WO2022065369A1 - 流体特性センサ - Google Patents

流体特性センサ Download PDF

Info

Publication number
WO2022065369A1
WO2022065369A1 PCT/JP2021/034817 JP2021034817W WO2022065369A1 WO 2022065369 A1 WO2022065369 A1 WO 2022065369A1 JP 2021034817 W JP2021034817 W JP 2021034817W WO 2022065369 A1 WO2022065369 A1 WO 2022065369A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
flow path
characteristic sensor
liquid
flow
Prior art date
Application number
PCT/JP2021/034817
Other languages
English (en)
French (fr)
Inventor
崇文 森朝
秋一 川田
美佳 ▲高▼田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202180063590.0A priority Critical patent/CN116113823A/zh
Priority to JP2022552034A priority patent/JP7332055B2/ja
Publication of WO2022065369A1 publication Critical patent/WO2022065369A1/ja
Priority to US18/116,007 priority patent/US20230200685A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/02Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material
    • G01N11/04Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material through a restricted passage, e.g. tube, aperture
    • G01N11/08Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material through a restricted passage, e.g. tube, aperture by measuring pressure required to produce a known flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14507Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150053Details for enhanced collection of blood or interstitial fluid at the sample site, e.g. by applying compression, heat, vibration, ultrasound, suction or vacuum to tissue; for reduction of pain or discomfort; Skin piercing elements, e.g. blades, needles, lancets or canulas, with adjustable piercing speed
    • A61B5/150061Means for enhancing collection
    • A61B5/150099Means for enhancing collection by negative pressure, other than vacuum extraction into a syringe by pulling on the piston rod or into pre-evacuated tubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/02Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material
    • G01N11/04Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material through a restricted passage, e.g. tube, aperture
    • G01N11/06Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material through a restricted passage, e.g. tube, aperture by timing the outflow of a known quantity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0617Electrical or magnetic indicating, recording or sensing means

Definitions

  • the present invention relates to a fluid characteristic sensor.
  • Patent Document 1 discloses a viscosity measuring method for measuring the viscosity of a liquid as one of the fluid characteristics.
  • the viscosity measuring method described in Patent Document 1 measures the viscosity of a liquid by using a thin tube flow path and measuring the flow velocity of the liquid to be measured flowing through the thin tube flow path. Further, in the viscosity measuring method described in Patent Document 1, the flow velocity is measured by measuring the flow current generated in the thin tube flow path when the liquid to be measured flows through the thin tube flow path.
  • Patent Document 1 there is still room for improvement in measuring the characteristics of various fluids.
  • the fluid characteristic sensor of one aspect of the present invention is A fluid characteristic sensor that measures the characteristics of the fluid to be measured.
  • a pressure loss generating unit that causes a pressure loss due to the flow of the fluid
  • a first flow path connected to the pressure loss generating portion and through which the fluid and the hydraulic fluid which is a polar solvent flow.
  • a partition wall arranged in the first flow path and partitioning the fluid and the hydraulic fluid,
  • a potential measuring unit connected to the first flow path and measuring a flow potential generated when the hydraulic fluid flows, and a potential measuring unit.
  • FIG. 3 is a graph showing an example of the relationship between the reciprocal of the flow potential measured value at time t in the graph of FIG. 10 and the viscosity of the measurement target.
  • FIG. 3 is a graph showing an example of the fluid characteristic sensor of Embodiment 2 which concerns on this invention.
  • FIG. 35 It is a graph which shows an example of the relationship between the viscosity and the shear rate of Examples 6-9. It is a schematic diagram of the fluid characteristic sensor of the comparative example 1.
  • FIG. It is a graph which shows an example of the change of the flow potential measured by the fluid characteristic sensor of the comparative example 1.
  • FIG. It is a graph which shows an example of the change of the flow potential measured by the fluid characteristic sensor of the comparative example 2.
  • FIG. It is a schematic block diagram of an example of the fluid characteristic sensor of Embodiment 6 which concerns on this invention. It is a schematic exploded view of the fluid characteristic sensor shown in FIG. 35.
  • the fluid characteristic sensor of one aspect of the present invention is A fluid characteristic sensor that measures the characteristics of the fluid to be measured.
  • a pressure loss generating unit that causes a pressure loss due to the flow of the fluid
  • a first flow path connected to the pressure loss generating portion and through which the fluid and the hydraulic fluid which is a polar solvent flow.
  • a partition wall arranged in the first flow path and partitioning the fluid and the hydraulic fluid,
  • a potential measuring unit connected to the first flow path and measuring a flow potential generated when the hydraulic fluid flows, and a potential measuring unit.
  • the pressure loss generating unit may have a thin tube having a flow path cross-sectional area smaller than the flow path cross-sectional area of the first flow path, or a porous body provided with a plurality of holes.
  • the potential measuring unit is The first electrode through which the hydraulic fluid can pass and The second electrode, which is arranged at a distance from the first electrode and allows the hydraulic fluid to pass through, A second flow path arranged between the first electrode and the second electrode and filled with the hydraulic fluid, Have,
  • the second flow path may have a thin tube having a flow path cross-sectional area smaller than the flow path cross-sectional area of the first flow path, or a porous body provided with a plurality of holes.
  • the working fluid may have at least one of a boiling point higher than the boiling point of water and a melting point lower than the melting point of water.
  • the partition wall is a gas and
  • the first flow path extends in the direction of gravity and In the first flow path, the interface between the hydraulic fluid and the partition wall may be higher than the interface between the fluid and the partition wall.
  • the inner wall of the first flow path may have hydrophobicity.
  • It may be provided with a pump connected to the potential measuring unit and sending the hydraulic fluid.
  • the liquid can be flowed through the partition wall by sending the hydraulic fluid.
  • the pump is an electroosmotic flow pump.
  • the third electrode through which the hydraulic fluid can pass and
  • the fourth electrode which is arranged at a distance from the third electrode and allows the hydraulic fluid to pass through,
  • a third flow path arranged between the third electrode and the fourth electrode and filled with the hydraulic fluid, and a third flow path.
  • the third flow path may have a porous body provided with a plurality of holes.
  • the pump can be miniaturized and the degree of freedom of installation in the device is improved.
  • the fluid characteristic sensor further includes A pump control unit for controlling the liquid feeding direction and the liquid feeding pressure of the pump is provided.
  • the liquid feeding direction is The first direction from the pressure loss generator to the pump, The second direction, which is opposite to the first direction and is directed from the pump to the pressure loss generating portion, and May include.
  • the liquid can be sucked and discharged by changing the liquid feeding direction of the hydraulic fluid. This enables continuous operation.
  • the pump control unit may control the liquid feeding direction of the pump based on the measured value of the flow potential measured by the potential measurement unit.
  • the liquid feeding direction of the pump can be changed at an appropriate timing.
  • the pump control unit After the liquid feeding direction is the first direction and the measured value of the flow potential has converged, the liquid feeding direction is switched to the second direction.
  • the pump may be stopped when the liquid feeding direction is the second direction and the absolute value of the amount of change in the flow potential per unit time increases beyond the threshold value.
  • pump control can be performed at a more appropriate timing.
  • the partition wall has a volume larger than the flow path volume of the pressure loss generating portion, and has a volume larger than that of the flow path.
  • the pump control unit stops the pump when the liquid feeding direction is the second direction and the absolute value of the change in the measured value of the flow potential per unit time decreases beyond a predetermined threshold value. You may.
  • the pump control unit may change the liquid feeding pressure step by step.
  • the fluid characteristic sensor further includes A calculation unit that calculates the characteristics of the fluid based on the flow potential measured by the potential measurement unit may be provided.
  • the fluid characteristics can be calculated by the fluid characteristic sensor alone.
  • the fluid characteristic sensor further includes A calculation unit for calculating the characteristics of the fluid based on the flow potential measured by the potential measurement unit is provided.
  • the calculation unit The first viscosity of the fluid is calculated based on the measured value of the flow potential when the liquid feeding direction is the first direction.
  • the second viscosity of the fluid may be calculated based on the measured value of the flow potential when the liquid feeding direction is the second direction.
  • the fluid characteristics can be calculated by the fluid characteristic sensor alone.
  • the characteristics of the fluid can be calculated based on the viscosity information.
  • the pump control unit The liquid feeding pressure of the pump when the liquid feeding direction is the first direction is set to the first pressure, and the liquid feeding pressure is set to the first pressure.
  • the liquid feeding pressure of the pump when the liquid feeding direction is the second direction may be set to a second pressure different from the first pressure.
  • the calculation unit The flow velocity of the working fluid is calculated based on the flow potential measured by the potential measuring unit.
  • the viscosity of the fluid may be calculated based on the flow rate of the working fluid.
  • the flow velocity can be calculated from the flow potential generated when the hydraulic fluid flows, and the viscosity of the fluid can be calculated.
  • the fluid characteristic sensor further includes It has an open end that is open to the atmosphere and has a hydraulic fluid flow path through which the hydraulic fluid flows.
  • the liquid surface of the hydraulic fluid located on the open end side of the hydraulic fluid flow path may be covered with a non-polar solvent.
  • the boiling point of the non-polar solvent may be higher than the boiling point of the working fluid.
  • the non-polar solvent may be a non-volatile solvent.
  • the fluid characteristic sensor further includes An outflow port into which the fluid flows in and out, a mounting portion having the pressure loss generating portion, and a mounting portion.
  • the partition wall may be solid.
  • the partition wall A partition body that has a concave shape and is elastically deformable, A flange protruding outward from the outer wall of the partition wall body, May have.
  • the partition wall may have a plurality of the partition walls.
  • the fluid characteristic sensor of one aspect of the present invention is A fluid characteristic sensor that measures the characteristics of the fluid to be measured.
  • the first flow path through which the fluid and the hydraulic fluid, which is a polar solvent, flow and have one end and the other end, and the like.
  • a partition wall arranged in the first flow path and partitioning the fluid and the hydraulic fluid,
  • a pressure loss generating unit connected to one end side of the first flow path and having a flow path cross-sectional area smaller than the flow path cross-sectional area of the first flow path.
  • a potential measuring unit connected to the other end side of the first flow path and measuring the flow potential generated when the hydraulic fluid flows. To prepare for.
  • FIG. 1 is a schematic configuration diagram of an example of the fluid characteristic sensor 1A according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a main configuration of an example of the fluid characteristic sensor 1A according to the first embodiment of the present invention.
  • the X, Y, and Z directions in the figure indicate the width direction, the depth direction, and the height direction of the fluid characteristic sensor 1A, respectively.
  • a fluid characteristic sensor is a sensor that measures the characteristics of a fluid.
  • the fluid is, for example, a liquid, a solid-liquid mixed fluid (sol), a liquid-liquid mixed fluid, or a gas-liquid mixed fluid.
  • Fluid properties include, for example, at least one of viscosity and rheological properties.
  • a fluid characteristic sensor 1A for measuring the viscosity of the liquid 3 stored in the container 2 will be described.
  • the fluid characteristic sensor 1A includes a pressure loss generation unit 10, a first flow path 20, a partition wall 21, and a potential measurement unit 30.
  • the pressure loss generation unit 10, the first flow path 20, and the potential measurement unit 30 are connected in order along the height direction (Z direction) of the fluid characteristic sensor 1A.
  • the pressure loss generation unit 10, the first flow path 20, and the potential measurement unit 30 are arranged in this order from the bottom to the top.
  • the fluid characteristic sensor 1A includes a hydraulic fluid flow path 40 having an open end 41 opened to the atmosphere above the potential measuring unit 30.
  • the hydraulic fluid flow path 40 is not an essential configuration.
  • the pressure loss generation unit 10 a pressure loss occurs due to the flow of the liquid 3 to be measured.
  • the pressure loss generation unit 10 has a flow path through which the liquid 3 can flow and causes a pressure loss.
  • the pressure loss generation unit 10 is a thin tube.
  • the pressure loss generation unit 10 is a thin tube having a flow path cross-sectional area smaller than the flow path cross-sectional area of the first flow path 20.
  • the “channel cross-section” is the area of the flow path when the cross section of the pressure loss generating portion 10 or the first flow path 20 cut in the XY cross section is viewed from the Z direction.
  • the flow path cross-sectional area of the thin tube forming the pressure loss generation unit 10 is 1/10 times or less the flow path cross-sectional area of the first flow path 20.
  • the cross-sectional area of the flow path of the thin tube forming the pressure loss generating portion 10 is preferably 100 ⁇ m 2 or more.
  • the capillary has a cylindrical shape.
  • the thin tube which is the pressure loss generation unit 10, has one end and the other end. At one end of the thin tube, a fluid flow path 11 connected to a container 2 for storing the liquid 3 is provided. A first flow path 20 is provided at the other end of the thin tube.
  • the fluid flow path 11 has an outflow port 12 through which the liquid 3 flows in and out.
  • the fluid flow path 11 has a flow path cross-sectional area larger than the flow path cross-sectional area of the thin tube.
  • the fluid flow path 11 may have a flow path cross-sectional area substantially the same as the flow path cross-sectional area of the first flow path 20. "Approximately the same" includes an error of 10% or less.
  • the length of the fluid flow path 11 is shorter than the length of the pressure loss generation unit 10.
  • the liquid 3 to be measured may be a polar solvent or a non-polar solvent.
  • the first flow path 20 is connected to the pressure loss generation unit 10, and the liquid 3 and the hydraulic fluid 4 flow.
  • the hydraulic fluid 4 is a liquid in which a flow potential is generated by the flow.
  • the hydraulic fluid 4 is a polar solvent.
  • the hydraulic fluid 4 has at least one of a boiling point higher than the boiling point of water and a melting point lower than the melting point of water.
  • a boiling point higher than the boiling point of water means a temperature higher than 100 ° C. under atmospheric pressure.
  • a melting point lower than the melting point of water means a temperature lower than 0 ° C. under atmospheric pressure.
  • the working fluid 4 may be any of water, ethylene glycol, propylene glycol, diethyl glycol, tetraethylene glycol, glycerin, dimethyl sulfoxide, dimethylformamide, antifreeze, a heat medium, an aqueous electrolyte solution, and a buffer. good.
  • the antifreeze liquid means a liquid made so as not to freeze in winter (cold region), and is standardized by the Japanese Industrial Standards (JIS) as JIS K 2234 antifreeze liquid.
  • JIS Japanese Industrial Standards
  • As the antifreeze liquid for example, a water-ethylene glycol mixed solution or the like is used.
  • the heat medium for example, hydrofluorocarbon or the like is used.
  • aqueous electrolyte solution for example, an aqueous solution of NaCl, an aqueous solution of KCl, or the like is used.
  • buffer solution for example, a phosphate buffer solution, a borate buffer solution, Good's buffer, Tris buffer solution and the like are used.
  • the hydraulic fluid 4 is preferably a liquid that can operate in a high temperature environment of 100 ° C. or higher and / or a low temperature environment of 0 ° C. or lower.
  • ethylene glycol is used as the hydraulic fluid 4
  • the melting point is lower than 0 ° C., so that it can be driven below the freezing point.
  • tetraethylene glycol since the boiling point is larger than 100 ° C., it can be driven at a high temperature.
  • the first flow path 20 has a fluid 3 and a hydraulic fluid 4 which is a polar solvent, and has one end and the other end.
  • the first flow path 20 is a pipe having one end and the other end.
  • One end of the first flow path 20 is connected to the other end of the thin tube which is the pressure loss generation unit 10.
  • the other end of the first flow path 20 is connected to the potential measuring unit 30.
  • the first flow path 20 has a cylindrical shape.
  • the partition wall 21 is arranged in the first flow path 20 and separates the liquid 3 and the hydraulic fluid 4.
  • the partition wall 21 is movable in the height direction (Z direction) of the fluid characteristic sensor 1A with the flow of the liquid 3 and the hydraulic fluid 4.
  • the partition wall 21 is a gas.
  • the partition wall 21 is an inert gas that can prevent an unfavorable chemical reaction from occurring due to contact with the measurement target or the hydraulic fluid 4.
  • the partition wall 21 is air or argon.
  • the "bulkhead 21" may be referred to as a "movable bulkhead 21".
  • the height direction (Z direction) of the fluid characteristic sensor 1A is along the gravity direction.
  • the first flow path 20 extends in the direction of gravity. Therefore, in the first flow path 20, the liquid 3, the movable partition wall 21, and the hydraulic fluid 4 are held in this order from the bottom to the top. In other words, in the first flow path 20, the interface 21a between the hydraulic fluid 4 and the movable partition wall 21 is held at a position higher than the interface 21b between the liquid 3 and the movable partition wall 21.
  • surface tension acts between the hydraulic fluid 4 and the inner wall 20a of the first flow path 20, so that the hydraulic fluid 4 is less likely to fall naturally in the direction of gravity.
  • the shape of the movable partition wall 21 which is a gas is easily maintained, and the interface 21a between the movable partition wall 21 and the hydraulic fluid 4 can be maintained.
  • the inner wall 20a of the first flow path 20 may have hydrophobicity.
  • the first flow path 20 is formed of a hydrophobic material.
  • the hydrophobic material for example, ABS, nylon, polyacetal, fluororesin, PTFE (Polyetherketone), PEEK (Polyetherhelketone) and the like are used.
  • a hydrophobic coating is applied to the inner wall 20a of the first flow path 20.
  • the potential measuring unit 30 is connected to the first flow path 20 and measures the flow potential of the hydraulic fluid 4.
  • the flow potential means the potential difference generated on the solid surface when the liquid in contact with the solid surface flows.
  • the potential measuring unit 30 has a first electrode 31, a second electrode 32, and a second flow path 33.
  • the first electrode 31 and the second electrode 32 are made of a material through which the hydraulic fluid 4 can pass.
  • the first electrode 31 and the second electrode 32 are made of, for example, a porous conductive material.
  • a porous conductive material a metal material such as Pt, Cu, Ag, Au, Ni, or stainless steel, or a carbon electrode can be used.
  • the porous conductive material may be any material as long as it has conductivity and can ensure water permeability.
  • the porous conductive material may be a conductive rubber, an oxide conductor, or the like.
  • the first electrode 31 and the second electrode 32 are made of a flat metal mesh having two facing main surfaces.
  • the first electrode 31 and the second electrode 32 are arranged at intervals from each other. Specifically, the first electrode 31 and the second electrode 32 are arranged so as to face each other with a gap in the flow direction (Z direction) of the hydraulic fluid 4. Further, the main surfaces of the first electrode 31 and the second electrode 32 are arranged in a direction intersecting the flow direction (Z direction) of the liquid.
  • the second flow path 33 is arranged between the first electrode 31 and the second electrode 32, and is filled with the hydraulic fluid 4.
  • the second flow path 33 is a thin tube through which the hydraulic fluid 4 flows.
  • the second flow path 33 is a thin tube having a flow path cross-sectional area smaller than the flow path cross-sectional area of the first flow path 20.
  • the flow path cross-sectional area of the thin tube forming the second flow path 33 is less than one times the flow path cross-sectional area of the first flow path 20.
  • the flow path cross-sectional area of the thin tube forming the second flow path 33 is preferably 100 ⁇ m 2 or more.
  • the capillary has a cylindrical shape.
  • the thin tube forming the second flow path 33 has one end and the other end.
  • a first electrode 31 is arranged at one end of the thin tube.
  • a second electrode 32 is arranged at the other end of the thin tube.
  • the potential measuring unit 30 includes a measuring unit 34 connected to the first electrode 31 and the second electrode 32.
  • the measuring unit 34 measures the voltage between the first electrode 31 and the second electrode 32.
  • the measuring unit 34 is an electrometer.
  • the measuring unit 34 is not an indispensable configuration.
  • the measuring unit 34 may be included in a device different from the fluid characteristic sensor 1A.
  • the hydraulic fluid flow path 40 is connected to the potential measuring unit 30.
  • the hydraulic fluid flow path 40 is a pipe having an open end 41 on the atmosphere side.
  • the hydraulic fluid flow path 40 has a cylindrical shape.
  • the hydraulic fluid 4 is held in the hydraulic fluid flow path 40.
  • the hydraulic fluid 4 flows in the hydraulic fluid flow path 40.
  • a pump, a syringe, or the like is attached to the hydraulic fluid flow path 40.
  • the liquid 3 and the hydraulic fluid 4 in the fluid characteristic sensor 1A can be made to flow.
  • the fluid characteristic sensor 1A includes a calculation unit 50.
  • the calculation unit 50 calculates the characteristics of the liquid 3 based on the flow potential measured by the potential measurement unit 30. Specifically, the calculation unit 50 calculates the viscosity of the liquid 3 based on the flow potential measured by the potential measurement unit 30.
  • the calculation unit 50 includes a processor 51, a storage unit 52, and an A / D converter 53.
  • the processor 51 is, for example, a processing unit such as a central processing unit (CPU), a microprocessor, or a circuit capable of executing instructions by a computer.
  • the processor 51 can execute an instruction or a program stored in the storage unit 52.
  • the storage unit 52 is, for example, a computer recording medium that stores an instruction or a program executed by the processor 51.
  • the storage unit 52 is, for example, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, DVD or other optical disk storage, magnetic cassette, magnetic tape, magnetic disk storage or other magnetic storage device. May be good.
  • the A / D converter 53 converts an analog signal into a digital signal.
  • the A / D converter 53 converts the flow potential measured by the potential measuring unit 30 into a digital signal.
  • the calculation unit 50 is not an indispensable configuration.
  • the calculation unit 50 may be included in a device different from the fluid characteristic sensor 1A.
  • the viscosity of the liquid 3 to be measured can be calculated, for example, from the Hagen-Poiseil equation representing the relationship between the pressure loss and the flow rate.
  • the formula for Hagen Poizoyle is shown below.
  • Q flow rate
  • ⁇ P pressure difference (pressure loss)
  • viscosity of liquid 3
  • L length of thin tube
  • r radius of thin tube. Note that ⁇ P, L, and r are determined by the dimensions of the thin tube that is the pressure loss generation unit 10.
  • the flow rate Q is determined according to the viscosity ⁇ of the liquid 3.
  • the viscosity ⁇ of the liquid 3 can be calculated from the Hagen-Poiseuil equation by measuring the flow rate Q.
  • the flow rate Q of the liquid 3 is substantially equal to the flow rate of the hydraulic fluid 4 that flows with the flow of the liquid 3.
  • the flow rate of the hydraulic fluid 4 can be calculated from the flow velocity of the hydraulic fluid 4, and the flow velocity of the hydraulic fluid 4 can be calculated from the flow potential.
  • the flow potential is proportional to the flow velocity (flow rate) of the flowing hydraulic fluid 4.
  • the fluid characteristic sensor 1A measures the flow potential generated by the flow of the hydraulic fluid 4 by the potential measuring unit 30. Further, the fluid characteristic sensor 1A calculates the flow velocity (flow rate) of the hydraulic fluid 4 based on the measured flow potential by the calculation unit 50. Since the flow velocity (flow rate) of the hydraulic fluid 4 is substantially equal to the flow velocity (flow rate) of the liquid 3 to be measured, the flow rate Q of the liquid 3 can be obtained from the flow velocity (flow rate) of the hydraulic fluid 4.
  • FIG. 3 is a flowchart of an example of the measurement method of the first embodiment according to the present invention.
  • 4A to 4C are schematic views showing an example of the operation of the fluid characteristic sensor 1A according to the first embodiment of the present invention.
  • FIG. 5 is a graph showing an example of a change in the flow potential measured by the fluid characteristic sensor 1A according to the first embodiment of the present invention. In this operation, an example of measuring the viscosity as a characteristic of the liquid 3 to be measured will be described.
  • step ST1 the liquid 3 to be measured is sucked.
  • the outflow port 12 of the fluid flow path 11 of the fluid characteristic sensor 1A is arranged in the liquid 3 stored in the container 2.
  • the liquid 3 is sucked into the first direction D1 in a state where the outflow port 12 is arranged in the liquid 3 stored in the container 2.
  • the first direction D1 is the direction in which the liquid 3 is sucked.
  • the first direction D1 is a direction from the pressure loss generation unit 10 toward the potential measurement unit 30.
  • the liquid 3 is sucked into the first direction D1 by sucking the hydraulic fluid 4 by a pump or the like arranged in the hydraulic fluid flow path 40 of the fluid characteristic sensor 1A.
  • the liquid 3 stored in the container 2 flows into the pressure loss generation unit 10 from the outflow port 12 through the fluid flow path 11.
  • the liquid 3 that has flowed into the pressure loss generation unit 10 flows into the first flow path 20 while causing a pressure loss.
  • a movable partition wall 21 for the liquid 3 and the hydraulic fluid 4 is arranged in the first flow path 20.
  • the hydraulic fluid 4 flows in the first direction D1 together with the movable partition wall 21.
  • the flow rate of the flowing hydraulic fluid 4 is substantially equal to the flow rate of the liquid 3 flowing into the first flow path 20.
  • substantially equal includes an error of several percent due to deformation of the flow path wall surface in the fluid characteristic sensor 1A and expansion / contraction of the movable partition wall.
  • the hydraulic fluid 4 flows at the same flow rate as the liquid 3, that is, at the same flow rate as the liquid 3. Specifically, in the second flow path 33 of the potential measuring unit 30, the hydraulic fluid 4 flows toward the first direction D1 at the same flow rate as the liquid 3, that is, at the same flow rate as the liquid 3.
  • step ST2 the flow potential of the hydraulic fluid 4 is measured by the potential measuring unit 30.
  • the measuring unit 34 measures the flow potential generated by the flow of the hydraulic fluid 4 in the second flow path 33 arranged between the first electrode 31 and the second electrode 32. do.
  • step ST3 the calculation unit 50 calculates the characteristics of the liquid 3 to be measured based on the measured flow potential. Specifically, the calculation unit 50 calculates the viscosity of the liquid 3 based on the flow potential. As described above, the Hagen-Poiseil equation is used to calculate the viscosity of the liquid 3 based on the flow potential.
  • the flow potential increases with the start of suction at time t1 and decreases and converges with the passage of time.
  • the calculation unit 50 calculates the viscosity of the liquid 3 based on the measured value when the flow potential converges, that is, the convergence value V 1 of the flow potential.
  • the determination of the convergence of the flow potential is performed based on the threshold value of the amount of change in the flow potential per unit time ts .
  • the calculation unit 50 may determine that the flow potential has converged when the amount of change in the flow potential for 10 seconds is within ⁇ 0.02 V.
  • the unit time ts is not limited to 10 seconds and may be set to any value.
  • the threshold value of the amount of change in the flow potential is not limited to ⁇ 0.02 V, and may be set to any value.
  • step ST4 the liquid 3 to be measured is discharged. Specifically, as shown in FIG. 4C, the liquid 3 is discharged to the second direction D2 in a state where the outflow port 12 is arranged in the liquid 3 stored in the container 2.
  • the second direction D2 is the direction in which the liquid 3 is discharged.
  • the second direction D2 is the direction opposite to the first direction D1 and is the direction from the potential measuring unit 30 toward the pressure loss generating unit 10.
  • the liquid 3 is discharged to the second direction D2 by discharging the hydraulic fluid 4 by a pump or the like arranged in the hydraulic fluid flow path 40 of the fluid characteristic sensor 1A.
  • the liquid 3 in the first flow path 20 is pushed by the hydraulic fluid 4 via the movable partition wall 21 and discharged to the container 2 through the pressure loss generating unit 10 and the fluid flow path 11.
  • the viscosity can be measured as the characteristic of the liquid 3 by carrying out steps ST1 to ST4.
  • FIGS. 6A to 6D are schematic views showing an example of a manufacturing process of the fluid characteristic sensor 1A according to the first embodiment of the present invention.
  • 6A to 6d show an example in which the resin plates 13 are provided at both ends of the pressure loss generation unit 10 and both ends of the second flow path 33, but the present invention is not limited thereto.
  • the resin plate 13 is not an essential configuration.
  • the elements constituting the fluid characteristic sensor 1A are arranged in the mold 5.
  • the mold 5 is formed in a concave shape.
  • the fluid flow path 11, the pressure loss generation unit 10, the first flow path 20, the potential measurement unit 30, the hydraulic fluid flow path 40, and the resin plate 13 are arranged in the mold 5 in a connected state.
  • the outflow port 12 of the fluid flow path 11 and the open end 41 of the hydraulic fluid flow path 40 are pressed so as to close the inner wall 5a of the mold 5. That is, the outflow port 12 and the open end 41 are sealed by the inner wall 5a of the mold 5.
  • these elements may be adhered with an adhesive or the like.
  • the sealing material 6 is, for example, a resin material.
  • the resin material include PDMS (Polydimylsiloxane) and epoxy resin.
  • the mold 5 is removed.
  • the nozzle is inserted into the open end 41 of the hydraulic fluid flow path 40 to introduce the hydraulic fluid 4.
  • a syringe is attached to the open end 41, and the hydraulic fluid 4 is sent toward the outflow port 12 by the syringe to operate the fluid flow path 11, the pressure loss generation unit 10, the first flow path 20, the potential measurement unit 30, and the operation.
  • the liquid flow path 40 is filled with the hydraulic fluid 4.
  • the hydraulic fluid 4 of the fluid flow path 11 and the pressure loss generation unit 10 is removed.
  • a syringe is attached to the outflow port 12, and the hydraulic fluid 4 of the fluid flow path 11 and the pressure loss generating unit 10 is sucked.
  • the movable partition wall 21 for gas is formed.
  • a nozzle is inserted into the hydraulic fluid flow path 40 from the open end 41, and a certain amount of the hydraulic fluid 4 is sucked.
  • the fixed amount is, for example, 0.1 ml.
  • the fluid characteristic sensor 1A can be manufactured.
  • the fluid flow path 11 has a cylindrical shape having an inner diameter of 4 mm, an outer diameter of 6 mm, and a length of 2 mm.
  • the pressure loss generation unit 10 is a thin tube having a cylindrical shape with an inner diameter of 0.5 mm, an outer diameter of 2 mm, and a length of 10 mm.
  • the first flow path 20 is a pipe having a cylindrical shape having an inner diameter of 4 mm, an outer diameter of 6 mm, and a length of 20 mm.
  • the first electrode 31 and the second electrode 32 of the potential measuring unit 30 are disk-shaped metal meshes having a diameter of 6 mm and a thickness of 0.1 mm.
  • the second flow path 33 of the potential measuring unit 30 is a thin tube having a cylindrical shape with an inner diameter of 0.5 mm, an outer diameter of 2 mm, and a length of 10 mm.
  • the hydraulic fluid flow path 40 is a pipe having a cylindrical shape having an inner diameter of 4 mm, an outer diameter of 6 mm, and a length of 20 mm.
  • the resin plate 13 has a disk shape having a hole diameter of 1.5 mm, a diameter of 6 mm, and a thickness of 1 mm.
  • the fluid flow path 11, the pressure loss generation unit 10, the first flow path 20, the second flow path 33 of the potential measurement unit 30, the hydraulic fluid flow path 40, and the resin plate 13 are, for example, ABS, nylon, polyacetal, fluororesin, or It can be formed by PTFE or the like. Alternatively, these elements may be made of a metallic material such as SUS. However, when a conductive material is used, it is necessary to ensure insulation between the electrodes. Further, by forming the first flow path 20 with a hydrophobic material, a large surface tension acts on the inner wall of the flow path, and the movable partition wall 21 of the gas is easily maintained.
  • first electrode 31 and the second electrode 32 for example, a metal material such as Pt, Cu, Ag, Au, Ni, or stainless steel can be used.
  • the inner diameter of the thin tube, which is the pressure loss generation unit 10 is preferably 0.01 mm or more and 10 mm or less. More preferably, the inner diameter of the thin tube is 0.1 mm or more and 1 mm.
  • the inner diameter of the thin tube, which is the pressure loss generation unit 10 may be changed according to the viscosity range to be measured.
  • the inner diameters of the fluid flow path 11, the first flow path 20 and the hydraulic fluid flow path 40 are preferably four times or more the inner diameters of the pressure loss generating unit 10 and the second flow path 33.
  • the pressure loss is inversely proportional to the fourth power of the inner diameter of the pressure loss generating unit 10. Therefore, by making the inner diameters of the fluid flow path 11, the first flow path 20 and the hydraulic fluid flow path 40 four times or more the inner diameters of the pressure loss generation unit 10 and the second flow path 33, the pressure loss is pressure loss generation. It can be suppressed to 2% or less of the portion 10.
  • the fluid characteristic sensor 1A is a fluid characteristic sensor that measures the characteristics of the liquid 3 to be measured, and includes a pressure loss generation unit 10, a first flow path 20, a movable partition wall 21, and a potential measurement unit 30.
  • a pressure loss occurs due to the flow of the liquid 3 in the pressure loss generating unit 10.
  • the first flow path 20 is connected to the pressure loss generation unit 10, and the liquid 3 and the hydraulic fluid 4, which is a polar solvent, flow.
  • the movable partition wall 21 is movably arranged in the first flow path 20, and separates the liquid 3 from the hydraulic fluid 4.
  • the liquid 3 and the hydraulic fluid 4 flow at equal flow rates to each other through the movable partition wall.
  • the potential measuring unit 30 is connected to the first flow path 20 and measures the flow potential generated when the hydraulic fluid 4 flows in the potential measuring unit 30.
  • the characteristics of various fluids can be measured.
  • the flow rate (flow velocity) is determined according to the viscosity of the liquid 3.
  • the liquid 3 and the hydraulic fluid 4 are partitioned by the movable partition wall 21, and the liquid 3 and the hydraulic fluid 4 flow at the same flow rate (flow velocity).
  • the flow rate of the hydraulic fluid 4 can be calculated from the flow potential. Since the hydraulic fluid 4 is a polar solvent, a measurable flow potential is generated with the flow of the hydraulic fluid 4. Further, since the hydraulic fluid 4 is a known liquid, the correlation between the flow rate and the flow potential is also known.
  • the flow rate of the hydraulic fluid 4 is calculated based on the measured flow potential. Since the flow rates of the liquid 3 and the hydraulic fluid 4 are equal, the flow rate Q of the liquid 3 can be obtained based on the flow rate of the hydraulic fluid 4. At this time, the viscosity ⁇ of the liquid 3 can be calculated based on the flow rate Q and the formula of Hagen Poiseil. Thereby, the viscosity of the liquid 3 can be calculated regardless of the polarity of the liquid 3. For example, even if the liquid 3 is a non-polar solvent such as oil, the characteristics of the liquid 3 can be measured.
  • the fluid characteristic sensor 1A can suck and discharge the liquid 3 to be measured. This makes it possible to continuously measure the characteristics of the liquid 3 over a long period of time. Further, in the fluid characteristic sensor 1A, the liquid 3 used for the measurement can be returned to the container 2 by discharging the liquid 3. As a result, it is not necessary to sample the liquid 3, so that the liquid 3 can be automatically measured, and the time change of the characteristics of the liquid 3 can be measured.
  • the fluid characteristic sensor 1A can be used for monitoring the viscosity of the lubricating oil. Since the viscosity of the lubricating oil greatly affects the lubricating performance, it can be applied to oil deterioration detection by monitoring the viscosity fluctuation of the lubricating oil. For example, by attaching the fluid characteristic sensor 1A to the container 2 such as an oil tank, the deterioration state of the oil can be monitored.
  • the pressure loss generation unit 10 is a thin tube having a flow path cross-sectional area smaller than the flow path cross-sectional area of the first flow path 20. With such a configuration, it is possible to generate a pressure loss suitable for measuring the characteristics of the liquid 3 in the pressure loss generation unit 10. Further, by using a thin tube as the pressure loss generating unit 10, the generated pressure loss can be increased. As a result, even if the viscosity of the object is slightly different, a large difference appears in the pressure loss and the flow rate fluctuates greatly. This makes it possible to measure the viscosity with high resolution.
  • the potential measuring unit 30 has a first electrode 31, a second electrode 32, and a second flow path 33.
  • the first electrode 31 is an electrode through which the hydraulic fluid 4 can pass.
  • the second electrode 32 is an electrode that is arranged at a distance from the first electrode 31 and through which the hydraulic fluid 4 can pass.
  • the second flow path 33 is arranged between the first electrode 31 and the second electrode 32, and is filled with the hydraulic fluid 4. Further, the second flow path 33 is a thin tube having a flow path cross-sectional area smaller than the flow path cross-sectional area of the first flow path 20. With such a configuration, the flow potential of the hydraulic fluid 4 can be measured.
  • the hydraulic fluid 4 has at least one of a boiling point higher than the boiling point of water and a melting point lower than the melting point of water. With such a configuration, it can be operated even in a high temperature environment of 100 ° C. or higher and a low temperature environment of 0 ° C. or lower.
  • the movable partition wall 21 is a gas.
  • the first flow path 20 extends in the direction of gravity.
  • the interface 21a between the hydraulic fluid 4 and the movable partition wall 21 is higher than the interface 21b between the liquid 3 and the movable partition wall 21.
  • the movable partition wall 21 formed of gas has a larger movable region than the movable partition wall formed of solid.
  • the gas movable partition wall 21 can move in the pressure loss generation unit 10 and the first flow path 20.
  • the movable partition wall 21 of the gas can have a larger movable region than the movable partition wall of the solid, and can increase the amount of the liquid 3 to be measured. Thereby, the introduction amount of the liquid 3 can be flexibly changed.
  • the pressure loss generated when the movable partition wall 21 of the gas moves is very small as compared with the movable partition wall of the solid, and its influence can be ignored.
  • the gas movable partition wall 21 can reduce the loss due to friction with the inner wall 20a of the first flow path 20 as compared with the solid movable partition wall 21. Therefore, the movable partition wall 21 can be moved with a smaller pressure than that of the solid movable partition wall.
  • the movable partition wall 21 formed of gas has a higher degree of freedom of the measurement target than the movable partition wall formed of liquid.
  • the liquid forming the movable partition wall is selected to have poor solubility in the liquid 3 to be measured and the hydraulic fluid 4.
  • the gas movable partition wall 21 functions as a partition wall regardless of the types of the liquid 3 and the hydraulic fluid 4 as compared with the liquid movable partition wall.
  • the inner wall 20a of the first flow path 20 has hydrophobicity. With such a configuration, a larger surface tension can be obtained, so that the interface 21a between the movable partition wall 21 and the hydraulic fluid 4 is more reliably held even under gravity.
  • the fluid characteristic sensor 1A includes a calculation unit 50 that calculates the characteristics of the liquid 3 based on the flow potential measured by the potential measurement unit 30. With such a configuration, the characteristics of the liquid 3 can be measured by the fluid characteristic sensor 1A alone.
  • the calculation unit 50 calculates the flow velocity of the hydraulic fluid 4 based on the flow potential measured by the potential measurement unit 30, and calculates the viscosity of the liquid 3 based on the flow velocity of the hydraulic fluid 4.
  • the flow velocity can be calculated from the flow potential of the hydraulic fluid 4, and the viscosity of the liquid 3 can be calculated.
  • the fluid characteristic sensor 1A measures the viscosity of the liquid 3 as the characteristic of the fluid
  • the present invention is not limited to this.
  • the fluid characteristic sensor 1A only needs to be able to measure the characteristics of the fluid based on the flow potential.
  • the pressure loss generation unit 10 is a thin tube
  • the pressure loss generation unit 10 may be any as long as it can cause a pressure loss in the liquid 3.
  • the thin tube is not limited to a cylindrical shape, but may be a square tube shape.
  • FIG. 7 is a schematic configuration diagram of the fluid characteristic sensor 1AA of the modification 1 of the first embodiment according to the present invention.
  • the pressure loss generation unit 10A may be a porous body provided with a plurality of holes.
  • the porous body for example, porous silica can be used. Even with such a configuration, the pressure loss generation unit 10A can cause a pressure loss in the liquid 3. Further, by using a porous body as the pressure loss generation unit 10, the pressure loss generated in the same manner as the thin tube can be increased. As a result, even if the viscosity of the object is slightly different, a large difference appears in the pressure loss and the flow rate fluctuates greatly. This makes it possible to measure the viscosity with high resolution.
  • the movable partition wall 21 is a gas
  • the present invention is not limited to this.
  • the movable partition wall 21 only needs to be able to partition the liquid 3 and the hydraulic fluid 4.
  • the movable partition wall 21 may be formed of a solid or a liquid.
  • the second flow path 33 of the potential measuring unit 30 is a thin tube
  • the second flow path 33 may be formed with a flow path in which a flow potential is generated.
  • FIG. 8 is a schematic configuration diagram of the fluid characteristic sensor 1AB of the modification 2 of the first embodiment according to the present invention.
  • the second flow path 33A of the potential measuring unit 30A may be a porous body provided with a plurality of holes.
  • the porous body for example, porous silica can be used.
  • the plurality of holes are designed to be sized to generate a flow potential.
  • the porous body may be a material that is insulating and forms an electric double layer in a polar solvent.
  • the porous body may be formed of, for example, a ceramic material such as alumina or zirconia, or a resin material such as PTFE, PP or PE. Even with such a configuration, the flow potential of the hydraulic fluid 4 can be measured by the potential measuring unit 30A.
  • FIG. 9 is a schematic configuration diagram of the fluid characteristic sensor 1AC of the modification 3 of the first embodiment according to the present invention.
  • the liquid level 4a of the hydraulic fluid 4 located on the open end 41 side of the hydraulic fluid flow path 40 is covered with the non-polar solvent 7.
  • the boiling point of the non-polar solvent 7 is preferably higher than the boiling point of the working fluid 4. With such a configuration, it is possible to prevent the hydraulic fluid 4 from being gasified at a high temperature and the amount of the hydraulic fluid from being reduced.
  • the non-polar solvent 7 may be a non-volatile solvent. With such a configuration, it is possible to prevent the hydraulic fluid 4 from volatilizing and reducing the amount of the hydraulic fluid 4.
  • the calculation unit 50 calculates the viscosity from the flow potential based on the Hagen-Poiseil equation
  • the calculation unit 50 may create a calibration curve in advance and calculate the viscosity from the flow potential using the calibration curve.
  • FIG. 10 is a graph showing an example of changes in the flow potentials of the three measurement targets measured by the fluid characteristic sensor according to the first embodiment of the present invention.
  • FIG. 11 is a graph showing an example of the relationship between the reciprocal of the flow potential measured value at time t in the graph of FIG. 10 and the viscosity of the measurement target.
  • the flow potentials of three measurement targets 1 to 3 having different viscosities are measured.
  • the flow potential measured values E 1 , E 2 , and E 3 at the time t at which the flow potential converges are acquired.
  • the horizontal axis is plotted as the viscosity ⁇ of the measurement target, and the vertical axis is plotted as the reciprocal 1 / E of the flow potential measured value at time t.
  • the measurement method includes steps ST1 to ST4
  • steps ST1 to ST4 may be divided, integrated, deleted and added, or the order may be changed.
  • the partition wall 21 may be a fluid to be measured or a liquid insoluble in the hydraulic fluid 4.
  • the partition wall 21 may be a solid that is deformed by receiving the liquid feeding pressure that causes the hydraulic fluid 4 to flow, or is in contact with the inner wall 20a of the first flow path 20 and receives the liquid feeding pressure to receive the first flow. It may be a solid that moves while sliding in the road 20.
  • FIG. 12 is a schematic configuration diagram of an example of the fluid characteristic sensor 1B according to the second embodiment of the present invention.
  • FIG. 13 is a block diagram showing a main configuration of an example of the fluid characteristic sensor 1B according to the second embodiment of the present invention.
  • the second embodiment is different from the first embodiment in that the pump 60 and the pump control unit 64 are provided.
  • the fluid characteristic sensor 1B includes a pump 60 and a pump control unit 64.
  • the pump 60 is connected to the potential measuring unit 30 and feeds the hydraulic fluid 4.
  • the pump 60 is arranged in the hydraulic fluid flow path 40, and feeds the hydraulic fluid 4 located in the hydraulic fluid flow path 40.
  • the liquid 3 is sucked and discharged by switching the liquid feeding direction of the hydraulic fluid 4 by the pump 60.
  • the pump 60 is an electroosmotic flow pump and has a third electrode 61, a fourth electrode 62, and a third flow path 63.
  • the third electrode 61 and the fourth electrode 62 are made of a material through which the hydraulic fluid 4 can pass.
  • the third electrode 61 and the fourth electrode 62 are made of, for example, a porous conductive material.
  • a metal material such as Pt, Cu, Ag, Au, Ni, or stainless steel can be used.
  • the third electrode 61 and the fourth electrode 62 are made of a flat metal mesh having two facing main surfaces.
  • the third electrode 61 and the fourth electrode 62 are arranged at intervals from each other. Specifically, the third electrode 61 and the fourth electrode 62 are arranged so as to face each other with a gap in the flow direction (Z direction) of the hydraulic fluid 4. Further, the main surfaces of the third electrode 61 and the fourth electrode 62 are arranged in a direction intersecting the flow direction (Z direction) of the hydraulic fluid 4.
  • the third flow path 63 is arranged between the third electrode 61 and the fourth electrode 62, and is filled with the hydraulic fluid 4.
  • the third flow path 63 is a porous body through which the hydraulic fluid 4 flows.
  • the third flow path 63 is a porous body provided with a plurality of holes.
  • the plurality of holes are designed to be sized to generate a flow potential.
  • porous body for example, porous silica can be used.
  • the porous body may be a material that is insulating and forms an electric double layer in a polar solvent.
  • the porous body may be formed of, for example, a ceramic material such as alumina or zirconia, or a resin material such as PTFE, PP or PE.
  • the porous body forming the third flow path 63 has one end and the other end.
  • a third electrode 61 is arranged at one end of the porous body.
  • a fourth electrode 62 is arranged at the other end of the porous body.
  • the pump control unit 64 controls the liquid feeding direction and the liquid feeding pressure of the pump 60.
  • the liquid feeding direction includes the first direction D1 and the second direction D2.
  • the first direction D1 is a direction for sucking the liquid 3 and is a direction toward the pump 60 from the pressure loss generating unit 10 (see FIG. 15A).
  • the second direction D2 is a direction opposite to the first direction D1 and is a direction from the pump 60 toward the pressure loss generation unit 10.
  • the liquid feed pressure means the pressure for feeding the hydraulic fluid 4 by the pump 60.
  • the pump control unit 64 controls the liquid feeding direction and the liquid feeding pressure of the pump 60 by controlling the applied voltage applied to the pump 60.
  • the pump control unit 64 includes a voltage adjusting unit 65 that adjusts the applied voltage of the pump 60.
  • the voltage adjusting unit 65 adjusts the magnitude of the applied voltage applied to the pump 60 and the positive / negative of the applied voltage.
  • the voltage adjusting unit 65 is a circuit that adjusts the voltage, and is composed of a semiconductor element or the like.
  • the pump control unit 64 controls the liquid feeding pressure of the pump 60 by adjusting the magnitude of the applied voltage applied to the pump 60 by the voltage adjusting unit 65. Further, the pump control unit 64 controls the liquid feeding direction of the pump 60 by adjusting the positive and negative of the applied voltage applied to the pump 60 by the voltage adjusting unit 65.
  • the pump control unit 64 controls the liquid feeding direction and the liquid feeding pressure of the pump 60 based on the measured value of the flow potential measured by the potential measuring unit 30.
  • FIG. 14 is a flowchart of an example of the measurement method of the second embodiment according to the present invention.
  • 15A to 15C are schematic views showing an example of the operation of the fluid characteristic sensor 1B according to the second embodiment of the present invention.
  • FIG. 16 is a graph showing an example of a change in the flow potential measured by the fluid characteristic sensor 1B of the second embodiment according to the present invention. In this operation, an example of measuring the viscosity as a characteristic of the liquid 3 to be measured will be described.
  • step ST11 the hydraulic fluid 4 is sent to the first direction D1 by the pump 60.
  • the pump control unit 64 controls the applied voltage applied to the pump 60 by the voltage adjusting unit 65.
  • the pump control unit 64 controls the pump 60 to apply an applied voltage of + 12V.
  • the pump 60 sends the hydraulic fluid 4 to the first direction D1.
  • the liquid 3 stored in the container 2 is sucked from the outflow port 12.
  • step ST12 the flow potential of the hydraulic fluid 4 is measured by the potential measuring unit 30. Specifically, in the potential measuring unit 30, the flow generated by the hydraulic fluid 4 flowing toward the first direction D1 in the second flow path 33 arranged between the first electrode 31 and the second electrode 32. The potential is measured by the measuring unit 34.
  • step ST13 the calculation unit 50 determines whether or not the flow potential has converged.
  • the flow potential increases with the start of suction at time t1 and decreases and converges with the passage of time.
  • the determination of the convergence of the flow potential is made based on the threshold value of the amount of change in the flow potential per unit time t s .
  • the calculation unit 50 may determine that the flow potential has converged when the amount of change in the flow potential for 10 seconds is within ⁇ 0.02 V.
  • the unit time ts is not limited to 10 seconds and may be set to any value.
  • the threshold value of the amount of change in the flow potential is not limited to ⁇ 0.02 V, and may be set to any value.
  • step ST13 if the flow potential has converged, the flow proceeds to step ST14. If the flow potential has not converged, the flow returns to step ST12.
  • step ST14 the calculation unit 50 calculates the characteristics of the liquid 3 to be measured based on the measured flow potential. Specifically, the calculation unit 50 acquires the measured value when the flow potential converges, that is, the convergence value V 1 of the flow potential. The calculation unit 50 calculates the viscosity of the liquid 3 based on the convergence value V 1 of the flow potential.
  • step ST15 the hydraulic fluid 4 is sent to the second direction D2 by the pump 60.
  • the pump control unit 64 controls the applied voltage applied to the pump 60 by the voltage adjusting unit 65.
  • the pump control unit 64 controls the pump 60 to apply an applied voltage of -12V.
  • the pump 60 sends the hydraulic fluid 4 to the second direction D2.
  • the liquid 3 in the fluid characteristic sensor 1B is discharged to the container 2.
  • the pump control unit 64 receives information on the switching timing of the liquid feeding direction of the pump 60 from the calculation unit 50.
  • the information on the switching timing of the liquid feeding direction is, for example, the determination result of the convergence of the flow potential.
  • the pump control unit 64 receives the determination result of the convergence of the flow potential from the calculation unit 50, and switches the liquid feeding direction of the pump 60 based on the determination result.
  • step ST16 the flow potential of the hydraulic fluid 4 is measured by the potential measuring unit 30. Specifically, in the potential measuring unit 30, the flow generated by the hydraulic fluid 4 flowing toward the second direction D2 in the second flow path 33 arranged between the first electrode 31 and the second electrode 32. The potential is measured by the measuring unit 34.
  • step ST17 the calculation unit 50 determines whether or not the absolute value of the amount of change in the flow potential per unit time has increased beyond the threshold value.
  • the calculation unit 17 determines whether or not the absolute value of the amount of change in the flow potential per unit time has increased beyond the threshold value, thereby determining the completion of discharge of the liquid 3.
  • the movable partition wall 21 of the gas is located in the pressure loss generation unit 10. Therefore, since the pressure loss in the pressure loss generation unit 10 is sharply reduced, the flow velocity of the hydraulic fluid 4 moving in the second direction D2 is sharply increased.
  • the absolute value of the flow potential measured by the potential measuring unit 30 also sharply increases.
  • the calculation unit 50 may set the unit time to 1 second and the threshold value to 0.1V. When the absolute value of the amount of change in the flow potential increases by more than 0.1 V in 1 second, the calculation unit 50 determines that the increase exceeds the threshold value.
  • step ST17 if the absolute value of the amount of change in the flow potential per unit time exceeds the threshold value, the flow proceeds to step ST18. If the absolute value of the amount of change in the flow potential per unit time does not exceed the threshold value, the flow returns to step ST16.
  • step ST18 the pump 60 is stopped by the pump control unit 64.
  • the pump control unit 64 sets the applied voltage applied to the pump 60 by the voltage adjusting unit 65 to 0V.
  • the applied voltage By setting the applied voltage to 0V, the liquid feeding pressure of the pump 60 can be set to 0. That is, the drive of the pump 60 can be stopped.
  • the pump control unit 64 receives the timing information for stopping the pump 60 from the calculation unit 50.
  • the timing information for stopping the pump 60 is, for example, a determination result of whether or not the absolute value of the amount of change in the flow potential per unit time exceeds the threshold value.
  • the pump control unit 64 receives the determination result of the change amount of the flow potential from the calculation unit 50, and stops the pump 60 at time t3 based on the determination result.
  • the viscosity can be measured as the characteristic of the liquid 3 by carrying out steps ST11 to ST18.
  • the fluid characteristic sensor 1B is connected to the potential measuring unit 30 and includes a pump 60 that sends the hydraulic fluid 4. With such a configuration, the hydraulic fluid 4 can be easily and appropriately sent.
  • the pump 60 is an electroosmotic flow pump and has a third electrode 61, a fourth electrode 62, and a third flow path 63.
  • the third electrode 61 is an electrode through which the hydraulic fluid 4 can pass.
  • the fourth electrode 62 is an electrode that is arranged at a distance from the third electrode 61 and through which the hydraulic fluid 4 can pass.
  • the third flow path 63 is arranged between the third electrode 61 and the fourth electrode 62, and is filled with the hydraulic fluid 4. Further, the third flow path 63 has a porous body provided with a plurality of holes.
  • the fluid characteristic sensor 1B includes a pump control unit 64 that controls the liquid feeding direction of the pump 60.
  • the liquid feeding direction includes a first direction D1 from the pressure loss generation unit 10 toward the pump 60, and a second direction D2 from the pump 60 toward the pressure loss generation unit 10 in the direction opposite to the first direction D1. With such a configuration, the liquid feeding direction of the pump 60 can be easily controlled.
  • the pump control unit 64 controls the liquid feeding direction of the pump 60 based on the measured value of the flow potential measured by the potential measuring unit 30. With such a configuration, the liquid feeding direction of the pump 60 can be adjusted at an appropriate timing.
  • the pump control unit 64 switches the liquid feeding direction to the second direction D2 after the liquid feeding direction is the first direction D1 and the measured value of the flow potential has converged. Further, the pump control unit 64 stops the pump 60 when the liquid feeding direction is the second direction D2 and the absolute value of the change amount of the flow potential per unit time increases beyond the threshold value. With such a configuration, the liquid feeding direction can be switched from the first direction D1 to the second direction D2 at a more appropriate timing. In addition, the pump 60 can be stopped at a more appropriate timing.
  • the pump 60 is an electroosmosis pump
  • the pump 60 may be any pump that can send the hydraulic fluid 4.
  • the fluid characteristic sensor 1B includes the pump control unit 64
  • the pump control unit 64 is not an essential configuration and may be included in a control device that controls the fluid characteristic sensor 1B.
  • the pump control unit 64 controls both the liquid feeding direction and the liquid feeding pressure of the pump 60 has been described, but the present invention is not limited to this.
  • the pump control unit 64 may at least be able to control the liquid feeding direction.
  • the measurement method includes steps ST11 to ST18
  • steps ST11 to ST18 may be divided, integrated, deleted and added, or the order may be changed.
  • step ST17 an example in which the calculation unit 50 determines whether or not the absolute value of the amount of change in the flow potential per unit time t s has increased beyond the threshold value has been described, but the present invention is limited to this. Not done.
  • step ST17 it suffices if it is possible to determine the end of discharge of the liquid 3.
  • the calculation unit 50 may determine whether or not the absolute value of the flow potential has increased beyond the threshold value.
  • step ST17A an example in which the calculation unit 50 determines whether or not the absolute value of the amount of change in the flow potential per unit time t s has decreased beyond the threshold value has been described, but the present invention is limited to this. Not done.
  • step ST17A it suffices if the inflow of the hydraulic fluid 4 into the pressure loss generation unit 10 can be determined.
  • the calculation unit 50 may determine whether or not the absolute value of the flow potential has decreased beyond the threshold value.
  • FIG. 17 is a graph showing another example of the change in the flow potential measured by the fluid characteristic sensor 1B of the second embodiment according to the present invention. As shown in FIG. 17, even if the liquid 3 is discharged at time t3, the absolute value of the amount of change in the flow potential per unit time may not exceed the threshold value. In such a case, if the hydraulic fluid 4 is continuously sent to the second direction D2 by the pump 60, the hydraulic fluid 4 flows out to the outside of the fluid characteristic sensor 1B.
  • FIG. 18 is a schematic view showing another example of the operation of the fluid characteristic sensor 1B according to the second embodiment of the present invention.
  • the hydraulic fluid 4 when the hydraulic fluid 4 is continuously sent to the second direction D2 by the pump 60 even after the liquid 3 has been discharged, the hydraulic fluid 4 flows through the pressure loss generation unit 10.
  • the pressure loss rapidly increases in the pressure loss generating unit 10.
  • the flow velocity (flow rate) of the hydraulic fluid 4 sharply decreases. Therefore, as shown in FIG. 17, the absolute value of the flow potential sharply decreases at the time t4 when the hydraulic fluid 4 flows through the pressure loss generating unit 10 and the pressure loss sharply increases.
  • FIG. 19 is a flowchart of an example of the measurement method of the modified example 4 of the second embodiment according to the present invention. Except for steps ST17A shown in FIG. 19, steps ST11 to ST18 are the same as steps ST11 to ST18 shown in FIG. 14, and thus the description thereof will be omitted. As shown in FIG. 19, if No in step ST17, the flow proceeds to step ST17A.
  • step ST17A the calculation unit 50 determines whether or not the absolute value of the amount of change in the flow potential per unit time has decreased beyond the threshold value. For example, the calculation unit 50 may set the unit time to 1 second and the threshold value to 0.1V. When the absolute value of the amount of change in the flow potential decreases by more than 0.1 V in 1 second, the calculation unit 50 determines that the decrease exceeds the threshold value.
  • step ST17A if the absolute value of the amount of change in the flow potential per unit time decreases beyond the threshold value, the flow proceeds to step ST18. If the absolute value of the amount of change in the flow potential per unit time has not decreased beyond the threshold value, the flow returns to step ST16.
  • step ST17 Even when the control of step ST17 does not function, it is possible to prevent the hydraulic fluid 4 from flowing out to the outside of the fluid characteristic sensor 1B by executing step ST17A.
  • the movable partition wall 21 has a volume larger than the flow path volume of the pressure loss generation unit 10. This makes it possible to more reliably measure the decrease in the absolute value of the amount of change in the flow potential.
  • the calculation unit 50 may calculate the suction amount of the liquid 3 based on the flow potential measured while sucking the liquid 3 to be measured.
  • the pump control unit 64 may control the pump 60 based on the suction amount of the liquid 3 calculated by the calculation unit 50, and may change the liquid feeding direction of the hydraulic fluid 4 from the first direction D1 to the second direction D2. ..
  • the pump control unit 64 changes the liquid feeding direction of the hydraulic fluid 4 from the first direction D1 to the second direction D2 before the suction amount of the liquid 3 exceeds the flow path volume from the potential measuring unit 30 to the outflow port 12. You may change it. With such a configuration, it is possible to prevent the liquid 3 from entering the potential measuring unit 30 and the pump 60. As a result, it is possible to suppress a decrease in measurement accuracy and a failure due to the fluid characteristic sensor 1B being contaminated with the liquid 3.
  • FIG. 20 is a flowchart of an example of the measurement method according to the third embodiment of the present invention.
  • FIG. 21 is a graph showing an example of a change in the flow potential measured by the fluid characteristic sensor according to the third embodiment of the present invention.
  • the first viscosity of the liquid 3 when the liquid 3 is sucked and the second viscosity of the liquid 3 when the liquid 3 is discharged are measured, and the first viscosity and the second viscosity are measured. It differs from the second embodiment in that the characteristics of the liquid 3 are determined based on the above.
  • the calculation unit 50 calculates the first viscosity of the liquid 3 based on the measured value of the flow potential when the liquid 3 is sucked, and when the liquid 3 is discharged.
  • the second viscosity of the liquid 3 is calculated based on the measured value of the flow potential.
  • the calculation unit 50 determines the characteristics of the liquid 3 based on the first viscosity and the second viscosity. Specifically, in the measuring method of the third embodiment, it is determined whether or not the liquid 3 is a fluid exhibiting thixotropy.
  • some fluids have the property that the viscosity decreases with time when flowed at a constant shear rate, and then returns to the original high viscosity state when the flow is stopped and rested for a while. This property is called thixotropy.
  • the viscosity changes with time, especially when passing through the pressure loss generating unit 10. Assuming that the time required for the liquid 3 to pass through the pressure loss generating unit 10 is ta seconds, the liquid 3 flows at a certain shear rate over the ta seconds, and the viscosity changes with time during that time.
  • Viscosity is a value between ⁇ 11 and ⁇ 12 (not necessarily the average value).
  • the first viscosity of the liquid 3 obtained from the measured value of the flow potential at the time of suction is compared with the second viscosity obtained from the measured value of the flow potential at the time of discharge, and if the values are different, the liquid is found. 3 can be determined to indicate thixotropy.
  • steps ST21 to ST25 shown in FIG. 20 are the same as steps ST11 to ST15 of the second embodiment, detailed description thereof will be omitted.
  • the liquid 3 is sucked and the first viscosity of the liquid 3 is calculated as the first characteristic of the liquid 3 to be measured.
  • step ST25 the hydraulic fluid 4 is sent to the second direction D2 by the pump 60.
  • step ST35 the pump control unit 64 controls the applied voltage applied to the pump 60 by the voltage adjusting unit 65.
  • the pump control unit 64 controls the pump 60 to apply an applied voltage of -12V.
  • the pump 60 sends the hydraulic fluid 4 to the second direction D2.
  • the liquid 3 in the fluid characteristic sensor 1B is discharged to the container 2.
  • step ST26 the flow potential of the hydraulic fluid 4 is measured by the potential measuring unit 30. Specifically, in the potential measuring unit 30, the flow generated by the hydraulic fluid 4 flowing toward the second direction D2 in the second flow path 33 arranged between the first electrode 31 and the second electrode 32. The potential is measured by the measuring unit 34. As shown in FIG. 21, the flow potential at which the discharge of the liquid 3 starts at time t2 is reversed. The absolute value of the flow potential decreases and converges with the passage of time, similar to the suction of the liquid 3.
  • step ST27 the calculation unit 50 determines whether or not the flow potential has converged. Similar to step ST23, the determination of the convergence of the flow potential is performed based on the threshold value of the amount of change in the flow potential per unit time ts . For example, the calculation unit 50 may determine that the flow potential has converged when the amount of change in the flow potential for 10 seconds is within ⁇ 0.02 V. The unit time ts is not limited to 10 seconds and may be set to any value. Further, the threshold value of the amount of change in the flow potential is not limited to ⁇ 0.02 V, and may be set to any value.
  • step ST27 if the flow potential has converged, the flow proceeds to step ST28. If the flow potential has not converged, the flow returns to step ST26.
  • step ST28 the second characteristic of the liquid 3 is calculated by the calculation unit 50 based on the measured flow potential. Specifically, the calculation unit 50 acquires the measured value when the flow potential converges, that is, the convergence value V 2 of the flow potential. The calculation unit 50 calculates the second viscosity of the liquid 3 based on the convergence value V 2 of the flow potential.
  • step ST29 the calculation unit 50 determines the characteristics of the liquid 3 based on the first viscosity and the second viscosity. Specifically, the calculation unit 50 compares the first viscosity and the second viscosity. When the first viscosity and the second viscosity are different, the calculation unit 50 determines that the liquid 3 is a fluid exhibiting thixotropy. When the first viscosity and the second viscosity are equal, the calculation unit 50 determines that the liquid 3 is a fluid showing no thixotropy.
  • the characteristics of the liquid 3 can be determined by carrying out steps ST21 to ST29. Specifically, in the measuring method of the third embodiment, it can be determined whether or not the liquid 3 is a fluid exhibiting thixotropy.
  • FIG. 22 is a table showing an example of the measurement conditions and measurement results of Examples 1 to 3.
  • FIG. 23 is a graph showing an example of the relationship between the viscosity and the shear rate of Examples 1 and 3.
  • the first viscosity of the liquid 3 at the time of suction and the second viscosity of the liquid 3 at the time of discharge were measured by using the fluid characteristic sensor of the third embodiment.
  • a Newtonian fluid, a non-Newtonian fluid showing no thixotropy, and a fluid showing thixotropy were used, respectively.
  • Examples 1 to 3 have the same conditions except for the type of liquid 3.
  • Example 3 the second viscosity of the liquid 3 at the time of discharge is smaller than the first viscosity of the liquid 3 at the time of suction.
  • the first viscosity at the time of suction and the second viscosity at the time of discharge are equal.
  • the calculation unit 50 calculates the first viscosity of the liquid 3 based on the measured value of the flow potential when the liquid feeding direction is the first direction D1, and the liquid feeding direction is the first.
  • the second viscosity of the liquid 3 is calculated based on the measured value of the flow potential in the two directions D2.
  • the calculation unit 50 determines the characteristics of the liquid 3 based on the first viscosity and the second viscosity. With such a configuration, the viscosity can be measured at the time of sucking and discharging the liquid 3. This can be applied to the determination of the type of the liquid 3. For example, the calculation unit 50 can determine whether or not the liquid 3 is a fluid exhibiting thixotropy based on the first viscosity and the second viscosity.
  • the measurement method includes steps ST21 to ST29
  • steps ST21 to ST29 may be divided, integrated, deleted and added, or the order may be changed.
  • step ST29 when the first viscosity and the second viscosity are equal, it is determined that the liquid 3 is a fluid showing no thixotropy, and when the first viscosity and the second viscosity are different, the liquid 3 is determined.
  • the calculation unit 50 may calculate the difference between the first viscosity and the second viscosity, and determine the characteristics of the liquid 3 based on the difference and a predetermined threshold value. For example, the calculation unit 50 may determine that the liquid 3 is a fluid exhibiting thixotropy when the difference exceeds a predetermined threshold value. The calculation unit 50 may determine that the liquid 3 is a fluid that does not exhibit thixotropy if the difference does not exceed a predetermined threshold.
  • FIG. 24 is a flowchart of an example of the measurement method of the fourth embodiment according to the present invention.
  • the fourth embodiment is different from the third embodiment in that the liquid feeding pressure at the time of sucking the liquid 3 and the liquid feeding pressure at the time of discharging the liquid 3 are different.
  • the characteristics of the liquid 3 are based on the first viscosity and the second viscosity of the liquid 3 measured by setting the liquid feeding pressures at the time of suction and the liquid discharge at the time of discharging the liquid 3 to be different. To judge. Specifically, in the measurement method of the fourth embodiment, it is determined whether the liquid 3 is a Newtonian fluid or a non-Newtonian fluid.
  • the viscosity of Newtonian fluid is constant regardless of the shear rate. Therefore, when the liquid 3 to be measured is a Newtonian fluid, the viscosity value calculated from the measured value of the flow potential is constant regardless of the liquid feeding pressure of the pump 60. On the other hand, the viscosity of non-Newtonian fluid changes depending on the shear rate. Therefore, when the liquid 3 to be measured is a non-Newtonian fluid, the viscosity value calculated from the measured value of the flow potential changes depending on the liquid feeding pressure of the pump.
  • steps ST32 to ST35 and steps ST37 to ST40 shown in FIG. 24 are the same as steps ST21 to ST28 of the third embodiment, detailed description thereof will be omitted.
  • the pump control unit 64 sets the liquid feed pressure of the pump 60 to the first pressure P1. Specifically, the liquid feed pressure is determined by the magnitude of the voltage applied to the pump 60.
  • the pump control unit 64 adjusts the voltage applied to the pump 60 by the voltage adjusting unit 65.
  • the pump control unit 64 sets the applied voltage of the pump 60 to + 12V. As a result, the liquid feeding pressure of the pump 60 is set to the first pressure P1.
  • steps ST32 to ST35 the first viscosity of the liquid 3 when the liquid 3 is sent (sucked) to the first direction D1 is calculated. Note that steps ST32 to ST35 are the same as steps ST21 to ST24 of the third embodiment.
  • step ST36 the pump control unit 64 sets the liquid feed pressure of the pump 60 to the second pressure P2.
  • the magnitude of the second pressure P2 is different from the magnitude of the first pressure P1.
  • the pump control unit 64 sets the applied voltage of the pump 60 to -24V. As a result, the liquid feeding pressure of the pump 60 is set to the second pressure P2.
  • steps ST37 to ST40 the second viscosity of the liquid 3 when the liquid 3 is sent (discharged) to the second direction D2 is calculated.
  • steps ST37 to ST40 are the same as steps ST25 to ST28 of Embodiment 3.
  • step ST41 the calculation unit 50 determines the characteristics of the liquid 3 based on the first viscosity and the second viscosity. Specifically, the calculation unit 50 compares the first viscosity and the second viscosity. When the first viscosity and the second viscosity are different, the calculation unit 50 determines that the liquid 3 is a non-Newtonian fluid. When the first viscosity and the second viscosity are equal, the calculation unit 50 determines that the liquid 3 is a Newtonian fluid.
  • the characteristics of the liquid 3 can be determined by carrying out steps ST31 to ST41. Specifically, in the measuring method of the fourth embodiment, it can be determined whether the liquid 3 is a Newtonian fluid or a non-Newtonian fluid.
  • FIG. 25 is a table showing an example of measurement conditions and measurement results of Examples 4 and 5.
  • FIG. 26 is a graph showing an example of the relationship between the viscosity and the shear rate of Examples 4 and 5.
  • the first viscosity of the liquid 3 at the time of suction and the second viscosity of the liquid 3 at the time of discharge were measured by using the fluid characteristic sensor of the fourth embodiment.
  • Newtonian fluid and non-Newtonian fluid were used as the liquid 3 to be measured, respectively.
  • Examples 4 and 5 have the same conditions except for the type of liquid 3.
  • the voltage applied to the pump 60 at the time of suction is increased and the voltage applied to the pump 60 at the time of discharge is increased.
  • the second pressure P2 at the time of discharge is made larger than the first pressure P1 at the time of suction.
  • Example 4 the first viscosity of the liquid 3 at the time of suction and the second viscosity of the liquid 3 at the time of discharge are equal.
  • Example 5 the second viscosity of the liquid 3 at the time of discharge is smaller than the first viscosity of the liquid 3 at the time of suction.
  • the Newtonian fluid of Example 4 has the same first viscosity and second viscosity even if the liquid feeding pressures at the time of suction and at the time of discharge are different.
  • the non-Newtonian fluid of Example 5 has different first and second viscosities when the liquid feeding pressures at the time of suction and at the time of discharge are different. Therefore, by comparing the first viscosity and the second viscosity measured using the fluid characteristic sensor of the fourth embodiment, it is determined whether the liquid 3 to be measured is a Newtonian fluid or a non-Newtonian fluid. can do.
  • the pump control unit 64 sets the liquid feeding pressure of the pump 60 when the liquid feeding direction is the first direction D1 to the first pressure P1, and the liquid feeding direction is the second direction.
  • the liquid feeding pressure of the pump 60 when it is D2 is set to a second pressure P2 different from the first pressure P1.
  • the calculation unit 50 can determine whether the liquid 3 is a Newtonian fluid or a non-Newtonian fluid based on the first viscosity and the second viscosity measured at different liquid feeding pressures.
  • the measurement method includes steps ST31 to ST41
  • steps ST31 to ST41 may be divided, integrated, deleted and added, or the order may be changed.
  • step ST41 when the first viscosity and the second viscosity are equal, it is determined that the liquid 3 is a Newtonian fluid, and when the first viscosity and the second viscosity are different, the liquid 3 is a non-Newtonian fluid.
  • the calculation unit 50 may calculate the difference between the first viscosity and the second viscosity, and determine the characteristics of the liquid 3 based on the difference and a predetermined threshold value. For example, the calculation unit 50 may determine that the liquid 3 is a non-Newtonian fluid when the difference exceeds a predetermined threshold value. The calculation unit 50 may determine that the liquid 3 is a Newtonian fluid if the difference does not exceed a predetermined threshold.
  • FIG. 27 is a flowchart of an example of the measurement method of the fifth embodiment according to the present invention.
  • FIG. 28 is a graph showing an example of a change in the flow potential measured by the fluid characteristic sensor according to the fifth embodiment of the present invention.
  • the fifth embodiment is different from the second embodiment in that the viscosity of the liquid 3 is measured by changing the liquid feeding pressure stepwise.
  • the characteristics of the liquid 3 are determined based on a plurality of viscosities measured by changing the liquid feeding pressure stepwise at the time of suction and / or at the time of discharging the liquid 3 to be measured. Specifically, in the measuring method of the fifth embodiment, it is determined whether the liquid 3 is a Newtonian fluid, a pseudoplastic fluid, or a Bingham fluid.
  • the viscosity data that changes in relation to the liquid feeding pressure.
  • the tendency of the viscosity to change differs depending on the fluid. For example, in the case of Newtonian fluid, the viscosity does not change even if the liquid feed pressure changes. In the case of quasi-plastic fluid, the viscosity decreases in proportion to the liquid feed pressure. In the case of Bingham fluid, it decreases sharply as the liquid feeding pressure increases, but becomes constant when the predetermined liquid feeding pressure is exceeded.
  • the characteristics of the liquid 3 to be measured can be determined based on the tendency of the viscosity change measured by changing the liquid feeding pressure stepwise.
  • steps ST52 to ST55, ST57 to ST59, and ST61 to ST63 shown in FIG. 27 are the same as steps ST11 to ST14 of the second embodiment, detailed description thereof will be omitted.
  • the pump control unit 64 sets the liquid feeding pressure of the pump 60 to the first pressure P1. Specifically, the liquid feed pressure is determined by the magnitude of the voltage applied to the pump 60.
  • the pump control unit 64 adjusts the voltage applied to the pump 60 by the voltage adjusting unit 65.
  • the pump control unit 64 sets the applied voltage of the pump 60 at the time of the first suction to + 12V. As a result, the liquid feeding pressure of the first suction of the pump 60 is set to the first pressure P1.
  • steps ST52 to ST55 the first viscosity of the liquid 3 at the time of the first suction is calculated.
  • steps ST52 to ST54 are the same as steps ST11 to ST14 of the second embodiment.
  • the pump 60 sends the hydraulic fluid 4 to the first direction D1 at the first pressure P1 to carry out the first suction of the liquid 3.
  • the first suction is started at time t11 .
  • the flow potential increases.
  • the flow potential decreases with the passage of time.
  • the calculation unit 50 calculates the first viscosity of the liquid 3 by using the convergence value V 11 when the flow potential converges in the first suction.
  • step ST56 the pump control unit 64 sets the liquid feed pressure of the pump 60 to the second pressure P2.
  • the second pressure P2 is different from the first pressure P1.
  • the second pressure P2 is set to be larger than the first pressure P1.
  • the pump control unit 64 sets the applied voltage of the pump 60 at the time of the second suction to + 18V. As a result, the liquid feeding pressure of the second suction of the pump 60 is set to the second pressure P2.
  • steps ST57 to ST59 the second viscosity of the liquid 3 at the time of the second suction is calculated.
  • steps ST57 to ST59 are the same as steps ST12 to ST14 of the second embodiment.
  • the pump 60 sends the hydraulic fluid 4 to the first direction D1 at the second pressure P2 to carry out the second suction of the liquid 3.
  • the second suction increases.
  • the flow potential decreases with the passage of time.
  • the calculation unit 50 calculates the second viscosity of the liquid 3 by using the convergence value V 12 when the flow potential converges in the second suction.
  • step ST60 the pump control unit 64 sets the liquid feed pressure of the pump 60 to the third pressure P3.
  • the third pressure P3 is different from the first pressure P1 and the second pressure P2.
  • the third pressure P3 is set to be larger than the second pressure P2.
  • the pump control unit 64 sets the applied voltage of the pump 60 at the time of the third suction to + 24V.
  • the liquid feeding pressure of the third suction of the pump 60 is set to the third pressure P3.
  • steps ST61 to ST63 the third viscosity of the liquid 3 at the time of the third suction is calculated.
  • steps ST61 to ST63 are the same as steps ST12 to ST14 of the second embodiment.
  • the pump 60 sends the hydraulic fluid 4 to the first direction D1 at the third pressure P3 to carry out the third suction of the liquid 3.
  • the third suction is started at time t13
  • the flow potential increases.
  • the flow potential decreases with the passage of time.
  • the calculation unit 50 calculates the third viscosity of the liquid 3 by using the convergence value V 13 when the flow potential converges in the third suction.
  • step ST64 the hydraulic fluid 4 is sent to the second direction D2 by the pump 60. As a result, the liquid 3 is discharged.
  • the calculation unit 50 determines the characteristics of the liquid 3 based on the first viscosity, the second viscosity, and the third viscosity. Specifically, the calculation unit 50 calculates the tendency of the viscosity of the liquid 3 to change with the change of the liquid feeding pressure based on the first viscosity, the second viscosity and the third viscosity. The calculation unit 50 determines the characteristics of the liquid 3 based on the tendency of the viscosity of the liquid 3 to change with the change of the liquid feeding pressure. For example, the calculation unit 50 determines whether the liquid 3 is a Newtonian fluid, a pseudoplastic fluid, or a Bingham fluid, based on the tendency of the viscosity of the liquid 3 to change with the change in the liquid feeding pressure.
  • the characteristics of the liquid 3 can be determined by carrying out steps ST51 to ST65. Specifically, in the measuring method of the fifth embodiment, it is possible to determine whether the liquid 3 is a Newtonian fluid, a pseudoplastic fluid, or a Bingham fluid.
  • FIG. 29 is a table showing an example of the measurement conditions and measurement results of Examples 6 to 9.
  • FIG. 30 is a graph showing an example of the relationship between the viscosity and the shear rate of Examples 1 and 3.
  • the first viscosity of the liquid 3 at the time of the first suction the second viscosity of the liquid 3 at the time of the second suction, and the second viscosity using the fluid characteristic sensor of the fifth embodiment are shown. 3
  • the third viscosity of the liquid 3 at the time of suction was measured.
  • Newtonian fluid, first pseudoplastic fluid, second pseudoplastic fluid, and Bingham fluid were used as the liquid 3 to be measured, respectively.
  • Examples 6 to 9 have the same conditions except for the type of liquid 3.
  • the shear rate on the horizontal axis is proportional to the flow potential (flow rate of the liquid 3).
  • Example 6 the viscosity of the liquid 3 does not change regardless of the change in the shear rate (liquid feeding pressure), and is a constant value.
  • the viscosity of the liquid 3 gradually decreases as the shear rate (liquid feeding pressure) increases.
  • Example 9 the viscosity of the liquid 3 sharply decreases with an increase in the shear rate (liquid feeding pressure) and then becomes a constant value.
  • the tendency of the viscosity to change with the change of the liquid feeding pressure is different.
  • the liquid 3 to be measured is a Newtonian fluid, a quasi-plastic fluid, a quasi-plastic fluid, or a Bingham fluid, based on the tendency of the viscosity to change with the change in the liquid feeding pressure.
  • the pump control unit 64 changes the liquid feeding pressure stepwise. With such a configuration, it can be applied to the determination of the characteristics of the liquid 3.
  • the calculation unit 50 may determine whether the liquid 3 is a Newtonian fluid, a quasi-plastic fluid, a quasi-plastic fluid, or a Bingham fluid based on information on a plurality of viscosities measured at different liquid feeding pressures. can.
  • the pump control unit 64 changes the liquid feeding pressure in three stages, but the present invention is not limited to this.
  • the pump control unit 64 may change the liquid feed pressure in two or more steps.
  • the pump control unit 64 changes the liquid feeding pressure at the time of suction of the liquid 3 in a stepwise manner
  • the present invention is not limited to this.
  • the pump control unit 64 may change the liquid feeding pressure at the time of discharging the liquid 3 step by step.
  • FIG. 31 is a schematic view of the fluid characteristic sensor 100A of Comparative Example 1.
  • the fluid characteristic sensor 100A of Comparative Example 1 has the same configuration as the fluid characteristic sensor 1B of the second embodiment except that the movable partition wall 21 and the hydraulic fluid 4 are not provided. That is, in Comparative Example 1, the flow potential of the liquid 3 to be measured is measured.
  • FIG. 32 is a graph showing an example of a change in the flow potential measured by the fluid characteristic sensor 100A of Comparative Example 1.
  • FIG. 32 shows an example of a change in the flow potential when the liquid 3 to be measured is a non-polar solvent. As shown in FIG. 32, when the flow potential of the non-polar solvent was measured by the fluid characteristic sensor 100A of Comparative Example 1, the flow potential could not be measured. As described above, in Comparative Example 1, it is not possible to measure a liquid such as a non-polar solvent in which a flow potential is unlikely to occur.
  • the fluid characteristic sensor 1B of the second embodiment according to the present invention has a configuration in which the liquid 3 to be measured and the hydraulic fluid 4 which is a polar solvent are partitioned by a movable partition wall 21. Therefore, the flow potential generated by the flow of the hydraulic fluid 4 can be measured, and the liquid 3 such as a non-polar solvent can also be measured.
  • Comparative Example 2 has the same configuration as the fluid characteristic sensor 1B of the second embodiment except that the pump cannot change the liquid feeding direction.
  • FIG. 33 is a graph showing an example of a change in the flow potential measured by the fluid characteristic sensor of Comparative Example 2. As shown in FIG. 33, in Comparative Example 2 in which the liquid 3 to be measured cannot be discharged, the liquid 3 is continuously sucked. When the liquid 3 is continuously sucked, the movable partition wall 21 of the gas and the liquid 3 infiltrate into the potential measuring unit 30, so that the flow potential becomes 0. Therefore, measurement becomes impossible. On the other hand, in the fluid characteristic sensor 1B of the second embodiment according to the present invention, since the pump 60 capable of changing the liquid feeding direction is used, the liquid 3 can be sucked and discharged. This makes it possible to continuously measure the characteristics of the liquid 3.
  • Comparative Example 3 has the same configuration as the fluid characteristic sensor 1B of the second embodiment except that the stop control of the pump 60 based on the flow potential is not performed.
  • FIG. 34 is a graph showing an example of a change in the flow potential measured by the fluid characteristic sensor of Comparative Example 3. As shown in FIG. 34, in Comparative Example 3 in which the stop control of the pump 60 based on the flow potential is not performed, the liquid 3 is continuously discharged. Therefore, the movable partition wall 21 of the gas and the hydraulic fluid 4 pass through the pressure loss generation unit 10 and flow out to the outside of the fluid characteristic sensor. Therefore, the hydraulic fluid 4 is mixed with the liquid 3 in the container 2.
  • the stop control of the pump 60 is controlled based on the flow potential, it is possible to suppress the hydraulic fluid 4 from flowing out to the outside of the fluid characteristic sensor 1B. can.
  • FIG. 35 is a schematic configuration diagram of an example of the fluid characteristic sensor of the sixth embodiment according to the present invention.
  • FIG. 36 is a schematic exploded view of the fluid characteristic sensor shown in FIG. 35.
  • the illustration of the hydraulic fluid 4 is omitted.
  • the second embodiment is in that the attachment portion 22 having the outflow port 12 and the pressure loss generation portion 10 is detachably attached to the main body 23 having at least a part of the first flow path 20A. Different from.
  • the fluid characteristic sensor 1D of the sixth embodiment further includes a mounting portion 22, a main body 23, and a connector 24.
  • the connector 24 is not an essential configuration.
  • the mounting portion 22 has an outflow port 12 through which the fluid 3 flows in and out and a pressure loss generation portion 10.
  • the attachment portion 22 is detachably attached to the main body 23.
  • the mounting portion 22 has, for example, a tubular shape having one end and the other end.
  • the mounting portion 22 has, for example, a cylindrical shape.
  • the mounting portion 22 may be composed of, for example, piping.
  • the mounting portion 22 has an outflow port 12, a fluid flow path 11, a pressure loss generation unit 10, and a first connection flow path 25.
  • An outflow port 12 is provided at one end of the mounting portion 22, and an opening of the first connection flow path 25 is provided at the other end of the mounting portion 22.
  • the first connection flow path 25 is connected to the pressure loss generation unit 10 and forms a part of the first flow path 20A.
  • the first connection flow path 25 has, for example, a cylindrical shape.
  • the flow path cross-sectional area of the first connection flow path 25 is larger than the flow path cross-sectional area of the pressure loss generation unit 10.
  • a first female thread portion 25a is provided on the inner wall of the first connection flow path 25.
  • the first female threaded portion 25a is screwed with the first male threaded portion 24a of the connector 24.
  • the main body 23 has at least a part of the first flow path 20A.
  • a mounting portion 22 is detachably mounted on the main body 23.
  • the main body 23 has, for example, a tubular shape having one end and the other end.
  • the main body 23 has, for example, a cylindrical shape.
  • the main body 23 may be composed of, for example, piping.
  • the main body 23 has a second connection flow path 26, a potential measuring unit 30, a hydraulic fluid flow path 40, and a pump 60.
  • An opening of the second connection flow path 26 is provided at one end of the main body 23, and an opening of the hydraulic fluid flow path 40 is provided at the other end (open end 41) of the main body 23.
  • the second connection flow path 26 is connected to the potential measuring unit 30 and forms a part of the first flow path 20A.
  • the second connection flow path 26 has, for example, a cylindrical shape.
  • the flow path cross-sectional area of the second connection flow path 26 is larger than the flow path cross-sectional area of the pressure loss generation unit 10.
  • the flow path cross-sectional area of the second connection flow path 26 is equal to the flow path cross-sectional area of the first connection flow path 25.
  • a second female thread portion 26a is provided on the inner wall of the second connection flow path 26.
  • the second female threaded portion 26a is screwed with the second male threaded portion 24b of the connector 24.
  • the attachment portion 22 is attached to the main body 23 by the connector 24.
  • the connector 24 is a cylindrical member having one end and the other end. The outer walls on one end side and the other end side of the connector 24 are provided with a first male threaded portion 24a and a second male threaded portion 24b, respectively. Further, the connector 24 has a third connection flow path 27.
  • the connector 24 is, for example, a nipple.
  • the flow path cross-sectional area of the third connection flow path 27 is larger than the flow path cross-sectional area of the pressure loss generation unit 10.
  • the third connection flow path 27 forms a part of the first flow path 20A. Specifically, when the mounting portion 22 and the main body 23 are attached via the connector 24, the first connection flow path 25, the second connection flow path 26, and the third connection flow path 27 communicate with each other, and the first flow path 20A is formed.
  • the first flow path 20A is configured to be separable into a plurality of flow paths. Specifically, the first flow path 20A is configured to be separable into a first connection flow path 25, a second connection flow path 26, and a third connection flow path 27.
  • FIGS. 37A to 37D are schematic views showing an example of a manufacturing process of the fluid characteristic sensor 1D according to the sixth embodiment of the present invention.
  • 37A and 37B show an example of the manufacturing process of the mounting portion 22, and
  • FIGS. 37C and 37D show an example of the manufacturing process of the main body 23.
  • the elements constituting the mounting portion 22 are arranged in the mold 5A.
  • the mold 5A is formed in a concave shape.
  • the fluid flow path 11, the pressure loss generation unit 10, and the first connection flow path 25 are arranged in the mold 5A in a connected state.
  • the first connection flow path 25 is, for example, a resin pipe provided with a first female thread portion 25a on the inner wall.
  • the openings of the outflow port 12 of the fluid flow path 11 and the opening of the first connection flow path 25 are in a state of being pressed against the inner wall of the mold 5A. That is, the openings of the outflow port 12 and the first connection flow path 25 are sealed by the inner wall of the mold 5A.
  • these elements may be adhered with an adhesive or the like.
  • the molten encapsulant 6 is introduced into the mold 5A in which the elements constituting the mounting portion 22 are arranged and cured. After the sealing material 6 is cured, the mold 5A is removed to obtain a mounting portion 22.
  • the elements constituting the main body 23 are arranged in the mold 5B.
  • the mold 5B is formed in a concave shape.
  • the second connection flow path 26, the potential measuring unit 30, the hydraulic fluid flow path 40, and the pump 60 are arranged in the mold 5B in a connected state.
  • the second connection flow path 26 is, for example, a resin pipe provided with a second female thread portion 26a on the inner wall.
  • the opening of the second connection flow path 26 and the open end 41 of the hydraulic fluid flow path 40 are in a state of being pressed against the inner wall of the mold 5B. That is, the opening of the second connection flow path 26 and the open end 41 of the hydraulic fluid flow path 40 are sealed by the inner wall of the mold 5B.
  • these elements may be adhered with an adhesive or the like.
  • the molten encapsulant 6 is introduced into the mold 5B in which the elements constituting the main body 23 are arranged and cured. After the sealing material 6 is cured, the mold 5B is removed to obtain the main body 23. After that, the hydraulic fluid 4 is put inside the main body 23.
  • the fluid characteristic sensor 1D can be manufactured.
  • the fluid characteristic sensor 1D has a mounting portion 22 having an outflow port 12 for flowing in and out of fluid and a pressure loss generating portion 10, and a main body having at least a part of the first flow path 20A to which the mounting portion 22 is detachably mounted. 23 and.
  • the mounting portion 22 having the outflow port 12 can be easily mounted and removed from the main body 23. That is, in the fluid characteristic sensor 1D, the mounting portion 22 having the outflow port 12 and the pressure loss generating portion 10 can be replaced. As a result, when the measurement target is changed, the measurement can be easily performed by exchanging the mounting portion 22, and the usability of the user is improved.
  • fluid characteristic sensor 1D can be used for different measurement targets by exchanging the mounting portion 22, it is not necessary to clean the fluid characteristic sensor 1D.
  • the mounting portion 22 can be easily replaced, it is possible to shorten the time until the next measurement is performed by changing the measurement target.
  • the measurement accuracy can be improved. For example, by replacing with a mounting portion 22 having a pressure loss generating portion 10 having an optimum flow path diameter according to the viscosity of the fluid, it is possible to carry out highly accurate viscosity measurement over a wide viscosity range.
  • the pressure loss generated by the pressure loss generation unit 10 is larger than the pressure loss generated by the surrounding flow path or the potential measurement unit 30, so that the viscosity change of the measurement target is changed.
  • the amount of fluctuation in the flow rate is large. This improves the measurement accuracy.
  • the smaller the flow path diameter the smaller the flow rate that can be obtained. Therefore, in the case of high viscosity, only a minute flow rate is generated, and the measurement accuracy of the flow potential may decrease. Therefore, it is possible to carry out highly accurate viscosity measurement by replacing it with a mounting portion 22 having a pressure loss generating portion 10 having a suitable flow path diameter according to the viscosity range to be measured.
  • the present invention is not limited to this.
  • the connector 24 is not essential.
  • the mounting portion 22 may be directly mounted on the main body 23.
  • a male screw portion may be provided on the outer wall of the mounting portion 22.
  • the present invention is not limited to this.
  • the first connection flow path 25 does not have to form a part of the first flow path 20A.
  • the first connection flow path 25 may be used as a portion connected to the main body 23.
  • the mounting portion 22, the main body 23, and the connecting tool 24 are connected by screws, but the present invention is not limited to this.
  • the mounting portion 22, the main body 23, and the connecting tool 24 may be connected by a mechanism other than a screw.
  • FIG. 38 is a schematic configuration diagram of an example of the fluid characteristic sensor of the seventh embodiment according to the present invention.
  • the seventh embodiment is different from the second embodiment in that the partition wall 21A is a solid.
  • the partition wall 21A is formed of a solid.
  • the partition wall 21A is made of rubber, plastic, or the like.
  • the rubber include fluororubber, chloroprene rubber, nitrile rubber, ethylene propylene diene rubber, silicone rubber and the like.
  • the plastic include polytetrafluoroethylene, polyethylene, polypropylene, cycloolefin polymer, cyclic olefin copolymer and the like.
  • the "partition wall 21A" may be referred to as a "solid partition wall 21A".
  • the solid partition wall 21A is formed of a plate-shaped member.
  • the solid partition wall 21A has a disk shape.
  • the solid partition wall 21A is movably arranged in the first flow path 20. Specifically, the solid partition wall 21A moves while being in contact with the inner wall 20a of the first flow path 20.
  • the outer diameter of the solid partition wall 21A is substantially equal to, for example, the flow path diameter of the first flow path 20.
  • the outer diameter of the solid partition wall 21A may be 5% or less larger than the flow path diameter of the first flow path 20. With such a configuration, it is possible to move in the first flow path 20 while ensuring the sealing property of the solid partition wall 21A.
  • a lid 42 is arranged at the open end 41A of the hydraulic fluid flow path 40.
  • the lid 42 is provided with a through hole 43.
  • the through hole 43 has a diameter of 1 mm.
  • the partition wall 21A is a solid.
  • the fluid to be measured and the hydraulic fluid 4 can be easily separated. Further, even when the fluid characteristic sensor 1E is subjected to vibration or inclination, the fluid and the hydraulic fluid 4 can be separated more reliably, so that the fluid to be measured is suppressed from being mixed in the hydraulic fluid 4. Can be done.
  • the partition wall 21A is a solid, it is easier to secure the sealing property between the partition wall 21A and the inner wall 20a of the first flow path 20 as compared with the gas partition wall. Therefore, it is possible to improve the degree of freedom in the installation location and installation form of the fluid characteristic sensor 1E.
  • the fluid characteristic sensor 1E can be installed in the direction of gravity, the horizontal direction, or a direction oblique to these directions.
  • FIG. 39 is a schematic configuration diagram of an example of the fluid characteristic sensor of the modified example 5 of the seventh embodiment according to the present invention.
  • the fluid characteristic sensor 1EA of the modified example 5 is a combination of the configuration of the fluid characteristic sensor 1D of the sixth embodiment and the solid partition wall 21A of the seventh embodiment.
  • the solid partition wall 21A is arranged in the second connection flow path 26 forming a part of the first flow path 20A. That is, in the fluid characteristic sensor 1EA, the solid partition wall 21A may be arranged in the first flow path 20A on the main body 23 side.
  • FIG. 40 is a schematic configuration diagram of an example of the fluid characteristic sensor of the modification 6 of the seventh embodiment according to the present invention.
  • the fluid characteristic sensor 1EB of the modification 6 is a combination of the configuration of the fluid characteristic sensor 1D of the sixth embodiment and the solid partition wall 21A of the seventh embodiment.
  • the solid partition wall 21A is arranged in the first connection flow path 25 forming a part of the first flow path 20A. That is, in the fluid characteristic sensor 1EB, the solid partition wall 21A may be arranged in the first flow path 20A on the mounting portion 22 side.
  • FIG. 41 is a schematic view showing another example of the solid partition wall.
  • the solid partition wall 21B has a concave partition wall body 28 having a concave shape and elastically deformable, and a flange 29 protruding outward from the outer wall of the partition wall body 28.
  • the partition wall body 28 has a bottomed tubular shape. Specifically, the partition wall body 28 has a bottom portion 28a and a side wall 28b.
  • the bottom 28a has a disk shape.
  • the side wall 28b has a cylindrical shape extending from the outer periphery of the bottom 28a in the thickness direction of the bottom 28a.
  • the side wall 28b has one end and the other end.
  • a bottom portion 28a is arranged at one end of the side wall 28b.
  • the other end of the side wall 28b is an end opposite to one end and is open. That is, the other end of the side wall 28b forms an open end 28c.
  • the partition wall body 28 is formed so as to be elastically deformable by receiving an external force.
  • the flange 29 projects radially outward from the side wall 28b of the partition wall body 28.
  • the flange 29 is provided at the other end of the side wall of the partition wall main body 28.
  • the flange 29 has a ring shape.
  • the flange 29 is used as a portion for gripping the solid partition wall 21B.
  • the solid partition wall 21B is made of rubber, for example.
  • examples of the rubber material include ethylene propylene diene rubber (EPDM), cryonitrile butadiene rubber (NBR), and fluororubber (FKM).
  • FIG. 42 is a schematic configuration diagram of an example of the fluid characteristic sensor of the modification 7 of the embodiment 7 according to the present invention. As shown in FIG. 42, the fluid characteristic sensor 1EC of the modification 7 includes the solid partition wall 21B shown in FIG. 41.
  • the solid partition wall 21B is fixed in the first flow path 20. Specifically, the solid partition wall 21B is fixed by sandwiching the flange 29 of the solid partition wall 21B.
  • the bottom portion 28a of the solid partition wall 21B is arranged in a direction intersecting the inner wall 20a of the first flow path 20, and the side wall 28b is arranged along the inner wall 20a of the first flow path 20.
  • FIGS. 43A and 43B are schematic views illustrating an example of the operation of the solid partition wall.
  • 43A and 43B show an example of an operation of sucking the liquid 3 to be measured toward the first direction D1.
  • the solid partition wall 21B is elastically deformed.
  • an inward force is generated with respect to the partition wall main body 28 of the solid partition wall 21B.
  • the side wall 28b of the partition wall body 28 is elastically deformed so as to be recessed inward in the radial direction, and the bottom portion 28a of the partition wall body 28 moves toward the first direction D1.
  • the solid partition wall 21B is elastically deformed, so that the hydraulic fluid 4 flows in the first direction D1.
  • the potential measuring unit 30 can measure the flow potential generated when the hydraulic fluid 4 flows.
  • the volume of the space surrounded by the partition wall main body 28 of the solid partition wall 21B changes to some extent because the pressure loss generation unit 10 is sucked until the liquid 3 is filled.
  • the side wall 28b is deformed so as to be recessed inward in the radial direction, and the bottom 28a moves toward the first direction D1. Therefore, the volume of the space surrounded by the partition wall main body 28 can be changed relatively greatly. This makes it possible to measure the viscosity without increasing the size of the fluid characteristic sensor 1EC.
  • FIG. 44 is a schematic configuration diagram of an example of the fluid characteristic sensor of the modified example 8 of the seventh embodiment according to the present invention. As shown in FIG. 44, in the fluid characteristic sensor 1ED of the modification 8, the solid partition wall 21B is combined with the configuration of the fluid characteristic sensor 1D of the sixth embodiment.
  • the fluid characteristic sensor 1ED has a plurality of solid partition walls 21B.
  • the plurality of solid partition walls 21B are arranged in the first connection flow path 25 and the second connection flow path 26, respectively, which form a part of the first flow path 20A.
  • the plurality of solid partition walls 21B include a first solid partition wall 21BA and a second solid partition wall 21BB.
  • the first solid partition wall 21BA is arranged in the first connection flow path 25 of the mounting portion 22, and the second solid partition wall 21BB is arranged in the second connection flow path 26 of the main body 23.
  • the liquid 3 to be measured comes into contact with the first solid partition wall 21BA, but the hydraulic fluid 4 does not come into contact with it.
  • the hydraulic fluid 4 comes into contact with the second solid partition wall 21BB, but the liquid 3 does not.
  • the flow path between the first solid partition wall 21BA and the second solid partition wall 21BB is filled with gas.
  • FIG. 45 is a schematic configuration diagram of an example of the fluid characteristic sensor of the modified example 9 of the seventh embodiment according to the present invention. As shown in FIG. 45, in the fluid characteristic sensor 1EE of the modified example 9, the configuration of the fluid characteristic sensor 1ED of the modified example 8 is combined with the third solid partition wall 21BC.
  • the plurality of solid partition walls 21B include the first solid partition wall 21BA, the second solid partition wall 21BB, and the third solid partition wall 21BC.
  • the first solid partition wall 21BA is arranged in the first connection flow path 25 of the mounting portion 22
  • the second solid partition wall 21BB is arranged in the second connection flow path 26 of the main body 23
  • the third solid partition wall 21BC is the hydraulic fluid flow path 40. Is located in.
  • the third solid partition wall 21BC seals the open end 41 side of the hydraulic fluid flow path 40. As a result, even when the fluid characteristic sensor 1EE is tilted or turned upside down, the leakage of the hydraulic fluid 4 can be suppressed by the third solid partition wall 21BC.
  • FIG. 46 is a schematic configuration diagram of an example of the fluid characteristic sensor of the modified example 10 of the seventh embodiment according to the present invention. As shown in FIG. 46, the fluid characteristic sensor 1EF of the modified example 10 is different from the fluid characteristic sensor 1EC of the modified example 7 in that the solid partition wall 21B is arranged at the step 20c. Other configurations in the fluid characteristic sensor 1EF of the modified example 10 are the same as those of the fluid characteristic sensor 1EC of the modified example 7.
  • the solid partition wall 21B is arranged at the step 20c.
  • the step 20c is a portion where the pressure loss generation unit 10 and the first flow path 20 are connected. Since the flow path diameter of the pressure loss generation unit 10 is smaller than the flow path diameter of the first flow path 20, a step 20c is formed at a portion where the pressure loss generation unit 10 and the first flow path 20 are connected.
  • the step 20c has a surface extending in a direction intersecting the extending direction (Z direction) of the first flow path 20. In the fluid characteristic sensor 1EF, the step 20c has a surface extending in a direction orthogonal to the extending direction (Z direction) of the first flow path 20.
  • the bottom 28a of the solid partition wall 21B is in contact with the step 20c.
  • the solid partition wall 21B is supported by the step 20c.
  • the step 20c supports the bottom portion 28a of the solid partition wall 21B.
  • the solid partition wall 21B from being deformed beyond the limit of strength.
  • damage to the solid partition wall 21B can be suppressed.
  • FIG. 47 is a schematic configuration diagram of an example of the fluid characteristic sensor of the modified example 11 of the seventh embodiment according to the present invention. As shown in FIG. 47, the fluid characteristic sensor 1EG of the modified example 11 differs from the fluid characteristic sensor 1EF of the modified example 10 in that the solid partition wall 21B is arranged upside down. Other configurations of the fluid characteristic sensor 1EG of the modified example 11 are the same as those of the fluid characteristic sensor 1EF of the modified example 10.
  • the open end 28c of the solid partition wall 21B is arranged at the step 20c.
  • the open end 28c is an end provided with an opening and is the other end of the side wall 28b.
  • the open end 28c is connected to the pressure loss generation unit 10. That is, the flow path of the pressure loss generation unit 10 is in a state of communicating with the opening of the opening end 28c.
  • the solid partition wall 21B is deformed so as to be recessed inward in the state before the liquid 3 to be measured is sucked in the first direction D1.
  • an outward force is generated with respect to the partition wall main body 28 of the solid partition wall 21B.
  • the side wall 28b of the solid partition wall 21B moves toward the inner wall 20a of the first flow path 20, and the bottom 28a moves toward the first direction D1.
  • the hydraulic fluid 4 flows in the first direction D1.
  • the potential measuring unit 30 can measure the flow potential generated when the hydraulic fluid 4 flows.
  • 48A and 48B are schematic views illustrating an example of the operation of the solid partition wall in the modified example 11.
  • 48A and 48B show an example of an operation of sucking the liquid 3 to be measured and then sending the liquid 3 toward the second direction D2.
  • the solid partition wall 21B is elastically deformed.
  • an inward force is generated with respect to the partition wall main body 28 of the solid partition wall 21B.
  • the side wall 28b of the partition wall body 28 is elastically deformed so as to be recessed inward in the radial direction, and the bottom portion 28a of the partition wall body 28 moves toward the second direction D2.
  • the opening end 28c of the solid partition wall 21B is connected to the pressure loss generation unit 10, and the flow path of the pressure loss generation unit 10 communicates with the opening of the opening end 28c. Therefore, even if the bottom portion 28a and the side wall 28b of the solid partition wall 21B are elastically deformed when the liquid 3 is sent to the second direction D2, it is difficult to close the pressure loss generating portion 10. This makes it possible to prevent the liquid 3 from remaining in the first flow path 20 when the liquid 3 is sent to the second direction D2 and discharged in the fluid characteristic sensor 1EG.
  • FIG. 49 is a schematic view showing another example of the solid partition wall.
  • the solid partition wall 21C may have a partition wall body 28A recessed in a hemisphere and a flange 29. Even in such a configuration, the hydraulic fluid 4 flows in the first direction D1 due to the elastic deformation of the partition wall main body 28A. As a result, the potential measuring unit 30 can measure the flow potential generated when the hydraulic fluid flows.
  • the shapes of the solid partition walls 21B and 21C are not limited to the above-mentioned examples.
  • the solid partition walls 21B and 21C may be solids that are formed by being recessed in a concave shape and that can be elastically deformed. Further, the solid partition walls 21B and 21C are preferably formed of a shape or material that elastically deforms so that the displacement of the hydraulic fluid 4 in the flow direction becomes large.
  • FIG. 50 is a schematic configuration diagram of an example of the fluid characteristic sensor of the eighth embodiment according to the present invention.
  • the eighth embodiment is different from the second embodiment in that it has a nozzle 70.
  • the fluid characteristic sensor 1F of the eighth embodiment has a nozzle 70.
  • the nozzle 70 has an outflow port 12 and a pressure loss generation unit 10.
  • the nozzle 70 has an outer diameter smaller than the outer diameter of the main body portion of the fluid characteristic sensor 1F.
  • the fluid characteristic sensor 1F includes a nozzle 70 having an outflow port 12 and a pressure loss generation unit 10.
  • FIG. 51 is a schematic configuration diagram of an example of the fluid characteristic sensor of the modified example 10 of the eighth embodiment according to the present invention.
  • the nozzle 70A has the fluid flow path 11 and the outflow port 12, and the pressure loss generation unit 10 is provided in the main body portion of the fluid characteristic sensor 1FA. There is. Even in such a configuration, it is possible to measure the fluid characteristics of a small amount of measurement target.
  • FIG. 52 is a schematic configuration diagram of an example of the fluid characteristic sensor of the modified example 11 of the eighth embodiment according to the present invention.
  • the nozzle 70B in the fluid characteristic sensor 1FB of the modification 11, the nozzle 70B has a pressure loss generation unit 10, a fluid flow path 11A, and an outflow port 12. Further, the nozzle 70B is curved. With such a configuration, the nozzle 70B can be lengthened and the main body portion of the fluid characteristic sensor 1FA can be installed at a place away from the measurement target.
  • FIG. 53 is a schematic diagram showing other embodiments.
  • a measurement system including a plurality of fluid characteristic sensors 1A may be constructed.
  • the measurement system includes a plurality of fluid characteristic sensors 1A and a pipe 2A.
  • a plurality of measuring holes are provided in the pipe 2A, and a fluid characteristic sensor 1A is installed in each of the plurality of measuring holes.
  • the measurement result information acquired by the plurality of fluid characteristic sensors 1A may be sent to the control device via wireless communication or wired communication.
  • the above-mentioned measurement system can be applied to pipes and tanks in, for example, a food manufacturing process, a resin manufacturing process, an ink manufacturing process, and a paste manufacturing process, and can monitor the viscosity of a fluid flowing through the pipe. As a result, it is possible to quickly detect quality defects and minimize the amount of defective products generated.
  • FIG. 53 an example using the fluid characteristic sensor 1A of the first embodiment has been described, but the present invention is not limited to this.
  • the fluid characteristic sensors of the second to eighth embodiments may be used.
  • FIG. 54 is a schematic diagram showing other embodiments.
  • the fluid characteristic sensor 1FB may be installed in the printing apparatus 71.
  • the fluid characteristic sensor 1FB may be installed on the squeegee 72 of the printing apparatus 71, and the viscosity of the liquid pool of the paste 73 accumulated in front of the squeegee 72 may be measured on the screen plate 74. Further, the viscosity of the paste 73 during printing may be monitored to detect the viscosity fluctuation in real time. This makes it possible to prevent printing defects due to changes in the viscosity of the paste 73.
  • the fluid characteristic sensor 1FB may be installed in a coating device such as a gravure printing device, an inkjet printing device, or a dispenser. For example, it may be used for prevention of coating defects by detecting a change in the viscosity of the coating liquid and for feedback control of coating operation. Further, the fluid characteristic sensor 1FB may be installed in the resin injection molding apparatus and used for feedback control of the injection pressure based on the detection of the change in the viscosity of the resin.
  • the fluid characteristic sensors 1F and 1FA having a nozzle 70 other than the fluid characteristic sensor 1FB may be used.
  • the fluid characteristic sensor of the present invention is a sensor that measures the characteristics of a fluid, and can be applied to, for example, a viscosity sensor.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Surgery (AREA)
  • Hematology (AREA)
  • Pain & Pain Management (AREA)
  • Dermatology (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Measuring Volume Flow (AREA)
  • Measuring Fluid Pressure (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本発明の流体特性センサ(1A)は、測定対象である流体(3)の特性を測定する流体特性センサ(1A)であって、前記流体(3)が流動することによって圧力損失を生じさせる圧力損失生成部(10)と、前記圧力損失生成部(10)に接続され、前記流体(3)、及び極性溶媒である作動液(4)が流動する第1流路(20)と、前記第1流路(20)内に配置され、前記流体(3)と前記作動液(4)とを仕切る隔壁(21)と、前記第1流路(20)に接続され、且つ前記作動液(4)が流動する際に生じる流動電位を測定する電位測定部(30)と、を備える。

Description

流体特性センサ
 本発明は、流体特性センサに関する。
 例えば、特許文献1には、流体特性の1つとして液体の粘度を測定する粘度測定法が開示されている。特許文献1に記載の粘度測定法は、細管流路を用い、細管流路を被測定対象の液体が流れる流速を測定することにより、液体の粘度を測定する。また、特許文献1に記載の粘度測定法は、細管流路を被測定対象の液体が流れる際に細管流路に発生する流動電流を測定することにより、流速を測定する。
特開2009-42100号公報
 しかしながら、特許文献1では、様々な流体の特性を測定するという点で未だ改善の余地がある。
 本発明の一態様の流体特性センサは、
 測定対象である流体の特性を測定する流体特性センサであって、
 前記流体が流動することによって圧力損失を生じさせる圧力損失生成部と、
 前記圧力損失生成部に接続され、前記流体、及び極性溶媒である作動液が流動する第1流路と、
 前記第1流路内に配置され、前記流体と前記作動液とを仕切る隔壁と、
 前記第1流路に接続され、且つ前記作動液が流動する際に生じる流動電位を測定する電位測定部と、
を備える。
 本発明によれば、様々な流体の特性を測定することが可能な流体特性センサを提供することができる。
本発明に係る実施の形態1の流体特性センサの一例の概略構成図である。 本発明に係る実施の形態1の流体特性センサの一例の主要な構成を示すブロック図である。 本発明に係る実施の形態1の測定方法の一例のフローチャートである。 本発明に係る実施の形態1の流体特性センサの動作の一例を示す概略図である。 本発明に係る実施の形態1の流体特性センサの動作の一例を示す概略図である。 本発明に係る実施の形態1の流体特性センサの動作の一例を示す概略図である。 本発明に係る実施の形態1の流体特性センサで測定される流動電位の変化の一例を示すグラフである。 本発明に係る実施の形態1の流体特性センサの製造工程の一例を示す概略図である。 本発明に係る実施の形態1の流体特性センサの製造工程の一例を示す概略図である。 本発明に係る実施の形態1の流体特性センサの製造工程の一例を示す概略図である。 本発明に係る実施の形態1の流体特性センサの製造工程の一例を示す概略図である。 本発明に係る実施の形態1の変形例1の流体特性センサの概略構成図である。 本発明に係る実施の形態1の変形例2の流体特性センサの概略構成図である。 本発明に係る実施の形態1の変形例3の流体特性センサの概略構成図である。 本発明に係る実施の形態1の流体特性センサで測定される3つの測定対象の流動電位の変化の一例を示すグラフである。 図10のグラフの時刻tにおける流動電位測定値の逆数と測定対象の粘度との関係の一例を示すグラフである。 本発明に係る実施の形態2の流体特性センサの一例の概略構成図である。 本発明に係る実施の形態2の流体特性センサの一例の主要な構成を示すブロック図である。 本発明に係る実施の形態2の測定方法の一例のフローチャートである。 本発明に係る実施の形態2の流体特性センサの動作の一例を示す概略図である。 本発明に係る実施の形態2の流体特性センサの動作の一例を示す概略図である。 本発明に係る実施の形態2の流体特性センサの動作の一例を示す概略図である。 本発明に係る実施の形態2の流体特性センサで測定される流動電位の変化の一例を示すグラフである。 本発明に係る実施の形態2の流体特性センサで測定される流動電位の変化の別例を示すグラフである。 本発明に係る実施の形態2の流体特性センサの動作の別例を示す概略図である。 本発明に係る実施の形態2の変形例4の測定方法の一例のフローチャートである。 本発明に係る実施の形態3の測定方法の一例のフローチャートである。 本発明に係る実施の形態3の流体特性センサで測定される流動電位の変化の一例を示すグラフである。 実施例1~3の測定条件と測定結果の一例を示す表である。 実施例1及び実施例3の粘度とせん断速度との関係の一例を示すグラフである。 本発明に係る実施の形態4の測定方法の一例のフローチャートである。 実施例4及び実施例5の測定条件と測定結果の一例を示す表である。 実施例4及び実施例5の粘度とせん断速度との関係の一例を示すグラフである。 本発明に係る実施の形態5の測定方法の一例のフローチャートである。 本発明に係る実施の形態5の流体特性センサで測定される流動電位の変化の一例を示すグラフである。 実施例6~9の測定条件と測定結果の一例を示す表である。 実施例6~9の粘度とせん断速度との関係の一例を示すグラフである。 比較例1の流体特性センサの概略図である。 比較例1の流体特性センサで測定される流動電位の変化の一例を示すグラフである。 比較例2の流体特性センサで測定される流動電位の変化の一例を示すグラフである。 比較例3の流体特性センサで測定される流動電位の変化の一例を示すグラフである。 本発明に係る実施の形態6の流体特性センサの一例の概略構成図である。 図35に示す流体特性センサの概略分解図である。 本発明に係る実施の形態6の流体特性センサの製造工程の一例を示す概略図である。 本発明に係る実施の形態6の流体特性センサの製造工程の一例を示す概略図である。 本発明に係る実施の形態6の流体特性センサの製造工程の一例を示す概略図である。 本発明に係る実施の形態6の流体特性センサの製造工程の一例を示す概略図である。 本発明に係る実施の形態7の流体特性センサの一例の概略構成図である。 本発明に係る実施の形態7の変形例5の流体特性センサの一例の概略構成図である。 本発明に係る実施の形態7の変形例6の流体特性センサの一例の概略構成図である。 固体隔壁の別例を示す概略図である。 本発明に係る実施の形態7の変形例7の流体特性センサの一例の概略構成図である。 固体隔壁の動作の一例を説明する概略図である。 固体隔壁の動作の一例を説明する概略図である。 本発明に係る実施の形態7の変形例8の流体特性センサの一例の概略構成図である。 本発明に係る実施の形態7の変形例9の流体特性センサの一例の概略構成図である。 本発明に係る実施の形態7の変形例10の流体特性センサの一例の概略構成図である。 本発明に係る実施の形態7の変形例11の流体特性センサの一例の概略構成図である。 変形例11における固体隔壁の動作の一例を説明する概略図である。 変形例11における固体隔壁の動作の一例を説明する概略図である。 固体隔壁の別例を示す概略図である。 本発明に係る実施の形態8の流体特性センサの一例の概略構成図である。 本発明に係る実施の形態8の変形例12の流体特性センサの一例の概略構成図である。 本発明に係る実施の形態8の変形例13の流体特性センサの一例の概略構成図である。 その他の実施形態を示す概略図である。 その他の実施形態を示す概略図である。
(本発明に至った経緯)
 特許文献1に記載の粘度測定法は、測定対象である液体の流動電流を定量的に測定するし、測定された流動電流に基づいて粘度を算出している。また、特許文献1に記載の粘度測定法では、測定対象である液体自体の流動電流を測定している。
 しかしながら、特許文献1に記載の粘度測定法では、大きな流動電流が生じにくい液体の粘度測定が困難である。例えば、オイルなどの無極性溶媒については、粘度を測定できる程度の大きな流動電流が生じにくい。このため、特許文献1に記載の粘度測定法では、無極性溶媒などの液体の粘度測定が困難であり、実質的には、測定対象が、流動電流が生し易い極性溶媒などの液体に限定されている。
 そこで、本発明者らは、鋭意検討したところ、測定対象である流体と作動液との間を隔壁で仕切り、作動液が流動する際に生じる流動電位を測定する構成を見出し、以下の発明に至った。
 本発明の一態様の流体特性センサは、
 測定対象である流体の特性を測定する流体特性センサであって、
 前記流体が流動することによって圧力損失を生じさせる圧力損失生成部と、
 前記圧力損失生成部に接続され、前記流体、及び極性溶媒である作動液が流動する第1流路と、
 前記第1流路内に配置され、前記流体と前記作動液とを仕切る隔壁と、
 前記第1流路に接続され、且つ前記作動液が流動する際に生じる流動電位を測定する電位測定部と、
を備える。
 このような構成により、様々な流体の特性を測定することができる。また、流動電位が生じにくい液体についても測定することができる。
 前記圧力損失生成部は、前記第1流路の流路断面積より小さい流路断面積を有する細管、又は複数の孔が設けられた多孔体を有していてもよい。
 このような構成により、液体が圧力損失生成部内を流動する際に、その流体の特性に応じた、大きな圧力損失が発生し、様々な流体の特性を測定することができる。
 前記電位測定部は、
  前記作動液が通過可能な第1電極と、
  前記第1電極と間隔を有して配置され、且つ前記作動液が通過可能な第2電極と、
  前記第1電極と前記第2電極との間に配置され、且つ前記作動液で満たされる第2流路と、
を有し、
 前記第2流路は、前記第1流路の流路断面積より小さい流路断面積を有する細管、又は複数の孔が設けられた多孔体を有していてもよい。
 このような構成により、作動液が流動する際に生じる流動電位を測定することができる。
 前記作動液は、水の沸点よりも高い沸点と、水の融点よりも低い融点と、のうち少なくとも1つを有していてもよい。
 このような構成により、耐環境性を向上させることができる。
 前記隔壁は、気体であり、
 前記第1流路は、重力方向に向かって延びており、
 前記第1流路内において、前記作動液と前記隔壁との界面は、前記流体と前記隔壁の界面よりも高くてもよい。
 このような構成により、作動液と第1流路の内壁の間に生じる表面張力によって、作動液が重力方向に自然流下することを抑制し、作動液と隔壁との界面を保持することができる。
 前記第1流路の内壁は、疎水性を有していてもよい。
 このような構成により、作動液と第1流路の内壁の間に生じる表面張力を大きくすることができ、作動液と隔壁との界面を保持しやすくなる。
 前記電位測定部に接続され、且つ前記作動液を送液するポンプを備えていてもよい。
 このような構成により、作動液の送液によって隔壁を介して液体を流動させることができる。
 前記ポンプは、電気浸透流ポンプであって、
  前記作動液が通過可能な第3電極と、
  前記第3電極と間隔を有して配置され、且つ前記作動液が通過可能な第4電極と、
  前記第3電極と前記第4電極との間に配置され、且つ前記作動液で満たされる第3流路と、
を有し、
  前記第3流路は、複数の孔が設けられた多孔体を有していてもよい。
 このような構成により、ポンプを小型化することができ、装置への設置の自由度が向上する。
 前記流体特性センサは、更に、
 前記ポンプの送液方向と送液圧力とを制御するポンプ制御部を備え、
 前記送液方向は、
  前記圧力損失生成部から前記ポンプに向かう第1方向と、
  前記第1方向と反対方向であって前記ポンプから前記圧力損失生成部に向かう第2方向と、
を含んでいてもよい。
 このような構成により、作動液の送液方向を変化させることによって、液体の吸引と排出を行うことができる。これにより、連続して動作可能になる。
 前記ポンプ制御部は、前記電位測定部によって測定された前記流動電位の測定値に基づいて、前記ポンプの送液方向を制御してもよい。
 このような構成により、適切なタイミングでポンプの送液方向を変更することができる。
 前記ポンプ制御部は、
  前記送液方向が前記第1方向であり、且つ前記流動電位の測定値が収束した後、前記送液方向を前記第2方向に切り替え、
  前記送液方向が前記第2方向であり、且つ単位時間当たりの流動電位の変化量の絶対値が閾値を超えて増大したとき、前記ポンプを停止してもよい。
 このような構成により、より適切なタイミングでポンプ制御を行うことができる。
 前記隔壁は、前記圧力損失生成部の流路体積より大きい体積を有し、
 前記ポンプ制御部は、前記送液方向が前記第2方向であり、且つ単位時間当たりの流動電位の測定値の変化量の絶対値が所定の閾値を超えて減少したとき、前記ポンプを停止してもよい。
 このような構成により、作動液が流体特性センサの外部に流出することを抑制することができる。
 前記ポンプ制御部は、送液圧力を段階的に変化させてもよい。
 このような構成により、より様々な流体の特性を測定することができる。
 前記流体特性センサは、更に、
 前記電位測定部により測定された流動電位に基づいて前記流体の特性を算出する算出部を備えてもよい。
 このような構成により、流体特性センサ単体で流体の特性を算出することができる。
 前記流体特性センサは、更に、
 前記電位測定部により測定された流動電位に基づいて前記流体の特性を算出する算出部を備え、
 前記算出部は、
  前記送液方向が前記第1方向であるときの前記流動電位の測定値に基づいて前記流体の第1粘度を算出し、
  前記送液方向が前記第2方向であるときの前記流動電位の測定値に基づいて前記流体の第2粘度を算出してもよい。
 このような構成により、流体特性センサ単体で流体の特性を算出することができる。また、粘度の情報に基づいて流体の特性を算出することができる。
 前記ポンプ制御部は、
  前記送液方向が前記第1方向であるときの前記ポンプの送液圧力を第1圧力に設定し、
  前記送液方向が前記第2方向であるときの前記ポンプの送液圧力を第1圧力と異なる第2圧力に設定してもよい。
 このような構成により、より様々な流体の特性を測定することができる。
 前記算出部は、
  前記電位測定部により測定された流動電位に基づいて前記作動液の流速を算出し、
  前記作動液の流速に基づいて前記流体の粘度を算出してもよい。
 このような構成により、作動液が流動する際に生じる流動電位から流速を算出し、流体の粘度を算出することができる。
 前記流体特性センサは、更に、
 大気側に開放される開放端を有し、且つ前記作動液が流動する作動液流路を備え、
 前記作動液流路の前記開放端側に位置する前記作動液の液面は、無極性溶媒で覆われていてもよい。
 このような構成により、作動液に異物が混入することを抑制し、耐環境性を向上させることができる。
 前記無極性溶媒の沸点は、作動液の沸点より高くてもよい。
 このような構成により、作動液がガス化し、液量が減少することを抑制することができる。
 前記無極性溶媒は、不揮発性溶媒であってもよい。
 このような構成により、作動液が揮発し、液量が減ることを抑制することができる。
 前記流体特性センサは、更に、
 前記流体が流出入する流出入口及び前記圧力損失生成部を有する取付部と、
 前記第1流路の少なくとも一部を有し、前記取付部が取り外し可能に取り付けられる本体と、
を備えてもよい。
 このような構成により、ユーザの使い勝手が向上する。
 前記隔壁は、固体であってもよい。
 このような構成により、流体と作動液とを仕切りやすくなる。
 前記隔壁は、
  凹形状を有し、且つ弾性変形可能な隔壁本体と、
  前記隔壁本体の外壁から外側に向かって突出するフランジと、
を有していてもよい。
 このような構成により、流体特性センサの小型化を実現することができる。
 前記隔壁は、複数の前記隔壁を有していてもよい。
 このような構成により、作動液の漏出をより抑制することができる。
 本発明の一態様の流体特性センサは、
 測定対象である流体の特性を測定する流体特性センサであって、
 前記流体、及び極性溶媒である作動液が流動し、且つ一端及び他端を有する第1流路と、
 前記第1流路内に配置され、前記流体と前記作動液とを仕切る隔壁と、
 前記第1流路の一端側に接続され、前記第1流路の流路断面積より小さい流路断面積を有する圧力損失生成部と、
 前記第1流路の他端側に接続され、且つ前記作動液が流動する際に生じる流動電位を測定する電位測定部と、
を備える。
 このような構成により、様々な流体の特性を測定することができる。また、流動電位が生じにくい液体についても測定することができる。
 以下、本発明の一実施形態を添付図面に従って説明する。なお、以下の説明は、本質的に例示に過ぎず、本開示、その適用物、あるいは、その用途を制限することを意図するものではない。さらに、図面は模式的なものであり、各寸法の比率等は現実のものとは必ずしも合致していない。
(実施の形態1)
[全体構成]
 図1は、本発明に係る実施の形態1の流体特性センサ1Aの一例の概略構成図である。図2は、本発明に係る実施の形態1の流体特性センサ1Aの一例の主要な構成を示すブロック図である。図中のX、Y、Z方向は、それぞれ、流体特性センサ1Aの幅方向、奥行き方向、高さ方向を示している。
 流体特性センサとは、流体の特性を測定するセンサである。流体とは、例えば、液体、固液混合流体(ゾル)、液液混合流体、気液混合流体である。流体の特性とは、例えば、粘度及びレオロジー特性のうち少なくとも1つを含む。実施の形態1では、一例として、容器2内に貯留される液体3の粘度を測定する流体特性センサ1Aを説明する。
 図1及び図2に示すように、流体特性センサ1Aは、圧力損失生成部10、第1流路20、隔壁21及び電位測定部30を備える。実施の形態1では、流体特性センサ1Aの高さ方向(Z方向)に沿って、圧力損失生成部10、第1流路20及び電位測定部30が順に接続されている。具体的には、流体特性センサ1Aの高さ方向(Z方向)において、下から上に向かって、圧力損失生成部10、第1流路20及び電位測定部30の順に配置されている。
 実施の形態1では、流体特性センサ1Aが、電位測定部30の上方に大気側に開放される開放端41を有する作動液流路40を備える例について説明する。なお、流体特性センサ1Aにおいて、作動液流路40は必須の構成ではない。
<圧力損失生成部>
 圧力損失生成部10では、測定対象である液体3が流動することで圧力損失が生じる。圧力損失生成部10は、液体3が流動可能であって、圧力損失を生じさせる流路を有する。実施の形態1では、圧力損失生成部10は細管である。具体的には、圧力損失生成部10は、第1流路20の流路断面積よりも小さい流路断面積を有する細管である。「流路断面積」とは、圧力損失生成部10又は第1流路20をXY断面で切断した断面をZ方向から見たときの流路の面積である。例えば、圧力損失生成部10を形成する細管の流路断面積は、第1流路20の流路断面積の1/10倍以下である。なお、圧力損失生成部10を形成する細管の流路断面積は、100μm以上であることが好ましい。例えば、細管は、円筒形状を有する。
 圧力損失生成部10である細管は一端と他端とを有する。細管の一端には、液体3を貯留する容器2に接続される流体流路11が設けられている。細管の他端には、第1流路20が設けられている。流体流路11は、液体3が流出入する流出入口12を有する。流体流路11は、細管の流路断面積より大きい流路断面積を有する。例えば、流体流路11は、第1流路20の流路断面積と略同じ流路断面積を有していてもよい。「略同じ」とは、10%以内の誤差を含む。流体特性センサ1Aの高さ方向(Z方向)において、流体流路11の長さは、圧力損失生成部10の長さよりも短い。
 測定対象である液体3は、極性溶媒であってもよいし、無極性溶媒であってもよい。
<第1流路>
 第1流路20は、圧力損失生成部10に接続され、液体3と作動液4とが流動する。作動液4とは、流動によって流動電位が生じる液体である。作動液4は、極性溶媒である。作動液4は、水の沸点よりも高い沸点と、水の融点より低い融点と、のうち少なくとも1つを有する。例えば、水の沸点より高い沸点とは、大気圧下において100℃より高い温度を意味する。水の融点より低い融点とは、大気圧下において0℃より低い温度を意味する。例えば、作動液4は、水、エチレングリコール、プロピレングリコール、ジエチルグリコール、テトラエチレングリコール、グリセリン、ジメチルスルホキシド、ジメチルホルムアミド、不凍液、熱媒体、電解質水溶液、及び緩衝液のうちのいずれかであってもよい。不凍液とは、冬期(寒冷地)において凍結しないように作られた液体を意味し、日本産業規格(JIS)に、JIS K 2234 不凍液で標準化されている。不凍液としては、例えば、水-エチレングリコール混合溶液などが用いられる。熱媒体としては、例えば、ハイドロフルオロカーボンなどが用いられる。電解質水溶液としては、例えば、NaCl水溶液、KCl水溶液などが用いられる。緩衝液としては、例えば、リン酸塩緩衝液、ホウ酸塩緩衝液、グッドバッファー、Tris緩衝液などが用いられる。作動液4は、100℃以上の高温環境及び/又は0℃以下の低温環境で動作可能な液体が好ましい。例えば、作動液4にエチレングリコールを用いる場合、融点が0℃より低いため氷点下での駆動が可能となる。また、テトラエチレングリコールを用いる場合、沸点が100℃より大きいため高温下での駆動が可能となる。
 第1流路20は、流体3、及び極性溶媒である作動液4が流動し、且つ一端及び他端を有する。実施の形態1では、第1流路20は一端と他端とを有する配管である。第1流路20の一端は、圧力損失生成部10である細管の他端に接続されている。第1流路20の他端は、電位測定部30に接続されている。例えば、第1流路20は、円筒形状を有する。
<隔壁>
 隔壁21は、第1流路20内に配置され、液体3と作動液4とを仕切る。隔壁21は、液体3及び作動液4の流動に伴って、流体特性センサ1Aの高さ方向(Z方向)に移動可能である。実施の形態1では、隔壁21は気体である。隔壁21は、測定対象や作動液4との接触により、好ましくない化学反応が起こることを防止することができる不活性気体である。例えば、隔壁21は、空気、アルゴンである。以降では、「隔壁21」を「可動隔壁21」と称する場合がある。
 流体特性センサ1Aの高さ方向(Z方向)は、重力方向に沿っている。第1流路20は、重力方向に向かって延びている。このため、第1流路20内においては、下から上に向かって、液体3、可動隔壁21及び作動液4の順に保持されている。言い換えると、第1流路20内において、作動液4と可動隔壁21との界面21aは、液体3と可動隔壁21の界面21bよりも高い位置で保持されている。第1流路20内においては、作動液4と第1流路20の内壁20aとの間に表面張力が働くため、作動液4が重力方向に自然落下しにくくなっている。その結果、気体である可動隔壁21の形状が保持されやすくなっており、可動隔壁21と作動液4との界面21aを保つことができる。
 また、第1流路20の内壁20aは、疎水性を有していてもよい。例えば、第1流路20を疎水性材料で形成する。疎水材料としては、例えば、ABS、ナイロン、ポリアセタール、フッ素樹脂、PTFE(Polytetrafluoroethylene)、PEEK(Polyethereherketone)などが用いられる。あるいは、第1流路20の内壁20aに疎水性コーティングを施す。これにより、第1流路20の内壁20aに生じる表面張力を大きくすることができ、作動液4が重力方向に更に自然落下しにくくなる。
<電位測定部>
 電位測定部30は、第1流路20に接続され、且つ作動液4の流動電位を測定する。流動電位とは、固体面に接する液体が流動するときに、該固体面に生じる電位差を意味する。
 電位測定部30は、第1電極31、第2電極32及び第2流路33を有する。
 第1電極31及び第2電極32は、作動液4が通過可能な材料で形成されている。第1電極31及び第2電極32は、例えば、多孔質の導電性材料で構成されている。多孔質の導電性材料としては、Pt、Cu、Ag、Au、Ni、ステンレスなどの金属材料、又は炭素電極を用いることができる。なお、多孔質の導電性材料は、導電性を有し、且つ透水性を担保できる材料であればよい。例えば、多孔質の導電性材料は、導電性ゴム、酸化物導電体などであってもよい。実施の形態1では、第1電極31及び第2電極32は、対向する2つの主面を有する平板状の金属メッシュで構成されている。
 第1電極31と第2電極32とは、互いに間隔を有して配置されている。具体的には、第1電極31と第2電極32とは、作動液4の流動方向(Z方向)に間隔を有して対向して配置されている。また、第1電極31及び第2電極32の主面は、液体の流動方向(Z方向)と交差する方向に配置されている。
 第2流路33は、第1電極31と第2電極32との間に配置され、且つ作動液4で満たされる。実施の形態1では、第2流路33は、作動液4が流動する細管である。具体的には、第2流路33は、第1流路20の流路断面積よりも小さい流路断面積を有する細管である。例えば、第2流路33を形成する細管の流路断面積は、第1流路20の流路断面積の1倍未満である。なお、第2流路33を形成する細管の流路断面積は、100μm以上であることが好ましい。例えば、細管は、円筒形状を有する。
 第2流路33を形成する細管は一端と他端とを有する。細管の一端には、第1電極31が配置されている。細管の他端には、第2電極32が配置されている。
 実施の形態1では、電位測定部30は、第1電極31と第2電極32とに接続される測定部34を備える。測定部34は、第1電極31と第2電極32との間の電圧を測定する。例えば、測定部34は、エレクトロメータである。なお、流体特性センサ1Aにおいて、測定部34は必須の構成ではない。例えば、測定部34は、流体特性センサ1Aとは別の装置に含まれていてもよい。
 電位測定部30には、作動液流路40が接続されている。作動液流路40は、大気側に開放端41を有する配管である。例えば、作動液流路40は、円筒形状を有する。作動液流路40には、作動液4が保持されている。作動液4は、作動液流路40内を流動する。例えば、作動液流路40には、ポンプやシリンジなどが取り付けられる。これにより、流体特性センサ1A内の液体3及び作動液4を流動させることができる。
 実施の形態1では、図2に示すように、流体特性センサ1Aは、算出部50を備える。算出部50は、電位測定部30により測定された流動電位に基づいて液体3の特性を算出する。具体的には、算出部50は、電位測定部30により測定された流動電位に基づいて液体3の粘度を算出する。
 算出部50は、プロセッサ51、記憶部52及びA/Dコンバータ53を備える。
 プロセッサ51は、例えば、中央処理ユニット(CPU)、マイクロプロセッサ、又はコンピュータで命令の実行が可能な回路などの処理ユニットである。例えば、プロセッサ51は、記憶部52に記憶された命令又はプログラムを実行可能である。
 記憶部52は、例えば、プロセッサ51により実行される命令又はプログラムを記憶するコンピュータ記録媒体である。記憶部52は、例えば、RAM、ROM、EEPROM、フラッシュメモリ又はその他のメモリ技術、CD-ROM、DVD又はその他の光ディスクストレージ、磁気カセット、磁気テープ、磁気ディスクストレージ又はその他の磁気記憶デバイスであってもよい。
 A/Dコンバータ53は、アナログ信号をデジタル信号に変換する。実施の形態1では、A/Dコンバータ53は、電位測定部30で測定された流動電位をデジタル信号に変換する。
 なお、流体特性センサ1Aにおいて、算出部50は必須の構成ではない。例えば、算出部50は、流体特性センサ1Aとは別の装置に含まれていてもよい。
[流動電位に基づく粘度の算出の一例について]
 測定対象である液体3の粘度は、例えば、圧力損失と流量との関係を表すハーゲン・ポワゾイユの式から算出することができる。ハーゲン・ポワゾイユの式を以下に示す。
Figure JPOXMLDOC01-appb-M000001
 ここで、Q:流量、ΔP:圧力差(圧力損失)、η:液体3の粘度、L:細管の長さ、r:細管の半径である。なお、ΔP、L、rは、圧力損失生成部10である細管の寸法によって決定される。
 ハーゲン・ポワゾイユの式からわかるように、流量Qは液体3の粘度ηに応じて決定される。言い換えると、液体3の粘度ηは、流量Qを測定することによってハーゲン・ポワゾイユの式から算出することができる。
 液体3の流量Qは、液体3の流動に伴って流動する作動液4の流量と、実質的に等しい。作動液4の流量は、作動液4の流速から算出することができ、作動液4の流速は流動電位から算出することができる。流動電位は、流動する作動液4の流速(流量)に比例する。流体特性センサ1Aは、作動液4の流動に伴って生じる流動電位を、電位測定部30によって測定する。また、流体特性センサ1Aは、測定された流動電位に基づいて作動液4の流速(流量)を、算出部50によって算出する。作動液4の流速(流量)は、測定対象である液体3の流速(流量)と実質的に等しいので、作動液4の流速(流量)から液体3の流量Qを得ることができる。
[動作]
 流体特性センサ1Aの動作、即ち、測定方法の一例について図3~図5を用いて説明する。図3は、本発明に係る実施の形態1の測定方法の一例のフローチャートである。図4A~4Cは、本発明に係る実施の形態1の流体特性センサ1Aの動作の一例を示す概略図である。図5は、本発明に係る実施の形態1の流体特性センサ1Aで測定される流動電位の変化の一例を示すグラフである。なお、当該動作は、測定対象である液体3の特性として、粘度を測定する例について説明する。
 図3に示すように、ステップST1では、測定対象である液体3を吸引する。具体的には、図4Aに示すように、流体特性センサ1Aの流体流路11の流出入口12を容器2内に貯留された液体3に配置する。図4Bに示すように、流出入口12を容器2内に貯留された液体3に配置した状態で、第1方向D1へ液体3を吸引する。なお、第1方向D1は、液体3を吸引する方向である。実施の形態1では、第1方向D1は、圧力損失生成部10から電位測定部30に向かう方向である。例えば、流体特性センサ1Aの作動液流路40に配置されたポンプなどによって作動液4を吸引することによって、第1方向D1へ液体3を吸引する。これにより、容器2に貯留された液体3が流出入口12から流体流路11を通って圧力損失生成部10に流入する。圧力損失生成部10に流入した液体3は、圧力損失を生じさせつつ、第1流路20内に流入する。第1流路20内においては、液体3と作動液4との可動隔壁21が配置されている。第1流路20内に液体3が流入すると、可動隔壁21と共に作動液4が第1方向D1へ流動する。このとき、流動する作動液4の流量は、第1流路20内に流入する液体3の流量と実質的に等しい。ここで、「実質的に等しい」とは、流体特性センサ1A内の流路壁面の変形や可動隔壁の膨張収縮に起因する数%の誤差を含む。
 したがって、電位測定部30では、液体3と同じ流量、即ち液体3と同じ流速で作動液4が流動する。具体的には、電位測定部30の第2流路33内において、作動液4は、液体3と同じ流量、即ち液体3と同じ流速で第1方向D1へ向かって流動する。
 図3に戻って、ステップST2では、電位測定部30によって、作動液4の流動電位を測定する。具体的には、電位測定部30において、第1電極31と第2電極32との間に配置される第2流路33を作動液4が流動することによって生じる流動電位を測定部34によって測定する。
 ステップST3では、測定された流動電位に基づいて測定対象である液体3の特性を算出部50によって算出する。具体的には、算出部50は、流動電位に基づいて液体3の粘度を算出する。流動電位に基づく液体3の粘度の算出は、上述したように、ハーゲン・ポワゾイユの式を用いる。
 図5に示すように、流動電位は、時刻tで吸引を開始すると共に増大し、時間の経過とともに減少し収束する。算出部50は、流動電位が収束したときの測定値、即ち、流動電位の収束値Vに基づいて液体3の粘度を算出する。実施の形態1では、流動電位の収束の判定は、単位時間t当たりの流動電位の変化量の閾値に基づいて行われる。例えば、算出部50は、10秒間の流動電位の変化量が±0.02V以内である場合、流動電位が収束していると判定してもよい。なお、単位時間tは、10秒に限定されず、任意の値に設定されてもよい。また、流動電位の変化量の閾値は、±0.02Vに限定されず、任意の値に設定されてもよい。
 図3に戻って、ステップST4では、測定対象である液体3を排出する。具体的には、図4Cに示すように、流出入口12を容器2内に貯留された液体3に配置した状態で、第2方向D2へ液体3を排出する。なお、第2方向D2は、液体3を排出する方向である。実施の形態1では、第2方向D2は、第1方向D1と反対方向であって、電位測定部30から圧力損失生成部10に向かう方向である。例えば、流体特性センサ1Aの作動液流路40に配置されたポンプなどによって作動液4を排出することによって、第2方向D2へ液体3を排出する。これにより、第1流路20内の液体3は、可動隔壁21を介して作動液4に押されて、圧力損失生成部10及び流体流路11を通って容器2へ排出される。
 このように、流体特性センサ1Aを用いた測定方法は、ステップST1~ST4を実施することによって、液体3の特性として粘度を測定することができる。
[製造方法]
 流体特性センサ1Aの製造方法の一例について図6A~図6Dを用いて説明する。図6A~図6Dは、本発明に係る実施の形態1の流体特性センサ1Aの製造工程の一例を示す概略図である。なお、図6A~図6dには、圧力損失生成部10の両端及び第2流路33の両端に、樹脂板13を備える例を示すが、これに限定されない。樹脂板13は必須の構成ではない。
 図6Aに示すように、流体特性センサ1Aを構成する要素を鋳型5に配置する。鋳型5は、凹状に形成されている。具体的には、流体流路11、圧力損失生成部10、第1流路20、電位測定部30、作動液流路40及び樹脂板13を接続した状態で鋳型5内に配置する。このとき、流体流路11の流出入口12及び作動液流路40の開放端41は、鋳型5の内壁5aを塞ぐように押さえつけられた状態となる。即ち、流出入口12及び開放端41は、鋳型5の内壁5aによってシールされた状態となる。なお、流体特性センサ1Aを構成する要素を鋳型5に配置する際に、これらの要素を接着剤などによって接着してもよい。
 図6Bに示すように、鋳型5内に溶融した封止材6を導入し、硬化させる。封止材6は、例えば、樹脂材料である。樹脂材料としては、例えば、PDMS(Polydimethylsiloxane)やエポキシ樹脂などが挙げられる。このとき、電位測定部30の第1電極31及び第2電極32の一部を封止材6から露出させる。第1電極31及び第2電極32において露出した部分は、測定部34に接続される端子として機能する。
 図6Cに示すように、封止材6が硬化した後、鋳型5を取り外す。鋳型5を取り外した後、作動液流路40の開放端41にノズルを差し込んで、作動液4を導入する。次に、開放端41にシリンジを装着し、シリンジによって作動液4を流出入口12に向かって送り込んで、流体流路11、圧力損失生成部10、第1流路20、電位測定部30及び作動液流路40を作動液4で満たす。
 図6Dに示すように、流体流路11及び圧力損失生成部10の作動液4を除去する。例えば、流出入口12にシリンジを装着し、流体流路11及び圧力損失生成部10の作動液4を吸引する。これにより、気体の可動隔壁21を形成する。次に、開放端41から作動液流路40内にノズルを差し込み、一定量の作動液4を吸引する。一定量とは、例えば、0.1mlである。
 このようにして、流体特性センサ1Aを製造することができる。
[流体特性センサの形状、寸法、材質の一例について]
 流体特性センサ1Aの寸法の一例について説明する。流体流路11は、内径4mm、外径6mm及び長さ2mmの円筒形状を有する。圧力損失生成部10は、内径0.5mm、外径2mm及び長さ10mmの円筒形状を有する細管である。第1流路20は、内径4mm、外径6mm及び長さ20mmの円筒形状を有する配管である。電位測定部30の第1電極31及び第2電極32は、直径6mm及び厚さ0.1mmの円板状の金属メッシュである。電位測定部30の第2流路33は、内径0.5mm、外径2mm及び長さ10mmの円筒形状を有する細管である。作動液流路40は、第1流路20は、内径4mm、外径6mm及び長さ20mmの円筒形状を有する配管である。樹脂板13は、穴径1.5mm、直径6mm及び厚み1mmの円板形状を有する。
 流体流路11、圧力損失生成部10、第1流路20、電位測定部30の第2流路33、作動液流路40及び樹脂板13は、例えば、ABS、ナイロン、ポリアセタール、フッ素樹脂又はPTFEなどで形成することができる。あるいは、これらの要素は、SUSなどの金属材料で形成されていてもよい。但し、導電性材料を用いる場合は、電極同士の絶縁を担保する必要がある。また、第1流路20、を疎水性材料で形成することによって、流路の内壁に大きな表面張力がはたらき、気体の可動隔壁21が維持されやすくなる。
 第1電極31及び第2電極32は、例えば、Pt、Cu、Ag、Au、Ni、ステンレスなどの金属材料を用いることができる。
 なお、上述した寸法は一例であって、これに限定されない。例えば、圧力損失生成部10である細管の内径は、0.01mm以上10mm以下が好ましい。より好ましくは、細管の内径は、0.1mm以上1mmである。圧力損失生成部10である細管の内径は、測定したい粘度範囲に応じて変更してもよい。
 流体流路11、第1流路20及び作動液流路40の内径は、圧力損失生成部10及び第2流路33の内径の4倍以上が好ましい。圧力損失は、圧力損失生成部10の内径の4乗に反比例する。このため、流体流路11、第1流路20及び作動液流路40の内径を圧力損失生成部10及び第2流路33の内径の4倍以上とすることによって、圧力損失は圧力損失生成部10の2%以下に抑えることができる。
[効果]
 実施の形態1に係る流体特性センサ1Aによれば、以下の効果を奏することができる。
 流体特性センサ1Aは、測定対象である液体3の特性を測定する流体特性センサであって、圧力損失生成部10、第1流路20、可動隔壁21及び電位測定部30を備える。圧力損失生成部10内を、液体3が流動することによって、圧力損失が生じる。第1流路20は、圧力損失生成部10に接続され、液体3及び極性溶媒である作動液4が流動する。可動隔壁21は、第1流路20内に移動可能に配置され、液体3と作動液4とを仕切る。液体3と作動液4は、可動隔壁を介して、互いに等しい流量で流動する。電位測定部30は、第1流路20に接続され、且つ作動液4が電位測定部30内を流動する際に生じる流動電位を測定する。
 このような構成により、様々な流体の特性を測定することができる。流体特性センサ1Aでは、圧力損失生成部10において大きな圧力損失を生じさせているため、液体3の粘度に応じて流量(流速)が決定される。第1流路20内においては、液体3と作動液4とが可動隔壁21によって仕切られた状態となっており、液体3と作動液4とが等しい流量(流速)で流動する。作動液4の流量は、流動電位から算出することができる。作動液4は極性溶媒であるため、作動液4の流動に伴って測定可能な大きさの流動電位が生じる。また、作動液4は既知の液体であるため、流量と流動電位の相関も既知である。したがって、測定された流動電位に基づいて作動液4の流量が算出される。液体3と作動液4の流量は等しいので、作動液4の流量に基づいて液体3の流量Qを得ることができる。このとき、流量Qとハーゲン・ポワゾイユの式に基づいて、液体3の粘度ηを算出することができる。これにより、液体3の極性によらず、液体3の粘度を算出することができる。例えば、液体3がオイルなどの無極性溶媒であっても、液体3の特性を測定することができる。
 なお、作動液4および可動隔壁21を設けない場合(後述する比較例1参照)、液体3が流動する際に生じる流動電位を測定し、液体3の流量を算出する必要がある。しかし、液体3が無極性溶媒の場合、生じる流動電位は非常に小さく、測定困難である。したがって、流動電位に基づいて流量を測定することは困難であり、液体3の粘度を算出することも困難となる。
 流体特性センサ1Aでは、測定対象である液体3を吸引及び排出することができる。これにより、長期間にわたって連続的に液体3の特性を測定することができる。また、流体特性センサ1Aでは、測定に用いた液体3を排出することによって、容器2に戻すことができる。これにより、液体3をサンプリングすることが不要となるため、液体3の測定を自動的に行うことが可能となり、液体3の特性の時間変化を測定することができる。
 例えば、流体特性センサ1Aは、潤滑油の粘度のモニタリングなどに用いることができる。潤滑油の粘度は潤滑性能に大きく影響するため、潤滑油の粘度変動をモニタリングすることによって、オイルの劣化検知などに応用することができる。例えば、オイルタンクなどの容器2に流体特性センサ1Aを取り付けることによって、オイルの劣化状態をモニタリングすることができる。
 圧力損失生成部10は、第1流路20の流路断面積より小さい流路断面積を有する細管である。このような構成により、圧力損失生成部10において液体3の特性を測定するのに適した圧力損失を生じさせることができる。また、圧力損失生成部10として細管を用いることで、生じる圧力損失を大きくすることができる。これにより、対象物の粘度が少し異なるだけでも、圧力損失に大きな差が表れ、流量が大きく変動する。これにより、粘度を高分解能で測定することができる。
 電位測定部30は、第1電極31、第2電極32及び第2流路33を有する。第1電極31は、作動液4が通過可能な電極である。第2電極32は、第1電極31と間隔を有して配置され、且つ作動液4が通過可能な電極である。第2流路33は、第1電極31と第2電極32との間に配置され、且つ作動液4で満たされる。また、第2流路33は、第1流路20の流路断面積より小さい流路断面積を有する細管である。このような構成により、作動液4の流動電位を測定することができる。
 作動液4は、水の沸点よりも高い沸点と、水の融点よりも低い融点と、のうち少なくとも1つを有する。このような構成により、100℃以上の高温環境下や0℃以下の低温環境下でも動作可能である。
 可動隔壁21は、気体である。第1流路20は、重力方向に向かって延びている。第1流路20内において、作動液4と可動隔壁21との界面21aは、液体3と可動隔壁21の界面21bよりも高い。このような構成により、作動液4と第1流路20の内壁20aの間にはたらく表面張力により、作動液4が重力方向に自然流下しにくくなる。これにより、作動液4と可動隔壁21との界面21aが保持される。その結果、長期間にわたって安定して駆動させることができるため、流体特性センサ1Aのメンテナンス頻度や交換回数を減らすことができる。
 また、気体で形成される可動隔壁21は、固体で形成される可動隔壁に比べて、可動領域が大きい。気体の可動隔壁21は、圧力損失生成部10及び第1流路20内を移動することができる。このように、気体の可動隔壁21は、固体の可動隔壁と比べて可動領域を大きくすることができ、測定対象である液体3の導入量を増やすことができる。これにより、液体3の導入量を柔軟に変更することができる。
 また、気体の可動隔壁21が移動する際に生じる圧力損失は、固体の可動隔壁と比べて非常に小さく、その影響は無視できる。さらに、気体の可動隔壁21は、固体の可動隔壁と比べて、第1流路20の内壁20aとの摩擦による損失を小さくすることができる。このため、固体の可動隔壁と比べて、より小さい圧力で可動隔壁21を移動させることができる。
 また、気体で形成される可動隔壁21は、液体で形成される可動隔壁に比べて、測定対象の自由度が高い。可動隔壁を液体で形成する場合、可動隔壁を形成する液体は、測定対象の液体3及び作動液4に対して難溶性を有するものが選択される。これに対し、気体の可動隔壁21は、液体の可動隔壁と比べて、液体3及び作動液4の種類によらず隔壁として機能する。
 第1流路20の内壁20aは、疎水性を有する。このような構成により、より大きな表面張力が得られるため、重力下でも可動隔壁21と作動液4の界面21aがより確実に保持される。
 流体特性センサ1Aは、電位測定部30により測定された流動電位に基づいて液体3の特性を算出する算出部50を備える。このような構成により、流体特性センサ1A単体で液体3の特性を測定することができる。
 算出部50は、電位測定部30により測定された流動電位に基づいて作動液4の流速を算出し、作動液4の流速に基づいて液体3の粘度を算出する。このような構成により、作動液4の流動電位から流速を算出し、液体3の粘度を算出することができる。
 なお、実施の形態1では、流体特性センサ1Aが流体の特性として、液体3の粘度を測定する例について説明したが、これに限定されない。流体特性センサ1Aは、流動電位に基づいて流体の特性を測定できればよい。
 実施の形態1では、圧力損失生成部10が細管である例について説明したが、これに限定されない。圧力損失生成部10は、液体3に圧力損失を生じさせることができるものであればよい。また、細管は、円筒形状に限定されず、角筒形状であってもよい。
 図7は、本発明に係る実施の形態1の変形例1の流体特性センサ1AAの概略構成図である。図7に示すように、流体特性センサ1AAにおいて、圧力損失生成部10Aは、複数の孔が設けられた多孔体であってもよい。多孔体としては、例えば、多孔質シリカを用いることができる。このような構成であっても、圧力損失生成部10Aにおいて液体3に圧力損失を生じさせることができる。また、圧力損失生成部10として多孔体を用いることで、細管と同様に生じる圧力損失を大きくすることができる。これにより、対象物の粘度が少し異なるだけでも、圧力損失に大きな差が表れ、流量が大きく変動する。これにより、粘度を高分解能で測定することができる。
 実施の形態1では、可動隔壁21が気体である例について説明したが、これに限定されない。可動隔壁21は、液体3と作動液4とを仕切ることができればよい。例えば、可動隔壁21は、固体又は液体で形成されていてもよい。
 実施の形態1では、電位測定部30の第2流路33が細管である例について説明したが、これに限定されない。第2流路33は、流動電位が生じる流路が形成されていればよい。
 図8は、本発明に係る実施の形態1の変形例2の流体特性センサ1ABの概略構成図である。図8に示すように、流体特性センサ1ABにおいて、電位測定部30Aの第2流路33Aは、複数の孔が設けられた多孔体であってもよい。多孔体としては、例えば、多孔質シリカを用いることができる。複数の孔は、流動電位を生じさせることができる程度の寸法に設計されている。多孔体は、絶縁性であり、極性溶媒中で電気二重層が生じるような材質であればよい。多孔体は、例えば、アルミナ、ジルコニアなどのセラミック材料や、PTFE、PP、PEなどの樹脂材料で形成されていてもよい。このような構成であっても、電位測定部30Aにおいて作動液4の流動電位を測定することができる。
 実施の形態1では、作動液流路40の開放端41側に位置する作動液4の液面が大気側に露出する例について説明したが、これに限定されない。作動液4の液面は、大気側に露出していなくてもよい。
 図9は、本発明に係る実施の形態1の変形例3の流体特性センサ1ACの概略構成図である。図9に示すように、流体特性センサ1ACにおいて、作動液流路40の開放端41側に位置する作動液4の液面4aは、無極性溶媒7で覆われている。このような構成により、流体特性センサ1Aの外部から侵入物が作動液4に混ざることを抑制することができる。これにより、耐環境性の高いセンサを実現することができる。
 無極性溶媒7の沸点は、作動液4の沸点より高いことが好ましい。このような構成により、高温時に作動液4がガス化して、液量が減ることを抑制することができる。
 無極性溶媒7は、不揮発性溶媒であってもよい。このような構成により、作動液4が揮発し、液量が減ることを抑制することができる。
 実施の形態1では、算出部50がハーゲン・ポワゾイユの式に基づいて、流動電位から粘度を算出する例について説明したが、これに限定されない。例えば、算出部50は検量線を予め作成し、検量線を用いて流動電位から粘度を算出してもよい。
 検量線の作成の一例について図10及び図11を用いて説明する。図10は、本発明に係る実施の形態1の流体特性センサで測定される3つの測定対象の流動電位の変化の一例を示すグラフである。図11は、図10のグラフの時刻tにおける流動電位測定値の逆数と測定対象の粘度との関係の一例を示すグラフである。
 図10に示すように、粘度の異なる3つの測定対象1~3の流動電位を測定する。次に、流動電位が収束する時刻tにおける流動電位測定値E,E,Eを取得する。図11に示すように、横軸を測定対象の粘度η、縦軸を時刻tにおける流動電位測定値の逆数1/Eとしてプロットする。これにより、流動電位測定値の逆数1/Eと測定対象の粘度ηとの相関、即ち検量線を得ることができる。
 実施の形態1では、測定方法がステップST1~ST4を含む例について説明したが、これに限定されない。これらのステップST1~ST4は、分割、統合、削除及び追加が行われてもよいし、順番が入れ替わってもよい。
 実施の形態1では、隔壁21が気体である例について説明したが、これに限定されない。例えば、隔壁21は、測定対象である流体や、作動液4に対して不溶な液体であってもよい。あるいは、隔壁21は、作動液4を流動せしめる送液圧力を受けて変形する固体であってもよいし、第1流路20の内壁20aと接触しつつ、送液圧力を受けて第1流路20内を滑りながら移動する固体であってもよい。
(実施の形態2)
 本発明の実施の形態2に係る流体特性センサ及び測定方法について説明する。なお、実施の形態2では、主に実施の形態1と異なる点について説明する。実施の形態2においては、実施の形態1と同一又は同等の構成については同じ符号を付して説明する。また、実施の形態2では、実施の形態1と重複する記載は省略する。
 実施の形態2の流体特性センサの一例について、図12及び図13を用いて説明する。図12は、本発明に係る実施の形態2の流体特性センサ1Bの一例の概略構成図である。図13は、本発明に係る実施の形態2の流体特性センサ1Bの一例の主要な構成を示すブロック図である。
 実施の形態2では、ポンプ60及びポンプ制御部64を備える点で、実施の形態1と異なる。
 図12及び図13に示すように、流体特性センサ1Bは、ポンプ60及びポンプ制御部64を備える。
<ポンプ>
 ポンプ60は、電位測定部30に接続され、且つ作動液4を送液する。実施の形態2では、ポンプ60は、作動液流路40に配置されており、作動液流路40に位置する作動液4を送液する。流体特性センサ1Bにおいては、ポンプ60による作動液4の送液方向の切り替えによって、液体3の吸引と排出とを行っている。
 ポンプ60は、電気浸透流ポンプであって、第3電極61、第4電極62及び第3流路63を有する。
 第3電極61及び第4電極62は、作動液4が通過可能な材料で形成されている。第3電極61及び第4電極62は、例えば、多孔質の導電性材料で構成されている。多孔質の導電性材料としては、Pt、Cu、Ag、Au、Ni、ステンレスなどの金属材料を用いることができる。実施の形態2では、第3電極61及び第4電極62は、対向する2つの主面を有する平板状の金属メッシュで構成されている。
 第3電極61と第4電極62とは、互いに間隔を有して配置されている。具体的には、第3電極61と第4電極62とは、作動液4の流動方向(Z方向)に間隔を有して対向して配置されている。また、第3電極61及び第4電極62の主面は、作動液4の流動方向(Z方向)と交差する方向に配置されている。
 第3流路63は、第3電極61と第4電極62との間に配置され、且つ作動液4で満たされる。実施の形態2では、第3流路63は、作動液4が流動する多孔体である。具体的には、第3流路63は、複数の孔が設けられた多孔体である。複数の孔は、流動電位を生じさせることができる程度の寸法に設計されている。多孔体としては、例えば、多孔質シリカを用いることができる。多孔体は、絶縁性であり、極性溶媒中で電気二重層が生じるような材質であればよい。多孔体は、例えば、アルミナ、ジルコニアなどのセラミック材料や、PTFE、PP、PEなどの樹脂材料で形成されていてもよい。
 第3流路63を形成する多孔体は一端と他端とを有する。多孔体の一端には、第3電極61が配置されている。多孔体の他端には、第4電極62が配置されている。
<ポンプ制御部>
 ポンプ制御部64は、ポンプ60の送液方向と送液圧力とを制御する。送液方向は、第1方向D1と、第2方向D2と、を含む。第1方向D1は、液体3を吸引する方向であって、圧力損失生成部10からポンプ60に向かう方向である(図15A参照)。第2方向D2は、第1方向D1と反対方向であって、ポンプ60から圧力損失生成部10に向かう方向である。送液圧力は、ポンプ60による作動液4を送液するための圧力を意味する。
 ポンプ制御部64は、ポンプ60へ印加する印加電圧を制御することによって、ポンプ60の送液方向と送液圧力とを制御する。具体的には、ポンプ制御部64は、ポンプ60の印加電圧を調整する電圧調整部65を備える。電圧調整部65は、ポンプ60に印加する印加電圧の大きさ、印加電圧の正負を調整する。例えば、電圧調整部65は、電圧を調整する回路であり、半導体素子などで構成される。
 ポンプ制御部64は、電圧調整部65でポンプ60へ印加する印加電圧の大きさを調整することによってポンプ60の送液圧力を制御する。また、ポンプ制御部64は、電圧調整部65でポンプ60へ印加する印加電圧の正負を調整することによってポンプ60の送液方向を制御する。
 実施の形態2では、ポンプ制御部64は、電位測定部30によって測定された流動電位の測定値に基づいて、ポンプ60の送液方向と送液圧力とを制御する。
[動作]
 流体特性センサ1Bの動作、即ち、測定方法の一例について図14~図16を用いて説明する。図14は、本発明に係る実施の形態2の測定方法の一例のフローチャートである。図15A~15Cは、本発明に係る実施の形態2の流体特性センサ1Bの動作の一例を示す概略図である。図16は、本発明に係る実施の形態2の流体特性センサ1Bで測定される流動電位の変化の一例を示すグラフである。なお、当該動作は、測定対象である液体3の特性として、粘度を測定する例について説明する。
 図14及び図15Aに示すように、ステップST11では、ポンプ60によって作動液4を第1方向D1へ送液する。ステップST11では、ポンプ制御部64が電圧調整部65でポンプ60に印加される印加電圧を制御する。例えば、ポンプ制御部64は、ポンプ60に+12Vの印加電圧を印加するように制御する。これにより、ポンプ60は、作動液4を第1方向D1へ送液する。その結果、容器2内に貯留された液体3が流出入口12から吸引される。
 図14に戻って、ステップST12では、電位測定部30によって、作動液4の流動電位を測定する。具体的には、電位測定部30において、第1電極31と第2電極32との間に配置される第2流路33を作動液4が第1方向D1へ向かって流動することによって生じる流動電位を測定部34によって測定する。
 ステップST13では、算出部50によって、流動電位が収束しているか否かを判定する。図16に示すように、流動電位は、時刻tで吸引を開始すると共に増大し、時間の経過とともに減少し収束する。流動電位の収束の判定は、単位時間t当たりの流動電位の変化量の閾値に基づいて行われる。例えば、算出部50は、10秒間の流動電位の変化量が±0.02V以内である場合、流動電位が収束していると判定してもよい。なお、単位時間tは、10秒に限定されず、任意の値に設定されてもよい。また、流動電位の変化量の閾値は、±0.02Vに限定されず、任意の値に設定されてもよい。
 図14に戻って、ステップST13では、流動電位が収束している場合、フローはステップST14に進む。流動電位が収束していない場合、フローはステップST12に戻る。
 ステップST14では、測定された流動電位に基づいて測定対象である液体3の特性を算出部50によって算出する。具体的には、算出部50は、流動電位が収束したときの測定値、即ち、流動電位の収束値Vを取得する。算出部50は、流動電位の収束値Vに基づいて液体3の粘度を算出する。
 図14及び図15Bに示すように、ステップST15では、ポンプ60によって作動液4を第2方向D2へ送液する。ステップST15では、ポンプ制御部64が電圧調整部65でポンプ60に印加される印加電圧を制御する。例えば、ポンプ制御部64は、ポンプ60に-12Vの印加電圧を印加するように制御する。これにより、ポンプ60は、作動液4を第2方向D2へ送液する。その結果、流体特性センサ1B内の液体3が容器2に排出される。なお、吸引時の印加電圧の大きさと排出時の印加電圧の大きさを同じにすることによって、吸引時と排出時の送液圧力を同じにすることができる。
 実施の形態2では、ポンプ制御部64は、算出部50からポンプ60の送液方向の切り替えタイミングの情報を受信する。送液方向の切り替えタイミングの情報とは、例えば、流動電位の収束の判定結果である。ポンプ制御部64は、算出部50から流動電位の収束の判定結果を受信し、当該判定結果に基づいてポンプ60の送液方向を切り替える。
 ステップST16では、電位測定部30によって、作動液4の流動電位を測定する。具体的には、電位測定部30において、第1電極31と第2電極32との間に配置される第2流路33を作動液4が第2方向D2へ向かって流動することによって生じる流動電位を測定部34によって測定する。
 ステップST17では、算出部50によって、単位時間当たりの流動電位の変化量の絶対値が閾値を超えて増大したか否かを判定する。算出部17は、単位時間当たりの流動電位の変化量の絶対値が閾値を超えて増大したか否かを判定することによって、液体3の排出完了を判定する。図15Cに示すように、液体3が排出されると、圧力損失生成部10に気体の可動隔壁21が位置するようになる。このため、圧力損失生成部10における圧力損失が急激に減少するため、第2方向D2へ移動する作動液4の流速が急激に増大する。作動液4の流速が急激に増大すると、電位測定部30で測定される流動電位の絶対値も急激に増大する。
 図16に示すように、時刻tにおいてポンプ60の送液方向が第1方向D1から第2方向D2に切り替わると、作動液4の流動する方向も反転する。このため、電位測定部30で測定される流動電位も正から負へと反転する。流動電位の測定値の絶対値は、時間の経過とともに減少し、収束に向かう。そして、図15Cに示すように、液体3が排出されると、第2方向D2に向かって流動する作動液4の流速が急激に増大し、電位測定部30で測定される流動電位の絶対値が急激に増大する。例えば、算出部50は、単位時間を1秒とし、閾値を0.1Vとしてもよい。算出部50は、1秒間で流動電位の変化量の絶対値が0.1Vを超えて増大した場合、閾値を超えて増大していると判定する。
 図14に戻って、ステップST17では、単位時間当たりの流動電位の変化量の絶対値が閾値を超えている場合、フローはステップST18に進む。単位時間当たりの流動電位の変化量の絶対値が閾値を超えていない場合、フローはステップST16に戻る。
 ステップST18では、ポンプ制御部64によって、ポンプ60を停止する。具体的には、ポンプ制御部64は、電圧調整部65によってポンプ60へ印加する印加電圧を0Vに設定する。印加電圧を0Vに設定することによって、ポンプ60の送液圧力を0にすることができる。即ち、ポンプ60の駆動を停止することができる。
 実施の形態2では、ポンプ制御部64は、算出部50からポンプ60を停止するタイミング情報を受信する。ポンプ60を停止するタイミング情報とは、例えば、単位時間当たりの流動電位の変化量の絶対値が閾値を超えているか否かの判定結果である。ポンプ制御部64は、算出部50から流動電位の変化量の判定結果を受信し、当該判定結果に基づいて時刻tのときにポンプ60を停止する。
 このように、流体特性センサ1Bを用いた測定方法は、ステップST11~ST18を実施することによって、液体3の特性として粘度を測定することができる。
[効果]
 実施の形態2に係る流体特性センサ1Bによれば、以下の効果を奏することができる。
 流体特性センサ1Bは、電位測定部30に接続され、且つ作動液4を送液するポンプ60を備える。このような構成により、作動液4の送液を容易且つ適切に行うことができる。
 ポンプ60は、電気浸透流ポンプであって、第3電極61、第4電極62及び第3流路63を有する。第3電極61は、作動液4が通過可能な電極である。第4電極62は、第3電極61と間隔を有して配置され、且つ作動液4が通過可能な電極である。第3流路63は、第3電極61と第4電極62との間に配置され、且つ作動液4で満たされている。また、第3流路63は、複数の孔が設けられた多孔体を有する。このような構成により、DC電圧でポンプ60を駆動し、印加電圧の極性反転で送液方向を容易に切り替えることができる。また、構造が単純で小型であるため、流体特性センサ1B内に組み込みやすく、設計の自由度が向上する。
 流体特性センサ1Bは、ポンプ60の送液方向を制御するポンプ制御部64を備える。送液方向は、圧力損失生成部10からポンプ60に向かう第1方向D1と、第1方向D1と反対方向であってポンプ60から圧力損失生成部10に向かう第2方向D2と、を含む。このような構成により、ポンプ60の送液方向を容易に制御することができる。
 ポンプ制御部64は、電位測定部30によって測定された流動電位の測定値に基づいて、ポンプ60の送液方向を制御する。このような構成により、適切なタイミングでポンプ60の送液方向を調整することができる。
 ポンプ制御部64は、送液方向が第1方向D1であり、且つ流動電位の測定値が収束した後、送液方向を第2方向D2に切り替える。また、ポンプ制御部64は、送液方向が第2方向D2であり、且つ単位時間当たりの流動電位の変化量の絶対値が閾値を超えて増大したとき、ポンプ60を停止する。このような構成により、より適切なタイミングで送液方向を第1方向D1から第2方向D2に切り替えることができる。また、より適切なタイミングでポンプ60を停止することができる。
 なお、実施の形態2では、ポンプ60が電気浸透ポンプである例について説明したが、これに限定されない。ポンプ60は、作動液4を送液することができるポンプであればよい。
 実施の形態2では、流体特性センサ1Bが、ポンプ制御部64を備える例について説明したが、これに限定されない。例えば、ポンプ制御部64は、必須の構成ではなく、流体特性センサ1Bを制御する制御装置に含まれていてもよい。
 実施の形態2では、ポンプ制御部64がポンプ60の送液方向と送液圧力との両方を制御する例について説明したが、これに限定されない。ポンプ制御部64は、少なくとも送液方向を制御することができればよい。
 実施の形態2では、測定方法がステップST11~ST18を含む例について説明したが、これに限定されない。これらのステップST11~ST18は、分割、統合、削除及び追加が行われてもよいし、順番が入れ替わってもよい。
 実施の形態2では、ステップST17において、算出部50が単位時間t当たりの流動電位の変化量の絶対値が閾値を超えて増大したか否かを判定する例について説明したが、これに限定されない。ステップST17においては、液体3の排出終了を判定することができればよい。例えば、ステップST17において、算出部50は、流動電位の絶対値が閾値を超えて増大したか否かを判定してもよい。
 実施の形態2では、ステップST17Aにおいて、算出部50が単位時間t当たりの流動電位の変化量の絶対値が閾値を超えて減少したか否かを判定する例について説明したが、これに限定されない。ステップST17Aにおいては、作動液4の圧力損失生成部10への流入を判定することができればよい。例えば、ステップST17Aにおいて、算出部50は、流動電位の絶対値が閾値を超えて減少したか否かを判定してもよい。
 図17は、本発明に係る実施の形態2の流体特性センサ1Bで測定される流動電位の変化の別例を示すグラフである。図17に示すように、時刻tにおいて液体3を排出し終わっても、単位時間あたりの流動電位の変化量の絶対値が閾値を超えない場合がある。このような場合、ポンプ60によって作動液4を第2方向D2へ送液し続けると、作動液4が流体特性センサ1Bの外部へ流出する。
 図18は、本発明に係る実施の形態2の流体特性センサ1Bの動作の別例を示す概略図である。図18に示すように、液体3を排出し終わった後もポンプ60によって作動液4を第2方向D2へ送液し続けると、作動液4が圧力損失生成部10を流動する。作動液4が圧力損失生成部10を流動すると、圧力損失生成部10において圧力損失が急激に増大する。これにより、作動液4の流速(流量)が急激に減少する。このため、図17に示すように、作動液4が圧力損失生成部10を流動し圧力損失が急激に増大する時刻tにおいて、流動電位の絶対値が急激に減少する。流動電位の絶対値が急激に減少するタイミングでポンプ60を停止することによって、作動液4が流体特性センサ1Bの外部に流出することを抑制することができる。
 図19は、本発明に係る実施の形態2の変形例4の測定方法の一例のフローチャートである。図19に示すステップST17Aを除いて、ステップST11~ST18は図14に示すステップST11~ST18と同じであるため、説明を省略する。図19に示すように、ステップST17でNoの場合、フローはステップST17Aに進む。
 ステップST17Aでは、算出部50によって、単位時間当たりの流動電位の変化量の絶対値が閾値を超えて減少しているか否かを判定する。例えば、算出部50は、単位時間を1秒とし、閾値を0.1Vとしてもよい。算出部50は、1秒間で流動電位の変化量の絶対値が0.1Vを超えて減少した場合、閾値を超えて減少していると判定する。
 ステップST17Aにおいて、単位時間当たりの流動電位の変化量の絶対値が閾値を超えて減少している場合、フローはステップST18に進む。単位時間当たりの流動電位の変化量の絶対値が閾値を超えて減少していない場合、フローはステップST16に戻る。
 このような構成により、ステップST17の制御が機能しない場合であっても、ステップST17Aを実行することによって、作動液4が流体特性センサ1Bの外部に流出することを抑制することができる。
 なお、図19に示す測定方法を実施する場合、可動隔壁21は、圧力損失生成部10の流路体積より大きい体積を有することが好ましい。これにより、流動電位の変化量の絶対値の減少をより確実に測定することができる。
 なお、実施の形態2では、流動電位が収束している場合に作動液4の送液方向を第1方向D1から第2方向D2に変更する例について説明したが、これに限定されない。例えば、算出部50は、測定対象である液体3を吸引しているときに測定した流動電位に基づいて、液体3の吸引量を算出してもよい。ポンプ制御部64は、算出部50で算出された液体3の吸引量に基づいてポンプ60を制御し、作動液4の送液方向を第1方向D1から第2方向D2に変更してもよい。例えば、ポンプ制御部64は、液体3の吸引量が電位測定部30から流出入口12までの流路体積を超える前に、作動液4の送液方向を第1方向D1から第2方向D2に変更してもよい。このような構成により、液体3が電位測定部30やポンプ60に浸入することを抑制することができる。これにより、流体特性センサ1Bが液体3に汚染されることによる測定精度の低下や故障を抑制することができる。
(実施の形態3)
 本発明の実施の形態3に係る流体特性センサ及び測定方法について説明する。なお、実施の形態3では、主に実施の形態2と異なる点について説明する。実施の形態3においては、実施の形態2と同一又は同等の構成については同じ符号を付して説明する。また、実施の形態3では、実施の形態2と重複する記載は省略する。
 実施の形態3の流体特性センサを用いた測定方法の一例について、図20及び図21を用いて説明する。図20は、本発明に係る実施の形態3の測定方法の一例のフローチャートである。図21は、本発明に係る実施の形態3の流体特性センサで測定される流動電位の変化の一例を示すグラフである。
 実施の形態3では、液体3を吸引しているときの液体3の第1粘度と液体3を排出しているときの液体3の第2粘度を測定する点、及び第1粘度と第2粘度とに基づいて液体3の特性を判定する点で、実施の形態2と異なる。
 実施の形態3の測定方法では、算出部50は、液体3を吸引しているときの流動電位の測定値に基づいて液体3の第1粘度を算出し、液体3を排出しているときの流動電位の測定値に基づいて液体3の第2粘度を算出する。また、算出部50は、第1粘度と第2粘度とに基づいて液体3の特性を判定する。具体的には、実施の形態3の測定方法では、液体3がチクソトロピーを示す流体であるか否かを判定する。
 詳細に説明すると、流体の中には、一定せん断速度で流動させると時間とともに粘度が減少し、その後、流動を止めしばらく静止すると再び元の高粘度状態に戻る性質を有するものがある。この性質を、チクソトロピーという。
 円管中にハーゲンポアイズイユ流れが生じている場合のせん断速度は、γ=4Q/πR^3(γ:せん断速度、Q:流量、R:管の半径)で表される。このように、管径の3乗に反比例してせん断速度が増大する。
 実施の形態3の流体特性センサにおいては、測定対象である液体3が圧力損失生成部10を通過する際に、大きなせん断速度が与えられる。したがって、液体3がチクソトロピーを示す流体の場合、特に圧力損失生成部10を通過する際に粘度が時間変化する。液体3が圧力損失生成部10を通過するのに要する時間をt秒とすると、液体3はt秒間にわたってとあるせん断速度で流動し、その間粘度が時間変化する。圧力損失生成部10に浸入する直前の粘度をη11、圧力損失生成部10を通過した直後(t秒後)の粘度をη12とすると、吸引時の流動電位の測定値から求められる見かけ粘度は、η11とη12の間の値となる(平均値とは限らない)。
 液体3が圧力損失生成部10を通過し終わると、液体3に与えられるせん断速度が著しく減少するため、液体3の粘度はη11に戻ろうとする。しかし、粘度がη11に戻る前に送液方向が反転され、圧力損失生成部10に再び浸入する場合、排出時の流動電位の測定値から求められる見かけ粘度は、吸引時に求めた見かけ粘度より小さい値となる。
 したがって、吸引時の流動電位の測定値から求められる液体3の第1粘度と、排出時の流動電位の測定値から求められる第2粘度を比較し、その値が異なっている場合は、その液体3はチクソトロピーを示すと判断できる。
 図20及び図21を用いて、実施の形態3の測定方法の一例を説明する。なお、図20に示すステップST21~ST25は、実施の形態2のステップST11~ST15と同じであるため、詳細な説明を省略する。
 図20に示すように、ステップST21~ST24を実施することによって、液体3を吸引し、測定対象である液体3の第1特性として液体3の第1粘度を算出する。
 ステップST25では、ポンプ60によって作動液4を第2方向D2へ送液する。ステップST35では、ポンプ制御部64が電圧調整部65でポンプ60に印加される印加電圧を制御する。例えば、ポンプ制御部64は、ポンプ60に-12Vの印加電圧を印加するように制御する。これにより、ポンプ60は、作動液4を第2方向D2へ送液する。その結果、流体特性センサ1B内の液体3が容器2に排出される。なお、第1方向D1への送液時のポンプ60の印加電圧の大きさと、第2方向D2への送液時のポンプ60の印加電圧の大きさとを同じに設定することによって、第1方向D1及び第2方向D2への送液時の送液圧力を同じに設定することができる。
 ステップST26では、電位測定部30によって、作動液4の流動電位を測定する。具体的には、電位測定部30において、第1電極31と第2電極32との間に配置される第2流路33を作動液4が第2方向D2へ向かって流動することによって生じる流動電位を測定部34によって測定する。図21に示すように、時刻tで液体3の排出を開始する、流動電位が反転する。流動電位の絶対値は、液体3の吸引と同様に、時間の経過とともに減少し収束していく。
 図20に戻って、ステップST27では、算出部50によって、流動電位が収束しているか否かを判定する。流動電位の収束の判定は、ステップST23と同様に、単位時間t当たりの流動電位の変化量の閾値に基づいて行われる。例えば、算出部50は、10秒間の流動電位の変化量が±0.02V以内である場合、流動電位が収束していると判定してもよい。なお、単位時間tは、10秒に限定されず、任意の値に設定されてもよい。また、流動電位の変化量の閾値は、±0.02Vに限定されず、任意の値に設定されてもよい。
 ステップST27では、流動電位が収束している場合、フローはステップST28に進む。流動電位が収束していない場合、フローはステップST26に戻る。
 ステップST28では、測定された流動電位に基づいて液体3の第2特性を算出部50によって算出する。具体的には、算出部50は、流動電位が収束したときの測定値、即ち、流動電位の収束値Vを取得する。算出部50は、流動電位の収束値Vに基づいて液体3の第2粘度を算出する。
 ステップST29では、算出部50によって、第1粘度と第2粘度とに基づいて液体3の特性を判定する。具体的には、算出部50は、第1粘度と第2粘度とを比較する。第1粘度と第2粘度とが異なる場合、算出部50は、液体3がチクソトロピーを示す流体であることを判定する。第1粘度と第2粘度とが等しい場合、算出部50は、液体3がチクソトロピーを示さない流体であることを判定する。
 このように、実施の形態3の測定方法は、ステップST21~ST29を実施することによって、液体3の特性を判定することができる。具体的には、実施の形態3の測定方法では、液体3がチクソトロピーを示す流体であるか否かを判定することができる。
 図22は、実施例1~3の測定条件と測定結果の一例を示す表である。図23は、実施例1及び実施例3の粘度とせん断速度との関係の一例を示すグラフである。図22及び図23に示す実施例1~3は、実施の形態3の流体特性センサを用いて吸引時の液体3の第1粘度及び排出時の液体3の第2粘度を測定した。実施例1~3は、測定対象である液体3として、それぞれ、ニュートン流体、チクソトロピーを示さない非ニュートン流体、およびチクソトロピーを示す流体を用いた。実施例1~3は、液体3の種類を除いて同じ条件である。
 図22及び図23に示すように、実施例1及び2において、吸引時の液体3の第1粘度及び排出時の液体3の第2粘度は等しい。一方、実施例3において、排出時の液体3の第2粘度は吸引時の液体3の第1粘度より小さくなっている。このように、実施例1のニュートン流体及び実施例2のチクソトロピーを示さない非ニュートン流体においては、吸引時の第1粘度と排出時の第2粘度とが等しい。一方、実施例3のチクソトロピーを示す流体においては、吸引時の第1粘度と排出時の第2粘度とが異なっている場合、第1粘度と第2粘度が異なる。したがって、実施の形態3の流体特性センサを用いて測定した第1粘度と第2粘度とを比較することによって、測定対象である液体3がチクソトロピーを示す流体であるか否かを判定することができる。
[効果]
 実施の形態3に係る流体特性センサによれば、以下の効果を奏することができる。
 実施の形態3の流体特性センサにおいて、算出部50は、送液方向が第1方向D1であるときの流動電位の測定値に基づいて液体3の第1粘度を算出し、送液方向が第2方向D2であるときの流動電位の測定値に基づいて液体3の第2粘度を算出する。算出部50は、第1粘度と第2粘度とに基づいて液体3の特性を判定する。このような構成により、液体3の吸引時と排出時に粘度測定を実施することができる。これにより、液体3の種類の判定に適用することができる。例えば、算出部50は、第1粘度と第2粘度とに基づいて液体3がチクソトロピーを示す流体であるか否かを判定することができる。
 なお、実施の形態3では、測定方法がステップST21~ST29を含む例について説明したが、これに限定されない。これらのステップST21~ST29は、分割、統合、削除及び追加が行われてもよいし、順番が入れ替わってもよい。
 実施の形態3では、ステップST29において、第1粘度と第2粘度とが等しい場合に液体3がチクソトロピーを示さない流体であると判定し、第1粘度と第2粘度とが異なる場合に液体3がチクソトロピーを示す流体であると判定する例について説明したが、これに限定されない。例えば、算出部50は、第1粘度と第2粘度との差分を算出し、当該差分と所定の閾値とに基づいて、液体3の特性を判定してもよい。例えば、算出部50は、差分が所定の閾値を超えている場合、液体3がチクソトロピーを示す流体であると判定してもよい。算出部50は、差分が所定の閾値を超えていない場合、液体3がチクソトロピーを示さない流体であると判定してもよい。
(実施の形態4)
 本発明の実施の形態4に係る流体特性センサ及び測定方法について説明する。なお、実施の形態4では、主に実施の形態3と異なる点について説明する。実施の形態4においては、実施の形態3と同一又は同等の構成については同じ符号を付して説明する。また、実施の形態4では、実施の形態3と重複する記載は省略する。
 実施の形態4の流体特性センサを用いた測定方法の一例について、図24を用いて説明する。図24は、本発明に係る実施の形態4の測定方法の一例のフローチャートである。
 実施の形態4では、液体3の吸引時の送液圧力と液体3の排出時の送液圧力とが異なる点で、実施の形態3と異なる。
 実施の形態4の測定方法では、液体3の吸引時と排出時の送液圧力を異なるように設定して測定された液体3の第1粘度と第2粘度とに基づいて、液体3の特性を判定する。具体的には、実施の形態4の測定方法では、液体3がニュートン流体であるか、非ニュートン流体であるかを判定する。
 詳細に説明すると、ニュートン流体の粘度は、せん断速度によらず一定である。したがって、測定対象である液体3がニュートン流体である場合、流動電位の測定値から算出される粘度の値は、ポンプ60の送液圧力によらず一定となる。一方、非ニュートン流体の粘度は、せん断速度によって変化する。したがって、測定対象である液体3が非ニュートン流体の場合、流動電位の測定値から算出される粘度の値は、ポンプの送液圧力によって変化する。
 したがって、吸引時と排出時で送液圧力を異なるように設定し、吸引時及び排出時の流動電位の測定から算出される粘度の値を比較することで、液体3がニュートン流体であるか非ニュートン流体であるかを判定することが可能となる。また、複数のせん断速度における見かけ粘度が算出されるため、例えばチクソトロピーインデックスなどの測定対象の非ニュートン性に関する情報も得ることもできる。
 図24を用いて、実施の形態3の測定方法の一例を説明する。なお、図24に示すステップST32~ST35及びステップST37~ST40は、実施の形態3のステップST21~ST28と同じであるため、詳細な説明を省略する。
 図24に示すように、ステップST31では、ポンプ制御部64によって、ポンプ60の送液圧力を第1圧力P1に設定する。具体的には、送液圧力は、ポンプ60への印加電圧の大きさにより決定される。ポンプ制御部64は、電圧調整部65によって、ポンプ60への印加電圧を調整する。実施の形態4では、ポンプ制御部64は、ポンプ60の印加電圧を+12Vに設定する。これにより、ポンプ60の送液圧力を第1圧力P1に設定する。
 次に、ステップST32~ST35を実施することによって、液体3を第1方向D1へ送液(吸引)しているときの液体3の第1粘度を算出する。なお、ステップST32~ST35は、実施の形態3のステップST21~ST24と同様である。
 ステップST36では、ポンプ制御部64によって、ポンプ60の送液圧力を第2圧力P2に設定する。第2圧力P2の大きさは、第1圧力P1の大きさと異なる。実施の形態4では、ポンプ制御部64は、ポンプ60の印加電圧を-24Vに設定する。これにより、ポンプ60の送液圧力を第2圧力P2に設定する。
 次に、ステップST37~ST40を実施することによって、液体3を第2方向D2へ送液(排出)しているときの液体3の第2粘度を算出する。なお、ステップST37~ST40は、実施の形態3のステップST25~ST28と同様である。
 ステップST41では、算出部50によって、第1粘度と第2粘度とに基づいて液体3の特性を判定する。具体的には、算出部50は、第1粘度と第2粘度とを比較する。第1粘度と第2粘度とが異なる場合、算出部50は、液体3が非ニュートン流体であることを判定する。第1粘度と第2粘度とが等しい場合、算出部50は、液体3がニュートン流体であることを判定する。
 このように、実施の形態4の測定方法は、ステップST31~ST41を実施することによって、液体3の特性を判定することができる。具体的には、実施の形態4の測定方法では、液体3がニュートン流体であるか、非ニュートン流体であるかを判定することができる。
 図25は、実施例4及び実施例5の測定条件と測定結果の一例を示す表である。図26は、実施例4及び実施例5の粘度とせん断速度との関係の一例を示すグラフである。図25及び図26に示す実施例4及び5は、実施の形態4の流体特性センサを用いて吸引時の液体3の第1粘度及び排出時の液体3の第2粘度を測定した。実施例4及び5は、測定対象である液体3として、それぞれ、ニュートン流体、および非ニュートン流体を用いた。実施例4及び5は、液体3の種類を除いて同じ条件である。なお、実施例4及び5においては、吸引時のポンプ60への印加電圧を、排出時のポンプ60への印加電圧を大きくしている。これにより、吸引時の第1圧力P1よりも排出時の第2圧力P2を大きくしている。
 図25及び図26に示すように、実施例4において、吸引時の液体3の第1粘度及び排出時の液体3の第2粘度は等しい。一方、実施例5において、排出時の液体3の第2粘度は吸引時の液体3の第1粘度より小さくなっている。このように、実施例4のニュートン流体は、吸引時と排出時の送液圧力が異なっていても第1粘度と第2粘度とが等しい。一方、実施例5の非ニュートン流体は、吸引時と排出時の送液圧力が異なっている場合、第1粘度と第2粘度が異なる。したがって、実施の形態4の流体特性センサを用いて測定した第1粘度と第2粘度とを比較することによって、測定対象である液体3がニュートン流体であるか、非ニュートン流体であるかを判定することができる。
[効果]
 実施の形態4に係る流体特性センサによれば、以下の効果を奏することができる。
 実施の形態4の流体特性センサにおいて、ポンプ制御部64は、送液方向が第1方向D1であるときのポンプ60の送液圧力を第1圧力P1に設定し、送液方向が第2方向D2であるときのポンプ60の送液圧力を第1圧力P1と異なる第2圧力P2に設定する。このような構成により、液体3の特性の判定に適用することができる。例えば、算出部50が、異なる送液圧力で測定された第1粘度及び第2粘度に基づいて、液体3がニュートン流体であるか、非ニュートン流体であるかを判定することができる。
 なお、実施の形態4では、測定方法がステップST31~ST41を含む例について説明したが、これに限定されない。これらのステップST31~ST41は、分割、統合、削除及び追加が行われてもよいし、順番が入れ替わってもよい。
 実施の形態4では、ステップST41において、第1粘度と第2粘度とが等しい場合に液体3がニュートン流体であると判定し、第1粘度と第2粘度とが異なる場合に液体3が非ニュートン流体であると判定する例について説明したが、これに限定されない。例えば、算出部50は、第1粘度と第2粘度との差分を算出し、当該差分と所定の閾値とに基づいて、液体3の特性を判定してもよい。例えば、算出部50は、差分が所定の閾値を超えている場合、液体3が非ニュートン流体であると判定してもよい。算出部50は、差分が所定の閾値を超えていない場合、液体3がニュートン流体であると判定してもよい。
(実施の形態5)
 本発明の実施の形態5に係る流体特性センサ及び測定方法について説明する。なお、実施の形態5では、主に実施の形態2と異なる点について説明する。実施の形態5においては、実施の形態2と同一又は同等の構成については同じ符号を付して説明する。また、実施の形態5では、実施の形態2と重複する記載は省略する。
 実施の形態5の流体特性センサを用いた測定方法の一例について、図27及び図28を用いて説明する。図27は、本発明に係る実施の形態5の測定方法の一例のフローチャートである。図28は、本発明に係る実施の形態5の流体特性センサで測定される流動電位の変化の一例を示すグラフである。
 実施の形態5では、液体3の送液圧力を段階的に変化させて粘度を測定する点で、実施の形態2と異なる。
 実施の形態5の測定方法では、測定対象である液体3の吸引時及び/又は排出時に段階的に送液圧力を変化させて測定した複数の粘度に基づいて、液体3の特性を判定する。具体的には、実施の形態5の測定方法では、液体3がニュートン流体、擬塑性流体、ビンガム流体のいずれであるかを判定する。
 詳細に説明すると、液体3の送液圧力を変化させて粘度を複数回測定することによって、送液圧力に関連して変化する粘度のデータを取得することができる。粘度の変化傾向は、流体によって異なっている。例えば、ニュートン流体の場合、送液圧力が変化しても粘度が変化しない。擬塑性流体の場合、送液圧力に比例して粘度が減少する。ビンガム流体の場合、送液圧力の増大に伴い急激に減少するが、所定の送液圧力を超えると一定になる。
 したがって、送液圧力を段階的に変化させて測定した粘度の変化の傾向に基づいて測定対象である液体3の特性を判定することができる。
 図27及び図28を用いて、実施の形態5の測定方法の一例を説明する。なお、図27に示すステップST52~ST55,ST57~ST59、ST61~ST63は、実施の形態2のステップST11~ST14と同じであるため、詳細な説明を省略する。
 図27に示すように、ステップST51では、ポンプ制御部64によって、ポンプ60の送液圧力を第1圧力P1に設定する。具体的には、送液圧力は、ポンプ60への印加電圧の大きさにより決定される。ポンプ制御部64は、電圧調整部65によって、ポンプ60への印加電圧を調整する。実施の形態4では、ポンプ制御部64は、ポンプ60の第1吸引時の印加電圧を+12Vに設定する。これにより、ポンプ60の第1吸引の送液圧力を第1圧力P1に設定する。
 次に、ステップST52~ST55を実施することによって、第1吸引時の液体3の第1粘度を算出する。なお、ステップST52~ST54は、実施の形態2のステップST11~ST14と同様である。具体的には、ポンプ60が第1圧力P1で第1方向D1へ作動液4を送液することによって、液体3の第1吸引を実施する。図28に示すように、時刻t11で第1吸引を開始すると流動電位が増大する。その後、時間の経過とともに流動電位が減少する。算出部50は、第1吸引において流動電位が収束したときの収束値V11を用いて液体3の第1粘度を算出する。
 ステップST56では、ポンプ制御部64によって、ポンプ60の送液圧力を第2圧力P2に設定する。第2圧力P2は、第1圧力P1と異なる。実施の形態4では、第2圧力P2は第1圧力P1より大きくなるように設定される。例えば、ポンプ制御部64は、ポンプ60の第2吸引時の印加電圧を+18Vに設定する。これにより、ポンプ60の第2吸引の送液圧力を第2圧力P2に設定する。
 次に、ステップST57~ST59を実施することによって、第2吸引時の液体3の第2粘度を算出する。なお、ステップST57~ST59は、実施の形態2のステップST12~ST14と同様である。具体的には、ポンプ60が第2圧力P2で第1方向D1へ作動液4を送液することによって、液体3の第2吸引を実施する。図28に示すように、時刻t12で第2吸引を開始すると流動電位が増大する。その後、時間の経過とともに流動電位が減少する。算出部50は、第2吸引において流動電位が収束したときの収束値V12を用いて液体3の第2粘度を算出する。
 ステップST60では、ポンプ制御部64によって、ポンプ60の送液圧力を第3圧力P3に設定する。第3圧力P3は、第1圧力P1及び第2圧力P2と異なる。実施の形態4では、第3圧力P3は第2圧力P2より大きくなるように設定される。例えば、ポンプ制御部64は、ポンプ60の第3吸引時の印加電圧を+24Vに設定する。これにより、ポンプ60の第3吸引の送液圧力を第3圧力P3に設定する。
 次に、ステップST61~ST63を実施することによって、第3吸引時の液体3の第3粘度を算出する。なお、ステップST61~ST63は、実施の形態2のステップST12~ST14と同様である。具体的には、ポンプ60が第3圧力P3で第1方向D1へ作動液4を送液することによって、液体3の第3吸引を実施する。図28に示すように、時刻t13で第3吸引を開始すると流動電位が増大する。その後、時間の経過とともに流動電位が減少する。算出部50は、第3吸引において流動電位が収束したときの収束値V13を用いて液体3の第3粘度を算出する。
 ステップST64では、ポンプ60によって作動液4を第2方向D2へ送液する。これにより、液体3を排出する。
 ステップST65では、算出部50によって、第1粘度、第2粘度及び第3粘度に基づいて液体3の特性を判定する。具体的には、算出部50は、第1粘度、第2粘度及び第3粘度に基づいて、送液圧力の変化に伴う液体3の粘度の変化傾向を算出する。算出部50は、送液圧力の変化に伴う液体3の粘度の変化傾向に基づいて、液体3の特性を判定する。例えば、算出部50は、送液圧力の変化に伴う液体3の粘度の変化傾向に基づいて、液体3がニュートン流体、擬塑性流体、ビンガム流体のいずれであるかを判定する。
 このように、実施の形態5の測定方法は、ステップST51~ST65を実施することによって、液体3の特性を判定することができる。具体的には、実施の形態5の測定方法では、液体3がニュートン流体、擬塑性流体、ビンガム流体のいずれであるかを判定することができる。
 図29は、実施例6~9の測定条件と測定結果の一例を示す表である。図30は、実施例1及び実施例3の粘度とせん断速度との関係の一例を示すグラフである。図29及び図30に示す実施例6~9は、実施の形態5の流体特性センサを用いて第1吸引時の液体3の第1粘度、第2吸引時の液体3の第2粘度及び第3吸引時の液体3の第3粘度を測定した。実施例6~9は、測定対象である液体3として、それぞれ、ニュートン流体、第1擬塑性流体、第2擬塑性流体およびビンガム流体を用いた。実施例6~9は、液体3の種類を除いて同じ条件である。なお、図30では、横軸のせん断速度は、流動電位(液体3の流量)と比例する。
 図29及び図30に示すように、実施例6において、液体3の粘度は、せん断速度(送液圧力)の変化に関わらず変化しておらず、一定の値となっている。実施例7及び8において、液体3の粘度は、せん断速度(送液圧力)の増加に伴い緩やかに減少している。実施例9において、液体3の粘度は、せん断速度(送液圧力)の増加に伴い、急激に減少した後、一定の値となっている。このように、実施例6~9においては、送液圧力の変化に伴う粘度の変化傾向が異なる。したがって、送液圧力の変化に伴う粘度の変化傾向に基づいて、測定対象である液体3がニュートン流体、擬塑性流体、擬塑性流体およびビンガム流体のいずれであるかを判定することができる。
[効果]
 実施の形態5に係る流体特性センサによれば、以下の効果を奏することができる。
 実施の形態5の流体特性センサにおいて、ポンプ制御部64は、送液圧力を段階的に変化させる。このような構成により、液体3の特性の判定に適用することができる。例えば、算出部50が、異なる送液圧力で測定された複数の粘度の情報に基づいて、液体3がニュートン流体、擬塑性流体、擬塑性流体およびビンガム流体のいずれであるかを判定することができる。
 なお、実施の形態5では、ポンプ制御部64が送液圧力を3段階で変化させる例について説明したが、これに限定されない。ポンプ制御部64は、送液圧力を2段階以上で変化させればよい。
 実施の形態5では、ポンプ制御部64が液体3の吸引時の送液圧力を段階的に変化させる例について説明したが、これに限定されない。例えば、ポンプ制御部64は、液体3の排出時の送液圧力を段階的に変化させてもよい。
 以下、参考として、比較例について説明する。
<比較例1>
 図31は、比較例1の流体特性センサ100Aの概略図である。図31に示すように、比較例1の流体特性センサ100Aは、可動隔壁21及び作動液4を備えない点を除いて、実施の形態2の流体特性センサ1Bと同様の構成を有する。即ち、比較例1では、測定対象である液体3の流動電位を測定する。
 図32は、比較例1の流体特性センサ100Aで測定される流動電位の変化の一例を示すグラフである。図32は、測定対象である液体3が無極性溶媒である場合の流動電位の変化の一例を示す。図32に示すように、比較例1の流体特性センサ100Aで無極性溶媒の流動電位を測定したところ、流動電位を測定することができなかった。このように、比較例1では、流動電位が生じにくい無極性溶媒などの液体の測定ができない。一方、本発明に係る実施の形態2の流体特性センサ1Bでは、測定対象である液体3と極性溶媒である作動液4とを可動隔壁21で仕切る構成を有している。このため、作動液4の流動により生じる流動電位を測定することができ、無極性溶媒などの液体3についても測定することができる。
<比較例2>
 比較例2は、ポンプが送液方向を変更できない点を除いて、実施の形態2の流体特性センサ1Bと同様の構成を有する。図33は、比較例2の流体特性センサで測定される流動電位の変化の一例を示すグラフである。図33に示すように、測定対象である液体3を排出できない比較例2においては、液体3を吸引し続ける。液体3を吸引し続けると、気体の可動隔壁21及び液体3が電位測定部30に浸入するため、流動電位が0となる。このため、測定ができなくなる。一方、本発明に係る実施の形態2の流体特性センサ1Bでは、送液方向を変更できるポンプ60を用いているため、液体3の吸引と排出を行うことができる。これにより、連続して液体3の特性を測定することが可能である。
<比較例3>
 比較例3は、流動電位に基づくポンプ60の停止制御を行わない点を除いて、実施の形態2の流体特性センサ1Bと同様の構成を有する。図34は、比較例3の流体特性センサで測定される流動電位の変化の一例を示すグラフである。図34に示すように、流動電位に基づくポンプ60の停止制御を行わない比較例3においては、液体3を排出し続ける。このため、気体の可動隔壁21及び作動液4が圧力損失生成部10を通って、流体特性センサの外部に流出する。このため、容器2内の液体3に作動液4が混入してしまう。一方、本発明に係る実施の形態2の流体特性センサ1Bでは、流動電位に基づくポンプ60の停止制御しているため、作動液4が流体特性センサ1Bの外部に流出することを抑制することができる。
(実施の形態6)
 本発明の実施の形態6に係る流体特性センサについて説明する。なお、実施の形態6では、主に実施の形態2と異なる点について説明する。実施の形態6においては、実施の形態2と同一又は同等の構成については同じ符号を付して説明する。また、実施の形態6では、実施の形態2と重複する記載は省略する。
 実施の形態6の流体特性センサの一例について、図35及び図36を用いて説明する。図35は、本発明に係る実施の形態6の流体特性センサの一例の概略構成図である。図36は、図35に示す流体特性センサの概略分解図である。なお、図35及び図36では作動液4の図示を省略する。
 実施の形態6では、流出入口12及び圧力損失生成部10を有する取付部22が、第1流路20Aの少なくとも一部を有する本体23に取り外し可能に取り付けられている点で、実施の形態2と異なる。
 図35及び図36に示すように、実施の形態6の流体特性センサ1Dは、取付部22、本体23および接続具24をさらに備える。なお、接続具24は、必須の構成ではない。
 取付部22は、流体である液体3が流出入する流出入口12および圧力損失生成部10を有する。取付部22は、本体23に対して取り外し可能に取り付けられる。取付部22は、例えば、一端と他端とを有する筒形状を有する。取付部22は、例えば、円筒形状を有する。取付部22は、例えば、配管で構成されていてもよい。
 実施の形態6では、取付部22は、流出入口12、流体流路11、圧力損失生成部10および第1接続流路25を有する。取付部22の一端には、流出入口12が設けられており、取付部22の他端には、第1接続流路25の開口が設けられている。
 第1接続流路25は、圧力損失生成部10に接続され、第1流路20Aの一部を形成している。第1接続流路25は、例えば、円筒形状を有する。第1接続流路25の流路断面積は、圧力損失生成部10の流路断面積よりも大きい。
 第1接続流路25の内壁には、第1雌ねじ部25aが設けられている。第1雌ねじ部25aは、接続具24の第1雄ねじ部24aと螺合する。
 本体23は、第1流路20Aの少なくとも一部を有する。本体23には、取付部22が取り外し可能に取り付けられる。本体23は、例えば、一端と他端とを有する筒形状を有する。本体23は、例えば、円筒形状を有する。本体23は、例えば、配管で構成されていてもよい。
 実施の形態6では、本体23は、第2接続流路26、電位測定部30、作動液流路40およびポンプ60を有する。本体23の一端には、第2接続流路26の開口が設けられており、本体23の他端(開放端41)には、作動液流路40の開口が設けられている。
 第2接続流路26は、電位測定部30に接続され、第1流路20Aの一部を形成している。第2接続流路26は、例えば、円筒形状を有する。第2接続流路26の流路断面積は、圧力損失生成部10の流路断面積よりも大きい。例えば、第2接続流路26の流路断面積は、第1接続流路25の流路断面積と等しい。
 第2接続流路26の内壁には、第2雌ねじ部26aが設けられている。第2雌ねじ部26aは、接続具24の第2雄ねじ部24bと螺合する。
 実施の形態6では、接続具24によって、取付部22が本体23に取り付けられている。接続具24は、一端と他端とを有する円筒形状の部材である。接続具24の一端側と他端側の外壁には、それぞれ、第1雄ねじ部24aと第2雄ねじ部24bとが設けられている。また、接続具24は、第3接続流路27を有する。接続具24は、例えば、ニップルである。
 第3接続流路27の流路断面積は、圧力損失生成部10の流路断面積よりも大きい。第3接続流路27は、第1流路20Aの一部を形成している。具体的には、取付部22と本体23とを接続具24を介して取り付けると、第1接続流路25、第2接続流路26及び第3接続流路27が連通し、第1流路20Aが形成される。
 言い換えると、第1流路20Aは、複数の流路に分離可能に構成されている。具体的には、第1流路20Aは、第1接続流路25、第2接続流路26および第3接続流路27に分離可能に構成されている。
 流体特性センサ1Dの製造方法の一例について図37A~図37Dを用いて説明する。図37A~図37Dは、本発明に係る実施の形態6の流体特性センサ1Dの製造工程の一例を示す概略図である。なお、図37A及び図37Bは取付部22の製造工程の一例を示し、図37C及び図37Dは本体23の製造工程の一例を示す。
 図37Aに示すように、取付部22を構成する要素を鋳型5Aに配置する。鋳型5Aは、凹状に形成されている。具体的には、流体流路11、圧力損失生成部10及び第1接続流路25を接続した状態で鋳型5A内に配置する。第1接続流路25は、例えば、内壁に第1雌ねじ部25aが設けられた樹脂管である。
 このとき、流体流路11の流出入口12及び第1接続流路25の開口は、鋳型5Aの内壁に押さえつけられた状態となる。即ち、流出入口12及び第1接続流路25の開口は、鋳型5Aの内壁によってシールされた状態となる。なお、取付部22を構成する要素を鋳型5Aに配置する際に、これらの要素を接着剤などによって接着してもよい。
 図37Bに示すように、取付部22を構成する要素を配置した鋳型5A内に溶融した封止材6を導入し、硬化させる。封止材6が硬化した後、鋳型5Aを取り外し、取付部22を得る。
 図37Cに示すように、本体23を構成する要素を鋳型5Bに配置する。鋳型5Bは、凹状に形成されている。具体的には、第2接続流路26、電位測定部30、作動液流路40及びポンプ60を接続した状態で鋳型5B内に配置する。第2接続流路26は、例えば、内壁に第2雌ねじ部26aが設けられた樹脂管である。
 このとき、第2接続流路26の開口及び作動液流路40の開放端41は、鋳型5Bの内壁に押さえつけられた状態となる。即ち、第2接続流路26の開口及び作動液流路40の開放端41は、鋳型5Bの内壁によってシールされた状態となる。なお、本体23を構成する要素を鋳型5Bに配置する際に、これらの要素を接着剤などによって接着してもよい。
 図37Dに示すように、本体23を構成する要素を配置した鋳型5B内に溶融した封止材6を導入し、硬化させる。封止材6が硬化した後、鋳型5Bを取り外し、本体23を得る。その後、本体23内部に作動液4を入れる。
 このようにして、流体特性センサ1Dを製造することができる。
[効果]
 実施の形態6に係る流体特性センサ1Dによれば、以下の効果を奏することができる。
 流体特性センサ1Dは、流体が流出入する流出入口12及び圧力損失生成部10を有する取付部22と、第1流路20Aの少なくとも一部を有し、取付部22が取り外し可能に取り付けられる本体23と、を備える。
 このような構成により、流出入口12を有する取付部22を本体23から取り付けおよび取り外しを容易に行うことができる。即ち、流体特性センサ1Dにおいては、流出入口12および圧力損失生成部10を有する取付部22が交換可能となる。これにより、測定対象を変更する際に、取付部22を交換することによって容易に測定を行うことができ、ユーザの使い勝手が向上する。
 また、測定対象を変更する際に、異なる測定対象同士の混入を抑制することができる。
 また、流体特性センサ1Dは、取付部22を交換することによって異なる測定対象に使用できるため、流体特性センサ1Dを洗浄しなくてもよい。
 また、取付部22の交換は容易に行えるため、測定対象を変更して次の測定を行うまでの時間を短縮することができる。
 また、測定対象である流体の特性に応じて、最適な圧力損失生成部10を有する取付部22に交換することができるため、測定精度を向上させることができる。例えば、流体の粘度に応じて最適な流路径の圧力損失生成部10を有する取付部22に交換することによって、幅広い粘度範囲に対して高精度な粘度測定を実施することができる。
 なお、圧力損失生成部10の流路径が小さいほど、周囲流路や電位測定部30で生じる圧力損失よりも、圧力損失生成部10で生じる圧力損失の方が大きくなるため、測定対象の粘度変化に伴う流量の変動量が大きくなる。これにより、測定精度が向上する。一方で、流路径が小さいほど得られる流量は小さくなるため、高粘度の場合では微小な流量しか生じず、流動電位の測定精度が低下する恐れがある。よって、測定したい粘度範囲に応じて、適した流路径の圧力損失生成部10を有する取付部22に交換することによって、高精度な粘度測定を実施することができる。
 なお、実施の形態6では、取付部22と本体23とが接続具24によって取り付けられる例について説明したが、これに限定されない。接続具24は必須ではない。例えば、取付部22が本体23に直接取り付けられてもよい。この場合、取付部22の外壁に雄ねじ部が設けられていてもよい。
 実施の形態6では、第1接続流路25が第1流路20Aの一部を形成する例について説明したが、これに限定されない。第1接続流路25は、第1流路20Aの一部を形成していなくてもよい。この場合、第1接続流路25は、本体23と接続される部位として使用されてもよい。
 実施の形態6では、取付部22、本体23及び接続具24がねじによって接続される例について説明したが、これに限定されない。取付部22、本体23及び接続具24がネジ以外の機構によって接続されてもよい。
(実施の形態7)
 本発明の実施の形態7に係る流体特性センサについて説明する。なお、実施の形態7では、主に実施の形態2と異なる点について説明する。実施の形態7においては、実施の形態2と同一又は同等の構成については同じ符号を付して説明する。また、実施の形態7では、実施の形態2と重複する記載は省略する。
 実施の形態7の流体特性センサの一例について、図38を用いて説明する。図38は、本発明に係る実施の形態7の流体特性センサの一例の概略構成図である。
 実施の形態7では、隔壁21Aが固体である点で、実施の形態2と異なる。
 図38に示すように、実施の形態7の流体特性センサ1Eにおいて、隔壁21Aは固体で形成されている。例えば、隔壁21Aは、ゴム又はプラスチックなどで形成されている。ゴムとしては、例えば、フッ素ゴム、クロロプレンゴム、ニトリルゴム、エチレンプロピレンジエンゴム、シリコーンゴムなどが挙げられる。プラスチックとしては、例えば、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、シクロオレフィンポリマー、環状オレフィン系コポリマーなどが挙げられる。以降では、「隔壁21A」を「固体隔壁21A」と称する場合がある。
 固体隔壁21Aは、板状部材で形成されている。例えば、固体隔壁21Aは、円板形状を有する。固体隔壁21Aは、第1流路20内を移動可能に配置されている。具体的には、固体隔壁21Aは、第1流路20の内壁20aに接触しつつ移動する。
 固体隔壁21Aの外径は、例えば、第1流路20の流路径と略等しい。例えば、固体隔壁21Aの外径は第1流路20の流路径より5%以下大きくてもよい。このような構成により、固体隔壁21Aのシール性を担保しつつ、第1流路20内を移動することができる。
 また、流体特性センサ1Fにおいては、作動液流路40の開放端41Aには、蓋42が配置されている。蓋42には、貫通孔43が設けられている。例えば、貫通孔43は、直径1mmである。このように、貫通孔43が設けられた蓋42を開放端41Aに配置することによって、流体特性センサ1Fが傾いたときなどに作動液4が開放端41Aから漏出することを抑制することができる。
[効果]
 実施の形態7に係る流体特性センサ1Eによれば、以下の効果を奏することができる。
 流体特性センサ1Eにおいて、隔壁21Aは固体である。
 このような構成により、測定対象である流体と作動液4とを容易に仕切ることができる。また、流体特性センサ1Eに振動や傾きが与えられた場合でも、流体と作動液4とをより確実に仕切ることができるため、測定対象である流体が作動液4に混入することを抑制することができる。
 また、隔壁21Aが固体である場合、気体の隔壁に比べて、第1流路20の内壁20aとの間でシール性を担保しやすい。よって、流体特性センサ1Eの設置場所や設置形態の自由度を向上させることができる。例えば、流体特性センサ1Eを重力方向、水平方向又はこれらの方向に対して斜めの方向などに設置することができる。
 図39は、本発明に係る実施の形態7の変形例5の流体特性センサの一例の概略構成図である。図39に示すように、変形例5の流体特性センサ1EAは、実施の形態6の流体特性センサ1Dの構成に実施の形態7の固体隔壁21Aを組み合わせたものである。
 流体特性センサ1EAにおいては、第1流路20Aの一部を形成する第2接続流路26内に固体隔壁21Aが配置されている。即ち、流体特性センサ1EAにおいては、固体隔壁21Aは本体23側の第1流路20Aに配置されていてもよい。
 図40は、本発明に係る実施の形態7の変形例6の流体特性センサの一例の概略構成図である。図40に示すように、変形例6の流体特性センサ1EBは、実施の形態6の流体特性センサ1Dの構成に実施の形態7の固体隔壁21Aを組み合わせたものである。
 流体特性センサ1EBにおいては、第1流路20Aの一部を形成する第1接続流路25内に固体隔壁21Aが配置されている。即ち、流体特性センサ1EBにおいては、固体隔壁21Aは取付部22側の第1流路20Aに配置されていてもよい。
 次に、固体隔壁の別例について説明する。
 図41は、固体隔壁の別例を示す概略図である。図41に示すように、固体隔壁21Bは、凹形状を有し、且つ弾性変形可能な隔壁本体28と、隔壁本体28の外壁から外側に向かって突出するフランジ29と、を有する。
 隔壁本体28は、有底の筒形状を有する。具体的には、隔壁本体28は、底部28aと側壁28bとを有する。底部28aは、円板形状を有する。側壁28bは、底部28aの外周から底部28aの厚み方向に延びる円筒形状を有する。側壁28bは、一端と他端とを有する。側壁28bの一端には、底部28aが配置されている。側壁28bの他端は、一端と反対側の端部であって、開口されている。即ち、側壁28bの他端は、開口端28cを形成している。
 隔壁本体28は、外力を受けて弾性変形可能に形成されている。
 フランジ29は、隔壁本体28の側壁28bから径方向外側に向かって突出する。フランジ29は、隔壁本体28の側壁の他端に設けられている。フランジ29は、リング形状を有する。フランジ29は、固体隔壁21Bを把持する部分として使用される。
 固体隔壁21Bは、例えば、ゴムで形成されている。例えば、ゴム材料としては、エチレンプロピレンジエンゴム(EPDM)、クリロニトリル・ブタジエンゴム(NBR)、フッ素ゴム(FKM)などが挙げられる。
 図42は、本発明に係る実施の形態7の変形例7の流体特性センサの一例の概略構成図である。図42に示すように、変形例7の流体特性センサ1ECにおいては、図41に示す固体隔壁21Bを備える。
 固体隔壁21Bは、第1流路20内に固定されている。具体的には、固体隔壁21Bのフランジ29が挟持されることによって、固体隔壁21Bが固定される。固体隔壁21Bの底部28aは、第1流路20の内壁20aと交差する方向に配置され、側壁28bは第1流路20の内壁20aに沿って配置されている。
 図43A及び図43Bは、固体隔壁の動作の一例を説明する概略図である。図43A及び図43Bは、測定対象である液体3を第1方向D1に向かって吸引する動作の一例を示している。図43A及び図43Bに示すように、液体3を第1方向D1に吸引すると、固体隔壁21Bが弾性変形する。具体的には、液体3を第1方向D1に吸引することによって、固体隔壁21Bの隔壁本体28に対して内側に向かう力が発生する。これにより、隔壁本体28の側壁28bが径方向内側に向かって窪むように弾性変形し、隔壁本体28の底部28aが第1方向D1に向かって移動する。
 このように、固体隔壁21Bが弾性変形することによって、作動液4が第1方向D1へ流動する。これにより、電位測定部30は、作動液4が流動する際に生じる流動電位を測定することができる。
 また、粘度を測定するためには、圧力損失生成部10に液体3が満ちるまで吸引するため、固体隔壁21Bの隔壁本体28で囲われた空間の体積がある程度変化することが好ましい。固体隔壁21Bの場合、作動液4が吸引されると、側壁28bが径方向内側に向かって窪むように変形し、底部28aが第1方向D1に向かって移動する。このため、隔壁本体28で囲われた空間の体積を比較的大きく変化させることができる。これにより、流体特性センサ1ECのサイズを大きくせずとも、粘度測定を実施することができる。
 図44は、本発明に係る実施の形態7の変形例8の流体特性センサの一例の概略構成図である。図44に示すように、変形例8の流体特性センサ1EDにおいては、実施の形態6の流体特性センサ1Dの構成に固体隔壁21Bを組み合わせたものである。
 流体特性センサ1EDは、複数の固体隔壁21Bを有する。複数の固体隔壁21Bは、第1流路20Aの一部を形成する、第1接続流路25と第2接続流路26にそれぞれ配置されている。具体的には、複数の固体隔壁21Bは、第1固体隔壁21BAおよび第2固体隔壁21BBを含む。第1固体隔壁21BAは取付部22の第1接続流路25に配置され、第2固体隔壁21BBは本体23の第2接続流路26に配置されている。
 第1固体隔壁21BAには測定対象である液体3が接触するが、作動液4が接触しない。一方、第2固体隔壁21BBには作動液4が接触するが、液体3が接触しない。なお、第1固体隔壁21BAと第2固体隔壁21BBとの間の流路には、気体が充填されている。
 このような構成により、本体23に測定対象である液体3が浸入しないため、作動液4と液体3とが混ざることを抑制することができる。また、取付部22を容易に交換して使用できるため、ユーザの使い勝手が向上する。また、複数の固体隔壁21Bによって作動液4が漏出することを抑制することができる。また、流体特性センサ1EDを傾けて設置した場合などであっても、液体3と作動液4とが混ざることがないため、流体特性センサ1EDの設置場所及び設置形態の自由度を向上させることができる。
 図45は、本発明に係る実施の形態7の変形例9の流体特性センサの一例の概略構成図である。図45に示すように、変形例9の流体特性センサ1EEにおいては、変形例8の流体特性センサ1EDの構成に第3固体隔壁21BCを組み合わせたものである。
 流体特性センサ1EEにおいては、複数の固体隔壁21Bは、第1固体隔壁21BA、第2固体隔壁21BB及び第3固体隔壁21BCを含む。第1固体隔壁21BAは取付部22の第1接続流路25に配置され、第2固体隔壁21BBは本体23の第2接続流路26に配置され、第3固体隔壁21BCは作動液流路40に配置されている。
 このような構成により、作動液流路40の開放端41から作動液4が漏出することを抑制することができる。具体的には、第3固体隔壁21BCが作動液流路40の開放端41側をシールする。これにより、流体特性センサ1EEが傾いたり、逆さまになった場合でも、第3固体隔壁21BCによって作動液4の漏出を抑制することができる。
 図46は、本発明に係る実施の形態7の変形例10の流体特性センサの一例の概略構成図である。図46に示すように、変形例10の流体特性センサ1EFにおいては、固体隔壁21Bが段差20cに配置されている点で、変形例7の流体特性センサ1ECと異なる。変形例10の流体特性センサ1EFにおけるその他の構成は、変形例7の流体特性センサ1ECと同様である。
 流体特性センサ1EFにおいては、固体隔壁21Bが段差20cに配置されている。段差20cは、圧力損失生成部10と第1流路20とが接続される部分である。圧力損失生成部10の流路径は、第1流路20の流路径と比べて小さいため、圧力損失生成部10と第1流路20とが接続される部分に段差20cが形成される。段差20cは、第1流路20の延びる方向(Z方向)に対して交差する方向に延びる面を有する。流体特性センサ1EFにおいては、段差20cは、第1流路20の延びる方向(Z方向)に対して直交する方向に延びる面を有する。
 固体隔壁21Bの底部28aは、段差20cと接触している。言い換えると、固体隔壁21Bは、段差20cによって支持されている。これにより、固体隔壁21Bが破損することを抑制できる。例えば、作動液4がポンプ60から圧力損失生成部10に向かう第2方向D2に流れる際に、段差20cが固体隔壁21Bの底部28aを支持する。これにより、固体隔壁21Bが強度の限界を超えて変形することを抑制できる。その結果、固体隔壁21Bの破損を抑制できる。
 図47は、本発明に係る実施の形態7の変形例11の流体特性センサの一例の概略構成図である。図47に示すように、変形例11の流体特性センサ1EGにおいては、固体隔壁21Bが逆さまに配置されている点で、変形例10の流体特性センサ1EFと異なる。変形例11の流体特性センサ1EGにおけるその他の構成は、変形例10の流体特性センサ1EFと同様である。
 流体特性センサ1EGにおいては、固体隔壁21Bの開口端28cが段差20cに配置されている。開口端28cは、開口が設けられた端部であり、側壁28bの他端である。固体隔壁21Bの開口端28cが段差20cに配置されることによって、開口端28cが圧力損失生成部10に接続される。即ち、圧力損失生成部10の流路が開口端28cの開口と連通した状態となっている。
 流体特性センサ1EGにおいては、測定対象である液体3を第1方向D1に吸引する前の状態では、固体隔壁21Bが内側に向かって窪むように変形している。液体3を第1方向D1に吸引することによって、固体隔壁21Bの隔壁本体28に対して外側に向かう力が発生する。これにより、固体隔壁21Bの側壁28bが第1流路20の内壁20aに向かって移動し、底部28aが第1方向D1に向かって移動する。このように、固体隔壁21Bが弾性変形することによって、作動液4が第1方向D1へ流動する。これにより、電位測定部30は、作動液4が流動する際に生じる流動電位を測定できる。
 図48A及び図48Bは、変形例11における固体隔壁の動作の一例を説明する概略図である。図48A及び図48Bは、測定対象である液体3を吸引した後、液体3を第2方向D2に向かって送液する動作の一例を示している。図48A及び図48Bに示すように、液体3を第2方向D2に送液すると、固体隔壁21Bが弾性変形する。具体的には、液体3を第2方向D2に送液することによって、固体隔壁21Bの隔壁本体28に対して内側に向かう力が発生する。これにより、隔壁本体28の側壁28bが径方向内側に向かって窪むように弾性変形し、隔壁本体28の底部28aが第2方向D2に向かって移動する。
 流体特性センサ1EGでは、固体隔壁21Bの開口端28cが圧力損失生成部10に接続されており、圧力損失生成部10の流路が開口端28cの開口と連通した状態となっている。このため、液体3を第2方向D2に送液する際に、固体隔壁21Bの底部28a及び側壁28bが弾性変形したとしても、圧力損失生成部10を塞ぎにくくなっている。これにより、流体特性センサ1EGにおいて、液体3を第2方向D2に送液して排出する際に、液体3が第1流路20内に残留することを抑制できる。
 図49は、固体隔壁の別例を示す概略図である。図49に示すように、固体隔壁21Cは、半球状に窪んだ隔壁本体28Aと、フランジ29と、を有していてもよい。このような構成においても、隔壁本体28Aが弾性変形することによって、作動液4が第1方向D1へ流動する。これにより、電位測定部30は、作動液が流動する際に生じる流動電位を測定することができる。
 なお、固体隔壁21B,21Cの形状は、上述した例に限定されない。固体隔壁21B,21Cは、凹状に窪んで形成され、且つ弾性変形可能な固体であればよい。また、固体隔壁21B,21Cは、作動液4の流動方向における変位が大きくなるように弾性変形する形状又は材料で構成されていることが好ましい。
(実施の形態8)
 本発明の実施の形態8に係る流体特性センサについて説明する。なお、実施の形態8では、主に実施の形態2と異なる点について説明する。実施の形態8においては、実施の形態2と同一又は同等の構成については同じ符号を付して説明する。また、実施の形態8では、実施の形態2と重複する記載は省略する。
 実施の形態8の流体特性センサの一例について、図50を用いて説明する。図50は、本発明に係る実施の形態8の流体特性センサの一例の概略構成図である。
 実施の形態8では、ノズル70を有する点で、実施の形態2と異なる。
 図50に示すように、実施の形態8の流体特性センサ1Fは、ノズル70を有する。ノズル70は、流出入口12および圧力損失生成部10を有する。ノズル70は、流体特性センサ1Fの本体部分の外径よりも小さい外径を有する。
[効果]
 実施の形態8に係る流体特性センサ1Fによれば、以下の効果を奏することができる。
 流体特性センサ1Fは、流出入口12及び圧力損失生成部10を有するノズル70を備える。
 このような構成により、液溜まりのような少量の液体3などの測定対象の流体特性を測定することができる。
 なお、実施の形態8では、ノズル70が圧力損失生成部10を有する例について説明したが、これに限定されない。
 図51は、本発明に係る実施の形態8の変形例10の流体特性センサの一例の概略構成図である。図51に示すように、変形例10の流体特性センサ1FAにおいては、ノズル70Aは流体流路11および流出入口12を有し、圧力損失生成部10は流体特性センサ1FAの本体部分に設けられている。このような構成においても少量の測定対象の流体特性を測定することができる。
 図52は、本発明に係る実施の形態8の変形例11の流体特性センサの一例の概略構成図である。図52に示すように、変形例11の流体特性センサ1FBにおいては、ノズル70Bは、圧力損失生成部10、流体流路11Aおよび流出入口12を有する。また、ノズル70Bは湾曲している。このような構成により、ノズル70Bを長くして、流体特性センサ1FAの本体部分を測定対象から離れた場所に設置することができる。
(その他の実施形態)
 図53は、その他の実施形態を示す概略図である。図53に示すように、複数の流体特性センサ1Aを備える測定システムを構築してもよい。測定システムは、複数の流体特性センサ1Aと、配管2Aと、を備える。配管2Aには、複数の測定孔が設けられており、複数の測定孔のそれぞれには流体特性センサ1Aが設置されている。このような測定システムにおいては、配管2A内の流体を能動的に吸引及び排出することで、自動かつ継続的に粘度測定を実施し、配管2A内の液体3の流体特性の変動をモニタリングすることができる。また、複数の流体特性センサ1Aで取得した測定結果の情報は、無線通信又は有線通信を介して制御装置に送ってもよい。上述した測定システムは、例えば、食品製造工程や樹脂製造工程、インキ製造工程、ペースト製造工程などの配管やタンクに適用し、配管の中を流れる流体の粘度をモニタリングすることができる。これにより、品質不良を迅速に検知し、不良品の発生量を最小限にとどめることができる。なお、図53に示す例では、実施の形態1の流体特性センサ1Aを用いる例について説明したが、これに限定されない。上述した測定システムにおいては、実施の形態2~8の流体特性センサを使用してもよい。
 図54は、その他の実施形態を示す概略図である。図54に示すように、印刷装置71に流体特性センサ1FBを設置してもよい。印刷装置71のスキージ72に流体特性センサ1FBを設置し、スクリーン版74上においてスキージ72の前方に溜まったペースト73の液だまりの粘度を測定してもよい。また、印刷中のペースト73の粘度をモニタリングして粘度変動をリアルタイムで検知してもよい。これにより、ペースト73の粘度変化に起因する印刷不良を未然防止することができる。この他、例えば、グラビア印刷装置やインクジェット印刷装置、ディスペンサーなどの塗工装置に対して流体特性センサ1FBを設置してもよい。例えば、塗工液の粘度変化検知による塗工不良の未然防止や塗工動作のフィードバック制御に用いてもよい。また、樹脂射出成型装置に流体特性センサ1FBを設置して、樹脂の粘度変化検知に基づく射出圧力のフィードバック制御に用いてもよい。なお、流体特性センサ1FB以外のノズル70を有する流体特性センサ1F,1FAを使用してもよい。
 本発明は、添付図面を参照しながら好ましい実施の形態に関連して充分に記載されているが、この技術に熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。
 本発明の流体特性センサは、流体の特性を測定するセンサであり、例えば、粘度センサに適用できる。
 1A,1AA,1AB,1AC,1B,1C,1D,1E,1EA,1EB,1EC,1ED,1EE,1EF,1EG,1F,1FA,1FB 流体特性センサ
 2 容器
 2A 配管
 3 液体
 4 作動液
 4a 液面
 5 鋳型
 6 封止材
 7 無極性溶媒
 10,10A 圧力損失生成部
 11,11A 流体流路
 12 流出入口
 13 樹脂板
 20 第1流路
 20a 内壁
 20b 雌ねじ部
 20c 段差
 21 隔壁(可動隔壁)
 21A,21B,21C 隔壁(固体隔壁)
 21a,21b 界面
 22 取付部
 23 本体
 24 接続具
 24a 雄ねじ部
 25 第1接続流路
 25a 雌ねじ部
 26 第2接続流路
 27 第3接続流路
 28,28A 隔壁本体
 28a 底部
 28b 側壁
 28c 開口端
 29 フランジ 30,30A 電位測定部
 31 第1電極
 32 第2電極
 33,33A 第2流路
 34 測定部
 40 作動液流路
 41,41A 開放端
 42 蓋
 43 貫通孔
 50 算出部
 51 プロセッサ
 52 記憶部
 53 A/Dコンバータ
 60 ポンプ
 61 第3電極
 62 第4電極
 63 第3流路
 64 ポンプ制御部
 65 電圧調整部
 70,70A,70B ノズル
 71 印刷装置
 72 スキージ
 73 ペースト
 74 スクリーン版

Claims (25)

  1.  測定対象である流体の特性を測定する流体特性センサであって、
     前記流体が流動することによって圧力損失を生じさせる圧力損失生成部と、
     前記圧力損失生成部に接続され、前記流体、及び極性溶媒である作動液が流動する第1流路と、
     前記第1流路内に配置され、前記流体と前記作動液とを仕切る隔壁と、
     前記第1流路に接続され、且つ前記作動液が流動する際に生じる流動電位を測定する電位測定部と、
    を備える、流体特性センサ。
  2.  前記圧力損失生成部は、前記第1流路の流路断面積より小さい流路断面積を有する細管、又は複数の孔が設けられた多孔体を有する、
    請求項1に記載の流体特性センサ。
  3.  前記電位測定部は、
      前記作動液が通過可能な第1電極と、
      前記第1電極と間隔を有して配置され、且つ前記作動液が通過可能な第2電極と、
      前記第1電極と前記第2電極との間に配置され、且つ前記作動液で満たされる第2流路と、
    を有し、
     前記第2流路は、前記第1流路の流路断面積より小さい流路断面積を有する細管、又は複数の孔が設けられた多孔体を有する、
    請求項1又は2に記載の流体特性センサ。
  4.  前記作動液は、水の沸点よりも高い沸点と、水の融点よりも低い融点と、のうち少なくとも1つを有する、
    請求項1~3のいずれか一項に記載の流体特性センサ。
  5.  前記隔壁は、気体であり、
     前記第1流路は、重力方向に向かって延びており、
     前記第1流路内において、前記作動液と前記隔壁との界面は、前記流体と前記隔壁の界面よりも高い、
    請求項1~4のいずれか一項に記載の流体特性センサ。
  6.  前記第1流路の内壁は、疎水性を有する、
    請求項5に記載の流体特性センサ。
  7.  更に、
     前記電位測定部に接続され、且つ前記作動液を送液するポンプを備える、
    請求項1~6のいずれか一項に記載の流体特性センサ。
  8.  前記ポンプは、電気浸透流ポンプであって、
      前記作動液が通過可能な第3電極と、
      前記第3電極と間隔を有して配置され、且つ前記作動液が通過可能な第4電極と、
      前記第3電極と前記第4電極との間に配置され、且つ前記作動液で満たされる第3流路と、
    を有し、
      前記第3流路は、複数の孔が設けられた多孔体を有する、
    請求項7に記載の流体特性センサ。
  9.  更に、
     前記ポンプの送液方向と送液圧力とを制御するポンプ制御部を備え、
     前記送液方向は、
      前記圧力損失生成部から前記ポンプに向かう第1方向と、
      前記第1方向と反対方向であって前記ポンプから前記圧力損失生成部に向かう第2方向と、
    を含む、
    請求項7又は8に記載の流体特性センサ。
  10.  前記ポンプ制御部は、前記電位測定部によって測定された前記流動電位の測定値に基づいて、前記ポンプの送液方向を制御する、
    請求項9に記載の流体特性センサ。
  11.  前記ポンプ制御部は、
      前記送液方向が前記第1方向であり、且つ前記流動電位の測定値が収束した後、前記送液方向を前記第2方向に切り替え、
      前記送液方向が前記第2方向であり、且つ単位時間当たりの流動電位の変化量の絶対値が閾値を超えて増大したとき、前記ポンプを停止する、
    請求項10に記載の流体特性センサ。
  12.  前記隔壁は、前記圧力損失生成部の流路体積より大きい体積を有し、
     前記ポンプ制御部は、前記送液方向が前記第2方向であり、且つ単位時間当たりの流動電位の測定値の変化量の絶対値が所定の閾値を超えて減少したとき、前記ポンプを停止する、
    請求項10又は11に記載の流体特性センサ。
  13.  前記ポンプ制御部は、送液圧力を段階的に変化させる、
    請求項9~12のいずれか一項に記載の流体特性センサ。
  14.  更に、
     前記電位測定部により測定された流動電位に基づいて前記流体の特性を算出する算出部を備える、
    請求項1~13のいずれか一項に記載の流体特性センサ。
  15.  更に、
     前記電位測定部により測定された流動電位に基づいて前記流体の特性を算出する算出部を備え、
     前記算出部は、
      前記送液方向が前記第1方向であるときの前記流動電位の測定値に基づいて前記流体の第1粘度を算出し、
      前記送液方向が前記第2方向であるときの前記流動電位の測定値に基づいて前記流体の第2粘度を算出し、
     前記第1粘度と前記第2粘度とに基づいて前記流体の特性を判定する、
    請求項9~13のいずれか一項に記載の流体特性センサ。
  16.  前記ポンプ制御部は、
      前記送液方向が前記第1方向であるときの前記ポンプの送液圧力を第1圧力に設定し、
      前記送液方向が前記第2方向であるときの前記ポンプの送液圧力を第1圧力と異なる第2圧力に設定する、
    請求項15に記載の流体特性センサ。
  17.  前記算出部は、
      前記電位測定部により測定された流動電位に基づいて前記作動液の流速を算出し、
      前記作動液の流速に基づいて前記流体の粘度を算出する、
    請求項14~16のいずれか一項に記載の流体特性センサ。
  18.  更に、
     大気側に開放される開放端を有し、且つ前記作動液が流動する作動液流路を備え、
     前記作動液流路の前記開放端側に位置する前記作動液の液面は、無極性溶媒で覆われている、
    請求項1~17のいずれか一項に記載の流体特性センサ。
  19.  前記無極性溶媒の沸点は、作動液の沸点より高い、
    請求項18に記載の流体特性センサ。
  20.  前記無極性溶媒は、不揮発性溶媒である、
    請求項18又は19に記載の流体特性センサ。
  21.  更に、
     前記流体が流出入する流出入口及び前記圧力損失生成部を有する取付部と、
     前記第1流路の少なくとも一部を有し、前記取付部が取り外し可能に取り付けられる本体と、
    を備える、
    請求項1~20のいずれか一項に記載の流体特性センサ。
  22.  前記隔壁は、固体である、
    請求項1~21のいずれか一項に記載の流体特性センサ。
  23.  前記隔壁は、
      凹形状を有し、且つ弾性変形可能な隔壁本体と、
      前記隔壁本体の外壁から外側に向かって突出するフランジと、
    を有する、
    請求項22に記載の流体特性センサ。
  24.  前記隔壁は、複数の前記隔壁を有する、
    請求項1~23のいずれか一項に記載の流体特性センサ。
  25.  測定対象である流体の特性を測定する流体特性センサであって、
     前記流体、及び極性溶媒である作動液が流動し、且つ一端及び他端を有する第1流路と、
     前記第1流路内に配置され、前記流体と前記作動液とを仕切る隔壁と、
     前記第1流路の一端側に接続され、前記第1流路の流路断面積より小さい流路断面積を有する圧力損失生成部と、
     前記第1流路の他端側に接続され、且つ前記作動液が流動する際に生じる流動電位を測定する電位測定部と、
    を備える、流体特性センサ。
PCT/JP2021/034817 2020-09-28 2021-09-22 流体特性センサ WO2022065369A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180063590.0A CN116113823A (zh) 2020-09-28 2021-09-22 流体特性传感器
JP2022552034A JP7332055B2 (ja) 2020-09-28 2021-09-22 流体特性センサ
US18/116,007 US20230200685A1 (en) 2020-09-28 2023-03-01 Fluid characteristic sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-162353 2020-09-28
JP2020162353 2020-09-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/116,007 Continuation US20230200685A1 (en) 2020-09-28 2023-03-01 Fluid characteristic sensor

Publications (1)

Publication Number Publication Date
WO2022065369A1 true WO2022065369A1 (ja) 2022-03-31

Family

ID=80846531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034817 WO2022065369A1 (ja) 2020-09-28 2021-09-22 流体特性センサ

Country Status (4)

Country Link
US (1) US20230200685A1 (ja)
JP (1) JP7332055B2 (ja)
CN (1) CN116113823A (ja)
WO (1) WO2022065369A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117871621A (zh) * 2024-03-11 2024-04-12 浙江省白马湖实验室有限公司 一种可视化实验装置及其检测方法和电容层析成像系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03269341A (ja) * 1990-03-20 1991-11-29 Toa Harbor Works Co Ltd 流体の粘度測定装置
JPH05281127A (ja) * 1992-03-30 1993-10-29 Yayoi:Kk 液体粘度測定装置
JP2008096178A (ja) * 2006-10-10 2008-04-24 National Institute Of Advanced Industrial & Technology 表面電位及びレオロジーの同時測定法及び測定装置
JP2008203241A (ja) * 2006-11-30 2008-09-04 Chevron Oronite Sa 交互圧力式粘度計の使用方法
CN102183675A (zh) * 2011-01-24 2011-09-14 黑龙江大学 聚丙烯酰胺水溶液流体的超低流速的测量方法及采用该方法测量聚丙烯酰胺水溶液粘度的方法
JP2012506039A (ja) * 2008-10-15 2012-03-08 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク 流体の粘度を測定する装置及び方法
WO2013180245A1 (ja) * 2012-05-31 2013-12-05 天竜精機株式会社 粘度計
CN104865161A (zh) * 2014-06-10 2015-08-26 中国石油天然气股份有限公司 一种用毛细管测量液体粘度的方法以及用于该方法的装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3269341B2 (ja) 1995-01-23 2002-03-25 三菱電機株式会社 インバータ
JP5281127B2 (ja) 2011-07-28 2013-09-04 株式会社コナミデジタルエンタテインメント ゲーム制御装置、ポイント処理方法、ポイント処理プログラム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03269341A (ja) * 1990-03-20 1991-11-29 Toa Harbor Works Co Ltd 流体の粘度測定装置
JPH05281127A (ja) * 1992-03-30 1993-10-29 Yayoi:Kk 液体粘度測定装置
JP2008096178A (ja) * 2006-10-10 2008-04-24 National Institute Of Advanced Industrial & Technology 表面電位及びレオロジーの同時測定法及び測定装置
JP2008203241A (ja) * 2006-11-30 2008-09-04 Chevron Oronite Sa 交互圧力式粘度計の使用方法
JP2012506039A (ja) * 2008-10-15 2012-03-08 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク 流体の粘度を測定する装置及び方法
CN102183675A (zh) * 2011-01-24 2011-09-14 黑龙江大学 聚丙烯酰胺水溶液流体的超低流速的测量方法及采用该方法测量聚丙烯酰胺水溶液粘度的方法
WO2013180245A1 (ja) * 2012-05-31 2013-12-05 天竜精機株式会社 粘度計
CN104865161A (zh) * 2014-06-10 2015-08-26 中国石油天然气股份有限公司 一种用毛细管测量液体粘度的方法以及用于该方法的装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117871621A (zh) * 2024-03-11 2024-04-12 浙江省白马湖实验室有限公司 一种可视化实验装置及其检测方法和电容层析成像系统

Also Published As

Publication number Publication date
JP7332055B2 (ja) 2023-08-23
CN116113823A (zh) 2023-05-12
US20230200685A1 (en) 2023-06-29
JPWO2022065369A1 (ja) 2022-03-31

Similar Documents

Publication Publication Date Title
WO2022065369A1 (ja) 流体特性センサ
US20020166592A1 (en) Apparatus and method for small-volume fluid manipulation and transportation
US20110113895A1 (en) Magneto-inductive flow measuring device with an electrode arrangement and method for its manufacture
JP2007058337A (ja) 流体制御装置
WO2006120965A1 (ja) 脱気装置
JP2011504411A (ja) 着座イオン交換ビーズを含むバリア及び方法
EP3636351B1 (en) Sealant discharging apparatus
US9726302B2 (en) Fluidic system, use, and method for operating the same
JP2007058343A (ja) 流体制御装置
EP3639933A2 (en) Sealant discharging apparatus
CN101460834B (zh) 电化学传感器
US4096047A (en) Electroanalytical transducers
JP2006218447A (ja) マイクロ流路デバイス
JP4468996B2 (ja) 隔膜式圧力センサ
CN105636698A (zh) 具有支撑元件和传感器的测量布置
JP2011220808A (ja) 送液装置
CN104884170A (zh) 具有载体元件和传感器的测量系统
US20080152509A1 (en) Integrated micro-pump and electro-spray
US11239579B2 (en) Terminal block and stud for transitioning an electrical connection between two distinct areas
CN107869613B (zh) 一种电解膜阀及其制造方法
JP2006026791A (ja) マイクロ流体チップ
US8011250B2 (en) Apparatus and method for controlling and monitoring the pressure in pressure line or pipes
CN219792976U (zh) 一种带有温度传感器的原位杂交装置
JP6216689B2 (ja) 比較電極
CN117108836B (zh) 微流量流体连接系统及其管路的连接装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872498

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022552034

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21872498

Country of ref document: EP

Kind code of ref document: A1