WO2022068413A1 - 显示装置和电路板 - Google Patents

显示装置和电路板 Download PDF

Info

Publication number
WO2022068413A1
WO2022068413A1 PCT/CN2021/111924 CN2021111924W WO2022068413A1 WO 2022068413 A1 WO2022068413 A1 WO 2022068413A1 CN 2021111924 W CN2021111924 W CN 2021111924W WO 2022068413 A1 WO2022068413 A1 WO 2022068413A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
conductive layer
emitting module
external conductive
layer
Prior art date
Application number
PCT/CN2021/111924
Other languages
English (en)
French (fr)
Inventor
王睿
陈泽君
王建军
刘晓石
袁先锋
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/802,990 priority Critical patent/US20230108158A1/en
Publication of WO2022068413A1 publication Critical patent/WO2022068413A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/023Reduction of cross-talk, noise or electromagnetic interference using auxiliary mounted passive components or auxiliary substances
    • H05K1/0231Capacitors or dielectric substances
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0209External configuration of printed circuit board adapted for heat dissipation, e.g. lay-out of conductors, coatings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133612Electrical details
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/023Reduction of cross-talk, noise or electromagnetic interference using auxiliary mounted passive components or auxiliary substances
    • H05K1/0234Resistors or by disposing resistive or lossy substances in or near power planes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10128Display
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10128Display
    • H05K2201/10136Liquid Crystal display [LCD]

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display device and a circuit board.
  • the purpose of the present disclosure is to provide a display device and a circuit board to reduce electromagnetic interference on the circuit board.
  • a display device comprising:
  • the surface of the light-emitting module has a conductive part
  • the circuit board is arranged on the back of the light-emitting module and has a first surface close to the light-emitting module; the first surface of the circuit board has an exposed external conductive layer, and the external conductive layer is connected to the ground of the circuit board. wire connection;
  • the conductive structure is located between the circuit board and the light-emitting module, and enables the external conductive layer to be electrically connected to the conductive portion.
  • the circuit board includes a signal transmission area, and a signal transmission lead is provided in the signal transmission area;
  • the external conductive layer includes a first external conductive layer, and an orthographic projection of the first external conductive layer on the base substrate is located in the signal transmission area.
  • the circuit board includes a power management area, and a power management circuit is disposed in the power management area;
  • the external conductive layer includes a second external conductive layer, and the orthographic projection of the second external conductive layer on the base substrate is located in the power management area.
  • the circuit board includes stacked multi-layer metal wiring layers, wherein the external conductive layer is located at a first metal wiring layer closest to the first surface.
  • the circuit board has a second surface away from the light emitting module; the capacitor device and the resistance device of the circuit board are disposed on the second surface of the circuit board.
  • the backside of the light-emitting module adopts conductive material
  • the conductive structure is a conductive foam or a conductive adhesive layer.
  • the display device further includes a thermally conductive structure
  • At least a partial area of the external conductive layer is electrically connected to the back surface of the light emitting module through the conductive structure; the remaining area of the external conductive layer is electrically connected to the back surface of the light emitting module through the thermal conduction structure.
  • one of the conductive structure and the thermally conductive structure forms a grid in orthographic projection on the outer conductive layer; in the conductive structure and the thermally conductive structure The other is located in the mesh of the grid in orthographic projection on the circumscribed conductive layer.
  • one of the conductive structure and the thermally conductive structure is orthographically projected on the circumscribed conductive layer as a ring shape along an edge of the circumscribed conductive layer; the The other of the electrically conductive structure and the thermally conductive structure is located within the inner edge of the ring in orthographic projection on the circumscribed electrically conductive layer.
  • the backside of the light-emitting module is an insulating material
  • the conductive structure includes a conductive tape, the conductive tape is attached to the back of the light-emitting module and connected to the conductive portion; the circuit board is arranged on the side of the conductive tape away from the light-emitting module, And the external conductive layer is electrically connected with the conductive tape.
  • a circuit board comprising a first surface and a second surface arranged oppositely; a resistance device and a capacitance device of the circuit board are arranged on the second surface;
  • the first surface of the circuit board has an exposed external conductive layer, and the external conductive layer is electrically connected to the ground wire of the circuit board.
  • the circuit board includes a signal transmission area, and a signal transmission lead is disposed in the signal transmission area;
  • the external conductive layer includes a first external conductive layer, and an orthographic projection of the first external conductive layer on the base substrate is located in the signal transmission area.
  • the circuit board includes a power management area, and a power management circuit is disposed in the power management area;
  • the external conductive layer includes a second external conductive layer, and the orthographic projection of the second external conductive layer on the base substrate is located in the power management area.
  • the circuit board includes stacked multi-layer metal wiring layers, wherein the external conductive layer is located at a first metal wiring layer closest to the first surface.
  • the external conductive layer can reduce the interference electromagnetic wave in the circuit board, reduce the electromagnetic interference on the signal transmission lead, and improve the anti-interference ability of the display device and the circuit board.
  • FIG. 1 is a schematic structural diagram of a display device according to an embodiment of the disclosure.
  • FIG. 2 is a schematic structural diagram of a display device according to an embodiment of the disclosure.
  • FIG. 3 is a schematic cross-sectional structural diagram of a circuit board in a signal transmission area according to an embodiment of the disclosure.
  • FIG. 4 is a schematic cross-sectional structural diagram of a circuit board in a power management area according to an embodiment of the disclosure.
  • FIG. 5 is a schematic structural diagram of a first surface of a circuit board according to an embodiment of the disclosure.
  • FIG. 6 is a schematic structural diagram of a second surface of a circuit board according to an embodiment of the disclosure.
  • Fig. 7 is a schematic top view of the distribution of the conductive structure and the thermal conductive structure on the external conductive layer according to an embodiment of the disclosure.
  • FIG. 8 is a schematic top view of the distribution of the conductive structure and the thermal conductive structure on the external conductive layer according to an embodiment of the disclosure.
  • FIG. 9 is a schematic top view of the distribution of the conductive structure and the thermal conductive structure on the external conductive layer according to an embodiment of the present disclosure.
  • FIG 10 is a schematic top view of the distribution of the conductive structure and the thermal conductive structure on the external conductive layer according to an embodiment of the disclosure.
  • FIG. 11 is an electromagnetic interference test result of a circuit board according to an embodiment of the disclosure.
  • 100 light emitting module; 101, conductive part; 102, back of light emitting module; 103, frame of light emitting module; 200, circuit board; 201, first surface; 202, second surface; 210, external conductive layer; 211, first external conductive layer; 212, second external conductive layer; 220, ground wire; 230, signal transmission lead; 240, bonding pad; 250, metal post; 261, resistance device; 262, capacitor device; 270 271, the first metal wiring layer; 272, the second metal wiring layer; 273, the third metal wiring layer; 274, the fourth metal wiring layer; 275, the fifth metal wiring layer; 276, the sixth metal wiring layer wiring layer; 281, insulating layer; 282, organic protective layer; 300, conductive structure; 400, heat conduction structure; A, signal transmission area; B, power management area.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments can be embodied in various forms and should not be construed as limited to the examples set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of example embodiments to those skilled in the art.
  • the described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. In the following description, numerous specific details are provided in order to give a thorough understanding of the embodiments of the present disclosure.
  • a display device includes a light-emitting module and a circuit board, and the circuit board is used to drive the light-emitting module to display.
  • the circuit board generally needs to include a signal transmission lead and a power management circuit; the signal transmission lead is used to transmit display-related signals to the light emitting module, such as transmitting data signals.
  • the power management circuit is used to provide the required various voltages to the light emitting module.
  • the power management circuit radiates electromagnetic waves during operation, and the electromagnetic waves may cause noise or electromagnetic interference to signal transmission leads and electronic components within the range of the circuit board.
  • the display device includes a light emitting module 100 , a circuit board 200 and a conductive structure 300 .
  • the surface of the light emitting module 100 has a conductive portion 101 .
  • the circuit board 200 is disposed on the back surface 102 of the light emitting module, and has a first surface 201 close to the light emitting module 100 .
  • the first surface 201 of the circuit board 200 has an exposed external conductive layer 210 , and the external conductive layer 210 is electrically connected to the ground wire of the circuit board 200 .
  • the conductive structure 300 is located between the circuit board 200 and the light emitting module 100 , and enables the external conductive layer 210 to be electrically connected to the conductive portion 101 . 1 and 2, there is a certain gap between the first surface 201 and the backside 102 of the light-emitting module, so as to clearly reflect and distinguish the first surface 201 of the circuit board and the backside of the light-emitting module 102; In practical applications, the gap may not exist. In other words, the first surface 201 and the back surface 102 of the light emitting module can be attached to each other without a gap.
  • the interfering electromagnetic waves generated on the circuit board 200 can be partially conducted to the external conductive layer 210 so that the external conductive layer 210 generates coupled charges and coupled electric fields, which can be rapidly dispersed through the conductive structure 300 into the conductive portion 101 of the light emitting module 100 , thereby accelerating the dissipation of the coupled charges and the coupled electric field, and reducing the interference electromagnetic waves on the circuit board 200 .
  • the external conductive layer 210 is located close to the first surface 201 of the light emitting module 100
  • the conductive structure 300 is located between the circuit board 200 and the light emitting module 100 , which increases the grounding area of the circuit board 200 .
  • the distance between the external conductive layer 210 and the conductive portion 101 of the light emitting module 100 is smaller, which can make the coupled charge and the coupled electric field dissipate more quickly, thereby improving the effect of reducing interference electromagnetic waves.
  • the coupled charge and the coupled electric field generated on the external conductive layer 210 can be directly dispersed to the conductive part through the conductive structure 300 located outside the circuit board 200, reducing the coupled charge and the coupled charge passing through the ground wire of the circuit board 200.
  • the transmission inside the circuit board 200 can more effectively eliminate the interference of interfering electromagnetic waves on the signal transmission leads in the circuit board 200 .
  • the generated static electricity can also be dispersed to the conductive portion 101 of the light emitting module 100 through the external conductive layer 210 and the conductive structure 300, thereby dispersing the electrostatic charge and avoiding electrostatic breakdown.
  • the electromagnetic interference on the circuit board 200 is weaker, which can not only ensure the normal display of the light emitting module 100, but also ensure that the circuit board 200 meets the electromagnetic interference control standards.
  • the present disclosure provides a display device, which can be a liquid crystal display device, an OLED (organic electroluminescent diode) display device, a PLED (macromolecular organic electroluminescent diode) display device, an LED (light emitting diode) display device, a Micro LED (Micro Light Emitting Diode) display devices, Mini LED (Mini Light Emitting Diode) display devices or other types of display devices.
  • the display device can be used as a mobile phone screen, a computer screen, an outdoor billboard, an electronic instrument panel, a vehicle display screen or other display devices.
  • the display device is a liquid crystal display device
  • the light emitting module 100 may include a stacked backlight module and a liquid crystal panel, and the surface of the backlight module away from the liquid crystal panel is the back surface 102 of the light emitting module.
  • the display device is a vehicle-mounted display screen.
  • FIG. 3 is a schematic structural diagram of the circuit board cut at the QQ' position in FIG. 6 .
  • FIG. 4 is a schematic structural diagram of the circuit board cut at the PP' position in FIG. 6 .
  • the circuit board 200 provided by the present disclosure may include a stacked multi-layer metal wiring layer 270 , and a first-layer metal wiring layer 270 with the external conductive layer 210 located on the first surface 201 .
  • An insulating layer 281 is provided between two adjacent metal wiring layers 270 , and different metal wiring layers 270 may be electrically connected through metal pillars 250 filled in the via holes.
  • the circuit board 200 may also be provided with an organic protective layer 282, such as a green oil protective layer.
  • the green oil protective layer can not only Protecting the metal wiring layer 270 can also achieve the effect of solder resist.
  • the organic protective layer 282 may be formed by screen printing or the like, and the external conductive layer 210 of the first surface 201 is exposed when the organic protective layer 282 is formed. Further, the material of each metal wiring layer 270 and the metal pillar 250 is metal copper.
  • the circuit board 200 provided by the present disclosure further includes electronic components 260 , and the electronic components 260 may be disposed on the second surface 202 of the circuit board 200 .
  • the electronic components may be chips, capacitive devices 262, resistive devices 261, transistors, or other electronic components.
  • bonding pads 240 may be provided on the metal wiring layer 270 closest to the second surface 202, and electronic components may be bonded to the bonding pads 240, for example, by soldering, conductive glue, etc. on pad 240 .
  • electronic components can be electrically connected to the metal wiring layer 270 closest to the second surface 202 .
  • the circuit board 200 provided by the present disclosure is provided with signal transmission leads 230 , and the signal transmission leads 230 may be provided on one metal wiring layer 270 , or may be provided on multiple different metal wiring layers 270 .
  • the signal transmission lead 230 can be disposed on the inner metal wiring layer 270 , that is, the metal wiring layer located between the metal wiring layer 270 closest to the first surface 201 and the metal wiring layer 270 closest to the second surface 202 The metal wiring layer 270 between 270 can thus improve the anti-interference ability of the signal transmission lead 230 .
  • circuit board 200 may be provided with bonding pads 240 on the metal wiring layer 270 closest to the second surface 202 , and the signal transmission leads 230 may be electrically connected to the bonding pads 240 through metal posts passing through the insulating layer 281 .
  • the circuit board 200 of the present disclosure is further provided with a ground wire 220 , and the ground wire 220 may be provided on at least one metal wiring layer 270 .
  • the ground wires 220 may be disposed on each metal wiring layer 270 , and the ground wires 220 of each metal wiring layer 270 are electrically connected through the metal pillars 250 . In this way, the ground wires 220 on the entire circuit board 200 are electrically connected as a whole, which facilitates maintaining the stability of the signals on the entire circuit board 200 and facilitates the dissipation of interfering electromagnetic waves.
  • part of the ground wire 220 in the metal wiring layer 270 closest to the second surface 202 is exposed, and the exposed ground wire 220 can be covered by conductive tape or the like and electrically connected to the light emitting module Back 102.
  • the interference electromagnetic waves can also be dissipated through the metal wiring layer 270 closest to the second surface 202 , thereby further improving the anti-electromagnetic interference effect of the circuit board 200 .
  • the display device may further include a shielding tape, and the shielding tape covers part of the second surface 202 of the circuit board 200 and part of the back surface of the light-emitting module 100, so as to fix the circuit board 200 to the light-emitting module
  • the back 102 of the circuit board 200 is provided with a certain electromagnetic shielding effect.
  • the circuit board 200 may have six metal wiring layers 270 , namely, a first metal wiring layer 271 , a second metal wiring layer 272 , a third metal wiring layer 271 , and a third metal wiring layer 271 arranged in sequence.
  • the metal wiring layer 273 , the fourth metal wiring layer 274 , the fifth metal wiring layer 275 , and the sixth metal wiring layer 276 arranged in sequence.
  • the metal wiring layer 270 closest to the first surface 201 is the first metal wiring layer 271 ;
  • the metal wiring layer 270 closest to the second surface 202 is the sixth metal wiring layer 276 .
  • the signal transmission lead 230 may be disposed on the fourth metal wiring layer 274 .
  • bonding pads 240 are provided on the sixth metal wiring layer 276 , and part of the bonding pads 240 are used for connecting electronic components, which are beneficial for connecting the resistive device 261 or connecting the capacitive device 262 .
  • the sixth metal wiring layer 276 is provided with metal wirings 2761 , and at least part of the electronic components are electrically connected to the metal wirings 2761 .
  • the ground wires 220 are disposed on the metal wiring layers 270 of each layer, and the ground wires 220 of each layer are electrically connected through the metal pillars 250 .
  • the signal transmission lead 230 may include a low-voltage differential signal lead, and the low-voltage differential signal lead is used to transmit a low-voltage differential signal (LVDS, Low-Voltage Differential Signaling), so as to improve the resistance of the signal transmission lead 230 Interference ability.
  • LVDS Low-Voltage Differential Signaling
  • the controlled impedance of the low-voltage differential signal lead pair is 100 ohms.
  • the circuit board 200 has a signal transmission area A, and the signal transmission area A is provided with a signal transmission lead 230 .
  • the external conductive layer 210 includes a first external conductive layer 211 , and the orthographic projection of the first external conductive layer 211 on the base substrate is located in the signal transmission area A.
  • the interfering electromagnetic waves of the circuit board 200 are conducted into the signal transmission area A, the interfering electromagnetic waves can be rapidly dissipated and attenuated through the first external conductive layer 211, thereby reducing the intensity of the interfering electromagnetic waves in the signal transmission area A, and weakening the interfering electromagnetic waves. Interference with signal transmission leads 230 .
  • the shape of the first external conductive layer 211 may be a rectangle, a diamond, a circle, an ellipse or other shapes.
  • the shape of the first outer conductive layer 211 may be a rectangle.
  • the first external conductive layer 211 may be a rectangle with a long side length of 40 mm and a short side length of 9 mm.
  • the first outer conductive layer 211 may be a rectangle with a long side length of 17 mm and a short side length of 7 mm.
  • the first outer conductive layer 211 may be a rectangle with a long side length of 12 mm and a short side length of 7 mm.
  • the above-mentioned example dimensions of the first external conductive layer 211 are only examples. In other embodiments, the size of the first external conductive layer 211 may be adjusted according to the size of the circuit board 200 , especially according to the size of the signal transmission area A.
  • the circuit board 200 provided by the present disclosure, by providing the first external conductive layer 211 , the interference of interfering electromagnetic waves on the signal transmission leads 230 can be weakened, so that the circuit board 200 can meet the electromagnetic interference control standards in more application environments. In this way, the circuit board 200 can be applied to different display devices, which improves the versatility of the circuit board 200, avoids repeated development due to the development of a new circuit board 200 according to each different display device, and thus avoids repeated development of the circuit board 200, which leads to problems such as prolonged R&D cycle and waste of R&D resources.
  • the circuit board 200 may include a power management area B, and a power management circuit is disposed in the power management area B.
  • the power management circuit can be used to generate voltages of various potentials required by the light emitting module 100 , so as to provide the respective required power supply voltages for different circuits of the light emitting module 100 .
  • the power management circuit may generate a ground voltage, a scan voltage, a driving power supply voltage, etc., and more interference electromagnetic waves will be generated in the process of generating these voltages.
  • the power management circuit may include a power management chip and a voltage divider circuit, and the voltage divider circuit generates power supply voltages with different potentials through voltage division under the control of the power management chip.
  • various electronic components of the power management circuit such as power management chips, resistor devices, capacitor devices, etc., can be electrically connected to the metal wiring layer 270 of the circuit board 200 closest to the second surface 202, and are electrically connected to form a power supply through metal wires. management circuit.
  • the required metal wirings can all be arranged on the metal wiring layer 270 closest to the second surface 202 , or can be partly arranged on other metal wiring layers 270 ; the metal wirings on different metal wiring layers 270 can be electrically connected through metal posts.
  • the external conductive layer 210 includes a second external conductive layer 212, and the orthographic projection of the second external conductive layer 212 on the base substrate is located in the power management area B.
  • the interfering electromagnetic waves generated in the power management area B can be quickly dissipated through the second external conductive layer 212 , thereby reducing the intensity of the interfering electromagnetic waves in the power management area B and reducing the interference of the interfering electromagnetic waves on the signal transmission leads 230 .
  • the second external conductive layer 212 can accelerate the attenuation of interfering electromagnetic waves in the power management area B, thereby reducing the interference to the signal transmission leads 230, improving the versatility of the circuit board of the present disclosure, and reducing the repeated development of the circuit board.
  • the circuit board 200 may have a timing control area, and a timing controller is provided in the timing control area.
  • the external conductive layer may further include a third external conductive layer, and the orthographic projection of the third external conductive layer on the base substrate is located in the timing control region.
  • the circuit board 200 may have a picture detection area, and a picture detection circuit is arranged in the picture detection area.
  • the external conductive layer 210 may further include a fourth external conductive layer, and the orthographic projection of the fourth external conductive layer on the base substrate is located in the image detection area.
  • the circuit board 200 may have a backlight management area, and a backlight driving circuit is provided in the backlight management area.
  • the external conductive layer 210 may further include a fifth external conductive layer, and the orthographic projection of the fifth external conductive layer on the base substrate is located in the backlight management area.
  • the external conductive layer 210 is a non-hollow structure.
  • the electrical connection area between the external conductive layer 210 and the conductive structure 300 can be maximized, and the external conductive layer 210 has a larger area to more efficiently couple the interference electromagnetic waves, thereby enabling the transfer of the coupled charge and the coupled electric field The speed is faster, thereby further improving the anti-electromagnetic interference effect of the circuit board 200 .
  • the conductive structure 300 is disposed between the light emitting module 100 and the circuit board 200 for dispersing the coupled charge and the coupled electric field of the external conductive layer 210 on the circuit board 200 to the conductive portion 101 of the light emitting module 100 , thereby weakening the circuit board 200 Interfering electromagnetic waves inside.
  • the resistivity of the conductive structure 300 is less than 0.1 ⁇ cm. In this way, it can be ensured that the conductive structure 300 has a good conductive effect, and the speed of dispersion of the coupled charges and the coupled electric field can be improved.
  • the back surface 102 of the light emitting module is made of conductive material; in other words, the back surface 102 of the light emitting module is the conductive portion 101 of the light emitting module 100 .
  • the back surface 102 of the light emitting module is the back plate of the backlight source, and the back plate of the backlight source is a metal back plate.
  • the conductive structure 300 can be a deformable conductive structure 300, so as to be able to fully contact the external conductive layer 210 and the back surface 102 of the light emitting module, and reduce the distance between the external conductive layer 210 and the back surface 102 of the light emitting module. contact resistance.
  • the conductive structure 300 may be a conductive foam or a conductive adhesive layer. The thickness of the conductive foam or the conductive adhesive layer can be determined according to the gap between the external conductive layer 210 and the back surface 102 of the light-emitting module, so as to be able to be electrically connected to the external conductive layer 210 and the back surface 102 of the light-emitting module. , and will not affect the attachment of the circuit board 200 to the back of the backlight module.
  • the display device further includes a thermally conductive structure 400 ; at least a part of the external conductive layer 210 is electrically connected to the back surface 102 of the light emitting module through the conductive structure 300 ; the rest of the external conductive layer 210 is electrically connected to the back surface 102 of the light-emitting module through thermal conduction.
  • the structure 400 is electrically connected to the back surface 102 of the light emitting module.
  • the boundary of the external conductive layer 210 indicated by the dotted frame is larger than the range of the thermally conductive structure 400 and the conductive structure 300 , this is to clearly connect the boundary of the external conductive layer 210 with the thermally conductive structure 400 and the conductive structure 300 boundaries are distinguished.
  • the total range of the thermally conductive structure 400 and the conductive structure 300 may overlap with the range of the external conductive layer 210 .
  • the heat generated by the electronic components on the circuit board 200 when working can be conducted to the external conductive layer 210 along the easily thermally conductive metal wiring layer 270 and the metal post 250, and then pass through the external conductive layer 210.
  • the heat conduction structure 400 conducts heat to the light emitting module 100 , thereby improving the heat dissipation capability of the circuit board 200 , especially the heat dissipation capability of the power management chip.
  • the thermally conductive structure 400 includes a thermally conductive silicone grease layer.
  • the material of the thermally conductive silicone grease layer may be thermally conductive silicone grease, which can effectively connect the external conductive layer 210 and the back surface 102 of the light emitting module, so as to avoid a decrease in thermal conductivity caused by poor contact.
  • one of the conductive structure 300 and the thermally conductive structure 400 forms a grid in orthographic projection on the external conductive layer 210 ; the conductive structure 300 and the thermally conductive structure 400 The other one is located in the mesh of the grid in orthographic projection on the circumscribed conductive layer 210 .
  • the orthographic projection of the conductive structure 300 on the outer conductive layer 210 forms a grid, and the thermally conductive structure 400 may be filled in the grid.
  • the orthographic projection of the thermally conductive structure 400 on the outer conductive layer 210 forms a grid, and the conductive structure 300 may be filled in the grid.
  • one of the conductive structure 300 and the thermally conductive structure 400 is orthographically projected on the circumscribed conductive layer 210 as a ring shape along the edge of the circumscribed conductive layer 210 . ; the other of the conductive structure 300 and the thermally conductive structure 400, which is located within the inner edge of the ring in orthographic projection on the external conductive layer 210.
  • the thermally conductive structure 400 is orthographically projected on the circumscribed conductive layer 210 as an annular shape along the edge of the circumscribed conductive layer 210 , the annular shape having a hollow cavity;
  • the projection is within the inner edge of the ring, ie the conductive structure 300 is in the cavity.
  • the cavity is filled with the conductive structure 300 , that is, the outer edge of the orthographic projection of the conductive structure 300 on the base substrate coincides with the inner edge of the orthographic projection of the thermally conductive structure 400 on the external conductive layer 210 .
  • the conductive structure 300 is orthographically projected on the outer conductive layer 210 as an annular shape along the edge of the outer conductive layer 210 , and the annular shape has a hollow cavity;
  • the orthographic projection is within the inner edge of the ring, ie the thermally conductive structure 400 is in the cavity.
  • the cavity is filled with the thermally conductive structure 400 , that is, the outer edge of the orthographic projection of the thermally conductive structure 400 on the base substrate coincides with the inner edge of the orthographic projection of the conductive structure 300 on the outer conductive layer 210 .
  • the ratio of the area of the conductive structure 300 to the area of the thermally conductive structure 400 is 0.8-1.2, so that the heat dissipation performance and the anti-electromagnetic interference performance of the circuit board 200 can be better improved.
  • the back surface 102 of the light emitting module is an insulating material.
  • the conductive structure 300 includes a conductive tape, which is attached to the back surface 102 of the light-emitting module and connected to the conductive portion 101 ; the circuit board 200 is disposed on the side of the conductive tape away from the light-emitting module 100 , and the external conductive layer 210 is electrically connected to the conductive tape. connect.
  • the back surface 102 of the light emitting module is an insulating material
  • the frame 103 of the light emitting module is a conductive metal material
  • the frame 103 of the light emitting module is the conductive portion 101 of the light emitting module 100 .
  • the conductive tape can be attached to the back surface 102 of the light-emitting module, one end can be extended to connect with the frame 103 , and the other end can be extended between the circuit board 200 and the light-emitting module 100 and adhered to the external conductive layer 210 superior.
  • the present disclosure also tests the circuit board interference of the above-mentioned display device, and the test results are shown in FIG. 11 .
  • the line segment L1 is the specification line of the peak value; L2 is the specification line of the average value; L3 represents the measured data of the peak value; L4 represents the measured average value data.
  • the reference coordinates of L2/L4 are moved down.
  • the present disclosure also provides a circuit board 200, see FIGS. 3 to 6, the circuit board 200 includes a first surface 201 and a second surface 202 arranged oppositely; the resistance device 261 and the capacitor device 262 of the circuit board 200 are arranged on the second surface Surface 202 ; the first surface 201 of the circuit board 200 has an exposed external conductive layer 210 , and the external conductive layer 210 is electrically connected to the ground wire 220 of the circuit board 200 .
  • the circuit board 200 of the present disclosure can make the first surface 201 face the carrier and be attached to the carrier, and electrically connect the external conductive layer 210 with the conductive portion 101 of the carrier through the conductive structure 300 .
  • the interference electromagnetic waves generated on the circuit board 200 can be partially conducted to the external conductive layer 210 , so that the external conductive layer 210 generates coupled charges and coupled electric fields, and these coupled charges and coupled electric fields can quickly pass through the conductive structure 300
  • the ground is dispersed into the conductive portion 101 of the carrier, thereby accelerating the dissipation of the coupled charges and the coupled electric field, and reducing the interference electromagnetic waves on the circuit board 200 .
  • the external conductive layer 210 is located close to the first surface 201 of the carrier, and the conductive structure 300 is located between the circuit board 200 and the carrier, so there is a smaller distance between the external conductive layer 210 and the conductive portion 101 of the carrier, which can make the coupled charge and the carrier.
  • the coupled electric field dissipates more rapidly, thereby improving the effect of reducing interference electromagnetic waves. More importantly, the coupled charge and the coupled electric field generated on the external conductive layer 210 can directly transmit the coupled charge and the coupled electric field through the conductive structure 300 located outside the circuit board 200 , reducing the grounding of the coupled charge and the coupled charge through the circuit board 200 .
  • the transmission of the wires 220 inside the circuit board 200 can more effectively eliminate the interference of the interference electromagnetic waves on the signal transmission leads 230 in the circuit board 200 .
  • the generated static electricity can also be dispersed to the conductive portion 101 of the carrier through the external conductive layer 210 and the conductive structure 300, thereby dispersing the electrostatic charge and avoiding electrostatic breakdown.
  • the carrier may be a light emitting module 100, and in this way, the display device described in the display device embodiments of the present disclosure can be obtained.
  • the display device provided by the present disclosure is an application example of the circuit board 200, which has disclosed the details, principles and effects of the circuit board 200 of the present disclosure, or can be reasonable according to the descriptions in the display device embodiments of the present disclosure
  • the structure, principle and effect of the circuit board 200 of the present disclosure are derived, which will not be repeated in the present disclosure.
  • the circuit board 200 includes a signal transmission area A, and a signal transmission lead 230 is disposed in the signal transmission area A;
  • the external conductive layer 210 includes a first external conductive layer 211, and the first external conductive layer 211 is located in the The orthographic projection on the base substrate is located in the signal transmission area A.
  • the circuit board 200 includes a power management area B, and a power management circuit is arranged in the power management area B; the external conductive layer 210 includes a second external conductive layer 212, and the second external conductive layer 212 is lining The orthographic projection on the bottom substrate is located in the power management area B.
  • the circuit board 200 includes stacked multi-layer metal wiring layers 270 , wherein the external conductive layer 210 is located on the first metal wiring layer 270 of the first surface 201 .
  • the external conductive layer 210 is a non-hollow structure.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示装置和电路板(200),显示装置包括发光模组(100)、电路板(200)和导电结构(300)。发光模组(100)的表面具有导电部分(101)。电路板(200)设置于发光模组(100)的背面(102),具有靠近发光模组(100)的第一表面(201);电路板(200)的第一表面(201)具有暴露的外接导电层(210),外接导电层(210)与电路板(200)的地线电连接。导电结构(300)位于电路板(200)和发光模组(100)之间,且使得外接导电层(210)与导电部分(101)电连接。显示装置能够减弱电路板(200)中的电磁干扰。

Description

显示装置和电路板
交叉引用
本公开要求于2020年9月30日提交的申请号为202011065051.4、名称为“显示装置和电路板”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及显示技术领域,尤其涉及一种显示装置和电路板。
背景技术
在显示装置中,需要通过电路板向发光模组提供电源和数据信号,以便驱动发光模组显示。然而,数据线上的电磁干扰经常超标,降低了显示装置的显示效果并导致其不能满足电磁干扰管控标准。
所述背景技术部分公开的上述信息仅用于加强对本公开的背景的理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术的信息。
公开内容
本公开的目的在于提供一种显示装置和电路板,减弱电路板上的电磁干扰。
为实现上述发明目的,本公开采用如下技术方案:
根据本公开的第一个方面,提供一种显示装置,包括:
发光模组,所述发光模组的表面具有导电部分;
电路板,设置于所述发光模组的背面,具有靠近所述发光模组的第一表面;所述电路板的第一表面具有暴露的外接导电层,所述外接导电层与电路板的地线电连接;
导电结构,位于所述电路板和所述发光模组之间,且使得所述外接导电层与所述导电部分电连接。
在本公开的一种示例性实施例中,所述电路板包括信号传输区,所述 信号传输区内设置有信号传输引线;
所述外接导电层包括第一外接导电层,所述第一外接导电层在所述衬底基板上的正投影位于所述信号传输区内。
在本公开的一种示例性实施例中,所述电路板包括电源管理区,所述电源管理区内设置有电源管理电路;
所述外接导电层包括第二外接导电层,所述第二外接导电层在所述衬底基板上的正投影位于所述电源管理区内。
在本公开的一种示例性实施例中,所述电路板包括层叠的多层金属布线层,其中,所述外接导电层位于最靠近所述第一表面的第一层金属布线层。
在本公开的一种示例性实施例中,所述电路板具有远离所述发光模组的第二表面;所述电路板的电容器件和电阻器件设置于所述电路板的第二表面。
在本公开的一种示例性实施例中,所述发光模组的背面采用导电材料;
所述导电结构为导电泡棉或者导电胶层。
在本公开的一种示例性实施例中,所述显示装置还包括导热结构;
所述外接导电层的至少部分区域通过所述导电结构与所述发光模组的背面电连接;所述外接导电层的其余区域通过所述导热结构与所述发光模组的背面电连接。
在本公开的一种示例性实施例中,所述导电结构和所述导热结构中的一个,其在所述外接导电层上在正投影形成网格;所述导电结构和所述导热结构中的另一个,其在所述外接导电层上在正投影位于所述网格的网眼中。
在本公开的一种示例性实施例中,所述导电结构和所述导热结构中的一个,其在所述外接导电层上在正投影为沿所述外接导电层的边缘的环形;所述导电结构和所述导热结构中的另一个,其在所述外接导电层上在正投影位于所述环形的内边缘以内。
在本公开的一种示例性实施例中,所述发光模组的背面为绝缘材料;
所述导电结构包括导电胶布,所述导电胶布贴附于所述发光模组的背面并连接至所述导电部分;所述电路板设置于所述导电胶布远离所述发光 模组的一侧,且所述外接导电层与所述导电胶布电连接。
根据本公开的第二个方面,提供一种电路板,包括相对设置的第一表面和第二表面;所述电路板的电阻器件和电容器件设置于所述第二表面;
所述电路板的第一表面具有暴露的外接导电层,所述外接导电层与电路板的地线电连接。
在本公开的一种示例性实施例中,所述电路板包括信号传输区,所述信号传输区内设置有信号传输引线;
所述外接导电层包括第一外接导电层,所述第一外接导电层在所述衬底基板上的正投影位于所述信号传输区内。
在本公开的一种示例性实施例中,所述电路板包括电源管理区,所述电源管理区内设置有电源管理电路;
所述外接导电层包括第二外接导电层,所述第二外接导电层在所述衬底基板上的正投影位于所述电源管理区内。
在本公开的一种示例性实施例中,所述电路板包括层叠的多层金属布线层,其中,所述外接导电层位于最靠近所述第一表面的第一层金属布线层。
本公开提供的显示装置和电路板中,外接导电层能够减弱电路板中的干扰电磁波,减少信号传输引线上的电磁干扰,提高显示装置和电路板的抗干扰能力。
附图说明
通过参照附图详细描述其示例实施方式,本公开的上述和其它特征及优点将变得更加明显。
图1为本公开一种实施方式的显示装置的结构示意图。
图2为本公开一种实施方式的显示装置的结构示意图。
图3为本公开一种实施方式的电路板在信号传输区的剖视结构示意图。
图4为本公开一种实施方式的电路板在电源管理区的剖视结构示意图。
图5为本公开一种实施方式的电路板的第一表面的结构示意图。
图6为本公开一种实施方式的电路板的第二表面的结构示意图。
图7为本公开一种实施方式的导电结构和导热结构在外接导电层上的 俯视分布示意图。
图8为本公开一种实施方式的导电结构和导热结构在外接导电层上的俯视分布示意图。
图9为本公开一种实施方式的导电结构和导热结构在外接导电层上的俯视分布示意图。
图10为本公开一种实施方式的导电结构和导热结构在外接导电层上的俯视分布示意图。
图11为本公开一种实施方式的电路板的电磁干扰测试结果。
图中主要元件附图标记说明如下:
100、发光模组;101、导电部分;102、发光模组的背面;103、发光模组的边框;200、电路板;201、第一表面;202、第二表面;210、外接导电层;211、第一外接导电层;212、第二外接导电层;220、地线;230、信号传输引线;240、绑定焊盘;250、金属柱;261、电阻器件;262、电容器件;270、金属布线层;271、第一金属布线层;272、第二金属布线层;273、第三金属布线层;274、第四金属布线层;275、第五金属布线层;276、第六金属布线层;281、绝缘层;282、有机保护层;300、导电结构;400、导热结构;A、信号传输区;B、电源管理区。
具体实施方式
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施例使得本公开将更加全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本公开的实施例的充分理解。
在图中,为了清晰,可能夸大了区域和层的厚度。在图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本公开的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术 方案而没有所述特定细节中的一个或更多,或者可以采用其它的方法、组元、材料等。在其它情况下,不详细示出或描述公知结构、材料或者操作以避免模糊本公开的主要技术创意。
当某结构在其它结构“上”时,有可能是指某结构一体形成于其它结构上,或指某结构“直接”设置在其它结构上,或指某结构通过另一结构“间接”设置在其它结构上。用语“第一”和“第二”等仅作为标记使用,不是对其对象的数量限制。
在相关技术中,显示装置包括发光模组和电路板,电路板用于驱动发光模组进行显示。该电路板一般需要包括有信号传输引线和电源管理电路;信号传输引线用于向发光模组传输显示相关的信号,例如传输数据信号等。电源管理电路用于向发光模组提供所需的各个电压。然而,电源管理电路在工作时会辐射电磁波,该电磁波会对电路板范围内的信号传输引线和电子元件等产生噪声或者电磁干扰。
本公开提供一种显示装置,参见图1和图2,该显示装置包括发光模组100、电路板200和导电结构300。其中,发光模组100的表面具有导电部分101。电路板200设置于发光模组的背面102,具有靠近发光模组100的第一表面201。电路板200的第一表面201具有暴露的外接导电层210,外接导电层210与电路板200的地线电连接。导电结构300位于电路板200和发光模组100之间,且使得外接导电层210与导电部分101电连接。其中,在图1和图2中,第一表面201和发光模组的背面102之间没有贴合而存在一定的间隙,以便清晰体现和区分电路板的第一表面201和发光模组的背面102;在实际应用中,可以不存在该间隙。换言之,第一表面201和发光模组的背面102之间可以相互贴合而不存在间隙。
本公开提供的显示装置中,电路板200上产生的干扰电磁波可以部分传导至外接导电层210使得外接导电层210产生耦合电荷和耦合电场,这些耦合电荷和耦合电场可以通过导电结构300迅速地分散至发光模组100的导电部分101中,进而加速了耦合电荷和耦合电场的消散,消减了电路板200上的干扰电磁波。在该显示装置中,外接导电层210位于靠近发光模组100的第一表面201,且导电结构300位于电路板200和发光模组100之间,这一方面增大了电路板200的接地面积,另一方面外接导电层210 与发光模组100的导电部分101之间具有更小的距离,能够使得耦合电荷和耦合电场更迅速地消散,进而提高消减干扰电磁波的效果。更重要的是,外接导电层210上所产生的耦合电荷和耦合电场可以直接通过位于电路板200以外的导电结构300分散至导电部分,减少了耦合电荷和耦合电荷通过电路板200的地线在电路板200内部的传输,能够更有效地消除干扰电磁波对电路板200内的信号传输引线的干扰。不仅如此,当电路板200上产生静电时,所产生的静电也可以通过外接导电层210和导电结构300分散至发光模组100的导电部分101,进而分散静电电荷,避免出现静电击穿。
如此,本公开提供的显示装置中,电路板200上的电磁干扰更弱,不仅可以保证发光模组100的正常显示,而且能够保证电路板200满足电磁干扰管控标准。
下面,结合附图对本公开提供的显示装置的结构、原理和效果做进一步地解释和说明。
本公开提供一种显示装置,该显示装置可以为液晶显示装置、OLED(有机电致发光二极管)显示装置、PLED(大分子有机电致发光二极管)显示装置、LED(发光二极管)显示装置、Micro LED(微型发光二极管)显示装置、Mini LED(迷你发光二极管)显示装置或者其他类型的显示装置。该显示装置可以作为手机屏幕、电脑屏幕、户外广告牌、电子仪表盘、车载显示屏或者其他显示装置。
在本公开的一种实施方式中,该显示装置为液晶显示装置,其发光模组100可以包括层叠的背光模组和液晶面板,背光模组远离液晶面板的表面为发光模组的背面102。进一步地,该显示装置为车载显示屏。
图3为电路板在图6的QQ'位置进行剖切的结构示意图。图4为电路板在图6的PP'位置进行剖切的结构示意图。参见图3和图4,本公开提供的电路板200可以包括有层叠的多层金属布线层270,外接导电层210位于第一表面201的第一层金属布线层270。相邻两层金属布线层270之间设置有绝缘层281,且不同的金属布线层270之间可以通过填充于过孔中的金属柱250电连接。在电路板200的第一表面201和与第一表面201相对设置的第二表面202,电路板200上还可以设有有机保护层282,例 如设置有绿油保护层,绿油保护层不仅能够保护金属布线层270,还可以实现阻焊的效果。可选的,可以通过丝网印刷等方式形成有机保护层282,且在形成有机保护层282时使得第一表面201的外接导电层210暴露。进一步地,各金属布线层270和金属柱250的材料金属铜。
参见图1,本公开提供的电路板200还包括电子元件260,电子元件260可以设置于电路板200的第二表面202。参见图6,电子元件可以为芯片、电容器件262、电阻器件261、晶体管或者其他电子元件。进一步地,最靠近第二表面202的金属布线层270上可以设置有绑定焊盘240,电子元件可以绑定于绑定焊盘240上,例如可以通过焊接、导电胶等绑定于绑定焊盘240上。如此,电子元件可以与最靠近第二表面202的金属布线层270电连接。
参见图3和图6,本公开提供的电路板200设置有信号传输引线230,信号传输引线230可以设置于一层金属布线层270,也可以设置于多层不同的金属布线层270。优选地,信号传输引线230可以设置于内侧的金属布线层270,即设置于位于最靠近第一表面201的金属布线层270和最靠近第二表面202的金属布线层270之间的金属布线层270之间的金属布线层270,如此,可以提高信号传输引线230的抗干扰能力。进一步地,电路板200在最靠近第二表面202的金属布线层270上可以设置有绑定焊盘240,信号传输引线230可以通过穿过绝缘层281的金属柱与绑定焊盘240电连接。
参见图3和图4,本公开的电路板200还设置有地线220,地线220可以设置于至少一层金属布线层270。优选地,地线220可以设置于各个金属布线层270,且各个金属布线层270的地线220通过金属柱250电连接。如此,整个电路板200上的地线220电连接为一个整体,便于维持整个电路板200上的信号的稳定,便于干扰电磁波的消散。
在本公开的一种实施方式中,最靠近第二表面202的金属布线层270中的部分地线220暴露,且可以通过导电胶布等覆盖该暴露的地线220并电连接至发光模组的背面102。如此,可以使得干扰电磁波也能够通过最靠近第二表面202的金属布线层270消散,进一步提高该电路板200的抗电磁干扰效果。
在本公开的一种实施方式中,显示装置还可以包括有屏蔽胶带,屏蔽胶带覆盖部分电路板200的第二表面202和发光模组100的部分背面,以便将电路板200固定于发光模组的背面102并为电路板200提供一定的电磁屏蔽效果。
在本公开的一种实施方式中,参见图3和图4,电路板200可以具有六层金属布线层270,即具有依次设置的第一金属布线层271、第二金属布线层272、第三金属布线层273、第四金属布线层274、第五金属布线层275和第六金属布线层276。其中,最靠近第一表面201的金属布线层270为第一金属布线层271;最靠近第二表面202的金属布线层270为第六金属布线层276。可选地,参见图3,信号传输引线230可以设置于第四金属布线层274。可选地,参见图4和图6,第六金属布线层276上设置有绑定焊盘240,部分绑定焊盘240用于连接电子元件,利于用于连接电阻器件261或者连接电容器件262。第六金属布线层276设置有金属走线2761,至少部分电子元件与金属走线2761电连接。地线220设置于各层金属布线层270,且各层地线220之间通过金属柱250电连接。
在本公开的一种实施方式中,信号传输引线230可以包括低压差分信号引线,低压差分信号引线上用于传输低压差分信号(LVDS,Low-Voltage Differential Signaling),以提高信号传输引线230的抗干扰能力。优选地,低压差分信号引线对的管控阻抗为100欧姆。
可选的,从俯视角度观察,参见图5和图6,电路板200具有信号传输区A,信号传输区A内设置有信号传输引线230。外接导电层210包括第一外接导电层211,第一外接导电层211在衬底基板上的正投影位于信号传输区A内。如此,电路板200的干扰电磁波传导至信号传输区A内时,该干扰电磁波可以迅速的通过第一外接导电层211进行消散和衰减,进而减弱信号传输区A内的干扰电磁波强度,减弱干扰电磁波对信号传输引线230的干扰。
可选地,第一外接导电层211的形状可以为矩形、菱形、圆形、椭圆形或者其他形状。示例性地,第一外接导电层211的形状可以为矩形。在本公开的一种实施方式中,第一外接导电层211可以为长边长度为40毫米、短边长度为9毫米的矩形。在本公开的另一种实施方式中,第一外接 导电层211可以为长边长度为17毫米、短边长度为7毫米的矩形。在本公开的另一种实施方式中,第一外接导电层211可以为长边长度为12毫米、短边长度为7毫米的矩形。可以理解的是,第一外接导电层211的上述示例尺寸仅仅为示例。在其他实施方式中,可以根据电路板200的尺寸,尤其是根据信号传输区A的尺寸而调整第一外接导电层211的尺寸。
根据本公开提供的电路板200,通过设置第一外接导电层211可以减弱干扰电磁波对信号传输引线230的干扰,使得该电路板200能够在更多的应用环境中满足电磁干扰管控标准。如此,该电路板200可以应用于不同的显示装置中,提高该电路板200的通用性,避免根据每一种不同的显示装置开发新的电路板200而导致重复开发,进而避免重复开发电路板200导致的研发周期延长、研发资源浪费等问题。
可选地,从俯视的角度观察,参见图5和图6,电路板200可以包括电源管理区B,电源管理区B内设置有电源管理电路。该电源管理电路可以用于产生发光模组100所需的各个电位的电压,以便为发光模组100的不同电路提供各自所需的电源电压。例如,电源管理电路可以产生接地电压、扫描电压、驱动电源电压等等,在产生这些电压的过程中会产生较多的干扰电磁波。进一步地,电源管理电路可以包括有电源管理芯片和分压电路,分压电路在电源管理芯片的控制下通过分压产生不同电位的电源电压。其中,电源管理电路的各个电子元件,例如电源管理芯片、电阻器件、电容器件等可以电连接于电路板200的最靠近第二表面202的金属布线层270,且通过金属走线电连接形成电源管理电路。所需的金属走线可以全部设置于最靠近第二表面202的金属布线层270,也可以部分设置于其他金属布线层270;不同金属布线层270上的金属走线可以通过金属柱电连接。
可选地,外接导电层210包括第二外接导电层212,第二外接导电层212在衬底基板上的正投影位于电源管理区B内。如此,电源管理区B所产生的干扰电磁波可以迅速的通过第二外接导电层212消散,进而减弱电源管理区B内的干扰电磁波强度,减弱干扰电磁波对信号传输引线230的干扰。相应地,该第二外接导电层212能够加速电源管理区B内的干扰电磁波的衰减,进而减少对信号传输引线230的干扰,提高本公开的电路 板的通用性,减少电路板的重复开发。
可以理解的是,根据显示装置的不同设置,电路板200上还可以根据需求选择性地设置其他电路单元。示例性地,在本公开的一种实施方式中,电路板200上可以具有时序控制区,且在时序控制区内设置有时序控制器。进一步地,外接导电层还可以包括第三外接导电层,第三外接导电层在衬底基板上的正投影位于时序控制区内。再示例性地,在本公开的另一种实施方式中,电路板200上可以具有图片侦测区,且在图片侦测区内设置有图片侦测电路。进一步地,外接导电层210还可以包括第四外接导电层,第四外接导电层在衬底基板上的正投影位于图片侦测区内。再示例性地,在本公开的另一种实施方式中,电路板200上可以具有背光管理区,且在背光管理区内设置有背光驱动电路。进一步地,外接导电层210还可以包括第五外接导电层,第五外接导电层在衬底基板上的正投影位于背光管理区内。
可选地,外接导电层210为非镂空结构。如此,可以保证该外接导电层210与导电结构300之间的电连接面积最大化,并使得外接导电层210具有更大的面积以更高效地耦合干扰电磁波,进而使得耦合电荷和耦合电场的转移速度更快,进而进一步提高电路板200的抗电磁干扰效果。
导电结构300设置于发光模组100和电路板200之间,用于将电路板200上的外接导电层210的耦合电荷和耦合电场分散至发光模组100的导电部分101,进而减弱电路板200内的干扰电磁波。优选地,沿垂直于发光模组的背面102的方向,导电结构300的电阻率小于0.1Ω·cm。如此,可以保证导电结构300具有良好的导电效果,提高耦合电荷和耦合电场分散的速度。
在本公开的一些实施方式中,参见图1,发光模组的背面102采用导电材料;换言之,发光模组的背面102即为该发光模组100的导电部分101。示例性的,发光模组的背面102为背光源的背板,该背光源的背板为金属背板。
可选的,导电结构300可以为具有形变能力的导电结构300,以便能够与外接导电层210、发光模组的背面102均充分接触,降低与外接导电层210、发光模组的背面102之间的接触电阻。示例性地,导电结构300 可以为导电泡棉或者导电胶层。其中,导电泡棉或者导电胶层的厚度可以根据外接导电层210与发光模组的背面102之间的间隙来确定,以能够与外接导电层210与发光模组的背面102均较好电连接、且不会影响电路板200与背光模组的背面的贴附为准。
可选的,参见图7~图10,显示装置还包括导热结构400;外接导电层210的至少部分区域通过导电结构300与发光模组的背面102电连接;外接导电层210的其余区域通过导热结构400与发光模组的背面102电连接。在图7~图10中,用虚线框表示的外接导电层210的边界大于导热结构400和导电结构300的范围,这是为了清晰地将外接导电层210的边界与导热结构400和导电结构300的边界进行区分。在实际应用中,导热结构400和导电结构300的总范围,可以与外接导电层210的范围重合。
如此,该电路板200上的电子元件工作时产生的热量,例如电源管理芯片工作时产生的热量,可以顺着易导热的金属布线层270和金属柱250传导至外接导电层210,然后再通过导热结构400将热量传导至发光模组100,进而提高电路板200的散热能力,尤其是提高电源管理芯片的散热能力。
可选地,导热结构400包括导热硅脂层。该导热硅脂层的材料可以为导热硅脂,其能够有效地连接外接导电层210和发光模组的背面102,避免接触不良导致的导热效果下降。
可选地,在一种实施方式中,参见图7和图8,导电结构300和导热结构400中的一个,其在外接导电层210上在正投影形成网格;导电结构300和导热结构400中的另一个,其在外接导电层210上在正投影位于网格的网眼中。
示例性地,参见图7,导电结构300在外接导电层210上的正投影形成网格,导热结构400可以填充于该网格中。
再示例性地,参见图8,导热结构400在外接导电层210上的正投影形成网格,导电结构300可以填充于该网格中。
可选的,在另一种实施方式中,参见图9和图10,导电结构300和导热结构400中的一个,其在外接导电层210上在正投影为沿外接导电层210的边缘的环形;导电结构300和导热结构400中的另一个,其在外接导电 层210上在正投影位于环形的内边缘以内。
示例性地,参见图9,导热结构400在外接导电层210上在正投影为沿外接导电层210的边缘的环形,该环形具有中空的空腔;导电结构300在外接导电层210上在正投影位于环形的内边缘以内,即导电结构300在该空腔中。进一步地,导电结构300填充满该空腔,即导电结构300在衬底基板上的正投影的外边缘与导热结构400在外接导电层210上在正投影的内边缘重合。
再示例性地,参见图10,导电结构300在外接导电层210上在正投影为沿外接导电层210的边缘的环形,该环形具有中空的空腔;导热结构400在外接导电层210上在正投影位于环形的内边缘以内,即导热结构400在该空腔中。进一步地,导热结构400填充满该空腔,即导热结构400在衬底基板上的正投影的外边缘与导电结构300在外接导电层210上在正投影的内边缘重合。
优选地,导电结构300的面积与导热结构400的面积比为0.8~1.2,如此,可以保证电路板200的散热性能和抗电磁干扰性能均获得较好的提升。
在本公开的另外一些实施方式中,参见图2,发光模组的背面102为绝缘材料。导电结构300包括导电胶布,导电胶布贴附于发光模组的背面102并连接至导电部分101;电路板200设置于导电胶布远离发光模组100的一侧,且外接导电层210与导电胶布电连接。
示例性地,参见图2,发光模组的背面102为绝缘材料,且发光模组的边框103为导电的金属材料,则该发光模组的边框103为该发光模组100的导电部分101。导电胶布作为导电结构300,可以贴附于发光模组的背面102,一端可以延伸至与边框103连接,另一端可以延伸至电路板200与发光模组100之间并粘附于外接导电层210上。
本公开还对上述显示装置的电路板干扰情况进行了测试,测试结果参见图11。参见图11,线段L1为峰值的规格线;L2为平均值的规格线;L3表示峰值的实测数据;L4表示实测的平均值数据。其中,为了将L1/L3与L2/L4进行区分,将L2/L4的参考坐标下移。当峰值的实测数据超过峰值的规格线时,表明该电路板不满足电磁干扰管控标准;当实测的平均值 数据超过平均值的规格线时,表明该电路板不满足电磁干扰管控标准。参见图11,本公开的显示装置中,无论是峰值的实测数据,还是实测的平均值数据均不超过相应的规格线,因此该电路板满足电磁干扰管控标准。
本公开还提供一种电路板200,参见图3~图6,该电路板200包括相对设置的第一表面201和第二表面202;电路板200的电阻器件261和电容器件262设置于第二表面202;电路板200的第一表面201具有暴露的外接导电层210,外接导电层210与电路板200的地线220电连接。
如此,在应用时,本公开的电路板200可以使得第一表面201朝向载体并贴附于载体上,且通过导电结构300将外接导电层210与载体的导电部分101电连接。如此,该电路板200在工作时,电路板200上产生的干扰电磁波可以部分传导至外接导电层210使得外接导电层210产生耦合电荷和耦合电场,这些耦合电荷和耦合电场可以通过导电结构300迅速地分散至载体的导电部分101中,进而加速了耦合电荷和耦合电场的消散,消减了电路板200上的干扰电磁波。外接导电层210位于靠近载体的第一表面201,且导电结构300位于电路板200和载体之间,因此外接导电层210与载体的导电部分101之间具有更小的距离,能够使得耦合电荷和耦合电场更迅速地消散,进而提高消减干扰电磁波的效果。更重要的是,外接导电层210上所产生的耦合电荷和耦合电场可以直接通过位于电路板200以外的导电结构300传输耦合电荷和耦合电场,减少了耦合电荷和耦合电荷通过电路板200的地线220在电路板200内部的传输,能够更有效地消除干扰电磁波对电路板200内的信号传输引线230的干扰。不仅如此,当电路板200上产生静电时,所产生的静电也可以通过外接导电层210和导电结构300分散至载体的导电部分101,进而分散静电电荷,避免出现静电击穿。
示例性地,载体可以为一种发光模组100,如此,可以获得本公开显示装置实施方式所描述的显示装置。本公开提供的显示装置作为该电路板200的一种应用示例,其已经公开了本公开的电路板200的细节、原理和效果,或者可以根据本公开的显示装置实施方式中的描述而合理的推导出本公开的电路板200的结构、原理和效果,本公开在此不再赘述。
在本公开的一种实施方式中,电路板200包括信号传输区A,信号传 输区A内设置有信号传输引线230;外接导电层210包括第一外接导电层211,第一外接导电层211在衬底基板上的正投影位于信号传输区A内。
在本公开的一种实施方式中,电路板200包括电源管理区B,电源管理区B内设置有电源管理电路;外接导电层210包括第二外接导电层212,第二外接导电层212在衬底基板上的正投影位于电源管理区B内。
在本公开的一种实施方式中,电路板200包括层叠的多层金属布线层270,其中,外接导电层210位于第一表面201的第一层金属布线层270。
在本公开的一种实施方式中,外接导电层210为非镂空结构。
应可理解的是,本公开不将其应用限制到本说明书提出的部件的详细结构和布置方式。本公开能够具有其他实施方式,并且能够以多种方式实现并且执行。前述变形形式和修改形式落在本公开的范围内。应可理解的是,本说明书公开和限定的本公开延伸到文中和/或附图中提到或明显的两个或两个以上单独特征的所有可替代组合。所有这些不同的组合构成本公开的多个可替代方面。本说明书的实施方式说明了已知用于实现本公开的最佳方式,并且将使本领域技术人员能够利用本公开。

Claims (13)

  1. 一种显示装置,包括:
    发光模组,所述发光模组的表面具有导电部分;
    电路板,设置于所述发光模组的背面,具有靠近所述发光模组的第一表面;所述电路板的第一表面具有暴露的外接导电层,所述外接导电层与电路板的地线电连接;
    导电结构,位于所述电路板和所述发光模组之间,且使得所述外接导电层与所述导电部分电连接。
  2. 根据权利要求1所述的显示装置,其中,所述电路板包括信号传输区,所述信号传输区内设置有信号传输引线;
    所述外接导电层包括第一外接导电层,所述第一外接导电层在所述衬底基板上的正投影位于所述信号传输区内。
  3. 根据权利要求1所述的显示装置,其中,所述电路板包括电源管理区,所述电源管理区内设置有电源管理电路;
    所述外接导电层包括第二外接导电层,所述第二外接导电层在所述衬底基板上的正投影位于所述电源管理区内。
  4. 根据权利要求1所述的显示装置,其中,所述电路板包括层叠的多层金属布线层,其中,所述外接导电层位于最靠近所述第一表面的第一层金属布线层。
  5. 根据权利要求1所述的显示装置,其中,所述电路板具有远离所述发光模组的第二表面;所述电路板的电容器件和电阻器件设置于所述电路板的第二表面。
  6. 根据权利要求1所述的显示装置,其中,所述发光模组的背面采用导电材料;
    所述导电结构为导电泡棉或者导电胶层。
  7. 根据权利要求1~6任意一项所述的显示装置,其中,所述显示装置还包括导热结构;
    所述外接导电层的至少部分区域通过所述导电结构与所述发光模组的背面电连接;所述外接导电层的其余区域通过所述导热结构与所述发光模组的背面电连接。
  8. 根据权利要求7所述的显示装置,其中,所述导电结构和所述导热结构中的一个,其在所述外接导电层上在正投影形成网格;所述导电结构和所述导热结构中的另一个,其在所述外接导电层上在正投影位于所述网格的网眼中;
    或者,所述导电结构和所述导热结构中的一个,其在所述外接导电层上在正投影为沿所述外接导电层的边缘的环形;所述导电结构和所述导热结构中的另一个,其在所述外接导电层上在正投影位于所述环形的内边缘以内。
  9. 根据权利要求1~5任意一项所述的显示装置,其中,所述发光模组的背面为绝缘材料;
    所述导电结构包括导电胶布,所述导电胶布贴附于所述发光模组的背面并连接至所述导电部分;所述电路板设置于所述导电胶布远离所述发光模组的一侧,且所述外接导电层与所述导电胶布电连接。
  10. 一种电路板,包括相对设置的第一表面和第二表面;所述电路板的电容器件和电阻器件设置于所述第二表面;
    所述电路板的第一表面具有暴露的外接导电层,所述外接导电层与电路板的地线电连接。
  11. 根据权利要求10所述的电路板,其中,所述电路板包括信号传输区,所述信号传输区内设置有信号传输引线;
    所述外接导电层包括第一外接导电层,所述第一外接导电层在所述衬底基板上的正投影位于所述信号传输区内。
  12. 根据权利要求10所述的电路板,其中,所述电路板包括电源管理区,所述电源管理区内设置有电源管理电路;
    所述外接导电层包括第二外接导电层,所述第二外接导电层在所述衬底基板上的正投影位于所述电源管理区内。
  13. 根据权利要求10所述的电路板,其中,所述电路板包括层叠的多层金属布线层,其中,所述外接导电层位于最靠近所述第一表面的第一层金属布线层。
PCT/CN2021/111924 2020-09-30 2021-08-11 显示装置和电路板 WO2022068413A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/802,990 US20230108158A1 (en) 2020-09-30 2021-08-11 Display device and circuit board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011065051.4A CN114326203A (zh) 2020-09-30 2020-09-30 显示装置和电路板
CN202011065051.4 2020-09-30

Publications (1)

Publication Number Publication Date
WO2022068413A1 true WO2022068413A1 (zh) 2022-04-07

Family

ID=80949161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111924 WO2022068413A1 (zh) 2020-09-30 2021-08-11 显示装置和电路板

Country Status (3)

Country Link
US (1) US20230108158A1 (zh)
CN (1) CN114326203A (zh)
WO (1) WO2022068413A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814254A (zh) * 2009-02-20 2010-08-25 瑞轩科技股份有限公司 显示装置
US20140176840A1 (en) * 2012-12-21 2014-06-26 Mitsubishi Electric Corporation Electronic equipment and flexible printed circuit
CN105744729A (zh) * 2016-04-22 2016-07-06 上海天马微电子有限公司 一种柔性电路板、电子设备及其滤除电磁干扰方法
US20170118834A1 (en) * 2015-10-23 2017-04-27 Lg Display Co., Ltd. Printed Circuit Board and Display Device Including the Same
CN109976056A (zh) * 2019-04-08 2019-07-05 京东方科技集团股份有限公司 阵列基板、其制作方法、显示面板及显示装置
CN212873154U (zh) * 2020-09-30 2021-04-02 京东方科技集团股份有限公司 显示装置和电路板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814254A (zh) * 2009-02-20 2010-08-25 瑞轩科技股份有限公司 显示装置
US20140176840A1 (en) * 2012-12-21 2014-06-26 Mitsubishi Electric Corporation Electronic equipment and flexible printed circuit
US20170118834A1 (en) * 2015-10-23 2017-04-27 Lg Display Co., Ltd. Printed Circuit Board and Display Device Including the Same
CN105744729A (zh) * 2016-04-22 2016-07-06 上海天马微电子有限公司 一种柔性电路板、电子设备及其滤除电磁干扰方法
CN109976056A (zh) * 2019-04-08 2019-07-05 京东方科技集团股份有限公司 阵列基板、其制作方法、显示面板及显示装置
CN212873154U (zh) * 2020-09-30 2021-04-02 京东方科技集团股份有限公司 显示装置和电路板

Also Published As

Publication number Publication date
US20230108158A1 (en) 2023-04-06
CN114326203A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
CN111580699B (zh) 显示模组及显示装置
KR101753501B1 (ko) 전자 디바이스용 좁은 경계 디스플레이
CN107833978B (zh) 一种显示器件
US20030058230A1 (en) Flat-panel type display apparatus
KR960015019A (ko) 표시영역외주의 프레임면적의 축소화에 적합한 액정표시장치
US20100141617A1 (en) Display driver integrated circuit device, film, and module
CN101086827B (zh) 驱动装置和包括其的液晶显示器
KR102598734B1 (ko) 전자파 차단 필름 및 이를 포함하는 표시장치
KR20060126070A (ko) 구동 집적 회로칩 패키지 및 이를 구비한 표시 장치
CN110462567A (zh) 触控基板、触控屏和电子装置
JP2011065122A (ja) 平板表示装置
CN113539091B (zh) 一种显示装置
CN212873154U (zh) 显示装置和电路板
WO2022017057A1 (zh) 显示装置和电子设备
JP3329328B2 (ja) 液晶表示装置の実装構造及びその製造方法
WO2022068413A1 (zh) 显示装置和电路板
KR20140125673A (ko) Cof 패키지 및 이를 포함하는 표시 장치
JP2000305469A (ja) 表示装置
KR20190079086A (ko) 플렉서블 표시장치
KR20210025167A (ko) 표시 장치
KR102150839B1 (ko) 표시 장치
CN212782484U (zh) 显示装置和电子设备
CN113589571A (zh) 显示面板及显示装置
KR20080075282A (ko) 회로 필름과 이를 이용한 평판표시장치
KR20200115861A (ko) 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874075

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21874075

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/07/2023)