WO2022067811A1 - 一种信号发送方法、接收方法、通信装置和存储介质 - Google Patents

一种信号发送方法、接收方法、通信装置和存储介质 Download PDF

Info

Publication number
WO2022067811A1
WO2022067811A1 PCT/CN2020/119742 CN2020119742W WO2022067811A1 WO 2022067811 A1 WO2022067811 A1 WO 2022067811A1 CN 2020119742 W CN2020119742 W CN 2020119742W WO 2022067811 A1 WO2022067811 A1 WO 2022067811A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
sequences
orthogonal
sequence group
orthogonal sequence
Prior art date
Application number
PCT/CN2020/119742
Other languages
English (en)
French (fr)
Inventor
曲秉玉
李博
龚名新
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/119742 priority Critical patent/WO2022067811A1/zh
Priority to CN202080105362.0A priority patent/CN116235585A/zh
Publication of WO2022067811A1 publication Critical patent/WO2022067811A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a signal transmission method, a signal reception method, a communication device, and a storage medium.
  • DMRS orthogonal demodulation reference signals
  • NR New RAT
  • CP-OFDM orthogonal frequency division multiplexing
  • the waveform can support two DMRS configurations, namely configuration type 1 (configuration type 1) and configuration type 2 (configuration type 2).
  • configuration type 1 configuration type 1
  • configuration type 2 configuration type 2
  • configuration type 1 configuration type 1
  • configuration type 2 configuration type 2
  • configuration type 1 configuration type 1
  • configuration type 2 under configuration type 2 (configuration type 2), the system supports a maximum of 12 orthogonal DMRS multiplexing.
  • the present application discloses a signal sending method, a signal receiving method, a communication device and a storage medium, which can improve channel estimation performance.
  • the present application provides a signal sending method, including: a sending end receives/sends signaling, where the signaling carries a preset field segment and indicates a first reference signal combination, where the first reference signal combination includes a or multiple reference signals; wherein, different values of the preset fields in the signaling correspond to multiple reference signal combinations; all reference signals included in the multiple reference signal combinations form a reference signal set,
  • the corresponding orthogonal sequences w g,p ( ) constitute the first orthogonal sequence group, and the reference signal sequences of all reference signals in the second reference signal group
  • the corresponding orthogonal sequences w g,p ( ) form a second orthogonal sequence group; the g traverses at least the first orthogonal sequence group and the second orthogonal sequence group; p traverses all sequences in the orthogonal sequence group;
  • the sequences in the first orthogonal sequence group are mutually orthogonal, the sequences in the second orthogonal sequence group are mutually orthogonal, and any sequence in the first orthogonal sequence group and the second orthogonal sequence group are mutually orthogonal.
  • the sequence c g ( ) is a sequence in the first mask sequence set, and the value range of the independent variable is in, Other forms are also possible, such as Wait.
  • the sequence c g ( ⁇ ) corresponding to the first orthogonal sequence group is different from the sequence c g ( ⁇ ) corresponding to the second orthogonal sequence group; the sequence r(m) corresponding to the first sequence group is different from the sequence c g ( ⁇ ) corresponding to the second orthogonal sequence group.
  • the sequences r(m) corresponding to the second sequence group are the same; the transmitting end generates and transmits the one or more reference signals.
  • the transmitting end is based on the sequence generate a reference signal, where the sequence
  • the corresponding orthogonal sequence w g,p ( ) is at least the sequence in the first orthogonal sequence group or the second orthogonal sequence group, the sequences in the first orthogonal sequence group are mutually orthogonal, and the second orthogonal sequence
  • the sequences in the group are orthogonal to each other, and any sequence in the first orthogonal sequence group is different from any sequence in the second orthogonal sequence group; and the sequence c g ( ) corresponding to the first orthogonal sequence group
  • the sequences c g ( ⁇ ) corresponding to the second orthogonal sequence group are different.
  • the cross-correlation value between the sequences of the one or more reference signals and the sequences of reference signals that are allocated for other terminal equipments that are not orthogonal thereto is independent of the scrambling code sequence r(m), Avoid the situation where the cross-correlation is poor due to the randomness of the scrambling code, and only correlate with the sequences w g,p ( ⁇ ), c g ( ⁇ ). In this way, when the signal transmission method provided by this solution is used for multi-layer transmission, the interference of pilot signals between different layers can be reduced, thereby improving the channel estimation performance.
  • sequence c g ( ) satisfies: where e g represents a sequence of length L, represents the ⁇ -th Kronic product of e g , which satisfies
  • the e g corresponding to the multiple reference signal sequences form a second mask sequence set, where L is a positive integer.
  • the length of the sequence corresponding to the first orthogonal sequence group is the same as the length of the sequence corresponding to the second orthogonal sequence group.
  • the reference signal sequence corresponding to the sequence of the first orthogonal sequence group corresponds to the sequence of the second orthogonal sequence group
  • the reference signal sequences of are mapped on the same subcarriers in the same resource block.
  • the sequence of the first orthogonal sequence group includes the following sequence: ⁇ 1,1 ⁇ ; ⁇ 1,-1 ⁇ ; the sequence of the second orthogonal sequence group includes the following sequence: ⁇ 1,1i ⁇ ; ⁇ 1,-1i ⁇ ; or, the sequence of the first orthogonal sequence group includes the following sequences: ⁇ 1,1i ⁇ ; ⁇ 1,-1i ⁇ ; the second orthogonal sequence group
  • the sequence includes the following sequence: ⁇ 1,1 ⁇ ; ⁇ 1,-1 ⁇ ; wherein, i is an imaginary unit, 1i represents i, and -1i represents -i, the same below, and will not be repeated.
  • j is also used to represent the unit of imaginary number.
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences: ⁇ 1,1,1,1 ⁇ ; ⁇ 1,-1,1,-1 ⁇ ; ⁇ 1,1,-1,-1 ⁇ ; ⁇ 1,-1,-1,1 ⁇ ;Or, the sequence of the first orthogonal sequence group/second orthogonal sequence group includes the following sequences: ⁇ 1,-1,-1i,-1i ⁇ ; ⁇ 1,1,-1i,1i ⁇ ; ⁇ 1,-1,1i,1i ⁇ ; ⁇ 1,1,1i,-1i ⁇ ;
  • sequences of an orthogonal sequence group/second orthogonal sequence group include the following sequences: ⁇ 1,-1i,-1i,-1 ⁇ ; ⁇ 1,1i,-1i,1 ⁇ ; ⁇ 1,-1i,1i , 1 ⁇ ; ⁇ 1, 1i, 1i, -1 ⁇ ; or, the sequence of the first orthogonal sequence group/the second orthogonal sequence group includes the following sequence: ⁇ 1, -1i, -1, -1i ⁇ ; ⁇ 1, 1i, -1, 1i
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • the sequence of the first orthogonal sequence group/second orthogonal sequence group includes The following sequence: ⁇ 1i,-1i,-1,-1,1i,1i,-1,1 ⁇ ; ⁇ 1i,1i,-1,1,1i,-1i,-1,-1 ⁇ ; ⁇ 1i,1,1,1i,1i,1,1,1i,-1 ⁇ ; ⁇ -1i,-1,- 1i,1,1i,-1,-1i,-1 ⁇ ; ⁇ -1i,1,-1i,-1,1i,1,-1i,1 ⁇ ; ⁇ -1i,1,1i,1,-1i,-1,-1i,1 ⁇ ; ⁇ -1i,-1,-1i,1,-1i,1 , 1i, 1 ⁇ ; ⁇ -1i,1,-1i,-1,-1i,-1,1i,-1 ⁇ ; or, the sequence of the first orthogonal sequence group/second orthogonal sequence group includes The following sequence: ⁇ 1i,-1i,-1,-1,1i,1i,-1,1 ⁇ ; ⁇ 1i,1i,1i,-1,1 ⁇ ;
  • the local sequence cross-correlation of the reference signal sequences between the reference signal sequence groups is only related to the sequence w g, p (n), where the cross-correlation values between w g, p (n) are both Cross-correlation is optimal.
  • the optimal local cross-correlation of the reference signal can effectively combat channel fading and improve the channel estimation performance.
  • the length of the sequence corresponding to the first orthogonal sequence group is twice the length of the sequence corresponding to the second orthogonal sequence group.
  • the reference signal sequence corresponding to the sequence of the first orthogonal sequence group is mapped to the same resource block at the same interval.
  • the center frequency distance of adjacent subcarriers in the first subcarrier is k subcarriers
  • the reference signal sequence corresponding to the sequence of the second orthogonal sequence group is mapped to the same resource block at equal intervals
  • the center frequency distance of adjacent subcarriers in the second subcarrier is 2k subcarriers
  • k is a positive integer.
  • the sequence of the first orthogonal sequence group includes the following sequences: ⁇ 1,-1,-1i,-1i ⁇ ; ⁇ 1,1,-1i,1i ⁇ ; ⁇ 1,-1,1i,1i ⁇ ; ⁇ 1, 1, 1i, -1i ⁇ ; or, the sequence of the first orthogonal sequence group includes the following sequences: ⁇ 1, -1i, -1i, -1 ⁇ ; ⁇ 1, 1i, -1i , 1 ⁇ ; ⁇ 1, -1i, 1i, 1 ⁇ ; ⁇ 1, 1i, 1i, -1 ⁇ ; wherein, the sequence of the second orthogonal sequence group includes the following sequence: ⁇ 1,1 ⁇ ; ⁇ 1,-1 ⁇ ; where i is an imaginary unit.
  • the sequence of the first orthogonal sequence group includes the following sequences: ⁇ -1i,-1,1i,-1,1i,-1,1i,1 ⁇ ; ⁇ -1i,1, 1i,1,1i,1,1i,-1 ⁇ ; ⁇ -1i,1,-1i,-1, 1i,1,-1i,1 ⁇ ; ⁇ -1i,1,-1i,-1,1i,-1, 1i,1,-1i,1 ⁇ ; ⁇ -1i,-1,1i,-1,-1i,1,-1i,-1 ⁇ ; ⁇ -1i,1,1i,1,-1i,-1, -1i, 1 ⁇ ; ⁇ -1i,-1,-1i,1,-1i,1,1i,1 ⁇ ; ⁇ -1i,1,-1i,-1,-1i,-1,1i,-1 ⁇ ;
  • the sequence of the first orthogonal sequence group includes the following sequences: ⁇ -1, 1i, -1, 1i, 1i, -1, -1i, 1 ⁇ ; ⁇ -1, -1i, -1i, 1 ⁇ ; ⁇ -1,-1i
  • the local sequence cross-correlation of the reference signal sequences between the reference signal sequence groups is only related to the sequence w g,p (n), where the cross-correlation values between w g,p ( ) are both Cross-correlation is optimal.
  • the optimal local cross-correlation of the reference signal can effectively combat channel fading and improve the channel estimation performance.
  • sequences in the second mask sequence set include the following sequences: ⁇ 1,1 ⁇ ; ⁇ 1,1i ⁇ ; where i is an imaginary unit.
  • the mask sequence c g ( ) makes the sequence of reference signals among the reference signal sequence groups The correlation is between It can ensure that the overall cross-correlation of the reference signal is also optimal, and can effectively combat channel fading, thereby improving channel estimation performance.
  • the receiving end receives the sequence-based data sent by the transmitting end. generated reference signal, where the sequence The corresponding orthogonal sequence w g,p ( ) is at least the sequence in the first orthogonal sequence group or the second orthogonal sequence group, the sequences in the first orthogonal sequence group are mutually orthogonal, and the second orthogonal sequence
  • the sequences in the group are orthogonal to each other, and any sequence in the first orthogonal sequence group is different from any sequence in the second orthogonal sequence group; and the sequence c g ( ) corresponding to the first orthogonal sequence group
  • the sequences c g ( ⁇ ) corresponding to the second orthogonal sequence group are different.
  • the cross-correlation value between the one or more reference signal sequences and the non-orthogonal reference signal sequences allocated by other terminal equipment is independent of the scrambling code sequence, so as to avoid the scrambling code sequence.
  • randomness causes poor cross-correlation, but only with sequences w g,p ( ), c g ( ).
  • sequence c g ( ) satisfies: where e g represents a sequence of length L, represents the ⁇ -th Kronic product of e g , which satisfies
  • the e g corresponding to the multiple reference signal sequences form a second mask sequence set, where L is a positive integer.
  • the length of the sequence corresponding to the first orthogonal sequence group is the same as the length of the sequence corresponding to the second orthogonal sequence group.
  • the reference signal sequence corresponding to the sequence of the first orthogonal sequence group corresponds to the sequence of the second orthogonal sequence group
  • the reference signal sequences of are mapped on the same subcarriers in the same resource block.
  • the sequence of the first orthogonal sequence group includes the following sequence: ⁇ 1,1 ⁇ ; ⁇ 1,-1 ⁇ ; the sequence of the second orthogonal sequence group includes the following sequence: ⁇ 1,1i ⁇ ; ⁇ 1,-1i ⁇ ; or, the sequence of the first orthogonal sequence group includes the following sequences: ⁇ 1,1i ⁇ ; ⁇ 1,-1i ⁇ ; the second orthogonal sequence group
  • the sequence of includes the following sequence: ⁇ 1,1 ⁇ ; ⁇ 1,-1 ⁇ ; where i is an imaginary unit.
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences: ⁇ 1,1,1,1 ⁇ ; ⁇ 1,-1,1,-1 ⁇ ; ⁇ 1,1,-1,-1 ⁇ ; ⁇ 1,-1,-1,1 ⁇ ;Or, the sequence of the first orthogonal sequence group/second orthogonal sequence group includes the following sequences: ⁇ 1,-1,-1i,-1i ⁇ ; ⁇ 1,1,-1i,1i ⁇ ; ⁇ 1,-1,1i,1i ⁇ ; ⁇ 1,1,1i,-1i ⁇ ;
  • sequences of an orthogonal sequence group/second orthogonal sequence group include the following sequences: ⁇ 1,-1i,-1i,-1 ⁇ ; ⁇ 1,1i,-1i,1 ⁇ ; ⁇ 1,-1i,1i , 1 ⁇ ; ⁇ 1, 1i, 1i, -1 ⁇ ; or, the sequence of the first orthogonal sequence group/the second orthogonal sequence group includes the following sequence: ⁇ 1, -1i, -1, -1i ⁇ ; ⁇ 1, 1i, -1, 1i
  • the sequence of the first orthogonal sequence group/second orthogonal sequence group includes the following sequence: ⁇ -1i,-1,1i,-1,1i,1 ⁇ ; ⁇ -1i,1,1i,1,1i,1,1i,-1 ⁇ ; ⁇ -1i,-1,-1i,1,1i,-1,-1i,-1 ⁇ ; ⁇ -1i,1 ,-1i,-1,-1i,1 ⁇ ; ⁇ -1i,-1,1i,-1,-1i,1,-1i,-1 ⁇ ; ⁇ -1i,1,1i,1 ,-1i,-1 ⁇ ; ⁇ -1i,-1i,-1i,1 ⁇ ; ⁇ -1i,-1,-1i,1,-1i,1,1i,1 ⁇ ; ⁇ -1i,1,-1i,-1,-1i,-1,1i,-1 ⁇ ; or, the sequence of the first orthogonal sequence group/second orthogonal sequence group includes the following sequence: ⁇ 1i,-1i,-1,-1,1i,1i,- 1,1 ⁇ ; ⁇ 1i,1i,1i,-1,1,1,1,1
  • the local sequence cross-correlation of the reference signal sequences between the reference signal sequence groups is only related to the sequence w g, p (n), where the cross-correlation values between w g, p (n) are both Cross-correlation is optimal.
  • the optimal local cross-correlation of the reference signal can effectively combat channel fading and improve the channel estimation performance.
  • the length of the sequence corresponding to the first orthogonal sequence group is twice the length of the sequence corresponding to the second orthogonal sequence group.
  • the reference signal sequence corresponding to the sequence of the first orthogonal sequence group is mapped to the same resource block at the same interval.
  • the center frequency distance of adjacent subcarriers in the first subcarrier is k subcarriers
  • the reference signal sequence corresponding to the sequence of the second orthogonal sequence group is mapped to the same resource block at equal intervals
  • the center frequency distance of adjacent subcarriers in the second subcarrier is 2k subcarriers
  • k is a positive integer.
  • the sequence of the first orthogonal sequence group includes the following sequences: ⁇ 1,-1,-1i,-1i ⁇ ; ⁇ 1,1,-1i,1i ⁇ ; ⁇ 1,-1,1i,1i ⁇ ; ⁇ 1, 1, 1i, -1i ⁇ ; or, the sequence of the first orthogonal sequence group includes the following sequences: ⁇ 1, -1i, -1i, -1 ⁇ ; ⁇ 1, 1i, -1i , 1 ⁇ ; ⁇ 1, -1i, 1i, 1 ⁇ ; ⁇ 1, 1i, 1i, -1 ⁇ ; wherein, the sequence of the second orthogonal sequence group includes the following sequence: ⁇ 1,1 ⁇ ; ⁇ 1,-1 ⁇ ; where i is an imaginary unit.
  • the sequence of the first orthogonal sequence group includes the following sequences: ⁇ -1i,-1,1i,-1,1i,-1,1i,1 ⁇ ; ⁇ -1i,1, 1i,1,1i,1,1i,-1 ⁇ ; ⁇ -1i,1,-1i,-1, 1i,1,-1i,1 ⁇ ; ⁇ -1i,1,-1i,-1,1i,-1, 1i,1,-1i,1 ⁇ ; ⁇ -1i,-1,1i,-1,-1i,1,-1i,-1 ⁇ ; ⁇ -1i,1,1i,1,-1i,-1, -1i, 1 ⁇ ; ⁇ -1i,-1,-1i,1,-1i,1,1i,1 ⁇ ; ⁇ -1i,1,-1i,-1,-1i,-1,1i,-1 ⁇ ;
  • the sequence of the first orthogonal sequence group includes the following sequences: ⁇ -1, 1i, -1, 1i, 1i, -1, -1i, 1 ⁇ ; ⁇ -1, -1i, -1i, 1 ⁇ ; ⁇ -1,-1i
  • the local sequence cross-correlation of the reference signal sequences between the reference signal sequence groups is only related to the sequence w g,p (n), where the cross-correlation values between w g,p ( ) are both Cross-correlation is optimal.
  • the optimal local cross-correlation of the reference signal can effectively combat channel fading and improve the channel estimation performance.
  • sequences in the second mask sequence set include the following sequences: ⁇ 1,1 ⁇ ; ⁇ 1,1i ⁇ ; where i is an imaginary unit.
  • the mask sequence c g (t) makes the sequence of reference signals between reference signal sequence groups The correlation is between It can ensure that the overall cross-correlation of the reference signal is also optimal, and can effectively combat channel fading, thereby improving channel estimation performance.
  • the present application further provides a communication device, comprising: a transceiver unit for receiving/sending signaling, where the signaling carries a preset field segment and indicates a first reference signal combination, the first reference signal combination including one or more reference signals; wherein, different values of the preset fields in the signaling correspond to different reference signal combinations respectively; all reference signals included in the different reference signal combinations constitute reference signals set, the reference signal set includes at least two reference signal groups; the reference signal sequence of each reference signal in the at least two reference signal groups Satisfy where m is an integer from 0 to M-1, and M is The sequence length of ; A is a non-zero complex number; r(m) is a pseudo-random sequence; among them, the length of the sequence w g,p ( ⁇ ) is N g , and the value range of the independent variable is 0, 1, ..., N g -1.
  • the corresponding orthogonal code sequences w g,p ( ) constitute the first orthogonal sequence group, and the reference signal sequences of all reference signals in the second reference signal group
  • the corresponding orthogonal code sequence w g,p ( ) constitutes a second orthogonal sequence group; the g traverses at least the first orthogonal sequence group and the second orthogonal sequence group; p traverses all sequences in the orthogonal sequence group ; the sequences in the first orthogonal sequence group are mutually orthogonal, the sequences in the second orthogonal sequence group are mutually orthogonal, and any sequence in the first orthogonal sequence group and the second orthogonal sequence group are mutually orthogonal Any of the orthogonal sequence
  • sequence c g ( ) satisfies: where e g represents a sequence of length L, represents the ⁇ -th Kronic product of e g , which satisfies
  • the e g corresponding to the multiple reference signal sequences form a second mask sequence set, where L is a positive integer.
  • the length of the sequence corresponding to the first orthogonal sequence group is the same as the length of the sequence corresponding to the second orthogonal sequence group.
  • the reference signal sequence corresponding to the sequence of the first orthogonal sequence group corresponds to the sequence of the second orthogonal sequence group
  • the reference signal sequences of are mapped on the same subcarriers in the same resource block.
  • the sequence of the first orthogonal sequence group includes the following sequence: ⁇ 1,1 ⁇ ; ⁇ 1,-1 ⁇ ; the sequence of the second orthogonal sequence group includes the following sequence: ⁇ 1,1i ⁇ ; ⁇ 1,-1i ⁇ ; or, the sequence of the first orthogonal sequence group includes the following sequences: ⁇ 1,1i ⁇ ; ⁇ 1,-1i ⁇ ; the second orthogonal sequence group
  • the sequence of includes the following sequence: ⁇ 1,1 ⁇ ; ⁇ 1,-1 ⁇ ; where i is an imaginary unit.
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences: ⁇ 1,1,1,1 ⁇ ; ⁇ 1,-1,1,-1 ⁇ ; ⁇ 1,1,-1,-1 ⁇ ; ⁇ 1,-1,-1,1 ⁇ ;Or, the sequence of the first orthogonal sequence group/second orthogonal sequence group includes the following sequences: ⁇ 1,-1,-1i,-1i ⁇ ; ⁇ 1,1,-1i,1i ⁇ ; ⁇ 1,-1,1i,1i ⁇ ; ⁇ 1,1,1i,-1i ⁇ ;
  • sequences of an orthogonal sequence group/second orthogonal sequence group include the following sequences: ⁇ 1,-1i,-1i,-1 ⁇ ; ⁇ 1,1i,-1i,1 ⁇ ; ⁇ 1,-1i,1i , 1 ⁇ ; ⁇ 1, 1i, 1i, -1 ⁇ ; or, the sequence of the first orthogonal sequence group/the second orthogonal sequence group includes the following sequence: ⁇ 1, -1i, -1, -1i ⁇ ; ⁇ 1, 1i, -1, 1i
  • the sequence of the first orthogonal sequence group/second orthogonal sequence group includes the following sequence: ⁇ -1i,-1,1i,-1,1i,1 ⁇ ; ⁇ -1i,1,1i,1,1i,1,1i,-1 ⁇ ; ⁇ -1i,-1,-1i,1,1i,-1,-1i,-1 ⁇ ; ⁇ -1i,1 ,-1i,-1,-1i,1 ⁇ ; ⁇ -1i,-1,1i,-1,-1i,1,-1i,-1 ⁇ ; ⁇ -1i,1,1i,1 ,-1i,-1 ⁇ ; ⁇ -1i,-1i,-1i,1 ⁇ ; ⁇ -1i,-1,-1i,1,-1i,1,1i,1 ⁇ ; ⁇ -1i,1,-1i,-1,-1i,-1,1i,-1 ⁇ ; or, the sequence of the first orthogonal sequence group/second orthogonal sequence group includes the following sequence: ⁇ 1i,-1i,-1,-1,1i,1i,- 1,1 ⁇ ; ⁇ 1i,1i,1i,-1,1,1,1,1
  • the length of the sequence corresponding to the first orthogonal sequence group is twice the length of the sequence corresponding to the second orthogonal sequence group.
  • the reference signal sequence corresponding to the sequence of the first orthogonal sequence group is mapped to the same resource block at the same interval.
  • the center frequency distance of adjacent subcarriers in the first subcarrier is k subcarriers
  • the reference signal sequence corresponding to the sequence of the second orthogonal sequence group is mapped to the same resource block at equal intervals
  • the center frequency distance of adjacent subcarriers in the second subcarrier is 2k subcarriers
  • k is a positive integer.
  • the sequence of the first orthogonal sequence group includes the following sequences: ⁇ 1,-1,-1i,-1i ⁇ ; ⁇ 1,1,-1i,1i ⁇ ; ⁇ 1,-1,1i,1i ⁇ ; ⁇ 1, 1, 1i, -1i ⁇ ; or, the sequence of the first orthogonal sequence group includes the following sequences: ⁇ 1, -1i, -1i, -1 ⁇ ; ⁇ 1, 1i, -1i , 1 ⁇ ; ⁇ 1, -1i, 1i, 1 ⁇ ; ⁇ 1, 1i, 1i, -1 ⁇ ; wherein, the sequence of the second orthogonal sequence group includes the following sequence: ⁇ 1,1 ⁇ ; ⁇ 1,-1 ⁇ ; where i is an imaginary unit.
  • the sequence of the first orthogonal sequence group includes the following sequences: ⁇ -1i,-1,1i,-1,1i,-1,1i,1 ⁇ ; ⁇ -1i,1, 1i,1,1i,1,1i,-1 ⁇ ; ⁇ -1i,1,-1i,-1, 1i,1,-1i,1 ⁇ ; ⁇ -1i,1,-1i,-1,1i,-1, 1i,1,-1i,1 ⁇ ; ⁇ -1i,-1,1i,-1,-1i,1,-1i,-1 ⁇ ; ⁇ -1i,1,1i,1,-1i,-1, -1i, 1 ⁇ ; ⁇ -1i,-1,-1i,1,-1i,1,1i,1 ⁇ ; ⁇ -1i,1,-1i,-1,-1i,-1,1i,-1 ⁇ ;
  • the sequence of the first orthogonal sequence group includes the following sequences: ⁇ -1, 1i, -1, 1i, 1i, -1, -1i, 1 ⁇ ; ⁇ -1, -1i, -1i, 1 ⁇ ; ⁇ -1,-1i
  • sequences in the second mask sequence set include the following sequences: ⁇ 1,1 ⁇ ; ⁇ 1,1i ⁇ ; where i is an imaginary unit.
  • sequence c g ( ) satisfies: where e g represents a sequence of length L, represents the ⁇ -th Kronic product of e g , which satisfies
  • the e g corresponding to the multiple reference signal sequences form a second mask sequence set, where L is a positive integer.
  • the length of the sequence corresponding to the first orthogonal sequence group is the same as the length of the sequence corresponding to the second orthogonal sequence group.
  • the reference signal sequence corresponding to the sequence of the first orthogonal sequence group corresponds to the sequence of the second orthogonal sequence group
  • the reference signal sequences of are mapped on the same subcarriers in the same resource block.
  • the sequence of the first orthogonal sequence group includes the following sequence: ⁇ 1,1 ⁇ ; ⁇ 1,-1 ⁇ ; the sequence of the second orthogonal sequence group includes the following sequence: ⁇ 1,1i ⁇ ; ⁇ 1,-1i ⁇ ; or, the sequence of the first orthogonal sequence group includes the following sequences: ⁇ 1,1i ⁇ ; ⁇ 1,-1i ⁇ ; the second orthogonal sequence group
  • the sequence of includes the following sequence: ⁇ 1,1 ⁇ ; ⁇ 1,-1 ⁇ ; where i is an imaginary unit.
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences: ⁇ 1,1,1,1 ⁇ ; ⁇ 1,-1,1,-1 ⁇ ; ⁇ 1,1,-1,-1 ⁇ ; ⁇ 1,-1,-1,1 ⁇ ;Or, the sequence of the first orthogonal sequence group/second orthogonal sequence group includes the following sequences: ⁇ 1,-1,-1i,-1i ⁇ ; ⁇ 1,1,-1i,1i ⁇ ; ⁇ 1,-1,1i,1i ⁇ ; ⁇ 1,1,1i,-1i ⁇ ;
  • sequences of an orthogonal sequence group/second orthogonal sequence group include the following sequences: ⁇ 1,-1i,-1i,-1 ⁇ ; ⁇ 1,1i,-1i,1 ⁇ ; ⁇ 1,-1i,1i , 1 ⁇ ; ⁇ 1, 1i, 1i, -1 ⁇ ; or, the sequence of the first orthogonal sequence group/the second orthogonal sequence group includes the following sequence: ⁇ 1, -1i, -1, -1i ⁇ ; ⁇ 1, 1i, -1, 1i
  • the sequence of the first orthogonal sequence group/second orthogonal sequence group includes the following sequence: ⁇ -1i,-1,1i,-1,1i,1 ⁇ ; ⁇ -1i,1,1i,1,1i,1,1i,-1 ⁇ ; ⁇ -1i,-1,-1i,1,1i,-1,-1i,-1 ⁇ ; ⁇ -1i,1 ,-1i,-1,-1i,1 ⁇ ; ⁇ -1i,-1,1i,-1,-1i,1,-1i,-1 ⁇ ; ⁇ -1i,1,1i,1 ,-1i,-1 ⁇ ; ⁇ -1i,-1i,-1i,1 ⁇ ; ⁇ -1i,-1,-1i,1,-1i,1,1i,1 ⁇ ; ⁇ -1i,1,-1i,-1,-1i,-1,1i,-1 ⁇ ; or, the sequence of the first orthogonal sequence group/second orthogonal sequence group includes the following sequence: ⁇ 1i,-1i,-1,-1,1i,1i,- 1,1 ⁇ ; ⁇ 1i,1i,1i,-1,1,1,1,1
  • the length of the sequence corresponding to the first orthogonal sequence group is twice the length of the sequence corresponding to the second orthogonal sequence group.
  • the reference signal sequence corresponding to the sequence of the first orthogonal sequence group is mapped to the same resource block at the same interval.
  • the center frequency distance of adjacent subcarriers in the first subcarrier is k subcarriers
  • the reference signal sequence corresponding to the sequence of the second orthogonal sequence group is mapped to the same resource block at equal intervals
  • the center frequency distance of adjacent subcarriers in the second subcarrier is 2k subcarriers
  • k is a positive integer.
  • the sequence of the first orthogonal sequence group includes the following sequences: ⁇ 1,-1,-1i,-1i ⁇ ; ⁇ 1,1,-1i,1i ⁇ ; ⁇ 1,-1,1i,1i ⁇ ; ⁇ 1, 1, 1i, -1i ⁇ ; or, the sequence of the first orthogonal sequence group includes the following sequences: ⁇ 1, -1i, -1i, -1 ⁇ ; ⁇ 1, 1i, -1i , 1 ⁇ ; ⁇ 1, -1i, 1i, 1 ⁇ ; ⁇ 1, 1i, 1i, -1 ⁇ ; wherein, the sequence of the second orthogonal sequence group includes the following sequence: ⁇ 1,1 ⁇ ; ⁇ 1,-1 ⁇ ; where i is an imaginary unit.
  • the sequence of the first orthogonal sequence group includes the following sequences: ⁇ -1i,-1,1i,-1,1i,-1,1i,1 ⁇ ; ⁇ -1i,1, 1i,1,1i,1,1i,-1 ⁇ ; ⁇ -1i,1,-1i,-1, 1i,1,-1i,1 ⁇ ; ⁇ -1i,1,-1i,-1,1i,-1, 1i,1,-1i,1 ⁇ ; ⁇ -1i,-1,1i,-1,-1i,1,-1i,-1 ⁇ ; ⁇ -1i,1,1i,1,-1i,-1, -1i, 1 ⁇ ; ⁇ -1i,-1,-1i,1,-1i,1,1i,1 ⁇ ; ⁇ -1i,1,-1i,-1,-1i,-1,1i,-1 ⁇ ;
  • the sequence of the first orthogonal sequence group includes the following sequences: ⁇ -1, 1i, -1, 1i, 1i, -1, -1i, 1 ⁇ ; ⁇ -1, -1i, -1i, 1 ⁇ ; ⁇ -1,-1i
  • sequences in the second mask sequence set include the following sequences: ⁇ 1,1 ⁇ ; ⁇ 1,1i ⁇ ; where i is an imaginary unit.
  • the present application provides a computer storage medium, including computer instructions, which, when the computer instructions are executed on an electronic device, cause the electronic device to execute any one of the possible implementations and/or implementations of the first aspect.
  • the method provided by any possible implementation manner of the second aspect.
  • the embodiments of the present application provide a computer program product, which, when the computer program product runs on a computer, enables the computer to execute any possible implementation manner of the first aspect and/or any possible implementation manner of the second aspect.
  • the method provided by the embodiment is not limited to:
  • the apparatus described in the third aspect, the apparatus described in the fourth aspect, the computer storage medium described in the fifth aspect, or the computer program product described in the sixth aspect are all used to execute the first aspect. Any of the provided methods and any of the provided methods of the second aspect. Therefore, for the beneficial effects that can be achieved, reference may be made to the beneficial effects in the corresponding method, which will not be repeated here.
  • FIG. 1 is a schematic diagram of a resource block in the prior art
  • 2a is a schematic diagram of a pilot pattern of a DMRS using configuration type 1 in the prior art
  • 2b is a schematic diagram of another pilot pattern of DMRS using configuration type 1 in the prior art
  • FIG. 3 a is a schematic diagram of a pilot pattern of a DMRS using configuration type 2 in the prior art
  • 3b is a schematic diagram of another pilot pattern of DMRS using configuration type 2 in the prior art
  • Fig. 4 is the cumulative distribution diagram of the cross-correlation between a kind of DMRS sequence in the prior art
  • 5a is a schematic diagram of a communication system provided by an embodiment of the present application.
  • 5b is a schematic flowchart of a signal sending method provided by an embodiment of the present application.
  • FIG. 5c is a schematic flowchart of another signal sending method provided by an embodiment of the present application.
  • FIG. 6a is a schematic diagram of mapping a reference signal sequence to time-frequency resources according to an embodiment of the present application
  • FIG. 6b is a schematic diagram of mapping another reference signal sequence to time-frequency resources provided by an embodiment of the present application.
  • FIG. 7a is a schematic diagram of placement of an orthogonal code sequence provided by an embodiment of the present application.
  • FIG. 7b is a schematic diagram of another orthogonal code sequence placement provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a mask sequence placement provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a partial sequence provided by an embodiment of the present application.
  • FIG. 10a is a schematic diagram of placement of an orthogonal code sequence provided by an embodiment of the present application.
  • FIG. 10b is a schematic diagram of another orthogonal code sequence placement provided by an embodiment of the present application.
  • FIG. 11a is a schematic diagram of a mask sequence placement provided by an embodiment of the present application.
  • FIG. 11b is a schematic diagram of another mask sequence placement provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of placement of an orthogonal code sequence provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a mask sequence placement provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of mapping a reference signal sequence to time-frequency resources according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a scenario of a signal sending method provided by an embodiment of the present application.
  • 16a is a schematic flowchart of a signal receiving method provided by an embodiment of the present application.
  • FIG. 16b is a schematic diagram of a communication device provided by an embodiment of the present application.
  • FIG. 17 is a schematic diagram of another communication apparatus provided by an embodiment of the present application.
  • Resource block (resource BLOCK, RB)
  • the smallest resource granularity in the time domain may be an orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) symbol (symbol), which may be referred to as a symbol (symbol) for short, and a time slot includes multiple symbols ;
  • OFDM Orthogonal Frequency Division Multiplexing
  • the smallest resource granularity can be one subcarrier.
  • One OFDM symbol and one subcarrier constitute one resource element (resource element, RE).
  • RE resource element
  • the RE is the basic unit.
  • An RB is a basic scheduling unit in the frequency domain for data channel allocation, and one RB includes 12 subcarriers in the frequency domain, as shown in FIG. 1 .
  • DMRS Demodulation reference signal
  • DMRS is used for uplink/downlink channel estimation.
  • DMRS can be used to perform channel estimation on a physical downlink shared channel (PDSCH) or a physical uplink shared channel (PUSCH), so as to coherently demodulate uplink/downlink data.
  • PDSCH and PUSCH are used to carry data sent in downlink and uplink respectively, and DMRS is transmitted along with PDSCH or PUSCH.
  • the DMRS is located in the first few symbols of the time slot occupied by the PDSCH or PUSCH.
  • each data stream is called one-layer transmission.
  • SU-MIMO downlink single user-multiple input multiple output
  • uplink SU-MIMO supports up to 4 layers of transmission.
  • the uplink and downlink multi-user multiple input multiple output supports up to 12 layers of transmission.
  • each layer of transmission may correspond to one DMRS respectively.
  • the precoding vector of each DMRS is the same as the precoding vector of the data stream of the corresponding layer, and the receiving end needs to perform channel estimation according to each DMRS.
  • Different DMRSs correspond to different indexes, and the index here may be a DMRS port number.
  • the DMRS can be generated using a pseudo-random sequence.
  • the scrambling sequence r(m) of the DMRS can be obtained by modulating the sequence c(m) through quadrature phase shift keying (QPSK), and c(m) can be defined as the Gold sequence, the Gold sequence It is a kind of pseudo-random sequence.
  • r(m) can be expressed as:
  • x 1 (m+31) (x 1 (m+3)+x 1 (m))mod 2
  • x 2 (m+31) (x 2 (m+3)+x 2 (m+2)+x 2 (m+1)+x 2 (m))mod 2
  • N C 1600
  • c init is determined by information such as a DMRS scrambling code identifier (Identity document, ID), a cell ID, a subframe position and a symbol position of the DMRS, and the like.
  • each layer multiplexes the same time-frequency resource, and each DMRS shares the same scrambling code sequence r(m).
  • each DMRS shares the same scrambling code sequence r(m).
  • OCC orthogonal cover code
  • different DMRSs in the frequency domain are divided into different code division multiplexing (CDM) according to the configuration type adopted by the DMRS. group.
  • CDM code division multiplexing
  • two DMRS configuration types may be supported in NR, namely configuration type 1 and configuration type 2.
  • the DMRSs in the same CDM group use orthogonal codes to expand in the time-frequency domain, and ensure the orthogonality of different DMRSs, and the frequency division method is used between different CDM groups to ensure that the DMRSs are orthogonal to each other.
  • FIG. 2 a and FIG. 2 b are schematic diagrams of a pilot pattern of a DMRS using configuration type 1.
  • the resource elements (resource element, RE) of the two patterns in Figure 2a respectively represent the REs occupied by CDM group 0 and CDM group 1, and p0, p1, p2, and p3 respectively represent the DMRS port numbers .
  • orthogonal codes are used to ensure that the two DMRSs in the same CDM group are orthogonal.
  • Frequency division is adopted between different CDM groups to ensure that DMRSs between different CDM groups are mutually orthogonal.
  • the system supports a maximum of 4 DMRS orthogonal.
  • FIG. 3a and FIG. 3b are schematic diagrams showing a pilot pattern of a DMRS of configuration type 2.
  • the REs in the three patterns in FIG. 3a respectively represent the REs occupied by the three CDM groups
  • p0, p1, p2, . . . p4, p5 respectively represent the DMRS port numbers.
  • an orthogonal code with a code length of 2 is used to ensure that the two DMRSs in the same CDM group are orthogonal.
  • type 2 is used and DMRS is configured with one symbol, the system supports a maximum of 6 DMRS orthogonal.
  • the REs in the three patterns in Fig. 3b respectively represent the REs occupied by the three CDM groups, and p0, p1, p2, ... p10, p11 respectively represent the DMRS port numbers.
  • an orthogonal code with a code length of 4 is used to ensure that the four DMRSs in the same CDM group are orthogonal. It can be seen that when Type 2 is used and two DMRS symbols are configured, the system supports a maximum of 12 DMRS orthogonal.
  • the base station needs to indicate the allocation of DMRS to the UE through downlink control information (Downlink Control Information, DCI) in the physical downlink control channel (Physical Downlink Control Channel, PDCCH).
  • DCI Downlink Control Information
  • PDCCH Physical Downlink Control Channel
  • the scrambling code sequences of the DMRSs of ports p0, p1, p4, and p5 are the same, assuming that r 0 (m), introduce another scrambling code r 1 (m), and expand the ports p0', DMRS of p1', p4', p5'.
  • the DMRSs of ports p0, p1, p4, and p5 and the DMRSs of ports p0', p1', p4', and p5' are not orthogonal to each other.
  • Fig. 4 is a random selection of 2000 scrambling code sequences r 0 (m)-r 1999 (m) according to the scrambling code generation formula of the Release15/16 (referred to as r15/16) protocol.
  • Cumulative Distribution Function (CDF) of the cross-correlation between the two, each scrambling code superimposes 4 OCCs to obtain 4 orthogonal DMRS sequences, and the DMRS sequences obtained by different scrambling codes are not correct.
  • CDF Cumulative Distribution Function
  • the maximum cross-correlation value between the DMRS sequences obtained by two different scrambling codes is taken as the statistical result in Figure 4, where the cross-correlation values of the two N-long non-orthogonal sequences ⁇ a n ⁇ and ⁇ b n ⁇ are defined for Among them, the scrambling code initialization formula is as follows:
  • the scrambling code initialization formula c init it can be seen that the generation of different scrambling codes depends not only on the scrambling code ID, but also on the symbol position. Therefore, the randomness of the scrambling code selection is very large, resulting in a large variation range of the obtained cross-correlation value. The comparison will lead to relatively large interference between non-orthogonal DMRSs, which seriously affects the channel estimation performance.
  • this solution provides a signal transmission method to solve the above problems.
  • the communication system may include one or more network devices 10 (only one is shown) and one or more terminal devices UE connected to the network device 10 .
  • the network device 10 may be a device capable of communicating with terminal devices.
  • the network device 10 may be any device with a wireless transceiver function. Including but not limited to: base station NodeB, evolved base station eNodeB, base station in the fifth generation (5G) communication system, base station or network equipment in future communication system, access node in WiFi system, wireless relay nodes, wireless backhaul nodes, etc.
  • the network device 10 may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the network device 10 may also be a small station, a transmission reference point (transmission reference point, TRP), and the like.
  • TRP transmission reference point
  • Terminal equipment is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water, such as ships; it can also be deployed in the air, such as aircraft, Balloons and satellites, etc.
  • the terminal device can be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal device, industrial control ( Wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety Wireless terminals, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • Terminal equipment may also sometimes be referred to as user equipment (UE), access terminal equipment, UE unit, mobile station, mobile station, remote station, remote terminal equipment, mobile device, terminal, wireless communication device, UE Proxy or UE device etc.
  • UE user equipment
  • the technical solutions provided in the embodiments of the present application can be applied to various communication systems, for example, a communication system using an NR technology, a long term evolution (long term evolution, LTE) technology or other wireless access technologies.
  • a communication system using an NR technology for example, a communication system using an NR technology, a long term evolution (long term evolution, LTE) technology or other wireless access technologies.
  • LTE long term evolution
  • system and “network” in the embodiments of the present invention may be used interchangeably.
  • “Plurality” refers to two or more than two, and in view of this, in the embodiment of the present invention, “plurality” may also be understood as “at least two”.
  • the character “/” unless otherwise specified, generally indicates that the related objects are an "or" relationship.
  • This application is applicable to uplink (terminal equipment to network equipment) and downlink (network equipment to terminal equipment) communications in a communication system.
  • FIG. 5b it is a schematic flowchart of a signal sending method provided by an embodiment of the present application.
  • the method may include steps 501-503, as follows:
  • the network device sends a first instruction.
  • the network device may be an access network device, or the network device may be a network element in the core network that can perform information interaction with the terminal device.
  • the preset field included in the first signaling indicates the first reference signal combination.
  • the first reference signal combination includes at least one reference signal.
  • the values of the preset fields included in the first signaling are different, and correspond to each reference signal combination respectively. That is, when different values are assigned to the preset fields included in the first signaling, the first signaling may correspond to different reference signal combinations. Furthermore, the first signaling with different preset field values may be sent by the network device to indicate different reference signal combinations to the receiving end device.
  • the first signaling may be downlink control information (downlink control information, DCI).
  • DCI downlink control information
  • Each reference signal combination may be a combination of DMRSs.
  • the reference signal set is hereinafter referred to as the "first reference signal set").
  • the above-mentioned different reference signal combinations include combination 1, combination 2, and combination 3.
  • combination 1 includes reference signal a and reference signal b
  • combination 2 includes reference signal c, reference signal d, and reference signal e
  • combination 3 includes reference signal f and reference signal g.
  • the first reference signal set includes reference signal a, reference signal b, reference signal c, reference signal d, reference signal e, reference signal f, and reference signal g.
  • reference signals in different reference signal combinations may have intersections.
  • the above reference signal combinations include combination 1 and combination 2, wherein combination 1 includes reference signal h, and combination 2 includes reference signal h and reference signal i.
  • the first reference signal set includes reference signal h and reference signal i.
  • the first reference signal set includes at least two reference signal groups.
  • r(m) is a pseudo-random sequence.
  • r(m) is the scrambling sequence of the DMRS.
  • A is a non-zero complex constant; in the specific implementation process, those skilled in the art can assign the value of A as required.
  • A may refer to a power control factor, and a technician may determine the value of A according to the transmit power of the device sending the reference signal. That is to say, the value of A may not be limited in this embodiment of the present application.
  • the length of the sequence w g,p ( ⁇ ) is N g
  • the value range of the independent variable is 0, 1, . . . , N g -1
  • the sequence The sequence length M of is not less than 2N g .
  • the orthogonal code sequence w g,p ( ⁇ ) may be the OCC of each DMRS.
  • the sequence c g ( ) is a mask sequence
  • the sequence c g ( ) can be a sequence in the first mask sequence set, and the value range of the argument is That is, the length of the sequence c g ( ) is means round down, Indicates rounded up. The same will be given below, and will not be repeated here.
  • any two reference signal groups in the above at least two reference signal groups taking the first reference signal group and the second reference signal group as examples, satisfy the following conditions:
  • Reference signal sequences of all reference signals in the first reference signal group The corresponding orthogonal sequences w g,p ( ) constitute the first sequence group, and the reference signal sequences of all reference signals in the second reference signal group
  • the corresponding orthogonal sequences w g,p ( ⁇ ) form the second sequence group.
  • g is the identifier of the orthogonal sequence group, and the g traverses at least the first orthogonal sequence group and the second orthogonal sequence group; p traverses all sequences in the orthogonal sequence group.
  • the foregoing g at least traverses the first orthogonal sequence group and the second orthogonal sequence group means that the value range of g at least includes the first orthogonal sequence group and the second orthogonal sequence group.
  • the above description only takes the first orthogonal sequence group and the second orthogonal sequence group as examples, which may further include a third orthogonal sequence group, a fourth orthogonal sequence group, etc., which are not specifically limited in this solution.
  • the above p traverses all the sequences in the orthogonal sequence group, that is to say, the value range of p corresponds to all the sequences in the orthogonal sequence group.
  • the sequences in the first orthogonal sequence group are mutually orthogonal
  • the sequences in the second orthogonal sequence group are mutually orthogonal
  • any sequence in the first orthogonal sequence group and the second orthogonal sequence group are mutually orthogonal. Any of the crossover sequences are different.
  • the above sequence w g,p ( ⁇ ) is an orthogonal sequence, which is a sequence in the first orthogonal sequence group or the second orthogonal sequence group.
  • the above-mentioned sequence w g,p ( ⁇ ) may also be a sequence in a third orthogonal sequence group, etc.
  • only the first orthogonal sequence group and The second orthogonal sequence group is described as an example.
  • the sequence c g ( ⁇ ) corresponding to the first orthogonal sequence group is different from the sequence c g ( ⁇ ) corresponding to the second orthogonal sequence group. Specifically, the c g ( ⁇ ) corresponding to the sequences w g,p ( ⁇ ) of the same orthogonal sequence group are the same, and the c g ( ⁇ ) corresponding to different orthogonal sequence groups are the same.
  • the terminal device receives the first instruction.
  • the method when the method provided by the embodiment of the present application is applied to the network device sending an instruction (for example, it may be downlink control information (DCI)) to the terminal device, so that the terminal device determines the waiting list according to the instruction
  • the method further includes:
  • the terminal device sends at least one reference signal, so that the network device receives the at least one reference signal.
  • the terminal device may determine at least one reference signal in the first reference signal combination according to the value of the preset field in the first instruction, and then transmit the at least one reference signal.
  • the terminal device stores the reference signal sequence of each reference signal in the first reference signal set Corresponding information about the orthogonal code sequence w g,p ( ⁇ ). Then, after determining at least one reference signal according to the first instruction, the terminal device may determine the orthogonal code sequence w g,p ( ⁇ ) corresponding to at least one reference signal in the orthogonal code sequence w g,p ( ⁇ ) , and obtain a reference signal sequence of at least one reference signal, so as to transmit the at least one reference signal.
  • the terminal device may not store the orthogonal code sequence corresponding to the reference signal sequence of each reference signal in the first reference signal set in advance, but according to related information, such as the reference signal sequence of each reference signal in the first reference signal set According to the rule of the corresponding orthogonal code sequence, the orthogonal code sequence corresponding to the at least one reference signal is directly generated.
  • the value of the preset segment field in the first instruction indicates the index of the reference signal in the first reference signal set.
  • the terminal device needs to generate the reference signal sequence corresponding to the index according to the relevant rules. Know which orthogonal code sequence corresponds to the reference signal sequence.
  • the present application may not limit the manner in which the terminal device obtains the reference signal sequence of at least one reference signal.
  • the reference signal sequence of at least one reference signal may be mapped to M REs, respectively, to generate and transmit the first signal.
  • the method includes steps 501'-503', which are as follows:
  • the network device sends a first instruction.
  • the network device may be an access network device, or the network device may be a network element in the core network that can perform information interaction with the terminal device.
  • the preset field included in the first signaling indicates the first reference signal combination.
  • the first reference signal combination includes at least one reference signal.
  • the values of the preset fields included in the first signaling are different, and correspond to each reference signal combination respectively. That is, when different values are assigned to the preset fields included in the first signaling, the first signaling may correspond to different reference signal combinations. Furthermore, the first signaling with different preset field values may be sent by the network device to indicate different reference signal combinations to the receiving end device.
  • the first signaling may be downlink control information (downlink control information, DCI).
  • DCI downlink control information
  • Each reference signal combination may be a combination of DMRSs.
  • the reference signal set is hereinafter referred to as a "first reference signal set").
  • the above-mentioned different reference signal combinations include combination 1, combination 2, and combination 3.
  • combination 1 includes reference signal a and reference signal b
  • combination 2 includes reference signal c, reference signal d, and reference signal e
  • combination 3 includes reference signal f and reference signal g.
  • the first reference signal set includes reference signal a, reference signal b, reference signal c, reference signal d, reference signal e, reference signal f, and reference signal g.
  • reference signals in different reference signal combinations may have intersections.
  • the above reference signal combinations include combination 1 and combination 2, wherein combination 1 includes reference signal h, and combination 2 includes reference signal h and reference signal i.
  • the first reference signal set includes reference signal h and reference signal i.
  • the first reference signal set includes at least two reference signal groups.
  • r(m) is a pseudo-random sequence.
  • r(m) is the scrambling sequence of the DMRS.
  • A is a non-zero complex constant; in the specific implementation process, those skilled in the art can assign the value of A as required.
  • A may refer to a power control factor, and a technician may determine the value of A according to the transmit power of the device sending the reference signal. That is to say, the value of A may not be limited in this embodiment of the present application.
  • the length of the sequence w g,p ( ⁇ ) is N g
  • the value range of the independent variable is 0, 1, . . . , N g -1
  • the sequence The sequence length M of is not less than 2N g .
  • the orthogonal code sequence w g,p ( ⁇ ) may be the OCC of each DMRS.
  • the sequence c g ( ) is a mask sequence
  • the sequence c g ( ) can be a sequence in the first mask sequence set, and the value range of the argument is That is, the length of the sequence c g ( ) is means round down, Indicates rounded up. The same will be given below, and will not be repeated here.
  • any two reference signal groups in the above at least two reference signal groups taking the first reference signal group and the second reference signal group as examples, satisfy the following conditions:
  • Reference signal sequences of all reference signals in the first reference signal group The corresponding orthogonal sequences w g,p ( ) constitute the first sequence group, and the reference signal sequences of all reference signals in the second reference signal group
  • the corresponding orthogonal sequences w g,p ( ⁇ ) form the second sequence group.
  • g is the identifier of the orthogonal sequence group, and the g traverses at least the first orthogonal sequence group and the second orthogonal sequence group; p traverses all sequences in the orthogonal sequence group.
  • the foregoing g at least traverses the first orthogonal sequence group and the second orthogonal sequence group means that the value range of g at least includes the first orthogonal sequence group and the second orthogonal sequence group.
  • the above description only takes the first orthogonal sequence group and the second orthogonal sequence group as examples, which may further include a third orthogonal sequence group, a fourth orthogonal sequence group, etc., which are not specifically limited in this solution.
  • the above p traverses all the sequences in the orthogonal sequence group, that is to say, the value range of p corresponds to all the sequences in the orthogonal sequence group.
  • the sequences in the first orthogonal sequence group are mutually orthogonal
  • the sequences in the second orthogonal sequence group are mutually orthogonal
  • any sequence in the first orthogonal sequence group and the second orthogonal sequence group are mutually orthogonal. Any of the crossover sequences are different.
  • the above sequence w g,p ( ⁇ ) is an orthogonal sequence, which is a sequence in the first orthogonal sequence group or the second orthogonal sequence group.
  • the above-mentioned sequence w g,p ( ⁇ ) may also be a sequence in a third orthogonal sequence group, etc.
  • only the first orthogonal sequence group and The second orthogonal sequence group is described as an example.
  • the sequence c g ( ⁇ ) corresponding to the first orthogonal sequence group is different from the sequence c g ( ⁇ ) corresponding to the second orthogonal sequence group. Specifically, the c g ( ⁇ ) corresponding to the sequences w g,p ( ⁇ ) of the same orthogonal sequence group are the same, and the c g ( ⁇ ) corresponding to different orthogonal sequence groups are the same.
  • the terminal device receives the first instruction.
  • the network device sends at least one reference signal, and the terminal device receives at least one reference signal.
  • the orthogonal code sequence corresponding to the reference signal sequence of each reference signal in the first reference signal set may be pre-stored in the network device. Then, after determining the at least one reference signal to be sent, the network device may select the orthogonal code sequence corresponding to the at least one reference signal from the stored orthogonal code sequences, and obtain the reference signal of the at least one reference signal according to the above formula 1 sequence in order to transmit at least one reference signal. Specifically, the network device may map the reference signal sequence of at least one reference signal to the M REs, respectively, to generate and send the first signal.
  • the terminal device may determine at least one reference signal in the first reference signal combination according to the value of the preset field in the first instruction. Furthermore, the terminal device may process the first signal including at least one reference signal from the network device to evaluate the channel where the reference signal is located.
  • the transmitting end is based on the sequence generate a reference signal, where the sequence
  • the corresponding orthogonal sequence w g,p ( ) is at least the sequence in the first orthogonal sequence group or the second orthogonal sequence group, the sequences in the first orthogonal sequence group are mutually orthogonal, and the second orthogonal sequence
  • the sequences in the group are orthogonal to each other, and any sequence in the first orthogonal sequence group is different from any sequence in the second orthogonal sequence group; and the sequence c g ( ) corresponding to the first orthogonal sequence group
  • the sequences c g ( ⁇ ) corresponding to the second orthogonal sequence group are different.
  • the cross-correlation value between the one or more reference signal sequences and the non-orthogonal reference signal sequences allocated by other terminal equipment is independent of the scrambling code sequence, so as to avoid the scrambling code sequence.
  • randomness causes poor cross-correlation, but only with sequences w g,p ( ), c g ( ).
  • the interference of pilot signals between different layers can be reduced, thereby improving the channel estimation performance.
  • the sequence length N g of the first orthogonal sequence group may be 2, including the following: Sequence: ⁇ 1,1 ⁇ ; ⁇ 1,-1 ⁇ ; the sequence length N g of the second orthogonal sequence group may be 2, including the following sequences: ⁇ 1,1i ⁇ ; ⁇ 1,-1i ⁇ .
  • Each orthogonal sequence group obtains all the sequences in the orthogonal sequence group according to a base sequence
  • the base sequence is ⁇ x 0 , x 1 ⁇
  • each item of the 2-length Walsh code ⁇ w 0 , w 1 ⁇ is multiplied to obtain ⁇ x 0 w 0 , x 1 w 1 ⁇
  • S ⁇ x 0 w 0 , x 1 w 1 ⁇ , where ⁇ w 0 , w 1 ⁇ is ⁇ 1,1 ⁇ , ⁇ 1,-1 ⁇
  • the base sequence is ⁇ 1,1 ⁇ , where Each row in represents a sequence, and the following representations are similar.
  • the following sequence can be obtained by the above formula: ⁇ 1,1 ⁇ ; ⁇ 1,-1 ⁇ .
  • the base sequence is ⁇ 1,i ⁇ , where The following sequence can be obtained by the above formula: ⁇ 1,1i ⁇ ; ⁇ 1,-1i ⁇ .
  • the sequence w g,p ( ) of length 2 can be the sequence ⁇ 1,1 ⁇ in the first orthogonal sequence group, or the sequence ⁇ 1,-1 in the first orthogonal sequence group ⁇ ; it can also be the sequence ⁇ 1,1i ⁇ in the second orthogonal sequence group, or the sequence ⁇ 1,-1i ⁇ in the second orthogonal sequence group.
  • the sequence of the first orthogonal sequence group includes the following sequences: ⁇ 1,1i ⁇ ; ⁇ 1,-1i ⁇ ; the sequence of the second orthogonal sequence group includes the following sequences: ⁇ 1,1 ⁇ ; ⁇ 1, -1 ⁇ .
  • the two sequences in the above-mentioned first orthogonal sequence group are mutually orthogonal, and the two sequences in the second orthogonal sequence group are mutually orthogonal.
  • the reference signal sequence corresponding to the sequence of the first orthogonal sequence group and the reference signal sequence corresponding to the sequence of the second orthogonal sequence group are mapped on on the same subcarrier in the same resource block.
  • the first item of the sequence of reference signals in the at least two reference signal groups is mapped to the same RE, the second item is also mapped to the same RE, and so on.
  • FIG. 6a The manner in which the reference signal sequence corresponding to the sequence of the first orthogonal sequence group and the reference signal sequence corresponding to the sequence of the second orthogonal sequence group are mapped to the time-frequency resources is shown in FIG. 6a.
  • the subcarriers are sequentially numbered s+0, s+1, s+2, etc., s is an arbitrary integer, Mapping on subcarrier s+0, It is mapped on the subcarrier s+2.
  • FIG. 6a only one resource block RB is mapped, and the other RBs are mapped in a similar manner.
  • FIG. 6b the manner in which the reference signal sequence corresponding to the sequence of the first orthogonal sequence group and the reference signal sequence corresponding to the sequence of the second orthogonal sequence group are mapped to time-frequency resources is shown in FIG. 6b .
  • the orthogonal code sequences of the corresponding reference signals in each reference signal group correspond to the same RE, as shown in FIG. 7a and FIG. 7b.
  • the order in which the items of the orthogonal code sequences are placed in FIG. 7a and FIG. 7b is only an exemplary order. In the specific implementation process, different placement sequences can be adopted as required.
  • w(0) and w(1) shown in FIG. 7a and FIG. 7b may both be sequences w g,p ( ) in the first orthogonal sequence group, and w(0) and w(1) may also be both is the sequence w g,p ( ⁇ ) in the second orthogonal sequence group. This plan does not make any specific restrictions on this.
  • the mask sequences of the corresponding reference signals in each reference signal group correspond to the positions shown in FIG. 8 .
  • c(0), c(1) and c(2) shown in FIG. 8 may be mask sequences corresponding to the first orthogonal sequence group, or may be mask sequences corresponding to the second orthogonal sequence group.
  • the mask sequence corresponding to the first orthogonal sequence group and the mask sequence corresponding to the second orthogonal sequence group are different.
  • the 2-length local sequence cross-correlation of the reference signal sequences between the reference signal sequence groups is only related to the sequence w g,p ( ), and the 2-length local sequence refers to the sequence of reference signals corresponding to any number of orthogonal codes, For example, the partial sequence 1 shown in Figure 9 For another example, the local sequence 2 shown in Figure 9 Wait.
  • the cross-correlation values between the orthogonal sequence groups w g,p ( ) are all Cross-correlation is optimal.
  • the optimal sequence cross-correlation means that the cross-correlation of two N-long non-orthogonal sequences ⁇ a n ⁇ and ⁇ b n ⁇ is Among them, the optimal local cross-correlation of the reference signal can effectively combat channel fading and improve the channel estimation performance.
  • sequence c g ( ) satisfies:
  • e g represents a sequence of length L
  • L represents the ⁇ -th Kronic product of e g , where ⁇ satisfies
  • the e g corresponding to the multiple reference signal sequences form the second mask sequence set
  • L is a positive integer.
  • e g can take different sequences, such as low cross-correlation sequences, which can generate different low cross-correlation c g ( ⁇ ).
  • the sequences in the second set of mask sequences include the following sequences: ⁇ 1,1 ⁇ ; ⁇ 1,1i ⁇ .
  • e g can take ⁇ 1, 1, 1, 1 ⁇ ; ⁇ 1, -1, 1, -1 ⁇ ; ⁇ 1, 1, -1, -1 ⁇ ; ⁇ 1, - One of 1,-1,1 ⁇ , the other e g takes ⁇ 1,-1,-1i,-1i ⁇ ; ⁇ 1,1,-1i,1i ⁇ ; ⁇ 1,-1,1i,1i ⁇ ; one of ⁇ 1, 1, 1i, -1i ⁇ .
  • c init a sequence the length may not be L.
  • c init and e g take different sequences respectively, different c g ( ⁇ ) are obtained.
  • the sequence c g (t) is such that the sequence of reference signals between the reference signal sequence groups
  • sequence of the first orthogonal sequence group/the second orthogonal sequence group includes the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • the base sequence is ⁇ 1,-1,-1i,-1i ⁇ , where The following sequence can be obtained by the above formula: ⁇ 1,-1,-1i,-1i ⁇ ; ⁇ 1,1,-1i,1i ⁇ ; ⁇ 1,-1,1i,1i ⁇ ; ⁇ 1,1,1i, -1i ⁇ .
  • the base sequence is ⁇ 1,-1i,-1i,-1 ⁇ , where The following sequence can be obtained by the above formula: ⁇ 1,-1i,-1i,-1 ⁇ ; ⁇ 1,1i,-1i,1 ⁇ ; ⁇ 1,-1i,1i,1 ⁇ ; ⁇ 1,1i,1i, -1 ⁇ .
  • the base sequence is ⁇ 1,-1i,-1,-1i ⁇ , where The following sequence can be obtained by the above formula: ⁇ 1,-1i,-1,-1i ⁇ ; ⁇ 1,1i,-1,1i ⁇ ; ⁇ 1,-1i,1,1i ⁇ ; ⁇ 1,1i,1, -1i ⁇ .
  • the first orthogonal sequence group may be any one of the foregoing four groups of sequence groups
  • the second orthogonal sequence group may also be any one of the foregoing four groups of sequence groups, wherein, in the first orthogonal sequence group Any sequence of and any sequence in the second orthogonal sequence are different.
  • sequences in any one of the sequence groups are mutually orthogonal.
  • the reference signal sequence corresponding to the sequence of the first orthogonal sequence group and the reference signal sequence corresponding to the sequence of the second orthogonal sequence group Mapped on the same subcarriers in the same resource block.
  • the first item of the sequence of reference signals in the above at least two reference signal groups is mapped on the same RE, the second item is also mapped on the same RE, and the third item is also mapped on the same RE , and so on.
  • the orthogonal code sequences of the corresponding reference signals in each reference signal group correspond to the same RE, as shown in FIG. 10a and FIG. 10b.
  • w(0), w(1), w(2), w(3) shown in FIG. 10a and FIG. 10b may all be sequences w g,p ( ), w in the first orthogonal sequence group (0), w(1), w(2), w(3) may also all be sequences w g,p ( ⁇ ) in the second orthogonal sequence group.
  • Fig. 10a shows a schematic diagram when the reference signal occupies one OFDM symbol.
  • Figure 10b is a schematic diagram when the reference signal occupies two OFDM symbols.
  • FIG. 10a and FIG. 10b are only an exemplary order. In the specific implementation process, different placement sequences can be adopted as required.
  • each reference signal corresponding to each reference signal group corresponds to the position shown in FIG. 11a, wherein the reference signal occupies one OFDM symbol. As shown in Figure 11b, it is an example of occupying two OFDM symbols.
  • c(0), c(1) and c(2) shown in FIG. 11b may be mask sequences corresponding to the first orthogonal sequence group, or may be mask sequences corresponding to the second orthogonal sequence group. The mask sequence corresponding to the first orthogonal sequence group and the mask sequence corresponding to the second orthogonal sequence group are different.
  • the 4-length local sequence cross-correlation of the reference signal sequences between the reference signal sequence groups is only related to the sequence w g,p ( ), and the 4-length local sequence such as For another example, Wait.
  • the cross-correlation between w g,p ( ) is 0.5, the cross-correlation is optimal, and the optimal local cross-correlation of the reference signal can effectively combat channel fading and improve the channel estimation performance.
  • sequence c g (t) satisfies:
  • e g represents a sequence of length L
  • L represents the ⁇ -th Kronic product of e g , where ⁇ satisfies
  • the e g corresponding to the multiple reference signal sequences form the second mask sequence set
  • L is a positive integer.
  • the sequence c g (t) is such that the sequence of reference signals between the reference signal sequence groups
  • sequence w g,p ( ⁇ ) has a length of 8 for description.
  • sequence of the first orthogonal sequence group/the second orthogonal sequence group includes the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • ⁇ 1,1,1,1,1,1,1 ⁇ ⁇ 1,-1,1,-1,1,-1,1,-1 ⁇ ; ⁇ 1,1,-1,-1 ,1,1,-1 ⁇ ; ⁇ 1,-1,-1,1,1,-1,-1 ⁇ ; ⁇ 1,1,1,1,-1,-1,- 1,-1 ⁇ ; ⁇ 1,-1,1,-1,-1,1,-1,1 ⁇ ; ⁇ 1,1,-1,-1,-1,1,1 ⁇ ; ⁇ 1,-1,-1,1,-1 ⁇ .
  • Each row in represents a sequence, and the following representations are similar.
  • the following sequence can be obtained by the above formula: ⁇ -1i,-1,1i,-1,1i,-1,1i,1 ⁇ ; ⁇ -1i,1,1i ,1,1i,-1 ⁇ ; ⁇ -1i,-1,-1i,1,1i,-1,-1i,-1 ⁇ ; ⁇ -1i,1,-1i,-1,1i ,1,-1i,1 ⁇ ; ⁇ -1i,-1,1i,-1,-1i,1,-1i,-1 ⁇ ; ⁇ -1i,1,1i,1,-1i,-1,- 1i, 1 ⁇ ; ⁇ -1i,-1,-1i,1,-1i,1,1i,1 ⁇ ; ⁇ -1i,1,-1i,-1,-1i,-1,1i,-1 ⁇ .
  • the base sequence is ⁇ 1i,-1i,-1,-1,1i,1i,-1,1 ⁇
  • the following sequence can be obtained by the above formula: ⁇ 1i,-1i,-1,-1,1i,1i,- 1,1 ⁇ ; ⁇ 1i,1i,-1,1,1i,-1i,-1,-1 ⁇ ; ⁇ 1i,-1i,1,1,1i,1i,1,-1 ⁇ ; ⁇ 1i, 1i,1,-1,1i,-1i,1,1 ⁇ ; ⁇ 1i,-1i,-1,-1,-1i,-1i,1,-1 ⁇ ; ⁇ 1i,1i,-1,1 ,-1i,-1i,-1,-1 ,-1i,-1 ⁇ ; ⁇ 1i,1i,1,1 ⁇ ; ⁇ 1i,-1i,1,1,-1i,-1i,-1,1 ⁇ ; ⁇ 1i,1i,1,-1,-1i,1i,-1 ,-1 ⁇ .
  • the base sequence is ⁇ 1i,1i,1i,-1i,-1,-1,-1,1 ⁇ , and the following sequence can be obtained by the above formula: ⁇ 1i,1i,1i,-1i,-1,-1,- 1,1 ⁇ ; ⁇ 1i,-1i,1i,1i,-1,1,-1,-1 ⁇ ; ⁇ 1i,1i,-1i,1i,-1,-1,1,-1 ⁇ ; ⁇ 1i,-1i,-1i,-1i,-1,1,1,1 ⁇ ; ⁇ 1i,1i,1i,-1i,1,1,1,-1 ⁇ ; ⁇ 1i,-1i,1i,1i ,1,-1 ⁇ ; ⁇ 1i,-1i,1i,1i ,1,-1,1,1 ⁇ ; ⁇ 1i,1i,-1i,1i,1,1,-1,1 ⁇ ; ⁇ 1i,-1i,-1i,-1i,1,-1,-1,-1 ,-1 ⁇ .
  • the base sequence is ⁇ -1,1i,-1,1i,1i,-1,-1i,1 ⁇
  • the following sequence can be obtained by the above formula: ⁇ -1,1i,-1,1i,1i,-1,- 1i,1 ⁇ ; ⁇ -1,-1i,-1,-1i,1i,1,-1i,-1 ⁇ ; ⁇ -1,1i,1,-1i,1i,-1,1i,-1 ⁇ ; ⁇ -1,-1i,1,1i,1i,1,1i,1 ⁇ ; ⁇ -1,1i,-1,1i,-1i,1,1i,-1 ⁇ ; ⁇ -1,-1i, -1,-1i,-1,1i,1 ⁇ ; ⁇ -1,1i,1,-1i,-1i,1,-1i,1 ⁇ ; ⁇ -1,-1i,1,1i, -1i,-1 ⁇ .
  • the base sequence is ⁇ 1i,-1,-1,1i,-1,-1i,1i,1 ⁇ , and the following sequence can be obtained by the above formula: ⁇ 1i,-1,-1,1i,-1,-1i, 1i,1 ⁇ ; ⁇ 1i,1,-1,-1i,-1,1i,1i,-1 ⁇ ; ⁇ 1i,-1,1,-1i,-1,-1i,-1i,-1 ⁇ ; ⁇ 1i,1,1,1i,-1,1i,-1i,1 ⁇ ; ⁇ 1i,-1,-1,-1,1i,1,1i,-1i,-1 ⁇ ; ⁇ 1i,1 ,-1,-1i,1,-1i,-1 ⁇ ; ⁇ 1i,1 ,-1,-1i,1,-1i,1 ⁇ ; ⁇ 1i,1,1,1i,1,- 1i, 1 ⁇ .
  • the base sequence is ⁇ 1,-1i,-1i,-1i,1,-1i,-1i ⁇ , the following sequence can be obtained by the above formula: ⁇ -1,1i,-1i,-1, 1i, 1 ⁇ ; ⁇ -1, -1i, -1i, 1, -1, -1i, 1i, -1 ⁇ ; ⁇ -1, 1i, 1i, 1, -1, 1i, -1i, - 1 ⁇ ; ⁇ -1,-1i,1i,-1,-1,-1i,-1i,1 ⁇ ; ⁇ -1,1i,-1i,-1,1,1,1i,-1i,-1 ⁇ ; ⁇ -1,-1i,-1i,1,1,1i,-1i,1 ⁇ ; ⁇ -1,1i,1i,1,1,-1i,1i,1 ⁇ ; ⁇ -1,-1i, 1i, -1, 1, 1i, 1i, -1 ⁇ .
  • the base sequence is ⁇ -1, -1, 1i, 1i, -1i, 1i, -1, 1 ⁇ , and the following sequence can be obtained by the above formula: ⁇ -1, -1, 1i, 1i, -1i, 1i, - 1, 1 ⁇ ; ⁇ -1, 1, 1i, -1i, -1i, -1i, -1, -1 ⁇ ; ⁇ -1, -1, -1i, -1i, -1i, 1i, 1, - 1 ⁇ ; ⁇ -1,1,-1i,1i,-1i,-1i,1,1 ⁇ ; ⁇ -1,-1,1i,1i,1i,-1i,1,-1 ⁇ ; ⁇ -1 , 1, 1i, -1i, 1i, 1, 1 ⁇ ; ⁇ -1, -1, -1i, -1i, 1i, 1 ⁇ ; ⁇ -1, 1, -1i, -1i, -1i, 1i, 1 ⁇ ; ⁇ -1, 1, -1i, 1i, 1i, 1i, 1 ⁇ ; ⁇ -1, -1
  • the base sequence is ⁇ 1,1,1,1,1,1,1 ⁇ , and the following sequence can be obtained by the above formula: ⁇ 1,1,1,1,1,1,1,1 ⁇ ; ⁇ 1, -1,1,-1,1,-1,1,-1 ⁇ ; ⁇ 1,1,-1,-1,1,1,-1,-1 ⁇ ; ⁇ 1,-1,-1, 1,1,-1,-1,1 ⁇ ; ⁇ 1,1,1,1,-1,-1,-1,-1 ⁇ ; ⁇ 1,-1,1,-1,-1,1 ,-1,1 ⁇ ; ⁇ 1,1,-1,-1,-1,1,1 ⁇ ; ⁇ 1,-1,-1,-1,1,1,1 ⁇ ; ⁇ 1,-1,-1,1,-1,1,1,-1 ⁇ .
  • the first orthogonal sequence group may be any one of the above-mentioned eight groups of sequence groups
  • the second orthogonal sequence group may also be any one of the above-mentioned eight groups of sequence groups
  • any sequence of the first orthogonal sequence group is different from any of the second orthogonal sequences.
  • the sequences in any one of the sequence groups are mutually orthogonal.
  • the reference signal sequence corresponding to the sequence of the first orthogonal sequence group and the reference signal sequence corresponding to the sequence of the second orthogonal sequence group Mapped on the same subcarriers in the same resource block.
  • the first item of the sequence of reference signals in the above at least two reference signal groups is mapped on the same RE, the second item is also mapped on the same RE, and the third item is also mapped on the same RE , and so on.
  • the orthogonal code sequences of the corresponding reference signals in each reference signal group correspond to the same RE. As shown in Figure 12.
  • the mask sequences of the corresponding reference signals in each reference signal group correspond to the positions shown in FIG. 13 .
  • the 8-length local sequence cross-correlation of the reference signal sequences between the reference signal sequence groups is only related to the sequence w g,p (n), and the 8-length local sequence such as Wait.
  • the cross-correlation between w g,p ( ) is The cross-correlation is optimal, and the optimal local cross-correlation of the reference signal can effectively combat channel fading and improve channel estimation performance.
  • the sequence c g ( ) is such that the sequence of reference signals between the reference signal sequence groups
  • an embodiment of the present application further provides an embodiment in which the lengths of the sequences in the first orthogonal sequence group and the second orthogonal sequence group are different.
  • the length of the sequence corresponding to the first orthogonal sequence group is twice the length of the sequence corresponding to the second orthogonal sequence group.
  • the length of the sequence corresponding to the first orthogonal sequence group is 4, and the length of the sequence corresponding to the second orthogonal sequence group is 2.
  • sequence of the first orthogonal sequence group includes the following sequences:
  • sequences of the first orthogonal sequence group include the following sequences:
  • sequence of the second orthogonal sequence group includes the following sequences:
  • the manner of obtaining the sequence of the first orthogonal sequence group in this implementation manner may be:
  • the base sequence is ⁇ 1,-1i,-1i,-1 ⁇ , where The following sequence can be obtained by the above formula: ⁇ 1,-1i,-1i,-1 ⁇ ; ⁇ 1,1i,-1i,1 ⁇ ; ⁇ 1,-1i,1i,1 ⁇ ; ⁇ 1,1i,1i, -1 ⁇ .
  • the first orthogonal sequence group may be any one of the foregoing two groups of first orthogonal sequence groups.
  • the sequences in any one of the above-mentioned first orthogonal sequence groups are mutually orthogonal.
  • the sequences in the second orthogonal sequence group are also orthogonal to each other.
  • the time-frequency resource mapping method is as shown in Fig. 2a of the prior art, and 4 orthogonal reference signals can be obtained , where the four orthogonal reference signals are regarded as code division orthogonal, and the orthogonal sequences on the four consecutive subcarriers of the four orthogonal reference signals can be regarded as the following sequences:
  • the cross-correlation value between any of the above sequences and any sequence in the first orthogonal sequence group is 0.5.
  • the reference signal sequence corresponding to the sequence of the first orthogonal sequence group is mapped to the first sub-intervals of the same resource block equally spaced
  • the center frequency distance of adjacent subcarriers in the first subcarrier is k subcarriers
  • the reference signal sequence corresponding to the sequence of the second orthogonal sequence group is mapped to the same resource block.
  • the center frequency distance of adjacent subcarriers in the second subcarrier is 2k subcarriers, and k is a positive integer.
  • the manner in which the reference signal sequence corresponding to the sequence of the first orthogonal sequence group is mapped to the time-frequency resource is shown in FIG. 14 , wherein the subcarriers are sequentially numbered s+0, s+1, s+ 2, etc., s is any integer, Mapping on subcarrier s+0, Mapping on subcarrier s+1, Mapping on subcarrier s+2, and so on.
  • the reference signal sequence corresponding to the sequence of the first orthogonal sequence group is as follows: and Mapping on two adjacent sub-carriers, where the center frequency distance of the two adjacent sub-carriers is 1 sub-carrier, similarly, and It is also mapped on two adjacent subcarriers, wherein the center frequency distance of the two adjacent subcarriers is also 1 subcarrier.
  • FIG. 2a The manner in which the reference signal sequence corresponding to the sequence of the second orthogonal sequence group is mapped to the time-frequency resource is shown in Figure 2a, wherein the reference signal sequence corresponding to the sequence of the second orthogonal sequence group is as follows and Mapping on subcarriers separated by two subcarriers, where the center frequency distance of the two subcarriers is 2 subcarriers, similarly, and It is also mapped on subcarriers separated by two subcarriers, wherein the center frequency distance of the two subcarriers is also 2 subcarriers.
  • the mask sequence of the reference signal corresponding to the sequence of the first orthogonal sequence group corresponds to the position shown in FIG. 11a.
  • c(0), c(1) and c(2) shown in FIG. 11a are mask sequences corresponding to the first orthogonal sequence group.
  • the mask sequence of the reference signal corresponding to the sequence of the second orthogonal sequence group corresponds to the position shown in FIG. 8 .
  • c(0), c(1) and c(2) shown in FIG. 8 is the mask sequence corresponding to the second orthogonal sequence group.
  • the mask sequence corresponding to the first orthogonal sequence group and the mask sequence corresponding to the second orthogonal sequence group are different.
  • the local sequence cross-correlation of the reference signal sequences between the reference signal sequence groups is only related to the sequence w g,p ( ), where the cross-correlation between w g,p ( ) is both 0.5, which is optimal,
  • the optimal local cross-correlation of the reference signal can effectively combat the channel fading and improve the channel estimation performance.
  • the sequence c g ( ) is such that the sequence of reference signals between the reference signal sequence groups
  • the cross-correlation value is It can ensure that the overall cross-correlation of the reference signal is also optimal, which can effectively combat channel fading and improve channel estimation performance.
  • the solution is compatible with the prior art.
  • the orthogonal sequence group provided by this solution is compatible with the orthogonal sequences used in the above-mentioned prior art, and when the signal transmission method provided by this solution is used for multi-layer transmission, different transmitting ends respectively use the orthogonal sequences in the above-mentioned first orthogonal sequence group.
  • the sequence and the sequence in the second orthogonal sequence group are used, the optimal cross-correlation between any two non-orthogonal sequences can be achieved, which ensures that the interference of pilot signals between different layers is relatively small.
  • the length of the sequence corresponding to the first orthogonal sequence group is 8, and the length of the sequence corresponding to the second orthogonal sequence group is 4.
  • sequence of the first orthogonal sequence group includes the following sequences:
  • sequences of the first orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group include the following sequences:
  • sequences of the second orthogonal sequence group include the following sequences:
  • the manner of obtaining the sequence of the first orthogonal sequence group in this implementation manner may be:
  • the base sequence is ⁇ -1,1i,-1,1i,1i,-1,-1i,1 ⁇
  • the following sequence can be obtained by the above formula: ⁇ -1,1i,-1,1i,1i,-1,- 1i,1 ⁇ ; ⁇ -1,-1i,-1,-1i,1i,1,-1i,-1 ⁇ ; ⁇ -1,1i,1,-1i,1i,-1,1i,-1 ⁇ ; ⁇ -1,-1i,1,1i,1i,1,1i,1 ⁇ ; ⁇ -1,1i,-1,1i,-1i,1,1i,-1 ⁇ ; ⁇ -1,-1i, -1,-1i,-1,1i,1 ⁇ ; ⁇ -1,1i,1,-1i,-1i,1,-1i,1 ⁇ ; ⁇ -1,-1i,1,1i, -1i,-1 ⁇ .
  • the base sequence is ⁇ 1,-1i,-1i,-1i,1,-1i,-1i ⁇ , the following sequence can be obtained by the above formula: ⁇ -1,1i,-1i,-1, 1i, 1 ⁇ ; ⁇ -1, -1i, -1i, 1, -1, -1i, 1i, -1 ⁇ ; ⁇ -1, 1i, 1i, 1, -1, 1i, -1i, - 1 ⁇ ; ⁇ -1,-1i,1i,-1,-1,-1i,-1i,1 ⁇ ; ⁇ -1,1i,-1i,-1,1,1,1i,-1i,-1 ⁇ ; ⁇ -1,-1i,-1i,1,1,1i,-1i,1 ⁇ ; ⁇ -1,1i,1i,1,1,-1i,1i,1 ⁇ ; ⁇ -1,-1i, 1i, -1, 1, 1i, 1i, -1 ⁇ .
  • the base sequence is ⁇ -1, -1, 1i, 1i, -1i, 1i, -1, 1 ⁇ , and the following sequence can be obtained by the above formula: ⁇ -1, -1, 1i, 1i, -1i, 1i, - 1, 1 ⁇ ; ⁇ -1, 1, 1i, -1i, -1i, -1i, -1, -1 ⁇ ; ⁇ -1, -1, -1i, -1i, -1i, 1i, 1, - 1 ⁇ ; ⁇ -1,1,-1i,1i,-1i,-1i,1,1 ⁇ ; ⁇ -1,-1,1i,1i,1i,-1i,1,-1 ⁇ ; ⁇ -1 , 1, 1i, -1i, 1i, 1, 1 ⁇ ; ⁇ -1, -1, -1i, -1i, 1i, 1 ⁇ ; ⁇ -1, 1, -1i, -1i, -1i, 1i, 1 ⁇ ; ⁇ -1, 1, -1i, 1i, 1i, 1i, 1 ⁇ ; ⁇ -1, -1
  • the first orthogonal sequence group may be any one of the above-mentioned four groups of first orthogonal sequence groups.
  • the sequences in any one of the above-mentioned first orthogonal sequence groups are mutually orthogonal.
  • the sequences in the second orthogonal sequence group are also orthogonal to each other.
  • the second orthogonal sequence group mapping manner is shown in the prior art 2b, and 8 reference signals are obtained by frequency division and code division.
  • the 8 reference signals are regarded as code divisions, and the orthogonal sequences on the 8 consecutive subcarriers of the 8 reference signals can be regarded as the following sequences:
  • the reference signal sequence corresponding to the sequence of the first orthogonal sequence group is mapped to the first sub-intervals of the same resource block equally spaced
  • the center frequency distance of adjacent subcarriers in the first subcarrier is k subcarriers
  • the reference signal sequence corresponding to the sequence of the second orthogonal sequence group is mapped to the same resource block.
  • the center frequency distance of adjacent subcarriers in the second subcarrier is 2k subcarriers, and k is a positive integer.
  • the orthogonal code sequence of the reference signal sequence corresponding to the sequence of the first orthogonal sequence group corresponds to the position shown in FIG. 12 .
  • the position corresponding to the orthogonal code sequence of the reference signal sequence corresponding to the sequence of the second orthogonal sequence group is the same as that of the prior art as shown in FIG. 2b.
  • the mask sequence of the reference signal corresponding to the sequence of the first orthogonal sequence group corresponds to the position shown in FIG. 13 .
  • c(0), c(1) and c(2) shown in FIG. 13 are mask sequences corresponding to the first orthogonal sequence group.
  • the mask sequence of the reference signal corresponding to the sequence of the second orthogonal sequence group corresponds to the position shown in Fig. 11b, in this case, c(0), c(1) and c(2) shown in Fig. 11b is the mask sequence corresponding to the second orthogonal sequence group.
  • the mask sequence corresponding to the first orthogonal sequence group and the mask sequence corresponding to the second orthogonal sequence group are different.
  • the local sequence cross-correlation of the reference signal sequences between the reference signal sequence groups is only related to the sequence w g,p ( ⁇ ), where the cross-correlation between w g,p ( ⁇ ) is is optimal, and the optimal local cross-correlation of the reference signal can effectively combat channel fading and improve channel estimation performance.
  • the sequence c g (t) is such that the sequence of reference signals between the reference signal sequence groups
  • the correlation is between It can ensure that the overall cross-correlation of the reference signal is also optimal, which can effectively combat channel fading and improve channel estimation performance.
  • the solution is compatible with the prior art.
  • the orthogonal sequence group provided by this solution is compatible with the orthogonal sequences used in the above-mentioned prior art, and when the signal transmission method provided by this solution is used for multi-layer transmission, different transmitting ends respectively use the orthogonal sequences in the above-mentioned first orthogonal sequence group.
  • the sequence and the sequence in the second orthogonal sequence group are used, the optimal cross-correlation between any two non-orthogonal sequences can be achieved, which ensures that the interference of pilot signals between different layers is relatively small.
  • the embodiments of the present application only take the example that the length of the sequence corresponding to the first orthogonal sequence group is twice the length of the sequence corresponding to the second orthogonal sequence group, and it may also be the second orthogonal sequence group.
  • the length of the sequence corresponding to the sequence group is twice the length of the sequence corresponding to the first orthogonal sequence group. Accordingly, the sequences of the above-mentioned orthogonal sequence group may be interchanged, which is not specifically limited in this solution.
  • the above-mentioned length multiple 2 may also be any other value, which is not specifically limited in this solution.
  • an embodiment of the present application further provides a signal sending method. Details as follows:
  • the network device sends a first reference signal, the reference signal is based on generated, where the Satisfy:
  • A is a non-zero complex number;
  • r(m) is a pseudo-random sequence;
  • the orthogonal sequence p of the The sequences in the orthogonal sequence group are mutually orthogonal, and any sequence in the first orthogonal sequence group is different from any sequence in the second orthogonal sequence;
  • the sequence c g ( ⁇ ) is a sequence in the first mask sequence set, and the value of the sequence c g ( ⁇ ) is associated with the sequence group g.
  • first orthogonal sequence group and the second orthogonal sequence group as examples for description, and they may also be any other orthogonal sequence groups, which are not specifically limited in this solution.
  • the foregoing network device may be a UE or a base station.
  • e g represents a sequence of length L
  • L represents the ⁇ -th Kronic product of e g , which satisfies
  • the e g corresponding to the multiple reference signal sequences form a second mask sequence set, where L is a positive integer.
  • the length of the sequence corresponding to the first orthogonal sequence group is the same as the length of the sequence corresponding to the second orthogonal sequence group.
  • the reference signal sequence corresponding to the sequence of the first orthogonal sequence group corresponds to the sequence of the second orthogonal sequence group
  • the reference signal sequences of are mapped on the same subcarriers in the same resource block.
  • sequence of the first orthogonal sequence group includes the following sequence: ⁇ 1,1 ⁇ ; ⁇ 1,-1 ⁇ ; the sequence of the second orthogonal sequence group includes the following sequence: ⁇ 1,1i ⁇ ; ⁇ 1, -1i ⁇ ;
  • the sequence of the first orthogonal sequence group includes the following sequence: ⁇ 1,1i ⁇ ; ⁇ 1,-1i ⁇ ; the sequence of the second orthogonal sequence group includes the following sequence: ⁇ 1,1 ⁇ ; ⁇ 1, -1 ⁇ ;
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • ⁇ 1,1,1,1,1,1,1 ⁇ ⁇ 1,-1,1,-1,1,-1 ⁇ ; ⁇ 1,1,-1,-1 ,1,1,-1 ⁇ ; ⁇ 1,-1,-1,1,1,-1,-1 ⁇ ; ⁇ 1,1,1,1,-1,-1,- 1,-1 ⁇ ; ⁇ 1,-1,1,-1,-1,1,-1,1 ⁇ ; ⁇ 1,1,-1,-1,-1,1,1 ⁇ ; ⁇ 1,-1,-1,1,-1 ⁇ ; ⁇ 1,-1,-1,1,1,-1 ⁇ ; where i is an imaginary unit.
  • the length of the sequence corresponding to the first orthogonal sequence group is twice the length of the sequence corresponding to the second orthogonal sequence group.
  • the reference signal sequence corresponding to the sequence of the first orthogonal sequence group is mapped to the same resource block at the same interval.
  • the center frequency distance of adjacent subcarriers in the first subcarrier is k subcarriers
  • the reference signal sequence corresponding to the sequence of the second orthogonal sequence group is mapped to the same resource block at equal intervals
  • the center frequency distance of adjacent subcarriers in the second subcarrier is 2k subcarriers
  • k is a positive integer.
  • sequence of the first orthogonal sequence group includes the following sequences:
  • sequences of the first orthogonal sequence group include the following sequences:
  • sequence of the second orthogonal sequence group includes the following sequences:
  • sequence of the first orthogonal sequence group includes the following sequences:
  • sequences of the first orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group include the following sequences:
  • sequences of the second orthogonal sequence group include the following sequences:
  • sequences in the second mask sequence set include the following sequences:
  • FIG. 15 it is a schematic diagram of a scenario of a signal sending method provided by an embodiment of the present application.
  • the first user equipment group may be determined based on the sequences in the first orthogonal sequence group
  • a reference signal is sent
  • the second user equipment group may be determined based on the sequences in the second orthogonal sequence group
  • the reference signal is sent; since the cross-correlation of the DMRS pilot sequences used by the two user equipment groups is small, the interference between the non-orthogonal DMRS ports can be relatively small, that is, the interference between the two user equipment groups is relatively small, and then the interference between the two user equipment groups is relatively small. Improve channel estimation performance.
  • an embodiment of the present application also provides a signal receiving method.
  • the method includes steps 1601-1602, and the details are as follows:
  • the receiving end sends/receives signaling, where the signaling carries a preset field segment and indicates a first reference signal combination, and the first reference signal combination includes one or more reference signals; wherein, the signaling contains The different values of the preset field segment of , respectively correspond to different reference signal combinations; all reference signals included in the different reference signal combinations form a reference signal set, and the reference signal set includes at least two reference signal groups; the reference signal sequence of each reference signal in the at least two reference signal groups Satisfy:
  • m is an integer from 0 to M-1, and M is The sequence length of ;
  • A is a non-zero complex number;
  • r(m) is a pseudo-random sequence;
  • the following conditions are met: the reference signal sequences of all reference signals in the first reference signal group
  • the corresponding orthogonal code sequences w g,p ( ) constitute the first orthogonal sequence group, and the reference signal sequences of all reference signals in the second reference signal group
  • the corresponding orthogonal code sequence w g,p ( ) constitutes a second orthogonal sequence group;
  • the g traverses at least the first orthogonal sequence group and the second orthogonal sequence group;
  • p traverses all sequences in the orthogonal sequence group ;
  • the sequences in the first orthogonal sequence group are mutually orthogonal
  • the sequences in the second orthogonal sequence group are mutually orthogonal, and
  • the sequence c g ( ) is a sequence in the first mask sequence set, and the value range of the independent variable is The sequence c g ( ⁇ ) corresponding to the first orthogonal sequence group is different from the sequence c g ( ⁇ ) corresponding to the second orthogonal sequence group;
  • sequence r(m) corresponding to the first sequence group is the same as the sequence r(m) corresponding to the second sequence group.
  • step 1601 may include: the receiving end sends signaling.
  • the receiving end may be a base station.
  • Step 1601 may further include: the receiving end receives signaling.
  • the receiving end may be a terminal device.
  • the receiver receives the one or more reference signals, and processes the one or more reference signals according to at least one reference signal sequence.
  • e g represents a sequence of length L
  • L represents the ⁇ -th Kronic product of e g , which satisfies
  • the e g corresponding to the multiple reference signal sequences form a second mask sequence set, where L is a positive integer.
  • the length of the sequence corresponding to the first orthogonal sequence group is the same as the length of the sequence corresponding to the second orthogonal sequence group.
  • the reference signal sequence corresponding to the sequence of the first orthogonal sequence group corresponds to the sequence of the second orthogonal sequence group
  • the reference signal sequences of are mapped on the same subcarriers in the same resource block.
  • the sequence of the first orthogonal sequence group includes the following sequence: ⁇ 1,1 ⁇ ; ⁇ 1,-1 ⁇ ;
  • the sequence of the second orthogonal sequence group includes the following sequence: ⁇ 1,1i ⁇ ; ⁇ 1,-1i ⁇ ;
  • the sequence of the first orthogonal sequence group includes the following sequence: ⁇ 1,1i ⁇ ; ⁇ 1,-1i ⁇ ; the sequence of the second orthogonal sequence group includes the following sequence: ⁇ 1,1 ⁇ ; ⁇ 1, -1 ⁇ ; where i is an imaginary unit.
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • ⁇ 1,1,1,1,1,1,1 ⁇ ⁇ 1,-1,1,-1,1,-1 ⁇ ; ⁇ 1,1,-1,-1 ,1,1,-1 ⁇ ; ⁇ 1,-1,-1,1,1,-1,-1 ⁇ ; ⁇ 1,1,1,1,-1,-1,- 1,-1 ⁇ ; ⁇ 1,-1,1,-1,-1,1,-1,1 ⁇ ; ⁇ 1,1,-1,-1,-1,1,1 ⁇ ; ⁇ 1,-1,-1,1,-1 ⁇ ; ⁇ 1,-1,-1,1,1,-1 ⁇ ; where i is an imaginary unit.
  • the length of the sequence corresponding to the first orthogonal sequence group is twice the length of the sequence corresponding to the second orthogonal sequence group.
  • the reference signal sequence corresponding to the sequence of the first orthogonal sequence group is mapped to the same resource block at the same interval.
  • the center frequency distance of adjacent subcarriers in the first subcarrier is k subcarriers
  • the reference signal sequence corresponding to the sequence of the second orthogonal sequence group is mapped to the same resource block at equal intervals
  • the center frequency distance of adjacent subcarriers in the second subcarrier is 2k subcarriers
  • k is a positive integer.
  • sequence of the first orthogonal sequence group includes the following sequences:
  • sequences of the first orthogonal sequence group include the following sequences:
  • sequence of the second orthogonal sequence group includes the following sequences:
  • sequence of the first orthogonal sequence group includes the following sequences:
  • sequences of the first orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group include the following sequences:
  • sequences of the second orthogonal sequence group include the following sequences:
  • sequences in the second mask sequence set include the following sequences:
  • an embodiment of the present application further provides a signal receiving method. Details as follows:
  • the network device receives a first reference signal based on generated, where the Satisfy:
  • A is a non-zero complex number;
  • r(m) is a pseudo-random sequence;
  • the orthogonal sequence p of the The sequences in the orthogonal sequence group are mutually orthogonal, and any sequence in the first orthogonal sequence group is different from any sequence in the second orthogonal sequence;
  • the sequence c g ( ) is a sequence in the first mask sequence set, and the value range of the independent variable is The value of the sequence c g ( ⁇ ) is associated with the sequence group g.
  • first orthogonal sequence group and the second orthogonal sequence group as examples for description, and they may also be any other orthogonal sequence groups, which are not specifically limited in this solution.
  • the foregoing network device may be a UE or a base station.
  • e g represents a sequence of length L
  • L represents the ⁇ -th Kronic product of e g , which satisfies
  • the e g corresponding to the multiple reference signal sequences form a second mask sequence set, where L is a positive integer.
  • the length of the sequence corresponding to the first orthogonal sequence group is the same as the length of the sequence corresponding to the second orthogonal sequence group.
  • the reference signal sequence corresponding to the sequence of the first orthogonal sequence group corresponds to the sequence of the second orthogonal sequence group
  • the reference signal sequences of are mapped on the same subcarriers in the same resource block.
  • sequence of the first orthogonal sequence group includes the following sequence: ⁇ 1,1 ⁇ ; ⁇ 1,-1 ⁇ ; the sequence of the second orthogonal sequence group includes the following sequence: ⁇ 1,1i ⁇ ; ⁇ 1, -1i ⁇ ;
  • the sequence of the first orthogonal sequence group includes the following sequence: ⁇ 1,1i ⁇ ; ⁇ 1,-1i ⁇ ; the sequence of the second orthogonal sequence group includes the following sequence: ⁇ 1,1 ⁇ ; ⁇ 1, -1 ⁇ ;
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • ⁇ 1,1,1,1,1,1,1 ⁇ ⁇ 1,-1,1,-1,1,-1 ⁇ ; ⁇ 1,1,-1,-1 ,1,1,-1 ⁇ ; ⁇ 1,-1,-1,1,1,-1,-1 ⁇ ; ⁇ 1,1,1,1,-1,-1,- 1,-1 ⁇ ; ⁇ 1,-1,1,-1,-1,1,-1,1 ⁇ ; ⁇ 1,1,-1,-1,-1,1,1 ⁇ ; ⁇ 1,-1,-1,1,-1 ⁇ ; ⁇ 1,-1,-1,1,1,-1 ⁇ ; where i is an imaginary unit.
  • the length of the sequence corresponding to the first orthogonal sequence group is twice the length of the sequence corresponding to the second orthogonal sequence group.
  • the reference signal sequence corresponding to the sequence of the first orthogonal sequence group is mapped to the same resource block at the same interval.
  • the center frequency distance of adjacent subcarriers in the first subcarrier is k subcarriers
  • the reference signal sequence corresponding to the sequence of the second orthogonal sequence group is mapped to the same resource block at equal intervals
  • the center frequency distance of adjacent subcarriers in the second subcarrier is 2k subcarriers
  • k is a positive integer.
  • the second subcarrier is a subset of the first subcarrier.
  • the reference signal sequences corresponding to the first orthogonal sequence group and the second orthogonal sequence group may be reference signal sequences on part of the time-frequency resources of the reference signal, for example, the reference signal in the system occupies 2 OFDM symbols,
  • the reference signal sequences corresponding to the first orthogonal sequence group and the second orthogonal sequence group are reference signal sequences on one of the OFDM symbols.
  • all the reference signals may also include other frequency division multiplexed reference signals.
  • sequence of the first orthogonal sequence group includes the following sequences:
  • sequences of the first orthogonal sequence group include the following sequences:
  • sequence of the second orthogonal sequence group includes the following sequences:
  • sequence of the first orthogonal sequence group includes the following sequences:
  • sequences of the first orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group include the following sequences:
  • sequences of the second orthogonal sequence group include the following sequences:
  • sequences in the second mask sequence set include the following sequences:
  • the above sequence can ensure that even if the first subcarrier and the second subcarrier are not identical, the interference of the reference signal can be guaranteed to be low.
  • an embodiment of the present application further provides a communication device, including:
  • the processing unit 1602 is configured to generate and send the one or more reference signals.
  • e g represents a sequence of length L
  • L represents the ⁇ -th Kronic product of e g , which satisfies
  • the e g corresponding to the multiple reference signal sequences form a second mask sequence set, where L is a positive integer.
  • the length of the sequence corresponding to the first orthogonal sequence group is the same as the length of the sequence corresponding to the second orthogonal sequence group.
  • the reference signal sequence corresponding to the sequence of the first orthogonal sequence group corresponds to the sequence of the second orthogonal sequence group
  • the reference signal sequences of are mapped on the same subcarriers in the same resource block.
  • sequence of the first orthogonal sequence group includes the following sequence: ⁇ 1,1 ⁇ ; ⁇ 1,-1 ⁇ ; the sequence of the second orthogonal sequence group includes the following sequence: ⁇ 1,1i ⁇ ; ⁇ 1, -1i ⁇ ;
  • the sequence of the first orthogonal sequence group includes the following sequence: ⁇ 1,1i ⁇ ; ⁇ 1,-1i ⁇ ; the sequence of the second orthogonal sequence group includes the following sequence: ⁇ 1,1 ⁇ ; ⁇ 1, -1 ⁇ ;
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • ⁇ 1,1,1,1,1,1,1 ⁇ ⁇ 1,-1,1,-1,1,-1 ⁇ ; ⁇ 1,1,-1,-1 ,1,1,-1 ⁇ ; ⁇ 1,-1,-1,1,1,-1,-1 ⁇ ; ⁇ 1,1,1,1,-1,-1,- 1,-1 ⁇ ; ⁇ 1,-1,1,-1,-1,1,-1,1 ⁇ ; ⁇ 1,1,-1,-1,-1,1,1 ⁇ ; ⁇ 1,-1,-1,1,-1 ⁇ ; ⁇ 1,-1,-1,1,1,-1 ⁇ ; where i is an imaginary unit.
  • the length of the sequence corresponding to the first orthogonal sequence group is twice the length of the sequence corresponding to the second orthogonal sequence group.
  • the reference signal sequence corresponding to the sequence of the first orthogonal sequence group is mapped to the same resource block at the same interval.
  • the center frequency distance of adjacent subcarriers in the first subcarrier is k subcarriers
  • the reference signal sequence corresponding to the sequence of the second orthogonal sequence group is mapped to the same resource block at equal intervals
  • the center frequency distance of adjacent subcarriers in the second subcarrier is 2k subcarriers
  • k is a positive integer.
  • the second subcarrier is a subset of the first subcarrier.
  • the reference signal sequences corresponding to the first orthogonal sequence group and the second orthogonal sequence group may be reference signal sequences on part of the time-frequency resources of the reference signal, for example, the reference signal in the system occupies 2 OFDM symbols,
  • the reference signal sequences corresponding to the first orthogonal sequence group and the second orthogonal sequence group are reference signal sequences on one of the OFDM symbols.
  • all the reference signals may also include other frequency division multiplexed reference signals.
  • sequence of the first orthogonal sequence group includes the following sequences:
  • sequences of the first orthogonal sequence group include the following sequences:
  • sequence of the second orthogonal sequence group includes the following sequences:
  • sequence of the first orthogonal sequence group includes the following sequences:
  • sequences of the first orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group include the following sequences:
  • sequences of the second orthogonal sequence group include the following sequences:
  • sequences in the second mask sequence set include the following sequences:
  • An embodiment of the present application further provides a communication device, including: a transceiver unit configured to send/receive signaling, where the signaling carries a preset field segment and indicates a first reference signal combination, where the first reference signal combination includes One or more reference signals; wherein, different values of the preset fields in the signaling correspond to different reference signal combinations respectively; all reference signals included in the different reference signal combinations form a reference signal set,
  • the reference signal set includes at least two reference signal groups; the reference signal sequence of each reference signal in the at least two reference signal groups Satisfy:
  • the corresponding orthogonal code sequences w g,p ( ) constitute the first orthogonal sequence group, and the reference signal sequences of all reference signals in the second reference signal group
  • the corresponding orthogonal code sequence w g,p ( ) constitutes a second orthogonal sequence group; the g traverses at least the first orthogonal sequence group and the second orthogonal sequence group; p traverses all sequences in the orthogonal sequence group ; the sequence
  • a processing unit configured to receive the one or more reference signals, and process the one or more reference signals according to at least one reference signal sequence.
  • e g represents a sequence of length L
  • L represents the ⁇ -th Kronic product of e g , which satisfies
  • the e g corresponding to the multiple reference signal sequences form a second mask sequence set, where L is a positive integer.
  • the length of the sequence corresponding to the first orthogonal sequence group is the same as the length of the sequence corresponding to the second orthogonal sequence group.
  • the reference signal sequence corresponding to the sequence of the first orthogonal sequence group corresponds to the sequence of the second orthogonal sequence group
  • the reference signal sequences of are mapped on the same subcarriers in the same resource block.
  • sequence of the first orthogonal sequence group includes the following sequence: ⁇ 1,1 ⁇ ; ⁇ 1,-1 ⁇ ; the sequence of the second orthogonal sequence group includes the following sequence: ⁇ 1,1i ⁇ ; ⁇ 1, -1i ⁇ ;
  • the sequence of the first orthogonal sequence group includes the following sequence: ⁇ 1,1i ⁇ ; ⁇ 1,-1i ⁇ ; the sequence of the second orthogonal sequence group includes the following sequence: ⁇ 1,1 ⁇ ; ⁇ 1, -1 ⁇ ;
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group/second orthogonal sequence group include the following sequences:
  • ⁇ 1,1,1,1,1,1,1 ⁇ ⁇ 1,-1,1,-1,1,-1 ⁇ ; ⁇ 1,1,-1,-1 ,1,1,-1 ⁇ ; ⁇ 1,-1,-1,1,1,-1,-1 ⁇ ; ⁇ 1,1,1,1,-1,-1,- 1,-1 ⁇ ; ⁇ 1,-1,1,-1,-1,1,-1,1 ⁇ ; ⁇ 1,1,-1,-1,-1,1,1 ⁇ ; ⁇ 1,-1,-1,1,-1 ⁇ ; ⁇ 1,-1,-1,1,1,-1 ⁇ ; where i is an imaginary unit.
  • the length of the sequence corresponding to the first orthogonal sequence group is twice the length of the sequence corresponding to the second orthogonal sequence group.
  • the reference signal sequence corresponding to the sequence of the first orthogonal sequence group is mapped to the same resource block at the same interval.
  • the center frequency distance of adjacent subcarriers in the first subcarrier is k subcarriers
  • the reference signal sequence corresponding to the sequence of the second orthogonal sequence group is mapped to the same resource block at equal intervals
  • the center frequency distance of adjacent subcarriers in the second subcarrier is 2k subcarriers
  • k is a positive integer.
  • the second subcarrier is a subset of the first subcarrier.
  • the reference signal sequences corresponding to the first orthogonal sequence group and the second orthogonal sequence group may be reference signal sequences on part of the time-frequency resources of the reference signal, for example, the reference signal in the system occupies 2 OFDM symbols,
  • the reference signal sequences corresponding to the first orthogonal sequence group and the second orthogonal sequence group are reference signal sequences on one of the OFDM symbols.
  • all the reference signals may also include other frequency division multiplexed reference signals.
  • sequence of the first orthogonal sequence group includes the following sequences:
  • sequences of the first orthogonal sequence group include the following sequences:
  • sequence of the second orthogonal sequence group includes the following sequences:
  • sequence of the first orthogonal sequence group includes the following sequences:
  • sequences of the first orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group include the following sequences:
  • sequences of the first orthogonal sequence group include the following sequences:
  • sequences of the second orthogonal sequence group include the following sequences:
  • sequences in the second mask sequence set include the following sequences:
  • an embodiment of the present application further provides a communication apparatus 1700, where the communication apparatus 1700 is configured to execute the foregoing method.
  • the communication apparatus 1700 is configured to execute the foregoing method.
  • Part or all of the above methods can be implemented by hardware or software.
  • the communication apparatus 1700 may be a chip or an integrated circuit during specific implementation.
  • the communication apparatus 1700 when part or all of the methods in the foregoing embodiments are implemented by software, the communication apparatus 1700 includes: a memory 1702 for storing programs; a processor 1701 for executing programs stored in the memory 1702 , the communication apparatus 1700 A communication interface 1703 may also be included. When the program is executed, the communication apparatus 1700 can implement the methods provided by the above embodiments.
  • the above-mentioned memory 1702 may be a physically independent unit, or may be integrated with the processor 1701 .
  • the communication apparatus 1700 may only include the processor 1701 .
  • the memory 1702 for storing programs is located outside the communication device 1700 , and the processor 1701 is connected to the memory 1702 through circuits/wires or a communication interface 1703 for reading and executing programs stored in the memory 1702 .
  • the processor 1701 may be a central processing unit (CPU), a network processor (NP), or a combination of CPU and NP.
  • CPU central processing unit
  • NP network processor
  • the processor 1701 may further include a hardware chip.
  • the above-mentioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the above-mentioned PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL) or any combination thereof.
  • the memory 1702 may include volatile memory (volatile memory), such as random-access memory (RAM); the memory may also include non-volatile memory (non-volatile memory), such as flash memory (flash memory) ), a hard disk drive (HDD) or a solid-state drive (SSD); the memory may also include a combination of the above-mentioned types of memory.
  • volatile memory volatile memory
  • non-volatile memory non-volatile memory
  • flash memory flash memory
  • HDD hard disk drive
  • SSD solid-state drive
  • the memory may also include a combination of the above-mentioned types of memory.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the division of the unit is only for one logical function division, and there may be other division methods in actual implementation, for example, multiple units or components may be combined or integrated into another system, or some features may be ignored, or not implement.
  • the shown or discussed mutual coupling, or direct coupling, or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • Units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the procedures or functions according to the embodiments of the present application are generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted over a computer-readable storage medium.
  • the computer instructions can be sent from one website site, computer, server, or data center to another by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.)
  • wire e.g. coaxial cable, fiber optic, digital subscriber line (DSL)
  • wireless e.g., infrared, wireless, microwave, etc.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media.
  • the available media may be read-only memory (ROM), or random access memory (RAM), or magnetic media, such as floppy disks, hard disks, magnetic tapes, magnetic disks, or optical media, such as, A digital versatile disc (DVD), or a semiconductor medium, for example, a solid state disk (SSD) and the like.
  • ROM read-only memory
  • RAM random access memory
  • magnetic media such as floppy disks, hard disks, magnetic tapes, magnetic disks, or optical media, such as, A digital versatile disc (DVD), or a semiconductor medium, for example, a solid state disk (SSD) and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Noise Elimination (AREA)

Abstract

本申请实施例提供一种信号发送方法、信号接收方法、通信装置和存储介质,包括:发送端接收/发送信令,所述信令指示第一参考信号组合;所述发送端发送所述至少一个第一参考信号;参考信号集合包括至少两个参考信号组,所述至少两个参考信号组中各参考信号的参考信号序列:(I);第一正交序列组/第二正交序列组中的序列互相正交,且第一正交序列组中的任一序列和第二正交序列中的任一序列均不同;第一正交序列组对应的掩码序列与所述第二正交序列组对应的掩码序列不同。采用本方案可以降低不同层之间导频信号的干扰,进而可以提高信道估计性能。

Description

一种信号发送方法、接收方法、通信装置和存储介质 技术领域
本申请涉及通信技术领域,尤其涉及一种信号发送方法、信号接收方法、通信装置和存储介质。
背景技术
在现有移动通信系统中,系统支持的正交的解调参考信号(demodulation reference signal,DMRS)的最大复用个数是受到限制的。以新空口(New RAT,NR)无线接入技术为例,当上行或下行通信采用基于循环前缀的正交频分复用(cyclic prefixed orthogonal frequency division multiplexing,CP-OFDM)波形时,CP-OFDM波形可以支持两种DMRS配置,即配置类型1(configuration type 1)和配置类型2(configuration type 2)。在配置类型1(configuration type 1)下,系统最大支持8个正交DMRS复用;在配置类型2(configuration type 2)下,系统最大支持12个正交DMRS复用。
随着移动通信的发展以及新兴业务的出现,对高速率的需求越来越大。增加多用户配对的传输层数有利于提升系统吞吐量。所以,当一个小区传输的层数比较多时,需要支持更多的DMRS。现有技术中使用不同的扰码,引入非正交DMRS,以达到扩充DMRS数的目的。例如使用两个扰码,类型1最多可以扩充为16个DMRS,类型2可以最多扩充为24个DMRS。现有技术中,DMRS的扰码为Gold序列,在OFDM波形下,虽然完整的Gold序列具有良好的互相关特性,但是由于DMRS使用的是Gold序列的片段,所以非正交DMRS的序列互相关性比较大,互相关性大会导致非正交DMRS间干扰较大,严重影响信道估计性能。
因此,在引入非正交DMRS的基础上,如何降低非正交DMRS之间的干扰,这是目前需要解决的问题。
发明内容
本申请公开了一种信号发送方法、信号接收方法、通信装置和存储介质,可以提高信道估计性能。
第一方面,本申请提供一种信号发送方法,包括:发送端接收/发送信令,所述信令携带预设域段,指示第一参考信号组合,所述第一参考信号组合中包括一个或多个参考信号;其中,所述信令中的所述预设域段的不同取值,对应多个参考信号组合;所述多个参考信号组合包括的所有的参考信号组成参考信号集合,所述参考信号集合包括至少两个参考信号组;所述至少两个参考信号组中各参考信号的参考信号序列
Figure PCTCN2020119742-appb-000001
满足:
Figure PCTCN2020119742-appb-000002
Figure PCTCN2020119742-appb-000003
其中,m=0,1,…,M-1,M为
Figure PCTCN2020119742-appb-000004
的序列长度;A为非零复数;r(m)为伪随机序列;其中,序列w g,p(·)的长度为N g,自变量的取值范围为0,1,…,N g-1。n满足n=m mod N g,所述M不小于2N g,g为正交序列组的标识,所述至少两个参考信号组 满足以下条件:第一参考信号组中的所有的参考信号的参考信号序列
Figure PCTCN2020119742-appb-000005
对应的正交序列w g,p(·)组成第一正交序列组,第二参考信号组中的所有参考信号的参考信号序列
Figure PCTCN2020119742-appb-000006
对应的正交序列w g,p(·)组成第二正交序列组;所述g至少遍历第一正交序列组和第二正交序列组;p遍历正交序列组中的所有序列;所述第一正交序列组中的序列互相正交,所述第二正交序列组中的序列互相正交,且所述第一正交序列组中的任一序列和所述第二正交序列中的任一序列均不同;其中,
Figure PCTCN2020119742-appb-000007
序列c g(·)为第一掩码序列集合中的一个序列,自变量取值范围为
Figure PCTCN2020119742-appb-000008
其中,
Figure PCTCN2020119742-appb-000009
还可以是其他形式,例如
Figure PCTCN2020119742-appb-000010
等。所述第一正交序列组对应的序列c g(·)与所述第二正交序列组对应的序列c g(·)不同;所述第一序列组对应的序列r(m)与所述第二序列组对应的序列r(m)相同;所述发送端生成并发送所述一个或多个参考信号。
通过本申请实施例,发送端基于序列
Figure PCTCN2020119742-appb-000011
生成参考信号,其中,该序列
Figure PCTCN2020119742-appb-000012
对应的正交序列w g,p(·)为至少第一正交序列组或第二正交序列组中的序列,该第一正交序列组中的序列互相正交,第二正交序列组中的序列互相正交,同时第一正交序列组中的任一序列和第二正交序列中的任一序列均不同;且,第一正交序列组对应的序列c g(·)与第二正交序列组对应的序列c g(·)不同。相比于现有技术,所述一个或多个参考信号的序列与为其他终端设备分配的与之不正交的参考信号的序列之间的互相关值与扰码序列r(m)无关,避免因为扰码的随机性导致的互相关很差的情况,而仅与序列w g,p(·)、c g(·)相关。这样在采用本方案提供的信号发送方法进行多层传输时,可以降低不同层之间导频信号的干扰,进而可以提高信道估计性能。
其中,所述序列c g(·)满足:
Figure PCTCN2020119742-appb-000013
其中,e g表示长度为L的序列,
Figure PCTCN2020119742-appb-000014
表示e g的α次克罗尼克积,所述α满足
Figure PCTCN2020119742-appb-000015
所述多个参考信号序列对应的e g组成第二掩码序列集合,其中,L为正整数。
其中,所述第一正交序列组对应的序列的长度和所述第二正交序列组对应的序列的长度相同。
当所述至少两个参考信号组中的参考信号的频率资源包括相同的资源块时,所述第一正交序列组的序列对应的参考信号序列和所述第二正交序列组的序列对应的参考信号序列映射在所述相同的资源块中的相同的子载波上。
作为一种实现方式,所述第一正交序列组的序列包括下述序列:{1,1};{1,-1};所述第二正交序列组的序列包括下述序列:{1,1i};{1,-1i};或者,所述第一正交序列组的序列包括下述序列:{1,1i};{1,-1i};所述第二正交序列组的序列包括下述序列:{1,1};{1,-1};其中,i为虚数单位,1i表示i,-1i表示-i,下同,不再赘述。通信系统中也有用j表示虚数的单位的。
作为另一种实现方式,所述第一正交序列组/第二正交序列组的序列包括下述序列:{1,1,1,1};{1,-1,1,-1};{1,1,-1,-1};{1,-1,-1,1};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{1,-1,-1i,-1i};{1,1,-1i,1i};{1,-1,1i,1i};{1,1,1i,-1i};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{1,-1i,-1i,-1};{1,1i,-1i,1};{1,-1i,1i,1};{1,1i,1i,-1};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{1,-1i,-1,-1i};{1,1i,-1,1i};{1,-1i,1,1i};{1,1i,1,-1i};其中,i为虚数单位。
作为又一种实现方式,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{-1i,-1,1i,-1,1i,-1,1i,1};{-1i,1,1i,1,1i,1,1i,-1};{-1i,-1,-1i,1,1i,-1,-1i,-1};{-1i,1,-1i,-1,1i,1,-1i,1};{-1i,-1,1i,-1,-1i,1,-1i,-1};{-1i,1,1i,1,-1i,-1,-1i,1};{-1i,-1,-1i,1,-1i,1,1i,1};{-1i,1,-1i,-1,-1i,-1,1i,-1};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{1i,-1i,-1,-1,1i,1i,-1,1};{1i,1i,-1,1,1i,-1i,-1,-1};{1i,-1i,1,1,1i,1i,1,-1};{1i,1i,1,-1,1i,-1i,1,1};{1i,-1i,-1,-1,-1i,-1i,1,-1};{1i,1i,-1,1,-1i,1i,1,1};{1i,-1i,1,1,-1i,-1i,-1,1};{1i,1i,1,-1,-1i,1i,-1,-1};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{1i,1i,1i,-1i,-1,-1,-1,1};{1i,-1i,1i,1i,-1,1,-1,-1};{1i,1i,-1i,1i,-1,-1,1,-1};{1i,-1i,-1i,-1i,-1,1,1,1};{1i,1i,1i,-1i,1,1,1,-1};{1i,-1i,1i,1i,1,-1,1,1};{1i,1i,-1i,1i,1,1,-1,1};{1i,-1i,-1i,-1i,1,-1,-1,-1};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{-1,1i,-1,1i,1i,-1,-1i,1};{-1,-1i,-1,-1i,1i,1,-1i,-1};{-1,1i,1,-1i,1i,-1,1i,-1};{-1,-1i,1,1i,1i,1,1i,1};{-1,1i,-1,1i,-1i,1,1i,-1};{-1,-1i,-1,-1i,-1i,-1,1i,1};{-1,1i,1,-1i,-1i,1,-1i,1};{-1,-1i,1,1i,-1i,-1,-1i,-1};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{1i,-1,-1,1i,-1,-1i,1i,1};{1i,1,-1,-1i,-1,1i,1i,-1};{1i,-1,1,-1i,-1,-1i,-1i,-1};{1i,1,1,1i,-1,1i,-1i,1};{1i,-1,-1,-1,1i,1,1i,-1i,-1};{1i,1,-1,-1i,1,-1i,-1i,1};{1i,-1,1,-1i,1,1i,1i,1};{1i,1,1,1i,1,-1i,1i,-1};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{-1,1i,-1i,-1,-1,1i,1i,1};{-1,-1i,-1i,1,-1,-1i,1i,-1};{-1,1i,1i,1,-1,1i,-1i,-1};{-1,-1i,1i,-1,-1,-1i,-1i,1};{-1,1i,-1i,-1,1,-1i,-1i,-1};{-1,-1i,-1i,1,1,1i,-1i,1};{-1,1i,1i,1,1,-1i,1i,1};{-1,-1i,1i,-1,1,1i,1i,-1};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{-1,-1,1i,1i,-1i,1i,-1, 1};{-1,1,1i,-1i,-1i,-1i,-1,-1};{-1,-1,-1i,-1i,-1i,1i,1,-1};{-1,1,-1i,1i,-1i,-1i,1,1};{-1,-1,1i,1i,1i,-1i,1,-1};{-1,1,1i,-1i,1i,1i,1,1};{-1,-1,-1i,-1i,1i,-1i,-1,1};{-1,1,-1i,1i,1i,1i,-1,-1};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{1,1,1,1,1,1,1,1};{1,-1,1,-1,1,-1,1,-1};{1,1,-1,-1,1,1,-1,-1};{1,-1,-1,1,1,-1,-1,1};{1,1,1,1,-1,-1,-1,-1};{1,-1,1,-1,-1,1,-1,1};{1,1,-1,-1,-1,-1,1,1};{1,-1,-1,1,-1,1,1,-1};其中,i为虚数单位。
其中,参考信号序列组间的参考信号的序列的局部序列互相关仅与序列w g,p(n)相关,其中w g,p(n)之间互相关值都为
Figure PCTCN2020119742-appb-000016
互相关性是最优的。其中,参考信号的局部互相关最优可以有效对抗信道衰落,提升信道估计性能。
可替代的,所述第一正交序列组对应的序列的长度是所述第二正交序列组对应的序列的长度的2倍。
当所述至少两个参考信号组中的参考信号的频率资源包括相同的资源块时,所述第一正交序列组的序列对应的参考信号序列映射到所述相同的资源块中等间隔的第一子载波上,所述第一子载波中相邻子载波的中心频率距离为k个子载波,所述第二正交序列组的序列对应的参考信号序列映射到所述相同的资源块中等间隔的第二子载波上,所述第二子载波中相邻子载波的中心频率距离为2k个子载波,k为正整数。
其中,所述第一正交序列组的序列包括下述序列:{1,-1,-1i,-1i};{1,1,-1i,1i};{1,-1,1i,1i};{1,1,1i,-1i};或者,所述第一正交序列组的序列包括下述序列:{1,-1i,-1i,-1};{1,1i,-1i,1};{1,-1i,1i,1};{1,1i,1i,-1};其中,所述第二正交序列组的序列包括下述序列:{1,1};{1,-1};其中,i为虚数单位。
作为另一种实现方式,所述第一正交序列组的序列包括下述序列:{-1i,-1,1i,-1,1i,-1,1i,1};{-1i,1,1i,1,1i,1,1i,-1};{-1i,-1,-1i,1,1i,-1,-1i,-1};{-1i,1,-1i,-1,1i,1,-1i,1};{-1i,-1,1i,-1,-1i,1,-1i,-1};{-1i,1,1i,1,-1i,-1,-1i,1};{-1i,-1,-1i,1,-1i,1,1i,1};{-1i,1,-1i,-1,-1i,-1,1i,-1};或者,所述第一正交序列组的序列包括下述序列:{-1,1i,-1,1i,1i,-1,-1i,1};{-1,-1i,-1,-1i,1i,1,-1i,-1};{-1,1i,1,-1i,1i,-1,1i,-1};{-1,-1i,1,1i,1i,1,1i,1};{-1,1i,-1,1i,-1i,1,1i,-1};{-1,-1i,-1,-1i,-1i,-1,1i,1};{-1,1i,1,-1i,-1i,1,-1i,1};{-1,-1i,1,1i,-1i,-1,-1i,-1};或者,所述第一正交序列组的序列包括下述序列:{-1,1i,-1i,-1,-1,1i,1i,1};{-1,-1i,-1i,1,-1,-1i,1i,-1};{-1,1i,1i,1,-1,1i,-1i,-1};{-1,-1i,1i,-1,-1,-1i,-1i,1};{-1,1i,-1i,-1,1,-1i,-1i,-1};{-1,-1i,-1i,1,1,1i,-1i,1};{-1,1i,1i,1,1,-1i,1i,1};{-1,-1i,1i,-1,1,1i,1i,-1};或者,所述第一正交序列组的序列包括下述序列:{-1,-1,1i,1i,-1i,1i,-1,1};{-1,1,1i,-1i,-1i,-1i,-1,-1};{-1,-1,-1i,-1i,-1i,1i,1,-1};{-1,1,-1i,1i,-1i,-1i,1,1};{-1,-1,1i,1i,1i,-1i,1,-1};{-1,1,1i,-1i,1i,1i,1,1};{-1,-1,-1i,-1i,1i,-1i,-1,1};{-1,1,-1i,1i,1i,1i,-1,-1};所述第二正交序列组的序列包括下述序列:{1,1,1,1};{1,-1,1,-1};{1,1,-1,-1};{1,-1,-1,1};其中,i为虚数单位。
其中,参考信号序列组间的参考信号的序列的局部序列互相关仅与序列w g,p(n)相关,其中w g,p(·)之间互相关值都为
Figure PCTCN2020119742-appb-000017
互相关性是最优的。其中,参考信号的局部互相关最优可以有效对抗信道衰落,提升信道估计性能。
其中,所述第二掩码序列集合中的序列包括下述序列:{1,1};{1,1i};其中,i为虚数单位。
掩码序列c g(·)使得参考信号序列组间的参考信号的序列
Figure PCTCN2020119742-appb-000018
之间互相关为
Figure PCTCN2020119742-appb-000019
可保证参考信号的整体互相关也最优,可以有效对抗信道衰落,进而可以提高信道估计性能。
第二方面,本申请实施例还提供一种信号接收方法,包括:接收端发送/接收信令,所述信令携带预设域段,指示第一参考信号组合,所述第一参考信号组合中包括一个或多个参考信号;其中,所述信令中的所述预设域段的不同取值,分别对应不同参考信号组合;所述不同参考信号组合包括的所有的参考信号组成参考信号集合,所述参考信号集合包括至少两个参考信号组;所述至少两个参考信号组中各参考信号的参考信号序列
Figure PCTCN2020119742-appb-000020
满足
Figure PCTCN2020119742-appb-000021
其中,m为0到M-1的整数,M为
Figure PCTCN2020119742-appb-000022
的序列长度;A为非零复数;r(m)为伪随机序列;其中,序列w g,p(·)的长度为N g,自变量的取值范围为0,1,…,N g-1;n满足n=m mod N g,所述M不小于2N g,g为正交序列组的标识,所述至少两个参考信号组满足以下条件:第一参考信号组中的所有的参考信号的参考信号序列
Figure PCTCN2020119742-appb-000023
对应的正交码序列w g,p(n)组成第一正交序列组,第二参考信号组中的所有参考信号的参考信号序列
Figure PCTCN2020119742-appb-000024
对应的正交码序列w g,p(·)组成第二正交序列组;所述g至少遍历第一正交序列组和第二正交序列组;p遍历正交序列组中的所有序列;所述第一正交序列组中的序列互相正交,所述第二正交序列组中的序列互相正交,且所述第一正交序列组中的任一序列和所述第二正交序列中的任一序列均不同;其中,
Figure PCTCN2020119742-appb-000025
序列c g(·)为第一掩码序列集合中的一个序列,自变量取值范围为
Figure PCTCN2020119742-appb-000026
所述第一正交序列组对应的序列c g(·)与所述第二正交序列组对应的序列c g(·)不同;所述第一序列组对应的序列r(m)与所述第二序列组对应的序列r(m)相同;所述接收端接收所述一个或多个参考信号,并根据至少一个参考信号序列对所述一个或多个参考信号进行处理。
通过本申请实施例,接收端接收发送端发送的基于序列
Figure PCTCN2020119742-appb-000027
生成的参考信号,其中,该序列
Figure PCTCN2020119742-appb-000028
对应的正交序列w g,p(·)为至少第一正交序列组或第二正交序列组中的序列,该第一正交序列组中的序列互相正交,第二正交序列组中的序列互相正交,同时第一正交序列组中的任一序列和第二正交序列中的任一序列均不同;且,第一正交序列组对应的序列c g(·)与第二正交序列组对应的序列c g(·)不同。相比于现有技术,所述一个或多个参考信号的序列与其他终端设备分配的与之不正交的参考信号的序列之间的互相关值与扰码序列无关,避免因为扰码的随机性导致的互相关很差的情况,而仅与序列w g,p(·)、c g(·)相关。采用本方案,可以降低不同层之间导频信号的干扰,进而可以提高信道估计性能。
其中,所述序列c g(·)满足:
Figure PCTCN2020119742-appb-000029
其中,e g表示长度为L的序列,
Figure PCTCN2020119742-appb-000030
表示e g的α次克罗尼克积,所述α满足
Figure PCTCN2020119742-appb-000031
所述多个参考信号序列对应的e g组成第二掩码序列集合,其中,L为正整数。
其中,所述第一正交序列组对应的序列的长度和所述第二正交序列组对应的序列的长度相同。
当所述至少两个参考信号组中的参考信号的频率资源包括相同的资源块时,所述第一正交序列组的序列对应的参考信号序列和所述第二正交序列组的序列对应的参考信号序列映射在所述相同的资源块中的相同的子载波上。
作为一种实现方式,所述第一正交序列组的序列包括下述序列:{1,1};{1,-1};所述第二正交序列组的序列包括下述序列:{1,1i};{1,-1i};或者,所述第一正交序列组的序列包括下述序列:{1,1i};{1,-1i};所述第二正交序列组的序列包括下述序列:{1,1};{1,-1};其中,i为虚数单位。
作为另一种实现方式,所述第一正交序列组/第二正交序列组的序列包括下述序列:{1,1,1,1};{1,-1,1,-1};{1,1,-1,-1};{1,-1,-1,1};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{1,-1,-1i,-1i};{1,1,-1i,1i};{1,-1,1i,1i};{1,1,1i,-1i};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{1,-1i,-1i,-1};{1,1i,-1i,1};{1,-1i,1i,1};{1,1i,1i,-1};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{1,-1i,-1,-1i};{1,1i,-1,1i};{1,-1i,1,1i};{1,1i,1,-1i};其中,i为虚数单位。
作为又一种实现方式,所述第一正交序列组/第二正交序列组的序列包括下述序列:{-1i,-1,1i,-1,1i,-1,1i,1};{-1i,1,1i,1,1i,1,1i,-1};{-1i,-1,-1i,1,1i,-1,-1i,-1};{-1i,1,-1i,-1,1i,1,-1i,1};{-1i,-1,1i,-1,-1i,1,-1i,-1};{-1i,1,1i,1,-1i,-1,-1i,1};{-1i,-1,-1i,1,-1i,1,1i,1};{-1i,1,-1i,-1,-1i,-1,1i,-1};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{1i,-1i,-1,-1,1i,1i,-1,1};{1i,1i,-1,1,1i,-1i,-1,-1};{1i,-1i,1,1,1i,1i,1,-1};{1i,1i,1,-1,1i,-1i,1,1};{1i,-1i,-1,-1,-1i,-1i,1,-1};{1i,1i,-1, 1,-1i,1i,1,1};{1i,-1i,1,1,-1i,-1i,-1,1};{1i,1i,1,-1,-1i,1i,-1,-1};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{1i,1i,1i,-1i,-1,-1,-1,1};{1i,-1i,1i,1i,-1,1,-1,-1};{1i,1i,-1i,1i,-1,-1,1,-1};{1i,-1i,-1i,-1i,-1,1,1,1};{1i,1i,1i,-1i,1,1,1,-1};{1i,-1i,1i,1i,1,-1,1,1};{1i,1i,-1i,1i,1,1,-1,1};{1i,-1i,-1i,-1i,1,-1,-1,-1};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{-1,1i,-1,1i,1i,-1,-1i,1};{-1,-1i,-1,-1i,1i,1,-1i,-1};{-1,1i,1,-1i,1i,-1,1i,-1};{-1,-1i,1,1i,1i,1,1i,1};{-1,1i,-1,1i,-1i,1,1i,-1};{-1,-1i,-1,-1i,-1i,-1,1i,1};{-1,1i,1,-1i,-1i,1,-1i,1};{-1,-1i,1,1i,-1i,-1,-1i,-1};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{1i,-1,-1,1i,-1,-1i,1i,1};{1i,1,-1,-1i,-1,1i,1i,-1};{1i,-1,1,-1i,-1,-1i,-1i,-1};{1i,1,1,1i,-1,1i,-1i,1};{1i,-1,-1,-1,1i,1,1i,-1i,-1};{1i,1,-1,-1i,1,-1i,-1i,1};{1i,-1,1,-1i,1,1i,1i,1};{1i,1,1,1i,1,-1i,1i,-1};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{-1,1i,-1i,-1,-1,1i,1i,1};{-1,-1i,-1i,1,-1,-1i,1i,-1};{-1,1i,1i,1,-1,1i,-1i,-1};{-1,-1i,1i,-1,-1,-1i,-1i,1};{-1,1i,-1i,-1,1,-1i,-1i,-1};{-1,-1i,-1i,1,1,1i,-1i,1};{-1,1i,1i,1,1,-1i,1i,1};{-1,-1i,1i,-1,1,1i,1i,-1};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{-1,-1,1i,1i,-1i,1i,-1,1};{-1,1,1i,-1i,-1i,-1i,-1,-1};{-1,-1,-1i,-1i,-1i,1i,1,-1};{-1,1,-1i,1i,-1i,-1i,1,1};{-1,-1,1i,1i,1i,-1i,1,-1};{-1,1,1i,-1i,1i,1i,1,1};{-1,-1,-1i,-1i,1i,-1i,-1,1};{-1,1,-1i,1i,1i,1i,-1,-1};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{1,1,1,1,1,1,1,1};{1,-1,1,-1,1,-1,1,-1};{1,1,-1,-1,1,1,-1,-1};{1,-1,-1,1,1,-1,-1,1};{1,1,1,1,-1,-1,-1,-1};{1,-1,1,-1,-1,1,-1,1};{1,1,-1,-1,-1,-1,1,1};{1,-1,-1,1,-1,1,1,-1};其中,i为虚数单位。
其中,参考信号序列组间的参考信号的序列的局部序列互相关仅与序列w g,p(n)相关,其中w g,p(n)之间互相关值都为
Figure PCTCN2020119742-appb-000032
互相关性是最优的。其中,参考信号的局部互相关最优可以有效对抗信道衰落,提升信道估计性能。
可替代的,所述第一正交序列组对应的序列的长度是所述第二正交序列组对应的序列的长度的2倍。
当所述至少两个参考信号组中的参考信号的频率资源包括相同的资源块时,所述第一正交序列组的序列对应的参考信号序列映射到所述相同的资源块中等间隔的第一子载波上,所述第一子载波中相邻子载波的中心频率距离为k个子载波,所述第二正交序列组的序列对应的参考信号序列映射到所述相同的资源块中等间隔的第二子载波上,所述第二子载波中相邻子载波的中心频率距离为2k个子载波,k为正整数。
其中,所述第一正交序列组的序列包括下述序列:{1,-1,-1i,-1i};{1,1,-1i,1i};{1,-1,1i,1i};{1,1,1i,-1i};或者,所述第一正交序列组的序列包括下述序列:{1,-1i,-1i,-1};{1,1i,-1i,1};{1,-1i,1i,1};{1,1i,1i,-1};其中,所述第二正交序列组的序列包括下述序列:{1,1};{1,-1};其中,i为虚数单位。
作为另一种实现方式,所述第一正交序列组的序列包括下述序列:{-1i,-1,1i,-1,1i,-1,1i,1};{-1i,1,1i,1,1i,1,1i,-1};{-1i,-1,-1i,1,1i,-1,-1i,-1};{-1i,1,-1i,-1,1i,1,-1i,1};{-1i,-1,1i,-1,-1i,1,-1i,-1};{-1i,1,1i,1,-1i,-1,-1i,1};{-1i,-1,-1i,1,-1i,1,1i,1};{-1i,1,-1i,-1,-1i,-1,1i,-1};或者,所述第一正交序列组的序列包括下述序列:{-1,1i,-1,1i,1i,-1,-1i,1};{-1,-1i,-1,-1i,1i,1,-1i,-1};{-1,1i,1,-1i,1i,-1,1i,-1};{-1,-1i,1,1i,1i,1,1i,1};{-1,1i,-1,1i,-1i,1,1i,-1};{-1,-1i,-1,-1i,-1i,-1,1i,1};{-1,1i,1,-1i,-1i,1,-1i,1};{-1,-1i,1,1i,-1i,-1,-1i,-1};或者,所述第一正交序列组的序列包括下述序列:{-1,1i,-1i,-1,-1,1i,1i,1};{-1,-1i,-1i,1,-1,-1i,1i,-1};{-1,1i,1i,1,-1,1i,-1i,-1};{-1,-1i,1i,-1,-1,-1i,-1i,1};{-1,1i,-1i,-1,1,-1i,-1i,-1};{-1,-1i,-1i,1,1,1i,-1i,1};{-1,1i,1i,1,1,-1i,1i,1};{-1,-1i,1i,-1,1,1i,1i,-1};或者,所述第一正交序列组的序列包括下述序列:{-1,-1,1i,1i,-1i,1i,-1,1};{-1,1,1i,-1i,-1i,-1i,-1,-1};{-1,-1,-1i,-1i,-1i,1i,1,-1};{-1,1,-1i,1i,-1i,-1i,1,1};{-1,-1,1i,1i,1i,-1i,1,-1};{-1,1,1i,-1i,1i,1i,1,1};{-1,-1,-1i,-1i,1i,-1i,-1,1};{-1,1,-1i,1i,1i,1i,-1,-1};所述第二正交序列组的序列包括下述序列:{1,1,1,1};{1,-1,1,-1};{1,1,-1,-1};{1,-1,-1,1};其中,i为虚数单位。
其中,参考信号序列组间的参考信号的序列的局部序列互相关仅与序列w g,p(n)相关,其中w g,p(·)之间互相关值都为
Figure PCTCN2020119742-appb-000033
互相关性是最优的。其中,参考信号的局部互相关最优可以有效对抗信道衰落,提升信道估计性能。
其中,所述第二掩码序列集合中的序列包括下述序列:{1,1};{1,1i};其中,i为虚数单位。
其中,掩码序列c g(t)使得参考信号序列组间的参考信号的序列
Figure PCTCN2020119742-appb-000034
之间互相关为
Figure PCTCN2020119742-appb-000035
可保证参考信号的整体互相关也最优,可以有效对抗信道衰落,进而可以提高信道估计性能。
第三方面,本申请还提供一种通信装置,包括:收发单元,用于接收/发送信令,所述信令携带预设域段,指示第一参考信号组合,所述第一参考信号组合中包括一个或多个参考信号;其中,所述信令中的所述预设域段的不同取值,分别对应不同参考信号组合;所述不同参考信号组合包括的所有的参考信号组成参考信号集合,所述参考信号集合包括至少两个参考信号组;所述至少两个参考信号组中各参考信号的参考信号序列
Figure PCTCN2020119742-appb-000036
满足
Figure PCTCN2020119742-appb-000037
其中,m为0到M-1的整数,M为
Figure PCTCN2020119742-appb-000038
的序列长度;A为非零复数;r(m)为伪随机序列;其中,序列w g,p(·)的长度为N g,自变量的取值范围为 0,1,…,N g-1。n满足n=m mod N g,所述M不小于2N g,g为正交序列组的标识,所述至少两个参考信号组满足以下条件:第一参考信号组中的所有的参考信号的参考信号序列
Figure PCTCN2020119742-appb-000039
对应的正交码序列w g,p(·)组成第一正交序列组,第二参考信号组中的所有参考信号的参考信号序列
Figure PCTCN2020119742-appb-000040
对应的正交码序列w g,p(·)组成第二正交序列组;所述g至少遍历第一正交序列组和第二正交序列组;p遍历正交序列组中的所有序列;所述第一正交序列组中的序列互相正交,所述第二正交序列组中的序列互相正交,且所述第一正交序列组中的任一序列和所述第二正交序列中的任一序列均不同;其中,
Figure PCTCN2020119742-appb-000041
序列c g(·)为第一掩码序列集合中的一个序列,自变量取值范围为
Figure PCTCN2020119742-appb-000042
所述第一正交序列组对应的序列c g(·)与所述第二正交序列组对应的序列c g(·)不同;所述第一序列组对应的序列r(m)与所述第二序列组对应的序列r(m)相同;处理单元,用于生成并发送所述一个或多个参考信号。
其中,所述序列c g(·)满足:
Figure PCTCN2020119742-appb-000043
其中,e g表示长度为L的序列,
Figure PCTCN2020119742-appb-000044
表示e g的α次克罗尼克积,所述α满足
Figure PCTCN2020119742-appb-000045
所述多个参考信号序列对应的e g组成第二掩码序列集合,其中,L为正整数。
其中,所述第一正交序列组对应的序列的长度和所述第二正交序列组对应的序列的长度相同。
当所述至少两个参考信号组中的参考信号的频率资源包括相同的资源块时,所述第一正交序列组的序列对应的参考信号序列和所述第二正交序列组的序列对应的参考信号序列映射在所述相同的资源块中的相同的子载波上。
作为一种实现方式,所述第一正交序列组的序列包括下述序列:{1,1};{1,-1};所述第二正交序列组的序列包括下述序列:{1,1i};{1,-1i};或者,所述第一正交序列组的序列包括下述序列:{1,1i};{1,-1i};所述第二正交序列组的序列包括下述序列:{1,1};{1,-1};其中,i为虚数单位。
作为另一种实现方式,所述第一正交序列组/第二正交序列组的序列包括下述序列:{1,1,1,1};{1,-1,1,-1};{1,1,-1,-1};{1,-1,-1,1};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{1,-1,-1i,-1i};{1,1,-1i,1i};{1,-1,1i,1i};{1,1,1i,-1i};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{1,-1i,-1i,-1};{1,1i,-1i,1};{1,-1i,1i,1};{1,1i,1i,-1};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{1,-1i,-1,-1i};{1,1i,-1,1i};{1,-1i,1,1i};{1,1i,1,-1i};其中,i为虚数单位。
作为又一种实现方式,所述第一正交序列组/第二正交序列组的序列包括下述序列:{-1i,-1,1i,-1,1i,-1,1i,1};{-1i,1,1i,1,1i,1,1i,-1};{-1i,-1,-1i,1,1i,-1,-1i,-1};{-1i,1,-1i,-1,1i,1,-1i,1};{-1i,-1,1i,-1,-1i,1,-1i,-1};{-1i,1,1i,1,-1i,-1,-1i,1};{-1i,-1,-1i,1,-1i,1,1i,1};{-1i,1,-1i,-1,-1i,-1,1i,-1};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{1i,-1i,-1,-1,1i,1i,-1,1};{1i,1i,-1,1,1i,-1i,-1,-1};{1i,-1i,1,1,1i,1i,1,-1};{1i,1i,1,-1,1i,-1i,1,1};{1i,-1i,-1,-1,-1i,-1i,1,-1};{1i,1i,-1,1,-1i,1i,1,1};{1i,-1i,1,1,-1i,-1i,-1,1};{1i,1i,1,-1,-1i,1i,-1,-1};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{1i,1i,1i,-1i,-1,-1,-1,1};{1i,-1i,1i,1i,-1,1,-1,-1};{1i,1i,-1i,1i,-1,-1,1,-1};{1i,-1i,-1i,-1i,-1,1,1,1};{1i,1i,1i,-1i,1,1,1,-1};{1i,-1i,1i,1i,1,-1,1,1};{1i,1i,-1i,1i,1,1,-1,1};{1i,-1i,-1i,-1i,1,-1,-1,-1};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{-1,1i,-1,1i,1i,-1,-1i,1};{-1,-1i,-1,-1i,1i,1,-1i,-1};{-1,1i,1,-1i,1i,-1,1i,-1};{-1,-1i,1,1i,1i,1,1i,1};{-1,1i,-1,1i,-1i,1,1i,-1};{-1,-1i,-1,-1i,-1i,-1,1i,1};{-1,1i,1,-1i,-1i,1,-1i,1};{-1,-1i,1,1i,-1i,-1,-1i,-1};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{1i,-1,-1,1i,-1,-1i,1i,1};{1i,1,-1,-1i,-1,1i,1i,-1};{1i,-1,1,-1i,-1,-1i,-1i,-1};{1i,1,1,1i,-1,1i,-1i,1};{1i,-1,-1,-1,1i,1,1i,-1i,-1};{1i,1,-1,-1i,1,-1i,-1i,1};{1i,-1,1,-1i,1,1i,1i,1};{1i,1,1,1i,1,-1i,1i,-1};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{-1,1i,-1i,-1,-1,1i,1i,1};{-1,-1i,-1i,1,-1,-1i,1i,-1};{-1,1i,1i,1,-1,1i,-1i,-1};{-1,-1i,1i,-1,-1,-1i,-1i,1};{-1,1i,-1i,-1,1,-1i,-1i,-1};{-1,-1i,-1i,1,1,1i,-1i,1};{-1,1i,1i,1,1,-1i,1i,1};{-1,-1i,1i,-1,1,1i,1i,-1};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{-1,-1,1i,1i,-1i,1i,-1,1};{-1,1,1i,-1i,-1i,-1i,-1,-1};{-1,-1,-1i,-1i,-1i,1i,1,-1};{-1,1,-1i,1i,-1i,-1i,1,1};{-1,-1,1i,1i,1i,-1i,1,-1};{-1,1,1i,-1i,1i,1i,1,1};{-1,-1,-1i,-1i,1i,-1i,-1,1};{-1,1,-1i,1i,1i,1i,-1,-1};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{1,1,1,1,1,1,1,1};{1,-1,1,-1,1,-1,1,-1};{1,1,-1,-1,1,1,-1,-1};{1,-1,-1,1,1,-1,-1,1};{1,1,1,1,-1,-1,-1,-1};{1,-1,1,-1,-1,1,-1,1};{1,1,-1,-1,-1,-1,1,1};{1,-1,-1,1,-1,1,1,-1};其中,i为虚数单位。
可替代的,所述第一正交序列组对应的序列的长度是所述第二正交序列组对应的序列的长度的2倍。
当所述至少两个参考信号组中的参考信号的频率资源包括相同的资源块时,所述第一正交序列组的序列对应的参考信号序列映射到所述相同的资源块中等间隔的第一子载波上,所述第一子载波中相邻子载波的中心频率距离为k个子载波,所述第二正交序列组的序列对应的参考信号序列映射到所述相同的资源块中等间隔的第二子载波上,所述第二子载波中相邻子载波的中心频率距离为2k个子载波,k为正整数。
其中,所述第一正交序列组的序列包括下述序列:{1,-1,-1i,-1i};{1,1,-1i,1i};{1,-1,1i,1i};{1,1,1i,-1i};或者,所述第一正交序列组的序列包括下述序列:{1,-1i,-1i,-1};{1,1i,-1i,1};{1,-1i,1i,1};{1,1i,1i,-1};其中,所述第二正交序列组的序列包括下 述序列:{1,1};{1,-1};其中,i为虚数单位。
作为另一种实现方式,所述第一正交序列组的序列包括下述序列:{-1i,-1,1i,-1,1i,-1,1i,1};{-1i,1,1i,1,1i,1,1i,-1};{-1i,-1,-1i,1,1i,-1,-1i,-1};{-1i,1,-1i,-1,1i,1,-1i,1};{-1i,-1,1i,-1,-1i,1,-1i,-1};{-1i,1,1i,1,-1i,-1,-1i,1};{-1i,-1,-1i,1,-1i,1,1i,1};{-1i,1,-1i,-1,-1i,-1,1i,-1};或者,所述第一正交序列组的序列包括下述序列:{-1,1i,-1,1i,1i,-1,-1i,1};{-1,-1i,-1,-1i,1i,1,-1i,-1};{-1,1i,1,-1i,1i,-1,1i,-1};{-1,-1i,1,1i,1i,1,1i,1};{-1,1i,-1,1i,-1i,1,1i,-1};{-1,-1i,-1,-1i,-1i,-1,1i,1};{-1,1i,1,-1i,-1i,1,-1i,1};{-1,-1i,1,1i,-1i,-1,-1i,-1};或者,所述第一正交序列组的序列包括下述序列:{-1,1i,-1i,-1,-1,1i,1i,1};{-1,-1i,-1i,1,-1,-1i,1i,-1};{-1,1i,1i,1,-1,1i,-1i,-1};{-1,-1i,1i,-1,-1,-1i,-1i,1};{-1,1i,-1i,-1,1,-1i,-1i,-1};{-1,-1i,-1i,1,1,1i,-1i,1};{-1,1i,1i,1,1,-1i,1i,1};{-1,-1i,1i,-1,1,1i,1i,-1};或者,所述第一正交序列组的序列包括下述序列:{-1,-1,1i,1i,-1i,1i,-1,1};{-1,1,1i,-1i,-1i,-1i,-1,-1};{-1,-1,-1i,-1i,-1i,1i,1,-1};{-1,1,-1i,1i,-1i,-1i,1,1};{-1,-1,1i,1i,1i,-1i,1,-1};{-1,1,1i,-1i,1i,1i,1,1};{-1,-1,-1i,-1i,1i,-1i,-1,1};{-1,1,-1i,1i,1i,1i,-1,-1};所述第二正交序列组的序列包括下述序列:{1,1,1,1};{1,-1,1,-1};{1,1,-1,-1};{1,-1,-1,1};其中,i为虚数单位。
其中,所述第二掩码序列集合中的序列包括下述序列:{1,1};{1,1i};其中,i为虚数单位。
第四方面,本申请还提供一种通信装置,包括:收发单元,用于发送/接收信令,所述信令携带预设域段,指示第一参考信号组合,所述第一参考信号组合中包括一个或多个参考信号;其中,所述信令中的所述预设域段的不同取值,分别对应不同参考信号组合;所述不同参考信号组合包括的所有的参考信号组成参考信号集合,所述参考信号集合包括至少两个参考信号组;所述至少两个参考信号组中各参考信号的参考信号序列
Figure PCTCN2020119742-appb-000046
满足
Figure PCTCN2020119742-appb-000047
其中,m为0到M-1的整数,M为
Figure PCTCN2020119742-appb-000048
的序列长度;A为非零复数;r(m)为伪随机序列;其中,序列w g,p(·)的长度为N g,n满足n=m mod N g,所述M不小于2N g,g为正交序列组的标识,所述至少两个参考信号组满足以下条件:第一参考信号组中的所有的参考信号的参考信号序列
Figure PCTCN2020119742-appb-000049
对应的正交码序列w g,p(·)组成第一正交序列组,第二参考信号组中的所有参考信号的参考信号序列
Figure PCTCN2020119742-appb-000050
对应的正交码序列w g,p(·)组成第二正交序列组;所述g至少遍历第一正交序列组和第二正交序列组;p遍历正交序列组中的所有序列;所述第一正交序列组中的序列互相正交,所述第二正交序列组中 的序列互相正交,且所述第一正交序列组中的任一序列和所述第二正交序列中的任一序列均不同;其中,
Figure PCTCN2020119742-appb-000051
序列c g(·)为第一掩码序列集合中的一个序列,自变量取值范围为
Figure PCTCN2020119742-appb-000052
所述第一正交序列组对应的序列c g(·)与所述第二正交序列组对应的序列c g(·)不同;所述第一序列组对应的序列r(m)与所述第二序列组对应的序列r(m)相同;处理单元,用于接收所述一个或多个参考信号,并根据至少一个参考信号序列对所述一个或多个参考信号进行处理。
其中,所述序列c g(·)满足:
Figure PCTCN2020119742-appb-000053
其中,e g表示长度为L的序列,
Figure PCTCN2020119742-appb-000054
表示e g的α次克罗尼克积,所述α满足
Figure PCTCN2020119742-appb-000055
所述多个参考信号序列对应的e g组成第二掩码序列集合,其中,L为正整数。
其中,所述第一正交序列组对应的序列的长度和所述第二正交序列组对应的序列的长度相同。
当所述至少两个参考信号组中的参考信号的频率资源包括相同的资源块时,所述第一正交序列组的序列对应的参考信号序列和所述第二正交序列组的序列对应的参考信号序列映射在所述相同的资源块中的相同的子载波上。
作为一种实现方式,所述第一正交序列组的序列包括下述序列:{1,1};{1,-1};所述第二正交序列组的序列包括下述序列:{1,1i};{1,-1i};或者,所述第一正交序列组的序列包括下述序列:{1,1i};{1,-1i};所述第二正交序列组的序列包括下述序列:{1,1};{1,-1};其中,i为虚数单位。
作为另一种实现方式,所述第一正交序列组/第二正交序列组的序列包括下述序列:{1,1,1,1};{1,-1,1,-1};{1,1,-1,-1};{1,-1,-1,1};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{1,-1,-1i,-1i};{1,1,-1i,1i};{1,-1,1i,1i};{1,1,1i,-1i};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{1,-1i,-1i,-1};{1,1i,-1i,1};{1,-1i,1i,1};{1,1i,1i,-1};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{1,-1i,-1,-1i};{1,1i,-1,1i};{1,-1i,1,1i};{1,1i,1,-1i};其中,i为虚数单位。
作为又一种实现方式,所述第一正交序列组/第二正交序列组的序列包括下述序列:{-1i,-1,1i,-1,1i,-1,1i,1};{-1i,1,1i,1,1i,1,1i,-1};{-1i,-1,-1i,1,1i,-1,-1i,-1};{-1i,1,-1i,-1,1i,1,-1i,1};{-1i,-1,1i,-1,-1i,1,-1i,-1};{-1i,1,1i,1,-1i,-1,-1i,1};{-1i,-1,-1i,1,-1i,1,1i,1};{-1i,1,-1i,-1,-1i,-1,1i,-1};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{1i,-1i,-1,-1,1i,1i,-1,1};{1i,1i,-1,1,1i,-1i,-1,-1};{1i,-1i,1,1,1i,1i,1,-1};{1i,1i,1,-1,1i,-1i,1,1};{1i,-1i,-1,-1,-1i,-1i,1,-1};{1i,1i,-1,1,-1i,1i,1,1};{1i,-1i,1,1,-1i,-1i,-1,1};{1i,1i,1,-1,-1i,1i,-1,-1};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{1i,1i,1i,-1i,-1,-1,-1,1};{1i,-1i, 1i,1i,-1,1,-1,-1};{1i,1i,-1i,1i,-1,-1,1,-1};{1i,-1i,-1i,-1i,-1,1,1,1};{1i,1i,1i,-1i,1,1,1,-1};{1i,-1i,1i,1i,1,-1,1,1};{1i,1i,-1i,1i,1,1,-1,1};{1i,-1i,-1i,-1i,1,-1,-1,-1};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{-1,1i,-1,1i,1i,-1,-1i,1};{-1,-1i,-1,-1i,1i,1,-1i,-1};{-1,1i,1,-1i,1i,-1,1i,-1};{-1,-1i,1,1i,1i,1,1i,1};{-1,1i,-1,1i,-1i,1,1i,-1};{-1,-1i,-1,-1i,-1i,-1,1i,1};{-1,1i,1,-1i,-1i,1,-1i,1};{-1,-1i,1,1i,-1i,-1,-1i,-1};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{1i,-1,-1,1i,-1,-1i,1i,1};{1i,1,-1,-1i,-1,1i,1i,-1};{1i,-1,1,-1i,-1,-1i,-1i,-1};{1i,1,1,1i,-1,1i,-1i,1};{1i,-1,-1,-1,1i,1,1i,-1i,-1};{1i,1,-1,-1i,1,-1i,-1i,1};{1i,-1,1,-1i,1,1i,1i,1};{1i,1,1,1i,1,-1i,1i,-1};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{-1,1i,-1i,-1,-1,1i,1i,1};{-1,-1i,-1i,1,-1,-1i,1i,-1};{-1,1i,1i,1,-1,1i,-1i,-1};{-1,-1i,1i,-1,-1,-1i,-1i,1};{-1,1i,-1i,-1,1,-1i,-1i,-1};{-1,-1i,-1i,1,1,1i,-1i,1};{-1,1i,1i,1,1,-1i,1i,1};{-1,-1i,1i,-1,1,1i,1i,-1};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{-1,-1,1i,1i,-1i,1i,-1,1};{-1,1,1i,-1i,-1i,-1i,-1,-1};{-1,-1,-1i,-1i,-1i,1i,1,-1};{-1,1,-1i,1i,-1i,-1i,1,1};{-1,-1,1i,1i,1i,-1i,1,-1};{-1,1,1i,-1i,1i,1i,1,1};{-1,-1,-1i,-1i,1i,-1i,-1,1};{-1,1,-1i,1i,1i,1i,-1,-1};或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:{1,1,1,1,1,1,1,1};{1,-1,1,-1,1,-1,1,-1};{1,1,-1,-1,1,1,-1,-1};{1,-1,-1,1,1,-1,-1,1};{1,1,1,1,-1,-1,-1,-1};{1,-1,1,-1,-1,1,-1,1};{1,1,-1,-1,-1,-1,1,1};{1,-1,-1,1,-1,1,1,-1};其中,i为虚数单位。
可替代的,所述第一正交序列组对应的序列的长度是所述第二正交序列组对应的序列的长度的2倍。
当所述至少两个参考信号组中的参考信号的频率资源包括相同的资源块时,所述第一正交序列组的序列对应的参考信号序列映射到所述相同的资源块中等间隔的第一子载波上,所述第一子载波中相邻子载波的中心频率距离为k个子载波,所述第二正交序列组的序列对应的参考信号序列映射到所述相同的资源块中等间隔的第二子载波上,所述第二子载波中相邻子载波的中心频率距离为2k个子载波,k为正整数。
其中,所述第一正交序列组的序列包括下述序列:{1,-1,-1i,-1i};{1,1,-1i,1i};{1,-1,1i,1i};{1,1,1i,-1i};或者,所述第一正交序列组的序列包括下述序列:{1,-1i,-1i,-1};{1,1i,-1i,1};{1,-1i,1i,1};{1,1i,1i,-1};其中,所述第二正交序列组的序列包括下述序列:{1,1};{1,-1};其中,i为虚数单位。
作为另一种实现方式,所述第一正交序列组的序列包括下述序列:{-1i,-1,1i,-1,1i,-1,1i,1};{-1i,1,1i,1,1i,1,1i,-1};{-1i,-1,-1i,1,1i,-1,-1i,-1};{-1i,1,-1i,-1,1i,1,-1i,1};{-1i,-1,1i,-1,-1i,1,-1i,-1};{-1i,1,1i,1,-1i,-1,-1i,1};{-1i,-1,-1i,1,-1i,1,1i,1};{-1i,1,-1i,-1,-1i,-1,1i,-1};或者,所述第一正交序列组的序列包括下述序列:{-1,1i,-1,1i,1i,-1,-1i,1};{-1,-1i,-1,-1i,1i,1,-1i,-1};{-1,1i,1,-1i,1i,-1,1i,-1};{-1,-1i,1,1i,1i,1,1i,1};{-1,1i,-1,1i,-1i,1,1i,-1};{-1,-1i,-1,-1i,-1i,-1,1i,1};{-1,1i,1,-1i,-1i,1,-1i,1};{-1,-1i,1,1i,-1i,-1,-1i,-1};或者,所述第一正交序列组的序列包括下 述序列:{-1,1i,-1i,-1,-1,1i,1i,1};{-1,-1i,-1i,1,-1,-1i,1i,-1};{-1,1i,1i,1,-1,1i,-1i,-1};{-1,-1i,1i,-1,-1,-1i,-1i,1};{-1,1i,-1i,-1,1,-1i,-1i,-1};{-1,-1i,-1i,1,1,1i,-1i,1};{-1,1i,1i,1,1,-1i,1i,1};{-1,-1i,1i,-1,1,1i,1i,-1};或者,所述第一正交序列组的序列包括下述序列:{-1,-1,1i,1i,-1i,1i,-1,1};{-1,1,1i,-1i,-1i,-1i,-1,-1};{-1,-1,-1i,-1i,-1i,1i,1,-1};{-1,1,-1i,1i,-1i,-1i,1,1};{-1,-1,1i,1i,1i,-1i,1,-1};{-1,1,1i,-1i,1i,1i,1,1};{-1,-1,-1i,-1i,1i,-1i,-1,1};{-1,1,-1i,1i,1i,1i,-1,-1};所述第二正交序列组的序列包括下述序列:{1,1,1,1};{1,-1,1,-1};{1,1,-1,-1};{1,-1,-1,1};其中,i为虚数单位。
其中,所述第二掩码序列集合中的序列包括下述序列:{1,1};{1,1i};其中,i为虚数单位。
第五方面,本申请提供了一种计算机存储介质,包括计算机指令,当所述计算机指令在电子设备上运行时,使得所述电子设备执行如第一方面任一种可能的实施方式和/或第二方面任一种可能的实施方式提供的方法。
第六方面,本申请实施例提供一种计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行如第一方面任一种可能的实施方式和/或第二方面任一种可能的实施方式提供的方法。
可以理解地,上述提供的第三方面所述的装置、第四方面所述的装置、第五方面所述的计算机存储介质或者第六方面所述的计算机程序产品均用于执行第一方面中任一所提供的方法以及第二方面中任一所提供的方法。因此,其所能达到的有益效果可参考对应方法中的有益效果,此处不再赘述。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所涉及到的附图作简单地介绍。
图1是现有技术中资源块的示意图;
图2a是现有技术中一种采用配置类型1的DMRS的导频图案的示意图;
图2b是现有技术中另一种采用配置类型1的DMRS的导频图案的示意图;
图3a是现有技术中一种采用配置类型2的DMRS的导频图案的示意图;
图3b是现有技术中另一种采用配置类型2的DMRS的导频图案的示意图;
图4是现有技术中一种DMRS序列之间的互相关的累计分布图;
图5a是本申请实施例提供的一种通信系统的示意图;
图5b是本申请实施例提供的一种信号发送方法的流程示意图;
图5c是本申请实施例提供的另一种信号发送方法的流程示意图;
图6a是本申请实施例提供的一种参考信号序列映射到时频资源的示意图;
图6b是本申请实施例提供的另一种参考信号序列映射到时频资源的示意图;
图7a是本申请实施例提供的一种正交码序列放置示意图;
图7b是本申请实施例提供的另一种正交码序列放置示意图;
图8是本申请实施例提供的一种掩码序列放置示意图;
图9是本申请实施例提供的一种局部序列示意图;
图10a是本申请实施例提供的一种正交码序列放置示意图;
图10b是本申请实施例提供的另一种正交码序列放置示意图;
图11a是本申请实施例提供的一种掩码序列放置示意图;
图11b是本申请实施例提供的另一种掩码序列放置示意图;
图12是本申请实施例提供的一种正交码序列放置示意图;
图13是本申请实施例提供的一种掩码序列放置示意图;
图14是本申请实施例提供的一种参考信号序列映射到时频资源的示意图;
图15是本申请实施例提供的一种信号发送方法的场景示意图;
图16a是本申请实施例提供的一种信号接收方法的流程示意图;
图16b是本申请实施例提供的一种通信装置的示意图;
图17是本申请实施例提供的另一种通信装置的示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
以下对本申请实施例所涉及的相关技术进行介绍:
1、资源块(resource BLOCK,RB)
[根据细则91更正 21.10.2020] 
在无线资源中,在时域上最小的资源粒度可以是一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号(symbol),可简称为符号(symbol),一个时隙包括多个符号;在频域上,最小的资源粒度可以是一个子载波。一个OFDM符号和一个子载波组成一个资源元素(resource element,RE)。物理层在进行资源映射的时候,是以RE为基本单位的。RB是数据信道分配的频域基本调度单位,一个RB包括频域上的12个子载波,如图1 所示。
2、解调参考信号(demodulation reference signal,DMRS)
目前,通信系统中,DMRS用于上/下行信道估计。例如,可以利用DMRS对物理下行共享信道(physical downlink shared channel,PDSCH)或者物理上行共享信道(physical uplink shared channel,PUSCH)进行信道估计,以便对上/下行数据相干解调。其中,PDSCH和PUSCH分别用于承载下行和上行发送的数据,DMRS是和PDSCH或者PUSCH伴随着传输的。通常DMRS位于PDSCH或者PUSCH所占时隙的前几个符号。
在上下行传输过程中,根据每个用户设备(user equipment,UE)的信道条件等因素为每个被调度的UE分布一定数量的并行数据流,其中每个数据流称为一层传输。以5G新空 口(new radio,NR)系统为例,下行单用户多输入多输出(single user-multiple input multiple output,SU-MIMO)最多支持8层传输;上行SU-MIMO最多支持4层传输。上下行的多用户多输入多输出(multiple user-multiple input multiple output,MU-MIMO)最多支持12层传输。其中,每层传输可以分别对应一个DMRS。
每个DMRS的预编码向量和对应的层的数据流的预编码向量相同,接收端需要根据每个DMRS分别做信道估计。其中不同的DMRS对应不同的索引,这里的索引可以是DMRS端口号。
当上下行通信采用循环前缀正交频分复用(cyclic prefix-orthogonal frequency division multiplexing,CP-OFDM)波形时,DMRS可以利用伪随机序列生成。具体地,DMRS的扰码序列r(m)可以由序列c(m)经过正交相移键控(quadrature phase shift keying,QPSK)调制得到,c(m)可以被定义为Gold序列,Gold序列是伪随机序列的一种。r(m)可以表示为:
Figure PCTCN2020119742-appb-000056
其中,
c(m)=(x 1(m+N C)+x 2(m+N C))mod 2
x 1(m+31)=(x 1(m+3)+x 1(m))mod 2
x 2(m+31)=(x 2(m+3)+x 2(m+2)+x 2(m+1)+x 2(m))mod 2
其中,N C=1600,x 1(m)可以初始化为x 1(0)=1,x 1(m)=0,m=1,2,...,30,x 2(m)满足
Figure PCTCN2020119742-appb-000057
以PUSCH DMRS为例,c init由DMRS扰码标识(Identity document,ID)、小区ID、DMRS的子帧位置和符号位置等信息决定。
在多层传输中各层复用相同的时频资源,各DMRS共用同一个扰码序列r(m)。另外,为了保证各层传输之间的正交性,需要在扰码序列上叠加各层传输对应的正交码(orthogonal cover code,OCC)。
具体的,在多层传输复用相同的时频资源的情况下,根据DMRS所采用的配置类型,在频域上不同的DMRS被划分成了不同的码分复用(code division multiplexing,CDM)组(group)。例如,NR中可以支持两种DMRS配置类型,即配置类型1和配置类型2。其中,同一个CDM组内的DMRS利用正交码来进行时频域上的扩展,并保证不同DMRS的正交性,不同CDM组之间采用频分方式来保证DMRS相互正交。
[根据细则91更正 21.10.2020] 
以采用CP-OFDM波形的PUSCH DMRS为例,图2a、图2b所示为一种采用配置类型1的DMRS的导频图案的示意图。其中,当为DMRS配置一个符号时,图2a中两种图案的资源元素(resource element,RE)分别表示CDM组0和CDM组1所占RE,p0,p1,p2,p3分别表示DMRS端口号。其中,在同一个CDM组内,采用正交码来保证同一CDM组内的两个DMRS正交。不同CDM组之间采用频分的方式,来保证不同CDM组之间DMRS相互正交。当DMRS配置采用类型1并且DMRS配置一个符号时,系统最大支持4个DMRS正交。
[根据细则91更正 21.10.2020] 
当为DMRS配置两个符号时,图2b 中两种图案的RE分别表示CDM组0和CDM组1所占RE,p0,p1,...,p6,p7分别表示DMRS端口号。其中,在同一个CDM组内, 采用正交码来保证同一CDM组内的4个DMRS正交。当DMRS配置采用类型1并且DMRS配置二个符号时,系统最大支持8个DMRS正交。
[根据细则91更正 21.10.2020] 
再例如,图3a、图3b所示为一种采用配置类型2的DMRS的导频图案的示意图。其中,当为DMRS配置一个符号时,图3a中三种图案的RE分别表示三个CDM组所占RE,p0,p1,p2,...p4,p5分别表示DMRS端口号。其中,在同一个CDM组内,采用码长为2的正交码来保证同一CDM组内的两个DMRS正交。当采用类型2并且DMRS配置一个符号时,系统最大支持6个DMRS正交。
[根据细则91更正 21.10.2020] 
当为DMRS配置两个符号时,图3b中三种图案的RE分别表示三个CDM组所占RE,p0,p1,p2,...p10,p11分别表示DMRS端口号。其中,在同一个CDM组内,采用码长为4的正交码来保证同一CDM组内的四个DMRS正交。可以看出,当采用类型2并且DMRS配置二个符号时,系统最大支持12个DMRS正交。
另外,在上行或下行传输中,基站需要通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)中的下行控制信息(Downlink Control Information,DCI)来向UE指示DMRS的分配情况。一些情况下,为了在MU-MIMO中支持联合接收算法,以便更好的抑制干扰,不但需要指示每个被调度的UE自身的DMRS的分配情况,还需要在DCI中指示与之共同被调度的UE的DMRS分配情况。
目前,随着移动通信的发展,需要通过增加网络配对的传输层数来提升系统性能。而由上述相关技术的描述可知,网络配对的传输层数受到系统最大支持的正交DMRS数的限制。
为了避免网络配对的传输层数受到系统最大支持的正交DMRS数的限制,现有技术中通常采用使用多种扰码序列的方式,来达到扩充DMRS数的目的,以图2b导频图中CDM组0为例,端口p0、p1、p4、p5的DMRS的扰码序列相同,假设为r 0(m),引入另一个扰码r 1(m),叠加OCC后扩展出端口p0′、p1′、p4′、p5′的DMRS。由于使用不同扰码,端口p0、p1、p4、p5的DMRS和端口p0′、p1′、p4′、p5′的DMRS之间互相不正交。
图4是根据Release15/16(简称r15/16)协议的扰码生成公式随机选取2000个扰码序列r 0(m)-r 1999(m)分别叠加4长OCC后得到的48长DMRS序列之间的互相关(cross-correlation)的累计分布图(Cumulative Distribution Function,CDF),每个扰码叠加4个OCC可以得到4个正交的DMRS序列,不同扰码得到的DMRS序列之间不正交,两个不同扰码得到的DMRS序列之间最大的互相关值作为图4中的统计结果,其中,两个N长不正交序列{a n}、{b n}的互相关值定义为
Figure PCTCN2020119742-appb-000058
其中,扰码初始化公式如下所示:
Figure PCTCN2020119742-appb-000059
其中
Figure PCTCN2020119742-appb-000060
为一个时隙内的符号数,
Figure PCTCN2020119742-appb-000061
为子帧索引,l为符号索引,
Figure PCTCN2020119742-appb-000062
为扰码ID。根据扰码初始化公式c init可知,不同扰码生成不仅取决于扰码ID,还取决于符号位置,因此 扰码选择随机性很大,导致得出的互相关值变化范围很大,互相关值比较大会导致不正交DMRS之间干扰比较大,严重影响信道估计性能。
为此,本方案提供一种信号发送方法,以解决上述问题。
参照图5a,为本申请实施例提供的一种通信系统示意图。该通信系统可以包括一个或多个网络设备10(仅示出1个)以及与网络设备10连接的一个或多个终端设备UE。
网络设备10可以是能和终端设备通信的设备。网络设备10可以是任意一种具有无线收发功能的设备。包括但不限于:基站NodeB、演进型基站eNodeB、第五代(the fifth generation,5G)通信系统中的基站、未来通信系统中的基站或网络设备、WiFi系统中的接入节点、无线中继节点、无线回传节点等。网络设备10还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。网络设备10还可以是小站,传输参考节点(transmission reference point,TRP)等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
终端设备是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上,如轮船上等;还可以部署在空中,如飞机、气球和卫星上等。所述终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。终端设备有时也可以称为终端设备(user equipment,UE)、接入终端设备、UE单元、移动站、移动台、远方站、远程终端设备、移动设备、终端(terminal)、无线通信设备、UE代理或UE装置等。
本申请实施例所提供技术方案可应用于各类通信系统,例如采用NR技术、长期演进(long term evolution,LTE)技术或其他无线接入技术的通信系统。
需要说明的是,本发明实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本发明实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
本申请适用于通信系统中的上行(终端设备到网络设备)和下行(网络设备到终端设备)通信。
参照图5b,为本申请实施例提供的一种信号发送方法的流程示意图。该方法可包括步骤501-503,具体如下:
501、网络设备发送第一指令。
其中,网络设备可以为接入网设备,或者网络设备可以为核心网中能够与终端设备进行信息交互的网元。
其中,第一信令包括的预设域段,指示第一参考信号组合。第一参考信号组合中包括至少一个参考信号。
其中,第一信令中包括的预设域段的取值不同,分别对应各参考信号组合。也就是说,当为第一信令中包括的预设域段赋不同取值的情况下,第一信令可以对应不同的参考信号组合。进而,可以通过网络设备发送预设域段取值不同的第一信令,向接收端设备指示不同的参考信号组合。
具体的,第一信令可以是下行控制信息(downlink control information,DCI)。各参考信号组合,可以是DMRS的组合。
上述不同参考信号组合包括的所有的参考信号组成参考信号集合(为便于将该参考信号集合与其他参考信号集合进行区别,下文将该参考信号集合称为“第一参考信号集合”)。例如,上述不同参考信号组合包括组合1、组合2以及组合3。其中,组合1中包括参考信号a、参考信号b;组合2中包括参考信号c、参考信号d、参考信号e;组合3中包括参考信号f、参考信号g。那么,第一参考信号集合中包括参考信号a、参考信号b、参考信号c、参考信号d、参考信号e、参考信号f、参考信号g。另外,不同参考信号组合中的参考信号可以存在交集。例如,上述各参考信号组合包括组合1和组合2,其中组合1中包括参考信号h,组合2中包括参考信号h、参考信号i。此时第一参考信号集合中包括参考信号h和参考信号i。
其中,第一参考信号集合包括至少两个参考信号组。至少两个参考信号组中各参考信号的参考信号序列
Figure PCTCN2020119742-appb-000063
满足:
Figure PCTCN2020119742-appb-000064
其中,r(m)为伪随机序列。例如,当第一参考信号集合为DMRS集合时,r(m)为DMRS的扰码序列。
其中,m=0,1,2…。当参考信号序列
Figure PCTCN2020119742-appb-000065
的长度为M时,m=0,1,2…M-1。其中,序列
Figure PCTCN2020119742-appb-000066
的序列长度可以是基站通过发送信令进而告知终端设备的等。
A为非零复常数;在具体实施过程中,本领域技术人员可以根据需要赋予A的取值。例如,A可以指功率控制因子,技术人员可以根据发送参考信号的设备的发射功率,确定A的取值。也就是说,对于A的取值,本申请实施例可以不做限制。
序列w g,p(·)的长度为N g,自变量的取值范围为0,1,…,N g-1,n满足n=m mod N g。所述序列
Figure PCTCN2020119742-appb-000067
的序列长度M不小于2N g。例如,当所述第一参考信号集合为DMRS集合时,正交码序列w g,p(·)可以是各DMRS的OCC。
序列c g(·)为掩码序列,
Figure PCTCN2020119742-appb-000068
序列c g(·)可以是第一掩码序列集合中的一个序列,自变量取值范围为
Figure PCTCN2020119742-appb-000069
也即序列c g(·)的长度为
Figure PCTCN2020119742-appb-000070
表示下取整,
Figure PCTCN2020119742-appb-000071
表示上取整。下同,不再赘述。
另外,上述至少两个参考信号组中任意两个参考信号组,以第一参考信号组和第二参考信号组为例,满足以下条件:
第一参考信号组中的所有的参考信号的参考信号序列
Figure PCTCN2020119742-appb-000072
对应的正交序列w g,p(·)组成第一序列组,第二参考信号组中的所有的参考信号的参考信号序列
Figure PCTCN2020119742-appb-000073
对应的正交序列w g,p(·)组成第二序列组。g为正交序列组的标识,所述g至少遍历第一正交序列组和第二正交序列组;p遍历正交序列组中的所有序列。上述g至少遍历第一正交序列组和第二正交序列组是指,g的取值范围至少包含第一正交序列组和第二正交序列组。上述仅以第一正交序列组和第二正交序列组为例进行说明,其还可以进一步包括第三正交序列组、第四正交序列组等,本方案对此不作具体限定。相应的,上述p遍历正交序列组中的所有序列,也就是说,p的取值范围对应正交序列组中的所有序列。
所述第一正交序列组中的序列互相正交,所述第二正交序列组中的序列互相正交,且所述第一正交序列组中的任一序列和所述第二正交序列中的任一序列均不同。
上述序列w g,p(·)为正交序列,其为第一正交序列组或第二正交序列组中的序列。当然,当上述正交序列组有至少3个时,则上述序列w g,p(·)还可以是第三正交序列组中的序列等,本实施例仅以第一正交序列组和第二正交序列组为例进行说明。
第一正交序列组对应的序列c g(·)与第二正交序列组对应的序列c g(·)不同。具体的,同一正交序列组的序列w g,p(·)对应的c g(·)相同,而不同正交序列组对应的c g(·)相同。
502、终端设备接收第一指令。
在一种实施例中,当将本申请实施例所提供的方法应用于网络设备向终端设备发送指令(例如可以是下行控制信息(downlink control information,DCI)),以使终端设备根据指令确定待发送的参考信号(例如可以是待发送的DMRS),然后由终端设备发送该待发送的参考信号的场景下,该方法还包括:
503、终端设备发送至少一个参考信号,以使网络设备接收至少一个参考信号。
其中,终端设备在接收到第一指令后,根据第一指令中预设域段的取值,即可确定第一参考信号组合中的至少一个参考信号,进而发送该至少一个参考信号。
示例性的,终端设备中存储有上述第一参考信号集合中各参考信号的参考信号序列
Figure PCTCN2020119742-appb-000074
对应的正交码序列w g,p(·)的相关信息。然后,终端设备在根据第一指令确定至少一个参考信号后,可以确定所述正交码序列w g,p(·)中的至少一个参考信号对应的正交码序列w g,p(·),并得到至少一个参考信号的参考信号序列,以便发送至少一个参考信号。
当然,终端设备可以不预先存储上述第一参考信号集合中各参考信号的参考信号序列对应的正交码序列,而是根据相关信息,例如第一参考信号集合中的各参考信号的参考信号序列对应的正交码序列的规则,直接生成上述至少一个参考信号对应的正交码序列。第 一指令中预设段域的取值,指示了所述第一参考信号集合中的参考信号的索引,终端设备需要根据相关规则,生成索引对应的参考信号序列,生成这个参考信号序列,需要知道是哪一个正交码序列对应的参考信号序列。具体的,对于终端设备得到至少一个参考信号的参考信号序列的方式,本申请可以不做限制。
例如,可以将至少一个参考信号的参考信号序列,分别映射到M个RE上,生成第一信号并发送。
当将本申请实施例所提供的方法应用于网络设备向终端设备发送指令(例如可以是下行控制信息(downlink control information,DCI)),以使终端设备根据指令确定网络设备将要发送的参考信号(例如可以是DMRS),然后由终端设备接收该参考信号的场景下,如图5c所示,该方法包括步骤501’-503’,具体如下:
501’、网络设备发送第一指令。
其中,网络设备可以为接入网设备,或者网络设备可以为核心网中能够与终端设备进行信息交互的网元。
其中,第一信令包括的预设域段,指示第一参考信号组合。第一参考信号组合中包括至少一个参考信号。
其中,第一信令中包括的预设域段的取值不同,分别对应各参考信号组合。也就是说,当为第一信令中包括的预设域段赋不同取值的情况下,第一信令可以对应不同的参考信号组合。进而,可以通过网络设备发送预设域段取值不同的第一信令,向接收端设备指示不同的参考信号组合。
具体的,第一信令可以是下行控制信息(downlink control information,DCI)。各参考信号组合,可以是DMRS的组合。
上述不同参考信号组合包括的所有的参考信号组成参考信号集合(为便于将该参考信号集合与其他参考信号集合进行区别,下文将该参考信号集合称为“第一参考信号集合”)。例如,上述不同参考信号组合包括组合1、组合2以及组合3。其中,组合1中包括参考信号a、参考信号b;组合2中包括参考信号c、参考信号d、参考信号e;组合3中包括参考信号f、参考信号g。那么,第一参考信号集合中包括参考信号a、参考信号b、参考信号c、参考信号d、参考信号e、参考信号f、参考信号g。另外,不同参考信号组合中的参考信号可以存在交集。例如,上述各参考信号组合包括组合1和组合2,其中组合1中包括参考信号h,组合2中包括参考信号h、参考信号i。此时第一参考信号集合中包括参考信号h和参考信号i。
其中,第一参考信号集合包括至少两个参考信号组。至少两个参考信号组中各参考信号的参考信号序列
Figure PCTCN2020119742-appb-000075
满足:
Figure PCTCN2020119742-appb-000076
其中,r(m)为伪随机序列。例如,当第一参考信号集合为DMRS集合时,r(m)为DMRS的扰码序列。
其中,m=0,1,2…。当参考信号序列
Figure PCTCN2020119742-appb-000077
的长度为M时,m=0,1,2…M-1。其中,序列
Figure PCTCN2020119742-appb-000078
的序列长度可以是基站通过发送信令进而告知终端设备的等。
A为非零复常数;在具体实施过程中,本领域技术人员可以根据需要赋予A的取值。例如,A可以指功率控制因子,技术人员可以根据发送参考信号的设备的发射功率,确定A的取值。也就是说,对于A的取值,本申请实施例可以不做限制。
序列w g,p(·)的长度为N g,自变量的取值范围为0,1,…,N g-1,n满足n=m mod N g。所述序列
Figure PCTCN2020119742-appb-000079
的序列长度M不小于2N g。例如,当所述第一参考信号集合为DMRS集合时,正交码序列w g,p(·)可以是各DMRS的OCC。
序列c g(·)为掩码序列,
Figure PCTCN2020119742-appb-000080
序列c g(·)可以是第一掩码序列集合中的一个序列,自变量取值范围为
Figure PCTCN2020119742-appb-000081
也即序列c g(·)的长度为
Figure PCTCN2020119742-appb-000082
表示下取整,
Figure PCTCN2020119742-appb-000083
表示上取整。下同,不再赘述。
另外,上述至少两个参考信号组中任意两个参考信号组,以第一参考信号组和第二参考信号组为例,满足以下条件:
第一参考信号组中的所有的参考信号的参考信号序列
Figure PCTCN2020119742-appb-000084
对应的正交序列w g,p(·)组成第一序列组,第二参考信号组中的所有的参考信号的参考信号序列
Figure PCTCN2020119742-appb-000085
对应的正交序列w g,p(·)组成第二序列组。g为正交序列组的标识,所述g至少遍历第一正交序列组和第二正交序列组;p遍历正交序列组中的所有序列。上述g至少遍历第一正交序列组和第二正交序列组是指,g的取值范围至少包含第一正交序列组和第二正交序列组。上述仅以第一正交序列组和第二正交序列组为例进行说明,其还可以进一步包括第三正交序列组、第四正交序列组等,本方案对此不作具体限定。相应的,上述p遍历正交序列组中的所有序列,也就是说,p的取值范围对应正交序列组中的所有序列。
所述第一正交序列组中的序列互相正交,所述第二正交序列组中的序列互相正交,且所述第一正交序列组中的任一序列和所述第二正交序列中的任一序列均不同。
上述序列w g,p(·)为正交序列,其为第一正交序列组或第二正交序列组中的序列。当然,当上述正交序列组有至少3个时,则上述序列w g,p(·)还可以是第三正交序列组中的序列等,本实施例仅以第一正交序列组和第二正交序列组为例进行说明。
第一正交序列组对应的序列c g(·)与第二正交序列组对应的序列c g(·)不同。具体的,同一正交序列组的序列w g,p(·)对应的c g(·)相同,而不同正交序列组对应的c g(·)相同。
502’、终端设备接收第一指令。
503’、网络设备发送至少一个参考信号,终端设备接收至少一个参考信号。
其中,网络设备中可以预先存储有上述第一参考信号集合中各参考信号的参考信号序列对应的正交码序列。然后,网络设备在确定待发送的至少一个参考信号后,可以从存储 的正交码序列中选择上述至少一个参考信号对应的正交码序列,并根据上述公式一得到至少一个参考信号的参考信号序列,以便发送至少一个参考信号。具体的,网络设备可以将至少一个参考信号的参考信号序列,分别映射到M个RE上,生成第一信号并发送。
另外,终端设备在接收到第一指令后,根据第一指令中预设域段的取值,即可确定第一参考信号组合中的至少一个参考信号。进而,终端设备可以对来自网络设备的包括至少一个参考信号的第一信号进行处理,以对参考信号所在信道进行评估。
通过本申请实施例,发送端基于序列
Figure PCTCN2020119742-appb-000086
生成参考信号,其中,该序列
Figure PCTCN2020119742-appb-000087
对应的正交序列w g,p(·)为至少第一正交序列组或第二正交序列组中的序列,该第一正交序列组中的序列互相正交,第二正交序列组中的序列互相正交,同时第一正交序列组中的任一序列和第二正交序列中的任一序列均不同;且,第一正交序列组对应的序列c g(·)与第二正交序列组对应的序列c g(·)不同。相比于现有技术,所述一个或多个参考信号的序列与其他终端设备分配的与之不正交的参考信号的序列之间的互相关值与扰码序列无关,避免因为扰码的随机性导致的互相关很差的情况,而仅与序列w g,p(·)、c g(·)相关。这样在采用本方案提供的信号发送方法进行多层传输时,可以降低不同层之间导频信号的干扰,进而可以提高信道估计性能。
下面对本申请实施例提供的参考信号序列进行详细介绍。
作为第一种实现方式,下面以具体序列w g,p(·)进行说明。所述第一正交序列组对应的序列的长度和所述第二正交序列组对应的序列的长度相同时,例如,第一正交序列组的序列长度N g可为2,包括下述序列:{1,1};{1,-1};第二正交序列组的序列长度N g可为2,包括下述序列:{1,1i};{1,-1i}。
该实现方式中中的具体序列得到方式可以为:
每个正交序列组根据一个基序列得到正交序列组内所有的序列,基序列为{x 0,x 1},与2长Walsh码{w 0,w 1}每项分别相乘得到{x 0w 0,x 1w 1},可以记为S={x 0w 0,x 1w 1},其中{w 0,w 1}为{1,1},{1,-1}中任意一项,基序列为{1,1},其中
Figure PCTCN2020119742-appb-000088
中的每一行代表一个序列,后面的表示类似,可以通过上述公式得到以下序列:{1,1};{1,-1}。
基序列为{1,i},其中
Figure PCTCN2020119742-appb-000089
可以通过上述公式得到以下序列:{1,1i};{1,-1i}。
也就是说,长度为2的序列w g,p(·)可以是第一正交序列组中的序列{1,1},也可以是第一正交序列组中的序列{1,-1};其还可以是第二正交序列组中的序列{1,1i},或者是第二正交序列组中的序列{1,-1i}。
或者,第一正交序列组的序列包括下述序列:{1,1i};{1,-1i};第二正交序列组的序 列包括下述序列:{1,1};{1,-1}。
上述第一正交序列组中的两个序列互相正交,第二正交序列组中的两个序列互相正交。
当至少两个参考信号组中的参考信号的频率资源包括相同的资源块时,第一正交序列组的序列对应的参考信号序列和第二正交序列组的序列对应的参考信号序列映射在相同的资源块中的相同的子载波上。
例如,在根据参考信号序列
Figure PCTCN2020119742-appb-000090
生成参考信号的过程中,上述至少两个参考信号组中的参考信号的序列的第一项均映射在同一RE上,第二项也映射在同一RE上,以此类推。
其中,第一正交序列组的序列对应的参考信号序列和第二正交序列组的序列对应的参考信号序列映射到时频资源的方式如图6a所示。其中,子载波依次编号s+0,s+1,s+2等,s为任意整数,
Figure PCTCN2020119742-appb-000091
映射在子载波s+0上,
Figure PCTCN2020119742-appb-000092
映射在子载波s+2上,图6a中仅画出一个资源块RB上的映射,其中,其他RB的映射方式类似。
作为另一种实现方式,第一正交序列组的序列对应的参考信号序列和第二正交序列组的序列对应的参考信号序列映射到时频资源的方式如图6b所示。其中,
Figure PCTCN2020119742-appb-000093
映射在子载波s+1上,
Figure PCTCN2020119742-appb-000094
映射在子载波s+3上,图6b中仅画出一个资源块RB上的映射,其他RB的映射方式类似。
其中,每个参考信号组中对应的各参考信号的正交码序列对应到相同的RE上,如图7a和图7b所示。需要说明的是,图7a和图7b中正交码序列各项的放置顺序仅为一种示例性的顺序。在具体实现过程中,可以根据需要采用不同方式的放置顺序。其中,图7a和图7b所示w(0)、w(1)可以均是第一正交序列组中的序列w g,p(·),w(0)、w(1)还可以均是第二正交序列组中的序列w g,p(·)。本方案对此不做具体限定。
其中,每个参考信号组中对应的各参考信号的掩码序列对应到如图8所示位置。其中,图8中所示c(0)、c(1)和c(2)可以是第一正交序列组对应的掩码序列,也可以是第二正交序列组对应的掩码序列。其中,第一正交序列组对应的掩码序列和第二正交序列组对应的掩码序列不同。
其中,参考信号序列组间的参考信号的序列的2长局部序列互相关仅与序列w g,p(·)相关,2长局部序列是指任意多个正交码对应的参考信号的序列,比如如图9所示的局部序列1
Figure PCTCN2020119742-appb-000095
又比如,图9所示的局部序列2
Figure PCTCN2020119742-appb-000096
等。其中正交序列组w g,p(·)之间互相关值都为
Figure PCTCN2020119742-appb-000097
互相关性是最优的。序列互相关最优是说,两个N长不正交序列{a n}、{b n}的互相关值为
Figure PCTCN2020119742-appb-000098
其中,参考信号的局部互相关最优可以有效对抗信道衰落,提升信道估计性能。
可选的,序列c g(·)可满足:
Figure PCTCN2020119742-appb-000099
其中,e g表示长度为L的序列,
Figure PCTCN2020119742-appb-000100
表示e g的α次克罗尼克积,α满足
Figure PCTCN2020119742-appb-000101
其中,多个参考信号序列对应的e g组成第二掩码序列集合,L为正整数。
e g可以取不同的序列,例如低互相关的序列,就可以产生不同的低互相关的c g(·)。
例如,当L为2时,第二掩码序列集合中的序列包括下述序列:{1,1};{1,1i}。
例如,当α为3时,e g为{1,1i},则
Figure PCTCN2020119742-appb-000102
当α为3时,e g为{1,1i},则
Figure PCTCN2020119742-appb-000103
例如,当L为4时,e g可以取{1,1,1,1};{1,-1,1,-1};{1,1,-1,-1};{1,-1,-1,1}中的一个,另外一个e g取{1,-1,-1i,-1i};{1,1,-1i,1i};{1,-1,1i,1i};{1,1,1i,-1i}中的一个。一般的,
Figure PCTCN2020119742-appb-000104
c init一个序列,长度可以不是L。当c init和e g分别取不同的序列时,得到不同的c g(·)。
序列c g(t)使得参考信号序列组间的参考信号的序列
Figure PCTCN2020119742-appb-000105
之间互相关为
Figure PCTCN2020119742-appb-000106
即保证参考信号的整体互相关最优,同时对于任意N g·L v长局部序列的互相关为
Figure PCTCN2020119742-appb-000107
也是最优的,其中,v=0,1,2…,可以有效对抗信道衰落,进而可以提高信道估计性能。
下面以序列w g,p(·)的长度为4进行说明,例如,第一正交序列组/第二正交序列组的序列包括下述序列:
{1,1,1,1};{1,-1,1,-1};{1,1,-1,-1};{1,-1,-1,1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1,-1,-1i,-1i};{1,1,-1i,1i};{1,-1,1i,1i};{1,1,1i,-1i};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1,-1i,-1i,-1};{1,1i,-1i,1};{1,-1i,1i,1};{1,1i,1i,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1,-1i,-1,-1i};{1,1i,-1,1i};{1,-1i,1,1i};{1,1i,1,-1i}。
该实现方式中中的具体序列得到方式可以为:
每个正交序列组根据一个基序列得到正交序列组内所有的序列,基序列为{x 0,x 1,x 2,x 3},与4长Walsh码{w 0,w 1,w 2,w 3}每项分别相乘得到{x 0w 0,x 1w 1,x 2w 2,x 3w 3},可以记为S={x 0w 0,x 1w 1,x 2w 2,x 3w 3},其中{w 0,w 1,w 2,w 3}为{1,1,1,1},{1, -1,1,-1},{1,1,-1,-1},{1,-1,-1,1}中任意一项,基序列为{1,1,1,1},其中
Figure PCTCN2020119742-appb-000108
Figure PCTCN2020119742-appb-000109
中的每一行代表一个序列,后面的表示类似,可以通过上述公式得到以下序列:{1,1,1,1},{1,-1,1,-1},{1,1,-1,-1},{1,-1,-1,1}。
基序列为{1,-1,-1i,-1i},其中
Figure PCTCN2020119742-appb-000110
可以通过上述公式得到以下序列:{1,-1,-1i,-1i};{1,1,-1i,1i};{1,-1,1i,1i};{1,1,1i,-1i}。
基序列为{1,-1i,-1i,-1},其中
Figure PCTCN2020119742-appb-000111
可以通过上述公式得到以下序列:{1,-1i,-1i,-1};{1,1i,-1i,1};{1,-1i,1i,1};{1,1i,1i,-1}。
基序列为{1,-1i,-1,-1i},其中
Figure PCTCN2020119742-appb-000112
可以通过上述公式得到以下序列:{1,-1i,-1,-1i};{1,1i,-1,1i};{1,-1i,1,1i};{1,1i,1,-1i}。
也就是说,第一正交序列组可以是上述四组序列组中的任意一个,第二正交序列组也可以是上述四组序列组中的任意一个,其中,第一正交序列组中的任一序列和第二正交序列中的任一序列均不同。
上述四组序列组中,任意一个序列组内的各序列之间均互相正交。
其中,当至少两个参考信号组中的参考信号的频率资源包括相同的资源块时,第一正交序列组的序列对应的参考信号序列和第二正交序列组的序列对应的参考信号序列映射在相同的资源块中的相同的子载波上。
例如,在根据参考信号序列
Figure PCTCN2020119742-appb-000113
生成参考信号的过程中,上述至少两个参考信号组中的参考信号的序列的第一项均映射在同一RE上,第二项也映射在同一RE上,第三项也映射在同一RE上,以此类推。
其中,每个参考信号组中对应的各参考信号的正交码序列对应到相同的RE上,如图10a和图10b所示。其中,图10a和图10b中所示w(0)、w(1)、w(2)、w(3)可以均是第一正交序列组中的序列w g,p(·),w(0)、w(1)、w(2)、w(3)还可以均是第二正交序列组中的序列w g,p(·)。本方案对此不做具体限定。其中,图10a所示为参考信号占用一个OFDM符号时的示意图。如图10b所示为参考信号占用两个OFDM符号时的示意图。
需要说明的是,图10a和图10b中正交码序列各项的放置顺序仅为一种示例性的顺序。在具体实现过程中,可以根据需要采用不同方式的放置顺序。
其中,每个参考信号组中对应的各参考信号的掩码序列对应到如图11a所示位置,其中,参考信号占用一个OFDM符号。如图11b所示,为占用两个OFDM符号的示例。其中,图11b中所示c(0)、c(1)和c(2)可以是第一正交序列组对应的掩码序列,也可以是第二正交序列组对应的掩码序列。第一正交序列组对应的掩码序列和第二正交序列组对应的掩码序列不同。
其中,参考信号序列组间的参考信号的序列的4长局部序列互相关仅与序列w g,p(·)相关,4长局部序列比如
Figure PCTCN2020119742-appb-000114
又比如,
Figure PCTCN2020119742-appb-000115
等。其中w g,p(·)之间互相关都为0.5,互相关性是最优的,参考信号的局部互相关最优可以有效对抗信道衰落,提升信道估计性能。
可选的,序列c g(t)可满足:
Figure PCTCN2020119742-appb-000116
其中,e g表示长度为L的序列,
Figure PCTCN2020119742-appb-000117
表示e g的α次克罗尼克积,α满足
Figure PCTCN2020119742-appb-000118
其中,多个参考信号序列对应的e g组成第二掩码序列集合,L为正整数。
序列c g(t)使得参考信号序列组间的参考信号的序列
Figure PCTCN2020119742-appb-000119
之间互相关为
Figure PCTCN2020119742-appb-000120
可保证参考信号的整体互相关也最优,同时任意N g·L v长局部序列的互相关为
Figure PCTCN2020119742-appb-000121
其中,v=0,1,2…,也是最优的,可以有效对抗信道衰落,提升信道估计性能。
下面以序列w g,p(·)的长度为8进行说明。其中,第一正交序列组/第二正交序列组的序列包括下述序列:
{-1i,-1,1i,-1,1i,-1,1i,1};{-1i,1,1i,1,1i,1,1i,-1};{-1i,-1,-1i,1,1i,-1,-1i,-1};{-1i,1,-1i,-1,1i,1,-1i,1};{-1i,-1,1i,-1,-1i,1,-1i,-1};{-1i,1,1i,1,-1i,-1,-1i,1};{-1i,-1,-1i,1,-1i,1,1i,1};{-1i,1,-1i,-1,-1i,-1,1i,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1i,-1i,-1,-1,1i,1i,-1,1};{1i,1i,-1,1,1i,-1i,-1,-1};{1i,-1i,1,1,1i,1i,1,-1};{1i,1i,1,-1,1i,-1i,1,1};{1i,-1i,-1,-1,-1i,-1i,1,-1};{1i,1i,-1,1,-1i,1i,1,1};{1i,-1i,1,1,-1i,-1i,-1,1};{1i,1i,1,-1,-1i,1i,-1,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1i,1i,1i,-1i,-1,-1,-1,1};{1i,-1i,1i,1i,-1,1,-1,-1};{1i,1i,-1i,1i,-1,-1,1,-1};{1i,-1i,-1i,-1i,-1,1,1,1};{1i,1i,1i,-1i,1,1,1,-1};{1i,-1i,1i,1i,1,-1,1,1};{1i,1i, -1i,1i,1,1,-1,1};{1i,-1i,-1i,-1i,1,-1,-1,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{-1,1i,-1,1i,1i,-1,-1i,1};{-1,-1i,-1,-1i,1i,1,-1i,-1};{-1,1i,1,-1i,1i,-1,1i,-1};{-1,-1i,1,1i,1i,1,1i,1};{-1,1i,-1,1i,-1i,1,1i,-1};{-1,-1i,-1,-1i,-1i,-1,1i,1};{-1,1i,1,-1i,-1i,1,-1i,1};{-1,-1i,1,1i,-1i,-1,-1i,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1i,-1,-1,1i,-1,-1i,1i,1};{1i,1,-1,-1i,-1,1i,1i,-1};{1i,-1,1,-1i,-1,-1i,-1i,-1};{1i,1,1,1i,-1,1i,-1i,1};{1i,-1,-1,-1,1i,1,1i,-1i,-1};{1i,1,-1,-1i,1,-1i,-1i,1};{1i,-1,1,-1i,1,1i,1i,1};{1i,1,1,1i,1,-1i,1i,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{-1,1i,-1i,-1,-1,1i,1i,1};{-1,-1i,-1i,1,-1,-1i,1i,-1};{-1,1i,1i,1,-1,1i,-1i,-1};{-1,-1i,1i,-1,-1,-1i,-1i,1};{-1,1i,-1i,-1,1,-1i,-1i,-1};{-1,-1i,-1i,1,1,1i,-1i,1};{-1,1i,1i,1,1,-1i,1i,1};{-1,-1i,1i,-1,1,1i,1i,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{-1,-1,1i,1i,-1i,1i,-1,1};{-1,1,1i,-1i,-1i,-1i,-1,-1};{-1,-1,-1i,-1i,-1i,1i,1,-1};{-1,1,-1i,1i,-1i,-1i,1,1};{-1,-1,1i,1i,1i,-1i,1,-1};{-1,1,1i,-1i,1i,1i,1,1};{-1,-1,-1i,-1i,1i,-1i,-1,1};{-1,1,-1i,1i,1i,1i,-1,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1,1,1,1,1,1,1,1};{1,-1,1,-1,1,-1,1,-1};{1,1,-1,-1,1,1,-1,-1};{1,-1,-1,1,1,-1,-1,1};{1,1,1,1,-1,-1,-1,-1};{1,-1,1,-1,-1,1,-1,1};{1,1,-1,-1,-1,-1,1,1};{1,-1,-1,1,-1,1,1,-1}。
该实现方式中的具体序列得到方式可以为:
每个正交序列组根据一个基序列得到正交序列组内所有的序列,基序列为{x 0,x 1,x 2,x 3,x 4,x 5,x 6,x 7},与8长Walsh码{w 0,w 1,w 2,w 3,w 4,w 5,w 6,w 7}每项分别相乘得到{x 0w 0,x 1w 1,x 2w 2,x 3w 3,x 4w 4,x 5w 5,x 6w 6,x 7w 7},可以记为S={x 0w 0,x 1w 1,x 2w 2,x 3w 3,x 4w 4,x 5w 5,x 6w 6,x 7w 7},其中{w 0,w 1,w 2,w 3,w 4,w 5,w 6,w 7}为{1,1,1,1,1,1,1,1},{1,-1,1,-1,1,-1,1,-1},{1,1,-1,-1,1,1,-1,-1},{1,-1,-1,1,1,-1,-1,1},{1,1,1,1,-1,-1,-1,-1},{1,-1,1,-1,-1,1,-1,1},{1,1,-1,-1,-1,-1,1,1},{1,-1,-1,1,-1,1,1,-1}中任意一项,基序列为{-1i,-1,1i,-1,1i,-1,1i,1},其中
Figure PCTCN2020119742-appb-000122
Figure PCTCN2020119742-appb-000123
中的每一行代表一个序列,后面的表示类似,可以通过上述公式得到以下序列:{-1i,-1,1i,-1,1i,-1,1i,1};{-1i,1,1i,1,1i,1,1i,-1};{-1i,-1,-1i,1,1i,-1,-1i,-1};{-1i,1,-1i,-1,1i,1,-1i,1};{-1i,-1,1i,-1,-1i,1,-1i,-1};{-1i,1,1i,1,-1i,-1,-1i,1};{-1i,-1,-1i,1,-1i,1,1i,1};{-1i,1,-1i,-1,-1i,-1,1i,-1}。
基序列为{1i,-1i,-1,-1,1i,1i,-1,1},可以通过上述公式得到以下序列:{1i,-1i,-1,-1,1i,1i,-1,1};{1i,1i,-1,1,1i,-1i,-1,-1};{1i,-1i,1,1,1i,1i,1,-1};{1i,1i,1,-1,1i,-1i,1,1};{1i,-1i,-1,-1,-1i,-1i,1,-1};{1i,1i,-1,1,-1i,1i,1,1};{1i,-1i,1,1,-1i,-1i,-1,1};{1i,1i,1,-1,-1i,1i,-1,-1}。
基序列为{1i,1i,1i,-1i,-1,-1,-1,1},可以通过上述公式得到以下序列:{1i,1i,1i,-1i,-1,-1,-1,1};{1i,-1i,1i,1i,-1,1,-1,-1};{1i,1i,-1i,1i,-1,-1,1,-1};{1i,-1i,-1i,-1i,-1,1,1,1};{1i,1i,1i,-1i,1,1,1,-1};{1i,-1i,1i,1i,1,-1,1,1};{1i,1i,-1i,1i,1,1,-1,1};{1i,-1i,-1i,-1i,1,-1,-1,-1}。
基序列为{-1,1i,-1,1i,1i,-1,-1i,1},可以通过上述公式得到以下序列:{-1,1i,-1,1i,1i,-1,-1i,1};{-1,-1i,-1,-1i,1i,1,-1i,-1};{-1,1i,1,-1i,1i,-1,1i,-1};{-1,-1i,1,1i,1i,1,1i,1};{-1,1i,-1,1i,-1i,1,1i,-1};{-1,-1i,-1,-1i,-1i,-1,1i,1};{-1,1i,1,-1i,-1i,1,-1i,1};{-1,-1i,1,1i,-1i,-1,-1i,-1}。
基序列为{1i,-1,-1,1i,-1,-1i,1i,1},可以通过上述公式得到以下序列:{1i,-1,-1,1i,-1,-1i,1i,1};{1i,1,-1,-1i,-1,1i,1i,-1};{1i,-1,1,-1i,-1,-1i,-1i,-1};{1i,1,1,1i,-1,1i,-1i,1};{1i,-1,-1,-1,1i,1,1i,-1i,-1};{1i,1,-1,-1i,1,-1i,-1i,1};{1i,-1,1,-1i,1,1i,1i,1};{1i,1,1,1i,1,-1i,1i,-1}。
基序列为{1,-1i,-1i,-1i,1,-1i,-1i,-1i},可以通过上述公式得到以下序列:{-1,1i,-1i,-1,-1,1i,1i,1};{-1,-1i,-1i,1,-1,-1i,1i,-1};{-1,1i,1i,1,-1,1i,-1i,-1};{-1,-1i,1i,-1,-1,-1i,-1i,1};{-1,1i,-1i,-1,1,-1i,-1i,-1};{-1,-1i,-1i,1,1,1i,-1i,1};{-1,1i,1i,1,1,-1i,1i,1};{-1,-1i,1i,-1,1,1i,1i,-1}。
基序列为{-1,-1,1i,1i,-1i,1i,-1,1},可以通过上述公式得到以下序列:{-1,-1,1i,1i,-1i,1i,-1,1};{-1,1,1i,-1i,-1i,-1i,-1,-1};{-1,-1,-1i,-1i,-1i,1i,1,-1};{-1,1,-1i,1i,-1i,-1i,1,1};{-1,-1,1i,1i,1i,-1i,1,-1};{-1,1,1i,-1i,1i,1i,1,1};{-1,-1,-1i,-1i,1i,-1i,-1,1};{-1,1,-1i,1i,1i,1i,-1,-1}。
基序列为{1,1,1,1,1,1,1,1},可以通过上述公式得到以下序列:{1,1,1,1,1,1,1,1};{1,-1,1,-1,1,-1,1,-1};{1,1,-1,-1,1,1,-1,-1};{1,-1,-1,1,1,-1,-1,1};{1,1,1,1,-1,-1,-1,-1};{1,-1,1,-1,-1,1,-1,1};{1,1,-1,-1,-1,-1,1,1};{1,-1,-1,1,-1,1,1,-1}。
其中,第一正交序列组可以是上述八组序列组中的任意一个,第二正交序列组也可以是上述八组序列组中的任意一个,第一正交序列组中的任一序列和第二正交序列中的任一 序列均不同。上述八组序列组中,任意一个序列组内的各序列之间均互相正交。
其中,当至少两个参考信号组中的参考信号的频率资源包括相同的资源块时,第一正交序列组的序列对应的参考信号序列和第二正交序列组的序列对应的参考信号序列映射在相同的资源块中的相同的子载波上。
例如,在根据参考信号序列
Figure PCTCN2020119742-appb-000124
生成参考信号的过程中,上述至少两个参考信号组中的参考信号的序列的第一项均映射在同一RE上,第二项也映射在同一RE上,第三项也映射在同一RE上,以此类推。
其中,每个参考信号组中对应的各参考信号的正交码序列对应到相同的RE上。如图12所示。
需要说明的是,图12中正交码序列各项的放置顺序仅为一种示例性的顺序。在具体实现过程中,可以根据需要采用不同方式的放置顺序。
其中,每个参考信号组中对应的各参考信号的掩码序列对应到如图13所示位置。
其中,参考信号序列组间的参考信号的序列的8长局部序列互相关仅与序列w g,p(n)相关,8长局部序列比如
Figure PCTCN2020119742-appb-000125
等。其中w g,p(·)之间互相关都为
Figure PCTCN2020119742-appb-000126
互相关性是最优的,参考信号的局部互相关最优可以有效对抗信道衰落,提升信道估计性能。
序列c g(·)使得参考信号序列组间的参考信号的序列
Figure PCTCN2020119742-appb-000127
之间互相关为
Figure PCTCN2020119742-appb-000128
可保证参考信号的整体互相关也最优,同时任意N g·L v长局部序列的互相关为
Figure PCTCN2020119742-appb-000129
其中,v=0,1,2…,也是最优的,可以有效对抗信道衰落,提升信道估计性能。
作为另一种实现方式,本申请实施例还提供一种第一正交序列组和第二正交序列组中的序列的长度是不同的实施例。例如,第一正交序列组对应的序列的长度是第二正交序列组对应的序列的长度的2倍。
作为第一种实现方式,第一正交序列组对应的序列的长度是4,第二正交序列组对应的序列的长度是2。
其中,第一正交序列组的序列包括下述序列:
{1,-1,-1i,-1i};{1,1,-1i,1i};{1,-1,1i,1i};{1,1,1i,-1i};
或者,所述第一正交序列组的序列包括下述序列:
{1,-1i,-1i,-1};{1,1i,-1i,1};{1,-1i,1i,1};{1,1i,1i,-1};
其中,所述第二正交序列组的序列包括下述序列:
{1,1};{1,-1}。
该实现方式中的第一正交序列组的序列得到方式可以为:
每个正交序列组根据一个基序列得到正交序列组内所有的序列,基序列为{x 0,x 1,x 2,x 3},与4长Walsh码{w 0,w 1,w 2,w 3}每项分别相乘得到{x 0w 0,x 1w 1,x 2w 2,x 3w 3}, 可以记为S={x 0w 0,x 1w 1,x 2w 2,x 3w 3},其中{w 0,w 1,w 2,w 3}为{1,1,1,1},{1,-1,1,-1},{1,1,-1,-1},{1,-1,-1,1}中任意一项,基序列为{1,-1,-1i,-1i},其中
Figure PCTCN2020119742-appb-000130
中的每一行代表一个序列,后面的表示类似,可以通过上述公式得到以下序列:{1,-1,-1i,-1i};{1,1,-1i,1i};{1,-1,1i,1i};{1,1,1i,-1i}。
基序列为{1,-1i,-1i,-1},其中
Figure PCTCN2020119742-appb-000131
可以通过上述公式得到以下序列:{1,-1i,-1i,-1};{1,1i,-1i,1};{1,-1i,1i,1};{1,1i,1i,-1}。
其中,第一正交序列组可以是上述两组第一正交序列组中的任意一组。上述任意一个第一正交序列组内的各序列之间均互相正交。且,上述第二正交序列组内的序列之间也互相正交。
其中,当第二正交序列组的序列包括{1,1};{1,-1}时,其时频资源映射方式为现有技术图2a中所示,可得到4个正交参考信号,其中,将4个正交参考信号都视为码分正交,4个正交参考信号4个连续子载波上的正交序列可以视为下述序列:
{1,0,1,0};{0,1,01};{1,0,-1,0};{0,1,0,-1};
上述任一序列与第一正交序列组中的任一序列之间的互相关值均为0.5。
当至少两个参考信号组中的参考信号的频率资源包括相同的资源块时,所述第一正交序列组的序列对应的参考信号序列映射到所述相同的资源块中等间隔的第一子载波上,所述第一子载波中相邻子载波的中心频率距离为k个子载波,所述第二正交序列组的序列对应的参考信号序列映射到所述相同的资源块中等间隔的第二子载波上,所述第二子载波中相邻子载波的中心频率距离为2k个子载波,k为正整数。
例如,在根据参考信号序列
Figure PCTCN2020119742-appb-000132
生成参考信号的过程中,上述第一正交序列组的序列对应的参考信号序列映射到时频资源的方式如图14所示,其中,子载波依次编号s+0,s+1,s+2等,s为任意整数,
Figure PCTCN2020119742-appb-000133
映射在子载波s+0上,
Figure PCTCN2020119742-appb-000134
映射在子载波s+1上,
Figure PCTCN2020119742-appb-000135
映射在子载波s+2上,以此类推。其中,第一正交序列组的序列对应的参考信号序列如
Figure PCTCN2020119742-appb-000136
Figure PCTCN2020119742-appb-000137
映射在两个相邻子载波上,其中该两个相邻子载波的中心频率距离为1个子载波,类似地,
Figure PCTCN2020119742-appb-000138
Figure PCTCN2020119742-appb-000139
也映射在两个相邻子载波上,其中该两个相邻子载波的中心频率距离也为1个子载波。
上述第二正交序列组的序列对应的参考信号序列映射到时频资源的方式如图2a所示,其中,第二正交序列组的序列对应的参考信号序列如
Figure PCTCN2020119742-appb-000140
Figure PCTCN2020119742-appb-000141
映射在间隔两个子载波的子载波上,其中该两个子载波的中心频率距离为2个子载波,类似地,
Figure PCTCN2020119742-appb-000142
Figure PCTCN2020119742-appb-000143
也映射在间隔两个子载波的子载波上,其中该两个子载波的中心频率距离也为2个子载波。
其中,第一正交序列组的序列对应的参考信号的掩码序列对应到如图11a所示位置。 该情况下,其中,图11a中所示c(0)、c(1)和c(2)是第一正交序列组对应的掩码序列。第二正交序列组的序列对应的参考信号的掩码序列对应到如图8所示位置,该情况下,其中,图8中所示c(0)、c(1)和c(2)是第二正交序列组对应的掩码序列。其中,第一正交序列组对应的掩码序列和第二正交序列组对应的掩码序列不同。
其中,参考信号序列组间的参考信号的序列的局部序列互相关仅与序列w g,p(·)相关,其中w g,p(·)之间互相关都为0.5,是最优的,参考信号的局部互相关最优可以有效对抗信道衰落,提升信道估计性能。
序列c g(·)使得参考信号序列组间的参考信号的序列
Figure PCTCN2020119742-appb-000144
之间互相关值为
Figure PCTCN2020119742-appb-000145
可保证参考信号的整体互相关也最优,可以有效对抗信道衰落,提升信道估计性能。
也就是说,本方案与现有技术具有兼容性。本方案提供的正交序列组可兼容上述现有技术使用的正交序列,且在采用本方案提供的信号发送方法进行多层传输时,不同发送端分别采用上述第一正交序列组中的序列和第二正交序列组中的序列时,可以达到任意两个不正交序列之间的互相关性最优,保障了不同层之间导频信号的干扰比较小。
作为另一个序列的例子,例如,第一正交序列组对应的序列的长度是8,第二正交序列组对应的序列的长度是4。
其中,第一正交序列组的序列包括下述序列:
{-1i,-1,1i,-1,1i,-1,1i,1};{-1i,1,1i,1,1i,1,1i,-1};{-1i,-1,-1i,1,1i,-1,-1i,-1};{-1i,1,-1i,-1,1i,1,-1i,1};{-1i,-1,1i,-1,-1i,1,-1i,-1};{-1i,1,1i,1,-1i,-1,-1i,1};{-1i,-1,-1i,1,-1i,1,1i,1};{-1i,1,-1i,-1,-1i,-1,1i,-1};
或者,所述第一正交序列组的序列包括下述序列:
{-1,1i,-1,1i,1i,-1,-1i,1};{-1,-1i,-1,-1i,1i,1,-1i,-1};{-1,1i,1,-1i,1i,-1,1i,-1};{-1,-1i,1,1i,1i,1,1i,1};{-1,1i,-1,1i,-1i,1,1i,-1};{-1,-1i,-1,-1i,-1i,-1,1i,1};{-1,1i,1,-1i,-1i,1,-1i,1};{-1,-1i,1,1i,-1i,-1,-1i,-1};
或者,所述第一正交序列组的序列包括下述序列:
{-1,1i,-1i,-1,-1,1i,1i,1};{-1,-1i,-1i,1,-1,-1i,1i,-1};{-1,1i,1i,1,-1,1i,-1i,-1};{-1,-1i,1i,-1,-1,-1i,-1i,1};{-1,1i,-1i,-1,1,-1i,-1i,-1};{-1,-1i,-1i,1,1,1i,-1i,1};{-1,1i,1i,1,1,-1i,1i,1};{-1,-1i,1i,-1,1,1i,1i,-1};
或者,所述第一正交序列组的序列包括下述序列:
{-1,-1,1i,1i,-1i,1i,-1,1};{-1,1,1i,-1i,-1i,-1i,-1,-1};{-1,-1,-1i,-1i,-1i,1i,1,-1};{-1,1,-1i,1i,-1i,-1i,1,1};{-1,-1,1i,1i,1i,-1i,1,-1};{-1,1,1i,-1i,1i,1i,1,1};{-1,-1,-1i,-1i,1i,-1i,-1,1};{-1,1,-1i,1i,1i,1i,-1,-1};
所述第二正交序列组的序列包括下述序列:
{1,1,1,1};{1,-1,1,-1};{1,1,-1,-1};{1,-1,-1,1}。
该实现方式中的第一正交序列组的序列得到方式可以为:
每个正交序列组根据一个基序列得到正交序列组内所有的序列,基序列为{x 0,x 1,x 2,x 3,x 4,x 5,x 6,x 7},与8长Walsh码{w 0,w 1,w 2,w 3,w 4,w 5,w 6,w 7}每项分别相乘得到{x 0w 0,x 1w 1,x 2w 2,x 3w 3,x 4w 4,x 5w 5,x 6w 6,x 7w 7},可以记为S={x 0w 0,x 1w 1,x 2w 2,x 3w 3,x 4w 4,x 5w 5,x 6w 6,x 7w 7},其中{w 0,w 1,w 2,w 3,w 4,w 5,w 6,w 7}为{1,1,1,1,1,1,1,1},{1,-1,1,-1,1,-1,1,-1},{1,1,-1,-1,1,1,-1,-1},{1,-1,-1,1,1,-1,-1,1},{1,1,1,1,-1,-1,-1,-1},{1,-1,1,-1,-1,1,-1,1},{1,1,-1,-1,-1,-1,1,1},{1,-1,-1,1,-1,1,1,-1}中任意一项,基序列为{-1i,-1,1i,-1,1i,-1,1i,1},其中
Figure PCTCN2020119742-appb-000146
Figure PCTCN2020119742-appb-000147
中的每一行代表一个序列,后面的表示类似,可以通过上述公式得到以下序列:{-1i,-1,1i,-1,1i,-1,1i,1};{-1i,1,1i,1,1i,1,1i,-1};{-1i,-1,-1i,1,1i,-1,-1i,-1};{-1i,1,-1i,-1,1i,1,-1i,1};{-1i,-1,1i,-1,-1i,1,-1i,-1};{-1i,1,1i,1,-1i,-1,-1i,1};{-1i,-1,-1i,1,-1i,1,1i,1};{-1i,1,-1i,-1,-1i,-1,1i,-1}。
基序列为{-1,1i,-1,1i,1i,-1,-1i,1},可以通过上述公式得到以下序列:{-1,1i,-1,1i,1i,-1,-1i,1};{-1,-1i,-1,-1i,1i,1,-1i,-1};{-1,1i,1,-1i,1i,-1,1i,-1};{-1,-1i,1,1i,1i,1,1i,1};{-1,1i,-1,1i,-1i,1,1i,-1};{-1,-1i,-1,-1i,-1i,-1,1i,1};{-1,1i,1,-1i,-1i,1,-1i,1};{-1,-1i,1,1i,-1i,-1,-1i,-1}。
基序列为{1,-1i,-1i,-1i,1,-1i,-1i,-1i},可以通过上述公式得到以下序列:{-1,1i,-1i,-1,-1,1i,1i,1};{-1,-1i,-1i,1,-1,-1i,1i,-1};{-1,1i,1i,1,-1,1i,-1i,-1};{-1,-1i,1i,-1,-1,-1i,-1i,1};{-1,1i,-1i,-1,1,-1i,-1i,-1};{-1,-1i,-1i,1,1,1i,-1i,1};{-1,1i,1i,1,1,-1i,1i,1};{-1,-1i,1i,-1,1,1i,1i,-1}。
基序列为{-1,-1,1i,1i,-1i,1i,-1,1},可以通过上述公式得到以下序列:{-1,-1,1i,1i,-1i,1i,-1,1};{-1,1,1i,-1i,-1i,-1i,-1,-1};{-1,-1,-1i,-1i,-1i,1i,1,-1};{-1,1,-1i,1i,-1i,-1i,1,1};{-1,-1,1i,1i,1i,-1i,1,-1};{-1,1,1i,-1i,1i,1i,1,1};{-1,-1,-1i,-1i,1i,-1i,-1,1};{-1,1,-1i,1i,1i,1i,-1,-1}。
其中,第一正交序列组可以是上述四组第一正交序列组中的任意一组。上述任意一个第一正交序列组内的各序列之间均互相正交。且,上述第二正交序列组内的序列之间也互相正交。
其中,当第二正交序列组的序列包括{1,1,1,1};{1,-1,1,-1};{1,1,-1,-1};{1,-1,-1,1}时,第二正交序列组映射方式为现有技术2b中所示,通过频分加码分得到8个参考信号。将8个参考信号都视为码分,其中,8个参考信号8个连续子载波上的正交序列可以视为下述序列:
{1,0,1,0,1,0,1,0};{1,0,-1,0,1,0,-1,0};{0,1,0,1,0,1,0,1};{0,1,0,-1,0,1,0,-1};{1,0,1,0,-1,0,-1,0};{1,0,-1,0,-1,0,1,0};{0,1,0,1,0,-1,0,-1};{0,1,0,-1,0,-1,0,1}。
上述任一序列与第一正交序列组中的任一序列之间的互相关值为
Figure PCTCN2020119742-appb-000148
当至少两个参考信号组中的参考信号的频率资源包括相同的资源块时,所述第一正交序列组的序列对应的参考信号序列映射到所述相同的资源块中等间隔的第一子载波上,所述第一子载波中相邻子载波的中心频率距离为k个子载波,所述第二正交序列组的序列对应的参考信号序列映射到所述相同的资源块中等间隔的第二子载波上,所述第二子载波中相邻子载波的中心频率距离为2k个子载波,k为正整数。
其中,第一正交序列组的序列对应的参考信号序列的正交码序列对应到如图12所示的位置。第二正交序列组的序列对应的参考信号序列的正交码序列对应的位置与现有技术如图2b一致。
其中,第一正交序列组的序列对应的参考信号的掩码序列对应到如图13所示位置。该情况下,其中,图13中所示c(0)、c(1)和c(2)是第一正交序列组对应的掩码序列。第二正交序列组的序列对应的参考信号的掩码序列对应到如图11b所示位置,该情况下,其中,图11b中所示c(0)、c(1)和c(2)是第二正交序列组对应的掩码序列。其中,第一正交序列组对应的掩码序列和第二正交序列组对应的掩码序列不同。
其中,参考信号序列组间的参考信号的序列的局部序列互相关仅与序列w g,p(·)相关,其中w g,p(·)之间互相关都为
Figure PCTCN2020119742-appb-000149
是最优的,参考信号的局部互相关最优可以有效对抗信道衰落,提升信道估计性能。
序列c g(t)使得参考信号序列组间的参考信号的序列
Figure PCTCN2020119742-appb-000150
之间互相关为
Figure PCTCN2020119742-appb-000151
可保证参考信号的整体互相关也最优,可以有效对抗信道衰落,提升信道估计性能。
也就是说,本方案与现有技术具有兼容性。本方案提供的正交序列组可兼容上述现有技术使用的正交序列,且在采用本方案提供的信号发送方法进行多层传输时,不同发送端分别采用上述第一正交序列组中的序列和第二正交序列组中的序列时,可以达到任意两个不正交序列之间的互相关性最优,保障了不同层之间导频信号的干扰比较小。
上述仅以第一正交序列组中序列长度为4和8为例进行说明,其还可以是其他任意长度,本方案对此不作具体限定。
需要说明的是,本申请实施例仅以第一正交序列组对应的序列的长度是第二正交序列组对应的序列的长度的2倍为例进行说明,其也可以是第二正交序列组对应的序列的长度是第一正交序列组对应的序列的长度的2倍,相应地,上述正交序列组的序列进行互换即可,本方案对此不做具体限定。
进一步地,上述长度倍数2还可以是其他任意数值,本方案在此不做具体限定。
另一方面,本申请实施例还提供一种信号发送方法。具体如下:
网络设备发送第一参考信号,所述参考信号基于
Figure PCTCN2020119742-appb-000152
生成,其中所述
Figure PCTCN2020119742-appb-000153
满足:
Figure PCTCN2020119742-appb-000154
其中,m=0,…M-1,M为
Figure PCTCN2020119742-appb-000155
的序列长度;A为非零复数;r(m)为伪随机序列;
其中,序列w g,p(·)的长度为N g,n满足n=m mod N g,所述M不小于2N g,所述序列w g,p(·)与正交序列组g中的正交序列p相关联;所述正交序列组g为第一正交序列组和第二正交序列的一个,所述第一正交序列组中的序列互相正交,所述第二正交序列组中的序列互相正交,且所述第一正交序列组中的任一序列和所述第二正交序列中的任一序列均不同;
其中,
Figure PCTCN2020119742-appb-000156
序列c g(·)为第一掩码序列集合中的一个序列,所述序列c g(·)的取值与序列组g相关联。
其中,上述仅以第一正交序列组和第二正交序列组为例进行说明,其还可以是其他任意多个正交序列组,本方案对此不做具体限定。
上述网络设备可以是UE,也可以是基站。
其中,不同的正交序列组g关联不同的c g(·)的取值。
所述序列c g(·)满足:
Figure PCTCN2020119742-appb-000157
其中,e g表示长度为L的序列,
Figure PCTCN2020119742-appb-000158
表示e g的α次克罗尼克积,所述α满足
Figure PCTCN2020119742-appb-000159
多个参考信号序列对应的e g组成第二掩码序列集合,其中,L为正整数。
作为一种实现方式,所述第一正交序列组对应的序列的长度和所述第二正交序列组对应的序列的长度相同。
当所述至少两个参考信号组中的参考信号的频率资源包括相同的资源块时,所述第一正交序列组的序列对应的参考信号序列和所述第二正交序列组的序列对应的参考信号序列映射在所述相同的资源块中的相同的子载波上。
其中,所述第一正交序列组的序列包括下述序列:{1,1};{1,-1};所述第二正交序列组的序列包括下述序列:{1,1i};{1,-1i};
或者,所述第一正交序列组的序列包括下述序列:{1,1i};{1,-1i};所述第二正交序列组的序列包括下述序列:{1,1};{1,-1};
其中,i为虚数单位。
可替代的,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1,1,1,1};{1,-1,1,-1};{1,1,-1,-1};{1,-1,-1,1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1,-1,-1i,-1i};{1,1,-1i,1i};{1,-1,1i,1i};{1,1,1i,-1i};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1,-1i,-1i,-1};{1,1i,-1i,1};{1,-1i,1i,1};{1,1i,1i,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1,-1i,-1,-1i};{1,1i,-1,1i};{1,-1i,1,1i};{1,1i,1,-1i};其中,i为虚数单位。
可替代的,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{-1i,-1,1i,-1,1i,-1,1i,1};{-1i,1,1i,1,1i,1,1i,-1};{-1i,-1,-1i,1,1i,-1,-1i,-1};{-1i,1,-1i,-1,1i,1,-1i,1};{-1i,-1,1i,-1,-1i,1,-1i,-1};{-1i,1,1i,1,-1i,-1,-1i,1};{-1i,-1,-1i,1,-1i,1,1i,1};{-1i,1,-1i,-1,-1i,-1,1i,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1i,-1i,-1,-1,1i,1i,-1,1};{1i,1i,-1,1,1i,-1i,-1,-1};{1i,-1i,1,1,1i,1i,1,-1};{1i,1i,1,-1,1i,-1i,1,1};{1i,-1i,-1,-1,-1i,-1i,1,-1};{1i,1i,-1,1,-1i,1i,1,1};{1i,-1i,1,1,-1i,-1i,-1,1};{1i,1i,1,-1,-1i,1i,-1,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1i,1i,1i,-1i,-1,-1,-1,1};{1i,-1i,1i,1i,-1,1,-1,-1};{1i,1i,-1i,1i,-1,-1,1,-1};{1i,-1i,-1i,-1i,-1,1,1,1};{1i,1i,1i,-1i,1,1,1,-1};{1i,-1i,1i,1i,1,-1,1,1};{1i,1i,-1i,1i,1,1,-1,1};{1i,-1i,-1i,-1i,1,-1,-1,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{-1,1i,-1,1i,1i,-1,-1i,1};{-1,-1i,-1,-1i,1i,1,-1i,-1};{-1,1i,1,-1i,1i,-1,1i,-1};{-1,-1i,1,1i,1i,1,1i,1};{-1,1i,-1,1i,-1i,1,1i,-1};{-1,-1i,-1,-1i,-1i,-1,1i,1};{-1,1i,1,-1i,-1i,1,-1i,1};{-1,-1i,1,1i,-1i,-1,-1i,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1i,-1,-1,1i,-1,-1i,1i,1};{1i,1,-1,-1i,-1,1i,1i,-1};{1i,-1,1,-1i,-1,-1i,-1i,-1};{1i,1,1,1i,-1,1i,-1i,1};{1i,-1,-1,-1,1i,1,1i,-1i,-1};{1i,1,-1,-1i,1,-1i,-1i,1};{1i,-1,1,-1i,1,1i,1i,1};{1i,1,1,1i,1,-1i,1i,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{-1,1i,-1i,-1,-1,1i,1i,1};{-1,-1i,-1i,1,-1,-1i,1i,-1};{-1,1i,1i,1,-1,1i,-1i,-1};{-1,-1i,1i,-1,-1,-1i,-1i,1};{-1,1i,-1i,-1,1,-1i,-1i,-1};{-1,-1i,-1i,1,1,1i,-1i,1};{-1,1i,1i,1,1,-1i,1i,1};{-1,-1i,1i,-1,1,1i,1i,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{-1,-1,1i,1i,-1i,1i,-1,1};{-1,1,1i,-1i,-1i,-1i,-1,-1};{-1,-1,-1i, -1i,-1i,1i,1,-1};{-1,1,-1i,1i,-1i,-1i,1,1};{-1,-1,1i,1i,1i,-1i,1,-1};{-1,1,1i,-1i,1i,1i,1,1};{-1,-1,-1i,-1i,1i,-1i,-1,1};{-1,1,-1i,1i,1i,1i,-1,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1,1,1,1,1,1,1,1};{1,-1,1,-1,1,-1,1,-1};{1,1,-1,-1,1,1,-1,-1};{1,-1,-1,1,1,-1,-1,1};{1,1,1,1,-1,-1,-1,-1};{1,-1,1,-1,-1,1,-1,1};{1,1,-1,-1,-1,-1,1,1};{1,-1,-1,1,-1,1,1,-1};其中,i为虚数单位。
作为另一种实现方式,所述第一正交序列组对应的序列的长度是所述第二正交序列组对应的序列的长度的2倍。
当所述至少两个参考信号组中的参考信号的频率资源包括相同的资源块时,所述第一正交序列组的序列对应的参考信号序列映射到所述相同的资源块中等间隔的第一子载波上,所述第一子载波中相邻子载波的中心频率距离为k个子载波,所述第二正交序列组的序列对应的参考信号序列映射到所述相同的资源块中等间隔的第二子载波上,所述第二子载波中相邻子载波的中心频率距离为2k个子载波,k为正整数。
其中,所述第一正交序列组的序列包括下述序列:
{1,-1,-1i,-1i};{1,1,-1i,1i};{1,-1,1i,1i};{1,1,1i,-1i};
或者,所述第一正交序列组的序列包括下述序列:
{1,-1i,-1i,-1};{1,1i,-1i,1};{1,-1i,1i,1};{1,1i,1i,-1};
其中,所述第二正交序列组的序列包括下述序列:
{1,1};{1,-1};其中,i为虚数单位。
可替代的,所述第一正交序列组的序列包括下述序列:
{-1i,-1,1i,-1,1i,-1,1i,1};{-1i,1,1i,1,1i,1,1i,-1};{-1i,-1,-1i,1,1i,-1,-1i,-1};{-1i,1,-1i,-1,1i,1,-1i,1};{-1i,-1,1i,-1,-1i,1,-1i,-1};{-1i,1,1i,1,-1i,-1,-1i,1};{-1i,-1,-1i,1,-1i,1,1i,1};{-1i,1,-1i,-1,-1i,-1,1i,-1};
或者,所述第一正交序列组的序列包括下述序列:
{-1,1i,-1,1i,1i,-1,-1i,1};{-1,-1i,-1,-1i,1i,1,-1i,-1};{-1,1i,1,-1i,1i,-1,1i,-1};{-1,-1i,1,1i,1i,1,1i,1};{-1,1i,-1,1i,-1i,1,1i,-1};{-1,-1i,-1,-1i,-1i,-1,1i,1};{-1,1i,1,-1i,-1i,1,-1i,1};{-1,-1i,1,1i,-1i,-1,-1i,-1};
或者,所述第一正交序列组的序列包括下述序列:
{-1,1i,-1i,-1,-1,1i,1i,1};{-1,-1i,-1i,1,-1,-1i,1i,-1};{-1,1i,1i,1,-1,1i,-1i,-1};{-1,-1i,1i,-1,-1,-1i,-1i,1};{-1,1i,-1i,-1,1,-1i,-1i,-1};{-1,-1i,-1i,1,1,1i,-1i,1};{-1,1i,1i,1,1,-1i,1i,1};{-1,-1i,1i,-1,1,1i,1i,-1};
或者,所述第一正交序列组的序列包括下述序列:
{-1,-1,1i,1i,-1i,1i,-1,1};{-1,1,1i,-1i,-1i,-1i,-1,-1};{-1,-1,-1i,-1i,-1i,1i,1,-1};{-1,1,-1i,1i,-1i,-1i,1,1};{-1,-1,1i,1i,1i,-1i,1,-1};{-1,1,1i,-1i,1i,1i,1,1};{-1,-1,-1i,-1i,1i,-1i,-1,1};{-1,1,-1i,1i,1i,1i,-1,-1};
所述第二正交序列组的序列包括下述序列:
{1,1,1,1};{1,-1,1,-1};{1,1,-1,-1};{1,-1,-1,1};其中,i为虚数单位。
其中,所述第二掩码序列集合中的序列包括下述序列:
{1,1};{1,1i};其中,i为虚数单位。
参照图15,为本申请实施例提供的一种信号发送方法的场景示意图。其中,第一用户设备组可基于第一正交序列组中的序列确定
Figure PCTCN2020119742-appb-000160
进而发送参考信号,第二用户设备组可基于第二正交序列组中的序列确定
Figure PCTCN2020119742-appb-000161
进而发送参考信号;由于两个用户设备组使用的DMRS导频序列互相关性很小,可使得非正交DMRS端口间干扰比较小,也即两个用户设备组之间的干扰较小,进而提高信道估计性能。
上面各实施例对于信号发送方法进行了说明,如图16a所示,本申请实施例还提供一种信号接收方法,该方法包括步骤1601-1602,具体如下:
1601、接收端发送/接收信令,所述信令携带预设域段,指示第一参考信号组合,所述第一参考信号组合中包括一个或多个参考信号;其中,所述信令中的所述预设域段的不同取值,分别对应不同参考信号组合;所述不同参考信号组合包括的所有的参考信号组成参考信号集合,所述参考信号集合包括至少两个参考信号组;所述至少两个参考信号组中各参考信号的参考信号序列
Figure PCTCN2020119742-appb-000162
满足:
Figure PCTCN2020119742-appb-000163
其中,m为0到M-1的整数,M为
Figure PCTCN2020119742-appb-000164
的序列长度;A为非零复数;r(m)为伪随机序列;
其中,序列w g,p(·)的长度为N g,n满足n=m mod N g,所述M不小于2N g,g为正交序列组的标识,所述至少两个参考信号组满足以下条件:第一参考信号组中的所有的参考信号的参考信号序列
Figure PCTCN2020119742-appb-000165
对应的正交码序列w g,p(·)组成第一正交序列组,第二参考信号组中的所有参考信号的参考信号序列
Figure PCTCN2020119742-appb-000166
对应的正交码序列w g,p(·)组成第二正交序列组;所述g至少遍历第一正交序列组和第二正交序列组;p遍历正交序列组中的所有序列;所述第一正交序列组中的序列互相正交,所述第二正交序列组中的序列互相正交,且所述第一正交序列组中的任一序列和所述第二正交序列中的任一序列均不同;
其中,
Figure PCTCN2020119742-appb-000167
序列c g(·)为第一掩码序列集合中的一个序列,自变量取值范围为
Figure PCTCN2020119742-appb-000168
所述第一正交序列组对应的序列c g(·)与所述第二正交序列组对应的序列c g(·)不同;
所述第一序列组对应的序列r(m)与所述第二序列组对应的序列r(m)相同。
其中,步骤1601可包括:接收端发送信令。该接收端可以是基站。
步骤1601还可包括:接收端接收信令。其中,该接收端可以是终端设备。
1602、所述接收端接收所述一个或多个参考信号,并根据至少一个参考信号序列对所述一个或多个参考信号进行处理。
其中,所述序列c g(·)满足:
Figure PCTCN2020119742-appb-000169
其中,e g表示长度为L的序列,
Figure PCTCN2020119742-appb-000170
表示e g的α次克罗尼克积,所述α满足
Figure PCTCN2020119742-appb-000171
所述多个参考信号序列对应的e g组成第二掩码序列集合,其中,L为正整数。
其中,所述第一正交序列组对应的序列的长度和所述第二正交序列组对应的序列的长度相同。
当所述至少两个参考信号组中的参考信号的频率资源包括相同的资源块时,所述第一正交序列组的序列对应的参考信号序列和所述第二正交序列组的序列对应的参考信号序列映射在所述相同的资源块中的相同的子载波上。
作为一种实现方式,所述第一正交序列组的序列包括下述序列:{1,1};{1,-1};所述第二正交序列组的序列包括下述序列:{1,1i};{1,-1i};
或者,所述第一正交序列组的序列包括下述序列:{1,1i};{1,-1i};所述第二正交序列组的序列包括下述序列:{1,1};{1,-1};其中,i为虚数单位。
作为另一种实现方式,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1,1,1,1};{1,-1,1,-1};{1,1,-1,-1};{1,-1,-1,1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1,-1,-1i,-1i};{1,1,-1i,1i};{1,-1,1i,1i};{1,1,1i,-1i};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1,-1i,-1i,-1};{1,1i,-1i,1};{1,-1i,1i,1};{1,1i,1i,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1,-1i,-1,-1i};{1,1i,-1,1i};{1,-1i,1,1i};{1,1i,1,-1i};其中,i为虚数单位。
作为又一种实现方式,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{-1i,-1,1i,-1,1i,-1,1i,1};{-1i,1,1i,1,1i,1,1i,-1};{-1i,-1,-1i,1,1i,-1,-1i,-1};{-1i,1,-1i,-1,1i,1,-1i,1};{-1i,-1,1i,-1,-1i,1,-1i,-1};{-1i,1,1i,1,-1i,-1,-1i,1};{-1i,-1,-1i,1,-1i,1,1i,1};{-1i,1,-1i,-1,-1i,-1,1i,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1i,-1i,-1,-1,1i,1i,-1,1};{1i,1i,-1,1,1i,-1i,-1,-1};{1i,-1i,1,1,1i,1i,1,-1};{1i,1i,1,-1,1i,-1i,1,1};{1i,-1i,-1,-1,-1i,-1i,1,-1};{1i,1i,-1,1,-1i,1i,1,1};{1i,-1i,1,1,-1i,-1i,-1,1};{1i,1i,1,-1,-1i,1i,-1,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1i,1i,1i,-1i,-1,-1,-1,1};{1i,-1i,1i,1i,-1,1,-1,-1};{1i,1i,-1i,1i,-1,-1,1,-1};{1i,-1i,-1i,-1i,-1,1,1,1};{1i,1i,1i,-1i,1,1,1,-1};{1i,-1i,1i,1i,1,-1,1,1};{1i, 1i,-1i,1i,1,1,-1,1};{1i,-1i,-1i,-1i,1,-1,-1,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{-1,1i,-1,1i,1i,-1,-1i,1};{-1,-1i,-1,-1i,1i,1,-1i,-1};{-1,1i,1,-1i,1i,-1,1i,-1};{-1,-1i,1,1i,1i,1,1i,1};{-1,1i,-1,1i,-1i,1,1i,-1};{-1,-1i,-1,-1i,-1i,-1,1i,1};{-1,1i,1,-1i,-1i,1,-1i,1};{-1,-1i,1,1i,-1i,-1,-1i,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1i,-1,-1,1i,-1,-1i,1i,1};{1i,1,-1,-1i,-1,1i,1i,-1};{1i,-1,1,-1i,-1,-1i,-1i,-1};{1i,1,1,1i,-1,1i,-1i,1};{1i,-1,-1,-1,1i,1,1i,-1i,-1};{1i,1,-1,-1i,1,-1i,-1i,1};{1i,-1,1,-1i,1,1i,1i,1};{1i,1,1,1i,1,-1i,1i,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{-1,1i,-1i,-1,-1,1i,1i,1};{-1,-1i,-1i,1,-1,-1i,1i,-1};{-1,1i,1i,1,-1,1i,-1i,-1};{-1,-1i,1i,-1,-1,-1i,-1i,1};{-1,1i,-1i,-1,1,-1i,-1i,-1};{-1,-1i,-1i,1,1,1i,-1i,1};{-1,1i,1i,1,1,-1i,1i,1};{-1,-1i,1i,-1,1,1i,1i,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{-1,-1,1i,1i,-1i,1i,-1,1};{-1,1,1i,-1i,-1i,-1i,-1,-1};{-1,-1,-1i,-1i,-1i,1i,1,-1};{-1,1,-1i,1i,-1i,-1i,1,1};{-1,-1,1i,1i,1i,-1i,1,-1};{-1,1,1i,-1i,1i,1i,1,1};{-1,-1,-1i,-1i,1i,-1i,-1,1};{-1,1,-1i,1i,1i,1i,-1,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1,1,1,1,1,1,1,1};{1,-1,1,-1,1,-1,1,-1};{1,1,-1,-1,1,1,-1,-1};{1,-1,-1,1,1,-1,-1,1};{1,1,1,1,-1,-1,-1,-1};{1,-1,1,-1,-1,1,-1,1};{1,1,-1,-1,-1,-1,1,1};{1,-1,-1,1,-1,1,1,-1};其中,i为虚数单位。
可替代的,所述第一正交序列组对应的序列的长度是所述第二正交序列组对应的序列的长度的2倍。
当所述至少两个参考信号组中的参考信号的频率资源包括相同的资源块时,所述第一正交序列组的序列对应的参考信号序列映射到所述相同的资源块中等间隔的第一子载波上,所述第一子载波中相邻子载波的中心频率距离为k个子载波,所述第二正交序列组的序列对应的参考信号序列映射到所述相同的资源块中等间隔的第二子载波上,所述第二子载波中相邻子载波的中心频率距离为2k个子载波,k为正整数。
其中,所述第一正交序列组的序列包括下述序列:
{1,-1,-1i,-1i};{1,1,-1i,1i};{1,-1,1i,1i};{1,1,1i,-1i};
或者,所述第一正交序列组的序列包括下述序列:
{1,-1i,-1i,-1};{1,1i,-1i,1};{1,-1i,1i,1};{1,1i,1i,-1};
其中,所述第二正交序列组的序列包括下述序列:
{1,1};{1,-1};其中,i为虚数单位。
作为另一种实现方式,所述第一正交序列组的序列包括下述序列:
{-1i,-1,1i,-1,1i,-1,1i,1};{-1i,1,1i,1,1i,1,1i,-1};{-1i,-1,-1i,1,1i,-1,-1i,-1}; {-1i,1,-1i,-1,1i,1,-1i,1};{-1i,-1,1i,-1,-1i,1,-1i,-1};{-1i,1,1i,1,-1i,-1,-1i,1};{-1i,-1,-1i,1,-1i,1,1i,1};{-1i,1,-1i,-1,-1i,-1,1i,-1};
或者,所述第一正交序列组的序列包括下述序列:
{-1,1i,-1,1i,1i,-1,-1i,1};{-1,-1i,-1,-1i,1i,1,-1i,-1};{-1,1i,1,-1i,1i,-1,1i,-1};{-1,-1i,1,1i,1i,1,1i,1};{-1,1i,-1,1i,-1i,1,1i,-1};{-1,-1i,-1,-1i,-1i,-1,1i,1};{-1,1i,1,-1i,-1i,1,-1i,1};{-1,-1i,1,1i,-1i,-1,-1i,-1};
或者,所述第一正交序列组的序列包括下述序列:
{-1,1i,-1i,-1,-1,1i,1i,1};{-1,-1i,-1i,1,-1,-1i,1i,-1};{-1,1i,1i,1,-1,1i,-1i,-1};{-1,-1i,1i,-1,-1,-1i,-1i,1};{-1,1i,-1i,-1,1,-1i,-1i,-1};{-1,-1i,-1i,1,1,1i,-1i,1};{-1,1i,1i,1,1,-1i,1i,1};{-1,-1i,1i,-1,1,1i,1i,-1};
或者,所述第一正交序列组的序列包括下述序列:
{-1,-1,1i,1i,-1i,1i,-1,1};{-1,1,1i,-1i,-1i,-1i,-1,-1};{-1,-1,-1i,-1i,-1i,1i,1,-1};{-1,1,-1i,1i,-1i,-1i,1,1};{-1,-1,1i,1i,1i,-1i,1,-1};{-1,1,1i,-1i,1i,1i,1,1};{-1,-1,-1i,-1i,1i,-1i,-1,1};{-1,1,-1i,1i,1i,1i,-1,-1};
所述第二正交序列组的序列包括下述序列:
{1,1,1,1};{1,-1,1,-1};{1,1,-1,-1};{1,-1,-1,1};其中,i为虚数单位。
其中,所述第二掩码序列集合中的序列包括下述序列:
{1,1};{1,1i};其中,i为虚数单位。
其中,该信号接收方法可参阅上述各实施例中信号发送方法的介绍,在此不再赘述。
另一方面,本申请实施例还提供一种信号接收方法。具体如下:
网络设备接收第一参考信号,所述参考信号基于
Figure PCTCN2020119742-appb-000172
生成,其中所述
Figure PCTCN2020119742-appb-000173
满足:
Figure PCTCN2020119742-appb-000174
其中,m=0,…M-1,M为
Figure PCTCN2020119742-appb-000175
的序列长度;A为非零复数;r(m)为伪随机序列;
其中,序列w g,p(·)的长度为N g,n满足n=m mod N g,所述M不小于2N g,所述序列w g,p(·)与正交序列组g中的正交序列p相关联;所述正交序列组g为第一正交序列组和第二正交序列的一个,所述第一正交序列组中的序列互相正交,所述第二正交序列组中的序列互相正交,且所述第一正交序列组中的任一序列和所述第二正交序列中的任一序列均不同;
其中,
Figure PCTCN2020119742-appb-000176
序列c g(·)为第一掩码序列集合中的一个序列,自变量取值范围为
Figure PCTCN2020119742-appb-000177
所述序列c g(·)的取值与序列组g相关联。
其中,上述仅以第一正交序列组和第二正交序列组为例进行说明,其还可以是其他任意多个正交序列组,本方案对此不做具体限定。
上述网络设备可以是UE,也可以是基站。
其中,不同的正交序列组g关联不同的c g(·)的取值。
所述序列c g(·)满足:
Figure PCTCN2020119742-appb-000178
其中,e g表示长度为L的序列,
Figure PCTCN2020119742-appb-000179
表示e g的α次克罗尼克积,所述α满足
Figure PCTCN2020119742-appb-000180
多个参考信号序列对应的e g组成第二掩码序列集合,其中,L为正整数。
作为一种实现方式,所述第一正交序列组对应的序列的长度和所述第二正交序列组对应的序列的长度相同。
当所述至少两个参考信号组中的参考信号的频率资源包括相同的资源块时,所述第一正交序列组的序列对应的参考信号序列和所述第二正交序列组的序列对应的参考信号序列映射在所述相同的资源块中的相同的子载波上。
其中,所述第一正交序列组的序列包括下述序列:{1,1};{1,-1};所述第二正交序列组的序列包括下述序列:{1,1i};{1,-1i};
或者,所述第一正交序列组的序列包括下述序列:{1,1i};{1,-1i};所述第二正交序列组的序列包括下述序列:{1,1};{1,-1};
其中,i为虚数单位。
可替代的,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1,1,1,1};{1,-1,1,-1};{1,1,-1,-1};{1,-1,-1,1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1,-1,-1i,-1i};{1,1,-1i,1i};{1,-1,1i,1i};{1,1,1i,-1i};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1,-1i,-1i,-1};{1,1i,-1i,1};{1,-1i,1i,1};{1,1i,1i,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1,-1i,-1,-1i};{1,1i,-1,1i};{1,-1i,1,1i};{1,1i,1,-1i};其中,i为虚数单位。
可替代的,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{-1i,-1,1i,-1,1i,-1,1i,1};{-1i,1,1i,1,1i,1,1i,-1};{-1i,-1,-1i,1,1i,-1,-1i,-1};{-1i,1,-1i,-1,1i,1,-1i,1};{-1i,-1,1i,-1,-1i,1,-1i,-1};{-1i,1,1i,1,-1i,-1,-1i,1};{-1i,-1,-1i,1,-1i,1,1i,1};{-1i,1,-1i,-1,-1i,-1,1i,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1i,-1i,-1,-1,1i,1i,-1,1};{1i,1i,-1,1,1i,-1i,-1,-1};{1i,-1i,1,1,1i,1i,1,-1};{1i,1i,1,-1,1i,-1i,1,1};{1i,-1i,-1,-1,-1i,-1i,1,-1};{1i,1i,-1,1,-1i,1i,1,1};{1i,-1i,1,1,-1i,-1i,-1,1};{1i,1i,1,-1,-1i,1i,-1,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1i,1i,1i,-1i,-1,-1,-1,1};{1i,-1i,1i,1i,-1,1,-1,-1};{1i,1i,-1i,1i,-1,-1,1,-1};{1i,-1i,-1i,-1i,-1,1,1,1};{1i,1i,1i,-1i,1,1,1,-1};{1i,-1i,1i,1i,1,-1,1,1};{1i,1i,-1i,1i,1,1,-1,1};{1i,-1i,-1i,-1i,1,-1,-1,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{-1,1i,-1,1i,1i,-1,-1i,1};{-1,-1i,-1,-1i,1i,1,-1i,-1};{-1,1i,1,-1i,1i,-1,1i,-1};{-1,-1i,1,1i,1i,1,1i,1};{-1,1i,-1,1i,-1i,1,1i,-1};{-1,-1i,-1,-1i,-1i,-1,1i,1};{-1,1i,1,-1i,-1i,1,-1i,1};{-1,-1i,1,1i,-1i,-1,-1i,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1i,-1,-1,1i,-1,-1i,1i,1};{1i,1,-1,-1i,-1,1i,1i,-1};{1i,-1,1,-1i,-1,-1i,-1i,-1};{1i,1,1,1i,-1,1i,-1i,1};{1i,-1,-1,-1,1i,1,1i,-1i,-1};{1i,1,-1,-1i,1,-1i,-1i,1};{1i,-1,1,-1i,1,1i,1i,1};{1i,1,1,1i,1,-1i,1i,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{-1,1i,-1i,-1,-1,1i,1i,1};{-1,-1i,-1i,1,-1,-1i,1i,-1};{-1,1i,1i,1,-1,1i,-1i,-1};{-1,-1i,1i,-1,-1,-1i,-1i,1};{-1,1i,-1i,-1,1,-1i,-1i,-1};{-1,-1i,-1i,1,1,1i,-1i,1};{-1,1i,1i,1,1,-1i,1i,1};{-1,-1i,1i,-1,1,1i,1i,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{-1,-1,1i,1i,-1i,1i,-1,1};{-1,1,1i,-1i,-1i,-1i,-1,-1};{-1,-1,-1i,-1i,-1i,1i,1,-1};{-1,1,-1i,1i,-1i,-1i,1,1};{-1,-1,1i,1i,1i,-1i,1,-1};{-1,1,1i,-1i,1i,1i,1,1};{-1,-1,-1i,-1i,1i,-1i,-1,1};{-1,1,-1i,1i,1i,1i,-1,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1,1,1,1,1,1,1,1};{1,-1,1,-1,1,-1,1,-1};{1,1,-1,-1,1,1,-1,-1};{1,-1,-1,1,1,-1,-1,1};{1,1,1,1,-1,-1,-1,-1};{1,-1,1,-1,-1,1,-1,1};{1,1,-1,-1,-1,-1,1,1};{1,-1,-1,1,-1,1,1,-1};其中,i为虚数单位。
作为另一种实现方式,所述第一正交序列组对应的序列的长度是所述第二正交序列组对应的序列的长度的2倍。
当所述至少两个参考信号组中的参考信号的频率资源包括相同的资源块时,所述第一正交序列组的序列对应的参考信号序列映射到所述相同的资源块中等间隔的第一子载波上,所述第一子载波中相邻子载波的中心频率距离为k个子载波,所述第二正交序列组的序列对应的参考信号序列映射到所述相同的资源块中等间隔的第二子载波上,所述第二子载波中相邻子载波的中心频率距离为2k个子载波,k为正整数。第二子载波是第一子载波的子集。
在本发明中,第一正交序列组和第二正交序列组对应的参考信号序列,可以是参考信号的部分时频资源上的参考信号序列,例如系统中参考信号占用2个OFDM符号,第一正交序列组和第二正交序列组对应的参考信号序列为其中1个OFDM符号上的参考信号序列。除了所述的至少两个参考信号组,所有的参考信号还可以包括其他的频分复用的参考信号。
其中,所述第一正交序列组的序列包括下述序列:
{1,-1,-1i,-1i};{1,1,-1i,1i};{1,-1,1i,1i};{1,1,1i,-1i};
或者,所述第一正交序列组的序列包括下述序列:
{1,-1i,-1i,-1};{1,1i,-1i,1};{1,-1i,1i,1};{1,1i,1i,-1};
其中,所述第二正交序列组的序列包括下述序列:
{1,1};{1,-1};其中,i为虚数单位。
可替代的,所述第一正交序列组的序列包括下述序列:
{-1i,-1,1i,-1,1i,-1,1i,1};{-1i,1,1i,1,1i,1,1i,-1};{-1i,-1,-1i,1,1i,-1,-1i,-1};{-1i,1,-1i,-1,1i,1,-1i,1};{-1i,-1,1i,-1,-1i,1,-1i,-1};{-1i,1,1i,1,-1i,-1,-1i,1};{-1i,-1,-1i,1,-1i,1,1i,1};{-1i,1,-1i,-1,-1i,-1,1i,-1};
或者,所述第一正交序列组的序列包括下述序列:
{-1,1i,-1,1i,1i,-1,-1i,1};{-1,-1i,-1,-1i,1i,1,-1i,-1};{-1,1i,1,-1i,1i,-1,1i,-1};{-1,-1i,1,1i,1i,1,1i,1};{-1,1i,-1,1i,-1i,1,1i,-1};{-1,-1i,-1,-1i,-1i,-1,1i,1};{-1,1i,1,-1i,-1i,1,-1i,1};{-1,-1i,1,1i,-1i,-1,-1i,-1};
或者,所述第一正交序列组的序列包括下述序列:
{-1,1i,-1i,-1,-1,1i,1i,1};{-1,-1i,-1i,1,-1,-1i,1i,-1};{-1,1i,1i,1,-1,1i,-1i,-1};{-1,-1i,1i,-1,-1,-1i,-1i,1};{-1,1i,-1i,-1,1,-1i,-1i,-1};{-1,-1i,-1i,1,1,1i,-1i,1};{-1,1i,1i,1,1,-1i,1i,1};{-1,-1i,1i,-1,1,1i,1i,-1};
或者,所述第一正交序列组的序列包括下述序列:
{-1,-1,1i,1i,-1i,1i,-1,1};{-1,1,1i,-1i,-1i,-1i,-1,-1};{-1,-1,-1i,-1i,-1i,1i,1,-1};{-1,1,-1i,1i,-1i,-1i,1,1};{-1,-1,1i,1i,1i,-1i,1,-1};{-1,1,1i,-1i,1i,1i,1,1};{-1,-1,-1i,-1i,1i,-1i,-1,1};{-1,1,-1i,1i,1i,1i,-1,-1};
所述第二正交序列组的序列包括下述序列:
{1,1,1,1};{1,-1,1,-1};{1,1,-1,-1};{1,-1,-1,1};其中,i为虚数单位。
其中,所述第二掩码序列集合中的序列包括下述序列:
{1,1};{1,1i};其中,i为虚数单位。
上述序列可以保证即使第一子载波和第二子载波不完全相同,也可以保证参考信号的干扰较低。
如图16b所示,本申请实施例还提供一种通信装置,包括:
收发单元1601,用于接收/发送信令,所述信令携带预设域段,指示第一参考信号组合,所述第一参考信号组合中包括一个或多个参考信号;其中,所述信令中的所述预设域段的不同取值,分别对应不同参考信号组合;所述不同参考信号组合包括的所有的参考信号组成参考信号集合,所述参考信号集合包括至少两个参考信号组;所述至少两个参考信号组中各参考信号的参考信号序列
Figure PCTCN2020119742-appb-000181
满足
Figure PCTCN2020119742-appb-000182
其中,m为0到M-1的整数,M为
Figure PCTCN2020119742-appb-000183
的序列长度;A为非零复数;r(m)为伪随机序列;其中,序列w g,p(n)的长度为N g,n满足n=m mod N g,所述M不小于2N g,g为正交序列组的标识,所述至少两 个参考信号组满足以下条件:第一参考信号组中的所有的参考信号的参考信号序列
Figure PCTCN2020119742-appb-000184
对应的正交码序列w g,p(·)组成第一正交序列组,第二参考信号组中的所有参考信号的参考信号序列
Figure PCTCN2020119742-appb-000185
对应的正交码序列w g,p(·)组成第二正交序列组;所述g至少遍历第一正交序列组和第二正交序列组;p遍历正交序列组中的所有序列;所述第一正交序列组中的序列互相正交,所述第二正交序列组中的序列互相正交,且所述第一正交序列组中的任一序列和所述第二正交序列中的任一序列均不同;其中,
Figure PCTCN2020119742-appb-000186
序列c g(·)为第一掩码序列集合中的一个序列,所述第一正交序列组对应的序列c g(·)与所述第二正交序列组对应的序列c g(·)不同;所述第一序列组对应的序列r(m)与所述第二序列组对应的序列r(m)相同;
处理单元1602,用于生成并发送所述一个或多个参考信号。
所述序列c g(·)满足:
Figure PCTCN2020119742-appb-000187
其中,e g表示长度为L的序列,
Figure PCTCN2020119742-appb-000188
表示e g的α次克罗尼克积,所述α满足
Figure PCTCN2020119742-appb-000189
多个参考信号序列对应的e g组成第二掩码序列集合,其中,L为正整数。
作为一种实现方式,所述第一正交序列组对应的序列的长度和所述第二正交序列组对应的序列的长度相同。
当所述至少两个参考信号组中的参考信号的频率资源包括相同的资源块时,所述第一正交序列组的序列对应的参考信号序列和所述第二正交序列组的序列对应的参考信号序列映射在所述相同的资源块中的相同的子载波上。
其中,所述第一正交序列组的序列包括下述序列:{1,1};{1,-1};所述第二正交序列组的序列包括下述序列:{1,1i};{1,-1i};
或者,所述第一正交序列组的序列包括下述序列:{1,1i};{1,-1i};所述第二正交序列组的序列包括下述序列:{1,1};{1,-1};
其中,i为虚数单位。
可替代的,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1,1,1,1};{1,-1,1,-1};{1,1,-1,-1};{1,-1,-1,1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1,-1,-1i,-1i};{1,1,-1i,1i};{1,-1,1i,1i};{1,1,1i,-1i};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1,-1i,-1i,-1};{1,1i,-1i,1};{1,-1i,1i,1};{1,1i,1i,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1,-1i,-1,-1i};{1,1i,-1,1i};{1,-1i,1,1i};{1,1i,1,-1i};其中,i为虚数单位。
可替代的,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{-1i,-1,1i,-1,1i,-1,1i,1};{-1i,1,1i,1,1i,1,1i,-1};{-1i,-1,-1i,1,1i,-1,-1i,-1};{-1i,1,-1i,-1,1i,1,-1i,1};{-1i,-1,1i,-1,-1i,1,-1i,-1};{-1i,1,1i,1,-1i,-1,-1i,1};{-1i,-1,-1i,1,-1i,1,1i,1};{-1i,1,-1i,-1,-1i,-1,1i,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1i,-1i,-1,-1,1i,1i,-1,1};{1i,1i,-1,1,1i,-1i,-1,-1};{1i,-1i,1,1,1i,1i,1,-1};{1i,1i,1,-1,1i,-1i,1,1};{1i,-1i,-1,-1,-1i,-1i,1,-1};{1i,1i,-1,1,-1i,1i,1,1};{1i,-1i,1,1,-1i,-1i,-1,1};{1i,1i,1,-1,-1i,1i,-1,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1i,1i,1i,-1i,-1,-1,-1,1};{1i,-1i,1i,1i,-1,1,-1,-1};{1i,1i,-1i,1i,-1,-1,1,-1};{1i,-1i,-1i,-1i,-1,1,1,1};{1i,1i,1i,-1i,1,1,1,-1};{1i,-1i,1i,1i,1,-1,1,1};{1i,1i,-1i,1i,1,1,-1,1};{1i,-1i,-1i,-1i,1,-1,-1,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{-1,1i,-1,1i,1i,-1,-1i,1};{-1,-1i,-1,-1i,1i,1,-1i,-1};{-1,1i,1,-1i,1i,-1,1i,-1};{-1,-1i,1,1i,1i,1,1i,1};{-1,1i,-1,1i,-1i,1,1i,-1};{-1,-1i,-1,-1i,-1i,-1,1i,1};{-1,1i,1,-1i,-1i,1,-1i,1};{-1,-1i,1,1i,-1i,-1,-1i,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1i,-1,-1,1i,-1,-1i,1i,1};{1i,1,-1,-1i,-1,1i,1i,-1};{1i,-1,1,-1i,-1,-1i,-1i,-1};{1i,1,1,1i,-1,1i,-1i,1};{1i,-1,-1,-1,1i,1,1i,-1i,-1};{1i,1,-1,-1i,1,-1i,-1i,1};{1i,-1,1,-1i,1,1i,1i,1};{1i,1,1,1i,1,-1i,1i,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{-1,1i,-1i,-1,-1,1i,1i,1};{-1,-1i,-1i,1,-1,-1i,1i,-1};{-1,1i,1i,1,-1,1i,-1i,-1};{-1,-1i,1i,-1,-1,-1i,-1i,1};{-1,1i,-1i,-1,1,-1i,-1i,-1};{-1,-1i,-1i,1,1,1i,-1i,1};{-1,1i,1i,1,1,-1i,1i,1};{-1,-1i,1i,-1,1,1i,1i,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{-1,-1,1i,1i,-1i,1i,-1,1};{-1,1,1i,-1i,-1i,-1i,-1,-1};{-1,-1,-1i,-1i,-1i,1i,1,-1};{-1,1,-1i,1i,-1i,-1i,1,1};{-1,-1,1i,1i,1i,-1i,1,-1};{-1,1,1i,-1i,1i,1i,1,1};{-1,-1,-1i,-1i,1i,-1i,-1,1};{-1,1,-1i,1i,1i,1i,-1,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1,1,1,1,1,1,1,1};{1,-1,1,-1,1,-1,1,-1};{1,1,-1,-1,1,1,-1,-1};{1,-1,-1,1,1,-1,-1,1};{1,1,1,1,-1,-1,-1,-1};{1,-1,1,-1,-1,1,-1,1};{1,1,-1,-1,-1,-1,1,1};{1,-1,-1,1,-1,1,1,-1};其中,i为虚数单位。
作为另一种实现方式,所述第一正交序列组对应的序列的长度是所述第二正交序列组对应的序列的长度的2倍。
当所述至少两个参考信号组中的参考信号的频率资源包括相同的资源块时,所述第一正交序列组的序列对应的参考信号序列映射到所述相同的资源块中等间隔的第一子载波上,所述第一子载波中相邻子载波的中心频率距离为k个子载波,所述第二正交序列组的序列 对应的参考信号序列映射到所述相同的资源块中等间隔的第二子载波上,所述第二子载波中相邻子载波的中心频率距离为2k个子载波,k为正整数。第二子载波是第一子载波的子集。
在本发明中,第一正交序列组和第二正交序列组对应的参考信号序列,可以是参考信号的部分时频资源上的参考信号序列,例如系统中参考信号占用2个OFDM符号,第一正交序列组和第二正交序列组对应的参考信号序列为其中1个OFDM符号上的参考信号序列。除了所述的至少两个参考信号组,所有的参考信号还可以包括其他的频分复用的参考信号。
其中,所述第一正交序列组的序列包括下述序列:
{1,-1,-1i,-1i};{1,1,-1i,1i};{1,-1,1i,1i};{1,1,1i,-1i};
或者,所述第一正交序列组的序列包括下述序列:
{1,-1i,-1i,-1};{1,1i,-1i,1};{1,-1i,1i,1};{1,1i,1i,-1};
其中,所述第二正交序列组的序列包括下述序列:
{1,1};{1,-1};其中,i为虚数单位。
可替代的,所述第一正交序列组的序列包括下述序列:
{-1i,-1,1i,-1,1i,-1,1i,1};{-1i,1,1i,1,1i,1,1i,-1};{-1i,-1,-1i,1,1i,-1,-1i,-1};{-1i,1,-1i,-1,1i,1,-1i,1};{-1i,-1,1i,-1,-1i,1,-1i,-1};{-1i,1,1i,1,-1i,-1,-1i,1};{-1i,-1,-1i,1,-1i,1,1i,1};{-1i,1,-1i,-1,-1i,-1,1i,-1};
或者,所述第一正交序列组的序列包括下述序列:
{-1,1i,-1,1i,1i,-1,-1i,1};{-1,-1i,-1,-1i,1i,1,-1i,-1};{-1,1i,1,-1i,1i,-1,1i,-1};{-1,-1i,1,1i,1i,1,1i,1};{-1,1i,-1,1i,-1i,1,1i,-1};{-1,-1i,-1,-1i,-1i,-1,1i,1};{-1,1i,1,-1i,-1i,1,-1i,1};{-1,-1i,1,1i,-1i,-1,-1i,-1};
或者,所述第一正交序列组的序列包括下述序列:
{-1,1i,-1i,-1,-1,1i,1i,1};{-1,-1i,-1i,1,-1,-1i,1i,-1};{-1,1i,1i,1,-1,1i,-1i,-1};{-1,-1i,1i,-1,-1,-1i,-1i,1};{-1,1i,-1i,-1,1,-1i,-1i,-1};{-1,-1i,-1i,1,1,1i,-1i,1};{-1,1i,1i,1,1,-1i,1i,1};{-1,-1i,1i,-1,1,1i,1i,-1};
或者,所述第一正交序列组的序列包括下述序列:
{-1,-1,1i,1i,-1i,1i,-1,1};{-1,1,1i,-1i,-1i,-1i,-1,-1};{-1,-1,-1i,-1i,-1i,1i,1,-1};{-1,1,-1i,1i,-1i,-1i,1,1};{-1,-1,1i,1i,1i,-1i,1,-1};{-1,1,1i,-1i,1i,1i,1,1};{-1,-1,-1i,-1i,1i,-1i,-1,1};{-1,1,-1i,1i,1i,1i,-1,-1};
所述第二正交序列组的序列包括下述序列:
{1,1,1,1};{1,-1,1,-1};{1,1,-1,-1};{1,-1,-1,1};其中,i为虚数单位。
其中,所述第二掩码序列集合中的序列包括下述序列:
{1,1};{1,1i};其中,i为虚数单位。
本申请实施例还提供一种通信装置,包括:收发单元,用于发送/接收信令,所述信令携带预设域段,指示第一参考信号组合,所述第一参考信号组合中包括一个或多个参考信 号;其中,所述信令中的所述预设域段的不同取值,分别对应不同参考信号组合;所述不同参考信号组合包括的所有的参考信号组成参考信号集合,所述参考信号集合包括至少两个参考信号组;所述至少两个参考信号组中各参考信号的参考信号序列
Figure PCTCN2020119742-appb-000190
满足:
Figure PCTCN2020119742-appb-000191
其中,m为0到M-1的整数,M为
Figure PCTCN2020119742-appb-000192
的序列长度;A为非零复数;r(m)为伪随机序列;其中,序列w g,p(·)的长度为N g,n满足n=m mod N g,所述M不小于2N g,g为正交序列组的标识,所述至少两个参考信号组满足以下条件:第一参考信号组中的所有的参考信号的参考信号序列
Figure PCTCN2020119742-appb-000193
对应的正交码序列w g,p(·)组成第一正交序列组,第二参考信号组中的所有参考信号的参考信号序列
Figure PCTCN2020119742-appb-000194
对应的正交码序列w g,p(·)组成第二正交序列组;所述g至少遍历第一正交序列组和第二正交序列组;p遍历正交序列组中的所有序列;所述第一正交序列组中的序列互相正交,所述第二正交序列组中的序列互相正交,且所述第一正交序列组中的任一序列和所述第二正交序列中的任一序列均不同;其中,
Figure PCTCN2020119742-appb-000195
序列c g(·)为第一掩码序列集合中的一个序列,所述第一正交序列组对应的序列c g(·)与所述第二正交序列组对应的序列c g(·)不同;所述第一序列组对应的序列r(m)与所述第二序列组对应的序列r(m)相同。
处理单元,用于接收所述一个或多个参考信号,并根据至少一个参考信号序列对所述一个或多个参考信号进行处理。
所述序列c g(·)满足:
Figure PCTCN2020119742-appb-000196
其中,e g表示长度为L的序列,
Figure PCTCN2020119742-appb-000197
表示e g的α次克罗尼克积,所述α满足
Figure PCTCN2020119742-appb-000198
多个参考信号序列对应的e g组成第二掩码序列集合,其中,L为正整数。
作为一种实现方式,所述第一正交序列组对应的序列的长度和所述第二正交序列组对应的序列的长度相同。
当所述至少两个参考信号组中的参考信号的频率资源包括相同的资源块时,所述第一正交序列组的序列对应的参考信号序列和所述第二正交序列组的序列对应的参考信号序列映射在所述相同的资源块中的相同的子载波上。
其中,所述第一正交序列组的序列包括下述序列:{1,1};{1,-1};所述第二正交序列组的序列包括下述序列:{1,1i};{1,-1i};
或者,所述第一正交序列组的序列包括下述序列:{1,1i};{1,-1i};所述第二正交序列组的序列包括下述序列:{1,1};{1,-1};
其中,i为虚数单位。
可替代的,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1,1,1,1};{1,-1,1,-1};{1,1,-1,-1};{1,-1,-1,1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1,-1,-1i,-1i};{1,1,-1i,1i};{1,-1,1i,1i};{1,1,1i,-1i};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1,-1i,-1i,-1};{1,1i,-1i,1};{1,-1i,1i,1};{1,1i,1i,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1,-1i,-1,-1i};{1,1i,-1,1i};{1,-1i,1,1i};{1,1i,1,-1i};其中,i为虚数单位。
可替代的,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{-1i,-1,1i,-1,1i,-1,1i,1};{-1i,1,1i,1,1i,1,1i,-1};{-1i,-1,-1i,1,1i,-1,-1i,-1};{-1i,1,-1i,-1,1i,1,-1i,1};{-1i,-1,1i,-1,-1i,1,-1i,-1};{-1i,1,1i,1,-1i,-1,-1i,1};{-1i,-1,-1i,1,-1i,1,1i,1};{-1i,1,-1i,-1,-1i,-1,1i,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1i,-1i,-1,-1,1i,1i,-1,1};{1i,1i,-1,1,1i,-1i,-1,-1};{1i,-1i,1,1,1i,1i,1,-1};{1i,1i,1,-1,1i,-1i,1,1};{1i,-1i,-1,-1,-1i,-1i,1,-1};{1i,1i,-1,1,-1i,1i,1,1};{1i,-1i,1,1,-1i,-1i,-1,1};{1i,1i,1,-1,-1i,1i,-1,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1i,1i,1i,-1i,-1,-1,-1,1};{1i,-1i,1i,1i,-1,1,-1,-1};{1i,1i,-1i,1i,-1,-1,1,-1};{1i,-1i,-1i,-1i,-1,1,1,1};{1i,1i,1i,-1i,1,1,1,-1};{1i,-1i,1i,1i,1,-1,1,1};{1i,1i,-1i,1i,1,1,-1,1};{1i,-1i,-1i,-1i,1,-1,-1,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{-1,1i,-1,1i,1i,-1,-1i,1};{-1,-1i,-1,-1i,1i,1,-1i,-1};{-1,1i,1,-1i,1i,-1,1i,-1};{-1,-1i,1,1i,1i,1,1i,1};{-1,1i,-1,1i,-1i,1,1i,-1};{-1,-1i,-1,-1i,-1i,-1,1i,1};{-1,1i,1,-1i,-1i,1,-1i,1};{-1,-1i,1,1i,-1i,-1,-1i,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1i,-1,-1,1i,-1,-1i,1i,1};{1i,1,-1,-1i,-1,1i,1i,-1};{1i,-1,1,-1i,-1,-1i,-1i,-1};{1i,1,1,1i,-1,1i,-1i,1};{1i,-1,-1,-1,1i,1,1i,-1i,-1};{1i,1,-1,-1i,1,-1i,-1i,1};{1i,-1,1,-1i,1,1i,1i,1};{1i,1,1,1i,1,-1i,1i,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{-1,1i,-1i,-1,-1,1i,1i,1};{-1,-1i,-1i,1,-1,-1i,1i,-1};{-1,1i,1i,1,-1,1i,-1i,-1};{-1,-1i,1i,-1,-1,-1i,-1i,1};{-1,1i,-1i,-1,1,-1i,-1i,-1};{-1,-1i,-1i,1,1,1i,-1i,1};{-1,1i,1i,1,1,-1i,1i,1};{-1,-1i,1i,-1,1,1i,1i,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{-1,-1,1i,1i,-1i,1i,-1,1};{-1,1,1i,-1i,-1i,-1i,-1,-1};{-1,-1,-1i,-1i,-1i,1i,1,-1};{-1,1,-1i,1i,-1i,-1i,1,1};{-1,-1,1i,1i,1i,-1i,1,-1};{-1,1,1i,-1i,1i,1i,1,1};{-1,-1,-1i,-1i,1i,-1i,-1,1};{-1,1,-1i,1i,1i,1i,-1,-1};
或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
{1,1,1,1,1,1,1,1};{1,-1,1,-1,1,-1,1,-1};{1,1,-1,-1,1,1,-1,-1};{1,-1,-1,1,1,-1,-1,1};{1,1,1,1,-1,-1,-1,-1};{1,-1,1,-1,-1,1,-1,1};{1,1,-1,-1,-1,-1,1,1};{1,-1,-1,1,-1,1,1,-1};其中,i为虚数单位。
作为另一种实现方式,所述第一正交序列组对应的序列的长度是所述第二正交序列组对应的序列的长度的2倍。
当所述至少两个参考信号组中的参考信号的频率资源包括相同的资源块时,所述第一正交序列组的序列对应的参考信号序列映射到所述相同的资源块中等间隔的第一子载波上,所述第一子载波中相邻子载波的中心频率距离为k个子载波,所述第二正交序列组的序列对应的参考信号序列映射到所述相同的资源块中等间隔的第二子载波上,所述第二子载波中相邻子载波的中心频率距离为2k个子载波,k为正整数。第二子载波是第一子载波的子集。
在本发明中,第一正交序列组和第二正交序列组对应的参考信号序列,可以是参考信号的部分时频资源上的参考信号序列,例如系统中参考信号占用2个OFDM符号,第一正交序列组和第二正交序列组对应的参考信号序列为其中1个OFDM符号上的参考信号序列。除了所述的至少两个参考信号组,所有的参考信号还可以包括其他的频分复用的参考信号。
其中,所述第一正交序列组的序列包括下述序列:
{1,-1,-1i,-1i};{1,1,-1i,1i};{1,-1,1i,1i};{1,1,1i,-1i};
或者,所述第一正交序列组的序列包括下述序列:
{1,-1i,-1i,-1};{1,1i,-1i,1};{1,-1i,1i,1};{1,1i,1i,-1};
其中,所述第二正交序列组的序列包括下述序列:
{1,1};{1,-1};其中,i为虚数单位。
可替代的,所述第一正交序列组的序列包括下述序列:
{-1i,-1,1i,-1,1i,-1,1i,1};{-1i,1,1i,1,1i,1,1i,-1};{-1i,-1,-1i,1,1i,-1,-1i,-1};{-1i,1,-1i,-1,1i,1,-1i,1};{-1i,-1,1i,-1,-1i,1,-1i,-1};{-1i,1,1i,1,-1i,-1,-1i,1};{-1i,-1,-1i,1,-1i,1,1i,1};{-1i,1,-1i,-1,-1i,-1,1i,-1};
或者,所述第一正交序列组的序列包括下述序列:
{-1,1i,-1,1i,1i,-1,-1i,1};{-1,-1i,-1,-1i,1i,1,-1i,-1};{-1,1i,1,-1i,1i,-1,1i,-1};{-1,-1i,1,1i,1i,1,1i,1};{-1,1i,-1,1i,-1i,1,1i,-1};{-1,-1i,-1,-1i,-1i,-1,1i,1};{-1,1i,1,-1i,-1i,1,-1i,1};{-1,-1i,1,1i,-1i,-1,-1i,-1};
或者,所述第一正交序列组的序列包括下述序列:
{-1,1i,-1i,-1,-1,1i,1i,1};{-1,-1i,-1i,1,-1,-1i,1i,-1};{-1,1i,1i,1,-1,1i,-1i,-1};{-1,-1i,1i,-1,-1,-1i,-1i,1};{-1,1i,-1i,-1,1,-1i,-1i,-1};{-1,-1i,-1i,1,1,1i,-1i,1};{-1,1i,1i,1,1,-1i,1i,1};{-1,-1i,1i,-1,1,1i,1i,-1};
或者,所述第一正交序列组的序列包括下述序列:
{-1,-1,1i,1i,-1i,1i,-1,1};{-1,1,1i,-1i,-1i,-1i,-1,-1};{-1,-1,-1i,-1i,-1i,1i,1,-1};{-1,1,-1i,1i,-1i,-1i,1,1};{-1,-1,1i,1i,1i,-1i,1, -1};{-1,1,1i,-1i,1i,1i,1,1};{-1,-1,-1i,-1i,1i,-1i,-1,1};{-1,1,-1i,1i,1i,1i,-1,-1};
所述第二正交序列组的序列包括下述序列:
{1,1,1,1};{1,-1,1,-1};{1,1,-1,-1};{1,-1,-1,1};其中,i为虚数单位。
其中,所述第二掩码序列集合中的序列包括下述序列:
{1,1};{1,1i};其中,i为虚数单位。
如图17所示,本申请实施例中还提供一种通信装置1700,该通信装置1700用于执行上述方法。上述方法中的部分或全部可以通过硬件来实现也可以通过软件来实现。
可选的,通信装置1700在具体实现时可以是芯片或者集成电路。
可选的,当上述实施例的方法中的部分或全部通过软件来实现时,通信装置1700包括:存储器1702,用于存储程序;处理器1701,用于执行存储器1702存储的程序,通信装置1700还可包括通信接口1703。当程序被执行时,使得通信装置1700可以实现上述实施例提供的方法。
可选的,上述存储器1702可以是物理上独立的单元,也可以与处理器1701集成在一起。
可选的,当上述实施例的方法中的部分或全部通过软件实现时,通信装置1700也可以只包括处理器1701。用于存储程序的存储器1702位于通信装置1700之外,处理器1701通过电路/电线或通信接口1703等与存储器1702连接,用于读取并执行存储器1702中存储的程序。
处理器1701可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。
处理器1701还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
存储器1702可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。所显示或讨论的相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者通过该计算机可读存储介质进行传输。该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是只读存储器(read-only memory,ROM),或随机存储存储器(random access memory,RAM),或磁性介质,例如,软盘、硬盘、磁带、磁碟、或光介质,例如,数字通用光盘(digital versatile disc,DVD)、或者半导体介质,例如,固态硬盘(solid state disk,SSD)等。

Claims (49)

  1. 一种信号发送方法,其特征在于,包括:
    发送端接收/发送信令,所述信令携带预设域段,指示第一参考信号组合,所述第一参考信号组合中包括一个或多个参考信号;其中,所述信令中的所述预设域段的不同取值,对应多个参考信号组合;所述多个参考信号组合包括的所有的参考信号组成参考信号集合,所述参考信号集合包括至少两个参考信号组;所述至少两个参考信号组中各参考信号的参考信号序列
    Figure PCTCN2020119742-appb-100001
    满足:
    Figure PCTCN2020119742-appb-100002
    其中,m为0到M-1的整数,M为
    Figure PCTCN2020119742-appb-100003
    的序列长度;A为非零复数;r(m)为伪随机序列;
    其中,序列w g,p(·)的长度为N g,n满足n=m mod N g,所述M不小于2N g,g为正交序列组的标识,所述至少两个参考信号组满足以下条件:第一参考信号组中的所有的参考信号的参考信号序列
    Figure PCTCN2020119742-appb-100004
    对应的正交码序列w g,p(·)组成第一正交序列组,第二参考信号组中的所有参考信号的参考信号序列
    Figure PCTCN2020119742-appb-100005
    对应的正交码序列w g,p(·)组成第二正交序列组;所述g至少遍历第一正交序列组和第二正交序列组;p遍历正交序列组中的所有序列;所述第一正交序列组中的序列互相正交,所述第二正交序列组中的序列互相正交,且所述第一正交序列组中的任一序列和所述第二正交序列中的任一序列均不同;
    其中,
    Figure PCTCN2020119742-appb-100006
    序列c g(·)为第一掩码序列集合中的一个序列,自变量取值范围为
    Figure PCTCN2020119742-appb-100007
    所述第一正交序列组对应的序列c g(·)与所述第二正交序列组对应的序列c g(·)不同;
    所述第一序列组对应的序列r(m)与所述第二序列组对应的序列r(m)相同;
    所述发送端生成并发送所述一个或多个参考信号。
  2. 根据权利要求1所述的方法,其特征在于,所述序列c g(·)满足:
    Figure PCTCN2020119742-appb-100008
    其中,e g表示长度为L的序列,
    Figure PCTCN2020119742-appb-100009
    表示e g的α次克罗尼克积,所述α满足
    Figure PCTCN2020119742-appb-100010
    所述多个参考信号序列对应的e g组成第二掩码序列集合,其中,L为正整数。
  3. 根据权利要求1或2所述的方法,其特征在于,其中,所述第一正交序列组对应的序列的长度和所述第二正交序列组对应的序列的长度相同。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,当所述至少两个参考信号组中的参考信号的频率资源包括相同的资源块时,所述第一正交序列组的序列对应的参考信号序列和所述第二正交序列组的序列对应的参考信号序列映射在所述相同的资源块中的相同的子载波上。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述第一正交序列组的序列包括下述序列:{1,1};{1,-1};所述第二正交序列组的序列包括下述序列:{1,1i};{1,-1i};
    或者,所述第一正交序列组的序列包括下述序列:{1,1i};{1,-1i};所述第二正交序列组的序列包括下述序列:{1,1};{1,-1};
    其中,i为虚数单位。
  6. 根据权利要求1至4任一项所述的方法,其特征在于,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {1,1,1,1};{1,-1,1,-1};{1,1,-1,-1};{1,-1,-1,1};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {1,-1,-1i,-1i};{1,1,-1i,1i};{1,-1,1i,1i};{1,1,1i,-1i};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {1,-1i,-1i,-1};{1,1i,-1i,1};{1,-1i,1i,1};{1,1i,1i,-1};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {1,-1i,-1,-1i};{1,1i,-1,1i};{1,-1i,1,1i};{1,1i,1,-1i};
    其中,i为虚数单位。
  7. 根据权利要求1至4任一项所述的方法,其特征在于,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {-1i,-1,1i,-1,1i,-1,1i,1};{-1i,1,1i,1,1i,1,1i,-1};{-1i,-1,-1i,1,1i,-1,-1i,-1};{-1i,1,-1i,-1,1i,1,-1i,1};{-1i,-1,1i,-1,-1i,1,-1i,-1};{-1i,1,1i,1,-1i,-1,-1i,1};{-1i,-1,-1i,1,-1i,1,1i,1};{-1i,1,-1i,-1,-1i,-1,1i,-1};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {1i,-1i,-1,-1,1i,1i,-1,1};{1i,1i,-1,1,1i,-1i,-1,-1};{1i,-1i,1,1,1i,1i,1,-1};{1i,1i,1,-1,1i,-1i,1,1};{1i,-1i,-1,-1,-1i,-1i,1,-1};{1i,1i,-1,1,-1i,1i,1,1};{1i,-1i,1,1,-1i,-1i,-1,1};{1i,1i,1,-1,-1i,1i,-1,-1};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {1i,1i,1i,-1i,-1,-1,-1,1};{1i,-1i,1i,1i,-1,1,-1,-1};{1i,1i,-1i,1i,-1,-1,1,-1}; {1i,-1i,-1i,-1i,-1,1,1,1};{1i,1i,1i,-1i,1,1,1,-1};{1i,-1i,1i,1i,1,-1,1,1};{1i,1i,-1i,1i,1,1,-1,1};{1i,-1i,-1i,-1i,1,-1,-1,-1};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {-1,1i,-1,1i,1i,-1,-1i,1};{-1,-1i,-1,-1i,1i,1,-1i,-1};{-1,1i,1,-1i,1i,-1,1i,-1};{-1,-1i,1,1i,1i,1,1i,1};{-1,1i,-1,1i,-1i,1,1i,-1};{-1,-1i,-1,-1i,-1i,-1,1i,1};{-1,1i,1,-1i,-1i,1,-1i,1};{-1,-1i,1,1i,-1i,-1,-1i,-1};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {1i,-1,-1,1i,-1,-1i,1i,1};{1i,1,-1,-1i,-1,1i,1i,-1};{1i,-1,1,-1i,-1,-1i,-1i,-1};{1i,1,1,1i,-1,1i,-1i,1};{1i,-1,-1,-1,1i,1,1i,-1i,-1};{1i,1,-1,-1i,1,-1i,-1i,1};{1i,-1,1,-1i,1,1i,1i,1};{1i,1,1,1i,1,-1i,1i,-1};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {-1,1i,-1i,-1,-1,1i,1i,1};{-1,-1i,-1i,1,-1,-1i,1i,-1};{-1,1i,1i,1,-1,1i,-1i,-1};{-1,-1i,1i,-1,-1,-1i,-1i,1};{-1,1i,-1i,-1,1,-1i,-1i,-1};{-1,-1i,-1i,1,1,1i,-1i,1};{-1,1i,1i,1,1,-1i,1i,1};{-1,-1i,1i,-1,1,1i,1i,-1};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {-1,-1,1i,1i,-1i,1i,-1,1};{-1,1,1i,-1i,-1i,-1i,-1,-1};{-1,-1,-1i,-1i,-1i,1i,1,-1};{-1,1,-1i,1i,-1i,-1i,1,1};{-1,-1,1i,1i,1i,-1i,1,-1};{-1,1,1i,-1i,1i,1i,1,1};{-1,-1,-1i,-1i,1i,-1i,-1,1};{-1,1,-1i,1i,1i,1i,-1,-1};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {1,1,1,1,1,1,1,1};{1,-1,1,-1,1,-1,1,-1};{1,1,-1,-1,1,1,-1,-1};{1,-1,-1,1,1,-1,-1,1};{1,1,1,1,-1,-1,-1,-1};{1,-1,1,-1,-1,1,-1,1};{1,1,-1,-1,-1,-1,1,1};{1,-1,-1,1,-1,1,1,-1};
    其中,i为虚数单位。
  8. 根据权利要求1或2所述的方法,其特征在于,所述第一正交序列组对应的序列的长度是所述第二正交序列组对应的序列的长度的2倍。
  9. 根据权利要求1、2或8所述的方法,其特征在于,当所述至少两个参考信号组中的参考信号的频率资源包括相同的资源块时,所述第一正交序列组的序列对应的参考信号序列映射到所述相同的资源块中等间隔的第一子载波上,所述第一子载波中相邻子载波的中心频率距离为k个子载波,所述第二正交序列组的序列对应的参考信号序列映射到所述相同的资源块中等间隔的第二子载波上,所述第二子载波中相邻子载波的中心频率距离为2k个子载波,k为正整数。
  10. 根据权利要求1、2、8或9所述的方法,其特征在于,所述第一正交序列组的序列包括下述序列:
    {1,-1,-1i,-1i};{1,1,-1i,1i};{1,-1,1i,1i};{1,1,1i,-1i};
    或者,所述第一正交序列组的序列包括下述序列:
    {1,-1i,-1i,-1};{1,1i,-1i,1};{1,-1i,1i,1};{1,1i,1i,-1};
    其中,所述第二正交序列组的序列包括下述序列:
    {1,1};{1,-1};
    其中,i为虚数单位。
  11. 根据权利要求1、2、8或9所述的方法,其特征在于,所述第一正交序列组的序列包括下述序列:
    {-1i,-1,1i,-1,1i,-1,1i,1};{-1i,1,1i,1,1i,1,1i,-1};{-1i,-1,-1i,1,1i,-1,-1i,-1};{-1i,1,-1i,-1,1i,1,-1i,1};{-1i,-1,1i,-1,-1i,1,-1i,-1};{-1i,1,1i,1,-1i,-1,-1i,1};{-1i,-1,-1i,1,-1i,1,1i,1};{-1i,1,-1i,-1,-1i,-1,1i,-1};
    或者,所述第一正交序列组的序列包括下述序列:
    {-1,1i,-1,1i,1i,-1,-1i,1};{-1,-1i,-1,-1i,1i,1,-1i,-1};{-1,1i,1,-1i,1i,-1,1i,-1};{-1,-1i,1,1i,1i,1,1i,1};{-1,1i,-1,1i,-1i,1,1i,-1};{-1,-1i,-1,-1i,-1i,-1,1i,1};{-1,1i,1,-1i,-1i,1,-1i,1};{-1,-1i,1,1i,-1i,-1,-1i,-1};
    或者,所述第一正交序列组的序列包括下述序列:
    {-1,1i,-1i,-1,-1,1i,1i,1};{-1,-1i,-1i,1,-1,-1i,1i,-1};{-1,1i,1i,1,-1,1i,-1i,-1};{-1,-1i,1i,-1,-1,-1i,-1i,1};{-1,1i,-1i,-1,1,-1i,-1i,-1};{-1,-1i,-1i,1,1,1i,-1i,1};{-1,1i,1i,1,1,-1i,1i,1};{-1,-1i,1i,-1,1,1i,1i,-1};
    或者,所述第一正交序列组的序列包括下述序列:
    {-1,-1,1i,1i,-1i,1i,-1,1};{-1,1,1i,-1i,-1i,-1i,-1,-1};{-1,-1,-1i,-1i,-1i,1i,1,-1};{-1,1,-1i,1i,-1i,-1i,1,1};{-1,-1,1i,1i,1i,-1i,1,-1};{-1,1,1i,-1i,1i,1i,1,1};{-1,-1,-1i,-1i,1i,-1i,-1,1};{-1,1,-1i,1i,1i,1i,-1,-1};
    所述第二正交序列组的序列包括下述序列:
    {1,1,1,1};{1,-1,1,-1};{1,1,-1,-1};{1,-1,-1,1};
    其中,i为虚数单位。
  12. 根据权利要求2所述的方法,其特征在于,所述第二掩码序列集合中的序列包括下述序列:
    {1,1};{1,1i};
    其中,i为虚数单位。
  13. 一种信号接收方法,其特征在于,包括:
    接收端发送/接收信令,所述信令携带预设域段,指示第一参考信号组合,所述第一参考信号组合中包括一个或多个参考信号;其中,所述信令中的所述预设域段的不同取值,对应多个参考信号组合;所述多个参考信号组合包括的所有的参考信号组成参考信号集合, 所述参考信号集合包括至少两个参考信号组;所述至少两个参考信号组中各参考信号的参考信号序列
    Figure PCTCN2020119742-appb-100011
    满足:
    Figure PCTCN2020119742-appb-100012
    其中,m为0到M-1的整数,M为
    Figure PCTCN2020119742-appb-100013
    的序列长度;A为非零复数;r(m)为伪随机序列;
    其中,序列w g,p(·)的长度为N g,n满足n=m mod N g,所述M不小于2N g,g为正交序列组的标识,所述至少两个参考信号组满足以下条件:第一参考信号组中的所有的参考信号的参考信号序列
    Figure PCTCN2020119742-appb-100014
    对应的正交码序列w g,p(·)组成第一正交序列组,第二参考信号组中的所有参考信号的参考信号序列
    Figure PCTCN2020119742-appb-100015
    对应的正交码序列w g,p(·)组成第二正交序列组;所述g至少遍历第一正交序列组和第二正交序列组;p遍历正交序列组中的所有序列;所述第一正交序列组中的序列互相正交,所述第二正交序列组中的序列互相正交,且所述第一正交序列组中的任一序列和所述第二正交序列中的任一序列均不同;
    其中,
    Figure PCTCN2020119742-appb-100016
    序列c g(·)为第一掩码序列集合中的一个序列,自变量取值范围为
    Figure PCTCN2020119742-appb-100017
    所述第一正交序列组对应的序列c g(·)与所述第二正交序列组对应的序列c g(·)不同;
    所述第一序列组对应的序列r(m)与所述第二序列组对应的序列r(m)相同;
    所述接收端接收所述一个或多个参考信号,并根据至少一个参考信号序列对所述一个或多个参考信号进行处理。
  14. 根据权利要求13所述的方法,其特征在于,所述序列c g(·)满足:
    Figure PCTCN2020119742-appb-100018
    其中,e g表示长度为L的序列,
    Figure PCTCN2020119742-appb-100019
    表示e g的α次克罗尼克积,所述α满足
    Figure PCTCN2020119742-appb-100020
    所述多个参考信号序列对应的e g组成第二掩码序列集合,其中,L为正整数。
  15. 根据权利要求13或14所述的方法,其特征在于,其中,所述第一正交序列组对应的序列的长度和所述第二正交序列组对应的序列的长度相同。
  16. 根据权利要求13至15任一项所述的方法,其特征在于,当所述至少两个参考信 号组中的参考信号的频率资源包括相同的资源块时,所述第一正交序列组的序列对应的参考信号序列和所述第二正交序列组的序列对应的参考信号序列映射在所述相同的资源块中的相同的子载波上。
  17. 根据权利要求13至16任一项所述的方法,其特征在于,所述第一正交序列组的序列包括下述序列:{1,1};{1,-1};所述第二正交序列组的序列包括下述序列:{1,1i};{1,-1i};
    或者,所述第一正交序列组的序列包括下述序列:{1,1i};{1,-1i};所述第二正交序列组的序列包括下述序列:{1,1};{1,-1};其中,i为虚数单位。
  18. 根据权利要求13至16任一项所述的方法,其特征在于,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {1,1,1,1};{1,-1,1,-1};{1,1,-1,-1};{1,-1,-1,1};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {1,-1,-1i,-1i};{1,1,-1i,1i};{1,-1,1i,1i};{1,1,1i,-1i};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {1,-1i,-1i,-1};{1,1i,-1i,1};{1,-1i,1i,1};{1,1i,1i,-1};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {1,-1i,-1,-1i};{1,1i,-1,1i};{1,-1i,1,1i};{1,1i,1,-1i};其中,i为虚数单位。
  19. 根据权利要求13至16任一项所述的方法,其特征在于,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {-1i,-1,1i,-1,1i,-1,1i,1};{-1i,1,1i,1,1i,1,1i,-1};{-1i,-1,-1i,1,1i,-1,-1i,-1};{-1i,1,-1i,-1,1i,1,-1i,1};{-1i,-1,1i,-1,-1i,1,-1i,-1};{-1i,1,1i,1,-1i,-1,-1i,1};{-1i,-1,-1i,1,-1i,1,1i,1};{-1i,1,-1i,-1,-1i,-1,1i,-1};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {1i,-1i,-1,-1,1i,1i,-1,1};{1i,1i,-1,1,1i,-1i,-1,-1};{1i,-1i,1,1,1i,1i,1,-1};{1i,1i,1,-1,1i,-1i,1,1};{1i,-1i,-1,-1,-1i,-1i,1,-1};{1i,1i,-1,1,-1i,1i,1,1};{1i,-1i,1,1,-1i,-1i,-1,1};{1i,1i,1,-1,-1i,1i,-1,-1};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {1i,1i,1i,-1i,-1,-1,-1,1};{1i,-1i,1i,1i,-1,1,-1,-1};{1i,1i,-1i,1i,-1,-1,1,-1};{1i,-1i,-1i,-1i,-1,1,1,1};{1i,1i,1i,-1i,1,1,1,-1};{1i,-1i,1i,1i,1,-1,1,1};{1i,1i,-1i,1i,1,1,-1,1};{1i,-1i,-1i,-1i,1,-1,-1,-1};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {-1,1i,-1,1i,1i,-1,-1i,1};{-1,-1i,-1,-1i,1i,1,-1i,-1};{-1,1i,1,-1i,1i,-1,1i,-1};{-1,-1i,1,1i,1i,1,1i,1};{-1,1i,-1,1i,-1i,1,1i,-1};{-1,-1i,-1,-1i,-1i,-1,1i,1};{-1,1i,1,-1i,-1i,1,-1i,1};{-1,-1i,1,1i,-1i,-1,-1i,-1};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {1i,-1,-1,1i,-1,-1i,1i,1};{1i,1,-1,-1i,-1,1i,1i,-1};{1i,-1,1,-1i,-1,-1i,-1i,-1};{1i,1,1,1i,-1,1i,-1i,1};{1i,-1,-1,-1,1i,1,1i,-1i,-1};{1i,1,-1,-1i,1,-1i,-1i,1};{1i,-1,1,-1i,1,1i,1i,1};{1i,1,1,1i,1,-1i,1i,-1};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {-1,1i,-1i,-1,-1,1i,1i,1};{-1,-1i,-1i,1,-1,-1i,1i,-1};{-1,1i,1i,1,-1,1i,-1i,-1};{-1,-1i,1i,-1,-1,-1i,-1i,1};{-1,1i,-1i,-1,1,-1i,-1i,-1};{-1,-1i,-1i,1,1,1i,-1i,1};{-1,1i,1i,1,1,-1i,1i,1};{-1,-1i,1i,-1,1,1i,1i,-1};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {-1,-1,1i,1i,-1i,1i,-1,1};{-1,1,1i,-1i,-1i,-1i,-1,-1};{-1,-1,-1i,-1i,-1i,1i,1,-1};{-1,1,-1i,1i,-1i,-1i,1,1};{-1,-1,1i,1i,1i,-1i,1,-1};{-1,1,1i,-1i,1i,1i,1,1};{-1,-1,-1i,-1i,1i,-1i,-1,1};{-1,1,-1i,1i,1i,1i,-1,-1};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {1,1,1,1,1,1,1,1};{1,-1,1,-1,1,-1,1,-1};{1,1,-1,-1,1,1,-1,-1};{1,-1,-1,1,1,-1,-1,1};{1,1,1,1,-1,-1,-1,-1};{1,-1,1,-1,-1,1,-1,1};{1,1,-1,-1,-1,-1,1,1};{1,-1,-1,1,-1,1,1,-1};
    其中,i为虚数单位。
  20. 根据权利要求13或14所述的方法,其特征在于,所述第一正交序列组对应的序列的长度是所述第二正交序列组对应的序列的长度的2倍。
  21. 根据权利要求13、14或20所述的方法,其特征在于,当所述至少两个参考信号组中的参考信号的频率资源包括相同的资源块时,所述第一正交序列组的序列对应的参考信号序列映射到所述相同的资源块中等间隔的第一子载波上,所述第一子载波中相邻子载波的中心频率距离为k个子载波,所述第二正交序列组的序列对应的参考信号序列映射到所述相同的资源块中等间隔的第二子载波上,所述第二子载波中相邻子载波的中心频率距离为2k个子载波,k为正整数。
  22. 根据权利要求13、14、20或21所述的方法,其特征在于,所述第一正交序列组的序列包括下述序列:
    {1,-1,-1i,-1i};{1,1,-1i,1i};{1,-1,1i,1i};{1,1,1i,-1i};
    或者,所述第一正交序列组的序列包括下述序列:
    {1,-1i,-1i,-1};{1,1i,-1i,1};{1,-1i,1i,1};{1,1i,1i,-1};
    其中,所述第二正交序列组的序列包括下述序列:
    {1,1};{1,-1};
    其中,i为虚数单位。
  23. 根据权利要求13、14、20或21所述的方法,其特征在于,所述第一正交序列组 的序列包括下述序列:
    {-1i,-1,1i,-1,1i,-1,1i,1};{-1i,1,1i,1,1i,1,1i,-1};{-1i,-1,-1i,1,1i,-1,-1i,-1};{-1i,1,-1i,-1,1i,1,-1i,1};{-1i,-1,1i,-1,-1i,1,-1i,-1};{-1i,1,1i,1,-1i,-1,-1i,1};{-1i,-1,-1i,1,-1i,1,1i,1};{-1i,1,-1i,-1,-1i,-1,1i,-1};
    或者,所述第一正交序列组的序列包括下述序列:
    {-1,1i,-1,1i,1i,-1,-1i,1};{-1,-1i,-1,-1i,1i,1,-1i,-1};{-1,1i,1,-1i,1i,-1,1i,-1};{-1,-1i,1,1i,1i,1,1i,1};{-1,1i,-1,1i,-1i,1,1i,-1};{-1,-1i,-1,-1i,-1i,-1,1i,1};{-1,1i,1,-1i,-1i,1,-1i,1};{-1,-1i,1,1i,-1i,-1,-1i,-1};
    或者,所述第一正交序列组的序列包括下述序列:
    {-1,1i,-1i,-1,-1,1i,1i,1};{-1,-1i,-1i,1,-1,-1i,1i,-1};{-1,1i,1i,1,-1,1i,-1i,-1};{-1,-1i,1i,-1,-1,-1i,-1i,1};{-1,1i,-1i,-1,1,-1i,-1i,-1};{-1,-1i,-1i,1,1,1i,-1i,1};{-1,1i,1i,1,1,-1i,1i,1};{-1,-1i,1i,-1,1,1i,1i,-1};
    或者,所述第一正交序列组的序列包括下述序列:
    {-1,-1,1i,1i,-1i,1i,-1,1};{-1,1,1i,-1i,-1i,-1i,-1,-1};{-1,-1,-1i,-1i,-1i,1i,1,-1};{-1,1,-1i,1i,-1i,-1i,1,1};{-1,-1,1i,1i,1i,-1i,1,-1};{-1,1,1i,-1i,1i,1i,1,1};{-1,-1,-1i,-1i,1i,-1i,-1,1};{-1,1,-1i,1i,1i,1i,-1,-1};
    所述第二正交序列组的序列包括下述序列:
    {1,1,1,1};{1,-1,1,-1};{1,1,-1,-1};{1,-1,-1,1};
    其中,i为虚数单位。
  24. 根据权利要求14所述的方法,其特征在于,所述第二掩码序列集合中的序列包括下述序列:
    {1,1};{1,1i};
    其中,i为虚数单位。
  25. 一种通信装置,其特征在于,包括:
    收发单元,用于接收/发送信令,所述信令携带预设域段,指示第一参考信号组合,所述第一参考信号组合中包括一个或多个参考信号;其中,所述信令中的所述预设域段的不同取值,对应多个参考信号组合;所述多个参考信号组合包括的所有的参考信号组成参考信号集合,所述参考信号集合包括至少两个参考信号组;所述至少两个参考信号组中各参考信号的参考信号序列
    Figure PCTCN2020119742-appb-100021
    满足:
    Figure PCTCN2020119742-appb-100022
    其中,m为0到M-1的整数,M为
    Figure PCTCN2020119742-appb-100023
    的序列长度;A为非零复数;r(m)为伪随机序列;
    其中,序列w g,p(·)的长度为N g,n满足n=m mod N g,所述M不小于2N g,g为正交序列组的标识,所述至少两个参考信号组满足以下条件:第一参考信号组中的所有的参考信号的参考信号序列
    Figure PCTCN2020119742-appb-100024
    对应的正交码序列w g,p(·)组成第一正交序列组,第二参考信号组中的所有参考信号的参考信号序列
    Figure PCTCN2020119742-appb-100025
    对应的正交码序列w g,p(·)组成第二正交序列组;所述g至少遍历第一正交序列组和第二正交序列组;p遍历正交序列组中的所有序列;所述第一正交序列组中的序列互相正交,所述第二正交序列组中的序列互相正交,且所述第一正交序列组中的任一序列和所述第二正交序列中的任一序列均不同;
    其中,
    Figure PCTCN2020119742-appb-100026
    序列c g(·)为第一掩码序列集合中的一个序列,自变量取值范围为
    Figure PCTCN2020119742-appb-100027
    所述第一正交序列组对应的序列c g(·)与所述第二正交序列组对应的序列c g(·)不同;
    所述第一序列组对应的序列r(m)与所述第二序列组对应的序列r(m)相同;
    处理单元,用于生成并发送所述一个或多个参考信号。
  26. 根据权利要求25所述的装置,其特征在于,所述序列c g(·)满足:
    Figure PCTCN2020119742-appb-100028
    其中,e g表示长度为L的序列,
    Figure PCTCN2020119742-appb-100029
    表示e g的α次克罗尼克积,所述α满足
    Figure PCTCN2020119742-appb-100030
    所述多个参考信号序列对应的e g组成第二掩码序列集合,其中,L为正整数。
  27. 根据权利要求25或26所述的装置,其特征在于,其中,所述第一正交序列组对应的序列的长度和所述第二正交序列组对应的序列的长度相同。
  28. 根据权利要求25至27任一项所述的装置,其特征在于,当所述至少两个参考信号组中的参考信号的频率资源包括相同的资源块时,所述第一正交序列组的序列对应的参考信号序列和所述第二正交序列组的序列对应的参考信号序列映射在所述相同的资源块中的相同的子载波上。
  29. 根据权利要求25至28任一项所述的装置,其特征在于,所述第一正交序列组的序列包括下述序列:{1,1};{1,-1};所述第二正交序列组的序列包括下述序列:{1,1i};{1,-1i};
    或者,所述第一正交序列组的序列包括下述序列:{1,1i};{1,-1i};所述第二正交序列组的序列包括下述序列:{1,1};{1,-1}。
  30. 根据权利要求25至29任一项所述的装置,其特征在于,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {1,1,1,1};{1,-1,1,-1};{1,1,-1,-1};{1,-1,-1,1};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {1,-1,-1i,-1i};{1,1,-1i,1i};{1,-1,1i,1i};{1,1,1i,-1i};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {1,-1i,-1i,-1};{1,1i,-1i,1};{1,-1i,1i,1};{1,1i,1i,-1};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {1,-1i,-1,-1i};{1,1i,-1,1i};{1,-1i,1,1i};{1,1i,1,-1i};
    其中,i为虚数单位。
  31. 根据权利要求25至29任一项所述的装置,其特征在于,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {-1i,-1,1i,-1,1i,-1,1i,1};{-1i,1,1i,1,1i,1,1i,-1};{-1i,-1,-1i,1,1i,-1,-1i,-1};{-1i,1,-1i,-1,1i,1,-1i,1};{-1i,-1,1i,-1,-1i,1,-1i,-1};{-1i,1,1i,1,-1i,-1,-1i,1};{-1i,-1,-1i,1,-1i,1,1i,1};{-1i,1,-1i,-1,-1i,-1,1i,-1};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {1i,-1i,-1,-1,1i,1i,-1,1};{1i,1i,-1,1,1i,-1i,-1,-1};{1i,-1i,1,1,1i,1i,1,-1};{1i,1i,1,-1,1i,-1i,1,1};{1i,-1i,-1,-1,-1i,-1i,1,-1};{1i,1i,-1,1,-1i,1i,1,1};{1i,-1i,1,1,-1i,-1i,-1,1};{1i,1i,1,-1,-1i,1i,-1,-1};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {1i,1i,1i,-1i,-1,-1,-1,1};{1i,-1i,1i,1i,-1,1,-1,-1};{1i,1i,-1i,1i,-1,-1,1,-1};{1i,-1i,-1i,-1i,-1,1,1,1};{1i,1i,1i,-1i,1,1,1,-1};{1i,-1i,1i,1i,1,-1,1,1};{1i,1i,-1i,1i,1,1,-1,1};{1i,-1i,-1i,-1i,1,-1,-1,-1};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {-1,1i,-1,1i,1i,-1,-1i,1};{-1,-1i,-1,-1i,1i,1,-1i,-1};{-1,1i,1,-1i,1i,-1,1i,-1};{-1,-1i,1,1i,1i,1,1i,1};{-1,1i,-1,1i,-1i,1,1i,-1};{-1,-1i,-1,-1i,-1i,-1,1i,1};{-1,1i,1,-1i,-1i,1,-1i,1};{-1,-1i,1,1i,-1i,-1,-1i,-1};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {1i,-1,-1,1i,-1,-1i,1i,1};{1i,1,-1,-1i,-1,1i,1i,-1};{1i,-1,1,-1i,-1,-1i,-1i,-1};{1i,1,1,1i,-1,1i,-1i,1};{1i,-1,-1,-1,1i,1,1i,-1i,-1};{1i,1,-1,-1i,1,-1i,-1i,1};{1i,-1,1,-1i,1,1i,1i,1};{1i,1,1,1i,1,-1i,1i,-1};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {-1,1i,-1i,-1,-1,1i,1i,1};{-1,-1i,-1i,1,-1,-1i,1i,-1};{-1,1i,1i,1,-1,1i,-1i,-1};{-1,-1i,1i,-1,-1,-1i,-1i,1};{-1,1i,-1i,-1,1,-1i,- 1i,-1};{-1,-1i,-1i,1,1,1i,-1i,1};{-1,1i,1i,1,1,-1i,1i,1};{-1,-1i,1i,-1,1,1i,1i,-1};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {-1,-1,1i,1i,-1i,1i,-1,1};{-1,1,1i,-1i,-1i,-1i,-1,-1};{-1,-1,-1i,-1i,-1i,1i,1,-1};{-1,1,-1i,1i,-1i,-1i,1,1};{-1,-1,1i,1i,1i,-1i,1,-1};{-1,1,1i,-1i,1i,1i,1,1};{-1,-1,-1i,-1i,1i,-1i,-1,1};{-1,1,-1i,1i,1i,1i,-1,-1};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {1,1,1,1,1,1,1,1};{1,-1,1,-1,1,-1,1,-1};{1,1,-1,-1,1,1,-1,-1};{1,-1,-1,1,1,-1,-1,1};{1,1,1,1,-1,-1,-1,-1};{1,-1,1,-1,-1,1,-1,1};{1,1,-1,-1,-1,-1,1,1};{1,-1,-1,1,-1,1,1,-1};
    其中,i为虚数单位。
  32. 根据权利要求25或26所述的装置,其特征在于,所述第一正交序列组对应的序列的长度是所述第二正交序列组对应的序列的长度的2倍。
  33. 根据权利要求25、26或32所述的装置,其特征在于,当所述至少两个参考信号组中的参考信号的频率资源包括相同的资源块时,所述第一正交序列组的序列对应的参考信号序列映射到所述相同的资源块中等间隔的第一子载波上,所述第一子载波中相邻子载波的中心频率距离为k个子载波,所述第二正交序列组的序列对应的参考信号序列映射到所述相同的资源块中等间隔的第二子载波上,所述第二子载波中相邻子载波的中心频率距离为2k个子载波,k为正整数。
  34. 根据权利要求25、26、32或33所述的装置,其特征在于,所述第一正交序列组的序列包括下述序列:
    {1,-1,-1i,-1i};{1,1,-1i,1i};{1,-1,1i,1i};{1,1,1i,-1i};
    或者,所述第一正交序列组的序列包括下述序列:
    {1,-1i,-1i,-1};{1,1i,-1i,1};{1,-1i,1i,1};{1,1i,1i,-1};
    其中,所述第二正交序列组的序列包括下述序列:
    {1,1};{1,-1};
    其中,i为虚数单位。
  35. 根据权利要求25、26、32或33所述的装置,其特征在于,所述第一正交序列组的序列包括下述序列:
    {-1i,-1,1i,-1,1i,-1,1i,1};{-1i,1,1i,1,1i,1,1i,-1};{-1i,-1,-1i,1,1i,-1,-1i,-1};{-1i,1,-1i,-1,1i,1,-1i,1};{-1i,-1,1i,-1,-1i,1,-1i,-1};{-1i,1,1i,1,-1i,-1,-1i,1};{-1i,-1,-1i,1,-1i,1,1i,1};{-1i,1,-1i,-1,-1i,-1,1i,-1};
    或者,所述第一正交序列组的序列包括下述序列:
    {-1,1i,-1,1i,1i,-1,-1i,1};{-1,-1i,-1,-1i,1i,1,-1i,-1};{-1,1i,1,-1i,1i,-1,1i, -1};{-1,-1i,1,1i,1i,1,1i,1};{-1,1i,-1,1i,-1i,1,1i,-1};{-1,-1i,-1,-1i,-1i,-1,1i,1};{-1,1i,1,-1i,-1i,1,-1i,1};{-1,-1i,1,1i,-1i,-1,-1i,-1};
    或者,所述第一正交序列组的序列包括下述序列:
    {-1,1i,-1i,-1,-1,1i,1i,1};{-1,-1i,-1i,1,-1,-1i,1i,-1};{-1,1i,1i,1,-1,1i,-1i,-1};{-1,-1i,1i,-1,-1,-1i,-1i,1};{-1,1i,-1i,-1,1,-1i,-1i,-1};{-1,-1i,-1i,1,1,1i,-1i,1};{-1,1i,1i,1,1,-1i,1i,1};{-1,-1i,1i,-1,1,1i,1i,-1};
    或者,所述第一正交序列组的序列包括下述序列:
    {-1,-1,1i,1i,-1i,1i,-1,1};{-1,1,1i,-1i,-1i,-1i,-1,-1};{-1,-1,-1i,-1i,-1i,1i,1,-1};{-1,1,-1i,1i,-1i,-1i,1,1};{-1,-1,1i,1i,1i,-1i,1,-1};{-1,1,1i,-1i,1i,1i,1,1};{-1,-1,-1i,-1i,1i,-1i,-1,1};{-1,1,-1i,1i,1i,1i,-1,-1};
    所述第二正交序列组的序列包括下述序列:
    {1,1,1,1};{1,-1,1,-1};{1,1,-1,-1};{1,-1,-1,1};
    其中,i为虚数单位。
  36. 根据权利要求26所述的装置,其特征在于,所述第二掩码序列集合中的序列包括下述序列:
    {1,1};{1,1i}。
  37. 一种通信装置,其特征在于,包括:
    收发单元,用于发送/接收信令,所述信令携带预设域段,指示第一参考信号组合,所述第一参考信号组合中包括一个或多个参考信号;其中,所述信令中的所述预设域段的不同取值,对应多个参考信号组合;所述多个参考信号组合包括的所有的参考信号组成参考信号集合,所述参考信号集合包括至少两个参考信号组;所述至少两个参考信号组中各参考信号的参考信号序列
    Figure PCTCN2020119742-appb-100031
    满足:
    Figure PCTCN2020119742-appb-100032
    其中,m为0到M-1的整数,M为
    Figure PCTCN2020119742-appb-100033
    的序列长度;A为非零复数;r(m)为伪随机序列;
    其中,序列w g,p(·)的长度为N g,n满足n=m mod N g,所述M不小于2N g,g为正交序列组的标识,所述至少两个参考信号组满足以下条件:第一参考信号组中的所有的参考信号的参考信号序列
    Figure PCTCN2020119742-appb-100034
    对应的正交码序列w g,p(·)组成第一正交序列组,第二参考信号组中的所有参考信号的参考信号序列
    Figure PCTCN2020119742-appb-100035
    对应的正交码序列w g,p(·)组成第二正交序列组;所述g 至少遍历第一正交序列组和第二正交序列组;p遍历正交序列组中的所有序列;所述第一正交序列组中的序列互相正交,所述第二正交序列组中的序列互相正交,且所述第一正交序列组中的任一序列和所述第二正交序列中的任一序列均不同;
    其中,
    Figure PCTCN2020119742-appb-100036
    序列c g(·)为第一掩码序列集合中的一个序列,自变量取值范围为
    Figure PCTCN2020119742-appb-100037
    所述第一正交序列组对应的序列c g(·)与所述第二正交序列组对应的序列c g(·)不同;
    所述第一序列组对应的序列r(m)与所述第二序列组对应的序列r(m)相同;
    处理单元,用于接收所述一个或多个参考信号,并根据至少一个参考信号序列对所述一个或多个参考信号进行处理。
  38. 根据权利要求37所述的装置,其特征在于,所述序列c g(·)满足:
    Figure PCTCN2020119742-appb-100038
    其中,e g表示长度为L的序列,
    Figure PCTCN2020119742-appb-100039
    表示e g的α次克罗尼克积,所述α满足
    Figure PCTCN2020119742-appb-100040
    所述多个参考信号序列对应的e g组成第二掩码序列集合,其中,L为正整数。
  39. 根据权利要求37或38所述的装置,其特征在于,其中,所述第一正交序列组对应的序列的长度和所述第二正交序列组对应的序列的长度相同。
  40. 根据权利要求37至39任一项所述的装置,其特征在于,当所述至少两个参考信号组中的参考信号的频率资源包括相同的资源块时,所述第一正交序列组的序列对应的参考信号序列和所述第二正交序列组的序列对应的参考信号序列映射在所述相同的资源块中的相同的子载波上。
  41. 根据权利要求37至40任一项所述的装置,其特征在于,所述第一正交序列组的序列包括下述序列:{1,1};{1,-1};所述第二正交序列组的序列包括下述序列:{1,1i};{1,-1i};
    或者,所述第一正交序列组的序列包括下述序列:{1,1i};{1,-1i};所述第二正交序列组的序列包括下述序列:{1,1};{1,-1};其中,i为虚数单位。
  42. 根据权利要求37至40任一项所述的装置,其特征在于,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {1,1,1,1};{1,-1,1,-1};{1,1,-1,-1};{1,-1,-1,1};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {1,-1,-1i,-1i};{1,1,-1i,1i};{1,-1,1i,1i};{1,1,1i,-1i};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {1,-1i,-1i,-1};{1,1i,-1i,1};{1,-1i,1i,1};{1,1i,1i,-1};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {1,-1i,-1,-1i};{1,1i,-1,1i};{1,-1i,1,1i};{1,1i,1,-1i};其中,i为虚数单位。
  43. 根据权利要求37至40任一项所述的装置,其特征在于,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {-1i,-1,1i,-1,1i,-1,1i,1};{-1i,1,1i,1,1i,1,1i,-1};{-1i,-1,-1i,1,1i,-1,-1i,-1};{-1i,1,-1i,-1,1i,1,-1i,1};{-1i,-1,1i,-1,-1i,1,-1i,-1};{-1i,1,1i,1,-1i,-1,-1i,1};{-1i,-1,-1i,1,-1i,1,1i,1};{-1i,1,-1i,-1,-1i,-1,1i,-1};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {1i,-1i,-1,-1,1i,1i,-1,1};{1i,1i,-1,1,1i,-1i,-1,-1};{1i,-1i,1,1,1i,1i,1,-1};{1i,1i,1,-1,1i,-1i,1,1};{1i,-1i,-1,-1,-1i,-1i,1,-1};{1i,1i,-1,1,-1i,1i,1,1};{1i,-1i,1,1,-1i,-1i,-1,1};{1i,1i,1,-1,-1i,1i,-1,-1};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {1i,1i,1i,-1i,-1,-1,-1,1};{1i,-1i,1i,1i,-1,1,-1,-1};{1i,1i,-1i,1i,-1,-1,1,-1};{1i,-1i,-1i,-1i,-1,1,1,1};{1i,1i,1i,-1i,1,1,1,-1};{1i,-1i,1i,1i,1,-1,1,1};{1i,1i,-1i,1i,1,1,-1,1};{1i,-1i,-1i,-1i,1,-1,-1,-1};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {-1,1i,-1,1i,1i,-1,-1i,1};{-1,-1i,-1,-1i,1i,1,-1i,-1};{-1,1i,1,-1i,1i,-1,1i,-1};{-1,-1i,1,1i,1i,1,1i,1};{-1,1i,-1,1i,-1i,1,1i,-1};{-1,-1i,-1,-1i,-1i,-1,1i,1};{-1,1i,1,-1i,-1i,1,-1i,1};{-1,-1i,1,1i,-1i,-1,-1i,-1};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {1i,-1,-1,1i,-1,-1i,1i,1};{1i,1,-1,-1i,-1,1i,1i,-1};{1i,-1,1,-1i,-1,-1i,-1i,-1};{1i,1,1,1i,-1,1i,-1i,1};{1i,-1,-1,-1,1i,1,1i,-1i,-1};{1i,1,-1,-1i,1,-1i,-1i,1};{1i,-1,1,-1i,1,1i,1i,1};{1i,1,1,1i,1,-1i,1i,-1};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {-1,1i,-1i,-1,-1,1i,1i,1};{-1,-1i,-1i,1,-1,-1i,1i,-1};{-1,1i,1i,1,-1,1i,-1i,-1};{-1,-1i,1i,-1,-1,-1i,-1i,1};{-1,1i,-1i,-1,1,-1i,-1i,-1};{-1,-1i,-1i,1,1,1i,-1i,1};{-1,1i,1i,1,1,-1i,1i,1};{-1,-1i,1i,-1,1,1i,1i,-1};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {-1,-1,1i,1i,-1i,1i,-1,1};{-1,1,1i,-1i,-1i,-1i,-1,-1};{-1,-1,-1i,-1i,-1i,1i,1,-1};{-1,1,-1i,1i,-1i,-1i,1,1};{-1,-1,1i,1i,1i,-1i,1,-1};{-1,1,1i,-1i,1i,1i,1,1};{-1,-1,-1i,-1i,1i,-1i,-1,1};{-1,1,-1i,1i,1i,1i,-1,-1};
    或者,所述第一正交序列组/第二正交序列组的序列包括下述序列:
    {1,1,1,1,1,1,1,1};{1,-1,1,-1,1,-1,1,-1};{1,1,-1,-1,1,1,-1,-1};{1,-1,-1,1,1,-1,-1,1};{1,1,1,1,-1,-1,-1,-1};{1,-1,1,-1,-1,1,-1,1};{1,1,-1,-1,-1,-1,1,1};{1,-1,-1,1,-1,1,1,-1};
    其中,i为虚数单位。
  44. 根据权利要求37或38所述的装置,其特征在于,所述第一正交序列组对应的序列的长度是所述第二正交序列组对应的序列的长度的2倍。
  45. 根据权利要求37、38或44所述的装置,其特征在于,当所述至少两个参考信号组中的参考信号的频率资源包括相同的资源块时,所述第一正交序列组的序列对应的参考信号序列映射到所述相同的资源块中等间隔的第一子载波上,所述第一子载波中相邻子载波的中心频率距离为k个子载波,所述第二正交序列组的序列对应的参考信号序列映射到所述相同的资源块中等间隔的第二子载波上,所述第二子载波中相邻子载波的中心频率距离为2k个子载波,k为正整数。
  46. 根据权利要求37、38、44或45所述的装置,其特征在于,所述第一正交序列组的序列包括下述序列:
    {1,-1,-1i,-1i};{1,1,-1i,1i};{1,-1,1i,1i};{1,1,1i,-1i};
    或者,所述第一正交序列组的序列包括下述序列:
    {1,-1i,-1i,-1};{1,1i,-1i,1};{1,-1i,1i,1};{1,1i,1i,-1};
    其中,所述第二正交序列组的序列包括下述序列:
    {1,1};{1,-1};
    其中,i为虚数单位。
  47. 根据权利要求37、38、44或45所述的装置,其特征在于,所述第一正交序列组的序列包括下述序列:
    {-1i,-1,1i,-1,1i,-1,1i,1};{-1i,1,1i,1,1i,1,1i,-1};{-1i,-1,-1i,1,1i,-1,-1i,-1};{-1i,1,-1i,-1,1i,1,-1i,1};{-1i,-1,1i,-1,-1i,1,-1i,-1};{-1i,1,1i,1,-1i,-1,-1i,1};{-1i,-1,-1i,1,-1i,1,1i,1};{-1i,1,-1i,-1,-1i,-1,1i,-1};
    或者,所述第一正交序列组的序列包括下述序列:
    {-1,1i,-1,1i,1i,-1,-1i,1};{-1,-1i,-1,-1i,1i,1,-1i,-1};{-1,1i,1,-1i,1i,-1,1i,-1};{-1,-1i,1,1i,1i,1,1i,1};{-1,1i,-1,1i,-1i,1,1i,-1};{-1,-1i,-1,-1i,-1i,-1,1i,1};{-1,1i,1,-1i,-1i,1,-1i,1};{-1,-1i,1,1i,-1i,-1,-1i,-1};
    或者,所述第一正交序列组的序列包括下述序列:
    {-1,1i,-1i,-1,-1,1i,1i,1};{-1,-1i,-1i,1,-1,-1i,1i,-1};{-1,1i,1i,1,-1,1i,-1i,-1};{-1,-1i,1i,-1,-1,-1i,-1i,1};{-1,1i,-1i,-1,1,-1i,-1i,-1};{-1,-1i,-1i,1,1,1i,-1i,1};{-1,1i,1i,1,1,-1i,1i,1};{-1,-1i,1i,-1,1,1i,1i,-1};
    或者,所述第一正交序列组的序列包括下述序列:
    {-1,-1,1i,1i,-1i,1i,-1,1};{-1,1,1i,-1i,-1i,-1i,-1,-1};{-1,-1,-1i,-1i,-1i,1i,1,-1};{-1,1,-1i,1i,-1i,-1i,1,1};{-1,-1,1i,1i,1i,-1i,1,-1};{-1,1,1i,-1i,1i,1i,1,1};{-1,-1,-1i,-1i,1i,-1i,-1,1};{-1,1,-1i,1i,1i,1i,-1,-1};
    所述第二正交序列组的序列包括下述序列:
    {1,1,1,1};{1,-1,1,-1};{1,1,-1,-1};{1,-1,-1,1};
    其中,i为虚数单位。
  48. 根据权利要求38所述的装置,其特征在于,所述第二掩码序列集合中的序列包括下述序列:
    {1,1};{1,1i}。
  49. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~12中任意一项所述的方法,或者使得所述计算机执行如权利要求13~24中任意一项所述的方法。
PCT/CN2020/119742 2020-09-30 2020-09-30 一种信号发送方法、接收方法、通信装置和存储介质 WO2022067811A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/119742 WO2022067811A1 (zh) 2020-09-30 2020-09-30 一种信号发送方法、接收方法、通信装置和存储介质
CN202080105362.0A CN116235585A (zh) 2020-09-30 2020-09-30 一种信号发送方法、接收方法、通信装置和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119742 WO2022067811A1 (zh) 2020-09-30 2020-09-30 一种信号发送方法、接收方法、通信装置和存储介质

Publications (1)

Publication Number Publication Date
WO2022067811A1 true WO2022067811A1 (zh) 2022-04-07

Family

ID=80949441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119742 WO2022067811A1 (zh) 2020-09-30 2020-09-30 一种信号发送方法、接收方法、通信装置和存储介质

Country Status (2)

Country Link
CN (1) CN116235585A (zh)
WO (1) WO2022067811A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102404854A (zh) * 2011-11-04 2012-04-04 中兴通讯股份有限公司 一种上行解调参考信号的资源配置方法及系统
WO2013023148A1 (en) * 2011-08-10 2013-02-14 Huawei Technologies Co., Ltd. System and method for signaling and transmitting uplink reference signals
WO2018082244A1 (zh) * 2016-11-04 2018-05-11 中兴通讯股份有限公司 一种配置解调参考信号的方法及装置、计算机存储介质
CN108141854A (zh) * 2016-01-20 2018-06-08 日本电气株式会社 用于传输参考信号的方法和装置
CN109391359A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 用于数据传输的方法、网络设备和终端设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013023148A1 (en) * 2011-08-10 2013-02-14 Huawei Technologies Co., Ltd. System and method for signaling and transmitting uplink reference signals
CN102404854A (zh) * 2011-11-04 2012-04-04 中兴通讯股份有限公司 一种上行解调参考信号的资源配置方法及系统
CN108141854A (zh) * 2016-01-20 2018-06-08 日本电气株式会社 用于传输参考信号的方法和装置
WO2018082244A1 (zh) * 2016-11-04 2018-05-11 中兴通讯股份有限公司 一种配置解调参考信号的方法及装置、计算机存储介质
CN109391359A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 用于数据传输的方法、网络设备和终端设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHTTL: "Discussion on Multi-TRP transmission", 3GPP DRAFT; R1-1813278, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20181112 - 20181116, 11 November 2018 (2018-11-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 5, XP051555294 *

Also Published As

Publication number Publication date
CN116235585A (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
CN109150480B (zh) 相位跟踪参考信号处理方法与装置
JP7280414B2 (ja) 受信機及び受信方法
JP6046199B2 (ja) 無線通信システムにおける信号送信方法及び装置
TWI741135B (zh) 發送裝置、接收裝置、發送方法、接收方法及積體電路
US11611967B2 (en) Scrambling-based data transmission method
CN111526106B (zh) 通信方法及装置
WO2018201860A1 (zh) 上报端口信息的方法、终端设备和网络设备
CN103916962A (zh) 获得用于调度的物理下行链路控制信道的控制信道单元
WO2018059350A1 (zh) 一种数据处理方法、装置和系统
EP3595223B1 (en) Method and device for sending demodulation reference signal, demodulation method and device
CN111262807B (zh) 一种数据流复用的方法及终端
WO2018228460A1 (zh) 相位跟踪参考信号处理方法与装置
US10917221B2 (en) Base station apparatus, terminal apparatus, and communication method
CN108781197A (zh) 用于减小连接块参考信号设计中的立方度量的方法和设备
WO2013183581A1 (ja) 送信装置、受信装置、送信方法及び受信方法
WO2022067811A1 (zh) 一种信号发送方法、接收方法、通信装置和存储介质
CN109873783B (zh) 信息的发送方法及装置
CN111817995B (zh) 数据的非相干传输方法
CN110890955B (zh) 一种通信方法和装置
WO2022067826A1 (zh) 通信方法及装置
EP4199405A1 (en) Communication method and apparatus
CN109962751B (zh) 一种数据处理方法及装置
CN117811626A (zh) 通信方法、装置及存储介质
JP2022516979A (ja) Dmrs送信のための方法、及び端末デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955831

Country of ref document: EP

Kind code of ref document: A1