WO2022068780A1 - 一种用于酰胺聚合的连续流反应装置 - Google Patents

一种用于酰胺聚合的连续流反应装置 Download PDF

Info

Publication number
WO2022068780A1
WO2022068780A1 PCT/CN2021/121083 CN2021121083W WO2022068780A1 WO 2022068780 A1 WO2022068780 A1 WO 2022068780A1 CN 2021121083 W CN2021121083 W CN 2021121083W WO 2022068780 A1 WO2022068780 A1 WO 2022068780A1
Authority
WO
WIPO (PCT)
Prior art keywords
stirring
continuous flow
cylinder
flow reaction
reaction device
Prior art date
Application number
PCT/CN2021/121083
Other languages
English (en)
French (fr)
Inventor
李洋
Original Assignee
成都肆零壹科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都肆零壹科技有限公司 filed Critical 成都肆零壹科技有限公司
Publication of WO2022068780A1 publication Critical patent/WO2022068780A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/20Stationary reactors having moving elements inside in the form of helices, e.g. screw reactors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/44Polyester-amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids

Definitions

  • the invention relates to the technical field of chemical equipment, in particular to a continuous flow reaction device for amide polymerization.
  • tubular reactors In the field of chemical technology include tubular reactors and tank reactors.
  • tubular reactors are usually continuous flow reactors. Since the reaction time of all reactants is theoretically the same in continuous flow reaction, the product quality stability is better. in discontinuous reactions.
  • the pipeline continuous flow reactor has a long process and requires the pump in front of the pipeline to provide the power for the material flow. Too long and slender pipelines will lead to high internal pressure, which puts forward high requirements for the transfer pump, and the thick pipeline has turbulent flow effect. Poor, the material is not uniformly dispersed.
  • Amide polymerization is a process in which diamine and diacid are dehydrated and polymerized at high temperature to form polyamide.
  • the existing polymerization process is generally divided into two types, one is a batch process, which is usually carried out in a reactor, and the other is a continuous polymerization process, which is usually carried out in a pipeline reaction device.
  • the batch process suffers from quality fluctuations due to its own disadvantages.
  • the continuous process is usually carried out with pipelines. In order to ensure sufficient reaction time to reach a suitable molecular weight, the pipelines are long and occupy a large area.
  • the static mixing device is usually used in the pipeline. With the progress of the polymerization process, the molecular weight of the material becomes larger, and problems such as scaling are prone to occur.
  • the present invention provides a continuous flow reaction device for amide polymerization.
  • the device occupies a small area, can ensure the continuity and uniformity of the material reaction, and can also well solve the material scaling at high temperature. The problem.
  • a continuous flow reaction device for amide polymerization comprising a cylinder, a feeding mechanism and a stirring mechanism, wherein the cylinder is inclined or arranged vertically on the ground, and the height of the feeding port is lower than the height of the discharging port, and the feeding
  • the mechanism is connected to the feeding port;
  • the stirring mechanism is connected to the driving motor at the top of the cylinder, the lower end of the stirring mechanism is close to the bottom of the cylinder, the stirring mechanism includes at least one stirring shaft, and the stirring shaft is composed of a rotating shaft and a device. It is composed of stirring blades on the rotating shaft, the distance between the stirring blades and the inner wall of the cylinder does not exceed 10% of the outer diameter of the stirring blades, and the stirring blades are continuous spiral blades or discontinuous paddles.
  • the height of the discharge port of the device is higher than that of the feed port, so that the material in the device is in a continuous upward conveying process as a whole. Due to the low viscosity of the initial material of the amide polymerization reaction, gravity can be used to make the material fill the cylinder naturally, and subsequent materials are required to push forward. Since the material flows upwards, it can be ensured that there is always a material melt above the feed inlet, and the volatilization loss of monomers with high volatility in the initial stage of polymerization of the amide polymerization reaction can be avoided.
  • the feeding port of the present invention is arranged at the bottom or the lower side of the cylinder.
  • the lower end of the stirring shaft should be as close to the bottom of the cylinder as possible, and the position of the feeding port should be as low as possible, which can reduce or even eliminate the volume that cannot be stirred, and avoid long-term accumulation of materials causing quality problems. Since there is a transmission shaft on the top of the cylinder, it is preferable that the discharge port is arranged on the upper side of the cylinder.
  • the upper part of the discharge port of the present invention is provided with a blocking member for blocking the continuous upward conveyance of the material.
  • the discharge port When the discharge port is located on the side of the cylinder, there is a certain space between the discharge port and the top of the cylinder, and this space can be set with a blocking member that prevents the material from being conveyed upward.
  • the top of the cylinder can be considered as the highest baffle, and the baffle set below can reduce the impact of high temperature materials on the seal of the drive shaft at the top of the cylinder and increase the service life of the device.
  • the blocking member is an annular baffle provided on the inner wall of the cylinder, and the stirring mechanism passes through the center of the annular baffle.
  • the annular baffle above the discharge port increases the pressure for the material to continue to be conveyed upward, reduces the continuous upward conveyance of high-temperature materials, and is also conducive to the accumulation of materials at the discharge port to achieve automatic sealing above the discharge port.
  • the material blocking blade is a reverse screw blade or a reverse screw blade for conveying the material downward.
  • the viscosity of the material continues to increase.
  • the blade or paddle that conveys the material downward can make the material tend to flow out from the discharge port, reducing or even avoiding the material.
  • the material blocking blade is a reverse helical blade.
  • the reverse spiral blade transfers the material downward, which is opposite to the original direction of the material, so that material accumulation occurs at the upper end of the discharge port, forming a dynamic seal, which can withstand greater pressure, so that the high-temperature material does not directly contact the drive shaft at the top of the cylinder. sealing device.
  • stirring shafts there are no less than two stirring shafts in the present invention, and the screw blades or paddles on the plurality of stirring shafts are meshed with each other.
  • a special structure can be set on the cylinder body, so that the material on the stirring device is scraped off during the rotation of the stirring device, but such a facility will affect the material. flow.
  • Two or more intermeshing stirring devices are used, so that the device can produce self-cleaning effect, so that the material will not scale on the stirring device.
  • the distance between the stirring blade of each of the stirring shafts and the adjacent rotating shaft does not exceed 10% of the outer diameter of the stirring blade. It can avoid a lot of fouling of materials on the rotating shaft.
  • the distance between the reversed helical blades of each of the stirring shafts from the cylinder body and the adjacent rotating shafts does not exceed 10% of the outer diameter of the stirring blades. It can produce the effect of conveying the material downward, so as to have a better dynamic sealing effect, and at the same time, it can avoid a large amount of scaling of the material on the rotating shaft and the cylinder.
  • the height difference between the center of the inlet and the outlet of the present invention is not less than 500mm. It can ensure that the cylinder has sufficient effective volume, ensure the polymerization time, and also make the low-viscosity material in the initial stage of polymerization generate greater pressure under the action of gravity, avoiding excessive expansion of high-temperature water vapor and causing material foaming to occupy too much. effective volume.
  • the outer diameter of the stirring shaft of the present invention is 90mm-1500mm. If the outer diameter of the stirring shaft is small, the specific surface area of the cylinder is large, and the heat transfer is more efficient. However, under the same volume, a larger aspect ratio is required to ensure the effective volume of the device. If the outer diameter of the stirring shaft is large, the specific surface area of the cylinder is small, and it is easier to obtain a large effective volume, but it will reduce the specific surface area of the cylinder and affect the heat transfer efficiency. On the whole, the outer diameter of the stirring shaft is reasonable in the range of 90mm-1500mm.
  • the inclination angle of the cylinder body and the ground in the present invention is 45°-90°.
  • the viscosity of the material melt at the discharge port of the reaction device of the present invention is not less than 300cP, and the high-viscosity material at the discharge port can more smoothly generate greater pressure under the action of the reverse screw blade or paddle, resulting in a better sealing effect.
  • the viscosity of the material melt at the outlet is not less than 700 cP.
  • the feeding mechanism of the present invention is a continuous flow conveying device.
  • the process of material mixing can be completed synchronously during the conveying process to ensure the continuous flow of materials in the device and realize continuous production.
  • the material flows continuously in the device.
  • the continuous flow conveying device is a screw conveying device.
  • the outlet of the device of the invention is connected in series with the screw extrusion device, so that the devolatilization process of the amide polymerization can be completed in the screw extrusion device.
  • the device of the invention is used for the amide polymerization reaction with the melting point of the polyamide above 280°C.
  • the device of the invention can be applied to the polycondensation reaction of dibasic acid and dibasic amine, especially the polyamide polymerization process whose melting point is above 280°C, and has more obvious advantages. Because polyamides with higher melting points require higher polymerization temperatures, high temperatures make the polymer more susceptible to crosslinking and fouling. Compared with the traditional static mixing pipeline continuous flow device, the device of the invention can effectively avoid scaling. In addition, because the high temperature will speed up the polymerization process, the material in the device will have a greater viscosity, and it is more difficult for the amino group and the carboxyl group to meet and react, and the efficiency of amide polymerization is mainly controlled by diffusion. The continuous flow device of the present invention can actively stir and increase the interface renewal efficiency, thereby increasing the probability of the carboxyl group and the amino functional group meeting, and improving the efficiency of the amide polymerization reaction.
  • the reaction device is inclined or placed vertically on the ground to reduce the floor space of the cylinder, and is suitable for large-scale production of reaction equipment with a small inner diameter.
  • the height of the discharge port is set above the feed port, so that the material entering the reaction device at the back can push the material entering the reaction device in the front to move up slowly, without worrying about the speed of the material in the front under the action of gravity, and the feeding speed is too high.
  • the material interruption caused by the slowness ensures that when the device is running, the material can continuously enter the reaction device from the feed port below, and then continuously move out of the device from the discharge port above.
  • the traditional reaction kettle can be equipped with a dynamic stirring device to increase the uniformity of the material, but a drive shaft needs to enter the reaction kettle from the outside of the reaction kettle, which involves complex dynamic sealing to ensure the airtight performance of the reaction device.
  • the dynamic seal involved puts forward very high requirements on materials and processing accuracy, resulting in a substantial increase in the cost of the device, complicated maintenance and shortened life.
  • a material blocking blade or a partition plate is arranged from the top of the stirring shaft to the discharge port to prevent the material from continuing to be conveyed upward.
  • This reaction device is used for amide polymerization. At the beginning of the reaction, the viscosity of the material is low. After entering the device, it will gradually polymerize during the upward flow of the material, the monomer will be consumed, and the viscosity will increase. The viscosity of the material mouth is beneficial to the sealing of the top drive shaft, effectively reducing the loss of polymerized monomers and ensuring the quality of the polymerized products.
  • the device of the present invention can effectively avoid scaling.
  • the continuous flow device of the present invention can actively stir, increase the interface renewal efficiency, can improve the efficiency of the amide polymerization reaction, and speed up the reaction process. Reduce reaction time.
  • the present invention is a continuous flow reactor, which has better product quality stability than a batch reactor.
  • the production line does not need a traditional reactor device.
  • This reaction device completes the polymerization reaction during the feeding process. After the polymerization is completed, the material is directly transferred to the screw extrusion device for production without transferring the material.
  • the entire process from feeding, reaction to extrusion and granulation is completed in one go, truly realizing the continuous polymerization of industrial resins.
  • the average residence time of materials in the polymerization device from feeding to discharging is 10-90min, which is obviously better than the traditional reaction. In the 10 or so hours of the kettle equipment, the product obtained by the continuous production has better uniformity and high efficiency.
  • the end of the reverse helical blade or paddle is in clearance fit with the inner side wall of the cylinder.
  • the outer diameter of the stirring shaft is controlled between 90mm-15000mm, which avoids the pipeline being too slender and is especially suitable for the polymerization reaction with a melt viscosity of not less than 300cP at the outlet.
  • the action of the leaf is to generate greater pressure, resulting in a better sealing effect.
  • Fig. 1 is the structural representation of the continuous flow reaction device used for amide polymerization in Example 1;
  • FIG. 2 is a schematic structural diagram of the continuous flow reaction device used for amide polymerization in Example 2.
  • FIG. 2 is a schematic structural diagram of the continuous flow reaction device used for amide polymerization in Example 2.
  • FIG. 3 is a schematic structural diagram of the continuous flow reaction device used for amide polymerization in Example 6.
  • FIG. 3 is a schematic structural diagram of the continuous flow reaction device used for amide polymerization in Example 6.
  • a continuous flow reaction device for amide polymerization includes a cylinder 1, a feeding mechanism 3 and a stirring mechanism, the cylinder is inclined at 75° to the ground, and the height of the feeding port 11 is lower than The height of the discharge port 12, the feeding mechanism 3 is connected to the feeding port 11; the stirring mechanism is connected to the driving motor 2 at the top of the cylinder 1, the lower end of the stirring mechanism is close to the bottom of the cylinder 1, and the stirring mechanism includes two A stirring shaft 4, the stirring shaft 4 is composed of a rotating shaft and a stirring blade arranged on the rotating shaft, and the distance between the stirring blade and the inner wall of the cylinder body 1 does not exceed 10% of the outer diameter of the stirring blade, and the stirring blade is Continuous helical blades 5 .
  • the equipment is inclined or vertical to the ground, which reduces the footprint of the cylinder, and is suitable for large-scale production of reaction equipment with small inner diameter.
  • the end of the stirring shaft 4 is close to the bottom of the cylinder 1, and the distance between the spiral blade 5 and the inner side wall is short, which facilitates the transportation of materials from the feed port 11 to the discharge port 12 during the reaction process.
  • the discharge port 12 is set above the feed port, so that the material entering the reaction device at the back can push the material entering the reaction device in the front to move up slowly, without worrying about the advance speed of the front material under the action of gravity is too fast, and the feeding speed is too high.
  • the material interruption caused by the slowness ensures that when the device is running, the material can continuously enter the reaction device from the feed port below, and continuously move out of the device from the discharge port on the upper side wall.
  • the device adopts two or more parallel stirring shafts, so that the spiral blades on the multiple shafts can scrape off the materials stuck on the spiral blades and the stirring shaft, and reduce the precipitation of materials on the spiral blades and the shaft to form solid scaling.
  • the discharge port is set on the upper side wall of the cylinder, which will not affect the dynamic sealing of the top.
  • the outer diameter of the stirring blade refers to the distance from the center of the rotating shaft to the end of the stirring blade.
  • a continuous flow reaction device for amide polymerization includes a cylinder, a feeding mechanism and a stirring mechanism, the cylinder is arranged vertically on the ground, and the height of the feeding port is lower than the height of the discharging port , the feeding mechanism is connected to the feeding port; the stirring mechanism is connected to the drive motor at the top of the cylinder, the lower end of the stirring mechanism is close to the bottom of the cylinder, and the stirring mechanism includes two stirring shafts, which are rotated by The shaft is composed of a stirring blade arranged on the rotating shaft. The distance between the stirring blade and the inner wall of the cylinder does not exceed 10% of the outer diameter of the stirring blade, and the stirring blade is a discontinuous blade.
  • the outer diameter of the stirring shaft is 90 mm.
  • the length of the paddle is approximately 30mm.
  • the paddles 6 on a plurality of the stirring shafts 4 are engaged with each other. It is more beneficial for the paddles on multiple shafts to scrape off the materials stuck on the paddles and the stirring shaft.
  • the top of the stirring shaft 4 to the discharge port 12 is provided with a reverse propeller blade 8 for conveying the material downward.
  • the reverse propeller blade and the lower propeller blade are coaxially and reversely stirred, so that when the material runs to this place, it pushes the material to flow downward and prevents the material from continuing to flow upward.
  • the distance between the stirring blades of each of the stirring shafts and the adjacent rotating shafts does not exceed 10% of the outer diameter of the stirring blades.
  • the distance between the reversed helical blades of each of the stirring shafts from the cylinder body and the adjacent rotating shaft does not exceed 10% of the outer diameter of the stirring blades.
  • the gear transmission assembly of the present invention is driven by a sprocket, one stirring shaft is driven by a driving wheel driven by a motor, and the other stirring shaft is driven by a driven wheel connected with the driving wheel, so as to realize simultaneous rotation. If the number of teeth of the driving wheel and the driven wheel is If they are the same, they will rotate synchronously, or they can be set to be different, and they will rotate synchronously.
  • a continuous flow reaction device for amide polymerization comprising a cylinder body, a feeding mechanism and a stirring mechanism, the cylinder body is inclined at 45° to the ground, and the height of the feeding port is lower than the height of the discharging port, and the feeding mechanism Connect the feeding port;
  • the stirring mechanism is connected to the driving motor at the top of the barrel, the lower end of the stirring mechanism is close to the bottom of the barrel, the stirring mechanism includes three stirring shafts, and the stirring shaft is composed of a rotating shaft and a rotating shaft.
  • the stirring blade is composed of the stirring blade on the cylinder, the distance between the stirring blade and the inner wall of the cylinder does not exceed 5% of the outer diameter of the stirring blade, and the stirring blade is a continuous spiral blade.
  • the distance between the stirring blades on each of the stirring shafts 4 and the outer surface of the adjacent stirring shafts 4 does not exceed 3% of the outer diameter of the stirring blades.
  • the outer diameter of the stirring shaft is 1500 mm.
  • the top of the stirring shaft 4 to the discharge port 12 is provided with a reverse helical blade 7 that prevents the material from continuing to be conveyed upward.
  • the distance between the stirring blades of each of the stirring shafts and the adjacent rotating shafts does not exceed 5% of the outer diameter of the stirring blades.
  • the distance between the reversed helical blades of each of the stirring shafts from the cylinder body and the adjacent rotating shaft does not exceed 5% of the outer diameter of the stirring blades.
  • the melt viscosity of the material at the outlet of the reaction device is not less than 700cP.
  • the gear transmission assembly of this embodiment is a conventional sprocket transmission assembly, and the simultaneous rotation of the three stirring shafts is realized by the combination of a plurality of sprockets.
  • Embodiment 1 This embodiment is on the basis of Embodiment 1:
  • the outer diameter of the stirring shaft is 600 mm.
  • a plurality of helical blades 5 on the stirring shaft 4 are engaged with each other.
  • the top of the stirring shaft 4 to the discharge port 12 is provided with a reverse helical blade 7 that prevents the material from continuing to be conveyed upward.
  • the distance between the stirring blades of each of the stirring shafts and the adjacent rotating shafts does not exceed 10% of the outer diameter of the stirring blades.
  • the distance between the reversed helical blades of each of the stirring shafts from the cylinder body and the adjacent rotating shaft does not exceed 10% of the outer diameter of the stirring blades.
  • the melt viscosity of the material at the outlet of the reaction device is not less than 700cP.
  • the height difference between the center of the inlet and outlet is 600mm.
  • the feeding mechanism adopts a screw conveyor, and the discharge port is connected to a screw granulating extruder, and the average residence time in the polymerization device from feeding to granulating and discharging is 10-90 min.
  • the outer diameter of the stirring shaft is 800 mm.
  • the viscosity of the material melt at the discharge port is not less than 300cP.
  • the feeding mechanism is a screw conveying device, and the outlet of the device is connected in series with a screw extruding device. During the operation of the device, the material flows continuously in the device.
  • the device is used for the polymerization of amides with a melting point of polyamides above 280°C.
  • a continuous flow reaction device for amide polymerization includes a cylinder, a feeding mechanism and a stirring mechanism, the cylinder is inclined at 75° to the ground, and the height of the feeding port is lower than that of the discharging port height, the feeding mechanism is connected to the feeding port; the stirring mechanism is connected to the drive motor at the top of the cylinder, the lower end of the stirring mechanism is close to the bottom of the cylinder, the stirring mechanism includes a stirring shaft, and the stirring shaft is composed of The rotating shaft is composed of a stirring blade arranged on the rotating shaft. The distance between the stirring blade and the inner wall of the cylinder does not exceed 10% of the outer diameter of the stirring blade.
  • the stirring blade is a continuous spiral blade.
  • the blocking member is an annular baffle arranged on the inner wall of the cylinder, and the stirring mechanism passes through the center of the annular baffle.
  • the feeding mechanism 3 is a feeding pump.
  • the top end of the cylinder body 1 is provided with a dynamic seal.
  • the feed pump model is QP50.
  • the feeding pump is used to transport the material melt, and can be a gear pump, a plunger pump or a screw pump.
  • the feeding mechanism 3 is a screw conveyor.
  • the top end of the cylinder body 1 is provided with a dynamic seal.
  • the flow rate of the material in the cylinder is determined by the feeding speed. The faster the flow rate, the higher the output, but the shorter the reaction time in the cylinder, and the required degree of polymerization may not be achieved. In actual production, the material flow rate can be adjusted by the feed rate as required.
  • the continuous flow reaction device for amide polymerization of the present invention is used for the polymerization reaction of industrial resin, the device is arranged perpendicular to the ground, the feeding mechanism adopts a screw conveyor, and the discharge port is connected to a screw granulating extruder, from feeding to granulating
  • the average residence time of the discharge material in the polymerization device is 10-90 min.
  • the stirring mechanism is two mutually meshing stirring paddles, the diameter of the single paddle blade is 300mm, and the distance between the single paddle blade and the inner wall of the cylinder does not exceed 10% of the outer diameter of the blade.
  • the feed port is located at the bottom of the device, the discharge port is located on the upper side of the device, the height difference is 1500mm, and there is a 100mm reverse spiral blade above the discharge port to make the material flow downward, with an effective volume of 150L.
  • the feeding mechanism is a co-rotating twin-screw extruder, the diameter of the original thread is 65mm, and the aspect ratio is 60:1.
  • the devolatilization device adopts a co-rotating twin-screw extruder. , the ninth and twelfth sections of the cylinder open the exhaust hole for vacuuming.
  • the volume of the continuous flow reaction device of the invention is small, the effective volume of the device with a production capacity of 5 tons per day is less than 200L, and the effective volume of the polymerization reactor is more than 5000L.
  • This example adopts the production line of Example 4.
  • the front and rear of the device are each set of horizontal twin-screw extruding devices, and the length-diameter ratio of the front and rear twin-screw extruding devices is 60:1, and the stirring mechanism is two intermeshing stirring mechanisms.
  • the paddle, the diameter of the single paddle blade is 300mm, the diameter of the single paddle blade is 600mm, the length-diameter ratio is 1.4:1, and the effective volume is 200 liters.
  • vent holes are opened in the ninth and twelfth barrels for vacuuming.
  • the twin-screw extrusion device which is equipped with 2 exhaust ports, of which the third exhaust port is evacuated, and continuously extruded and granulated to obtain PA56 resin with a viscosity of 2.3 and a melting point of 252 °C.
  • the average residence time of the material in the polymerization device was about 30 minutes, and the total output was 398 kg/h.
  • the effective volume of the device in Example 10 and Example 9 is the same, and the material residence time is the same under the same output condition.
  • the device of the present invention has higher polymerization efficiency, higher viscosity, higher molecular weight and higher melting point due to sufficient stirring.
  • a pipeline reactor with an effective volume of 200 liters equipped with static mixing was used to replace the device of the present invention in Example 9.
  • the same material ratio and temperature were set so that the viscosity of the PA56 product was also 2.3 and the melting point was 251 ° C.
  • the material was in the device.
  • the average residence time was 63 minutes and the total production was 188 kg/h.
  • Example 11 Compared with Example 9, Example 11 has the same effective volume of the device, but due to static mixing, longer polymerization time is required to achieve the same molecular weight, and the yield is reduced by more than half.
  • This example adopts the production line of Example 8, adopts a set of vertical devices, and a set of horizontal twin-screw extruding devices at the front and rear, wherein the length-diameter ratio of the front and rear twin-screw extruding devices is 60:1, and the vertical device is equipped with two
  • the intermeshing stirring paddle has a single paddle blade diameter of 300mm, a length-diameter ratio of 6:1, and an effective volume of 150 liters.
  • the twin-screw extrusion device which is equipped with 2 exhaust ports, of which the third exhaust port is evacuated and continuously extruded and pelletized to obtain PA56 resin with a viscosity of 2.4 and a melting point of 266°C.
  • the average residence time of the material in the polymerization device was about 30 minutes, and the total output was 295 kg/h.
  • a pipeline reactor with an effective volume of 150 liters equipped with static mixing was used to replace the device of the present invention in Example 12.
  • the same material ratio and temperature were set, so that the viscosity of the PA56 product was 2.3, the melting point was 264 ° C, and the materials were averaged in the device.
  • the residence time was 59 minutes and the total production was 142 kg/h.
  • This example adopts the production line of Example 8, adopts a set of vertical devices, and a set of horizontal twin-screw extruding devices at the front and rear, wherein the length-diameter ratio of the front and rear twin-screw extruding devices is 60:1, and the vertical device is equipped with two
  • the intermeshing stirring paddle has a single paddle blade diameter of 300mm, a length-diameter ratio of 6:1, and an effective volume of 150 liters.
  • the twin-screw extrusion device which is equipped with 2 exhaust ports, of which the third exhaust port is evacuated and continuously extruded and granulated to obtain PA6T/66 resin with a viscosity of 2.2 and a melting point of 311 °C, the average residence time of the material in the polymerization device is about 30 minutes, and the total output is 288kg/h.
  • the device runs continuously for 100 hours at high temperature, and the product quality has no obvious fluctuation.
  • a pipeline reactor equipped with static mixing with an effective volume of 150 liters was used to replace the device of the present invention in Example 15, and the reaction was carried out under the same conditions, and the material residence time was kept for 30 minutes to obtain PA6T/66 resin with a viscosity of 1.7 , the melting point is 298°C, and the total output is 289kg/h.
  • a pipeline reactor equipped with static mixing with an effective volume of 150 liters was used to replace the device of the present invention in Example 15, and the reaction was carried out under the same conditions, and the material residence time was kept at 80 minutes to obtain PA6T/66 resin with a viscosity of 2.1 , the melting point is 309°C, and the total output is 128kg/h.
  • This example adopts the production line of Example 8, adopts a set of vertical continuous polymerization device, and a set of horizontal twin-screw extrusion devices at the front and rear, wherein the length-diameter ratio of the front and rear twin-screw extrusion devices is 60:1, and the continuous polymerization
  • the device is equipped with two intermeshing stirring paddles, the diameter of the single paddle blade is 300mm, the length-diameter ratio is 6:1, and the effective volume is 150 liters.
  • the twin-screw extrusion device which is equipped with 2 exhaust ports, of which the third exhaust port is evacuated and continuously extruded and granulated to obtain PA10T resin with a viscosity of 2.2 and a melting point of 309°C.
  • the average residence time of the material in the polymerization device was about 30 minutes, and the total output was 285 kg/h.
  • the device runs continuously for 100 hours at high temperature, and the product quality has no obvious fluctuation.
  • a pipeline reactor equipped with static mixing with an effective volume of 150 liters was used to replace the continuous polymerization device of the present invention in Example 18, and the reaction was carried out under the same conditions, and the material residence time was maintained at 90 minutes to obtain PA10T resin with a viscosity of 2.1 , the melting point is 309°C, and the total output is 108kg/h.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyamides (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Abstract

一种用于酰胺聚合的连续流反应装置,包括筒体、送料机构和搅拌机构,所述筒体倾斜或者竖直于地面设置,且进料口的高度低于出料口高度,所述送料机构连接进料口;所述搅拌机构连接筒体顶端的驱动电机,所述搅拌机构的下端靠近筒体的底部,所述搅拌机构包括至少一根搅拌轴,所述搅拌轴由转动轴和设于转动轴上的搅拌叶片组成,所述搅拌叶片距筒体内壁的距离不超过搅拌叶片外径的10%,所述搅拌叶片为连续的螺旋叶片或者不连续的桨叶。装置占地面积小,能保证物料反应的连续性和均匀性,也能够很好的解决高温下物料结垢的问题。

Description

一种用于酰胺聚合的连续流反应装置 技术领域
本发明涉及化工设备技术领域,具体为一种用于酰胺聚合的连续流反应装置。
背景技术
化工技术领域常用的反应器包括管式反应器和釜式反应器,其中管式反应器通常为连续流反应器,连续流反应由于理论上所有反应物的反应时间一致,产品质量稳定性要优于非连续反应。
管道式连续流反应器由于流程长,且需要管道前的泵提供物料流动的动力,过于细长的管道会导致内部压力很大,对输送泵提出很高的要求,而较粗的管道湍流效果差,物料分散不均匀。
酰胺聚合反应是二元胺和二元酸在高温下脱水聚合生成聚酰胺的过程。现有的聚合过程一般分为两种,一种是间歇工艺,通常在反应釜中进行,一种连续化聚合工艺通常在管道反应装置中进行。间歇工艺由于其本身的缺点,存在质量波动的问题。连续工艺通常利用管道进行,为了保证足够的反应时间达到合适的分子量,管道的长度较长,占地较大。另外,管道中通常利用的是静态混合装置,随着聚合过程的进行,物料分子量的变大,容易发生结垢等问题,因此往往用于常规的尼龙聚合,较少用于高温尼龙的聚合。因为较高的熔体温度会让聚合物更容易交联结构,导致管道传热传质等问题,影响产品质量。
发明内容
为解决上述技术问题,本发明提供了一种用于酰胺聚合的连续流反应装置,装置占地面积小,能保证物料反应的连续性和均匀性,也能够很好的解决高温下物料结垢的问题。
为实现上述目的,本发明采用的技术方案是:
一种用于酰胺聚合的连续流反应装置,包括筒体、送料机构和搅拌机构,所述筒体倾斜或者竖直于地面设置,且进料口的高度低于出料口高度,所述送料机构连接进料口;所述搅拌机构连接筒体顶端的驱动电机,所述搅拌机构的下端靠近筒体的底部,所述搅拌机构包括至少一根搅拌轴,所述搅拌轴由转动轴和设于转动轴上的搅拌叶片组成,所述搅拌叶片距筒体内壁的距离不超过搅拌叶片外径的10%,所述搅拌叶片为连续的螺旋叶片或者不连续的桨叶。
本发明将装置的出料口高度高于进料口,使得整体上在装置内物料是处于一个连续向上输送的过程。由于酰胺聚合反应的初期物料粘度低,这样可以利用重力使得物料自然充满筒 体,需要后续的物料推动前进。由于物料向上流动,可以保证进料口的上方始终存在物料熔体,可以避免酰胺聚合反应的聚合初期挥发性较高的单体挥发损失。由于羧酸和胺的酰胺化反应速度快,平衡常数高,当物料从底部流至顶部轴密封处时,单体已经转化成聚合物或者寡聚物,挥发性低,可以保证物料酸和胺的单体比例不出现大的差异,从而保证产物能有合适的分子量。控制搅拌叶片距筒体内壁的距离不超过搅拌叶片外径的10%,可以避免物料在筒壁上大量结垢。优选不超过搅拌叶片外径的5%,效果更佳。
本发明所述进料口设置于所述筒体的底部或者下部侧面。搅拌轴的下端尽量靠近筒体底部,进料口的位置也尽可能的低,这样可以减少甚至消除无法搅拌的体积,避免长时间积料导致质量问题。由于筒体顶部有传动轴,优选出料口设置于所述筒体的上部侧面。
本发明所述出料口的上方设置有阻挡物料继续向上输送的阻挡件。
当出料口位于筒体侧面,出料口和筒体顶部之间存在一定的空间,这个空间可以设置阻碍物料向上输送的阻挡件。筒体的顶部可以认为是最高的挡板,下面设置的阻挡件可以减少高温物料对筒体顶端传动轴密封的影响,增加装置的使用寿命。
优选地,所述阻挡件为设置于筒体内壁的环形挡板,搅拌机构从所述环形挡板的中心穿过。出料口上方的环形挡板给物料继续向上输送增加压力,减少高温物料继续向上输送,还有利于物料在出料口堆积实现出料口上方的自动密封。
优选地,所述阻料叶片为使物料向下输送的反向螺旋叶片或反向螺旋桨叶。
因为物料向上输送的过程中聚合反应在不断进行,物料粘度不断变大,变大到一定程度时,向下输送物料的叶片或者桨叶可以使得物料倾向于从出料口流出,减少甚至避免物料直接接触筒体顶部的传动轴的密封装置。
进一步优选地,所述阻料叶片为反向螺旋叶片。反向螺旋叶片向下传料,与物料原本的行进方向相反,从而使得出料口上端产生物料堆积,形成动态密封,可以承受更大的压力,使得高温物料不直接接触筒体顶部的传动轴的密封装置。
本发明所述搅拌轴不少于两根,多根所述搅拌轴上的螺旋叶片或者桨叶相啮合。
为了避免物料在搅拌装置和筒壁上结垢,可以在筒体上设置特殊的结构,使得搅拌装置在转动过程中,沾在搅拌装置上的物料被刮下来,但是这样的设施会影响物料的流动。采用两根或者更多的互相啮合的搅拌装置,这样装置可以产生自清洁的作用,使得物料不会在搅拌装置上结垢。
优选地,每根所述搅拌轴的搅拌叶片距相邻转动轴的距离不超过搅拌叶片外径的10%。可以避免物料在转动轴上大量结垢。
优选地,每根所述搅拌轴的反向螺旋叶片距筒体和相邻转动轴的距离不超过搅拌叶片外 径的10%。可以产生向下输送物料的效果,从而有更好的动态密封效果,同时可以避免物料在转动轴和筒体上大量结垢。
本发明所述进料口和出料口中心的高度差不少于500mm。能够保证筒体具有足够的有效体积,保证聚合反应的时间,也能够使得聚合初期的低粘度物料在重力作用下产生更大的压力,避免高温水蒸气过度膨胀,使物料发泡占据过多的有效体积。
本发明所述搅拌轴的外径为90mm-1500mm。搅拌轴外径小,则筒体的比表面积大,传热更有效率。但是同样体积下,需要更大的长径比来保证装置的有效容积。搅拌轴外径大,则筒体的比表面积小,更容易获得大的有效容积,但是会导致筒体比表面积减小,影响传热效率。综合来看,搅拌轴的外径在90mm-1500mm范围内是合理的。
本发明所述筒体与地面的倾斜角为45°-90°。
本发明反应装置的出料口物料熔体的粘度不小于300cP,高粘度的出口物料更能顺利的在反向螺旋叶片或桨叶的作用于产生较大压力,产生更好的密封效果。优选出料口物料熔体的粘度不小于700cP。
本发明所述送料机构为连续流输送装置。可以将物料混合的过程在输送过程中同步完成,保证物料在装置中连续流动,实现连续化生产。
优选地,装置运行过程中,物料在装置中连续流动。
优选地,所述连续流输送装置为螺杆输送装置。
本发明装置的出料口串联螺杆挤出装置,可以将酰胺聚合的脱挥过程在螺杆挤出装置中完成。
本发明装置用于聚酰胺熔点在280℃以上的酰胺聚合反应。
本发明的装置可以应用于二元酸和二元胺的缩聚反应,特别是熔点在280℃之上的聚酰胺聚合过程,优势更为明显。因为熔点高的聚酰胺需要更高的聚合温度,高温会使得聚合物更容易交联结垢。本发明装置相对于传统的静态混合管道连续流装置,可以有效的避免结垢。另外由于高温会使得聚合进程加快,装置中的物料会有更大的粘度,此时氨基和羧基更难相遇反应,酰胺聚合的效率主要由扩散控制。本发明的连续流装置能够主动搅拌,增加界面更新效率,从而增加羧基和氨基官能团相遇的几率,能够提高酰胺聚合反应的效率。
本发明的有益效果是:
1、本发明将反应装置倾斜或者竖直于地面设置,减小筒体的占地面积,适用于内径小的反应设备用于大规模的生产。将出料口高度设于进料口的上方,可以让后面进入反应装置的物料推动前面进入反应装置的物料缓慢向上前进,而不用担心重力作用下,前面物料前进速度太快,进料速度过慢导致的物料中断,保证了装置运行时,物料从下方的进料口能连续进 入反应装置,再从上方的出料口连续移出装置。
2、传统的反应釜可以加装动态搅拌装置来增加物料的均匀性,但需要有传动轴从反应釜的外部进入反应釜,涉及到复杂的动态密封来保证反应装置的密闭性能,特别是进行高温和有一定压力的反应时,涉及到的动态密封对材料、加工精度均更是提出了非常高的要求,导致装置的成本大幅增加,且维护复杂,寿命缩短。本发明在搅拌轴的顶端至出料口设置有防止物料继续向上输送的阻料叶片或隔板。使物料顺利地从下方的出料口移出筒体,尽量避免物料达到动态密封处,不影响其密封性能,减少酰胺聚合过程中的高温物料对筒体顶端传动轴密封的影响,适用于压力较大,出口处又具有一定粘度的酰胺聚合反应,有利于推动物料堆积在出料口上方自动形成密封。
3、本反应装置用于酰胺聚合反应,反应开始时物料粘度低,进入装置之后,在物料向上流动的过程中逐步聚合,单体消耗,粘度增大,到达上部出料口时粘度远大于进料口粘度,有利于顶部传动轴的密封,有效减少聚合单体的损失,保证聚合产物的质量。
4、设置两根以上的互相啮合的搅拌装置,这样装置可以产生自清洁的作用,进一步使得物料不会在搅拌装置上结垢。同时装置能实现主动搅拌,增加界面更新效率,提高高温酰胺聚合反应的效率。采用相互啮合的螺旋叶片或者螺旋桨叶,且距相邻转动轴的距离不超过搅拌轴半径的5%,保证了超强的剪切分散能力,可以使得物料在极短的时间内混合均匀,大幅提高生产效率。
5、本发明装置相对于传统的静态混合管道连续流装置,可以有效的避免结垢。另外由于高温会使得聚合进程加快,装置中的物料会有更大的粘度,本发明的连续流装置能够主动搅拌,增加界面更新效率,能够提高酰胺聚合反应的效率,加快反应的进程。减少反应时间。
6、本发明为连续流动的反应器,较间歇式反应釜具有更好的产品质量稳定性。生产线无需传统的反应釜装置,本反应装置在送料的过程中完成聚合反应,聚合完成后直接传送物料到螺杆挤出装置中造料,无需转移物料。整个工艺过程从进料、反应到挤出造粒一气呵成,真正实现了工业树脂的连续化聚合,物料从进料到出料在聚合装置中的平均停留时间为10-90min,明显优于传统反应釜设备的10来个小时,连续化生产得到的产品均匀性更好、效率高。
7、反向螺旋叶片或桨叶的端部与筒体内侧壁间隙配合,当此处物料粘度较大时,物料堆积在此处可以完全将反应器从这里密封起来,利用物料堆积自然形成的密封,就可以巧妙解决常规反应釜复杂的动态密封的问题。控制搅拌轴的外径在90mm-15000mm,避免了管道过于细长,特别适用于出料口熔体粘度不小于300cP的聚合反应,高粘度的出口物料更能顺利的在反向螺旋叶片或桨叶的作用于产生较大压力,产生更好的密封效果。
附图说明
图1是实施例1用于酰胺聚合的连续流反应装置的结构示意图;
图2是实施例2用于酰胺聚合的连续流反应装置的结构示意图。
图3是实施例6用于酰胺聚合的连续流反应装置的结构示意图。
附图标记:1、筒体;2、驱动电机;3、送料机构;4、搅拌轴;5、螺旋叶片;6、桨叶;7、反向螺旋叶片;8、反向螺旋桨叶;9、齿轮传动组件;10、环形挡板;11、进料口;12、出料口。
具体实施方式
下面结合附图对本发明的实施例进行详细说明。
实施例1
如图1所示,一种用于酰胺聚合的连续流反应装置,包括筒体1、送料机构3和搅拌机构,所述筒体75°倾斜于地面设置,且进料口11的高度低于出料口12高度,所述送料机构3连接进料口11;所述搅拌机构连接筒体1顶端的驱动电机2,所述搅拌机构的下端靠近筒体1的底部,所述搅拌机构包括两根搅拌轴4,所述搅拌轴4由转动轴和设于转动轴上的搅拌叶片组成,所述搅拌叶片距筒体1内壁的距离不超过搅拌叶片外径的10%,所述搅拌叶片为连续的螺旋叶片5。
设备倾斜或者竖直于地面设置,减小筒体的占地面积,适用于内径小的反应设备用于大规模的生产。搅拌轴4的末端靠近筒体1的底部,且螺旋叶片5与内侧壁间距离短,方便在反应过程中将物料从进料口11向出料口12输送。将出料口12设于进料口的上方,可以让后面进入反应装置的物料推动前面进入反应装置的物料缓慢向上前进,而不用担心重力作用下,前面物料前进速度太快,进料速度过慢导致的物料中断,保证了装置运行时,物料从下方的进料口能连续进入反应装置,从上方侧壁的出料口连续移出装置。
装置采用两根或者以上的平行搅拌轴,使得多根轴上的螺旋叶片能够互相刮下粘在螺旋叶片和搅拌轴上的物料,减少物料在螺旋叶片和轴上析出形成固体结垢。出料口设置在筒体的上部侧壁,不会影响顶端的动态密封。
所述搅拌叶片的外径是指从转动轴中心至搅拌叶片末端的距离。
实施例2
如图2所示,一种用于酰胺聚合的连续流反应装置,包括筒体、送料机构和搅拌机构,所述筒体竖直于地面设置,且进料口的高度低于出料口高度,所述送料机构连接进料口;所述搅拌机构连接筒体顶端的驱动电机,所述搅拌机构的下端靠近筒体的底部,所述搅拌机构包括两根搅拌轴,所述搅拌轴由转动轴和设于转动轴上的搅拌叶片组成,所述搅拌叶片距筒 体内壁的距离不超过搅拌叶片外径的10%,所述搅拌叶片为不连续的桨叶。
所述搅拌轴的外径为90mm。
所述桨叶的长度大约是30mm。
多根所述搅拌轴4上的桨叶6相啮合。更利于多根轴上的桨叶能够互相刮下粘在桨叶和搅拌轴上的物料。
所述搅拌轴4的顶端至所述出料口12设置有使物料向下输送的反向螺旋桨叶8。电机转动时,反向螺旋桨叶同下方的螺旋桨叶一起同轴反向搅拌,使物料运行到该处时,推动物料向下方流动,阻碍物料向上方继续流动。使物料顺利地从位于阻料机构下方的出料口移出筒体,尽量避免物料达到动态密封处,不影响其密封性能。
每根所述搅拌轴的搅拌叶片距相邻转动轴的距离不超过搅拌叶片外径的10%。
每根所述搅拌轴的反向螺旋叶片距筒体和相邻转动轴的距离不超过搅拌叶片外径的10%。
本发明的齿轮传动组件为链轮传动,一根搅拌轴由电机驱动的主动轮带动,另一个搅拌轴由与主动轮传动链接的从动轮带动,从而实现同时转动,若主动轮和从动轮齿数相同,则为同步转动,也可设为不相同,则为不同步转动。
实施例3
一种用于酰胺聚合的连续流反应装置,包括筒体、送料机构和搅拌机构,所述筒体45°倾斜于地面设置,且进料口的高度低于出料口高度,所述送料机构连接进料口;所述搅拌机构连接筒体顶端的驱动电机,所述搅拌机构的下端靠近筒体的底部,所述搅拌机构包括三根搅拌轴,所述搅拌轴由转动轴和设于转动轴上的搅拌叶片组成,所述搅拌叶片距筒体内壁的距离不超过搅拌叶片外径的5%,所述搅拌叶片为连续的螺旋叶片。
每根所述搅拌轴4上的搅拌叶片距相邻搅拌轴4的外表面距离不超过搅拌叶片外径的3%。
所述搅拌轴的外径为1500mm。
所述搅拌轴4的顶端至所述出料口12设置有防止物料继续向上输送的反向螺旋叶片7。
每根所述搅拌轴的搅拌叶片距相邻转动轴的距离不超过搅拌叶片外径的5%。
每根所述搅拌轴的反向螺旋叶片距筒体和相邻转动轴的距离不超过搅拌叶片外径的5%。
该反应装置的出料口物料熔体粘度不小于700cP。
本实施例的齿轮传动组件为常规的链轮传动组件,由多个链轮组合实现3根搅拌轴的同时转动。
实施例4
本实施例在实施例1的基础上:
所述搅拌轴的外径为600mm。
多根所述搅拌轴4上的螺旋叶片5相啮合。
所述搅拌轴4的顶端至所述出料口12设置有防止物料继续向上输送的反向螺旋叶片7。
每根所述搅拌轴的搅拌叶片距相邻转动轴的距离不超过搅拌叶片外径的10%。
每根所述搅拌轴的反向螺旋叶片距筒体和相邻转动轴的距离不超过搅拌叶片外径的10%。
该反应装置的出料口物料熔体粘度不小于700cP。
当此处物料粘度较大时,反向螺旋叶片7与筒体1内侧壁只有很小的缝隙,物料堆积在此处可以完全将反应器从这里密封起来,并且物料不会到达反应器上方的动态密封处,利用物料堆积自然形成的密封,就可以巧妙解决常规反应釜复杂的动态密封的问题。
所述进料口和出料口中心的高度差为600mm。
所述送料机构采用螺杆输送机,且出料口连接螺杆造粒挤出机,从进料到造粒出料在聚合装置中的平均停留时间为10-90min。
实施例5
本实施例在实施例2的基础上:
所述搅拌轴的外径为800mm。
所述出料口物料熔体的粘度不小于300cP。
所述送料机构为螺杆输送装置,该装置的出料口串联螺杆挤出装置,装置运行过程中,物料在装置中连续流动。
该装置用于聚酰胺熔点在280℃以上的酰胺聚合反应。
实施例6
如图3所示,一种用于酰胺聚合的连续流反应装置,包括筒体、送料机构和搅拌机构,所述筒体75°倾斜于地面设置,且进料口的高度低于出料口高度,所述送料机构连接进料口;所述搅拌机构连接筒体顶端的驱动电机,所述搅拌机构的下端靠近筒体的底部,所述搅拌机构包括一根搅拌轴,所述搅拌轴由转动轴和设于转动轴上的搅拌叶片组成,所述搅拌叶片距筒体内壁的距离不超过搅拌叶片外径的10%,所述搅拌叶片为连续的螺旋叶片。
所述阻挡件为设置于筒体内壁的环形挡板,搅拌机构从所述环形挡板的中心穿过。
所述送料机构3为送料泵。
所述筒体1的顶端设置有动态密封件。
送料泵型号为QP50。
送料泵用于输送物料熔体,采用齿轮泵、柱塞泵或者螺杆泵均可。
实施例7
本实施例在实施例2的基础上:
所述送料机构3为螺杆输送机。
所述筒体1的顶端设置有动态密封件。
当筒体内径确定后,筒体内物料的流速由进料速度决定,流速越快产量越高,但是在筒体里面的反应时间就越短,可能达不到需要的聚合度。实际生产中可根据需要通过进料速度来调节物料流速。
实施例8
本发明的酰胺聚合的连续流反应装置用于工业树酯的聚合反应,装置垂直于地面设置,送料机构采用螺杆输送机,且出料口连接螺杆造粒挤出机,从进料到造粒出料在聚合装置中的平均停留时间为10-90min。搅拌机构为两根互相啮合的搅拌桨,单桨叶片直径为300mm,单桨叶片距筒体内壁的距离不超过叶片外径的10%。进料口位于装置底部,出料口位于装置上部侧面,高度差为1500mm,出料口上方有100mm使物料向下流动的反向螺旋叶片,有效容积150L。
送料机构为同向双螺杆挤出机,螺纹原件直径为65mm,长径比为60:1,脱挥装置采用同向双螺杆挤出机,螺纹原件直径为65mm,长径比为60:1,第九和第十二节筒体开排气孔抽真空。
本发明连续流反应装置的体积小,产能5吨每天装置的的有效容积小于200L,而采用聚合反应釜的有效容积在5000L以上。
实施例9
本实施例采用实施例4的生产线,装置的前后各一套水平的双螺杆挤出装置,且前后的双螺杆挤出装置的长径比为60:1,搅拌机构为两根互相啮合的搅拌桨,单桨叶片直径为300mm,单桨叶片直径为600mm,长径比为1.4:1,有效容积为200升。出料口的双螺杆挤出机,在第九和第十二节筒体开排气孔抽真空。
将己二酸、PA56树脂和占总重量0.5%的抗氧剂,0.2%的催化剂,PA56树脂占总重量25%,连续投入到双螺杆挤出装置中,控制反应温度在150-200℃之间,物料熔化后在中间段加入戊二胺,使得戊二胺和己二酸的重量比例为10.5:14.6。混合均匀后,物料送入本发明的装置中,设定聚合温度为230-290℃。物料从装置出来后,进入到双螺杆挤出装置,设有2个排气口,其中第三个排气口抽真空,连续挤出造粒,得到PA56树脂,粘度2.3,熔点为252℃,物料在聚合装置中的平均停留时间约30分钟,总产量为398kg/h。
实施例10
使用有效容积为200升的装有静态混合的管道反应器替代实施例9中本发明的装置,在同样的条件下进行反应,保持物料停留时间为30分钟,得到PA56树脂,粘度为1.8,熔点为248℃,总产量为396kg/h。
实施例10与实施例9装置的有效容积相同,同样产量情况下,物料停留时间一致。本发明的装置由于搅拌充分,具有更高的聚合效率,粘度更大,分子量更高,熔点也更高。
实施例11
使用有效容积为200升的装有静态混合的管道反应器替代实施例9中本发明的装置,同样物料比例和温度设置,使得PA56产物的粘度也为2.3,熔点为251℃,物料在装置中平均停留时间为63分钟,总产量为188kg/h。
实施例11与实施例9相比,装置的有效容积相同,但是由于是静态混合,需要更长的聚合时间达到同样的分子量,产量降低了一半以上。
实施例12
本实施例采用实施例8的生产线,采用一套垂直的装置,前后各一套水平的双螺杆挤出装置,其中前后的双螺杆挤出装置的长径比为60:1,垂直装置配两根互相啮合的搅拌桨,单桨叶片直径为300mm,长径比为6:1,有效容积为150升。
将己二酸、PA66树脂和占总重量0.5%的抗氧剂,0.2%的催化剂,PA66树脂占总重量25%,连续投入到双螺杆挤出装置中,控制反应温度在150-200℃之间,物料熔化后在中间段加入戊二胺,使得戊二胺和己二酸的重量比例为10.5:14.6。混合均匀后,物料送入上述本发明的装置中,设定聚合温度为240-280℃。物料从装置出来后,进入到双螺杆挤出装置,设有2个排气口,其中第三个排气口抽真空,连续挤出造粒,得到PA56树脂,粘度2.4,熔点为266℃,物料在聚合装置中的平均停留时间约30分钟,总产量为295kg/h。
实施例13
使用有效容积为150升的装有静态混合的管道反应器替代实施例12中本发明的装置,在同样的条件下进行反应,保持物料停留时间为30分钟,得到PA66树脂,粘度为1.7,熔点为261℃,总产量为289kg/h。
实施例14
使用有效容积为150升的装有静态混合的管道反应器替代实施例12中本发明的装置,同样物料比例和温度设置,使得PA56产物的粘度为2.3,熔点为264℃,物料在装置中平均停留时间为59分钟,总产量为142kg/h。
实施例15
本实施例采用实施例8的生产线,采用一套垂直的装置,前后各一套水平的双螺杆挤出装置,其中前后的双螺杆挤出装置的长径比为60:1,垂直装置配两根互相啮合的搅拌桨,单桨叶片直径为300mm,长径比为6:1,有效容积为150升。
将18份对苯二甲酸、22份PA66树脂和占总重量0.5%的抗氧剂,0.2%的催化剂,连续投入到双螺杆挤出装置中,控制反应温度在260-310℃之间,物料熔化后在中间段加入己二胺,使得己二胺和对苯二甲酸的摩尔比例为1.01:1。混合均匀后,物料送入本发明的装置中,设定聚合温度为280-310℃。物料从装置出来后,进入到双螺杆挤出装置,设有2个排气口,其中第三个排气口抽真空,连续挤出造粒,得到PA6T/66树脂,粘度2.2,熔点为311℃,物料在聚合装置中的平均停留时间约30分钟,总产量为288kg/h。
装置高温下连续运行100小时,产品质量无明显波动。
实施例16
使用有效容积为150升的装有静态混合的管道反应器替代实施例15中本发明的装置,在同样的条件下进行反应,保持物料停留时间为30分钟,得到PA6T/66树脂,粘度为1.7,熔点为298℃,总产量为289kg/h。
实施例17
使用有效容积为150升的装有静态混合的管道反应器替代实施例15中本发明的装置,在同样的条件下进行反应,保持物料停留时间为80分钟,得到PA6T/66树脂,粘度为2.1,熔点为309℃,总产量为128kg/h。
装置运行15小时后,产品质量出现大幅度波动,分子量降低,无法继续生产。装置拆开后,发现管道内部结垢严重。对于高熔点的聚酰胺,聚合温度更高,在没有搅拌的情况下,物料更容易交联结垢。
实施例18
本实施例采用实施例8的生产线,采用一套垂直的连续聚合装置,前后各一套水平的双螺杆挤出装置,其中前后的双螺杆挤出装置的长径比为60:1,连续聚合装置配两根互相啮合的搅拌桨,单桨叶片直径为300mm,长径比为6:1,有效容积为150升。
将30份对苯二甲酸、3份PA10T树脂和占总重量0.5%的抗氧剂,0.2%的催化剂,连续投入到双螺杆挤出装置中,控制反应温度在260-310℃之间,物料熔化后在中间段加入癸二胺,使得癸二胺和对苯二甲酸的摩尔比例为1.01:1。混合均匀后,物料送入本发明的装置中,设定聚合温度为280-315℃。物料从装置出来后,进入到双螺杆挤出装置,设有2个排气口,其中第三个排气口抽真空,连续挤出造粒,得到PA10T树脂,粘度2.2,熔点为309℃,物料在聚合装置中的平均停留时间约30分钟,总产量为285kg/h。
装置高温下连续运行100小时,产品质量无明显波动。
实施例19
使用有效容积为150升的装有静态混合的管道反应器替代实施例18中本发明的连续聚合装置,在同样的条件下进行反应,保持物料停留时间为30分钟,得到PA10T树脂,粘度为1.5,熔点为294℃,总产量为289kg/h。
实施例20
使用有效容积为150升的装有静态混合的管道反应器替代实施例18中本发明的连续聚合装置,在同样的条件下进行反应,保持物料停留时间为90分钟,得到PA10T树脂,粘度为2.1,熔点为309℃,总产量为108kg/h。
装置运行15小时后,产品质量出现大幅度波动,分子量降低,无法继续生产。装置拆开后,发现管道内部结垢严重。对于高熔点的聚酰胺,聚合温度更高,在没有搅拌的情况下,物料更容易交联结垢。
以上所述实施例仅表达了本发明的具体实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (20)

  1. 一种用于酰胺聚合的连续流反应装置,其特征在于:包括筒体、送料机构和搅拌机构,所述筒体倾斜或者竖直于地面设置,且进料口的高度低于出料口高度,所述送料机构连接进料口;所述搅拌机构连接筒体顶端的驱动电机,所述搅拌机构的下端靠近筒体的底部,所述搅拌机构包括至少一根搅拌轴,所述搅拌轴由转动轴和设于转动轴上的搅拌叶片组成,所述搅拌叶片距筒体内壁的距离不超过搅拌叶片外径的10%,所述搅拌叶片为连续的螺旋叶片或者不连续的桨叶。
  2. 根据权利要求1所述用于酰胺聚合的连续流反应装置,其特征在于:所述进料口设置于所述筒体的底部或者下部侧面,所述出料口设置于所述筒体的上部侧面。
  3. 根据权利要求1所述用于酰胺聚合的连续流反应装置,其特征在于:所述搅拌叶片距筒体内壁的距离不超过搅拌叶片外径的5%。
  4. 根据权利要求1所述用于酰胺聚合的连续流反应装置,其特征在于:所述出料口的上方设置有阻挡物料继续向上输送的阻挡件。
  5. 根据权利要求4所述用于酰胺聚合的连续流反应装置,其特征在于:所述阻挡件为设置于筒体内壁的环形挡板,搅拌机构从所述环形挡板的中心穿过。
  6. 根据权利要求4所述用于酰胺聚合的连续流反应装置,其特征在于:所述阻挡件为设置于转动轴上端的阻料叶片,所述阻料叶片为使物料向下输送的反向螺旋叶片或反向螺旋桨叶。
  7. 根据权利要求6所述用于酰胺聚合的连续流反应装置,其特征在于:所述阻料叶片为反向螺旋叶片。
  8. 根据权利要求1所述用于酰胺聚合的连续流反应装置,其特征在于:所述搅拌轴不少于两根,多根所述搅拌轴的螺旋叶片或者桨叶相啮合。
  9. 根据权利要求8所述用于酰胺聚合的连续流反应装置,其特征在于:每根所述搅拌轴的搅拌叶片距相邻转动轴的距离不超过搅拌叶片外径的10%。
  10. 根据权利要求8所述酰胺聚合的连续流反应系统,其特征在于:每根所述搅拌轴的反向螺旋叶片距筒体和相邻转动轴的距离不超过搅拌叶片外径的10%。
  11. 根据权利要求1所述用于酰胺聚合的连续流反应装置,其特征在于:所述进料口和出料口中心的高度差不少于500mm。
  12. 根据权利要求1所述用于酰胺聚合的连续流反应装置,其特征在于:所述搅拌轴的外径为90mm-1500mm。
  13. 根据权利要求1所述用于酰胺聚合的连续流反应装置,其特征在于:所述筒体与地面的倾斜角为45-90°。
  14. 根据权利要求1所述用于酰胺聚合的连续流反应装置,其特征在于:所述出料口物料熔体 的粘度不小于300cP。
  15. 根据权利要求14所述用于酰胺聚合的连续流反应装置,其特征在于:所述出料口物料熔体的粘度不小于700cP。
  16. 根据权利要求1所述用于酰胺聚合的连续流反应装置,其特征在于:所述送料机构为连续流输送装置。
  17. 根据权利要求16所述用于酰胺聚合的连续流反应装置,其特征在于:所述连续流输送装置为螺杆输送装置。
  18. 根据权利要求16所述用于酰胺聚合的连续流反应装置,其特征在于:装置运行过程中,物料在装置中连续流动。
  19. 根据权利要求1所述用于酰胺聚合的连续流反应装置,其特征在于:该装置的出料口串联螺杆挤出装置。
  20. 根据权利要求1所述用于酰胺聚合的连续流反应装置,其特征在于:该装置用于聚酰胺熔点在280℃以上的酰胺聚合反应。
PCT/CN2021/121083 2020-09-30 2021-09-27 一种用于酰胺聚合的连续流反应装置 WO2022068780A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202022207045.5 2020-09-30
CN202022207045 2020-09-30

Publications (1)

Publication Number Publication Date
WO2022068780A1 true WO2022068780A1 (zh) 2022-04-07

Family

ID=80949681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121083 WO2022068780A1 (zh) 2020-09-30 2021-09-27 一种用于酰胺聚合的连续流反应装置

Country Status (1)

Country Link
WO (1) WO2022068780A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023213069A1 (zh) * 2022-05-06 2023-11-09 浙江丰虹新材料股份有限公司 一种涂料用改性聚酰胺蜡的制备工艺和形成的涂料

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4007016A (en) * 1975-03-06 1977-02-08 The Bethlehem Corporation Continuous-flow reactor for high viscosity materials
WO2011145424A1 (ja) * 2010-05-21 2011-11-24 株式会社クレハ 縦型固液向流接触方法、固体粒子の洗浄方法、ポリアリーレンスルフィドの製造方法、及び、装置
CN203306628U (zh) * 2013-06-15 2013-11-27 山东恒远利废技术发展有限公司 膏体螺旋提升机
CN105745250A (zh) * 2013-11-20 2016-07-06 因温斯特技术公司 连续聚酰胺化方法-i
CN213557050U (zh) * 2020-09-30 2021-06-29 成都肆零壹科技有限公司 一种连续流反应设备
CN113527665A (zh) * 2020-03-28 2021-10-22 成都肆零壹科技有限公司 一种连续流反应装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4007016A (en) * 1975-03-06 1977-02-08 The Bethlehem Corporation Continuous-flow reactor for high viscosity materials
WO2011145424A1 (ja) * 2010-05-21 2011-11-24 株式会社クレハ 縦型固液向流接触方法、固体粒子の洗浄方法、ポリアリーレンスルフィドの製造方法、及び、装置
CN203306628U (zh) * 2013-06-15 2013-11-27 山东恒远利废技术发展有限公司 膏体螺旋提升机
CN105745250A (zh) * 2013-11-20 2016-07-06 因温斯特技术公司 连续聚酰胺化方法-i
CN113527665A (zh) * 2020-03-28 2021-10-22 成都肆零壹科技有限公司 一种连续流反应装置
CN213557050U (zh) * 2020-09-30 2021-06-29 成都肆零壹科技有限公司 一种连续流反应设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023213069A1 (zh) * 2022-05-06 2023-11-09 浙江丰虹新材料股份有限公司 一种涂料用改性聚酰胺蜡的制备工艺和形成的涂料

Similar Documents

Publication Publication Date Title
CN113527665B (zh) 一种连续流反应装置
WO2022068780A1 (zh) 一种用于酰胺聚合的连续流反应装置
US7279535B2 (en) Method for the continuous production of polymers made of vinyl compounds by substance and/or solvent polymerization
CN102942688B (zh) 单无轴高粘度聚酯连续生产装置
CN106273022A (zh) 一种连续式橡胶混炼工艺方法
WO2021218648A1 (zh) 一种聚酯酰胺的聚合工艺
CN109569477A (zh) 一种螺杆挤出-釜式搅拌组合式反应器及其应用
CN112473610B (zh) 半芳族聚酰胺的熔融聚合方法及装置
JP2007512399A (ja) ポリマー溶融物から中空体を直接的におよび連続的に製造する方法
CN109777462B (zh) 高软化点沥青及其连续生产方法与系统
CN202730049U (zh) 单无轴高粘度聚酯连续生产装置
CN115869891A (zh) 一种酰胺聚合的连续流反应系统及方法
CN215920985U (zh) 一种尼龙生产的连续化生产线
KR20080042165A (ko) 회전식 프로세서
CN102924703B (zh) 双无轴高粘度聚酯连续生产装置
CN109553769B (zh) 一种对位芳纶树脂连续聚合系统及其方法
CN218366409U (zh) 带有冷却机构的热固性粉末涂料挤出机
CN219637133U (zh) 全连续petg生产系统
CN117019077B (zh) 聚丙烯旋转反应器总成
WO2023036265A1 (zh) 一种半芳香族尼龙连续化聚合工艺
CN111672443A (zh) 一种基于组合式搅拌机构的高粘聚合物缩聚反应器
JPH1087821A (ja) ポリアミド樹脂の固相重合装置
CN113278136B (zh) 一种生物可降解聚酯的制备方法和聚合反应系统
CN103788353B (zh) 聚酯脱挥装置
CN1704435A (zh) 制备间规聚乙烯基芳烃的连续方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874440

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21874440

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 13/11/2023)