WO2022065295A1 - フィルムコンデンサ - Google Patents
フィルムコンデンサ Download PDFInfo
- Publication number
- WO2022065295A1 WO2022065295A1 PCT/JP2021/034556 JP2021034556W WO2022065295A1 WO 2022065295 A1 WO2022065295 A1 WO 2022065295A1 JP 2021034556 W JP2021034556 W JP 2021034556W WO 2022065295 A1 WO2022065295 A1 WO 2022065295A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- dielectric resin
- resin film
- absorption peak
- peak intensity
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 120
- 229920005989 resin Polymers 0.000 claims abstract description 140
- 239000011347 resin Substances 0.000 claims abstract description 140
- 238000010521 absorption reaction Methods 0.000 claims abstract description 72
- 229910052751 metal Inorganic materials 0.000 claims abstract description 70
- 239000002184 metal Substances 0.000 claims abstract description 70
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 claims abstract description 64
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims abstract description 36
- 229920001187 thermosetting polymer Polymers 0.000 claims abstract description 7
- 229920002803 thermoplastic polyurethane Polymers 0.000 claims abstract description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 239000013034 phenoxy resin Substances 0.000 claims description 11
- 229920006287 phenoxy resin Polymers 0.000 claims description 11
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 claims description 9
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 claims description 7
- 238000009413 insulation Methods 0.000 claims description 6
- 230000003647 oxidation Effects 0.000 abstract description 11
- 238000007254 oxidation reaction Methods 0.000 abstract description 11
- 239000010408 film Substances 0.000 description 234
- 238000004519 manufacturing process Methods 0.000 description 40
- 239000011368 organic material Substances 0.000 description 23
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 21
- 239000011104 metalized film Substances 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 18
- 238000000034 method Methods 0.000 description 17
- 238000005259 measurement Methods 0.000 description 15
- 238000004804 winding Methods 0.000 description 11
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 10
- 125000000524 functional group Chemical group 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 9
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 9
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 9
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 9
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 6
- 239000011701 zinc Substances 0.000 description 6
- 229910052725 zinc Inorganic materials 0.000 description 6
- 239000004734 Polyphenylene sulfide Substances 0.000 description 5
- 239000003822 epoxy resin Substances 0.000 description 5
- 229920000647 polyepoxide Polymers 0.000 description 5
- 229920001228 polyisocyanate Polymers 0.000 description 5
- 239000005056 polyisocyanate Substances 0.000 description 5
- 229920000069 polyphenylene sulfide Polymers 0.000 description 5
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 4
- 239000012948 isocyanate Substances 0.000 description 4
- 150000002513 isocyanates Chemical class 0.000 description 4
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 4
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 3
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 3
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 238000005102 attenuated total reflection Methods 0.000 description 3
- 230000001588 bifunctional effect Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229920005862 polyol Polymers 0.000 description 3
- 150000003077 polyols Chemical class 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 229930185605 Bisphenol Natural products 0.000 description 2
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 2
- 150000004678 hydrides Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- WZFUQSJFWNHZHM-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 WZFUQSJFWNHZHM-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229920000134 Metallised film Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000001723 curing Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920005906 polyester polyol Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 125000005372 silanol group Chemical group 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 238000001029 thermal curing Methods 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 238000000427 thin-film deposition Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/302—Polyurethanes or polythiourethanes; Polyurea or polythiourea
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/58—Epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/76—Polyisocyanates or polyisothiocyanates cyclic aromatic
- C08G18/7657—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
- C08G18/7664—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
- C08G18/7671—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/14—Organic dielectrics
- H01G4/18—Organic dielectrics of synthetic material, e.g. derivatives of cellulose
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/32—Wound capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/14—Organic dielectrics
Definitions
- the present invention relates to a film capacitor.
- a film capacitor having a structure in which a flexible resin film is used as a dielectric and first and second counter electrodes facing each other are arranged with the resin film interposed therebetween.
- the film capacitor usually has a substantially cylindrical shape formed by winding a resin film as a dielectric as described above, and a first surface thereof is placed on the first and second end faces of the cylinder facing each other, respectively. And a second external terminal electrode is formed.
- the first counter electrode described above is electrically connected to the first external terminal electrode, and the second counter electrode is electrically connected to the second external terminal electrode.
- Patent Document 1 includes a dielectric resin film and a first counter electrode and a second counter electrode facing each other with the dielectric resin film interposed therebetween.
- a film capacitor, the dielectric resin film is a film for a capacitor made of a crosslinked product of a first organic material and a second organic material, and the second organic material is a polyisocyanate having a plurality of isocyanate groups.
- the first organic material is disclosed as a film capacitor having a plurality of hydroxyl groups and having a branched structure.
- Patent Document 1 describes that a phenoxy resin such as a high molecular weight bisphenol A type epoxy resin and a polyol such as a polyether polyol and a polyester polyol are used as the first organic material. Further, it is described that a polyisocyanate such as diphenylmethane diisocyanate (MDI) or tolylene diisocyanate (TDI) is used as the second organic material.
- a phenoxy resin such as a high molecular weight bisphenol A type epoxy resin and a polyol such as a polyether polyol and a polyester polyol are used as the first organic material.
- a polyisocyanate such as diphenylmethane diisocyanate (MDI) or tolylene diisocyanate (TDI) is used as the second organic material.
- MDI diphenylmethane diisocyanate
- TDI tolylene diisocyanate
- Patent Document 1 describes that it is preferable that the weight ratio of the first organic material (phenoxy resin or polyol) is higher than the weight ratio of the second organic material (polyisocyanate). Further, Patent Document 1 describes that it is preferable that the residue of the hydroxyl group is larger than the residue of the isocyanate group.
- Patent Document 1 describes that the counter electrode of the film capacitor is formed from, for example, an aluminum film vapor-deposited on the surface of a dielectric resin film. Then, a capacitor element is obtained by stacking and winding a first dielectric resin film and a second dielectric resin film on which counter electrodes are formed, and by spraying zinc on both ends thereof, for example, an external terminal electrode. Is described as being formed.
- Film capacitors are also used for smoothing inverters in electric vehicles. With the increase in energy density of film capacitors used in such applications, long-term voltage is often applied in a higher temperature usage environment than before.
- the vapor deposition electrode such as an aluminum film is gradually oxidized and the equivalent series resistance (ESR) of the film capacitor is increased.
- ESR equivalent series resistance
- the vapor-deposited electrode on the positive electrode (positive electrode) side easily reacts electrochemically with the hydroxide ion derived from the surrounding moisture, so that the vapor-deposited electrode tends to oxidize more strongly. Further, if the vapor-filmed electrode is oxidized, the function as the electrode is lost, and there is a problem that the capacitance is lowered.
- the dielectric resin film is made of a urethane-based material in which a hydroxyl group and an isocyanate group are polymerized.
- the urethane-based material has high hygroscopicity, so that the dielectric resin film easily absorbs moisture in the environment.
- the vapor-deposited electrodes arranged on the dielectric resin film are easily oxidized by the moisture. Therefore, the fact that the dielectric resin film is made of a urethane-based material is also one of the factors that the problem of the progress of oxidation of the vapor-deposited electrode becomes apparent.
- the present invention has been made to solve the above problems, and an object of the present invention is to provide a film capacitor in which the metal layer as an electrode is not easily oxidized even when a voltage is applied for a long time in a high temperature usage environment. And.
- the film capacitor of the present invention comprises a dielectric resin film made of a thermosetting urethane resin and a metal layer provided on at least one surface of the dielectric resin film, and the dielectric resin film is at least isocyanate.
- Wave number 2200 cm -1 or more and 2350 cm -1 or less detected with respect to the absorption peak intensity of the carbonyl group detected in the range of 1650 cm -1 or more and 1800 cm -1 or less, including groups and carbonyl groups.
- the ratio of the absorption peak intensity of the isocyanate group (the absorption peak intensity of the isocyanate group / the absorption peak intensity of the carbonyl group) is 0.08 or more and 1.15 or less.
- the present invention it is possible to provide a film capacitor in which the metal layer as an electrode is not easily oxidized even when a voltage is applied for a long time in a high temperature usage environment.
- FIG. 1 is a perspective view schematically showing an example of the film capacitor of the present invention.
- FIG. 2 is a sectional view taken along line II-II of the film capacitor shown in FIG.
- FIG. 3 is a perspective view schematically showing an example of a wound body of a metallized film constituting the film capacitors shown in FIGS. 1 and 2.
- the film capacitor of the present invention will be described.
- the present invention is not limited to the following configuration, and can be appropriately modified and applied without changing the gist of the present invention.
- a combination of two or more of the individual preferred configurations of the invention described below is also the invention.
- the film capacitor of the present invention includes a dielectric resin film and a metal layer provided on at least one surface of the dielectric resin film.
- the film capacitor of the present invention is, for example, a columnar column having an elongated cross section, and external terminal electrodes formed by, for example, metal spraying (metallikon) are provided at both ends in the central axis direction.
- metal spraying metal spraying
- a first dielectric resin film provided with a first metal layer and a second dielectric resin film provided with a second metal layer are laminated.
- a winding type film capacitor, which is wound in a wound state will be described as an example.
- the film capacitor of the present invention is a laminated type in which a first dielectric resin film provided with a first metal layer and a second dielectric resin film provided with a second metal layer are laminated. It may be a film capacitor or the like. Further, in the film capacitor of the present invention, a first dielectric resin film having a first metal layer and a second metal layer provided on the front surface and a back surface, respectively, and a second dielectric having no metal layer provided. It may be a film capacitor in which a resin film is wound or laminated.
- FIG. 1 is a perspective view schematically showing an example of the film capacitor of the present invention.
- FIG. 2 is a sectional view taken along line II-II of the film capacitor shown in FIG.
- the film capacitor 10 shown in FIGS. 1 and 2 is a winding type film capacitor, and is a metallized film wound in a state where the first metallized film 11 and the second metallized film 12 are laminated. 40, and a first external terminal electrode 41 and a second external terminal electrode 42 connected to both ends of the metallized film winding body 40 are provided.
- the first metallized film 11 is a first metal layer (counter electrode) provided on one surface of a first dielectric resin film 13 and a first dielectric resin film 13.
- the second metallized film 12 is a second metal layer (counter electrode) provided on one surface of the second dielectric resin film 14 and the second dielectric resin film 14. It is equipped with 16.
- the first metal layer 15 and the second metal layer 16 face each other with the first dielectric resin film 13 or the second dielectric resin film 14 interposed therebetween. Further, the first metal layer 15 is electrically connected to the first external terminal electrode 41, and the second metal layer 16 is electrically connected to the second external terminal electrode 42.
- the first dielectric resin film 13 and the second dielectric resin film 14 may have different configurations, but it is desirable that they have the same configuration.
- the preferable configurations of the first dielectric resin film 13 and the second dielectric resin film 14 will be described later.
- the first metal layer 15 is formed so as to reach one side edge on one surface of the first dielectric resin film 13 but not to the other side edge.
- a band-shaped first insulating portion 13a is formed on the other side edge.
- the second metal layer 16 is formed so as not to reach one side edge on one surface of the second dielectric resin film 14, but to reach the other side edge.
- a band-shaped second insulating portion 14a is formed on one side edge.
- the first metal layer 15 and the second metal layer 16 are composed of, for example, an aluminum layer.
- FIG. 3 is a perspective view schematically showing an example of a wound body of a metallized film constituting the film capacitors shown in FIGS. 1 and 2.
- the width of the first dielectric resin film 13 and the width of the second dielectric resin film 14 are such that the end portions on the side reaching the side edges of the dielectric resin film 14 are exposed from the laminated film.
- the layers are stacked so as to be shifted in the direction (left-right direction in FIG. 2).
- the wound body 40 of the metallized film is formed, and the first metal layer 15 and the second metal are formed.
- the layers 16 are kept exposed at the ends and are in a stacked state.
- the second dielectric resin film 14 is located outside the first dielectric resin film 13, and the first dielectric resin film 13 and the second dielectric resin film 14 are formed.
- Each of the first metal layer 15 and the second metal layer 16 is wound so as to face inward.
- the first external terminal electrode 41 and the second external terminal electrode 42 are formed by spraying, for example, zinc or the like onto each end surface of the wound body 40 of the metallized film obtained as described above. ..
- the first external terminal electrode 41 comes into contact with the exposed end of the first metal layer 15 and is thereby electrically connected to the first metal layer 15.
- the second external terminal electrode 42 comes into contact with the exposed end of the second metal layer 16 and is thereby electrically connected to the second metal layer 16.
- the wound body of the metallized film is pressed into a flat shape such as an ellipse or an oval, and has a more compact shape than when the cross-sectional shape is a perfect circle. ..
- the film capacitor of the present invention may include a cylindrical winding shaft.
- the winding shaft is arranged on the central axis of the metallized film in the wound state, and serves as a winding shaft when winding the metallized film.
- metal layer In the film capacitor of the present invention, examples of the metal contained in the metal layer include aluminum (Al), titanium (Ti), zinc (Zn), magnesium (Mg), tin (Sn), nickel (Ni) and the like. Be done.
- the metal layer is formed, for example, by depositing the above metal on a dielectric resin film.
- the thickness of the metal layer is not particularly limited, but is, for example, 5 nm or more and 40 nm or less.
- the thickness of the metal layer is specified by observing a cross section of the dielectric resin film provided with the metal layer cut in the thickness direction using an electron microscope such as a field emission scanning electron microscope (FE-SEM). can do.
- FE-SEM field emission scanning electron microscope
- the metal layer is provided with a fuse portion.
- the fuse portion means a portion connecting the electrode portion and the electrode portion in which the metal layer serving as the counter electrode is divided into a plurality of parts.
- the pattern of the metal layer having the fuse portion is not particularly limited, and for example, the electrode patterns disclosed in JP-A-2004-363431, JP-A-5-251266 and the like can be used.
- the dielectric resin film is made of a thermosetting urethane resin and contains at least an isocyanate group and a carbonyl group. Then, the wave number with respect to the absorption peak intensity of the carbonyl group detected in the range of 1650 cm -1 or more and 1800 cm -1 or less: the absorption peak of the isocyanate group detected in the range of 2200 cm -1 or more and 2350 cm -1 or less.
- the intensity ratio (absorption peak intensity of isocyanate group / absorption peak intensity of carbonyl group) is 0.08 or more and 1.15 or less.
- the ratio of the absorption peak intensity of the isocyanate group to the absorption peak intensity of the carbonyl group is preferably 0.1 or more and 1.0 or less, and more preferably 0.2 or more and 0.8 or less.
- the dielectric resin film of the film capacitor of the present invention absorbs water, it becomes water. Since the isocyanate group is first reacted and consumed, it is possible to suppress the oxidation of the metal layer by water. According to such a principle, even if a voltage is applied to the film capacitor of the present invention for a long time in a high temperature usage environment, it is possible to suppress oxidation of the metal layer as an electrode.
- the film capacitor of the present invention has high high temperature durability. Further, as described above, even if a voltage is applied for a long time in a high temperature usage environment, it is possible to suppress oxidation of the metal layer as an electrode, so that the film capacitor of the present invention has a reduced capacitance. It becomes difficult to do.
- the ratio of the absorption peak intensity of the isocyanate group to the absorption peak intensity of the carbonyl group is less than 0.08, the number of isocyanate groups present is small, so that the equivalent series resistance of the capacitor tends to increase and the capacitance decreases. It will be easier.
- the ratio of the absorption peak intensity of the isocyanate group to the absorption peak intensity of the carbonyl group exceeds 1.15, the number of isocyanate groups present increases. Therefore, the dielectric resin film is close to the uncured state. Therefore, it becomes difficult to function as a dielectric resin film. As a result, the equivalent series resistance of the capacitor tends to increase, and the capacitance tends to decrease.
- absorption peak intensity means the value calculated as follows. First, the infrared absorption spectrum of the dielectric resin film is measured by an attenuated total reflection method (ATR) using a Fourier transform infrared spectrophotometer (FT-IR). Next, the absorption band observed in the predetermined wavenumber region is assumed to be due to a predetermined functional group, baselines are drawn on both sides of each peak, and the value from the baseline to the apex intensity is set to the "functional group" of the functional group. Absorption peak intensity ".
- the content of water contained in the dielectric resin film is preferably 0.4% by weight or less.
- the content of water contained in the dielectric resin film is 0.4% by weight or less, the water content is sufficiently small, so that the water and isocyanate groups react with each other in the dielectric resin film to form unreacted isocyanate groups. It can be suppressed from decreasing. As a result, it is possible to remarkably suppress the oxidation of the metal layer.
- the content of water contained in the dielectric resin film is preferably 0.01% by weight or more. If the content of water contained in the dielectric resin film is less than 0.01% by weight, it is predicted that the dielectric resin film becomes brittle.
- the "content of water contained in the dielectric resin film” is a value measured by a hydride reaction method (ISO 15512: 2019 method E) with a heating temperature of 130 ° C.
- the thickness of the dielectric resin film is not particularly limited, but if the dielectric resin film is too thin, it tends to become brittle. Therefore, the thickness of the dielectric resin film is preferably 1 ⁇ m or more, and more preferably 3 ⁇ m or more. On the other hand, if the film is too thick, defects such as cracks are likely to occur during film formation. Therefore, the thickness of the dielectric resin film is preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less.
- the thickness of the dielectric resin film means the thickness of the dielectric resin film alone, which does not include the thickness of the metal layer. The thickness of the dielectric resin film can be measured using an optical film thickness meter.
- the dielectric resin film is composed of, for example, a cured product of a first organic material having a hydroxyl group (OH group) and a second organic material having an isocyanate group (NCO group).
- the dielectric resin film is composed of a cured product obtained by reacting a hydroxyl group of the first organic material with an isocyanate group of the second organic material.
- the first organic material may be an organic polymer having a hydroxyl group and a benzene ring in the repeating unit.
- examples of such a compound include a phenoxy resin and the like.
- the phenoxy resin is preferably, for example, a bisphenol A type phenoxy resin, a bisphenol F type phenoxy resin, or the like.
- Examples of the second organic material include diphenylmethane diisocyanate (MDI), tolylene diisocyanate (TDI), hexamethylene diisocyanate (HDI) and the like. Among these compounds, MDI or TDI is preferable. In addition, these may contain the modified form of the polyisocyanate, and these may be used together.
- MDI diphenylmethane diisocyanate
- TDI tolylene diisocyanate
- HDI hexamethylene diisocyanate
- MDI or TDI is preferable.
- these may contain the modified form of the polyisocyanate, and these may be used together.
- the isocyanate group contained in the dielectric resin film may be an isocyanate group derived from the second organic material.
- the dielectric resin film can also contain additives for adding other functions.
- smoothness can be imparted by adding a leveling agent.
- the additive may be a material that has a functional group that reacts with a hydroxyl group and / or an isocyanate group and forms a part of the crosslinked structure of the cured product. Examples of such a material include a resin having at least one functional group selected from the group consisting of an epoxy group, a silanol group and a carboxyl group.
- the film capacitor of the present invention it is shown as the product of the capacitance value of the film capacitor and the insulation resistance value measured 1 minute after the voltage is applied at a voltage of 150 V / ⁇ m after being allowed to stand in an atmosphere at a temperature of 125 ° C. for 1 hour.
- the CR value is preferably 250 ⁇ ⁇ F or more, and more preferably 500 ⁇ ⁇ F or more. It can be said that the high temperature durability is high when the CR value of the capacitor under the above conditions is 250 ⁇ ⁇ F or more. Further, the CR value is preferably 5000 ⁇ ⁇ F or less. Attempting to manufacture a film capacitor having a CR value exceeding 5000 ⁇ ⁇ F is too costly and the production efficiency is lowered.
- the dielectric resin film of the film capacitor of the present invention is produced by forming a resin solution containing a first organic material having a hydroxyl group and a second organic material having an isocyanate group into a film, and then heat-treating and curing the resin solution. can do. At this time, the amount of unreacted isocyanate groups is adjusted by adjusting the heat treatment conditions such as the reaction temperature and the reaction time, and by adjusting the molar ratio of the hydroxyl group of the first organic material to the isocyanate group of the second organic material. Can be controlled.
- the ratio of the absorption peak intensity of the isocyanate group (the absorption peak intensity of the isocyanate group / the absorption peak intensity of the carbonyl group) to the absorption peak intensity of the carbonyl group of the obtained dielectric resin film is 0.08 or more and 1.15 or less. Can be.
- a metallized film is obtained by forming a metal layer on one surface of the produced dielectric resin film.
- the method for forming the metal layer include a method such as thin film deposition.
- a metal layer is formed so that a band-shaped insulating portion is formed on one side edge of one surface of the dielectric resin film.
- two metallized films having a metal layer formed on one surface of the dielectric resin film are prepared.
- One of the two metallized films is rotated 180 degrees around the stacking direction so that the positions of the insulating parts are staggered, and the films are stacked in a state of being shifted by a predetermined distance in the width direction, and then wound.
- a laminated body can be obtained.
- the laminate may be sandwiched from a direction perpendicular to the width direction and pressed into an elliptical cylinder shape.
- a film capacitor as shown in FIG. 1 can be obtained.
- thermal spraying can be mentioned.
- a dielectric resin film As a dielectric resin film, a high-molecular-weight bisphenol A-type phenoxy resin and MDI, which is a bifunctional isocyanate, are mixed so that the number of moles of the hydroxyl group of the former and the number of moles of the isocyanate group of the latter are almost equal, and the base film is formed. After applying thinly, it was dried to obtain a resin film. Aluminum was vapor-deposited to form a metal layer so that a band-shaped insulating portion was formed on one side edge of the dielectric resin film, and then the base material was peeled off and heat-cured.
- MDI which is a bifunctional isocyanate
- thermosetting was appropriately adjusted at 100 ° C. to 180 ° C. for 2 hours to 50 hours to form the metal layers according to Production Example 1-1, Production Example 1-2, Production Example 1-3 and Production Example 1-4.
- a dielectric resin film having a thickness of 3 ⁇ m was produced.
- the ratio of the absorption peak intensity of the isocyanate group (the absorption peak intensity of the isocyanate group / the absorption peak intensity of the carbonyl group) to the absorption peak intensity of the carbonyl group of each dielectric resin film was measured by the following method. there were.
- the dielectric resin film was measured by ATR using a Fourier transform infrared spectrophotometer.
- the wavenumber range was 4000 cm -1 to 500 cm -1 .
- "FT / IR-4100ST" manufactured by JASCO Corporation was used.
- the number of integrations was 64, and the resolution was 4 cm -1 .
- the wave number the absorption peak intensity of the isocyanate group detected in the range of 2200 cm -1 or more and 2350 cm -1 or less with respect to the absorption peak intensity of the carbonyl group detected in the range of 1650 cm -1 or more and 1800 cm -1 or less.
- the ratio (absorption peak intensity of isocyanate group / absorption peak intensity of carbonyl group) was calculated.
- the dielectric resin film according to Production Example 1-1 is used.
- the dielectric resin film according to Production Example 1-2 is used for the film capacitor according to Example 1-1.
- the dielectric resin film according to Production Example 1-3 is used for the film capacitor according to Example 1-2.
- the dielectric resin film according to Production Example 1-4 is used.
- CR value is 100 ⁇ ⁇ F or more and ESR increase rate is 15% or less
- CR value is less than 100 ⁇ ⁇ F and ESR increase rate is 15% or less
- CR value is 100 ⁇ ⁇ F or more and ESR increase rate exceeds 15%
- CR value is less than 100 ⁇ ⁇ F, and ESR increase rate exceeds 15%
- the ratio of the absorption peak intensity of the isocyanate group to the absorption peak intensity of the carbonyl group is 0.08 or more.
- the film capacitors according to Examples 1-1 and 1-2 having such a configuration had a CR value of 250 ⁇ ⁇ F or more.
- Example 2-1 and (Example 2-2) and (Comparative Example 2-1) and (Comparative Example 2-2)
- a dielectric resin film As a dielectric resin film, a high molecular weight bisphenol A type phenoxy resin and a trifunctional trimethylolpropane (TMP) -adduct TDI are used, and the number of moles of the hydroxyl group of the former and the number of moles of the isocyanate group of the latter are almost equal.
- TMP trifunctional trimethylolpropane
- Aluminum was vapor-deposited to form a metal layer so that a band-shaped insulating portion was formed on one side edge of the dielectric resin film, and then the base material was peeled off and heat-cured.
- thermosetting is appropriately adjusted at 100 ° C. to 180 ° C. for 2 hours to 50 hours, and the metal layer having a thickness of 5 ⁇ m according to Production Example 2-1 and Production Example 2-2, Production Example 2-3 and Production Example 2-4.
- the ratio of the absorption peak intensity of the isocyanate group (the absorption peak intensity of the isocyanate group / the absorption peak intensity of the carbonyl group) to the absorption peak intensity of the carbonyl group of each dielectric resin film was measured by the following method. there were.
- the absorption peak intensity of each functional group was measured by the same method as in the above-mentioned " ⁇ Measurement of absorption peak intensity of functional group>".
- the dielectric resin film according to Production Example 2-2 is used for the film capacitor according to Example 2-1.
- the dielectric resin film according to Production Example 2-3 is used for the film capacitor according to Example 2-2.
- the dielectric resin film according to Production Example 2-4 is used as the film capacitor according to Comparative Example 2-2.
- the ratio of the absorption peak intensity of the isocyanate group to the absorption peak intensity of the carbonyl group (absorption peak intensity of isocyanate group / absorption peak of carbonyl group). It was found that when the strength) was 0.08 or more and 1.15 or less, oxidation of the vapor-deposited electrode was suppressed even when a voltage was applied for a long time at a high temperature, and the ESR was unlikely to increase. Further, the film capacitors according to Examples 2-1 and 2-2 having such a configuration had a CR value of 250 ⁇ ⁇ F or more.
- Four kinds of coating liquids were mixed to prepare 50/50, 40/60 and 30/70, and each coating liquid was thinly applied to the base film and then dried to obtain a resin film.
- the absorption peak intensities of the isocyanate group and the carbonyl group are measured by the same method as in the above " ⁇ Measurement of absorption peak intensity of functional group>" to obtain the carbonyl group.
- the ratio of the absorption peak intensity of the isocyanate group to the absorption peak intensity was calculated. The results are shown in Table 3.
- the dielectric resin film according to Production Example 3-1 is used for the film capacitor according to Comparative Example 3-1.
- the dielectric resin film according to Production Example 3-2 is used for the film capacitor according to Example 3-1.
- the dielectric resin film according to Production Example 3-3 is used for the film capacitor according to Example 3-2.
- the dielectric resin film according to Production Example 3-4 is used as the film capacitor according to Comparative Example 3-2.
- the film capacitors according to Examples 3-1 and 3-2 having such a configuration had a CR value of 250 ⁇ ⁇ F or more.
- the first organic material and the second organic material are mixed in advance by adjusting the ratio of the number of moles of the latter isocyanate group to the number of moles of the former hydroxyl group to a certain degree and mixing them. It was found that the content of isocyanate groups contained in the body resin film can be easily adjusted.
- Example 4-1 to (Example 4-4) As a dielectric resin film, a high-molecular-weight bisphenol A-type phenoxy resin and MDI, which is a bifunctional isocyanate, are mixed so that the number of moles of the hydroxyl group of the former and the number of moles of the isocyanate group of the latter are almost equal, and the base film is formed. After applying thinly, it was dried to obtain a resin film. Aluminum was vapor-deposited to form a metal layer so that a band-shaped insulating portion was formed on one side edge of the dielectric resin film, and then the base material was peeled off and heat-cured. The heat curing is at 150 ° C.
- the metal layer in which the ratio of the absorption peak intensity of the isocyanate group to the absorption peak intensity of the carbonyl group (absorption peak intensity of the isocyanate group / absorption peak intensity of the carbonyl group) is 0.2.
- the formed dielectric resin film having a thickness of 5 ⁇ m was produced.
- the absorption peak intensity of the carbonyl group and the absorption peak intensity of the isocyanate group were measured by the same method as in the above-mentioned " ⁇ Measurement of absorption peak intensity of functional group>".
- the capacitor element is forcibly humidified in an atmosphere of 85 ° C. and 85%, and the unhumidified capacitor element is heated and dried at 125 ° C. for 1 to 12 hours to reduce the water content in the dielectric resin film.
- Table 4 Four types of capacitor elements, which are the numerical values shown in Table 4, were manufactured. The water content was measured by the hydride reaction method (ISO 15512: 2019 method E).
- the film capacitors according to Examples 4-1 to 4-4 were manufactured.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
高温の使用環境で長時間電圧が印加されたとしても、電極である金属層が酸化しにくいフィルムコンデンサを提供する。 フィルムコンデンサ(10)は、熱硬化性ウレタン樹脂からなる誘電体樹脂フィルム(13、14)と、上記誘電体樹脂フィルム(13、14)の少なくとも一方の面に設けられた金属層(15、16)と、を備え、上記誘電体樹脂フィルム(13、14)は、少なくともイソシアネート基及びカルボニル基を含み、波数:1650cm-1以上、1800cm-1以下の範囲で検出される上記カルボニル基の吸収ピーク強度に対する波数:2200cm-1以上、2350cm-1以下の範囲で検出される上記イソシアネート基の吸収ピーク強度の比(イソシアネート基の吸収ピーク強度/カルボニル基の吸収ピーク強度)が0.08以上、1.15以下である。
Description
本発明は、フィルムコンデンサに関する。
コンデンサの一種として、可撓性のある樹脂フィルムを誘電体として用いながら、樹脂フィルムを挟んで互いに対向する第1および第2の対向電極を配置した構造のフィルムコンデンサがある。フィルムコンデンサは、通常、上述の誘電体としての樹脂フィルムを巻回してなる略円柱状の形態をなしており、当該円柱の互いに対向する第1および第2の端面上には、それぞれ、第1および第2の外部端子電極が形成されている。そして、前述した第1の対向電極は第1の外部端子電極と電気的に接続され、第2の対向電極は第2の外部端子電極と電気的に接続されている。
上記のフィルムコンデンサとして、国際公開第2017/175511号(特許文献1)には、誘電体樹脂フィルムと、前記誘電体樹脂フィルムを挟んで互いに対向する第1対向電極及び第2対向電極とを備えるフィルムコンデンサであって、前記誘電体樹脂フィルムは、第1有機材料と第2有機材料との架橋物からなるコンデンサ用フィルムであって、前記第2有機材料は、複数のイソシアネート基を有するポリイソシアネートであり、前記第1有機材料は、複数の水酸基を有し、かつ、分岐構造を持つことを特徴とするフィルムコンデンサが開示されている。
特許文献1には、第1有機材料として、高分子量のビスフェノールA型エポキシ樹脂などのフェノキシ樹脂やポリエーテルポリオール、ポリエステルポリオールなどのポリオールを用いることが記載されている。また、第2有機材料として、ジフェニルメタンジイソシアネート(MDI)やトリレンジイソシアネート(TDI)などのポリイソシアネートを用いることが記載されている。
特許文献1には、第1有機材料(フェノキシ樹脂やポリオール)の重量比率が第2有機材料(ポリイソシアネート)の重量比率よりも高いことが好ましいと記載されている。
さらに、特許文献1には、水酸基の残留物がイソシアネート基の残留物よりも多いことが好ましいと記載されている。
さらに、特許文献1には、水酸基の残留物がイソシアネート基の残留物よりも多いことが好ましいと記載されている。
また、特許文献1には、フィルムコンデンサの対向電極が、例えば、誘電体樹脂フィルム表面に蒸着したアルミニウム膜から形成されることが記載されている。そして、それぞれに対向電極を形成した第1誘電体樹脂フィルムと第2誘電体樹脂フィルムを重ね、巻回することによってコンデンサ素子が得られ、その両端に、例えば亜鉛を溶射することによって外部端子電極が形成されることが記載されている。
フィルムコンデンサは電気自動車のインバータ平滑用などにも使用される。このような用途で使用されるフィルムコンデンサは、高エネルギー密度化されることに伴い、従来よりも高温の使用環境で、長時間電圧が印加されることが多くなった。
上記用途で使用されるフィルムコンデンサにおいては、アルミニウム膜等の蒸着電極が徐々に酸化し、フィルムコンデンサの等価直列抵抗(ESR)が高くなるという問題があった。特に、正極(プラス極)側の蒸着電極は、周囲の水分に由来する水酸化物イオンと電気化学的に反応しやすいため、蒸着電極が酸化する傾向は強くなる。
さらに、蒸着電極の酸化が進むと、電極としての機能を喪失し、静電容量が低下するという問題も生じる。
上記用途で使用されるフィルムコンデンサにおいては、アルミニウム膜等の蒸着電極が徐々に酸化し、フィルムコンデンサの等価直列抵抗(ESR)が高くなるという問題があった。特に、正極(プラス極)側の蒸着電極は、周囲の水分に由来する水酸化物イオンと電気化学的に反応しやすいため、蒸着電極が酸化する傾向は強くなる。
さらに、蒸着電極の酸化が進むと、電極としての機能を喪失し、静電容量が低下するという問題も生じる。
特許文献1に記載されているようなフィルムコンデンサは、耐熱性が高いので125℃を超える環境でも使用できる。したがって、蒸着電極の酸化が進む問題が顕在化してきた。
また、例えば特許文献1に記載されているようなフィルムコンデンサでは、誘電体樹脂フィルムは、水酸基とイソシアネート基が重合したウレタン系の材料からなる。誘電体樹脂フィルムがウレタン系の材料からなる場合、ウレタン系の材料は吸湿性が高いので、誘電体樹脂フィルムは環境中の水分を吸収しやすい。誘電体樹脂フィルムが環境中の水分を吸収すると、誘電体樹脂フィルムに配置された蒸着電極が水分により酸化しやすくなる。したがって、誘電体樹脂フィルムがウレタン系の材料からなることも、蒸着電極の酸化が進む問題が顕在化する一要因となる。
以上より、特許文献1に記載されているように、誘電体樹脂フィルムが熱硬化性ウレタン樹脂からなるフィルムコンデンサでは、高温の環境で使用することに起因して蒸着電極が酸化しやすくなるという現象と、環境中の水分を吸収することに起因して蒸着電極が酸化しやすくなるという現象が同時に生じやすい。そのため、蒸着電極の酸化が進み、ESRが高くなるという問題が顕在化してきた。
本発明は、上記の問題を解決するためになされたものであり、高温の使用環境で長時間電圧が印加されたとしても、電極である金属層が酸化しにくいフィルムコンデンサを提供することを目的とする。
本発明のフィルムコンデンサは、熱硬化性ウレタン樹脂からなる誘電体樹脂フィルムと、上記誘電体樹脂フィルムの少なくとも一方の面に設けられた金属層と、を備え、上記誘電体樹脂フィルムは、少なくともイソシアネート基及びカルボニル基を含み、波数:1650cm-1以上、1800cm-1以下の範囲で検出される上記カルボニル基の吸収ピーク強度に対する波数:2200cm-1以上、2350cm-1以下の範囲で検出される上記イソシアネート基の吸収ピーク強度の比(イソシアネート基の吸収ピーク強度/カルボニル基の吸収ピーク強度)が0.08以上、1.15以下である。
本発明によれば、高温の使用環境で長時間電圧が印加されたとしても、電極である金属層が酸化しにくいフィルムコンデンサを提供することができる。
以下、本発明のフィルムコンデンサについて説明する。
しかしながら、本発明は、以下の構成に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。
以下において記載する本発明の個々の好ましい構成を2つ以上組み合わせたものもまた本発明である。
しかしながら、本発明は、以下の構成に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。
以下において記載する本発明の個々の好ましい構成を2つ以上組み合わせたものもまた本発明である。
[フィルムコンデンサ]
本発明のフィルムコンデンサは、誘電体樹脂フィルムと、上記誘電体樹脂フィルムの少なくとも一方の面に設けられた金属層と、を備える。
本発明のフィルムコンデンサは、誘電体樹脂フィルムと、上記誘電体樹脂フィルムの少なくとも一方の面に設けられた金属層と、を備える。
本発明のフィルムコンデンサは、例えば断面長円状の柱状であり、その中心軸方向の両端に、例えば金属溶射(メタリコン)で形成した外部端子電極が設けられる。
以下、本発明のフィルムコンデンサの一実施形態として、第1の金属層が設けられた第1の誘電体樹脂フィルムと、第2の金属層が設けられた第2の誘電体樹脂フィルムとが積層された状態で巻回されてなる巻回型のフィルムコンデンサを例にとって説明する。本発明のフィルムコンデンサは、第1の金属層が設けられた第1の誘電体樹脂フィルムと、第2の金属層が設けられた第2の誘電体樹脂フィルムとが積層されてなる積層型のフィルムコンデンサなどであってもよい。
また、本発明のフィルムコンデンサは、第1の金属層及び第2の金属層がそれぞれ表面及び裏面に設けられた第1の誘電体樹脂フィルムと、金属層が設けられていない第2の誘電体樹脂フィルムとが巻回又は積層されたフィルムコンデンサなどであってもよい。
また、本発明のフィルムコンデンサは、第1の金属層及び第2の金属層がそれぞれ表面及び裏面に設けられた第1の誘電体樹脂フィルムと、金属層が設けられていない第2の誘電体樹脂フィルムとが巻回又は積層されたフィルムコンデンサなどであってもよい。
図1は、本発明のフィルムコンデンサの一例を模式的に示す斜視図である。図2は、図1に示すフィルムコンデンサのII-II線断面図である。
図1及び図2に示すフィルムコンデンサ10は、巻回型のフィルムコンデンサであり、第1の金属化フィルム11と第2の金属化フィルム12とが積層された状態で巻回された金属化フィルムの巻回体40と、金属化フィルムの巻回体40の両端部に接続された第1の外部端子電極41及び第2の外部端子電極42と、を備えている。図2に示すように、第1の金属化フィルム11は、第1の誘電体樹脂フィルム13と、第1の誘電体樹脂フィルム13の一方の面に設けられた第1の金属層(対向電極)15とを備え、第2の金属化フィルム12は、第2の誘電体樹脂フィルム14と、第2の誘電体樹脂フィルム14の一方の面に設けられた第2の金属層(対向電極)16とを備えている。
図1及び図2に示すフィルムコンデンサ10は、巻回型のフィルムコンデンサであり、第1の金属化フィルム11と第2の金属化フィルム12とが積層された状態で巻回された金属化フィルムの巻回体40と、金属化フィルムの巻回体40の両端部に接続された第1の外部端子電極41及び第2の外部端子電極42と、を備えている。図2に示すように、第1の金属化フィルム11は、第1の誘電体樹脂フィルム13と、第1の誘電体樹脂フィルム13の一方の面に設けられた第1の金属層(対向電極)15とを備え、第2の金属化フィルム12は、第2の誘電体樹脂フィルム14と、第2の誘電体樹脂フィルム14の一方の面に設けられた第2の金属層(対向電極)16とを備えている。
図2に示すように、第1の金属層15及び第2の金属層16は、第1の誘電体樹脂フィルム13又は第2の誘電体樹脂フィルム14を挟んで互いに対向している。さらに、第1の金属層15は、第1の外部端子電極41と電気的に接続されており、第2の金属層16は、第2の外部端子電極42と電気的に接続されている。
第1の誘電体樹脂フィルム13及び第2の誘電体樹脂フィルム14は、それぞれ異なる構成を有していてもよいが、同一の構成を有していることが望ましい。なお、第1の誘電体樹脂フィルム13及び第2の誘電体樹脂フィルム14の好ましい構成については後述する。
第1の金属層15は、第1の誘電体樹脂フィルム13の一方の面において一方側縁にまで届くが、他方側縁にまで届かないように形成される。これにより、第1の誘電体樹脂フィルム13の一方の面では、他方側縁に帯状の第1の絶縁部13aが形成される。
他方、第2の金属層16は、第2の誘電体樹脂フィルム14の一方の面において一方側縁にまで届かないが、他方側縁にまで届くように形成される。これにより、第2の誘電体樹脂フィルム14の一方の面では、一方側縁に帯状の第2の絶縁部14aが形成される。
第1の金属層15及び第2の金属層16は、例えばアルミニウム層などから構成される。
他方、第2の金属層16は、第2の誘電体樹脂フィルム14の一方の面において一方側縁にまで届かないが、他方側縁にまで届くように形成される。これにより、第2の誘電体樹脂フィルム14の一方の面では、一方側縁に帯状の第2の絶縁部14aが形成される。
第1の金属層15及び第2の金属層16は、例えばアルミニウム層などから構成される。
図3は、図1及び図2に示すフィルムコンデンサを構成する金属化フィルムの巻回体の一例を模式的に示す斜視図である。
図2及び図3に示すように、第1の金属層15における第1の誘電体樹脂フィルム13の側縁にまで届いている側の端部、及び、第2の金属層16における第2の誘電体樹脂フィルム14の側縁にまで届いている側の端部がともに積層されたフィルムから露出するように、第1の誘電体樹脂フィルム13と第2の誘電体樹脂フィルム14とが互いに幅方向(図2では左右方向)にずらされて積層される。第1の誘電体樹脂フィルム13及び第2の誘電体樹脂フィルム14が積層された状態で巻回されることによって金属化フィルムの巻回体40となり、第1の金属層15及び第2の金属層16が端部で露出した状態を保持して、積み重なった状態とされる。
図2及び図3に示すように、第1の金属層15における第1の誘電体樹脂フィルム13の側縁にまで届いている側の端部、及び、第2の金属層16における第2の誘電体樹脂フィルム14の側縁にまで届いている側の端部がともに積層されたフィルムから露出するように、第1の誘電体樹脂フィルム13と第2の誘電体樹脂フィルム14とが互いに幅方向(図2では左右方向)にずらされて積層される。第1の誘電体樹脂フィルム13及び第2の誘電体樹脂フィルム14が積層された状態で巻回されることによって金属化フィルムの巻回体40となり、第1の金属層15及び第2の金属層16が端部で露出した状態を保持して、積み重なった状態とされる。
図2及び図3では、第2の誘電体樹脂フィルム14が第1の誘電体樹脂フィルム13の外側になるように、かつ、第1の誘電体樹脂フィルム13及び第2の誘電体樹脂フィルム14の各々について、第1の金属層15及び第2の金属層16の各々が内方に向くように巻回されている。
第1の外部端子電極41及び第2の外部端子電極42は、上述のようにして得られた金属化フィルムの巻回体40の各端面上に、例えば亜鉛などを溶射することによって形成される。第1の外部端子電極41は、第1の金属層15の露出端部と接触し、それによって第1の金属層15と電気的に接続される。他方、第2の外部端子電極42は、第2の金属層16の露出端部と接触し、それによって第2の金属層16と電気的に接続される。
本発明のフィルムコンデンサにおいて、金属化フィルムの巻回体は、断面形状が楕円又は長円のような扁平形状にプレスされ、断面形状が真円であるときよりコンパクトな形状とされることが好ましい。なお、本発明のフィルムコンデンサは、円柱状の巻回軸を備えていてもよい。巻回軸は、巻回状態の金属化フィルムの中心軸線上に配置されるものであり、金属化フィルムを巻回する際の巻軸となるものである。
[金属層]
本発明のフィルムコンデンサにおいて、金属層に含まれる金属としては、例えば、アルミニウム(Al)、チタン(Ti)、亜鉛(Zn)、マグネシウム(Mg)、スズ(Sn)、ニッケル(Ni)等が挙げられる。
本発明のフィルムコンデンサにおいて、金属層に含まれる金属としては、例えば、アルミニウム(Al)、チタン(Ti)、亜鉛(Zn)、マグネシウム(Mg)、スズ(Sn)、ニッケル(Ni)等が挙げられる。
本発明のフィルムコンデンサにおいて、金属層は、例えば、上記金属が誘電体樹脂フィルムに蒸着することにより形成される。
本発明のフィルムコンデンサにおいて、金属層の厚みは特に限定されないが、例えば、5nm以上、40nm以下である。
なお、金属層の厚みは、金属層が設けられた誘電体樹脂フィルムを厚み方向に切断した断面を、電界放出型走査電子顕微鏡(FE-SEM)等の電子顕微鏡を用いて観察することにより特定することができる。
なお、金属層の厚みは、金属層が設けられた誘電体樹脂フィルムを厚み方向に切断した断面を、電界放出型走査電子顕微鏡(FE-SEM)等の電子顕微鏡を用いて観察することにより特定することができる。
本発明のフィルムコンデンサにおいては、金属層にヒューズ部が設けられていることが好ましい。
ヒューズ部とは、対向電極となる金属層が複数に分割された電極部と電極部を接続する部分を意味する。ヒューズ部を有する金属層のパターンは特に限定されず、例えば、特開2004-363431号公報、特開平5-251266号公報等に開示された電極パターンを用いることができる。
[誘電体樹脂フィルム]
本発明のフィルムコンデンサでは、誘電体樹脂フィルムは熱硬化性ウレタン樹脂からなり、少なくともイソシアネート基及びカルボニル基を含む。そして、波数:1650cm-1以上、1800cm-1以下の範囲で検出される上記カルボニル基の吸収ピーク強度に対する波数:2200cm-1以上、2350cm-1以下の範囲で検出される上記イソシアネート基の吸収ピーク強度の比(イソシアネート基の吸収ピーク強度/カルボニル基の吸収ピーク強度)が0.08以上、1.15以下である。カルボニル基の吸収ピーク強度に対するイソシアネート基の吸収ピーク強度の比は0.1以上、1.0以下であることが好ましく、0.2以上、0.8以下であることがより好ましい。
本発明のフィルムコンデンサでは、誘電体樹脂フィルムは熱硬化性ウレタン樹脂からなり、少なくともイソシアネート基及びカルボニル基を含む。そして、波数:1650cm-1以上、1800cm-1以下の範囲で検出される上記カルボニル基の吸収ピーク強度に対する波数:2200cm-1以上、2350cm-1以下の範囲で検出される上記イソシアネート基の吸収ピーク強度の比(イソシアネート基の吸収ピーク強度/カルボニル基の吸収ピーク強度)が0.08以上、1.15以下である。カルボニル基の吸収ピーク強度に対するイソシアネート基の吸収ピーク強度の比は0.1以上、1.0以下であることが好ましく、0.2以上、0.8以下であることがより好ましい。
本発明のフィルムコンデンサにおいて、カルボニル基の吸収ピーク強度に対するイソシアネート基の吸収ピーク強度の比が上記範囲内である場合、本発明のフィルムコンデンサの誘電体樹脂フィルムが水分を吸収した際に、水分とイソシアネート基が先に反応して消費されるので、水分により金属層が酸化することを抑制することができる。
このような原理により、本発明のフィルムコンデンサが高温の使用環境で長時間電圧が印加されたとしても、電極である金属層が酸化することを抑制することができる。
その結果、本発明のフィルムコンデンサが高温の使用環境で長時間電圧が印加されても、コンデンサの等価直列抵抗(ESR)が高くなりにくい。つまり、本発明のフィルムコンデンサは、高温耐用性が高いと言える。
また、上記の通り、高温の使用環境で長時間電圧が印加されたとしても、電極である金属層が酸化することを抑制することができるので、本発明のフィルムコンデンサでは、静電容量が低下しにくくなる。
このような原理により、本発明のフィルムコンデンサが高温の使用環境で長時間電圧が印加されたとしても、電極である金属層が酸化することを抑制することができる。
その結果、本発明のフィルムコンデンサが高温の使用環境で長時間電圧が印加されても、コンデンサの等価直列抵抗(ESR)が高くなりにくい。つまり、本発明のフィルムコンデンサは、高温耐用性が高いと言える。
また、上記の通り、高温の使用環境で長時間電圧が印加されたとしても、電極である金属層が酸化することを抑制することができるので、本発明のフィルムコンデンサでは、静電容量が低下しにくくなる。
カルボニル基の吸収ピーク強度に対するイソシアネート基の吸収ピーク強度の比が、0.08未満であると、イソシアネート基の存在数が少ないため、コンデンサの等価直列抵抗が高くなりやすく、静電容量が低下しやすくなる。
一方、カルボニル基の吸収ピーク強度に対するイソシアネート基の吸収ピーク強度の比が、1.15を超えると、イソシアネート基の存在数が多くなる。そのため、誘電体樹脂フィルムが硬化していない状態に近くなる。したがって、誘電体樹脂フィルムとして機能しにくくなる。その結果、コンデンサの等価直列抵抗が高くなりやすく、静電容量が低下しやすくなる。
一方、カルボニル基の吸収ピーク強度に対するイソシアネート基の吸収ピーク強度の比が、1.15を超えると、イソシアネート基の存在数が多くなる。そのため、誘電体樹脂フィルムが硬化していない状態に近くなる。したがって、誘電体樹脂フィルムとして機能しにくくなる。その結果、コンデンサの等価直列抵抗が高くなりやすく、静電容量が低下しやすくなる。
なお、本明細書において「吸収ピーク強度」は以下のように算出された値を意味する。
まず、フーリエ変換赤外分光光度計(FT-IR)を用いて、誘電体樹脂フィルムの赤外線吸収スペクトルを減衰全反射法(ATR:attenuated total reflection)にて測定する。
次に、所定の波数領域にみられた吸収帯を、所定の官能基によるものとし、各ピークの両側でベースラインを引き、そのベースラインからの頂点強度までの値を、その官能基の「吸収ピーク強度」とする。
まず、フーリエ変換赤外分光光度計(FT-IR)を用いて、誘電体樹脂フィルムの赤外線吸収スペクトルを減衰全反射法(ATR:attenuated total reflection)にて測定する。
次に、所定の波数領域にみられた吸収帯を、所定の官能基によるものとし、各ピークの両側でベースラインを引き、そのベースラインからの頂点強度までの値を、その官能基の「吸収ピーク強度」とする。
本発明のフィルムコンデンサにおいて、誘電体樹脂フィルムに含まれる水分の含有量は、0.4重量%以下であることが好ましい。
誘電体樹脂フィルムに含まれる水分の含有量は、0.4重量%以下であると、水分が充分に少ないので、誘電体樹脂フィルムにおいて水分とイソシアネート基とが反応して未反応のイソシアネート基が減少することを抑制することができる。その結果、金属層が酸化することを著しく抑制することができる。
誘電体樹脂フィルムに含まれる水分の含有量は、0.4重量%以下であると、水分が充分に少ないので、誘電体樹脂フィルムにおいて水分とイソシアネート基とが反応して未反応のイソシアネート基が減少することを抑制することができる。その結果、金属層が酸化することを著しく抑制することができる。
また、本発明のフィルムコンデンサにおいて、誘電体樹脂フィルムに含まれる水分の含有量は0.01重量%以上であることが好ましい。
誘電体樹脂フィルムに含まれる水分の含有量が、0.01重量%未満であると、誘電体樹脂フィルムが脆くなることが予測される。
なお、本明細書において、「誘電体樹脂フィルムに含まれる水分の含有量」とは、水素化物反応法(ISO 15512:2019方法E)により、加熱温度を130℃として測定した値である。
誘電体樹脂フィルムに含まれる水分の含有量が、0.01重量%未満であると、誘電体樹脂フィルムが脆くなることが予測される。
なお、本明細書において、「誘電体樹脂フィルムに含まれる水分の含有量」とは、水素化物反応法(ISO 15512:2019方法E)により、加熱温度を130℃として測定した値である。
本発明のフィルムコンデンサにおいて、誘電体樹脂フィルムの厚みは特に限定されないが、誘電体樹脂フィルムが薄すぎると脆くなりやすい。そのため、誘電体樹脂フィルムの厚みは、1μm以上であることが好ましく、3μm以上であることがより好ましい。一方、フィルムが厚すぎると、成膜時にクラック等の欠陥が発生しやすくなる。そのため、誘電体樹脂フィルムの厚みは、10μm以下であることが好ましく、5μm以下であることがより好ましい。
なお、誘電体樹脂フィルムの厚みとは、金属層の厚みを含まない誘電体樹脂フィルム単独の厚みを意味する。誘電体樹脂フィルムの厚みは、光学式膜厚計を用いて測定することができる。
なお、誘電体樹脂フィルムの厚みとは、金属層の厚みを含まない誘電体樹脂フィルム単独の厚みを意味する。誘電体樹脂フィルムの厚みは、光学式膜厚計を用いて測定することができる。
本発明のフィルムコンデンサにおいて、誘電体樹脂フィルムは、例えば、水酸基(OH基)を有する第1有機材料とイソシアネート基(NCO基)を有する第2有機材料との硬化物からなる。
具体的には、誘電体樹脂フィルムは、第1有機材料が有する水酸基と、第2有機材料が有するイソシアネート基とが反応して得られる硬化物からなる。
具体的には、誘電体樹脂フィルムは、第1有機材料が有する水酸基と、第2有機材料が有するイソシアネート基とが反応して得られる硬化物からなる。
第1有機材料としては、繰り返し単位の中に水酸基とベンゼン環とを有する有機高分子であってもよい。このような化合物としてはフェノキシ樹脂等が挙げられる。
フェノキシ樹脂としては、例えば、ビスフェノールA型フェノキシ樹脂、ビスフェノールF型フェノキシ樹脂等であることが好ましい。
フェノキシ樹脂としては、例えば、ビスフェノールA型フェノキシ樹脂、ビスフェノールF型フェノキシ樹脂等であることが好ましい。
第2有機材料としては、ジフェニルメタンジイソシアネート(MDI)、トリレンジイソシアネート(TDI)、ヘキサメチレンジイソシアネート(HDI)等が挙げられる。これらの化合物の中では、MDI又はTDIが好ましい。なお、これらはそのポリイソシアネートの変性体を含んでいてもよく、また、これらは併用されていてもよい。
本発明のフィルムコンデンサにおいて、誘電体樹脂フィルムに含まれるイソシアネート基は、上記第2有機材料に由来するイソシアネート基であってもよい。
本発明のフィルムコンデンサにおいて、誘電体樹脂フィルムは、他の機能を付加するための添加剤を含むこともできる。例えば、レベリング剤を添加することで平滑性を付与することができる。添加剤は、水酸基及び/又はイソシアネート基と反応する官能基を有し、硬化物の架橋構造の一部を形成する材料であってもよい。このような材料としては、例えば、エポキシ基、シラノール基及びカルボキシル基からなる群より選択される少なくとも1種の官能基を有する樹脂等が挙げられる。
本発明のフィルムコンデンサでは、フィルムコンデンサの静電容量値と、温度125℃の雰囲気中に1時間静置した後、電圧150V/μmで電圧印加1分後に測定した絶縁抵抗値との積で示されるCR値が250Ω・F以上であることが好ましく、500Ω・F以上であることがより好ましい。
上記条件におけるコンデンサのCR値が250Ω・F以上であることは、高温耐用性が高いと言える。
また、CR値は、5000Ω・F以下であることが好ましい。
5000Ω・Fを超えるCR値を有するフィルムコンデンサを製造しようとコストが高すぎ、生産効率が低下する。
上記条件におけるコンデンサのCR値が250Ω・F以上であることは、高温耐用性が高いと言える。
また、CR値は、5000Ω・F以下であることが好ましい。
5000Ω・Fを超えるCR値を有するフィルムコンデンサを製造しようとコストが高すぎ、生産効率が低下する。
[フィルムコンデンサの製造方法]
続いて、本発明のフィルムコンデンサの製造方法の一例について説明する。
本発明のフィルムコンデンサの誘電体樹脂フィルムは、水酸基を有する第1有機材料とイソシアネート基を有する第2有機材料とを含む樹脂溶液をフィルム状に成形し、次いで、熱処理して硬化させることによって作製することができる。
この際、反応温度や反応時間等の熱処理の条件を調整することや、第1有機材料の水酸基と第2有機材料のイソシアネート基とのモル比を調整することにより、未反応のイソシアネート基の量を制御することができる。これにより、得られる誘電体樹脂フィルムのカルボニル基の吸収ピーク強度に対するイソシアネート基の吸収ピーク強度の比(イソシアネート基の吸収ピーク強度/カルボニル基の吸収ピーク強度)を0.08以上、1.15以下とすることができる。
続いて、本発明のフィルムコンデンサの製造方法の一例について説明する。
本発明のフィルムコンデンサの誘電体樹脂フィルムは、水酸基を有する第1有機材料とイソシアネート基を有する第2有機材料とを含む樹脂溶液をフィルム状に成形し、次いで、熱処理して硬化させることによって作製することができる。
この際、反応温度や反応時間等の熱処理の条件を調整することや、第1有機材料の水酸基と第2有機材料のイソシアネート基とのモル比を調整することにより、未反応のイソシアネート基の量を制御することができる。これにより、得られる誘電体樹脂フィルムのカルボニル基の吸収ピーク強度に対するイソシアネート基の吸収ピーク強度の比(イソシアネート基の吸収ピーク強度/カルボニル基の吸収ピーク強度)を0.08以上、1.15以下とすることができる。
次に、作製した誘電体樹脂フィルムの一方の面に金属層を形成することにより、金属化フィルムを得る。金属層を形成する方法としては、蒸着等の方法が挙げられる。
この際、誘電体樹脂フィルムの一方の面の一方側縁に帯状の絶縁部が形成されるように、金属層を形成する。
この際、誘電体樹脂フィルムの一方の面の一方側縁に帯状の絶縁部が形成されるように、金属層を形成する。
次に、誘電体樹脂フィルムの一方の面に金属層が形成された金属化フィルムを2枚準備する。2枚の金属化フィルムのうち1枚を、積層方向を軸に180度回転させ、絶縁部の位置が互い違いになるようにし、幅方向に所定距離だけずらした状態で重ねた後、巻回することにより積層体が得られる。必要に応じて、積層体を幅方向とは垂直な方向から挟んで楕円円筒形状にプレスしてもよい。
続いて、積層体の端面に外部端子電極を形成することにより、図1に示すようなフィルムコンデンサが得られる。積層体の端面に外部端子電極を形成する方法としては、溶射が挙げられる。
以下、本発明のフィルムコンデンサをより具体的に開示した実施例を示す。なお、本発明は、これらの実施例のみに限定されるものではない。
(実施例1-1)及び(実施例1-2)並びに(比較例1-1)及び(比較例1-2)
誘電体樹脂フィルムとして、高分子量のビスフェノールA型フェノキシ樹脂と2官能イソシアネートであるMDIを、前者の水酸基のモル数と後者のイソシアネート基のモル数がほぼ等しくなるように混合し、基材フィルムに薄く塗布した後、乾燥させ樹脂フィルムを得た。その誘電体樹脂フィルムの一方側縁に帯状の絶縁部が形成されるようにアルミニウムを蒸着し金属層を形成した後、基材を剥離して熱硬化した。熱硬化は100℃~180℃、2時間~50時間で適宜調整し製造例1-1、製造例1-2、製造例1-3及び製造例1-4に係る金属層が形成された、厚み3μmの誘電体樹脂フィルムを作製した。
各誘電体樹脂フィルムのカルボニル基の吸収ピーク強度に対するイソシアネート基の吸収ピーク強度の比(イソシアネート基の吸収ピーク強度/カルボニル基の吸収ピーク強度)を下記方法で測定したところ、表1に示す値であった。
誘電体樹脂フィルムとして、高分子量のビスフェノールA型フェノキシ樹脂と2官能イソシアネートであるMDIを、前者の水酸基のモル数と後者のイソシアネート基のモル数がほぼ等しくなるように混合し、基材フィルムに薄く塗布した後、乾燥させ樹脂フィルムを得た。その誘電体樹脂フィルムの一方側縁に帯状の絶縁部が形成されるようにアルミニウムを蒸着し金属層を形成した後、基材を剥離して熱硬化した。熱硬化は100℃~180℃、2時間~50時間で適宜調整し製造例1-1、製造例1-2、製造例1-3及び製造例1-4に係る金属層が形成された、厚み3μmの誘電体樹脂フィルムを作製した。
各誘電体樹脂フィルムのカルボニル基の吸収ピーク強度に対するイソシアネート基の吸収ピーク強度の比(イソシアネート基の吸収ピーク強度/カルボニル基の吸収ピーク強度)を下記方法で測定したところ、表1に示す値であった。
<官能基の吸収ピーク強度の測定>
誘電体樹脂フィルムをフーリエ変換赤外分光光度計を用いて、ATRにて測定した。波数域は、4000cm-1~500cm-1とした。測定には、日本分光(JASCO)社製の「FT/IR-4100ST」を使用した。積算回数は64回、分解能は4cm-1とした。
その後、波数:1650cm-1以上、1800cm-1以下の範囲で検出されるカルボニル基の吸収ピーク強度に対する波数:2200cm-1以上、2350cm-1以下の範囲で検出されるイソシアネート基の吸収ピーク強度の比(イソシアネート基の吸収ピーク強度/カルボニル基の吸収ピーク強度)を算出した。
誘電体樹脂フィルムをフーリエ変換赤外分光光度計を用いて、ATRにて測定した。波数域は、4000cm-1~500cm-1とした。測定には、日本分光(JASCO)社製の「FT/IR-4100ST」を使用した。積算回数は64回、分解能は4cm-1とした。
その後、波数:1650cm-1以上、1800cm-1以下の範囲で検出されるカルボニル基の吸収ピーク強度に対する波数:2200cm-1以上、2350cm-1以下の範囲で検出されるイソシアネート基の吸収ピーク強度の比(イソシアネート基の吸収ピーク強度/カルボニル基の吸収ピーク強度)を算出した。
次に、製造例1-1、製造例1-2、製造例1-3及び製造例1-4に係る金属層が形成された誘電体樹脂フィルムをそれぞれ2枚準備し、一方を積層方向を軸に180度回転させ、絶縁部の位置が互い違いになるように重ねた後、巻回してコンデンサ素子を得た。コンデンサ素子の両端に、亜鉛を溶射して外部端子電極を形成した。外部端子電極にリード線を接続し、PPS(ポリフェニレンサルファイド)ケースに挿入して、エポキシ樹脂を充填することにより外装した。
以上のようにして、比較例1-1、実施例1-1、実施例1-2及び比較例1-2フィルムコンデンサを製造した。
比較例1-1に係るフィルムコンデンサには、製造例1-1に係る誘電体樹脂フィルムが用いられている。
実施例1-1に係るフィルムコンデンサには、製造例1-2に係る誘電体樹脂フィルムが用いられている。
実施例1-2に係るフィルムコンデンサには、製造例1-3に係る誘電体樹脂フィルムが用いられている。
比較例1-2に係るフィルムコンデンサには、製造例1-4に係る誘電体樹脂フィルムが用いられている。
以上のようにして、比較例1-1、実施例1-1、実施例1-2及び比較例1-2フィルムコンデンサを製造した。
比較例1-1に係るフィルムコンデンサには、製造例1-1に係る誘電体樹脂フィルムが用いられている。
実施例1-1に係るフィルムコンデンサには、製造例1-2に係る誘電体樹脂フィルムが用いられている。
実施例1-2に係るフィルムコンデンサには、製造例1-3に係る誘電体樹脂フィルムが用いられている。
比較例1-2に係るフィルムコンデンサには、製造例1-4に係る誘電体樹脂フィルムが用いられている。
<CR値の測定>
各フィルムコンデンサの静電容量を標準規格(JIS C 5101-1 1998)に基づいた測定条件で、静電容量測定器(LCRメーター)を用いて測定した。
また、各フィルムコンデンサを温度125℃の雰囲気中に1時間置いた後に電圧150V/μm(誘電体樹脂フィルムの厚み1μmあたり150V)で電圧印加1分後の絶縁抵抗値を測定した。絶縁抵抗値は、絶縁抵抗計(型番:DSM-8104、製造元:日置電機株式会社)により測定した。そして、静電容量値と、温絶縁抵抗値との積で示されるCR値を算出した。結果を表1に示す。
また、CR値から、フィルムコンデンサを以下の基準で評価した。
〇:CR値が100Ω・F以上
×:CR値が100Ω・F未満
各フィルムコンデンサの静電容量を標準規格(JIS C 5101-1 1998)に基づいた測定条件で、静電容量測定器(LCRメーター)を用いて測定した。
また、各フィルムコンデンサを温度125℃の雰囲気中に1時間置いた後に電圧150V/μm(誘電体樹脂フィルムの厚み1μmあたり150V)で電圧印加1分後の絶縁抵抗値を測定した。絶縁抵抗値は、絶縁抵抗計(型番:DSM-8104、製造元:日置電機株式会社)により測定した。そして、静電容量値と、温絶縁抵抗値との積で示されるCR値を算出した。結果を表1に示す。
また、CR値から、フィルムコンデンサを以下の基準で評価した。
〇:CR値が100Ω・F以上
×:CR値が100Ω・F未満
<ESR増加率の測定>
各フィルムコンデンサを、温度125℃、電圧200V/μm(誘電体樹脂フィルムの厚み1μmあたり200V)、2000時間の高温負荷試験を行ない、試験前後のESR増加率を測定した。評価基準は以下の通りである。
結果を表1に示す。ESRはLCRメータ(型番:E4980A、製造元はAgilent Technologies)により測定した。
また、ESR増加率の数値から、フィルムコンデンサを以下の基準で評価した。
〇:ESR増加率が15%以下
×:ESR増加率が15%を超える
各フィルムコンデンサを、温度125℃、電圧200V/μm(誘電体樹脂フィルムの厚み1μmあたり200V)、2000時間の高温負荷試験を行ない、試験前後のESR増加率を測定した。評価基準は以下の通りである。
結果を表1に示す。ESRはLCRメータ(型番:E4980A、製造元はAgilent Technologies)により測定した。
また、ESR増加率の数値から、フィルムコンデンサを以下の基準で評価した。
〇:ESR増加率が15%以下
×:ESR増加率が15%を超える
上記<CR値の測定>及び<ESR増加率の測定>から、フィルムコンデンサを以下の基準で総合評価した。
◎:CR値が100Ω・F以上、かつ、ESR増加率が15%以下
〇:CR値が100Ω・F未満、かつ、ESR増加率が15%以下
△:CR値が100Ω・F以上、かつ、ESR増加率が15%を超える
×:CR値が100Ω・F未満、かつ、ESR増加率が15%を超える
◎:CR値が100Ω・F以上、かつ、ESR増加率が15%以下
〇:CR値が100Ω・F未満、かつ、ESR増加率が15%以下
△:CR値が100Ω・F以上、かつ、ESR増加率が15%を超える
×:CR値が100Ω・F未満、かつ、ESR増加率が15%を超える
表1に示す通り、誘電体樹脂フィルムにおいて、カルボニル基の吸収ピーク強度に対するイソシアネート基の吸収ピーク強度の比(イソシアネート基の吸収ピーク強度/カルボニル基の吸収ピーク強度)が0.08以上、1.15以下であると、高温で長時間電圧印加しても、蒸着電極の酸化が抑制され、ESRが高くなりにくいことが判明した。
またこのような構成とした実施例1-1及び実施例1-2に係るフィルムコンデンサはCR値が250Ω・F以上であった。
またこのような構成とした実施例1-1及び実施例1-2に係るフィルムコンデンサはCR値が250Ω・F以上であった。
(実施例2-1)及び(実施例2-2)並びに(比較例2-1)及び(比較例2-2)
誘電体樹脂フィルムとして、高分子量のビスフェノールA型フェノキシ樹脂と3官能のトリメチロールプロパン(TMP)-アダクト体としたTDIを、前者の水酸基のモル数と後者のイソシアネート基のモル数がほぼ等しくなるように混合し、基材フィルムに薄く塗布した後、乾燥させ樹脂フィルムを得た。その誘電体樹脂フィルムの一方側縁に帯状の絶縁部が形成されるようにアルミニウムを蒸着し金属層を形成した後、基材を剥離して熱硬化した。熱硬化は100℃~180℃、2時間~50時間で適宜調整し、製造例2-1、製造例2-2、製造例2-3及び製造例2-4に係る、厚み5μmの金属層が形成された誘電体樹脂フィルムを作製した。
各誘電体樹脂フィルムのカルボニル基の吸収ピーク強度に対するイソシアネート基の吸収ピーク強度の比(イソシアネート基の吸収ピーク強度/カルボニル基の吸収ピーク強度)を下記方法で測定したところ、表2に示す値であった。
なお、各官能基の吸収ピーク強度の測定は、上記「<官能基の吸収ピーク強度の測定>」と同様の方法で行った。
誘電体樹脂フィルムとして、高分子量のビスフェノールA型フェノキシ樹脂と3官能のトリメチロールプロパン(TMP)-アダクト体としたTDIを、前者の水酸基のモル数と後者のイソシアネート基のモル数がほぼ等しくなるように混合し、基材フィルムに薄く塗布した後、乾燥させ樹脂フィルムを得た。その誘電体樹脂フィルムの一方側縁に帯状の絶縁部が形成されるようにアルミニウムを蒸着し金属層を形成した後、基材を剥離して熱硬化した。熱硬化は100℃~180℃、2時間~50時間で適宜調整し、製造例2-1、製造例2-2、製造例2-3及び製造例2-4に係る、厚み5μmの金属層が形成された誘電体樹脂フィルムを作製した。
各誘電体樹脂フィルムのカルボニル基の吸収ピーク強度に対するイソシアネート基の吸収ピーク強度の比(イソシアネート基の吸収ピーク強度/カルボニル基の吸収ピーク強度)を下記方法で測定したところ、表2に示す値であった。
なお、各官能基の吸収ピーク強度の測定は、上記「<官能基の吸収ピーク強度の測定>」と同様の方法で行った。
次に、製造例2-1、製造例2-2、製造例2-3及び製造例2-4に係る金属層が形成された誘電体樹脂フィルムをそれぞれ2枚準備し、一方を積層方向を軸に180度回転させ、絶縁部の位置が互い違いになるように重ねた後、巻回してコンデンサ素子を得た。コンデンサ素子の両端に、亜鉛を溶射して外部端子電極を形成した。外部端子電極にリード線を接続し、PPSケースに挿入して、エポキシ樹脂を充填することにより外装した。
以上のようして、比較例2-1、実施例2-1、実施例2-2及び比較例2-2フィルムコンデンサを製造した。
比較例2-1に係るフィルムコンデンサには、製造例2-1に係る誘電体樹脂フィルムが用いられている。
実施例2-1に係るフィルムコンデンサには、製造例2-2に係る誘電体樹脂フィルムが用いられている。
実施例2-2に係るフィルムコンデンサには、製造例2-3に係る誘電体樹脂フィルムが用いられている。
比較例2-2に係るフィルムコンデンサには、製造例2-4に係る誘電体樹脂フィルムが用いられている。
以上のようして、比較例2-1、実施例2-1、実施例2-2及び比較例2-2フィルムコンデンサを製造した。
比較例2-1に係るフィルムコンデンサには、製造例2-1に係る誘電体樹脂フィルムが用いられている。
実施例2-1に係るフィルムコンデンサには、製造例2-2に係る誘電体樹脂フィルムが用いられている。
実施例2-2に係るフィルムコンデンサには、製造例2-3に係る誘電体樹脂フィルムが用いられている。
比較例2-2に係るフィルムコンデンサには、製造例2-4に係る誘電体樹脂フィルムが用いられている。
各フィルムコンデンサについて、上記「<CR値の測定>」及び「<ESR増加率の測定>」と同様の方法で、CR値及びESR増加率を測定した。結果を表2に示す。
表2に示す通り、誘電体樹脂フィルムを構成するポリイソシアネートの種類を変えても、カルボニル基の吸収ピーク強度に対するイソシアネート基の吸収ピーク強度の比(イソシアネート基の吸収ピーク強度/カルボニル基の吸収ピーク強度)が0.08以上、1.15以下であると、高温で長時間電圧印加しても、蒸着電極の酸化が抑制され、ESRが高くなりにくいことが判明した。
またこのような構成とした実施例2-1及び実施例2-2に係るフィルムコンデンサはCR値が250Ω・F以上であった。
またこのような構成とした実施例2-1及び実施例2-2に係るフィルムコンデンサはCR値が250Ω・F以上であった。
(実施例3-1)及び(実施例3-2)並びに(比較例3-1)及び(比較例3-2)
誘電体樹脂フィルムとして、高分子量のビスフェノールA型フェノキシ樹脂と2官能イソシアネートであるMDIを、前者の水酸基のモル数と後者のイソシアネート基のモル数の比が、水酸基/イソシアネート基=60/40、50/50、40/60及び30/70となるように、混合して4種類の塗液を作製し各塗液を基材フィルムに薄く塗布した後、乾燥させ樹脂フィルムを得た。その誘電体樹脂フィルムの一方側縁に帯状の絶縁部が形成されるようにアルミニウムを蒸着し金属層を形成した後、基材を剥離して熱硬化した。熱硬化は150℃、5時間とし、製造例3-1(水酸基/イソシアネート基=60/40)、製造例3-2(水酸基/イソシアネート基=50/50)、製造例3-3(水酸基/イソシアネート基=40/60)及び製造例3-4(水酸基/イソシアネート基=30/70)に係る金属層が形成された、厚み3μmの誘電体樹脂フィルムを作製した。
そして、各金属層が形成された誘電体樹脂フィルムについて、イソシアネート基及びカルボニル基の吸収ピーク強度の測定を上記「<官能基の吸収ピーク強度の測定>」と同様の方法で行い、カルボニル基の吸収ピーク強度に対するイソシアネート基の吸収ピーク強度の比(イソシアネート基の吸収ピーク強度/カルボニル基の吸収ピーク強度)を算出した。結果を表3に示す。
誘電体樹脂フィルムとして、高分子量のビスフェノールA型フェノキシ樹脂と2官能イソシアネートであるMDIを、前者の水酸基のモル数と後者のイソシアネート基のモル数の比が、水酸基/イソシアネート基=60/40、50/50、40/60及び30/70となるように、混合して4種類の塗液を作製し各塗液を基材フィルムに薄く塗布した後、乾燥させ樹脂フィルムを得た。その誘電体樹脂フィルムの一方側縁に帯状の絶縁部が形成されるようにアルミニウムを蒸着し金属層を形成した後、基材を剥離して熱硬化した。熱硬化は150℃、5時間とし、製造例3-1(水酸基/イソシアネート基=60/40)、製造例3-2(水酸基/イソシアネート基=50/50)、製造例3-3(水酸基/イソシアネート基=40/60)及び製造例3-4(水酸基/イソシアネート基=30/70)に係る金属層が形成された、厚み3μmの誘電体樹脂フィルムを作製した。
そして、各金属層が形成された誘電体樹脂フィルムについて、イソシアネート基及びカルボニル基の吸収ピーク強度の測定を上記「<官能基の吸収ピーク強度の測定>」と同様の方法で行い、カルボニル基の吸収ピーク強度に対するイソシアネート基の吸収ピーク強度の比(イソシアネート基の吸収ピーク強度/カルボニル基の吸収ピーク強度)を算出した。結果を表3に示す。
次に、製造例3-1、製造例3-2、製造例3-3及び製造例3-4に係る金属層が形成された誘電体樹脂フィルムをそれぞれ2枚準備し、一方を積層方向を軸に180度回転させ、絶縁部の位置が互い違いになるように重ねた後、巻回してコンデンサ素子を得た。コンデンサ素子の両端に、亜鉛を溶射して外部端子電極を形成した。外部端子電極にリード線を接続し、PPSケースに挿入して、エポキシ樹脂を充填することにより外装した。
以上のようして、比較例3-1、実施例3-1、実施例3-2及び比較例3-2に係るフィルムコンデンサを製造した。
比較例3-1に係るフィルムコンデンサには、製造例3-1に係る誘電体樹脂フィルムが用いられている。
実施例3-1に係るフィルムコンデンサには、製造例3-2に係る誘電体樹脂フィルムが用いられている。
実施例3-2に係るフィルムコンデンサには、製造例3-3に係る誘電体樹脂フィルムが用いられている。
比較例3-2に係るフィルムコンデンサには、製造例3-4に係る誘電体樹脂フィルムが用いられている。
以上のようして、比較例3-1、実施例3-1、実施例3-2及び比較例3-2に係るフィルムコンデンサを製造した。
比較例3-1に係るフィルムコンデンサには、製造例3-1に係る誘電体樹脂フィルムが用いられている。
実施例3-1に係るフィルムコンデンサには、製造例3-2に係る誘電体樹脂フィルムが用いられている。
実施例3-2に係るフィルムコンデンサには、製造例3-3に係る誘電体樹脂フィルムが用いられている。
比較例3-2に係るフィルムコンデンサには、製造例3-4に係る誘電体樹脂フィルムが用いられている。
各フィルムコンデンサについて、上記「<CR値の測定>」及び「<ESR増加率の測定>」と同様の方法で、CR値及びESR増加率を測定した。結果を表3に示す。
表3に示す通り、第1有機材料と第2有機材料を、前者の水酸基のモル数に対して、後者のイソシアネート基のモル数の比を高くして混合して製造した誘電体樹脂フィルムにおいて、カルボニル基の吸収ピーク強度に対するイソシアネート基の吸収ピーク強度の比(イソシアネート基の吸収ピーク強度/カルボニル基の吸収ピーク強度)が0.08以上、1.15以下であると、高温で長時間電圧印加しても、蒸着電極の酸化が抑制され、ESRが高くなりにくいことが判明した。
またこのような構成とした実施例3-1及び実施例3-2に係るフィルムコンデンサはCR値が250Ω・F以上であった。
このように、あらかじめ第1有機材料と第2有機材料とを、前者の水酸基のモル数に対して後者のイソシアネート基のモル数の比を一定程度高くなるように調整して混合することにより誘電体樹脂フィルムに含まれるイソシアネート基に含有量を容易に調整できることが判明した。
またこのような構成とした実施例3-1及び実施例3-2に係るフィルムコンデンサはCR値が250Ω・F以上であった。
このように、あらかじめ第1有機材料と第2有機材料とを、前者の水酸基のモル数に対して後者のイソシアネート基のモル数の比を一定程度高くなるように調整して混合することにより誘電体樹脂フィルムに含まれるイソシアネート基に含有量を容易に調整できることが判明した。
(実施例4-1)~(実施例4-4)
誘電体樹脂フィルムとして、高分子量のビスフェノールA型フェノキシ樹脂と2官能イソシアネートであるMDIを、前者の水酸基のモル数と後者のイソシアネート基のモル数がほぼ等しくなるように混合し、基材フィルムに薄く塗布した後、乾燥させ樹脂フィルムを得た。その誘電体樹脂フィルムの一方側縁に帯状の絶縁部が形成されるようにアルミニウムを蒸着し金属層を形成した後、基材を剥離して熱硬化した。熱硬化は150℃、5時間でとし、カルボニル基の吸収ピーク強度に対するイソシアネート基の吸収ピーク強度の比(イソシアネート基の吸収ピーク強度/カルボニル基の吸収ピーク強度)が0.2となる金属層が形成された、厚み5μmの誘電体樹脂フィルムを作製した。
なお、カルボニル基の吸収ピーク強度及びイソシアネート基の吸収ピーク強度の測定は、上記「<官能基の吸収ピーク強度の測定>」と同様の方法で行った。
誘電体樹脂フィルムとして、高分子量のビスフェノールA型フェノキシ樹脂と2官能イソシアネートであるMDIを、前者の水酸基のモル数と後者のイソシアネート基のモル数がほぼ等しくなるように混合し、基材フィルムに薄く塗布した後、乾燥させ樹脂フィルムを得た。その誘電体樹脂フィルムの一方側縁に帯状の絶縁部が形成されるようにアルミニウムを蒸着し金属層を形成した後、基材を剥離して熱硬化した。熱硬化は150℃、5時間でとし、カルボニル基の吸収ピーク強度に対するイソシアネート基の吸収ピーク強度の比(イソシアネート基の吸収ピーク強度/カルボニル基の吸収ピーク強度)が0.2となる金属層が形成された、厚み5μmの誘電体樹脂フィルムを作製した。
なお、カルボニル基の吸収ピーク強度及びイソシアネート基の吸収ピーク強度の測定は、上記「<官能基の吸収ピーク強度の測定>」と同様の方法で行った。
次に、金属層が形成された誘電体樹脂フィルムをそれぞれ2枚準備し、一方を積層方向を軸に180度回転させ、絶縁部の位置が互い違いになるように重ねた後、巻回してコンデンサ素子を得た。そして、コンデンサ素子を85℃、85%の雰囲気中で強制的に加湿し、未加湿のものと、125℃で、1~12時間加熱乾燥し、誘電体樹脂フィルムに含まれる水分の含有量が表4に示す数値であるコンデンサ素子を4種作製した。なお、水分の含有量は、水素化物反応法(ISO 15512:2019方法E)により測定した。
次に、各コンデンサ素子の両端に、亜鉛を溶射して外部端子電極を形成した。外部端子電極にリード線を接続し、PPSケースに挿入して、エポキシ樹脂を充填することにより外装した。
以上のようして、実施例4-1~実施例4-4に係るフィルムコンデンサを製造した。
実施例4-1~実施例4-4に係るフィルムコンデンサについて、上記「<CR値の測定>」及び「<ESR増加率の測定>」と同様の方法で、CR値及びESR増加率を測定した。結果を表4に示す。
表4に示すように、誘電体樹脂フィルムに含まれる水分の含有量が少なくなると、ESR増加率が抑えられ、CR値が高くなることが判明した。特に、水分の含有量が0.4重量%以下であると、ESR増加率が特に抑えられることが判明した。
なお、フィルムコンデンサを乾燥雰囲気中に保管したり、外装前に加熱乾燥等することにより、水分含有量をさらに抑えることができると予測できる。
なお、フィルムコンデンサを乾燥雰囲気中に保管したり、外装前に加熱乾燥等することにより、水分含有量をさらに抑えることができると予測できる。
10 フィルムコンデンサ
11 第1の金属化フィルム
12 第2の金属化フィルム
13 第1の誘電体樹脂フィルム
13a 第1の絶縁部
14 第2の誘電体樹脂フィルム
14a 第2の絶縁部
15 第1の金属層
16 第2の金属層
40 金属化フィルムの巻回体
41 第1の外部端子電極
42 第2の外部端子電極
11 第1の金属化フィルム
12 第2の金属化フィルム
13 第1の誘電体樹脂フィルム
13a 第1の絶縁部
14 第2の誘電体樹脂フィルム
14a 第2の絶縁部
15 第1の金属層
16 第2の金属層
40 金属化フィルムの巻回体
41 第1の外部端子電極
42 第2の外部端子電極
Claims (6)
- 熱硬化性ウレタン樹脂からなる誘電体樹脂フィルムと、
前記誘電体樹脂フィルムの少なくとも一方の面に設けられた金属層と、
を備え、
前記誘電体樹脂フィルムは、少なくともイソシアネート基及びカルボニル基を含み、
波数:1650cm-1以上、1800cm-1以下の範囲で検出される前記カルボニル基の吸収ピーク強度に対する波数:2200cm-1以上、2350cm-1以下の範囲で検出される前記イソシアネート基の吸収ピーク強度の比(イソシアネート基の吸収ピーク強度/カルボニル基の吸収ピーク強度)が0.08以上、1.15以下である、フィルムコンデンサ。 - 前記誘電体樹脂フィルムに含まれる水分の含有量は、0.4重量%以下である請求項1に記載のフィルムコンデンサ。
- 前記誘電体樹脂フィルムに含まれる水分の含有量は、0.01重量%以上である請求項2に記載のフィルムコンデンサ。
- 前記誘電体樹脂フィルムは、フェノキシ樹脂と、ジフェニルメタンジイソシアネートおよび/またはトリレンジイソシアネートとの架橋物を含む請求項1~3のいずれかに記載のフィルムコンデンサ。
- 前記フィルムコンデンサの静電容量値と、温度125℃の雰囲気中に1時間静置した後、電圧150V/μmで電圧印加1分後に測定した絶縁抵抗値との積で示されるCR値が250Ω・F以上である請求項1~4のいずれかに記載のフィルムコンデンサ。
- 前記CR値が5000Ω・F以下である請求項5に記載のフィルムコンデンサ。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112021004211.4T DE112021004211T5 (de) | 2020-09-23 | 2021-09-21 | Folienkondensator |
CN202180064611.0A CN116195008A (zh) | 2020-09-23 | 2021-09-21 | 薄膜电容器 |
JP2022551989A JP7463539B2 (ja) | 2020-09-23 | 2021-09-21 | フィルムコンデンサ |
US18/188,813 US20230230769A1 (en) | 2020-09-23 | 2023-03-23 | Film capacitor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020158884 | 2020-09-23 | ||
JP2020-158884 | 2020-09-23 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/188,813 Continuation US20230230769A1 (en) | 2020-09-23 | 2023-03-23 | Film capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022065295A1 true WO2022065295A1 (ja) | 2022-03-31 |
Family
ID=80845447
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/034556 WO2022065295A1 (ja) | 2020-09-23 | 2021-09-21 | フィルムコンデンサ |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230230769A1 (ja) |
JP (1) | JP7463539B2 (ja) |
CN (1) | CN116195008A (ja) |
DE (1) | DE112021004211T5 (ja) |
WO (1) | WO2022065295A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02191624A (ja) * | 1989-01-20 | 1990-07-27 | Asahi Chem Ind Co Ltd | コンデンサー封止用一液性エポキシ樹脂組成物 |
WO2017175511A1 (ja) * | 2016-04-06 | 2017-10-12 | 株式会社村田製作所 | フィルムコンデンサ、コンデンサ用フィルム、及び、フィルムコンデンサの製造方法 |
WO2019097751A1 (ja) * | 2017-11-15 | 2019-05-23 | 株式会社村田製作所 | フィルムコンデンサ、及び、フィルムコンデンサ用フィルム |
WO2020166392A1 (ja) * | 2019-02-15 | 2020-08-20 | 株式会社村田製作所 | フィルムコンデンサ、及び、フィルムコンデンサ用の誘電体樹脂フィルム |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4317159A (en) | 1979-12-10 | 1982-02-23 | Sprague Electric Company | AC Capacitor and impregnant therefor |
US4317158A (en) | 1980-03-03 | 1982-02-23 | Sprague Electric Company | AC Capacitor |
SE453202B (sv) | 1986-05-12 | 1988-01-18 | Sandvik Ab | Sinterkropp for skerande bearbetning |
JP3155323B2 (ja) | 1992-03-04 | 2001-04-09 | 三菱伸銅株式会社 | フィルムコンデンサの製造方法およびコンデンサ用メタライズドフィルムの製造方法 |
-
2021
- 2021-09-21 WO PCT/JP2021/034556 patent/WO2022065295A1/ja active Application Filing
- 2021-09-21 CN CN202180064611.0A patent/CN116195008A/zh active Pending
- 2021-09-21 DE DE112021004211.4T patent/DE112021004211T5/de active Pending
- 2021-09-21 JP JP2022551989A patent/JP7463539B2/ja active Active
-
2023
- 2023-03-23 US US18/188,813 patent/US20230230769A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02191624A (ja) * | 1989-01-20 | 1990-07-27 | Asahi Chem Ind Co Ltd | コンデンサー封止用一液性エポキシ樹脂組成物 |
WO2017175511A1 (ja) * | 2016-04-06 | 2017-10-12 | 株式会社村田製作所 | フィルムコンデンサ、コンデンサ用フィルム、及び、フィルムコンデンサの製造方法 |
WO2019097751A1 (ja) * | 2017-11-15 | 2019-05-23 | 株式会社村田製作所 | フィルムコンデンサ、及び、フィルムコンデンサ用フィルム |
WO2020166392A1 (ja) * | 2019-02-15 | 2020-08-20 | 株式会社村田製作所 | フィルムコンデンサ、及び、フィルムコンデンサ用の誘電体樹脂フィルム |
Also Published As
Publication number | Publication date |
---|---|
JP7463539B2 (ja) | 2024-04-08 |
JPWO2022065295A1 (ja) | 2022-03-31 |
DE112021004211T5 (de) | 2023-06-01 |
US20230230769A1 (en) | 2023-07-20 |
CN116195008A (zh) | 2023-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111344824B (zh) | 薄膜电容器以及薄膜电容器用薄膜 | |
JP6944161B2 (ja) | フィルムコンデンサ及びフィルムコンデンサの製造方法 | |
WO2018142922A1 (ja) | フィルムコンデンサ、フィルムコンデンサの製造方法、誘電体樹脂フィルム、及び、誘電体樹脂フィルムの製造方法 | |
CN111149180B (zh) | 薄膜电容器、薄膜电容器用薄膜以及它们的制造方法 | |
WO2017175511A1 (ja) | フィルムコンデンサ、コンデンサ用フィルム、及び、フィルムコンデンサの製造方法 | |
JP7099636B2 (ja) | フィルムコンデンサ、及び、フィルムコンデンサ用フィルム | |
WO2020161984A1 (ja) | フィルムコンデンサ | |
JP7234831B2 (ja) | フィルムコンデンサ用フィルム、フィルムコンデンサ用フィルムの製造方法、フィルムコンデンサ、及び、フィルムコンデンサの製造方法 | |
WO2022065295A1 (ja) | フィルムコンデンサ | |
JP6677357B2 (ja) | フィルムコンデンサ、及び、金属化フィルム | |
JP7509222B2 (ja) | フィルムコンデンサ、フィルム、及び、金属化フィルム | |
JP7525301B2 (ja) | フィルムコンデンサおよびフィルムコンデンサ用フィルム | |
JP7509223B2 (ja) | フィルムコンデンサ、フィルム、及び、金属化フィルム | |
CN217134211U (zh) | 薄膜电容器 | |
JP7348960B2 (ja) | フィルムコンデンサ、及び、フィルムコンデンサ用フィルム | |
WO2021132257A1 (ja) | フィルムコンデンサ、及び、フィルムコンデンサ用フィルム | |
JP7509224B2 (ja) | フィルムコンデンサ、フィルム、及び、金属化フィルム | |
WO2023105931A1 (ja) | フィルムコンデンサ | |
WO2023105990A1 (ja) | フィルムコンデンサおよび樹脂フィルム | |
JPH0128494B2 (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21872424 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022551989 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21872424 Country of ref document: EP Kind code of ref document: A1 |