WO2022068346A1 - 电源提供装置、电路控制方法及供电系统 - Google Patents

电源提供装置、电路控制方法及供电系统 Download PDF

Info

Publication number
WO2022068346A1
WO2022068346A1 PCT/CN2021/108765 CN2021108765W WO2022068346A1 WO 2022068346 A1 WO2022068346 A1 WO 2022068346A1 CN 2021108765 W CN2021108765 W CN 2021108765W WO 2022068346 A1 WO2022068346 A1 WO 2022068346A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
voltage
supply device
circuit
conversion circuit
Prior art date
Application number
PCT/CN2021/108765
Other languages
English (en)
French (fr)
Inventor
田晨
朱经鹏
张加亮
徐�明
Original Assignee
Oppo广东移动通信有限公司
南京博兰得电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司, 南京博兰得电子科技有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP21874008.2A priority Critical patent/EP4203290A4/en
Publication of WO2022068346A1 publication Critical patent/WO2022068346A1/zh
Priority to US18/147,907 priority patent/US20230170783A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/15Arrangements for reducing ripples from dc input or output using active elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/20The network being internal to a load
    • H02J2310/22The load being a portable electronic device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the embodiments of the present application relate to the technical field of power conversion, and in particular, to a power supply device, a circuit control method, and a power supply system.
  • the volume of the power supply device is relatively large, which makes it inconvenient to carry around and affects the charging of electronic devices at any time.
  • the embodiments of the present application provide a power supply device, a circuit control method, and a power supply system, which can realize a smaller volume of the power supply device and at the same time enable the power supply device to provide a DC output with a stable waveform.
  • the technical solution is as follows:
  • a power supply device includes:
  • an input rectifier circuit for converting the received alternating current into a first pulsating direct current voltage
  • a first-stage conversion circuit connected to the input rectifier circuit, for converting the first pulsating DC voltage into a second pulsating DC voltage
  • a valley-filling circuit connected to the first-stage conversion circuit, is configured to provide electrical energy when the voltage value of the second pulsating DC voltage is lower than a voltage threshold, so that the voltage value of the second pulsating DC voltage is greater than or is equal to the voltage threshold;
  • the second-stage conversion circuit is connected to the first-stage conversion circuit, and is used for converting the second pulsating DC voltage into a constant DC voltage and outputting it.
  • a circuit control method which is applied to the above-mentioned power supply device, and the method includes:
  • the valley filling circuit In response to the valley voltage value of the pulsating DC voltage output by the first-stage conversion circuit being less than or equal to the voltage threshold, the valley filling circuit is controlled to provide electrical energy, so that the valley voltage value of the pulsating DC voltage is greater than or equal to the voltage threshold;
  • the valley filling circuit In response to the valley voltage value of the pulsating DC voltage output by the first-stage conversion circuit being greater than the voltage threshold, the valley filling circuit is controlled to stop supplying electrical energy.
  • a power supply system including an electronic device and a power supply device provided by an embodiment of the present application, where the power supply device is used to provide electrical energy to the electronic device.
  • the electronic device directly uses the power provided by the power supply device to work.
  • the electronic device charges the battery with the power provided by the power supply device.
  • the electronic device can shunt the electrical energy provided by the power supply device, and part of it is used for normal operation, and the other part is charged into the battery.
  • a computer-readable storage medium having stored therein at least one instruction that is loaded and executed by a processor to implement circuit control as provided in various aspects of the present application method. It should be noted that, the present application may also implement the above-mentioned circuit control method through a hardware circuit, which is not limited in this embodiment of the present application.
  • a computer program product comprising computer instructions stored in a computer-readable storage medium.
  • the processor of the computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions to cause the computer device to perform the methods provided in the various alternative implementations of the circuit control aspects described above.
  • the present application may also implement the above-mentioned circuit control method through a hardware circuit, which is not limited in this embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a power supply device provided by the related art
  • FIG. 2 is a schematic structural diagram of a power supply device including a two-stage architecture according to an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a power supply device provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a power supply device provided based on the embodiment shown in FIG. 3;
  • FIG. 5 is a schematic diagram of a power supply device provided by an embodiment of the present application.
  • Fig. 6 is a kind of simulation waveform diagram provided based on the embodiment shown in Fig. 5;
  • FIG. 7 is a flowchart of a circuit control method provided by an exemplary embodiment of the present application.
  • FIG. 8 is a block diagram of a charging system provided by an exemplary embodiment of the present application.
  • a plurality means two or more.
  • “And/or”, which describes the association relationship of the associated objects means that there can be three kinds of relationships, for example, A and/or B, which can mean that A exists alone, A and B exist at the same time, and B exists alone.
  • the character “/” generally indicates that the associated objects are an "or" relationship.
  • a power supply device wherein the power supply device comprises:
  • an input rectifier circuit for converting the received alternating current into a first pulsating direct current voltage
  • a first-stage conversion circuit connected to the input rectifier circuit, for converting the first pulsating DC voltage into a second pulsating DC voltage
  • a valley-filling circuit connected to the first-stage conversion circuit, is configured to provide electrical energy when the voltage value of the second pulsating DC voltage is lower than a voltage threshold, so that the voltage value of the second pulsating DC voltage is greater than or is equal to the voltage threshold;
  • the second-stage conversion circuit is connected to the first-stage conversion circuit, and is used for converting the second pulsating DC voltage into a constant DC voltage and outputting it.
  • the first-stage conversion circuit includes a switch unit and a transformer unit;
  • the transformer unit is configured to convert the first pulsating DC voltage that has been chopped by the switching unit into the second pulsating DC voltage.
  • the valley filling circuit includes an energy storage unit and a switch unit;
  • the energy storage unit is connected to both ends of the secondary winding of the transformer unit, and is used for obtaining the electric energy provided by the transformer unit;
  • the switch unit is used for chopping the voltage output by the energy storage unit.
  • the transformer unit is disposed in a transformer, and isolation plates are disposed on both sides of the transformer, and the isolation plates are used to divide the physical space of the transformer and other components.
  • the first-stage conversion circuit includes at least one filter capacitor, and the capacity of the filter capacitor is smaller than a preset capacitance value.
  • the valley filling circuit further includes a first diode, a second diode and an inductor;
  • the first diode is located between one end of the secondary winding and the input end of the energy storage unit, and is used to perform half-wave rectification on the voltage signal input by the secondary winding;
  • the second diode is a freewheeling diode
  • the inductance is connected between the switch unit and the output end of the first-stage conversion circuit, and is used to form a first-stage filter circuit with the filter capacitor, and the first-stage filter circuit is used to voltage is filtered.
  • the filter capacitor is connected to the output port of the first-stage conversion circuit.
  • the filter capacitor includes at least one of the following capacitors: a film capacitor, a ceramic capacitor, a tantalum capacitor or an electrolytic capacitor.
  • the input sorting circuit is connected to an external AC input, and the external AC input is used to input the AC power to the power supply device.
  • the part of the input sorting circuit connected to the external AC input is a three-phase port or a two-phase port.
  • the second-stage conversion circuit is connected to a first port of a matching cable, and the cable provides the constant direct current to the outside through the second port.
  • the first port includes a serial universal bus USB (Universal Serial Bus, universal serial bus) port.
  • USB Universal Serial Bus, universal serial bus
  • the cable includes a power management chip, and the power management chip is used to manage the power of the current flowing through the cable.
  • the second port includes one of a Type-C interface, a micro USB interface or a lightning interface.
  • the power supply device includes a three-layer printed circuit board PCB (Printed Circuit Board, printed circuit board), which are respectively a first PCB, a second PCB and a third PCB;
  • PCB printed Circuit Board, printed circuit board
  • the first PCB is used to connect the transformer unit
  • the second PCB is provided with an output port of the second-stage conversion circuit, and the second PCB is arranged at a spatial position between the first PCB and the third PCB;
  • the third PCB is the main board of the power supply device.
  • the filter capacitor when the size of the filter capacitor is greater than a threshold, the filter capacitor is connected to the first PCB, or the filter capacitor is connected to the third PCB, and the second PCB is The space occupied by the filter capacitor is hollow.
  • the power supply device provided by the present application can ensure that the second-stage conversion circuit has a sufficiently high valley voltage through the valley filling circuit without using electrolytic capacitors or other large-capacity capacitors, thereby ensuring the stability of the overall output voltage of the power supply device. .
  • the power supply device can help reduce the size of the magnetic unit in the second-stage conversion circuit after increasing the valley voltage, thereby improving the efficiency and power density of the power supply device.
  • AC voltage the commercial power input into the power supply device in the embodiment of the present application.
  • the instantaneous value of the alternating voltage may be an alternating voltage value.
  • Pulsating DC voltage the electrical signal output by the first-stage conversion circuit indicated in the embodiment of the present application, and the value of the electrical signal is the value of the pulsating DC voltage. Without the intervention of the valley filling circuit, the valley voltage value in the pulsating DC voltage will approach 0 or be equal to 0.
  • a bulky energy storage unit is usually provided to store electrical energy. Therefore, a larger energy storage unit results in a larger volume of the power supply device.
  • the power supply device 100 includes: a rectifier unit 110 , a switch unit 120 , a transformer 130 , a filter unit 140 , a control unit 150 and an energy storage unit 160 .
  • the overall function of the power supply device 100 is to convert the commercial power as an alternating current (Alternating Current, AC) into a DC voltage of a specified form.
  • AC Alternating Current
  • the present application will introduce the functions of each unit when the power supply device 100 operates.
  • the rectifying unit 110 is used to rectify the AC voltage received by the power supply device 100 .
  • the voltage S1 rectified by the rectifying unit 110 is a pulsating DC voltage.
  • FIG. 1 please refer to FIG. 1 .
  • the switching unit 120, the transformer 130 and the filtering unit 140 will convert the S1, thereby converting the pulsating direct current S1 into the stable direct current S4. Among them, a part of the voltage S1 will be charged to the energy storage unit 160, which is usually an electrolytic capacitor.
  • the voltage S1 is filtered by an electrolytic capacitor to obtain a DC voltage with less fluctuation.
  • the electrolytic capacitor uses its own storage capacity to maintain a stable output voltage.
  • the control unit 150 respectively samples the voltage output by the power supply device 100 and the current of the switching unit 120, and controls the switching mode of the switching unit 120 and the respective duration of the switching according to the voltage sampling signal and the current sampling signal, To control the output voltage and/or output current of the power supply device 100 .
  • the power supply device may be a power adapter (adapter).
  • the volume of the power supply device is usually large, which is not suitable for users of electronic equipment to carry around. If the user carries it with him, the power supply device will occupy a large space, which affects the user's carrying of other objects. If the user gives up carrying the power supply device because of its large size, the electronic device will not be able to be charged in time and cannot be used continuously.
  • FIG. 2 is a schematic structural diagram of a power supply device including a two-stage architecture according to an embodiment of the present application.
  • the power supply device 200 includes a first-stage conversion circuit 210 , a second-stage conversion circuit 220 , a valley filling circuit 230 , an input port 2A, an output port 2B and an input rectifier circuit 250 .
  • the input rectifier circuit 250 is used to convert the received alternating current into the first pulsating direct current voltage.
  • the input rectifier circuit 250 may be a rectifier bridge BD1, and the rectifier bridge BD1 is used to connect to the commercial power.
  • the commercial power is usually AC voltage, and the difference is that the voltage and frequency of the AC power are different in different regions.
  • the voltage of the commercial power ranges from 100V to 240V, and the frequency of the commercial power ranges from 50Hz to 60Hz.
  • the first-stage conversion circuit 210 may be a DCX circuit.
  • the first-stage conversion circuit 210 receives the first pulsating DC voltage output by the rectifier bridge BD1 and converts it into a second pulsating DC voltage. It should be noted that the lowest value of the second pulsating DC voltage output by the first-stage conversion power supply 210 alone is close to 0 or equal to 0.
  • the first-stage conversion circuit 210 is used for efficient isolation conversion of the first pulsating DC voltage, which may be boost conversion, buck conversion or other conversions, which can be set according to specific design parameters.
  • the first-stage conversion circuit 210 there is a unit for boosting the input AC voltage, so that regardless of whether the input AC voltage is in a low-voltage range or a high-voltage range, the first-stage conversion circuit 210 can provide a similar range at the output end. bus voltage to provide voltage support for the output voltage.
  • the power supply device does not need to set a large volume of electrolytic capacitors, and can set film capacitors, ceramic capacitors, tantalum capacitors or small electrolytic capacitors, thereby reducing the size of the power supply device.
  • the capacitor may also be of other types, which is not limited in this embodiment of the present application.
  • the lowest value of the second pulsating DC voltage originally output by the first-stage conversion circuit 210 is close to 0, and the amplitude of the voltage jitter is too large, which is not conducive to subsequent The circuit outputs constant direct current. It should be noted that the input voltage value of the second-stage conversion circuit 220 is equal to the output voltage value of the first-stage conversion circuit 210 .
  • the present application achieves the effect that the lowest voltage value in the input voltage of the second conversion circuit is greater than the voltage threshold by adding a valley filling circuit at the input end of the second-stage conversion circuit.
  • the valley portion output by the second-stage conversion circuit 220 is maintained at the value of the voltage threshold under the action of the valley filling circuit.
  • the valley equivalent to the pulsating DC voltage is filled. Therefore, the valley filling circuit in the power supply device provided by the present application has the voltage valley filling function of the pulsating direct current.
  • the second-stage conversion circuit 220 connected to the first-stage conversion circuit 210 is used to convert the pulsating DC voltage output by the first-stage conversion circuit 210 to obtain a constant DC voltage, and output the constant DC current to meet the Electricity needs of various electronic devices.
  • a preprocessing circuit is provided in the electronic device, and the preprocessing circuit is used to receive an electrical signal input by the power supply device into the electronic device.
  • the preprocessing loop can only receive a constant DC voltage
  • the power supply device shown in the present application can provide the electronic equipment with available and stable electrical energy, ensuring that the electronic equipment replenishes the electrical energy in time.
  • a drive circuit In the actual assembly of the power supply device, a drive circuit, a voltage detection circuit, a current detection circuit and an MCU control circuit may also be included.
  • the corresponding electronic device when the electrolytic capacitor is removed from the power supply device in order to reduce the volume, the corresponding electronic device needs to be able to receive pulsating direct current.
  • the reduced size power supply device can only charge electronic equipment capable of accepting the pulsating DC voltage.
  • users usually carry multiple electronic devices such as smartphones, tablet computers, and laptops when they travel, study, or go out for business.
  • the above-mentioned electronic devices all require their corresponding power supply devices to be charged. Therefore, users carry a large number of power supply devices when they go out and take up a large space.
  • the reduced size power supply device can only charge one of the above-mentioned specified devices, for example, the reduced volume power supply device can only charge the correspondingly designed smartphone, because the smartphone can accept and use pulsating direct current .
  • the present application designs a power supply device capable of outputting a constant DC voltage while reducing the size of the power supply device.
  • the voltage output by the reduced-volume power supply device is a constant DC voltage
  • the user can charge multiple electronic devices through the power supply device, so that the user only needs to carry a small-sized power supply device, which can meet the needs of many portable devices. charging needs of electronic devices.
  • the transformer unit can be arranged in the transformer, and isolation plates are arranged on both sides of the transformer, and the isolation plates are used to separate the physical space of the transformer and other components.
  • the input sorting circuit is connected to the external AC input, and obtains the AC power from the port of the external AC input.
  • the part of the input finishing circuit connected to the external AC input is a three-phase port or a two-phase port.
  • the second-stage conversion circuit is connected to the first port of the matching cable, and the cable provides constant direct current to the outside through the second port.
  • the matching cable may be a data cable.
  • the first port includes a serial universal bus USB port.
  • the cable includes a power management chip, and the power management chip is used to manage the power of the current flowing through the cable.
  • the second port includes one of a Type-C interface, a micro USB interface, or a lightning bolt interface.
  • the devices in the power adapter 200 may include three-layer printed circuit boards (PCBs), which are respectively a first PCB, a second PCB and a third PCB; the first PCB is used for connecting the transformer unit; the second PCB is provided with a third PCB.
  • the second PCB is arranged in the space between the first PCB and the third PCB; the third PCB is the main board of the power supply device.
  • the filter capacitor when the size of the filter capacitor is larger than the threshold, the filter capacitor is connected to the first PCB, or the filter capacitor is connected to the third PCB, and the second PCB is hollowed out at the space occupied by the filter capacitor.
  • the threshold may be one of a volume threshold, a height threshold, or other size thresholds, which is not limited in this application.
  • At least one filter capacitor may also be added to the first-stage conversion circuit. It should be noted that the capacitance of the filter capacitor can be freely adjusted according to design requirements. In a possible implementation manner, if there are at least two filter capacitors, the at least two filter capacitors may be arranged in parallel at the output end of the first-stage conversion circuit.
  • FIG. 3 is a schematic structural diagram of a power supply device provided by an embodiment of the present application.
  • a first-stage conversion circuit 210 a second-stage conversion circuit 220 , a filter capacitor 240 and an input rectifier circuit 250 are included.
  • the functions of the first-stage conversion circuit 210 and the second-stage conversion circuit 220 are the same as those shown in FIG. 2 , and will not be repeated here.
  • the filter capacitor 240 is connected to the output port of the first-stage conversion circuit 210 .
  • the filter capacitor 240 is connected to the input port of the conversion circuit 220 of the second stage.
  • the capacity of the filter capacitor is smaller than the preset capacitance value.
  • the preset capacitance value is the capacitance value of the capacitor with the same filtering capability.
  • the volume of the filter capacitor will also be reduced accordingly.
  • FIG. 4 is a schematic structural diagram of a power supply device provided based on the embodiment shown in FIG. 3 .
  • a first-stage conversion circuit 210 a second-stage conversion circuit 220 , a first filter capacitor 241 and a second filter capacitor 242 are included.
  • the setting method of the first filter capacitor 241 and the second filter capacitor 242 in parallel can be replaced by the method of setting a single capacitor as shown in FIG. 3 .
  • the designer can choose one of the setting methods in Figure 3 and Figure 4 to select the actual required filter capacitor arrangement.
  • the setting method of the filter capacitor shown in FIG. 3 is a setting method in which only one filter capacitor is arranged in the power supply device.
  • the setting method of the filter capacitor shown in FIG. 4 is a setting method of setting a plurality of filter capacitors in the power supply device.
  • the power supply device may connect multiple filter capacitors in parallel between the first-stage conversion circuit 210 and the second-stage conversion circuit 220 therein.
  • the designer can connect N-1 filter capacitors in parallel at both ends of the first filter capacitor 241 according to the design method shown in FIG. Both sides of the input port.
  • the filter capacitor may be one of a film capacitor, a multi-layer ceramic capacitor (MLCC, Multi-Layer Ceramic Capacitors), a chip capacitor or an electrolytic capacitor.
  • the filter capacitor may be configured as a multilayer ceramic capacitor.
  • FIG. 5 is a schematic diagram of a power supply device provided by an embodiment of the present application.
  • a rectifier unit 511 a first-stage conversion circuit 51 , a second-stage conversion circuit 52 and a valley filling circuit are included.
  • the ranges included in the first-stage conversion circuit 51 and the second-stage conversion circuit 52 are shown by dashed-line boxes, and the valley filling circuit is the connection between the electrical connection point A and the electrical connection point B and the secondary winding n2. connected electrical paths.
  • the rectifying unit 511 is used to receive alternating current, which may be an input to a power supply device. That is, the alternating current may be the commercial power that the power supply device obtains from the socket through the plug. After the rectified power supply 511 obtains the commercial power, the rectification unit can convert the AC voltage into the first pulsating DC voltage. It should be noted that the first pulsating DC voltage may be the voltage between the electrical connection point C and the electrical connection point D in FIG. 5 .
  • the first stage conversion circuit 51 the switch unit 512 and the voltage conversion unit 513 .
  • the switch unit 512 is used to connect the rectifier unit 511 and the transformer unit 513 .
  • the switch unit 512 includes a bridge-connected first switch unit Q1 , a second switch unit Q2 , a third switch unit Q3 and a fourth switch unit Q4 .
  • the switch unit 512 also includes a storage capacitor C1.
  • the energy storage capacitor C1 in addition to the function of energy storage, the energy storage capacitor C1 also has the function of filtering. It should be noted that the quantity of the energy storage capacitor C1 may be either one, or a plurality of energy storage capacitors connected in parallel with the energy storage capacitor C1 on the basis of setting the energy storage capacitor C1.
  • the transformer unit 513 is configured to convert the first pulsating DC voltage that has been chopped by the switching unit 512 into a second pulsating DC voltage.
  • the second pulsating DC voltage is lower than the first pulsating DC voltage. It should be noted that the second pulsating DC voltage is the voltage between the electrical connection point A and the electrical connection point B.
  • the transformer unit 513 includes a primary coil n1, a secondary coil n2, a secondary coil n3, a secondary coil n4 and a magnetic core.
  • a capacitor Cr is provided, and the capacitor Cr is a resonance capacitor.
  • the first function of the resonance point-on is to isolate the DC voltage and prevent the transformer unit 513 from entering a saturated state; the other function is to realize the soft switching of the switching units Q1-Q4 through resonance to reduce losses.
  • the first-stage conversion circuit may be a DCX circuit, which can compress the first pulsating DC voltage input by the rectifier unit 511 through the alternate working modes of full-bridge and half-bridge of the switching units Q1 to Q4 to compress the first pulsation The fluctuation range of the DC voltage.
  • the functions of the secondary coil n3 and the secondary coil n4 are to convert the electric energy input by the primary coil n1 into the transformer unit 513 to the second-stage transformer circuit 52 .
  • Both ends of the secondary coil n2 are connected to the valley filling circuit.
  • the first-stage conversion circuit shown in the embodiment of the present application can realize the function of a DC transformer, and convert high-voltage pulsating DC power into low-voltage pulsating output.
  • the voltage fluctuation range is in the range of 90V to 264V
  • the range of the low voltage is 90Vac to 130Vac
  • the range of the high voltage is 180Vac to 264Vac.
  • the first-stage conversion circuit when the first-stage conversion circuit adopts the LLC circuit topology, the first-stage conversion circuit can be equivalent to the following.
  • the DC voltage gain of the LLC resonant converter remains unchanged, which can be equivalent to a DC transformer. That is, the DC converter may be denoted as LLC-DCX or a DC transformer based on LLC resonant converter.
  • the optimal operating point of the first-stage variation circuit is the state where the switching frequency is equal to the resonant frequency. Among them, the first-stage conversion circuit works at the optimum point and can achieve extremely high conversion efficiency.
  • the valley filling circuit includes a storage capacitor Cbulk, a switch unit Qv, a first diode D1, a second diode D2 and a first inductor Lv.
  • the energy storage power supply in this application includes an energy storage capacitor Cbulk and a rectifier device, and the rectifier device is used to perform full-wave or half-wave rectification on the voltage output by the secondary coil n2.
  • the secondary winding n2 in the transformer unit 513 obtains electrical energy according to the alternating magnetic field generated by the transformer unit 513 .
  • the input end of the energy storage capacitor Cbulk is connected to the secondary winding n2 for storing the electric energy output by the secondary winding.
  • the valley filling circuit starts to work, the high-frequency switching of the switching unit Qv is chopped, and the first-level filter circuit is formed by the first inductor Lv and the first filter capacitor C2 or the second filter capacitor C3.
  • the first-level filter circuit is used to The voltage is filtered, and the second pulsating DC voltage with smaller pulsation is output.
  • the first diode D1 is connected to the input end of the secondary winding n2 and the energy storage capacitor Cbulk, and the first diode D1 is used to perform half-wave rectification on the voltage output by the secondary winding n2 to the valley filling circuit.
  • the second diode D2 is a freewheeling diode.
  • the second diode D2 is used to provide a freewheeling loop for the current of the first inductor Lv.
  • the valley filling circuit may be a Buck circuit, a Boost circuit, or any other circuit capable of providing power for the second-stage conversion circuit, which is not limited in this embodiment of the present application.
  • the valley filling circuit can be connected to the secondary winding n2 to obtain electrical energy, which is charged to the energy storage capacitor Cbulk after half-wave rectification by the first diode D1.
  • the switch unit Qv, the second diode D2 and the first inductor Lv form a buck circuit.
  • the buck circuit starts to work, and the energy storage capacitor Cbulk releases energy through the buck circuit, thereby pumping up the output voltage of the first-stage conversion circuit.
  • the output power of the power supply device is constant, since the input voltage of the second-stage conversion circuit does not have an extremely low voltage, the input current that needs to be obtained by the second-stage conversion circuit is reduced, and the volume of the second inductance LB is reduced. It is also reduced accordingly, which is beneficial to the reduction of the overall volume of the power supply device.
  • the output voltage of the first-stage conversion circuit is lower than the output voltage of the buck circuit, and naturally stops transmitting power to the second-stage conversion circuit, and the buck circuit maintains all the output power.
  • the first-stage conversion circuit stops outputting.
  • the valley filling circuit is connected to the first-stage conversion circuit, and when the voltage value of the pulsating DC voltage output by the first-stage conversion circuit is lower than the voltage threshold, electric energy is provided to make the voltage value of the pulsating DC voltage greater than or equal to the voltage threshold.
  • the second stage conversion circuit 52 includes a fifth switch unit S1, a sixth switch unit S2, a seventh switch unit S3, an eighth switch unit S4, a second inductor LB, a first filter capacitor C2, and a second filter capacitor C3, the third capacitor C4 and the fourth capacitor Co.
  • the first filter capacitor C2 and the second filter capacitor C3 are both used for filtering.
  • the second-stage conversion circuit 52 is a DC/DC circuit, and the function of the second-stage conversion circuit is to convert the low-voltage pulsating DC power output by the first-stage conversion circuit into a stable DC output for supplying electronic equipment.
  • the second-stage conversion circuit 52 adopts the Buck-Boost circuit to convert the input voltage higher than, lower than or equal to the output voltage value into a stable output voltage.
  • the structures of the first-stage conversion circuit and the second-stage conversion circuit shown in FIG. 5 are only schematic illustrations.
  • the first-stage conversion circuit can also use other DCX implementation forms, and the second-stage conversion circuit can also be other DC/DC circuit topologies.
  • the first-stage conversion circuit adopts a working mode of switching back and forth between the full-bridge and the half-bridge.
  • the first-stage conversion circuit adopts the full-bridge mode
  • the power supply device can maintain the second-stage conversion circuit to operate within a narrow input voltage variation range within a wide input voltage variation range, which facilitates the optimal design of the second-stage conversion circuit.
  • the first-stage conversion circuit adopts the full-bridge mode, so that the four switch units (ie, switch tubes) in the circuit work, and the fixed voltage gain is Z1, for example.
  • the first-stage conversion circuit adopts the half-bridge mode, and the fixed voltage gain is Z2, for example.
  • Z1 is required to be greater than Z2. Since the low-voltage AC power is supported by the high gain (ie, the gain of Z1 ) in the full-bridge mode, the final output voltage range of the first-stage conversion circuit can be controlled in a relatively narrow range.
  • FIG. 6 is a simulation waveform diagram provided based on the embodiment shown in FIG. 5 .
  • the curve 610 is used to represent the voltage across the storage capacitor Cbulk
  • the curve 620 is used to represent the AC rectified voltage when the valley filling circuit is not used
  • the curve 630 is used to represent the AC rectified voltage when the valley filling circuit is used.
  • the valley filling circuit does not work, the curve 620 and the curve 630 overlap, and the energy storage capacitor Cbulk charges energy and maintains the voltage.
  • the valley filling circuit starts to work.
  • the energy of the energy storage capacitor Cbulk passes through the valley filling circuit to the first filter capacitor C2 and the second filter capacitor C2.
  • Capacitor C3 is charged to effectively increase the valley voltage of the output voltage of the first-stage change circuit. Since the output voltage of the first-stage conversion circuit is lower than the output voltage of the valley-filling circuit, the body diode of the synchronous rectifier in the first-stage conversion circuit is reversely cut off.
  • the diode in the first conversion circuit is reversely cut off. From the curve change, the output voltage of the first-stage conversion circuit will remain stable, and will no longer drop to close to 0V along the curve 620 .
  • the power supply device provided by the present application can ensure that the input of the second-stage conversion circuit has a sufficiently high valley voltage through the valley filling circuit without using electrolytic capacitors or other large-capacity capacitors, thereby ensuring the power supply.
  • the power supply device can help reduce the size of the magnetic unit in the second-stage conversion circuit after increasing the valley voltage, thereby improving the efficiency and power density of the power supply device.
  • the valley filling circuit in the power supply device provided by the present application obtains electrical energy through the secondary winding on the transformer unit of the first-stage transformer circuit.
  • the energy storage unit used to store the electric energy can use a high-voltage ceramic capacitor, or use other high-density capacitors for energy storage.
  • the volume of the high-voltage ceramic capacitor can be controlled in a smaller size, and the new devices in the valley-fill circuit can be controlled in a smaller size. Therefore, the power supply device provided by this solution can improve the overall power density of the adapter. , reducing the size of the power supply device.
  • FIG. 7 is a flowchart of a circuit control method provided by an exemplary embodiment of the present application. This circuit control method can be applied to the control of the power supply device shown above.
  • the circuit control method includes:
  • Step 710 In response to the valley voltage value of the pulsating DC voltage output by the first-stage conversion circuit being less than or equal to the voltage threshold, the valley filling circuit is controlled to provide power so that the valley voltage value of the pulsating DC voltage is greater than or equal to the voltage threshold.
  • the power supply device may be provided with a component for monitoring the output voltage of the first-stage conversion circuit, and the component may be a logic circuit or a chip.
  • the power supply device controls the valley filling circuit to provide power to the output terminal of the first-stage conversion circuit.
  • Step 720 in response to the valley voltage value of the pulsating DC voltage output by the first-stage conversion circuit being greater than the voltage threshold, the valley filling circuit is controlled to stop supplying power.
  • the logic circuit or chip in the power supply device can continuously monitor the output voltage of the first-stage conversion circuit.
  • the valley-filling circuit is controlled to stop supplying power to the output end of the first-stage conversion circuit.
  • the circuit control method provided in this embodiment is applied to the power supply device provided by the embodiment of the present application, and the valley voltage value of the pulsating DC voltage output by the first-stage change circuit in the power supply device can be less than or equal to
  • the valley filling circuit is controlled to provide electrical energy to the output end of the first-stage conversion circuit; when the valley voltage value of the pulsating DC voltage output by the first-stage changing circuit in the power supply device is greater than the voltage threshold, the valley filling circuit is controlled to stop Power is supplied to the output of the first-stage conversion circuit.
  • the power supply device Since the power supply device has the ability to automatically control the operation of the valley filling circuit, the lowest value of the electrical signal obtained by the second-stage conversion circuit in the power supply device will be higher than the voltage threshold, which is helpful for the second-stage conversion circuit to directly process the electrical signal.
  • the signal thus obtains constant direct current, which is convenient for electronic equipment to directly use the electrical energy, so that the power supply device can automatically output constant direct current after the size of the power supply device is reduced, and it is convenient to provide constant direct current to electronic equipment.
  • FIG. 8 is a block diagram of a power supply system provided by an exemplary embodiment of the present application.
  • the power supply system may include the power supply device and electronic equipment provided in the above embodiments.
  • a power supply system 800 includes an electronic device 810 and a power supply device 820 .
  • the power supply device 820 may provide power to the electronic device 810 through a wired cable or a wireless induction coil.
  • the power supply system may be a scenario where a power adapter charges a smartphone, a tablet computer, a notebook computer, a smart watch, a cleaning robot, smart glasses, a Bluetooth speaker, a Bluetooth headset or a smart bracelet. It should be noted that the above charging scenarios are only exemplary descriptions, and do not limit the present application.
  • the power supply system further includes a cable matched with the power supply device, and the cable is used to connect the power supply device and the electronic equipment.
  • the electronic device 810 can either work with the power provided by the power supply device, or can charge the battery with the power provided by the power supply device.
  • the electronic device 810 may use the power to drive each built-in electronic unit to work, and the electronic unit may include various power-consuming components, which will not be repeated here.
  • the charging system provided by the present application can provide electrical energy through the power supply device with a reduced volume without changing the internal structure of the electronic device, thereby reducing the space occupied by the power supply device in the charging system and improving the performance of the charging system.
  • the convenience of charging electronic devices can provide electrical energy through the power supply device with a reduced volume without changing the internal structure of the electronic device, thereby reducing the space occupied by the power supply device in the charging system and improving the performance of the charging system.
  • the power supply device provided in the above embodiments executes the circuit control method
  • only the division of the above functional modules is used as an example for illustration.
  • the above functions can be allocated by different functional modules as required. , that is, dividing the internal structure of the device into different functional modules to complete all or part of the functions described above.
  • the power supply device provided in the above-mentioned embodiments and the circuit control method embodiments belong to the same concept, and the specific implementation process thereof is detailed in the method embodiments, which will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请实施例公开了一种电源提供装置、电路控制方法及供电系统,属于电源转换技术领域。本申请提供的电源提供装置,能够在不使用电解电容的情况下,通过填谷电路保证第二级变换电路有足够高的波谷电压,从而保证电源提供装置整体输出电压的稳定。另一方面,电源提供装置能够在提高波谷电压后帮助减小第二级变换电路中磁性单元尺寸,提高了电源提供装置的效率和功率密度。

Description

电源提供装置、电路控制方法及供电系统
本申请要求于2020年9月30日提交的申请号为202011066558.1、发明名称为“电源提供装置、电路控制方法及供电系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电源转换技术领域,特别涉及一种电源提供装置、电路控制方法及供电系统。
背景技术
以移动终端为代表的电子设备,在日常生活中给用户带来了诸多便利,却因需要频繁充电而造成使用的障碍。
相关技术中,电源提供装置的体积较大,导致不便于随身携带,影响电子设备随时充电。
在上述背景技术部分公开的信息,仅示意性加强对本申请背景的理解,并不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本申请实施例提供了一种电源提供装置、电路控制方法及供电系统,可以实现较小体积的电源提供装置的同时,使得电源提供装置能够提供波形平稳的直流输出。所述技术方案如下:
根据本申请的一方面内容,提供了一种电源提供装置,所述电源提供装置包括:
输入整流电路,用于将接收到的交流电转换为第一脉动直流电压;
第一级变换电路,与所述输入整流电路相连,用于将所述第一脉动直流电压转换为第二脉动直流电压;
填谷电路,与所述第一级变换电路连接,用于在所述第二脉动直流电压的电压值低于电压阈值时,提供电能,以使得所述第二脉动直流电压的电压值大于或等于所述电压阈值;
第二级变换电路,与所述第一级变换电路连接,用于将所述第二脉动直流电压转换为恒定直流电压并输出。
根据本申请的另一方面内容,提供了一种电路控制方法,应用于如上述电源提供装置中,所述方法包括:
响应于第一级变换电路输出的脉动直流电压的波谷电压值小于等于电压阈值,控制填谷电路提供电能,以使得所述脉动直流电压的波谷电压值大于或等于所述电压阈值;
响应于所述第一级变换电路输出的脉动直流电压的波谷电压值大于所述电压阈值,控制所述填谷电路停止提供电能。
根据本申请的另一方面内容,提供了一种供电系统,该供电系统包括电子设备和本申请实施例提供的电源提供装置,该电源提供装置用于向电子设备提供电能。一种可能的场景中,电子设备直接使用该电源提供装置提供的电能工作。另一种可能的场景中,电子设备将电源提供装置提供的电能充至电池中。或者,电子设备可以对电源提供装置提供的电能进行分流,一部分为正常工作供能,另一部分充至电池中。
根据本申请的另一方面内容,提供了一种计算机可读存储介质,所述存储介质中存储有至少一条指令,所述指令由处理器加载并执行以实现如本申请各个方面提供的电路控制方法。需要说明的是,本申请还可以通过硬件电路实现上述电路控制方法,本申请实施例对此不作限定。
根据本申请的一个方面,提供了一种计算机程序产品,该计算机程序产品包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述电路控制方面的各种可选实现方式中提供的方法。需要说明的是,本申请还可以通过硬件电路实现上述电路控制方法,本申请实施例对此不作限定。
附图说明
为了更清楚地介绍本申请实施例中的技术方案,下面将对本申请实施例 描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是相关技术提供的一种电源提供装置的结构示意图;
图2是本申请实施例示出的一种包括两级架构的电源提供装置的结构示意图;
图3是本申请实施例提供的一种电源提供装置的结构示意图;
图4是基于图3所示实施例提供的一种电源提供装置的结构示意图;
图5是本申请实施例提供的一种电源提供装置的原理图;
图6是基于图5所示实施例提供的一种仿真波形图;
图7是本申请一个示例性实施例提供的一种电路控制方法的流程图;
图8是本申请一个示例性实施例提供的充电系统的框图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请的描述中,需要理解的是,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。此外,在本申请的描述中,除非另有说明,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
在本申请实施例中,提供有如下技术方案:
一种电源提供装置,其中,所述电源提供装置包括:
输入整流电路,用于将接收到的交流电转换为第一脉动直流电压;
第一级变换电路,与所述输入整流电路相连,用于将所述第一脉动直流电压转换为第二脉动直流电压;
填谷电路,与所述第一级变换电路连接,用于在所述第二脉动直流电压的电压值低于电压阈值时,提供电能,以使得所述第二脉动直流电压的电压值大于或等于所述电压阈值;
第二级变换电路,与所述第一级变换电路连接,用于将所述第二脉动直流电压转换为恒定直流电压并输出。
可选地,所述第一级变换电路包括开关单元和变压单元;
所述变压单元,用于将经过所述开关单元斩波处理的所述第一脉动直流电压转变为所述第二脉动直流电压。
可选地,所述填谷电路包括储能单元和开关单元;
所述储能单元与所述变压单元的次级绕组的两端相连,用于获取所述变压单元提供的电能;
所述开关单元用于对所述储能单元输出的电压进行斩波。
可选地,所述变压单元设置在变压器中,所述变压器两侧设置有隔离板,所述隔离板用于分割所述变压器和其它元件的物理空间。
可选地,所述第一级变换电路包括至少一个滤波电容,所述滤波电容的容量小于预设电容值。
可选地,所述填谷电路还包括第一二极管、第二二极管和电感;
所述第一二极管位于所述次级绕组的一端和所述储能单元的输入端之间,用于对所述次级绕组输入的电压信号进行半波整流;
所述第二二极管是续流二极管;
所述电感连接在所述开关单元与所述第一级变换电路的输出端之间,用于与所述滤波电容组成一级滤波电路,所述一级滤波电路用于对经过所述斩波的电压进行滤波。
可选地,所述滤波电容连接在所述第一级变换电路的输出端口。
可选地,所述滤波电容包括以下电容中的至少一种:薄膜电容、陶瓷电 容、钽电容或电解电容。
可选地,所述输入整理电路与外部交流输入相接,所述外部交流输入用于向所述电源提供装置输入所述交流电。
可选地,所述输入整理电路与所述外部交流输入相接的部分是三相端口或两相端口。
可选地,所述第二级变换电路与配套的线缆的第一端口相连,所述线缆通过第二端口向外部提供所述恒定直流电。
可选地,所述第一端口包括串行通用总线USB(Universal Serial Bus,通用串行总线)端口。
可选地,所述线缆中包括功率管理芯片,所述功率管理芯片用于管理流经所述线缆的电流的功率。
可选地,所述第二端口包括Type-C接口、micro USB接口或雷电lightning接口中的一种。
可选地,所述电源提供装置中包括三层印刷电路板PCB(Printed Circuit Board,印刷电路板),分别为第一PCB、第二PCB和第三PCB;
所述第一PCB用于连接所述变压单元;
所述第二PCB中设置有所述第二级变换电路的输出端口,所述第二PCB设置于所述第一PCB和所述第三PCB之间的空间位置;
所述第三PCB是所述电源提供装置的主板。
可选地,在所述滤波电容的尺寸大于阈值的情况下,所述滤波电容连接在所述第一PCB上,或者,所述滤波电容连接在所述第三PCB上,第二PCB在所述滤波电容所占空间处呈镂空状。
本申请提供的电源提供装置,能够在不使用电解电容或其它大容量电容的情况下,通过填谷电路保证第二级变换电路有足够高的波谷电压,从而保证电源提供装置整体输出电压的稳定。另一方面,电源提供装置能够在提高波谷电压后帮助减小第二级变换电路中磁性单元尺寸,提高了电源提供装置的效率和功率密度。
为了便于理解,下面对本申请实施例涉及的名词进行介绍。
交流电压:本申请实施例中输入到电源提供装置中的市电。该交流电压的瞬时值可以是交流电压值。
脉动直流电压:本申请实施例中指示的第一级变换电路输出的电信号,该电信号的数值是脉动直流电压值。在没有填谷电路的干预情况下,脉动直流电压中的波谷电压值将趋近0或者等于0。
在本领域中常见的电源提供装置中,通常设置有体积较大的储能单元在存储电能。因此,较大的储能单元使得电源提供装置的体积较大。
请参见图1,图1是相关技术提供的一种电源提供装置的结构示意图。在图1中,电源提供装置100包括:整流单元110、开关单元120、变压器130、滤波单元140、控制单元150和储能单元160。
需要说明的是,电源提供装置100整体的功能是将作为交流电压(Alternating Current,AC)的市电转换为指定形式的直流电压。在此基础上,本申请将在下面分别介绍各个单元在电源提供装置100工作时的作用。
整流单元110用于将电源提供装置100接收的交流电压进行整流。整流单元110整流后的电压S1是脉动直流电压,详情可参见图1。
在电源提供装置100得到电压S1后,开关单元120、变压器130和滤波单元140将对S1进行转换,从而将作为脉动直流电的S1转换为稳定的直流电S4。其中,电压S1中的一部分将充能至储能单元160,通常该储能单元是电解电容。电压S1经过电解电容滤波,得到波动较小的直流电压。该电解电容在交流输入的电压较低时,利用自身存储的能力保持稳定的输出电压。
控制单元150分别对电源提供装置100输出的电压采样,及对开关单元120的电流采样,并根据电压采样信号和电流采样信号,对开关单元120的开关方式以及开断各自持续的时长进行控制,以控制电源提供装置100的输出电压和/或输出电流。
可选地,在本申请的一种可能的方式中,电源提供装置可以是电源适配器(adapter)。
然而,在电源转换技术领域中,由于电解电容的体积较大,造成电源提供装置的体积通常较大,不利于电子设备的用户随身携带。若用户随身携带,则电源提供装置将占用较大空间,影响用户携带其他物件。若用户因体积较大放弃随身携带该电源提供装置,则电子设备将会因无法及时充电而无法持 续使用。
在本申请中,将会采用以下技术手段减小电源提供装置的体积。在该设计方案中,提供一种包括两级架构的电源提供装置。请参见图2,图2是本申请实施例示出的一种包括两级架构的电源提供装置的结构示意图。
在图2中,电源提供装置200包括第一级变换电路210、第二级变换电路220、填谷电路230、输入端口2A、输出端口2B和输入整流电路250。
在本申请实施例中,输入整流电路250用于将接收到的交流电转换为第一脉动直流电压。其中,输入整流电路250可以是整流桥BD1,整流桥BD1用于连接市电。在本技术领域中,市电通常为交流电压,区别在于地区不同,交流电的电压和频率有所区别。示意性的,在当前技术发展的场景中,市电的电压取值范围在100V至240V之间,市电的频率取值在50Hz至60Hz之间。示意性的,第一级变换电路210可以是DCX电路。
在第一级变换电路210接收整流桥BD1输出的第一脉动直流电压,转换为第二脉动直流电压。需要说明的是,第一级变换电源210单独输出的第二脉动直流电压的最低值是趋近0或者等于0。其中,第一级变换电路210用于对第一脉动直流电压进行高效的隔离变换,就可以是升压变换,也可以是降压变换或者是其它变换,可以根据具体的设计参数来设定。
需要说明的是,本申请实施例在第一级变换电路210中没有设置电解电容,无需通过电解电容稳定输出电压。在第一级变换电路210中,存在对输入的交流电压进行升压的单元,使得无论输入的AC电压是在低压范围还是高压范围,第一级变换电路210都能够在输出端提供相似范围的母线电压,从而为输出电压提供电压支持。另外,在填谷电路的存在下,电源提供装置中无需设置较大体积的电解电容,可以设置薄膜电容、陶瓷电容、钽电容或体积较小的电解电容,进而减少了电源提供装置的体积。需要说明的是,电容也可以是其它形态的类型,本申请实施例对此不作限定。
在上述结构中,因为本申请实施例提供的方案去除了电解电容,第一级变换电路210原本输出的第二脉动直流电压的最低值接近于0,电压抖动的幅值过大,不利于后续电路输出恒定直流电。需要说明的是,第二级变换电路220的输入电压值等于第一级变换电路210输出的电压值。
在此基础上,本申请通过在第二级变换电路的输入端增设填谷电路,来 实现第二变换电路的输入电压中的最低电压值大于电压阈值的效果。在脉动直流电压的波形上,第二级变换电路220输出的波谷部分在填谷电路的作用下维持在电压阈值的数值。通俗的来说,相当于脉动直流电压的波谷被填平。因此,本申请提供的电源提供装置中的填谷电路具有脉动直流电的电压填谷功能。
在此基础上,与第一级变换电路210连接的第二级变换电路220用于将第一级变换电路210输出的脉动直流电压进行变换,得到恒定直流电压,并将恒定直流电输出,以满足各式电子设备的用电需求。
在一种可能的场景中,电子设备中设置有预处理回路,该预处理回路用于接收电源提供装置输入到电子设备中的电信号。当预处理回路仅能接收恒定直流电压时,本申请所示的电源提供装置能够为该电子设备提供可用稳定的电能,保障电子设备及时补充电能。
在电源提供装置的实际装配中,还可以包括驱动电路、电压检测电路、电流检测电路和MCU控制电路。
示意性的,当电源提供装置为了减小体积而去除电解电容时,对应的电子设备需要能够接受脉动直流电。在该场景中,缩小体积的电源提供装置仅能够为能够接受脉动直流电压的电子设备进行充电。在生活中,用户在外旅行、学习或者出差时,通常携带有智能手机、平板电脑和笔记本电脑等多个电子设备。上述电子设备均需要各自对应的电源提供装置进行充电,因此,造成用户出门携带电源提供装置的数量较多,占用空间较大。若缩小体积的电源提供装置仅能够为上述一种指定的设备充电,例如,缩小体积后的电源提供装置仅能够为事先经过对应设计的智能手机充电,原因在于该智能手机能够接受并使用脉动直流电。然而,用户使用的多个电子设备较大可能不都是基于缩小体积的电源提供装置的标准进行制造。因此,本申请在缩小电源提供装置的体积的情况下,设计了一种能够输出恒定直流电压的电源提供装置。当缩小体积的电源提供装置输出的电压是恒定直流电压时,用户可以通过该电源提供装置为多个电子设备进行充电,便于用户仅携带一个小体积的电源提供装置,便可满足随身携带的多个电子设备的充电需求。
需要说明的是,基于图2所提供的电源适配器200。变压单元可以设置在 变压器中,变压器两侧设置有隔离板,隔离板用于分割变压器和其它元件的物理空间。
可选地,输入整理电路与外部交流输入相接,从外部交流输入的端口中获取交流电。在另一种可能的方式中,输入整理电路与外部交流输入相接的部分是三相端口或两相端口。
可选地,在电源适配器200的输出端,第二级变换电路与配套的线缆的第一端口相连,线缆通过第二端口向外部提供恒定直流电。示意性地,配套的线缆可以是数据线。
可选地,第一端口包括串行通用总线USB端口。线缆中包括功率管理芯片,功率管理芯片用于管理流经线缆的电流的功率。第二端口包括Type-C接口、micro USB接口或雷电lightning接口中的一种。
可选地,电源适配器200中的器件可以包括三层印刷电路板PCB,分别为第一PCB、第二PCB和第三PCB;第一PCB用于连接变压单元;第二PCB中设置有第二级变换电路的输出端口,第二PCB设置于第一PCB和第三PCB之间的空间位置;第三PCB是电源提供装置的主板。
可选地,在滤波电容的尺寸大于阈值的情况下,滤波电容连接在第一PCB上,或者,滤波电容连接在第三PCB上,第二PCB在滤波电容所占空间处呈镂空状。其中,阈值可以是体积阈值、高度阈值或者其它尺寸阈值中的一种,本申请对此不作限制。
在本申请提供的电源提供装置中,还可以在第一级变换电路中增加至少一个滤波电容。需要说明的是,该滤波电容的容值可以根据设计需求来自由调整。在一种可能的实现方式中,若存在至少两个滤波电容,则至少两个滤波电容可以按照并联的方式设置在第一级变换电路的输出端。
请参见图3,图3是本申请实施例提供的一种电源提供装置的结构示意图。在图3中,包括第一级变换电路210、第二级变换电路220、滤波电容240和输入整流电路250。
其中,第一级变换电路210和第二级变换电路220的用于与图2中所示的内容相同,本处不再赘述。
滤波电容240连接在第一级变换电路210的输出端口。换言之,滤波电 容240连接在第二级变换电路220的输入端口。其中,滤波电容的容量小于预设电容值。
需要说明的是,预设电容值是同等滤波能力的电容的电容值。当滤波电容的电容值较小时,滤波电容的体积也将相应的减小。
相似的,请参见图4,图4是基于图3所示实施例提供的一种电源提供装置的结构示意图。在图4中,包括第一级变换电路210、第二级变换电路220、第一滤波电容241和第二滤波电容242。需要说明的是,第一滤波电容241和第二滤波电容242并联的设置方式可以通过如图3中单独设置一个电容的方式来替代。基于设置电容的空间和电路排布方式,设计人员可以在图3和图4的设置方式中择一选择实际需要的滤波电容排布方式。
需要说明的是,图3所示的滤波电容的设置方式是电源提供装置中仅设置一个滤波电容的设置方式。图4所示的滤波电容的设置方式是电源提供装置中设置多个滤波电容的设置方式。在电源提供装置中需要设置两个以及两个以上的滤波电容时,电源提供装置可以在其中的第一级变换电路210和第二级变换电路220之间并联多个滤波电容。
比如设计人员需要设置N个滤波电容,则设计人员可以根据图4的设计方式在第一滤波电容241两端并联N-1个数的滤波电容,一共N电容并联在第二级变换电路220的输入端口两侧。
示意性的,在滤波电容的一种实现方式中,滤波电容可以是薄膜电容、多层陶瓷电容(MLCC,Multi-Layer Ceramic Capacitors)、贴片电容或电解电容中的一种。在本申请实施例中,滤波电容可以被设置为多层陶瓷电容。
请参见图5,图5是本申请实施例提供的一种电源提供装置的原理图。在图5中,包括整流单元511、第一级变换电路51、第二级变换电路52和填谷电路。需要说明的是,第一级变换电路51和第二级变换电路52包括的范围均通过虚线框示出,填谷电路是电性连接点A和电性连接点B之间与次级绕组n2相连的电性通路。
第一,整流单元511,用于接收交流电,该交流电可以是对于电源提供装置的输入。也即,该交流电可以是电源提供装置通过插头从插座中获取的市电。在整流电源511获取到市电后,整流单元可以将该交流电压转换为第一 脉动直流电压。需要说明的是,第一脉动直流电压可以是图5中电性连接点C与电性连接点D之间的电压。
第二,第一级变换电路51,开关单元512和变压单元513。
(1)开关单元512,用于连接整流单元511和变压单元513。如图5所示,开关单元512包括桥接的第一开关单元Q1、第二开关单元Q2、第三开关单元Q3和第四开关单元Q4。在开关单元512中,还包括储能电容C1。示例性的,该储能电容C1除了储能的作用,还具备滤波的作用。需要说明的是,储能电容C1的数量既可以是一个,也可以是在设置储能电容C1的基础上,设置与储能电容C1并联的多个储能电容。
(2)变压单元513,用于将经过开关单元512斩波处理的第一脉动直流电压转变为第二脉动直流电压。可选地,本申请实施例中第二脉动直流电压低于第一脉动直流电压。需要说明的是,第二脉动直流电压是电性连接点A和电性连接点B之间的电压。
其中,变压单元513上包括初级线圈n1、次级线圈n2、次级线圈n3、次级线圈n4和磁芯。
在初级线圈n1与第三开关单元Q3,或者,初级线圈n1与第四开关单元Q4之间的连接点的通路上,设置有电容Cr,电容Cr是谐振电容。该谐振点通的第一个作用是隔离直流电压,防止变压单元513进入饱和状态;另外一个作用是通过谐振实现开关单元Q1~开关单元Q4的软开关,减小损耗。
在本实施例中,第一级变换电路可以是DCX电路,能够将整流单元511输入的第一脉动直流电压,通过开关单元Q1至Q4的全桥和半桥交替的工作方式,压缩第一脉动直流电压的波动范围。
次级线圈n3和次级线圈n4的作用是将初级线圈n1输入到变压单元513中的电能,转换到第二级变换电路52。
次级线圈n2的两端与填谷电路相连。
示意性的,本申请实施例所示的第一级变换电路可以实现直流变压器的功能,将高压脉动直流电转换为低压脉动输出。可选的,若电压波动范围在90V至264V的区间,则低电压的范围是90Vac至130Vac,高电压的范围是180Vac至264Vac。
示意性的,当第一级变换电路采用LLC电路拓扑时,第一级变换电路可 以做如下等效。当LLC谐振变换器的开关频率固定且与谐振频率相等时,该LLC谐振变换器的直流电压增益保持不变,能够等效成为一个直流变压器。也即,该直流变换器可标注为LLC-DCX或者基于LLC谐振变换器的直流变压器。第一级变化电路的最优工作点是开关频率与谐振频率相等的状态。其中,第一级变换电路工作在最优点,并可以实现极高的转换效率。
第三,填谷电路包括储能电容Cbulk、开关单元Qv、第一二极管D1、第二二极管D2和第一电感Lv。
需要说明的是,本申请中的储能电源包括储能电容Cbulk和整流器件,整流器件用于对次级线圈n2输出的电压进行全波或者半波整流。
其中,变压单元513中的次级绕组n2根据变压单元513产生的交变磁场获取电能。储能电容Cbulk的输入端与次级绕组n2相连,用于存储次级绕组输出的电能。在填谷电路开始工作后,开关单元Qv高频开关斩波,经第一电感Lv和第一滤波电容C2或第二滤波电容C3组成一级滤波电路,一级滤波电路用于对经过斩波的电压进行滤波,输出脉动较小的第二脉动直流电压。
可选的,第一二极管D1连接次级绕组n2和储能电容Cbulk的输入端,该第一二极管D1用于对次级绕组n2输出到填谷电路中的电压进行半波整流。其中,第二二极管D2是续流二极管。其中,第二二极管D2用于为第一电感Lv的电流提供续流回路。
可选地,填谷电路可以是Buck电路、Boost电路或其它能够实现为第二级变换电路提供电能的电路,本申请实施例对此不作限制。
在一种实际应用场景中,填谷电路能够与次级绕组n2相连获取电能,该电能经过第一二极管D1的半波整流后给储能电容Cbulk充能。开关单元Qv、第二二极管D2和第一电感Lv组成buck电路。当第一级变换电路输出电压低于某一设定值时,buck电路启动工作,储能电容Cbulk经过buck电路释放电能,从而泵高第一级变换电路的输出电压。也即在电源提供装置输出的功率恒定的情况下,由于第二级变换电路的输入电压不存在极端低的电压,因此第二级变换电路需要获得的输入电流减小,第二电感LB的体积也相应地减小,有利于电源提供装置整体体积的减小。
需要说明的是,当上述buck电路工作时,第一级变换电路输出的电压低 于buck电路输出电压而自然停止向第二级变换电路传输功率,由buck电路维持全部的输出功率。其中,由于第一级变换电路中存在整流作用的二极管,在该二极管处于反向截止状态时,第一级变换电路停止输出。在另一种描述中,填谷电路与第一级变换电路连接,在第一级变换电路输出的脉动直流电压的电压值低于电压阈值时,提供电能以使脉动直流电压的电压值大于或等于电压阈值。
第三,第二级变换电路52,包括第五开关单元S1、第六开关单元S2、第七开关单元S3、第八开关单元S4、第二电感LB、第一滤波电容C2、第二滤波电容C3、第三电容C4和第四电容Co。
其中,第一滤波电容C2和第二滤波电容C3均用于滤波。
在一种可能的应用场景中,第二级变换电路52是DC/DC电路,该第二级变换电路的作用是将第一级变换电路输出的低压脉动直流电转换为稳定的直流输出,供给电子设备。在图5所示的场景中第二级变换电路52采用升降压电路Buck-Boost,将高于、低于或者等于输出电压值的输入电压转换为稳定的输出电压。需要说明的是,图5中所示的第一级变换电路和第二级变换电路的结构仅为示意性说明。第一级变换电路也可以使用其它的DCX实现形式,第二级变换电路也可以是其它DC/DC电路拓扑。
示意性的,在图5所示的电路工作时,第一级变换电路采用全桥和半桥来回切换的工作模式。当输入第一级变换电路的电流属于低压范围时,第一级变换电路采用全桥模式;当输入第一级变换电路的电流属于高压范围时,第一级变换电路采用半桥模式。基于上述设计模式,电源提供装置能够在较宽的输入电压变化范围内,维持第二级变换电路工作在较窄的输入电压变化范围,便于第二级变换电路的优化设计。
例如,当输入的交流电压处于低压范围时,第一级变换电路采用全桥模式,令电路中的4个开关单元(也即开关管)工作,固定的电压增益比如是Z1。同一场景中,当输入的交流电压处于高压范围时,第一级变换电路采用半桥模式,固定的电压增益比如是Z2。在本申请中,要求Z1大于Z2。由于较低电压的交流电得到全桥模式支持的高增益(也即Z1的增益),因此,最终第一级变换电路输出的电压范围能够被控制在相对较窄的范围。
为了说明图5所示的电源提供装置中第一级变换电路的输出电压如何被填谷,本申请实施例将通过图6所示的示例进行介绍。图6是基于图5所示实施例提供的一种仿真波形图。在图6中,曲线610用于表示储能电容Cbulk两端的电压,曲线620用于表示没有采用填谷电路时的交流整流电压,曲线630用于表示采用了填谷电路时的交流整流电压。
在t1时间段,填谷电路不工作,曲线620和曲线630重合,储能电容Cbulk充电储能并保持电压。当第一级变换电路输出电压下降到设定值V1时,填谷电路启动工作,在随后的t2时间段内,储能电容Cbulk的能量经过填谷电路给第一滤波电容C2和第二滤波电容C3充能,有效提高第一级变化电路输出电压的波谷电压。由于第一级变换电路的输出电压低于填谷电路的输出电压,第一级变换电路中的同步整流管的体二极管反向截止。若第一级变换电路中未使用同步管,则第一变换电路中的二极管反向截止。从曲线变化上看,第一级变换电路的输出电压将维持平稳,不再沿曲线620下降至接近0V。
综上所述,本申请提供的电源提供装置,能够在不使用电解电容或其它大容量电容的情况下,通过填谷电路保证第二级变换电路输入有足够高的波谷电压,从而保证电源提供装置整体输出电压的稳定。另一方面,电源提供装置能够在提高波谷电压后帮助减小第二级变换电路中磁性单元尺寸,提高了电源提供装置的效率和功率密度。
可选的,本申请提供的电源提供装置中的填谷电路,通过在第一级变换电路的变压单元上的次级绕组获取到电能。其中,用于存储该电能的储能单元可以采用高压瓷片电容,或者采用其他高密度电容进行储能。相对而言,高压瓷片电容的体积可控制在较小尺寸,填谷电路中新增的器件均可控制在较小的尺寸,因此,本方案提供的电源提供装置能够提升适配器的整体功率密度,降低电源提供装置的体积。
请参考图7,图7是本申请一个示例性实施例提供的一种电路控制方法的流程图。该电路控制方法可以应用在控制上述所示的电源提供装置的过程中。在图7中,电路控制方法包括:
步骤710,响应于第一级变换电路输出的脉动直流电压的波谷电压值小于等于电压阈值,控制填谷电路提供电能,以使得脉动直流电压的波谷电压值 大于或等于电压阈值。
在本申请实施例中,电源提供装置可以设置有监控第一级变换电路的输出电压的组件,该组件可以是一个逻辑电路也可以是一个芯片。当电源提供装置中的第一级变化电路输出的脉动直流电压的波谷电压值小于等于电压阈值时,电源提供装置控制填谷电路向第一级变换电路的输出端提供电能。
步骤720,响应于第一级变换电路输出的脉动直流电压的波谷电压值大于电压阈值,控制填谷电路停止提供电能。
相应的,电源提供装置中的逻辑电路或者芯片可以持续监控第一级变换电路的输出电压。当电源提供装置中的第一级变化电路输出的脉动直流电压的波谷电压值大于电压阈值时,控制填谷电路停止向第一级变换电路的输出端提供电能。
综上所述,本实施例提供的电路控制方法,应用在本申请实施例提供的电源提供装置中,能够在电源提供装置中的第一级变化电路输出的脉动直流电压的波谷电压值小于等于电压阈值时,控制填谷电路向第一级变换电路的输出端提供电能;在电源提供装置中的第一级变化电路输出的脉动直流电压的波谷电压值大于电压阈值时,控制填谷电路停止向第一级变换电路的输出端提供电能。由于电源提供装置具有自动控制填谷电路工作的能力,使得电源提供装置中的第二级变换电路得到的电信号的最低值将高于电压阈值,有助于第二级变换电路直接处理该电信号从而获得恒定直流电,便于电子设备直接使用该电能,从而在电源提供装置在减小体积后能够自动输出恒定直流电,便于向电子设备提供恒定直流电。
请参考图8,图8是本申请一个示例性实施例提供的一种供电系统的框图。该供电系统可以包括上述实施例提供的电源提供装置和电子设备。在图8中,供电系统800包括电子设备810和电源提供装置820。
其中,电源提供装置820可以通过有线线缆或者无线感应线圈向电子设备810提供电能。
示意性的,该供电系统可以是电源适配器给智能手机、平板电脑、笔记本电脑、智能手表、扫地机器人、智能眼镜、蓝牙音箱、蓝牙耳机或智能手环充电的场景。需要说明的是,上述充电场景仅为示例性说明,不对本申请 形成限定。
可选地,供电系统还包括与电源提供装置配套的线缆,线缆用于连接电源提供装置和电子设备。
可选的,电子设备810既可以通过电源提供装置提供的电能工作,也可以将电源提供装置提供的电能充至电池中。在电子设备810通过电源提供装置提供的电能工作时,电子设备可以是通过该电能驱动内置的各个电子单元工作,电子单元可以包括各个耗电的元器件,本处不再赘述。
综上所述,本申请提供的充电系统,能够在电子设备不改变其内部结构的情况下,通过缩小体积后的电源提供装置提供电能,降低了充电系统中电源提供装置所占用的空间,提高了电子设备充电的便利性。
需要说明的是:上述实施例提供的电源提供装置在执行电路控制方法时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的电源提供装置与电路控制方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的能够实现的示例性的实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种电源提供装置,其中,所述电源提供装置包括:
    输入整流电路,用于将接收到的交流电转换为第一脉动直流电压;
    第一级变换电路,与所述输入整流电路相连,用于将所述第一脉动直流电压转换为第二脉动直流电压;
    填谷电路,与所述第一级变换电路连接,用于在所述第二脉动直流电压的电压值低于电压阈值时,提供电能,以使得所述第二脉动直流电压的电压值大于或等于所述电压阈值;
    第二级变换电路,与所述第一级变换电路连接,用于将所述第二脉动直流电压转换为恒定直流电压并输出。
  2. 根据权利要求1所述的电源提供装置,所述第一级变换电路包括开关单元和变压单元;
    所述变压单元,用于将经过所述开关单元斩波处理的所述第一脉动直流电压转变为所述第二脉动直流电压。
  3. 根据权利要求2所述的电源提供装置,所述填谷电路包括储能单元和开关单元;
    所述储能单元与所述变压单元的次级绕组的两端相连,用于获取所述变压单元提供的电能;
    所述开关单元用于对所述储能单元输出的电压进行斩波。
  4. 根据权利要求2所述的电源提供装置,所述变压单元设置在变压器中,所述变压器两侧设置有隔离板,所述隔离板用于分割所述变压器和其它元件的物理空间。
  5. 根据权利要求3所述的电源提供装置,所述第一级变换电路包括至少一个滤波电容,所述滤波电容的容量小于预设电容值。
  6. 根据权利要求5所述的电源提供装置,所述填谷电路还包括第一二极 管、第二二极管和电感;
    所述第一二极管位于所述次级绕组的一端和所述储能单元的输入端之间,用于对所述次级绕组输入的电压信号进行半波整流;
    所述第二二极管是续流二极管;
    所述电感连接在所述开关单元与所述第一级变换电路的输出端之间,用于与所述滤波电容组成一级滤波电路,所述一级滤波电路用于对经过所述斩波的电压进行滤波。
  7. 根据权利要求5所述的电源提供装置,所述滤波电容连接在所述第一级变换电路的输出端口。
  8. 根据权利要求5所述的电源提供装置,所述滤波电容包括以下电容中的至少一种:薄膜电容、陶瓷电容、钽电容或电解电容。
  9. 根据权利要求8所述的电源提供装置,所述输入整理电路与外部交流输入相接,所述外部交流输入用于向所述电源提供装置输入所述交流电。
  10. 根据权利要求9所述的电源提供装置,所述输入整理电路与所述外部交流输入相接的部分是三相端口或两相端口。
  11. 根据权利要求8所述的电源提供装置,所述第二级变换电路与配套的线缆的第一端口相连,所述线缆通过第二端口向外部提供所述恒定直流电。
  12. 根据权利要求11所述的电源提供装置,所述第一端口包括串行通用总线USB端口。
  13. 根据权利要求11所述的电源提供装置,所述线缆中包括功率管理芯片,所述功率管理芯片用于管理流经所述线缆的电流的功率。
  14. 根据权利要求11所述的电源提供装置,所述第二端口包括Type-C接 口、micro USB接口或雷电lightning接口中的一种。
  15. 根据权利要求8所述的电源提供装置,所述电源提供装置中包括三层印刷电路板PCB,分别为第一PCB、第二PCB和第三PCB;
    所述第一PCB用于连接所述变压单元;
    所述第二PCB中设置有所述第二级变换电路的输出端口,所述第二PCB设置于所述第一PCB和所述第三PCB之间的空间位置;
    所述第三PCB是所述电源提供装置的主板。
  16. 根据权利要求15所述的电源提供装置,在所述滤波电容的尺寸大于阈值的情况下,所述滤波电容连接在所述第一PCB上,或者,所述滤波电容连接在所述第三PCB上,第二PCB在所述滤波电容所占空间处呈镂空状。
  17. 一种电路控制方法,其中,应用于如权利要求1所述的电源提供装置中,所述方法包括:
    响应于第一级变换电路输出的脉动直流电压的波谷电压值小于等于电压阈值,控制填谷电路提供电能,以使得所述脉动直流电压的波谷电压值大于或等于所述电压阈值;
    响应于所述第一级变换电路输出的脉动直流电压的波谷电压值大于所述电压阈值,控制所述填谷电路停止提供电能。
  18. 一种供电系统,其中,所述供电系统包括电子设备和如权利要求1至16任一所述的电源提供装置,所述电源提供装置用于向所述电子设备提供的电能。
  19. 根据权利要求18所述的供电系统,所述供电系统还包括与所述电源提供装置配套的线缆,所述线缆用于连接所述电源提供装置和所述电子设备。
  20. 根据权利要求18所述的供电系统,其中,所述电子设备将所述电源提供装置提供的电能存储在电池中;
    和/或,
    所述电子设备通过所述电源提供装置提供的电能驱动内部的电子单元工作。
PCT/CN2021/108765 2020-09-30 2021-07-27 电源提供装置、电路控制方法及供电系统 WO2022068346A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21874008.2A EP4203290A4 (en) 2020-09-30 2021-07-27 POWER SUPPLY APPARATUS, CIRCUIT CONTROL METHOD AND POWER SUPPLY SYSTEM
US18/147,907 US20230170783A1 (en) 2020-09-30 2022-12-29 Power supply device, circuit control method, and power supply system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011066558.1A CN112234850B (zh) 2020-09-30 2020-09-30 电源提供装置、电路控制方法及供电系统
CN202011066558.1 2020-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/147,907 Continuation US20230170783A1 (en) 2020-09-30 2022-12-29 Power supply device, circuit control method, and power supply system

Publications (1)

Publication Number Publication Date
WO2022068346A1 true WO2022068346A1 (zh) 2022-04-07

Family

ID=74119662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108765 WO2022068346A1 (zh) 2020-09-30 2021-07-27 电源提供装置、电路控制方法及供电系统

Country Status (4)

Country Link
US (1) US20230170783A1 (zh)
EP (1) EP4203290A4 (zh)
CN (1) CN112234850B (zh)
WO (1) WO2022068346A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112234850B (zh) * 2020-09-30 2023-01-06 Oppo广东移动通信有限公司 电源提供装置、电路控制方法及供电系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109599924A (zh) * 2017-10-02 2019-04-09 施耐德电器工业公司 电气供电设备及包括其的壁式插头
CN110350799A (zh) * 2019-07-05 2019-10-18 北京无线电测量研究所 Dc-dc电源变换器拓扑结构电路
US20200153178A1 (en) * 2018-11-09 2020-05-14 Long Zhang Wall mounted power supply device
CN112234850A (zh) * 2020-09-30 2021-01-15 Oppo广东移动通信有限公司 电源提供装置、电路控制方法及供电系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4441214C2 (de) * 1994-11-19 1997-03-20 Bosch Gmbh Robert Aktive Filterschaltung
TWI481167B (zh) * 2012-10-19 2015-04-11 Lite On Technology Corp 切換式電源供應器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109599924A (zh) * 2017-10-02 2019-04-09 施耐德电器工业公司 电气供电设备及包括其的壁式插头
US20200153178A1 (en) * 2018-11-09 2020-05-14 Long Zhang Wall mounted power supply device
CN110350799A (zh) * 2019-07-05 2019-10-18 北京无线电测量研究所 Dc-dc电源变换器拓扑结构电路
CN112234850A (zh) * 2020-09-30 2021-01-15 Oppo广东移动通信有限公司 电源提供装置、电路控制方法及供电系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4203290A4

Also Published As

Publication number Publication date
US20230170783A1 (en) 2023-06-01
CN112234850A (zh) 2021-01-15
EP4203290A1 (en) 2023-06-28
CN112234850B (zh) 2023-01-06
EP4203290A4 (en) 2024-02-14

Similar Documents

Publication Publication Date Title
US20230283185A1 (en) Power source supplying apparatus, circuit control method, and power supply system
JPH02146962A (ja) 容量結合電源装置
JP2002272020A (ja) 非接触電力伝送装置及び非接触充電装置
EP4220928A1 (en) Power supply apparatus and charging method, system, and storage medium
Pervaiz et al. GaN-based high-power-density electrolytic-free universal input LED driver
JP2017517239A (ja) スイッチング電源及び該スイッチング電源を制御する方法
KR20140144013A (ko) 고전압 스위칭 전원장치
WO2022100196A1 (zh) 一种供电电源、电源提供方法及计算机存储介质
WO2022142803A1 (zh) 电源提供装置、充电方法及系统
WO2022068346A1 (zh) 电源提供装置、电路控制方法及供电系统
WO2019019297A1 (zh) 直流ups电源装置、系统及控制方法
CN212849939U (zh) 一种充电器
CN112072768B (zh) 一种小体积充电器
CN111740622B (zh) 一种单级pfc的llc电路
CN110995022A (zh) 一种直流脉冲负载开关电源
WO2022007577A1 (zh) 电源提供装置及充电控制方法
CN218678864U (zh) 一种小型他激式高压发生电路
CN218102961U (zh) 一种正负电压输出的开关电源
WO2022007668A1 (zh) 电源提供装置及充电控制方法
CN212137547U (zh) 双负电压输出电路和电子设备
WO2024119913A1 (zh) 供电系统及其控制方法、电子设备
CN217362651U (zh) 一种双备份供电系统
JPH07213066A (ja) 高力率スイッチング電源
WO2024125262A1 (zh) 开关电源电路、开关电源、电子设备及供电系统
WO2021134288A1 (zh) 电源提供装置及充电控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874008

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021874008

Country of ref document: EP

Effective date: 20230322

NENP Non-entry into the national phase

Ref country code: DE