损;
    在第一路损集合中,,选择传输优先级小于或者等于第一阈值的传输对应的路损,作为所述第一路损;
    在第一路损集合中,,选择传输优先级大于或者等于第二阈值的传输对应的路损,作为所述第一路损;
    选择SL路损,作为所述第一路损;
    选择DL路损,作为所述第一路损;
    其中,所述第一路损集合包括至少一个SL路损和/或至少一个DL路损。
  9. 根据权利要求8所述的方法,其中,所述选择SL路损,作为所述第一路损包括以下至少一项:
    在物理副链路反馈信道PSFCH资源集包含的资源数大于第三阈值的情况下,选择SL路损,作为所述第一路损;
    在发送PSFCH的资源间隔大于第四阈值的情况下,选择SL路损,作为所述第一路损;
    在SL路损集合中,选择至少一个SL路损,作为所述第一路损,所述SL路损集合包括至少两个SL路损,且所述SL路损集合中任意两个SL路损之间的差值小于第五阈值;
    在第一发送功率集合中,选择至少一个发送功率对应的SL路损,作为所述第一路损,所述第一发送功率集合包括至少两个发送功率,且所述第一发送功率集合中任意两个发送功率之间的差值小于第六阈值,每个发送功率对应一个SL路损;
    在第一功率谱密度PSD集合中,选择至少一个PSD对应的SL路损,作为所述第一路损,所述第一PSD集合包括至少两个PSD,且所述第一PSD集合中任意两个PSD之间的差值小于第七阈值,每个PSD对应一个SL路损;
    在不存在PSFCH码分多路复用CDM资源配置或不存在特定CDM没资源配置的情况下,选择SL路损,作为所述第一路损。
  10. 根据权利要求8所述的方法,其中,在满足以下至少一项的情况下,N1、N2、N3、N4或N5大于1;
    PSFCH资源集包含的资源数大于第八阈值,所述资源集是与预设时隙和预设子信道对应的时频域资源;
    发送PSFCH的资源间隔大于第九阈值;
    第二路损集合中任意两个路损之间的差值小于第十阈值,所述路损集合包括至少两个路损,且所述至少两个路损为SL路损和/或DL路损;
    第二发送功率集合中任意两个发送功率之间的差值小于第十一阈值,所述第二发送功率集合包括至少两个发送功率,每个发送功率对应一个路损;
    第二PSD集合中任意两个PSD之间的差值小于第十二阈值,所述第一PSD集合包括至少两个PSD,每个PSD对应一个路损。
  11. 根据权利要求1所述的方法,其中,在所述第一路损为SL路损的情况下,
    根据所述第一路损,对副链路上目标传输的发送功率进行控制,包括:
    根据所述第一路损,得到第一参数;
    根据所述第一参数和第二参数中的至少一项,得到目标参数;
    根据所述目标参数,对副链路上的目标传输的发送功率进行控制;
    其中,所述第一参数是根据所述SL路损和第一SL功率参数值计算得到的;
    所述第二参数是在第一DL功率参数值被提供的情况下,根据第一DL功率参数值计算得到的。
  12. 根据权利要求11所述方法,其中,所述根据所述第一参数和第二参数中的至少一项,得到目标参数,包括:
    在所述第一参数和所述第二参数同时存在的情况下,通过以下至少一项得到所述目标参数;
    将所述第一参数作为所述目标参数;
    将所述第二参数作为所述目标参数;
    选取所述第一参数和所述第二参数中的较小值,作为所述目标参数;
    选取所述第一参数和所述第二参数中的较大值,作为所述目标参数;
    将第一数值和第二数值的和,作为所述目标参数,所述第一数值为第一参数与第一权重值的乘积,所述第二数值为第二参数与第二权重值的乘积;
    将所述第一参数和所述第二参数的平均值,作为所述目标参数。
  13. 根据权利要求11所述的方法,其中,所述根据所述第一参数和第二 参数中的至少一项,得到目标参数,包括:
    在所述第一SL功率参数值被提供的情况下,将第一参数确定为所述目标参数;
    和/或,在所述第一SL功率参数值未被提供,且所述第一DL功率参数值被提供的情况下,将所述第二参数确定为所述目标参数。
  14. 根据权利要求11所述的方法,其中,所述根据所述第一参数和第二参数中的至少一项,得到目标参数,包括:
    在所述第一DL功率参数值被提供的情况下,将第二参数确定为所述目标参数;
    和/或,在所述第一DL功率参数值未被提供,且所述第一SL功率参数值被提供的情况下,将所述第一参数确定为所述目标参数。
  15. 根据权利要求1所述的方法,其中,所述目标传输包括至少一个传输;
    所述根据所述第一路损,对副链路上目标传输的发送功率进行控制,包括:
    在根据所述第一路损确定的所述目标传输的总功率大于所述第一终端设备的第一功率的情况下,根据以下至少一项放弃传输,直至所述目标传输的总功率小于或者等于所述第一功率;
    在仅存在单播或组播通信方式的情况下,随机放弃M1个传输;
    在仅存在单播或组播通信方式的情况下,放弃优先级最高或最低的M2个传输;
    在仅存在单播或组播通信方式的情况下,放弃路损最大或最小的M3个传输;
    在仅存在单播或组播通信方式的情况下,放弃满足预设距离要求或处于预设地理位置的M4个传输;
    在仅存在单播或组播通信方式的情况下,放弃剩余PDB最长或最短的M5个传输;
    在仅存在单播或组播通信方式的情况下,放弃传输优先级大于十三阈值的传输;
    在仅存在单播或组播通信方式的情况下,放弃传输优先级小于十四阈值的传输;
    在同时存在单播通信方式和组播通信方式的情况下,在单播传输中选择需要放弃的传输;
    在同时存在单播通信方式和组播通信方式的情况下,在组播传输中选择需要放弃的传输;
    在同时存在单播通信方式和组播通信方式的情况下,在所有的传输中选择需要放弃的传输。
  16. 根据权利要求15所述的方法,其中,所述选择需要放弃的传输包括以下至少一项:
    随机放弃W1个传输;
    放弃优先级最高或最低的W2个传输;
    放弃路损最大或最小的W3个传输;
    放弃满足预设距离要求或处于预设地理位置的W4个传输;
    放弃剩余PDB最长或最短的W5个传输;
    放弃传输优先级大于十五阈值的传输;
    放弃传输优先级小于十六阈值的传输。
  17. 一种功率控制装置,应用于第一终端设备,包括:
    第一获取模块,用于获取第一路损,所述第一路损是根据副链路SL路损确定的,或者,所述第一路损是根据SL路损和下行DL路损确定的;
    控制模块,用于根据所述第一路损,对副链路上目标传输的发送功率进行控制。
  18. 根据权利要求17所述的装置,还包括:第二获取模块;
    所述第二获取模块用于执行以下至少一项:
    根据参考信号接收功率RSRP,计算所述SL路损;
    根据至少部分第二终端设备发送的路损,确定所述SL路损,所述第二终端设备为与所述第一终端设备通信的终端设备;
    根据第三终端设备通知的路损,确定所述SL路损,所述第三终端设备为调度终端或头用户;
    根据协议约定,获取所述SL路损;
    根据基站配置的路损,确定所述SL路损;
    根据预配置的路损,确定所述SL路损。
  19. 根据权利要求18所述的装置,其中,所述第一获取模块用于根据至少部分第二终端设备发送的RSRP,计算所述SL路损;
    或者,根据所述第一终端设备测量的RSRP和至少部分第二终端设备的发送功率,计算所述SL路损。
  20. 根据权利要求19所述的装置,其中,
    所述第二终端设备的发送功率是预配置的;
    或者,所述第二终端设备的发送功率是第二终端设备发送给所述第一终端设备的;
    或者,所述第二终端设备的发送功率是第三终端设备通知给所述第一终端设备的。
  21. 根据权利要求19所述的装置,其中,所述第一获取模块用于执行以下至少一项:
    在第一路损集合中,随机选择N1个路损,作为所述第一路损;
    在第一路损集合中,选择最大的N2个路损,作为所述第一路损;
    在第一路损集合中,选择最小的N3个路损,作为所述第一路损;
    选择至少两个所述SL路损的平均值,作为所述第一路损;
    选择至少两个所述DL路损的平均值,作为所述第一路损;
    选择所述SL路损和所述DL路损的平均值,作为所述第一路损;
    在第一路损集合中,选择剩余数据包时延预算PDB最长或最短的N4个传输对应的路损,作为所述第一路损;
    在第一路损集合中,选择通信距离最近或最远的N5个传输对应的路损,作为所述第一路损;
    在第一路损集合中,选择满足预设距离要求或处于预设地理位置的N6个传输对应的路损,作为所述第一路损;
    在第一路损集合中,选择传输优先级小于或者等于第一阈值的传输对应的路损,作为所述第一路损;
    在第一路损集合中,选择传输优先级大于或者等于第二阈值的传输对应的路损,作为所述第一路损;
    选择SL路损,作为所述第一路损;
    选择DL路损,作为所述第一路损;
    其中,所述第一路损集合包括至少一个SL路损和/或至少一个DL路损。
  22. 根据权利要求21所述的装置,其中,所述第一获取模块用于执行以下至少一项:
    在物理副链路反馈信道PSFCH资源集包含的资源数大于第三阈值的情况下,选择SL路损,作为所述第一路损;
    在发送PSFCH的资源间隔大于第四阈值的情况下,选择SL路损,作为所述第一路损;
    在SL路损集合中,选择至少一个SL路损,作为所述第一路损,所述SL路损集合包括至少两个SL路损,且所述SL路损集合中任意两个SL路损之间的差值小于第五阈值;
    在第一发送功率集合中,选择至少一个发送功率对应的SL路损,作为所述第一路损,所述第一发送功率集合包括至少两个发送功率,且所述第一发送功率集合中任意两个发送功率之间的差值小于第六阈值,每个发送功率对应一个SL路损;
    在第一功率谱密度PSD集合中,选择至少一个PSD对应的SL路损,作为所述第一路损,所述第一PSD集合包括至少两个PSD,且所述第一PSD集合中任意两个PSD之间的差值小于第七阈值,每个PSD对应一个SL路损;
    在不存在PSFCH码分多路复用CDM资源配置或不存在特定CDM没资源配置的情况下,选择SL路损,作为所述第一路损。
  23. 根据权利要求21所述的装置,其中,在满足以下至少一项的情况下,N1、N2、N3、N4或N5大于1;
    PSFCH资源集包含的资源数大于第八阈值,所述资源集是与预设时隙和预设子信道对应的时频域资源;
    发送PSFCH的资源间隔大于第九阈值;
    第二路损集合中任意两个路损之间的差值小于第十阈值,所述路损集合 包括至少两个路损,且所述至少两个路损为SL路损和/或DL路损;
    第二发送功率集合中任意两个发送功率之间的差值小于第十一阈值,所述第二发送功率集合包括至少两个发送功率,每个发送功率对应一个路损;
    第二PSD集合中任意两个PSD之间的差值小于第十二阈值,所述第一PSD集合包括至少两个PSD,每个PSD对应一个路损。
  24. 根据权利要求17所述的装置,其中,在所述第一路损为SL路损的情况下,所述控制模块包括:
    第一获取子模块,用于根据所述第一路损,得到第一参数;
    第二获取子模块,用于根据所述第一参数和第二参数中的至少一项,得到目标参数;
    控制子模块,用于根据所述目标参数,对副链路上的目标传输的发送功率进行控制;
    其中,所述第一参数是根据所述SL路损和第一SL功率参数值计算得到的;
    所述第二参数是在第一DL功率参数值被提供的情况下,根据第一DL功率参数值计算得到的。
  25. 根据权利要求24所述装置,其中,所述第二获取子模块用于在所述第一参数和所述第二参数同时存在的情况下,通过以下至少一项得到所述目标参数;
    将所述第一参数作为所述目标参数;
    将所述第二参数作为所述目标参数;
    选取所述第一参数和所述第二参数中的较小值,作为所述目标参数;
    选取所述第一参数和所述第二参数中的较大值,作为所述目标参数;
    将第一数值和第二数值的和,作为所述目标参数,所述第一数值为第一参数与第一权重值的乘积,所述第二数值为第二参数与第二权重值的乘积;
    将所述第一参数和所述第二参数的平均值,作为所述目标参数。
  26. 根据权利要求25所述的装置,其中,所述第二获取子模块包括:
    第一获取单元,用于在所述第一SL功率参数值被提供的情况下,将第一参数确定为所述目标参数;
    和/或,在所述第一SL功率参数值未被提供,且所述第一DL功率参数值被提供的情况下,将所述第二参数确定为所述目标参数。
  27. 根据权利要求25所述的装置,其中,所述第二获取子模块包括:
    第二获取单元,用于在所述第一DL功率参数值被提供的情况下,将第二参数确定为所述目标参数;
    和/或,在所述第一DL功率参数值未被提供,且所述第一SL功率参数值被提供的情况下,将所述第一参数确定为所述目标参数。
  28. 根据权利要求17所述的装置,其中,所述控制模块用于根据所述第一路损,对副链路同步信号块S-SSB/物理副链路广播信道PSBCH传输的发送功率进行控制。
  29. 根据权利要求17所述的装置,其中,所述目标传输包括至少一个传输;
    所述控制模块用于执行以下至少一项:
    在根据所述第一路损确定的所述目标传输的总功率大于所述第一终端设备的第一功率的情况下,根据以下至少一项放弃传输,直至所述目标传输的总功率小于或者等于所述第一功率;
    在仅存在单播或组播通信方式的情况下,随机放弃M1个传输;
    在仅存在单播或组播通信方式的情况下,放弃优先级最高或最低的M2个传输;
    在仅存在单播或组播通信方式的情况下,放弃路损最大或最小的M3个传输;
    在仅存在单播或组播通信方式的情况下,放弃满足预设距离要求或处于预设地理位置的M4个传输;
    在仅存在单播或组播通信方式的情况下,放弃剩余PDB最长或最短的M5个传输;
    在仅存在单播或组播通信方式的情况下,放弃传输优先级大于十三阈值的传输;
    在仅存在单播或组播通信方式的情况下,放弃传输优先级小于十四阈值的传输;
    在同时存在单播通信方式和组播通信方式的情况下,在单播传输中选择需要放弃的传输;
    在同时存在单播通信方式和组播通信方式的情况下,在组播传输中选择需要放弃的传输;
    在同时存在单播通信方式和组播通信方式的情况下,在所有的传输中选择需要放弃的传输。
  30. 根据权利要求29所述的装置,其中,所述控制模块具体用于执行以下至少一项:
    随机放弃W1个传输;
    放弃优先级最高或最低的W2个传输;
    放弃路损最大或最小的W3个传输;
    放弃满足预设距离要求或处于预设地理位置的W4个传输;
    放弃剩余PDB最长或最短的W5个传输;
    放弃传输优先级大于十五阈值的传输;
    放弃传输优先级小于十六阈值的传输。
  31. 一种终端设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至16任一项所述的功率控制方法的步骤。
  32. 一种可读存储介质,其中,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至16中任一项所述的功率控制方法的步骤。
PCT/CN2021/121770 2020-09-30 2021-09-29 功率控制方法、装置及终端设备 WO2022068885A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21874540.4A EP4224950A4 (en) 2020-09-30 2021-09-29 POWER CONTROL METHOD AND APPARATUS, AND TERMINAL DEVICE
KR1020237014680A KR20230078778A (ko) 2020-09-30 2021-09-29 전력 제어 방법, 장치 및 단말 기기
JP2023519500A JP7575583B2 (ja) 2020-09-30 2021-09-29 パワー制御方法、装置及び端末機器
US18/126,314 US20230239807A1 (en) 2020-09-30 2023-03-24 Power control method and apparatus and terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011065169.7 2020-09-30
CN202011065169.7A CN114339795A (zh) 2020-09-30 2020-09-30 功率控制方法、装置及终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/126,314 Continuation US20230239807A1 (en) 2020-09-30 2023-03-24 Power control method and apparatus and terminal device

Publications (1)

Publication Number Publication Date
WO2022068885A1 true WO2022068885A1 (zh) 2022-04-07

Family

ID=80951202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121770 WO2022068885A1 (zh) 2020-09-30 2021-09-29 功率控制方法、装置及终端设备

Country Status (5)

Country Link
US (1) US20230239807A1 (zh)
EP (1) EP4224950A4 (zh)
KR (1) KR20230078778A (zh)
CN (1) CN114339795A (zh)
WO (1) WO2022068885A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024080061A1 (ja) * 2022-10-13 2024-04-18 株式会社Nttドコモ 端末及び通信方法
WO2024149233A1 (zh) * 2023-01-09 2024-07-18 中兴通讯股份有限公司 一种选择方法、第一节点及存储介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230126206A1 (en) * 2021-10-21 2023-04-27 Qualcomm Incorporated Power control techniques for sidelink communications
WO2024026673A1 (zh) * 2022-08-02 2024-02-08 Oppo广东移动通信有限公司 功率控制方法、传输静默方法、装置、设备及存储介质
CN115552984A (zh) * 2022-08-04 2022-12-30 北京小米移动软件有限公司 一种侧行链路sl定位参考信号prs的发送方法及装置
CN117641549A (zh) * 2022-08-12 2024-03-01 大唐移动通信设备有限公司 Sl-prs的功率控制方法、终端、网络侧设备、装置及存储介质
WO2024092781A1 (zh) * 2022-11-04 2024-05-10 Oppo广东移动通信有限公司 功率控制方法以及终端设备
CN118433877A (zh) * 2023-01-31 2024-08-02 华为技术有限公司 侧行功率控制的方法和装置
WO2024165020A1 (en) * 2023-02-10 2024-08-15 Mediatek Inc. Method and apparatus for power control with sidelink positioning reference signal transmission

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110753390A (zh) * 2019-09-25 2020-02-04 中国信息通信研究院 一种功率控制方法、终端设备
WO2020096693A1 (en) * 2018-11-08 2020-05-14 Convida Wireless, Llc Sidelink transmit power control for new radio v2x
CN112399372A (zh) * 2019-08-15 2021-02-23 华为技术有限公司 一种通信方法、终端及网络设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113490260B (zh) * 2017-08-11 2022-12-27 华为技术有限公司 一种功率控制方法及相关设备
CN111148201B (zh) * 2018-11-02 2021-12-28 华为技术有限公司 数据传输方法和设备
CN111436036B (zh) * 2019-01-11 2022-03-29 华为技术有限公司 功率控制方法及功率控制装置
EP3909315A4 (en) * 2019-02-13 2022-03-16 Samsung Electronics Co., Ltd. METHOD AND DEVICE FOR CONTROLLING THE TRANSMISSION POWER OF A USER EQUIPMENT IN A WIRELESS COMMUNICATION SYSTEM
CN114375034A (zh) * 2019-02-15 2022-04-19 成都华为技术有限公司 功率控制方法及功率控制装置
CN111601374B (zh) * 2019-04-02 2021-08-24 维沃移动通信有限公司 功率控制方法和设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020096693A1 (en) * 2018-11-08 2020-05-14 Convida Wireless, Llc Sidelink transmit power control for new radio v2x
CN112399372A (zh) * 2019-08-15 2021-02-23 华为技术有限公司 一种通信方法、终端及网络设备
CN110753390A (zh) * 2019-09-25 2020-02-04 中国信息通信研究院 一种功率控制方法、终端设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4224950A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024080061A1 (ja) * 2022-10-13 2024-04-18 株式会社Nttドコモ 端末及び通信方法
WO2024149233A1 (zh) * 2023-01-09 2024-07-18 中兴通讯股份有限公司 一种选择方法、第一节点及存储介质

Also Published As

Publication number Publication date
EP4224950A4 (en) 2024-04-03
JP2023543828A (ja) 2023-10-18
CN114339795A (zh) 2022-04-12
US20230239807A1 (en) 2023-07-27
KR20230078778A (ko) 2023-06-02
EP4224950A1 (en) 2023-08-09

Similar Documents

Publication Publication Date Title
WO2022068885A1 (zh) 功率控制方法、装置及终端设备
US20130044831A1 (en) Power allocation for overlapping transmission when multiple timing advances are used
WO2019243862A1 (en) Power headroom report generation
WO2022218369A1 (zh) 旁链路反馈资源的确定方法、终端及网络侧设备
WO2022199544A1 (zh) 上行传输方法、装置及用户设备
WO2022001850A1 (zh) 资源指示方法、装置及通信设备
WO2023011454A1 (zh) 旁链路资源确定方法、装置、终端及存储介质
US20230136170A1 (en) Information processing method and apparatus, and terminal
WO2022037508A1 (zh) 上行传输方法、设备及可读存储介质
US20240057000A1 (en) Synchronization resource configuration method and apparatus, user equipment, and storage medium
US20240155615A1 (en) Method and apparatus for handling overlapping of pucch time domain resources
WO2021238896A1 (zh) 旁链路资源处理方法、资源确定方法及相关设备
CN113890701B (zh) 旁链路传输方法、传输装置和终端
US20230291611A1 (en) Reference signal determining method, reference signal processing method, and related device
WO2019185055A1 (zh) 无线资源调度
WO2022188836A1 (zh) Cot确定方法、上行传输方法和设备
WO2022188737A1 (zh) 上行传输方法、装置及终端
KR20170109536A (ko) 채널 선택을 갖는 전력 헤드룸 리포트
CN113890698B (zh) 旁链路传输方法、传输装置和通信设备
WO2022017342A1 (zh) 上行传输方法、装置及设备
WO2023246615A1 (zh) 共享信道的方法、设备及可读存储介质
CN114765836B (zh) 资源的选择方法及装置、资源的推荐方法及装置
WO2022237680A1 (zh) 上行传输时间窗的确定方法、装置、终端及网络侧设备
WO2022222879A1 (zh) Pdsch传输、接收方法、装置及通信设备
WO2022152120A1 (zh) 传输配置方法、装置及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874540

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023519500

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202327029180

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20237014680

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021874540

Country of ref document: EP

Effective date: 20230502