WO2022065041A1 - フェノール性水酸基含有樹脂、アルカリ現像性レジスト用樹脂組成物、及びレジスト硬化性樹脂組成物、並びにフェノール性水酸基含有樹脂の製造方法 - Google Patents

フェノール性水酸基含有樹脂、アルカリ現像性レジスト用樹脂組成物、及びレジスト硬化性樹脂組成物、並びにフェノール性水酸基含有樹脂の製造方法 Download PDF

Info

Publication number
WO2022065041A1
WO2022065041A1 PCT/JP2021/033079 JP2021033079W WO2022065041A1 WO 2022065041 A1 WO2022065041 A1 WO 2022065041A1 JP 2021033079 W JP2021033079 W JP 2021033079W WO 2022065041 A1 WO2022065041 A1 WO 2022065041A1
Authority
WO
WIPO (PCT)
Prior art keywords
phenolic hydroxyl
hydroxyl group
group
resin
compound
Prior art date
Application number
PCT/JP2021/033079
Other languages
English (en)
French (fr)
Inventor
知之 今田
教夫 長江
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2022516672A priority Critical patent/JP7124989B1/ja
Priority to CN202180064580.9A priority patent/CN116209690A/zh
Priority to KR1020237000562A priority patent/KR20230021721A/ko
Publication of WO2022065041A1 publication Critical patent/WO2022065041A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/587Unsaturated compounds containing a keto groups being part of a ring
    • C07C49/703Unsaturated compounds containing a keto groups being part of a ring containing hydroxy groups
    • C07C49/747Unsaturated compounds containing a keto groups being part of a ring containing hydroxy groups containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/587Unsaturated compounds containing a keto groups being part of a ring
    • C07C49/753Unsaturated compounds containing a keto groups being part of a ring containing ether groups, groups, groups, or groups
    • C07C49/755Unsaturated compounds containing a keto groups being part of a ring containing ether groups, groups, groups, or groups a keto group being part of a condensed ring system with two or three rings, at least one ring being a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/20Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with polyhydric phenols
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers

Definitions

  • the present invention relates to a phenolic hydroxyl group-containing resin, an alkali-developable resist resin composition, a resist curable resin composition, and a method for producing a phenolic hydroxyl group-containing resin.
  • the multilayer resist method In the field of photoresists, various methods for forming finer wiring patterns have been developed, one of which is the multilayer resist method.
  • the multilayer resist method one or more layers called a resist underlayer film or an antireflection film are formed on a substrate, a resist pattern is formed on the layer by ordinary photolithography, and then the substrate is dry-etched. Process and transfer the wiring pattern.
  • One of the important members in the technique of the multilayer resist method is the resist underlayer film, which is required to have low viscosity, high dry etching resistance, low light reflectivity, and the like. Further, since the resist underlayer film is formed in a solvent-diluted state, the resin material for the resist underlayer film needs to be soluble in a general-purpose organic solvent.
  • ultra-fine wiring pattern formation often uses a process called double patterning or multi-patterning in which exposure and etching are repeated multiple times, and a fine pattern produced in the previous process is applied to the underlayer film. It also plays an important role in forming a smooth next-process fabrication surface after filling the holes. Therefore, the resist underlayer film material used as the base material is required to have low viscosity and low polarity in order to infiltrate the fine space after the material is applied and dried.
  • an anthracene skeleton-containing compound is known as a conventional phenol hydroxyl group-containing compound for a resist underlayer film (Patent Document 1).
  • the anthracene skeleton-containing compound described in Patent Document 1 has low light reflectance in a cured coating film and has excellent properties as an antireflection film, but its solubility in a general-purpose organic solvent does not meet the current required level. It has low infiltration into the microspace due to the molecular size and ⁇ - ⁇ interaction due to the wide aromatic electron cloud.
  • the present invention has sufficient solubility in an organic solvent, has low viscosity and low polarity, and thus has excellent infiltration into a fine space, and is a phenolic hydroxyl group that can be used for forming an ultrafine wiring pattern.
  • An object of the present invention is to provide a contained resin.
  • the present invention has sufficient solubility in an organic solvent, has low viscosity and low polarity, and thus has excellent infiltration into a fine space, and is an alkali that can be used for forming an ultrafine wiring pattern.
  • An object of the present invention is to provide a resin composition for a developable resist.
  • the present invention has sufficient solubility in an organic solvent, has low viscosity and low polarity, has excellent infiltration into a fine space, and can be used for forming an ultrafine wiring pattern.
  • An object of the present invention is to provide a curable resin composition.
  • the present invention has sufficient solubility in an organic solvent, has low viscosity and low polarity, has excellent infiltration into a fine space, and can be used for forming an ultrafine wiring pattern.
  • An object of the present invention is to provide a method for producing a resin containing a polar hydroxyl group.
  • the present inventors have found that the phenolic hydroxyl group-containing resin containing a compound having a specific structure has sufficient solubility in an organic solvent, and has low viscosity and low polarity. It has been found that it has excellent infiltration into a fine space and can be used for forming an ultrafine wiring pattern, and has completed the present invention.
  • the present invention is one or more phenolic hydroxyl group-containing compounds selected from the group consisting of the compound (1) represented by the following structural formula (1) and the compound (1') represented by the following structural formula (1'). It is a phenolic hydroxyl group-containing resin characterized by containing (1).
  • R 1 is a hydrogen atom, an aliphatic hydrocarbon group, an alkoxy group, or a halogen atom, respectively, and n is an integer of 0 to 2 independently.
  • R 1 is a hydrogen atom, an aliphatic hydrocarbon group, an alkoxy group, or a halogen atom, respectively, and n is an integer of 0 to 2 independently.
  • the present invention relates to the phenolic hydroxyl group-containing resin.
  • a resin composition for an alkaline developable resist containing a photosensitizer and an organic solvent.
  • the present invention relates to the phenolic hydroxyl group-containing resin.
  • a resist-curable resin composition containing a curing agent and an organic solvent.
  • 2,7-dihydroxynaphthalene and formaldehyde are mixed with 2,7-dihydroxynaphthalene in a range of 1.1 times or more and 10 times or less on a molar basis, and 2.
  • It is a method for producing a phenolic hydroxyl group-containing resin which comprises a step of reacting 7-dihydroxynaphthalene with the presence of an alkaline catalyst in the range of 1.1 times or more to 10 times or less on a molar basis.
  • phenol has sufficient solubility in an organic solvent, has low viscosity and low polarity, has excellent infiltration into a fine space, and can be used for forming an ultrafine wiring pattern.
  • a resin containing a positive hydroxyl group can be provided.
  • the present invention has sufficient solubility in an organic solvent, has low viscosity and low polarity, has excellent infiltration into a fine space, and can be used for forming an ultrafine wiring pattern. It is possible to provide a resin composition for an alkaline developable resist that can be used.
  • the present invention has sufficient solubility in an organic solvent, has low viscosity and low polarity, has excellent infiltration into a fine space, and can be used for forming an ultrafine wiring pattern. It is possible to provide a resist-curable resin composition that can be used.
  • the present invention has sufficient solubility in an organic solvent, has low viscosity and low polarity, has excellent infiltration into a fine space, and can be used for forming an ultrafine wiring pattern. It is possible to provide a method for producing a phenolic hydroxyl group-containing resin.
  • the phenolic hydroxyl group-containing resin is composed of a group consisting of the compound (1) represented by the following structural formula (1) and the compound (1') represented by the following structural formula (1'). It contains one or more selected phenolic hydroxyl group-containing compounds (1).
  • R 1 is a hydrogen atom, an aliphatic hydrocarbon group, an alkoxy group, or a halogen atom, respectively, and n is an integer of 0 to 2 independently.
  • R 1 is a hydrogen atom, an aliphatic hydrocarbon group, an alkoxy group, or a halogen atom, respectively, and n is an integer of 0 to 2 independently.
  • the phenolic hydroxyl group-containing resin has sufficient solubility in an organic solvent, has low viscosity and low polarity, has excellent infiltration into fine spaces, and can be used for forming ultrafine wiring patterns. can.
  • R 1 is independently a hydrogen atom, an aliphatic hydrocarbon group, an alkoxy group, or a halogen atom.
  • n is an integer of 0 to 2 independently.
  • the aliphatic hydrocarbon group may be either a linear type or a branched type, and may have an unsaturated bond in the structure. Examples of the aliphatic hydrocarbon group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a t-butyl group, an isobutyl group and the like.
  • alkoxy group examples include a methoxy group, an ethoxy group, a propyloxy group, a butoxy group and the like.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and the like.
  • a hydrogen atom is preferable because it is a phenolic hydroxyl group-containing resin having excellent infiltration into a fine space.
  • the content of the phenolic hydroxyl group-containing compound (1) in the phenolic hydroxyl group-containing resin is a value calculated from the area ratio of the GPC chart from the viewpoint of solubility in an organic solvent and infiltration into a fine space.
  • the range is preferably 8% or more, more preferably 10% or more, preferably 30% or less, and more preferably 25% or less.
  • the phenolic hydroxyl group-containing resin may contain other phenolic hydroxyl group-containing compounds in addition to the phenolic hydroxyl group-containing compound (1) as long as the effects of the present invention are not impaired.
  • R 1 is a hydrogen atom, an aliphatic hydrocarbon group, an alkoxy group, or a halogen atom, respectively, and n is an integer of 0 to 2 independently.
  • R 1 is a hydrogen atom, an aliphatic hydrocarbon group, an alkoxy group, or a halogen atom, respectively, and n is an integer of 0 to 2 independently.
  • R 1 is a hydrogen atom, an aliphatic hydrocarbon group, an alkoxy group, or a halogen atom, respectively, and n is an integer of 0 to 2 independently.
  • R 1 is a hydrogen atom, an aliphatic hydrocarbon group, an alkoxy group, or a halogen atom, respectively, and n is an integer of 0 to 2 independently.
  • R 1 is a hydrogen atom, an aliphatic hydrocarbon group, an alkoxy group, or a halogen atom, respectively, and n is an integer of 0 to 2 independently.
  • R 1 is independently a hydrogen atom.
  • n is an integer of 0 to 2 independently.
  • the aliphatic hydrocarbon group may be either a linear type or a branched type, and may have an unsaturated bond in the structure. Examples of the aliphatic hydrocarbon group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a t-butyl group, an isobutyl group and the like.
  • alkoxy group examples include a methoxy group, an ethoxy group, a propyloxy group, a butoxy group and the like.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and the like.
  • a hydrogen atom is preferable because it is a phenolic hydroxyl group-containing resin having excellent infiltration into a fine space.
  • the content of the phenolic hydroxyl group-containing compound (2) in the phenolic hydroxyl group-containing resin is a value calculated from the area ratio of the GPC chart from the viewpoint of solubility in an organic solvent and infiltration into a fine space.
  • the range is preferably 1% or more, more preferably 3% or more, preferably 15% or less, and more preferably 10% or less.
  • the total content of the phenolic hydroxyl group-containing compound (1) and the phenolic hydroxyl group-containing compound (2) in the phenolic hydroxyl group-containing resin is soluble in an organic solvent and infiltrated into a fine space. From this point of view, it is a value calculated from the area ratio of the GPC chart, preferably in the range of 9% or more, more preferably 10% or more, preferably 45% or less, and more preferably 35% or less.
  • the content of the phenolic hydroxyl group-containing compound (3) in the phenolic hydroxyl group-containing resin is calculated from the area ratio of the GPC chart diagram from the viewpoint of solubility in an organic solvent and infiltration into a fine space.
  • the value is preferably in the range of 8% or more, more preferably 10% or more, preferably 25% or less, and more preferably 20% or less.
  • the phenolic hydroxyl group-containing resin further has a structural moiety represented by the structural formula (4) as represented by the following structural formula (5), and the phenolic hydroxyl group-containing compound (1). It may contain a phenolic hydroxyl group-containing compound (4) having a higher molecular weight than that.
  • R 1 is a hydrogen atom, an aliphatic hydrocarbon group, an alkoxy group, or a halogen atom, respectively, and n is an integer of 0 to 2 independently. m is an integer of 1 or more.
  • the content of the phenolic hydroxyl group-containing compound (4) in the phenolic hydroxyl group-containing resin is calculated from the area ratio of the GPC chart diagram from the viewpoint of solubility in an organic solvent and infiltration into a fine space.
  • the value is preferably in the range of 15% or more, more preferably 20% or more, preferably 40% or less, and more preferably 35% or less.
  • the phenolic hydroxyl group-containing resin may be produced in any way, and the production method thereof is not particularly limited, but as an example, 2,7-dihydroxynaphthalene and formaldehyde are used, and 2,7-dihydroxynaphthalene is used.
  • Formaldehyde in the range of 1.1 times or more to 10 times or less on a molar basis, and 1.1 times or more to 10 times or less on a molar basis for 2,7-dihydroxynaphthalene. Examples thereof include those obtained by reacting in the presence of an alkaline catalyst of.
  • 2,7-dihydroxynaphthalene and formaldehyde are added to 2,7-dihydroxynaphthalene from 1.1 times or more to 10 times or less on a molar basis.
  • a reaction step of reacting a range of formaldehyde and 2,7-dihydroxynaphthalene in the presence of an alkaline catalyst in the range of 1.1 times or more to 10 times or less on a molar basis will be described.
  • Examples of the 2,7-dihydroxynaphthalene include 2,7-dihydroxynaphthalene and other compounds having one or more substituents on the aromatic ring of 2,7-dihydroxynaphthalene.
  • substituents include a hydrocarbon group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a t-butyl group and an isobutyl group; a methoxy group, an ethoxy group, a propyloxy group, a butoxy group and the like.
  • 2,7-dihydroxynaphthalene examples include, for example, 2,7-dihydroxynaphthalene, methyl-2,7-dihydroxynaphthalene, ethyl-2,7-dihydroxynaphthalene, and t-butyl-2,7-dihydroxynaphthalene. , Methoxy-2,7-dihydroxynaphthalene, ethoxy-2,7-dihydroxynaphthalene and the like. Of these, 2,7-dihydroxynaphthalene is preferable because it is a phenolic hydroxyl group-containing resin that is more excellent in infiltration into fine spaces.
  • the formaldehyde used in the reaction step may be a formalin solution in an aqueous solution state or paraformaldehyde in a solid state.
  • the alkali catalyst used in the reaction step includes, for example, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and inorganic alkalis such as metallic sodium, metallic lithium, sodium hydride, sodium carbonate and potassium carbonate. Can be mentioned.
  • the method in the reaction step include a method in which the 2,7-dihydroxynaphthalene and formaldehyde are charged substantially at the same time, and the reaction is carried out by heating and stirring in the presence of an appropriate catalyst.
  • examples thereof include a method of carrying out a reaction by continuously or intermittently adding formaldehyde into the system to a mixed solution of 2,7-dihydroxynaphthalene and an appropriate catalyst.
  • substantially simultaneous means that all the raw materials are charged until the reaction is accelerated by heating.
  • the 2,7-dihydroxynaphthalene and formaldehyde are based on the molar amount with respect to the 2,7-dihydroxynaphthalene.
  • the reaction is carried out in the presence of formaldehyde in the range of 1.1 times or more, preferably 1.2 times or more, 10 times or less, preferably 8 times or less.
  • the 2,7-dihydroxynaphthalene and formaldehyde are based on the molar amount with respect to the 2,7-dihydroxynaphthalene.
  • the reaction is carried out in the presence of the alkaline catalyst in the range of 1.1 times or more, preferably 1.2 times or more, 10 times or less, preferably 8 times or less.
  • an organic solvent can be used if necessary.
  • the organic solvent that can be used include, but are not limited to, methyl cellosolve, isopropyl alcohol, ethyl cellosolve, toluene, xylene, and methyl isobutyl ketone.
  • the amount of the organic solvent used is usually in the range of 0.1 to 5 times the total mass of the charged raw materials, and in particular, the efficiency is in the range of 0.3 to 2.5 times. It is preferable from the viewpoint that the compound (1) can be obtained.
  • the reaction temperature is preferably in the range of 20 to 150 ° C, more preferably in the range of 60 to 100 ° C.
  • the reaction time is not particularly limited, but is usually in the range of 1 to 10 hours.
  • Neutralization treatment and washing treatment may be performed according to a conventional method.
  • an acidic substance such as acetic acid, phosphoric acid, and sodium phosphate can be used as a neutralizing agent.
  • the organic solvent is distilled off under reduced pressure heating to concentrate the product, and a carbonyl group-containing phenol compound can be obtained.
  • the phenolic hydroxyl group-containing resin When the phenolic hydroxyl group-containing resin is produced in such a reaction step, the phenolic hydroxyl group-containing compound (1), the phenolic hydroxyl group-containing compound (2), the phenolic hydroxyl group-containing compound (3), and the phenol.
  • the phenolic hydroxyl group-containing compound (5) represented by the following structural formula (6) may be produced.
  • the content of the phenolic hydroxyl group-containing compound (5) in the phenolic hydroxyl group-containing resin is determined from the area ratio of the GPC chart diagram from the viewpoint of solubility in an organic solvent and infiltration into a fine space.
  • the calculated value is preferably in the range of 40% or less, more preferably 35% or less.
  • the total content of the phenolic hydroxyl group-containing compound (3) and the phenolic hydroxyl group-containing compound (5) in the phenolic hydroxyl group-containing resin is soluble in an organic solvent and infiltrated into a fine space. From this point of view, it is a value calculated from the area ratio of the GPC chart, preferably in the range of 8% or more, more preferably 10% or more, preferably 55% or less, and more preferably 45% or less.
  • R 1 is a hydrogen atom, an aliphatic hydrocarbon group, an alkoxy group, or a halogen atom, respectively, and n is an integer of 0 to 2 independently.
  • R 1 is independently a hydrogen atom, an aliphatic hydrocarbon group, an alkoxy group, or a halogen atom.
  • n is an integer of 0 to 2 independently.
  • the aliphatic hydrocarbon group may be either a linear type or a branched type, and may have an unsaturated bond in the structure. Specific examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a t-butyl group, an isobutyl group and the like.
  • Examples of the alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, a butoxy group and the like.
  • halogen atom examples include a fluorine atom, a chlorine atom and a bromine atom.
  • a hydrogen atom is preferable because it is a phenolic hydroxyl group-containing resin having excellent infiltration into a fine space.
  • the number average molecular weight (Mn) of the phenolic hydroxyl group-containing resin is preferably in the range of 500 to 1000.
  • the weight average molecular weight (Mw) is preferably in the range of 550 to 1500.
  • the polydispersity (Mw / Mn) is preferably in the range of 1.1 to 3.
  • the number average molecular weight (Mn) and the weight average molecular weight (Mw) of the phenolic hydroxyl group-containing resin are described in Examples using gel permeation chromatography (hereinafter abbreviated as “GPC”). It was measured under the measurement conditions of.
  • the phenolic hydroxyl group-containing resin can be used as a material for a photoresist material, an underlayer film, an interlayer insulating film, a liquid crystal alignment film, a black matrix, a resist film for forming holes, and the like.
  • the resin composition for an alkaline developable resist of the present embodiment contains the phenolic hydroxyl group-containing resin, a photosensitive agent, and an organic solvent. According to the resin composition for an alkali-developable resist, it is possible to form an ultrafine wiring pattern by having low viscosity and low polarity.
  • the photosensitive agent is, for example, a compound having a quinonediazide group.
  • the compound having a quinonediazide group include an ester compound or an amidate of an aromatic (poly) hydroxy compound and a sulfonic acid compound having a quinonediazide group.
  • the ester compound also means to include a partial ester compound, and the amidate means to include a partial amidate.
  • the sulfonic acid compound having a quinone diazide group include naphthoquinone-1,2-diazide-5-sulfonic acid, naphthoquinone-1,2-diazide-4-sulfonic acid, orthoanthraquinone diazidosulfonic acid, 1,2-. Examples thereof include naphthoquinone-2-diazide-5-sulfonic acid.
  • a halide further substituted with a halogen can also be used.
  • aromatic (poly) hydroxy compound examples include 2,3,4-trihydroxybenzophenone, 2,4,4'-trihydroxybenzophenone, 2,4,6-trihydroxybenzophenone, 2,3,6-. Trihydroxybenzophenone, 2,3,4-trihydroxy-2'-methylbenzophenone, 2,3,4,4'-tetrahydroxybenzophenone, 2,2', 4,4'-tetrahydroxybenzophenone, 2,3' , 4,4', 6-pentahydroxybenzophenone, 2,2', 3,4,4'-pentahydroxybenzophenone, 2,2', 3,4,5-pentahydroxybenzophenone, 2,3', 4, Polyhydroxybenzophenone compounds such as 4', 5', 6-hexahydroxybenzophenone, 2,3,3', 4,4', 5'-hexahydroxybenzophenone; bis (2,4-dihydroxyphenyl) methane, bis ( 2,3,4-trihydroxyphenyl) methane, 2- (4-hydroxyphenyl) -2- (4'-(
  • the content of the photosensitizer in the resin composition for an alkali-developable resist has a good sensitivity and a desired pattern can be obtained. Therefore, the resin solid content (organic solvent is removed from the alkali-developable resist resin composition). It is preferably in the range of 15% by mass or more, more preferably 20% by mass or more, preferably 40% by mass or less, and more preferably 30% by mass or less with respect to the total mass of the components).
  • organic solvent in the resin composition for an alkali-developable resist examples include polar aproticities such as N-methyl-2-pyrrolidone, ⁇ -butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, and dimethylsulfoxide.
  • Solvents such as tetrahydrofuran, dioxane, propylene glycol monomethyl ether, propylene glycol monoethyl ether, ketones such as acetone, methyl ethyl ketone, diisobutyl ketone, ethyl acetate, butyl acetate, isobutyl acetate, propyl acetate, propylene glycol monomethyl ether acetate, Examples include esters such as 3-methyl-3-methoxybutyl acetate, alcohols such as ethyl lactate, methyl lactate, diacetone alcohol, and 3-methyl-3-methoxybutanol, and aromatic hydrocarbons such as toluene and xylene. Be done. These solvents may be used alone or in combination of two or more.
  • the fluidity of the alkali-developable resist resin composition is sufficiently increased, and a uniform coating film can be obtained by a coating method such as a spin coating method. Therefore, the solid content concentration in the alkali-developable resist resin composition is preferably 1% by mass or more, and preferably 65% by mass or less.
  • the resin composition for an alkali-developable resist includes the phenolic hydroxyl group-containing resin, the photosensitive agent, the organic solvent, and other resins other than the phenolic hydroxyl group-containing resin as long as the effects of the present invention are not impaired.
  • Various additives may be contained. Examples of various additives include fillers, pigments, surfactants such as leveling agents, adhesion improvers, dissolution accelerators and the like.
  • the other resin examples include phenolic resins other than the phenolic hydroxyl group-containing resin; hydroxy such as p-hydroxystyrene and p- (1,1,1,3,3,3-hexafluoro-2-hydroxypropyl) styrene.
  • a homopolymer or copolymer of a group-containing styrene compound a resin obtained by modifying the hydroxyl group of the phenol resin or the polymer of the hydroxy group-containing styrene compound with an acid-degradable group such as a t-butoxycarbonyl group or a benzyloxycarbonyl group;
  • an acid-degradable group such as a t-butoxycarbonyl group or a benzyloxycarbonyl group
  • Examples thereof include homopolymers or copolymers of (meth) acrylic acid; alternating polymers of alicyclic polymerizable monomers such as norbornene compounds and tetracyclododecene compounds with maleic anhydride or maleimide.
  • phenolic resin other than the phenolic hydroxyl group-containing resin examples include phenol novolac resin, cresol novolak resin, naphthol novolak resin, co-condensed novolak resin using various phenolic compounds, and aromatic hydrocarbon formaldehyde resin-modified phenolic resin.
  • Dicyclopentadienephenol addition type resin Dicyclopentadienephenol addition type resin, phenol aralkyl resin (Zyroc resin), naphthol aralkyl resin, trimethylolmethane resin, tetraphenylol ethane resin, biphenyl-modified phenol resin (polyhydric phenol compound in which phenol nuclei are linked by bismethylene group) ), Biphenyl-modified naphthol resin (polyvalent naphthol compound in which a phenol nucleus is linked with a bismethylene group), aminotriazine-modified phenol resin (polyvalent phenol compound in which a phenol nucleus is linked with melamine, benzoguanamine, etc.) and an alkoxy group-containing aromatic ring.
  • phenolic resins such as modified novolak resins (polyhydric phenolic compounds in which a phenolic nucleus and an alkoxy group-containing aromatic ring are linked with formaldehy
  • cresol novolak resin and cresol and other phenolic compounds are used.
  • Phenol formaldehyde is preferred.
  • Cresol novolak resin or co-condensed novolak resin of cresol and other phenolic compounds specifically, one or more cresol and aldehyde compound selected from o-cresol, m-cresol and p-cresol is an essential reaction. It is a novolak resin obtained by using it as a raw material and appropriately using it in combination with other phenolic compounds.
  • the other resins may be used alone or in combination of two or more.
  • the content of the other resin in the resin composition for an alkali-developable resist is not particularly limited and may be arbitrarily set according to a desired application.
  • the proportion of the phenolic hydroxyl group-containing resin in the total resin components in the alkaline developable resist resin composition may be set to be 60% by mass or more, preferably 80% by mass or more.
  • the resin composition for an alkali-developable resist is uniformly obtained by stirring and mixing the phenolic hydroxyl group-containing resin, the photosensitive agent, the organic solvent, and various additives added as necessary by a usual method. It can be prepared by making a liquid.
  • the resin composition for an alkali-developable resist when a solid material such as a filler or a pigment is blended in the resin composition for an alkali-developable resist, it is preferable to disperse and mix using a disperser such as a dissolver, a homogenizer, and a 3-roll mill. Further, in order to remove coarse particles and impurities, the composition can be filtered using a mesh filter, a membrane filter or the like.
  • a disperser such as a dissolver, a homogenizer, and a 3-roll mill.
  • the composition can be filtered using a mesh filter, a membrane filter or the like.
  • the coating film obtained by curing the resin composition for an alkali-developable resist is exposed through a mask, so that the coating film undergoes a structural change in the exposed portion and is soluble in an alkaline developer. Is promoted.
  • the non-exposed portion retains low solubility in an alkaline developer, this difference in solubility enables patterning by alkaline development and can be used as a resist film.
  • Examples of the light source for exposing the coating film include infrared light, visible light, ultraviolet light, far ultraviolet light, X-rays, and electron beams.
  • ultraviolet light is preferable, and g-line (wavelength 436 nm) and i-line (wavelength 365 nm) of a high-pressure mercury lamp are preferable.
  • alkaline developer used for post-exposure development examples include inorganic alkaline substances such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, and aqueous ammonia; ethylamine, n-propylamine, and the like.
  • Secondary amines such as diethylamine and di-n-butylamine; tertiary amines such as triethylamine and methyldiethylamine; alcohol amines such as dimethylethanolamine and triethanolamine; tetramethylammonium hydroxide and tetraethylammonium hydroxy A quaternary ammonium salt such as de.;
  • An alkaline aqueous solution such as a cyclic amine such as pyrrole or pihelidine can be used. Alcohol, a surfactant and the like can be appropriately added to these alkaline developers, if necessary.
  • the alkali concentration of the alkaline developer is usually preferably in the range of 2 to 5% by mass, and a 2.38% by mass tetramethylammonium hydroxide aqueous solution is generally used.
  • the resist curable resin composition of the present embodiment contains the phenolic hydroxyl group-containing resin, a curing agent, and an organic solvent. According to the resist curable resin composition of the present embodiment, it is possible to form an ultrafine wiring pattern by having low viscosity and low polarity.
  • the curing agent is not particularly limited as long as it is a compound capable of causing a curing reaction with the phenolic hydroxyl group-containing resin.
  • Examples thereof include azido compounds, compounds containing double bonds such as alkenyl ether groups, acid anhydrides, and oxazoline compounds.
  • the melamine compound examples include hexamethylol melamine, hexamethoxymethyl melamine, a compound in which 1 to 6 methylol groups of hexamethylol melamine are methoxymethylated, hexamethoxyethyl melamine, hexaacyloxymethyl melamine, and hexamethylol melamine.
  • Examples thereof include compounds in which 1 to 6 methylol groups are acyloxymethylated.
  • guanamine compound examples include tetramethylol guanamine, tetramethoxymethyl guanamine, tetramethoxymethylbenzoguanamine, and a compound in which 1 to 4 methylol groups of tetramethylol guanamine are methoxymethylated, tetramethoxyethyl guanamine, tetraacyloxyguanamine, and the like.
  • examples thereof include compounds in which 1 to 4 methylol groups of tetramethylolguanamine are acyloxymethylated.
  • glycol uryl compound examples include 1,3,4,6-tetrakis (methoxymethyl) glycol uryl, 1,3,4,6-tetrakis (butoxymethyl) glycol uryl, and 1,3,4,6-tetrakis. (Hydroxymethyl) glycol uryl and the like can be mentioned.
  • urea compound examples include 1,3-bis (hydroxymethyl) urea, 1,1,3,3-tetrakis (butoxymethyl) urea and 1,1,3,3-tetrakis (methoxymethyl) urea. Can be mentioned.
  • resole resin examples include phenol, alkylphenols such as cresol and xylenol, phenylphenols, resorcinol, biphenyl, bisphenols such as bisphenol A and bisphenol F, phenolic hydroxyl group-containing compounds such as naphthol and dihydroxynaphthalene, and aldehyde compounds.
  • alkylphenols such as cresol and xylenol
  • phenylphenols phenylphenols, resorcinol, biphenyl
  • bisphenols such as bisphenol A and bisphenol F
  • phenolic hydroxyl group-containing compounds such as naphthol and dihydroxynaphthalene
  • aldehyde compounds examples include a polymer obtained by reacting under alkaline catalytic conditions.
  • epoxy compound examples include diglycidyloxynaphthalene, phenol novolac type epoxy resin, cresol novolac type epoxy resin, naphthol novolac type epoxy resin, naphthol-phenol co-condensed novolak type epoxy resin, and naphthol-cresol co-condensed novolak type epoxy resin.
  • isocyanate compound examples include tolylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, cyclohexane diisocyanate and the like.
  • azide compound examples include 1,1'-biphenyl-4,4'-bis azide, 4,4'-methyridene bis azide, 4,4'-oxybis azide and the like.
  • Examples of the compound containing a double bond such as the alkenyl ether group include ethylene glycol divinyl ether, triethylene glycol divinyl ether, 1,2-propanediol divinyl ether, 1,4-butanediol divinyl ether, and tetramethylene glycol di.
  • the acid anhydride examples include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, 3,3', 4,4'-benzophenone tetracarboxylic acid dianhydride, biphenyltetracarboxylic acid dianhydride, 4 , 4'-(isopropylidene) diphthalic anhydride, 4,4'- (Hexafluoroisopropylidene) Aromatic acid anhydrides such as diphthalic anhydride; tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride dodecenylkhok Examples thereof include alicyclic carboxylic acid anhydrides such as acid and trialkyltetrahydrophthalic anhydride.
  • glycol uryl compounds examples include urea compounds, and resol resins, and glycol uryl compounds are more preferable, because a cured product having high curability and excellent heat resistance can be obtained.
  • the curing agent may be used alone or in combination of two or more.
  • the content of the curing agent in the resist-curable resin composition is preferably 0.5 to 50 parts by mass with respect to 100 parts by mass of the total resin components of the resist-curable resin composition.
  • organic solvent examples include alkylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, and ethylene glycol monobutyl ether propylene glycol monomethyl ether; diethylene glycol dimethyl ether, diethylene glycol diethyl ether, and diethylene glycol di.
  • alkylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, and ethylene glycol monobutyl ether propylene glycol monomethyl ether
  • diethylene glycol dimethyl ether diethylene glycol diethyl ether
  • diethylene glycol di diethylene glycol di.
  • Dialkylene glycol dialkyl ethers such as propyl ether and diethylene glycol dibutyl ether; alkylene glycol alkyl ether acetates such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate and propylene glycol monomethyl ether acetate; acetone, methyl ethyl ketone, cyclohexanone, methyl amyl ketone and the like.
  • Ketone compounds such as dioxane; methyl 2-hydroxypropionate, ethyl 2-hydroxypropionate, ethyl 2-hydroxy-2-methylpropionate, ethyl ethoxyacetate, ethyl oxyacetate, 2-hydroxy-3- Examples thereof include ester compounds such as methyl methylbutanoate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, ethyl formate, ethyl acetate, butyl acetate, methyl acetoacetate and ethyl acetoacetate.
  • the organic solvent may be used alone or in combination of two or more.
  • the content of the organic solvent in the resist-curable resin composition is not particularly limited, and for example, it may be set to an amount capable of dissolving all of the phenolic hydroxyl group-containing resin and the curing agent in the resist-curable resin composition.
  • the resist-curable resin composition may optionally contain other components as long as the effects of the present invention are not impaired.
  • the other components include other phenolic resins other than the phenolic hydroxyl group-containing resin, curing accelerators, surfactants, dyes, fillers, cross-linking agents, dissolution accelerators and the like.
  • the other phenol resin examples include an addition polymer resin of an alicyclic diene compound such as novolak resin and dicyclopentadiene and a phenol compound, and a modified novolak resin of a phenolic hydroxyl group-containing compound and an alkoxy group-containing aromatic compound.
  • examples thereof include phenol aralkyl resin (Zyrocyl resin), naphthol aralkyl resin, trimethylolmethane resin, tetraphenylol ethane resin, biphenyl-modified phenol resin, biphenyl-modified naphthol resin, aminotriazine-modified phenol resin, vinyl polymer and the like.
  • the novolak resin examples include alkylphenols such as phenol, cresol and xylenol, phenylphenols, resorcinol, biphenyl, bisphenols such as bisphenol A and bisphenol F, phenolic hydroxyl group-containing compounds such as naphthol and dihydroxynaphthalene, and aldehyde compounds.
  • alkylphenols such as phenol, cresol and xylenol
  • phenylphenols phenylphenols, resorcinol, biphenyl
  • bisphenols such as bisphenol A and bisphenol F
  • phenolic hydroxyl group-containing compounds such as naphthol and dihydroxynaphthalene
  • aldehyde compounds examples include a polymer obtained by reacting with acid-catalyzed conditions.
  • vinyl polymer examples include polyhydroxystyrene, polystyrene, polyvinylnaphthalene, polyvinylanthracene, polyvinylcarbazole, polyindene, polyacenaftylene, polynorbornene, polycyclodecene, polytetracyclododecene, and polynortricyclene.
  • vinyl compounds such as poly (meth) acrylate, and copolymers thereof.
  • the other resins may be used alone or in combination of two or more.
  • the content of the other resin in the resist curable resin composition is not particularly limited and may be arbitrarily set according to a desired application.
  • the amount of the other resin is 0.5 to 100 parts by mass with respect to 100 parts by mass of the phenolic hydroxyl group-containing resin contained in the resist-curable resin composition.
  • the curing accelerator examples include acetic acid, oxalic acid, sulfuric acid, hydrochloric acid, phenol sulfonic acid, paratoluene sulfonic acid, zinc acetate, manganese acetate, photoacid generator and the like.
  • the curing accelerator may be used alone or in combination of two or more.
  • the content of the curing accelerator in the resist curable resin composition is not particularly limited, and is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the resin solid content of the resist curable resin composition. ..
  • the resist-curable resin composition can be produced by blending each of the above components and mixing them using a stirrer or the like.
  • the resist-curable resin composition contains a filler or a pigment, it can be produced by dispersing or mixing using a disperser such as a dissolver, a homogenizer, or a three-roll mill.
  • the resist-curable resin composition can be used as a resist material, and a coating film obtained by curing the resist-curable resin composition can be used as a resist.
  • the resist-curable resin composition When used as a resist material, the resist-curable resin composition may be used as it is as a coating material, or the resist-curable resin composition may be applied onto a support film to remove a solvent. It may be used as a resist film.
  • the support film examples include synthetic resin films such as polyethylene, polypropylene, polycarbonate, and polyethylene terephthalate.
  • the support film may be a single-layer film or a laminated film composed of a plurality of films. Further, the surface of the support film may be corona-treated or coated with a release agent.
  • the resist curable resin composition may be applied by any method such as spin coating, roll coating, flow coating, dip coating, spray coating, and doctor blade coating.
  • the resist curable resin composition is used for a resist underlayer film
  • the following is an example of a method for forming a resist underlayer film.
  • the resist-curable resin composition is applied onto a silicon substrate, a silicon carbide substrate, a gallium nitride substrate, or the like to be subjected to photolithography, dried under a temperature condition of 100 to 200 ° C., and then further heated to 250 to 400 ° C.
  • a resist underlayer film is formed by a method such as heating and curing under temperature conditions.
  • a resist pattern is formed on the underlayer film by a normal photolithography operation, and a resist pattern is formed by a multilayer resist method by dry etching with a halogen-based plasma gas or the like.
  • the resist curable resin composition can also be used for applications such as a resist flat film and a resist antireflection film.
  • Standard sample The following monodisperse polystyrene (standard sample: monodisperse polystyrene) "A-500” manufactured by Tosoh Corporation "A-2500” manufactured by Tosoh Corporation "A-5000” manufactured by Tosoh Corporation "F-1” manufactured by Tosoh Corporation "F-2” manufactured by Tosoh Corporation “F-4" manufactured by Tosoh Corporation "F-10” manufactured by Tosoh Corporation "F-20” manufactured by Tosoh Corporation
  • FD-MS was measured using a double-focusing mass spectrometer AX505H (FD505H) manufactured by JEOL Ltd.
  • the obtained phenolic hydroxyl group-containing resin (A1) was solid, and the number average molecular weight (Mn) measured by GPC was 584, the weight average molecular weight (Mw) was 727, and the polydispersity (Mw / Mn) was 1. It was 25.
  • the GPC chart of the phenolic hydroxyl group-containing resin (A1) is shown in FIG. 1, the FD-MS chart is shown in FIG. 2, and the 13 C-NMR chart is shown in FIG. 3, respectively.
  • the formation of the following compounds was confirmed by the peaks of 332, 344, 374, 298, 516, 528, 700 in the FD-MS spectrum and 13 C-NMR.
  • the content of each component contained in the phenolic hydroxyl group-containing resin (A1) calculated from the area ratio of the GPC chart is 12% of the component corresponding to the phenolic hydroxyl group-containing compound (1) and the phenol.
  • the phenolic hydroxyl group-containing compound (2) equivalent component is 5%
  • the phenolic hydroxyl group-containing compound (3) equivalent component is 12%
  • the phenolic hydroxyl group-containing compound (4) equivalent component is 28%
  • the equivalent component was 29%.
  • Synthesis Example 2 Synthesis of phenolic hydroxyl group-containing resin (A2)
  • the 37 mass% formaldehyde aqueous solution in Synthesis Example 1 was changed to 203 parts by mass (2.5 mol)
  • the 48 mass% potassium hydroxide aqueous solution was changed to 292 parts by mass (2.50 mol)
  • the first sodium phosphate was changed to 300 parts by mass.
  • a phenolic hydroxyl group-containing resin (A2) was obtained in the same manner as in Synthesis Example 1.
  • the obtained phenolic hydroxyl group-containing resin (A2) was solid, and the number average molecular weight (Mn) measured by GPC was 550, the weight average molecular weight (Mw) was 687, and the polydispersity (Mw / Mn) was 1. It was 25.
  • the GPC chart of the phenolic hydroxyl group-containing resin (A2) is shown in FIG.
  • the content of each component contained in the phenolic hydroxyl group-containing resin (A2) calculated from the area ratio of the GPC chart is 10% of the component corresponding to the phenolic hydroxyl group-containing compound (1) and the phenolic hydroxyl group.
  • the compound (2) equivalent component is 5%
  • the phenolic hydroxyl group-containing compound (3) equivalent component is 10%
  • the phenolic hydroxyl group-containing compound (4) equivalent component is 27%
  • the equivalent component was 34%.
  • the obtained phenolic hydroxyl group-containing resin (A3) was solid, had a number average molecular weight (Mn) of 613, a weight average molecular weight (Mw) of 773, and a polydispersity (Mw / Mn of 1.26) measured by GPC.
  • the GPC chart of the phenolic hydroxyl group-containing resin (A3) is shown in FIG.
  • the content of each component contained in the phenolic hydroxyl group-containing resin (A3) calculated from the area ratio of the GPC chart is 11% of the component corresponding to the phenolic hydroxyl group-containing compound (1) and the phenolic hydroxyl group.
  • the compound (2) equivalent component is 5%
  • the phenolic hydroxyl group-containing compound (3) equivalent component is 11%
  • the phenolic hydroxyl group-containing compound (4) equivalent component is 31%
  • the phenolic hydroxyl group-containing compound (5) The equivalent component was 29%.
  • the molecular weight having a single bond determined from the ratio was 72%, and the oligomer containing a cardo structure was 25%.
  • the GPC chart of the phenolic hydroxyl group-containing resin (B1) is shown in FIG.
  • the component corresponding to the compound (1) was not observed, and the component corresponding to the compound (2) was not observed.
  • the compound (3) equivalent component was 2%
  • the high molecular weight component was 5%
  • the compound (4) equivalent component was 72%.
  • the phenolic hydroxyl group-containing resin obtained in each synthetic example and synthetic comparative example was dissolved in propylene glycol monomethyl ether acetate (PGMEA) to prepare a resin solution having a non-volatile content of 5% by mass.
  • PMEA propylene glycol monomethyl ether acetate
  • the obtained resin solution was applied onto a silicon wafer and spin-coated at 1500 rpm for 30 seconds using a spin coater. This was heated on a hot plate at 100 ° C. for 60 seconds and dried to obtain a coating film having a film thickness of 0.1 ⁇ m.
  • n value reffractive index
  • k value attenuation coefficient
  • the obtained resist underlayer film composition was applied onto a silicon wafer having a diameter of 5 inches using a spin coater, and then heated at 180 ° C. for 60 seconds in a hot plate having an oxygen concentration of 20% by volume. Further, it was heated at 350 ° C. for 120 seconds to obtain a silicon wafer with a coating film (resist underlayer film) having a film thickness of 0.3 ⁇ m.
  • CF 4 / Ar / O 2 CF 4: 40 mL / min, Ar: 20 mL / min, O 2 : 5 mL / min
  • Etching was performed under the conditions of pressure: 20 Pa, RF power: 200 W, processing time: 40 seconds, and temperature: 15 ° C.). The film thickness before and after the etching treatment at this time was measured, the etching rate was calculated, and the etching resistance was evaluated.
  • the evaluation criteria are as follows. A: When the etching rate is 150 nm / min or less B: When the etching rate exceeds 150 nm / min
  • a silicon wafer with a coating film (resist underlayer film) according to each Example and Comparative Example was obtained in the same manner as described above except that a silicon wafer having a diameter of 5 inches and a hole pattern having a diameter of 110 nm and a depth of 300 nm was formed.
  • the silicon wafer was divided on the hole pattern line, and the cross section was observed with a scanning electron microscope (manufactured by Hitachi High-Technologies Corporation: SU-3500) to evaluate the fillability.
  • the evaluation criteria are as follows. A: When the bottom of the hole is filled with the cured resin B: When the bottom of the hole is not filled with the cured resin, or when there is a gap in a part.
  • Alkaline solubility 32 parts by mass of the phenolic hydroxyl group-containing resin obtained in each synthesis example and synthesis comparative example was dissolved in 60 parts by mass of propylene glycol monomethyl ether acetate to prepare a solution.
  • the solution was applied onto a 5-inch silicon wafer with a spin coater to a thickness of about 1 ⁇ m, dried on a hot plate at 110 ° C. for 60 seconds, and further heat-treated at 140 ° C. for 60 seconds. rice field.
  • the obtained wafer with a coating film was immersed in an alkaline developer (2.38% aqueous solution of tetramethylammonium hydroxide) for 60 seconds, and then dried on a hot plate at 110 ° C. for 60 seconds.
  • the film thickness of each sample before and after immersion in the developing solution was measured, and the value obtained by dividing the difference by 60 was defined as alkali solubility [ADR ( ⁇ / s)].
  • Table 1 shows the results of each evaluation.
  • the phenolic hydroxyl group-containing resins (A1) to (A3) according to the examples of the present invention are excellent in solvent solubility and fill-in-the-blank property, and the phenolic hydroxyl group-containing resins (A1) to (A1) to ( Since the coating film obtained by curing A3) is excellent in optical properties and etching resistance, it can be seen that it has low viscosity and low polarity and can be used for forming an ultrafine wiring pattern.
  • the phenolic hydroxyl group-containing resin (B1) according to the comparative example of the present invention is inferior in solubility in a general-purpose resin in resist applications, and the problem of the present invention cannot be solved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Materials For Photolithography (AREA)

Abstract

有機溶剤への充分な溶解性を有し、低粘度・低極性を有することにより微細空間への浸潤性に優れ、超微細化された配線パターン形成に用いることができるフェノール性水酸基含有樹脂を提供する。具体的には、下記構造式(1)で表される化合物(1)及び下記構造式(1')で表される化合物(1')からなる群より選ばれる1種以上のフェノール性水酸基含有化合物(1)を含有することを特徴とするフェノール性水酸基含有樹脂。

Description

フェノール性水酸基含有樹脂、アルカリ現像性レジスト用樹脂組成物、及びレジスト硬化性樹脂組成物、並びにフェノール性水酸基含有樹脂の製造方法
 本発明は、フェノール性水酸基含有樹脂、アルカリ現像性レジスト用樹脂組成物、及びレジスト硬化性樹脂組成物、並びにフェノール性水酸基含有樹脂の製造方法に関する。
 近年、LSIの高集積化と高速度化に伴い、そのパターン加工は益々の微細化が求められ、ArFエキシマレーザー光(193nm)を用いたフォトリソグラフィーにおいては、プロセス材料の光学的特性の利用やプロセス機器の改良によって、光源の波長に由来する本質的な解像限界を凌駕するものとなっている。
 フォトレジストの分野ではより微細な配線パターンを形成するための方法が種々開発されており、そのうちの一つに多層レジスト法がある。多層レジスト法では、基板上にレジスト下層膜や反射防止膜などと呼ばれる層を1層乃至複数層形成した後、その上に通常のフォトリソグラフィーによるレジストパターンを形成し、次いで、ドライエッチングにより基板へ配線パターンを加工転写する。多層レジスト法の技術において重要な部材の一つが前記レジスト下層膜であり、該下層膜には低粘度、ドライエッチング耐性が高いこと、光反射性が低いことなどが要求される。また、レジスト下層膜は溶媒希釈の状態で製膜されることからレジスト下層膜用の樹脂材料は汎用有機溶剤に可溶である必要がある。
 また、近年の超微細化された配線パターン形成はダブルパターニングやマルチパターニングとよばれる複数回の露光・エッチングを繰り返す工程が多用されており、該下層膜には前プロセスで作製した微細なパターンを穴埋めしたうえで平滑な次工程作製面を形成する重要な役割も担っている。このため、下地材料に使用されるレジスト下層膜材料は材料塗布・乾燥後に微細空間に浸潤するために低粘度、低極性であることが求められる。
 また、旧来のレジスト下層膜用のフェノール水酸基含有化合物としてアントラセン骨格含有化合物が知られている(前記特許文献1)。
特開2010-285403号公報
 前記特許文献1に記載されているアントラセン骨格含有化合物は硬化塗膜における光反射率が低く反射防止膜としての特性は優れるが、汎用有機溶剤への溶解性は、現在の要求レベルを満たすものではなく、分子サイズと広い芳香族電子雲によるπ-π相互作用により微細空間への浸潤性が低い。
 本発明は、有機溶剤への充分な溶解性を有し、低粘度・低極性を有することにより微細空間への浸潤性に優れ、超微細化された配線パターン形成に用いることができるフェノール性水酸基含有樹脂を提供することを課題とする。
 また、本発明は、有機溶剤への充分な溶解性を有し、低粘度・低極性を有することにより微細空間への浸潤性に優れ、超微細化された配線パターン形成に用いることができるアルカリ現像性レジスト用樹脂組成物を提供することを課題とする。
 また、本発明は、有機溶剤への充分な溶解性を有し、低粘度・低極性を有することにより微細空間への浸潤性に優れ、超微細化された配線パターン形成に用いることができるレジスト硬化性樹脂組成物を提供することを課題とする。
 また、本発明は、有機溶剤への充分な溶解性を有し、低粘度・低極性を有することにより微細空間への浸潤性に優れ、超微細化された配線パターン形成に用いることができるフェノール性水酸基含有樹脂の製造方法を提供することを課題とする。
 本発明者らは、上記課題を解決するため、鋭意検討した結果、特定の構造を有する化合物を含有するフェノール性水酸基含有樹脂が有機溶剤への充分な溶解性を有し、低粘度・低極性を有することにより微細空間への浸潤性に優れ、超微細化された配線パターン形成に用いることができることを見出し、本発明を完成するに至った。
 本発明は、下記構造式(1)で表される化合物(1)及び下記構造式(1’)で表される化合物(1’)からなる群より選ばれる1種以上のフェノール性水酸基含有化合物(1)を含有することを特徴とするフェノール性水酸基含有樹脂である。
Figure JPOXMLDOC01-appb-C000005
[式中Rは、それぞれ独立して、水素原子、脂肪族炭化水素基、アルコキシ基、又はハロゲン原子であり、nは、それぞれ独立して、0~2の整数である。]
Figure JPOXMLDOC01-appb-C000006
[式中Rは、それぞれ独立して、水素原子、脂肪族炭化水素基、アルコキシ基、又はハロゲン原子であり、nは、それぞれ独立して、0~2の整数である。]
 また、本発明は、前記フェノール性水酸基含有樹脂、
 感光剤、及び
 有機溶剤を含有する、アルカリ現像性レジスト用樹脂組成物である。
 また、本発明は、前記フェノール性水酸基含有樹脂、
 硬化剤、及び
 有機溶剤を含有する、レジスト硬化性樹脂組成物である。
 また、本発明は、2,7-ジヒドロキシナフタレン類とホルムアルデヒドとを、2,7-ジヒドロキシナフタレン類に対して、モル基準で1.1倍以上から10倍以下までの範囲のホルムアルデヒド、及び2,7-ジヒドロキシナフタレン類に対して、モル基準で1.1倍以上から10倍以下までの範囲のアルカリ触媒の存在下で反応させる工程を有する、フェノール性水酸基含有樹脂の製造方法である。
 本発明によれば、有機溶剤への充分な溶解性を有し、低粘度・低極性を有することにより微細空間への浸潤性に優れ、超微細化された配線パターン形成に用いることができるフェノール性水酸基含有樹脂を提供することができる。
 また、本発明によれば、有機溶剤への充分な溶解性を有し、低粘度・低極性を有することにより微細空間への浸潤性に優れ、超微細化された配線パターン形成に用いることができるアルカリ現像性レジスト用樹脂組成物を提供することができる。
 また、本発明によれば、有機溶剤への充分な溶解性を有し、低粘度・低極性を有することにより微細空間への浸潤性に優れ、超微細化された配線パターン形成に用いることができるレジスト硬化性樹脂組成物を提供することができる。
 また、本発明によれば、有機溶剤への充分な溶解性を有し、低粘度・低極性を有することにより微細空間への浸潤性に優れ、超微細化された配線パターン形成に用いることができるフェノール性水酸基含有樹脂の製造方法を提供することができる。
合成例1において得られたフェノール性水酸基含有樹脂のGPCチャート 合成例1において得られたフェノール性水酸基含有樹脂のFD-MSチャート 合成例1において得られたフェノール性水酸基含有樹脂の13C-NMRチャート 合成例2において得られたフェノール性水酸基含有樹脂のGPCチャート 合成例3において得られたフェノール性水酸基含有樹脂のGPCチャート 比較合成例1において得られたフェノール性水酸基含有樹脂のGPCチャート
 本発明の一実施形態において、フェノール性水酸基含有樹脂は、下記構造式(1)で表される化合物(1)及び下記構造式(1’)で表される化合物(1’)からなる群より選ばれる1種以上のフェノール性水酸基含有化合物(1)を含有する。
Figure JPOXMLDOC01-appb-C000007
[式中Rは、それぞれ独立して、水素原子、脂肪族炭化水素基、アルコキシ基、又はハロゲン原子であり、nは、それぞれ独立して、0~2の整数である。]
Figure JPOXMLDOC01-appb-C000008
[式中Rは、それぞれ独立して、水素原子、脂肪族炭化水素基、アルコキシ基、又はハロゲン原子であり、nは、それぞれ独立して、0~2の整数である。]
 前記フェノール性水酸基含有樹脂は、有機溶剤への充分な溶解性を有し、低粘度・低極性を有することにより微細空間への浸潤性に優れ、超微細化された配線パターン形成に用いることができる。
 前記構造式(1)及び前記構造式(1’)において、Rは、それぞれ独立して、水素原子、脂肪族炭化水素基、アルコキシ基、又はハロゲン原子である。また、nはそれぞれ独立して0~2の整数である。前記脂肪族炭化水素基は、直鎖型及び分岐型のいずれでもよく、構造中に不飽和結合を有していてもよい。前記脂肪族炭化水素基の例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、イソブチル基等が挙げられる。前記アルコキシ基の例としては、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基等が挙げられる。前記ハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子等が挙げられる。中でも、微細空間への浸潤性により優れるフェノール性水酸基含有樹脂となることから、好ましくは水素原子である。
 前記フェノール性水酸基含有樹脂中のフェノール性水酸基含有化合物(1)の含有量は、有機溶剤への溶解性や、微細空間への浸潤性の観点から、GPCチャート図の面積比から算出される値で、好ましくは8%以上、より好ましくは10%以上から、好ましくは30%以下、より好ましくは25%以下までの範囲である。
 前記フェノール性水酸基含有樹脂は、本発明の効果を阻害しない範囲で、前記フェノール性水酸基含有化合物(1)の他、これ以外のその他のフェノール性水酸基含有化合物を含有していてもよい。
 前記フェノール性水酸基含有樹脂が含有し得るその他のフェノール性水酸基含有化合物の例としては、例えば、下記構造式(2)で表される化合物(2)及び下記構造式(2’)で表される化合物(2’)からなる群より選ばれる1種以上のフェノール性水酸基含有化合物(2)や、下記構造式(3)で表される化合物(3)及び下記構造式(3’)で表される化合物(3’)からなる群より選ばれる1種以上のフェノール性水酸基含有化合物
(3)等が挙げられる。
Figure JPOXMLDOC01-appb-C000009
[式中Rは、それぞれ独立して、水素原子、脂肪族炭化水素基、アルコキシ基、又はハロゲン原子であり、nは、それぞれ独立して、0~2の整数である。]
Figure JPOXMLDOC01-appb-C000010
[式中Rは、それぞれ独立して、水素原子、脂肪族炭化水素基、アルコキシ基、又はハロゲン原子であり、nは、それぞれ独立して、0~2の整数である。]
Figure JPOXMLDOC01-appb-C000011
[式中Rは、それぞれ独立して、水素原子、脂肪族炭化水素基、アルコキシ基、又はハロゲン原子であり、nは、それぞれ独立して、0~2の整数である。]
Figure JPOXMLDOC01-appb-C000012
[式中Rは、それぞれ独立して、水素原子、脂肪族炭化水素基、アルコキシ基、又はハロゲン原子であり、nは、それぞれ独立して、0~2の整数である。]
 前記フェノール性水酸基含有化合物(2)及び前記フェノール性水酸基含有化合物(3)は、前記フェノール性水酸基含有化合物(1)と同様に、下記構造式(4)で表される構造部位を有することから、有機溶剤への溶解性や、微細空間への浸潤性に優れる特徴を有する。
Figure JPOXMLDOC01-appb-C000013
[式中Rは、それぞれ独立して、水素原子、脂肪族炭化水素基、アルコキシ基、又はハロゲン原子であり、nは、それぞれ独立して、0~2の整数である。]
 前記構造式(2)、前記構造式(2’)、前記構造式(3)、前記構造式(3’)、及び前記構造式(4)において、Rは、それぞれ独立して、水素原子、脂肪族炭化水素基、アルコキシ基、又はハロゲン原子である。また、nはそれぞれ独立して0~2の整数である。前記脂肪族炭化水素基は、直鎖型及び分岐型のいずれでもよく、構造中に不飽和結合を有していてもよい。前記脂肪族炭化水素基の例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、イソブチル基等が挙げられる。前記アルコキシ基は、例えば、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基等が挙げられる。前記ハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子等が挙げられる。中でも、微細空間への浸潤性により優れるフェノール性水酸基含有樹脂となることから、好ましくは水素原子である。
 前記フェノール性水酸基含有樹脂中の前記フェノール性水酸基含有化合物(2)の含有量は有機溶剤への溶解性や、微細空間への浸潤性の観点から、GPCチャート図の面積比から算出される値で、好ましくは1%以上、より好ましくは3%以上から、好ましくは15%以下、より好ましくは10%以下までの範囲である。
 更に、前記フェノール性水酸基含有樹脂中の前記フェノール性水酸基含有化合物(1)及び前記フェノール性水酸基含有化合物(2)の合計の含有量は、有機溶剤への溶解性や、微細空間への浸潤性の観点から、GPCチャート図の面積比から算出される値で、好ましくは9%以上、より好ましくは10%以上から、好ましくは45%以下、より好ましくは35%以下までの範囲である。
 前記フェノール性水酸基含有樹脂中の前記フェノール性水酸基含有化合物(3)の含有量は、有機溶剤への溶解性や、微細空間への浸潤性の観点から、GPCチャート図の面積比から算出される値で、好ましくは8%以上、より好ましくは10%以上から、好ましくは25%以下、より好ましくは20%以下までの範囲である。
 前記フェノール性水酸基含有樹脂は、更に、下記構造式(5)で表されるような、前記構造式(4)で表される構造部位を有し、かつ、前記フェノール性水酸基含有化合物(1)よりも高分子量なフェノール性水酸基含有化合物(4)を含有していてもよい。
Figure JPOXMLDOC01-appb-C000014
[式中Rは、それぞれ独立して、水素原子、脂肪族炭化水素基、アルコキシ基、又はハロゲン原子であり、nは、それぞれ独立して、0~2の整数である。mは1以上の整数である。]
 前記フェノール性水酸基含有樹脂中の前記フェノール性水酸基含有化合物(4)の含有量は、有機溶剤への溶解性や、微細空間への浸潤性の観点から、GPCチャート図の面積比から算出される値で、好ましくは15%以上、より好ましくは20%以上から、好ましくは40%以下、より好ましくは35%以下までの範囲である。
 前記フェノール性水酸基含有樹脂は、どのように製造されたものであってもよく、その製法は特に限定されないが、一例として、2,7-ジヒドロキシナフタレン類とホルムアルデヒドとを、2,7-ジヒドロキシナフタレン類に対して、モル基準で1.1倍以上から10倍以下までの範囲のホルムアルデヒド、及び2,7-ジヒドロキシナフタレン類に対して、モル基準で1.1倍以上から10倍以下までの範囲のアルカリ触媒の存在下で反応させて得られるものが挙げられる。以下、前記フェノール性水酸基含有樹脂の製造方法として、2,7-ジヒドロキシナフタレン類とホルムアルデヒドとを、2,7-ジヒドロキシナフタレン類に対して、モル基準で1.1倍以上から10倍以下までの範囲のホルムアルデヒド、及び2,7-ジヒドロキシナフタレン類に対して、モル基準で1.1倍以上から10倍以下までの範囲のアルカリ触媒の存在下で反応させる反応工程について説明する。
 前記2,7-ジヒドロキシナフタレン類は、2,7-ジヒドロキシナフタレンの他、2,7-ジヒドロキシナフタレンの芳香環上に一つないし複数の置換基を有する各化合物等が挙げられる。前記置換基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、イソブチル基等の炭化水素基;メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基等のアルコキシ基;フッ素原子、塩素原子、臭素原子等のハロゲン原子等が挙げられる。2,7-ジヒドロキシナフタレン類の具体例としては、例えば、2,7-ジヒドロキシナフタレン、メチル-2,7-ジヒドロキシナフタレン、エチル-2,7-ジヒドロキシナフタレン、t-ブチル-2,7-ジヒドロキシナフタレン、メトキシ-2,7-ジヒドロキシナフタレン、エトキシ-2,7-ジヒドロキシナフタレン等が挙げられる。中でも、微細空間への浸潤性により優れるフェノール性水酸基含有樹脂となることから、2,7-ジヒドロキシナフタレンが好ましい。
 前記反応工程で用いられるホルムアルデヒドは、水溶液の状態であるホルマリン溶液でも、固形状態であるパラホルムアルデヒドでもよい。
 前記反応工程で用いられる前記アルカリ触媒は、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、金属ナトリウム、金属リチウム、水素化ナトリウム、炭酸ナトリウム、炭酸カリウム等の無機アルカリ類などが挙げられる。
 前記反応工程における方法としては、具体的には、前記2,7-ジヒドロキシナフタレン類とホルムアルデヒドとを実質的に同時に仕込み、適当な触媒の存在下で加熱撹拌して反応を行う方法、また、前記2,7-ジヒドロキシナフタレン類と適当な触媒の混合液に、ホルムアルデヒドを連続的乃至断続的に系内に加えることによって、反応を行う方法などが挙げられる。尚、ここで実質的に同時とは、加熱によって反応が加速されるまでの間に全ての原料を仕込むことを意味する。
 前記反応工程において、前記フェノール性水酸基含有化合物(1)がより効率的に生成することから、前記2,7-ジヒドロキシナフタレン類とホルムアルデヒドとを、2,7-ジヒドロキシナフタレン類に対して、モル基準で1.1倍以上、好ましくは1.2倍以上から、10倍以下、好ましくは8倍以下までの範囲のホルムアルデヒドの存在下で反応させる。
 前記反応工程において、前記フェノール性水酸基含有化合物(1)がより効率的に生成することから、前記2,7-ジヒドロキシナフタレン類とホルムアルデヒドとを、2,7-ジヒドロキシナフタレン類に対して、モル基準で1.1倍以上、好ましくは1.2倍以上から、10倍以下、好ましくは8倍以下までの範囲の前記アルカリ触媒の存在下で反応させる。
 前記反応工程では、必要に応じて有機溶剤を使用することができる。使用できる有機溶剤は、具体的には、メチルセロソルブ、イソプロピルアルコール、エチルセロソルブ、トルエン、キシレン、メチルイソブチルケトンなどが挙げられるがこれらに限定されるものではない。有機溶剤の使用量としては仕込み原料の総質量に対して通常0.1倍量~5倍量の範囲であり、特に0.3倍量~2.5倍量の範囲であることが、効率的に前記化合物
(1)が得られる点から好ましい。また反応温度としては20~150℃の範囲であることが好ましく、特に60~100℃の範囲であることがより好ましい。また反応時間は、特に制限されないが、通常、1~10時間の範囲である。
 反応終了後、反応混合物のpH値が4~7になるまで中和あるいは水洗処理を行う。中和処理や水洗処理は常法にしたがって行えばよい。例えば前記アルカリ触媒を用いた場合は酢酸、燐酸、燐酸ナトリウム等の酸性物質を中和剤として用いることができる。中和あるいは水洗処理を行った後、減圧加熱下で前記有機溶剤を留去し生成物の濃縮を行い、カルボニル基含有フェノール化合物を得ることが出来る。また、反応終了後の処理操作のなかに、精密濾過工程を導入することが無機塩や異物類を精製除去することができる点から、より好ましい。
 このような反応工程で前記フェノール性水酸基含有樹脂を製造した場合、前記フェノール性水酸基含有化合物(1)、前記フェノール性水酸基含有化合物(2)、前記フェノール性水酸基含有化合物(3)、及び前記フェノール性水酸基含有化合物(4)の他、下記構造式(6)で表される前記フェノール性水酸基含有化合物(5)が生成することがある。この場合、前記フェノール性水酸基含有樹脂中の前記フェノール性水酸基含有化合物(5)の含有量は、有機溶剤への溶解性や、微細空間への浸潤性の観点から、GPCチャート図の面積比から算出される値で、好ましくは40%以下、より好ましくは35%以下までの範囲である。
 更に、前記フェノール性水酸基含有樹脂中の前記フェノール性水酸基含有化合物(3)及び前記フェノール性水酸基含有化合物(5)の合計の含有量は、有機溶剤への溶解性や、微細空間への浸潤性の観点から、GPCチャート図の面積比から算出される値で、好ましくは8%以上、より好ましくは10%以上から、好ましくは55%以下、より好ましくは45%以下までの範囲である。
Figure JPOXMLDOC01-appb-C000015
[式中Rは、それぞれ独立して、水素原子、脂肪族炭化水素基、アルコキシ基、又はハロゲン原子であり、nは、それぞれ独立して、0~2の整数である。]
 前記構造式(6)において、Rは、それぞれ独立して、水素原子、脂肪族炭化水素基、アルコキシ基、又はハロゲン原子である。また、nはそれぞれ独立して0~2の整数である。前記脂肪族炭化水素基は、直鎖型及び分岐型のいずれでもよく、構造中に不飽和結合を有していてもよい。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、イソブチル基等が挙げられる。前記アルコキシ基は、例えば、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基等が挙げられる。前記ハロゲン原子は、フッ素原子、塩素原子、臭素原子等が挙げられる。中でも、微細空間への浸潤性により優れるフェノール性水酸基含有樹脂となることから、好ましくは水素原子である。
 前記フェノール性水酸基含有樹脂の数平均分子量(Mn)は、500~1000の範囲が好ましい。重量平均分子量(Mw)は、550~1500の範囲が好ましい。また、多分散度(Mw/Mn)は1.1~3の範囲が好ましい。本明細書において、前記フェノール性水酸基含有樹脂の数平均分子量(Mn)及び重量平均分子量(Mw)は、ゲル浸透クロマトグラフィー(以下、「GPC」と略記する。)を用いて、実施例に記載の測定条件で測定したものである。
 前記フェノール性水酸基含有樹脂は、フォトレジスト材料、下層膜、層間絶縁膜、液晶配向膜、ブラックマトリックス、ホール形成用レジスト膜等の材料として用いることができる。
 本実施形態のアルカリ現像性レジスト用樹脂組成物は、前記フェノール性水酸基含有樹脂、感光剤、及び有機溶剤を含有する。前記アルカリ現像性レジスト用樹脂組成物によれば、低粘度・低極性を有することにより、超微細化された配線パターンを形成することができる。
 前記感光剤は、例えば、キノンジアジド基を有する化合物である。前記キノンジアジド基を有する化合物の具体例としては、芳香族(ポリ)ヒドロキシ化合物とキノンジアジド基を有するスルホン酸化合物とのエステル化合物又はアミド化物が挙げられる。尚、前記エステル化合物は部分エステル化合物も含む意味であり、前記アミド化物は部分アミド化物を含む意味である。
 前記キノンジアジド基を有するスルホン酸化合物の具体例としては、ナフトキノン-1,2-ジアジド-5-スルホン酸、ナフトキノン-1,2-ジアジド-4-スルホン酸、オルトアントラキノンジアジドスルホン酸、1,2-ナフトキノン-2-ジアジド-5-スルホン酸等が挙げられる。前記キノンジアジド基を有するスルホン酸化合物の具体例は、ハロゲンがさらに置換したハロゲン化物も使用できる。
 前記芳香族(ポリ)ヒドロキシ化合物としては、例えば、2,3,4-トリヒドロキシベンゾフェノン、2,4,4’-トリヒドロキシベンゾフェノン、2,4,6-トリヒドロキシベンゾフェノン、2,3,6-トリヒドロキシベンゾフェノン、2,3,4-トリヒドロキシ-2’-メチルベンゾフェノン、2,3,4,4’-テトラヒドロキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,3’,4,4’,6-ペンタヒドロキシベンゾフェノン、2,2’,3,4,4’-ペンタヒドロキシベンゾフェノン、2,2’,3,4,5-ペンタヒドロキシベンゾフェノン、2,3’,4,4’,5’,6-ヘキサヒドロキシベンゾフェノン、2,3,3’,4,4’,5’-ヘキサヒドロキシベンゾフェノン等のポリヒドロキシベンゾフェノン化合物;ビス(2,4-ジヒドロキシフェニル)メタン、ビス(2,3,4-トリヒドロキシフェニル)メタン、2-(4-ヒドロキシフェニル)-2-(4’-ヒドロキシフェニル)プロパン、2-(2,4-ジヒドロキシフェニル)-2-(2’,4’-ジヒドロキシフェニル)プロパン、2-(2,3,4-トリヒドロキシフェニル)-2-(2’,3’,4’-トリヒドロキシフェニル)プロパン、4,4’-{1-[4-〔2-(4-ヒドロキシフェニル)-2-プロピル〕フェニル]エチリデン}ビスフェノール、4,4’-[1-[4-[1-(4-ヒドロキシフェニル)-1メチルエチル]フェニル]エチリデン]ビスフェノール、3,3’-ジメチル-{1-[4-〔2-(3-メチル-4-ヒドロキシフェニル)-2-プロピル〕フェニル]エチリデン}ビスフェノール等のビス[(ポリ)ヒドロキシフェニル]アルカン化合物;トリス(4-ヒドロキシフェニル)メタン、ビス(4-ヒドロキシ-3、5-ジメチルフェニル)-4-ヒドロキシフェニルメタン、ビス(4-ヒドロキシ-2,5-ジメチルフェニル)-4-ヒドロキシフェニルメタン、ビス(4-ヒドロキシ-3,5-ジメチルフェニル)-2-ヒドロキシフェニルメタン、ビス(4-ヒドロキシ-2,5-ジメチルフェニル)-2-ヒドロキシフェニルメタン、ビス(4-ヒドロキシ-2,5-ジメチルフェニル)-3,4-ジヒドロキシフェニルメタン、ビス(4-ヒドロキシ-3,5-ジメチルフェニル)-3,4-ジヒドロキシフェニルメタン等のトリス(ヒドロキシフェニル)メタン化合物又はそのメチル置換体;ビス(3-シクロヘキシル-4-ヒドロキシフェニル)-3-ヒドロキシフェニルメタン,ビス(3-シクロヘキシル-4-ヒドロキシフェニル)-2-ヒドロキシフェニルメタン,ビス(3-シクロヘキシル-4-ヒドロキシフェニル)-4-ヒドロキシフェニルメタン,ビス(5-シクロヘキシル-4-ヒドロキシ-2-メチルフェニル)-2-ヒドロキシフェニルメタン,ビス(5-シクロヘキシル-4-ヒドロキシ-2-メチルフェニル)-3-ヒドロキシフェニルメタン、ビス(5-シクロヘキシル-4-ヒドロキシ-2-メチルフェニル)-4-ヒドロキシフェニルメタン、ビス(3-シクロヘキシル-2-ヒドロキシフェニル)-3-ヒドロキシフェニルメタン、ビス(5-シクロヘキシル-4-ヒドロキシ-3-メチルフェニル)-4-ヒドロキシフェニルメタン、ビス(5-シクロヘキシル-4-ヒドロキシ-3-メチルフェニル)-3-ヒドロキシフェニルメタン、ビス(5-シクロヘキシル-4-ヒドロキシ-3-メチルフェニル)-2-ヒドロキシフェニルメタン、ビス
(3-シクロヘキシル-2-ヒドロキシフェニル)-4-ヒドロキシフェニルメタン、ビス(3-シクロヘキシル-2-ヒドロキシフェニル)-2-ヒドロキシフェニルメタン、ビス(5-シクロヘキシル-2-ヒドロキシ-4-メチルフェニル)-2-ヒドロキシフェニルメタン、ビス(5-シクロヘキシル-2-ヒドロキシ-4-メチルフェニル)-4-ヒドロキシフェニルメタン等の、ビス(シクロヘキシルヒドロキシフェニル)(ヒドロキシフェニル)メタン化合物又はそのメチル置換体等が挙げられる。これらは1種単独で用いてもよく、2種以上を併用してもよい。
 前記アルカリ現像性レジスト用樹脂組成物における前記感光剤の含有量は、良好な感度が得られ、所望のパターンが得られることから樹脂固形分(アルカリ現像性レジスト樹脂組成物から有機溶剤を除いた成分)の総質量に対し、好ましくは15質量%以上、より好ましくは20質量%以上から、好ましくは40質量%以下、より好ましくは30質量%以下までの範囲である。
 前記アルカリ現像性レジスト用樹脂組成物における有機溶剤としては、N-メチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシドなどの極性の非プロトン性溶媒、テトラヒドロフラン、ジオキサン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテルなどのエーテル類、アセトン、メチルエチルケトン、ジイソブチルケトンなどのケトン類、酢酸エチル、酢酸ブチル、酢酸イソブチル、酢酸プロピル、プロピレングリコールモノメチルエーテルアセテート、3-メチル-3-メトキシブチルアセテートなどのエステル類、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メチル-3-メトキシブタノールなどのアルコール類、トルエン、キシレンなどの芳香族炭化水素類等が挙げられる。これらの溶剤は1種類のみで用いることも2種以上併用することもできる。
 前記アルカリ現像性レジスト用樹脂組成物における有機溶剤の含有量は、当該アルカリ現像性レジスト用樹脂組成物の流動性が十分に高まり、スピンコート法等の塗布法により均一な塗膜を得られることから、当該アルカリ現像性レジスト用樹脂組成物中の固形分濃度が1質量%以上であることが好ましく、65質量%以下であることが好ましい。
 前記アルカリ現像性レジスト用樹脂組成物は、前記フェノール性水酸基含有樹脂、前記感光剤、及び前記有機溶剤の他、本発明の効果を阻害しない範囲で前記フェノール性水酸基含有樹脂以外のその他の樹脂や、各種添加剤を含有していても構わない。各種添加剤としては、充填材、顔料、レベリング剤等の界面活性剤、密着性向上剤、溶解促進剤などが挙げられる。
 前記その他の樹脂としては、前記フェノール性水酸基含有樹脂以外のフェノール樹脂;p-ヒドロキシスチレン、p-(1,1,1,3,3,3-ヘキサフルオロ-2-ヒドロキシプロピル)スチレン等のヒドロキシ基含有スチレン化合物の単独重合体あるいは共重合体;前記フェノール樹脂又は前記ヒドロキシ基含有スチレン化合物の重合体の水酸基をt-ブトキシカルボニル基、ベンジルオキシカルボニル基等の酸分解性基で変性した樹脂;(メタ)アクリル酸の単独重合体あるいは共重合体;ノルボルネン化合物、テトラシクロドデセン化合物等の脂環式重合性単量体と無水マレイン酸もしくはマレイミドとの交互重合体等が挙げられる。
 前記フェノール性水酸基含有樹脂以外のフェノール樹脂の具体例としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールノボラック樹脂、種々のフェノール性化合物を用いた共縮ノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂
(ザイロック樹脂)、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミン、ベンゾグアナミン等でフェノール核が連結された多価フェノール化合物)やアルコキシ基含有芳香環変性ノボラック樹脂(ホルムアルデヒドでフェノール核及びアルコキシ基含有芳香環が連結された多価フェノール化合物)等のフェノール樹脂が挙げられる。
 前記フェノール性水酸基含有樹脂以外のフェノール樹脂の具体例のうち、現像性、耐熱性及び流動性のバランスに優れる感光性組成物となることから、クレゾールノボラック樹脂、及びクレゾールと他のフェノール性化合物との共縮ノボラック樹脂が好ましい。クレゾールノボラック樹脂又はクレゾールと他のフェノール性化合物との共縮ノボラック樹脂は、具体的には、o-クレゾール、m-クレゾール及びp-クレゾールから選択される1以上のクレゾールとアルデヒド化合物を必須の反応原料とし、適宜その他のフェノール性化合物を併用して得られるノボラック樹脂である。
 前記その他の樹脂は、1種単独で用いてもよく、2種以上を併用してもよい。
 前記アルカリ現像性レジスト用樹脂組成物中の前記その他の樹脂の含有量は、特に限定されず、所望の用途により任意に設定するとよい。例えば、前記アルカリ現像性レジスト用樹脂組成物中の樹脂成分の合計における前記フェノール性水酸基含有樹脂の割合が60質量%以上となるように設定するとよく、80質量%以上とすると好ましい。
 前記アルカリ現像性レジスト用樹脂組成物は、前記フェノール性水酸基含有樹脂、前記感光剤、及び前記有機溶剤と、さらに必要に応じて加えた各種添加剤とを通常の方法で、撹拌混合して均一な液とすることで調製できる。
 また、前記アルカリ現像性レジスト用樹脂組成物に充填材、顔料等の固形のものを配合する際には、ディゾルバー、ホモジナイザー、3本ロールミル等の分散装置を用いて分散、混合させることが好ましい。また、粗粒や不純物を除去するため、メッシュフィルター、メンブレンフィルター等を用いて該組成物をろ過することもできる。
 前記アルカリ現像性レジスト用樹脂組成物を硬化してなる塗膜は、マスクを介して露光を行うことで、露光部においては前記塗膜に構造変化が生じてアルカリ現像液に対しての溶解性が促進される。一方、非露光部においてはアルカリ現像液に対する低い溶解性を保持しているため、この溶解性の差により、アルカリ現像によりパターニングが可能となりレジスト膜として用いることができる。
 前記塗膜を露光する光源としては、例えば、赤外光、可視光、紫外光、遠紫外光、X線、電子線等が挙げられる。これらの光源の中でも紫外光が好ましく、高圧水銀灯のg線(波長436nm)、i線(波長365nm)が好適である。
 また、露光後の現像に用いるアルカリ現像液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水等の無機アルカリ性物質;エチルアミン、n-プロピルアミン等の1級アミン;ジエチルアミン、ジ-n-ブチルアミン等の2級アミン;トリエチルアミン、メチルジエチルアミン等の3級アミン類;ジメチルエタノールアミン、トリエタノールアミン等のアルコールアミン;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド等の4級アンモニウム塩;ピロール、ピヘリジン等の環状アミンなどのアルカリ性水溶液を使用することができる。これらのアルカリ現像液には、必要に応じてアルコール、界面活性剤等を適宜添加して用いることもできる。アルカリ現像液のアルカリ濃度は、通常2~5質量%の範囲が好ましく、2.38質量%テトラメチルアンモニウムヒドロキシド水溶液が一般的に用いられる。
 本実施形態のレジスト硬化性樹脂組成物は、前記フェノール性水酸基含有樹脂、硬化剤、及び有機溶剤を含有する。本実施形態のレジスト硬化性樹脂組成物によれば、低粘度・低極性を有することにより、超微細化された配線パターンを形成することができる。
 前記硬化剤は、前記フェノール性水酸基含有樹脂と硬化反応を生じうる化合物であれば特に限定されず、例えば、メラミン化合物、グアナミン化合物、グリコールウリル化合物、ウレア化合物、レゾール樹脂、エポキシ化合物、イソシアネート化合物、アジド化合物、アルケニルエーテル基等の2重結合を含む化合物、酸無水物、オキサゾリン化合物等が挙げられる。
 前記メラミン化合物としては、例えば、ヘキサメチロールメラミン、ヘキサメトキシメチルメラミン、ヘキサメチロールメラミンの1~6個のメチロール基がメトキシメチル化した化合物、ヘキサメトキシエチルメラミン、ヘキサアシロキシメチルメラミン、ヘキサメチロールメラミンのメチロール基の1~6個がアシロキシメチル化した化合物等が挙げられる。
 前記グアナミン化合物としては、例えば、テトラメチロールグアナミン、テトラメトキシメチルグアナミン、テトラメトキシメチルベンゾグアナミン、テトラメチロールグアナミンの1~4個のメチロール基がメトキシメチル化した化合物、テトラメトキシエチルグアナミン、テトラアシロキシグアナミン、テトラメチロールグアナミンの1~4個のメチロール基がアシロキシメチル化した化合物等が挙げられる。
 前記グリコールウリル化合物としては、例えば、1,3,4,6-テトラキス(メトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ブトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ヒドロキシメチル)グリコールウリル等が挙げられる。
 前記ウレア化合物としては、例えば、1,3-ビス(ヒドロキシメチル)尿素、1,1,3,3-テトラキス(ブトキシメチル)尿素及び1,1,3,3-テトラキス(メトキシメチル)尿素等が挙げられる。
 前記レゾール樹脂としては、例えば、フェノール、クレゾールやキシレノール等のアルキルフェノール、フェニルフェノール、レゾルシノール、ビフェニル、ビスフェノールAやビスフェノールF等のビスフェノール、ナフトール、ジヒドロキシナフタレン等のフェノール性水酸基含有化合物と、アルデヒド化合物とをアルカリ性触媒条件下で反応させて得られる重合体が挙げられる。
 前記エポキシ化合物としては、例えば、ジグリシジルオキシナフタレン、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、1,1-ビス(2,7-ジグリシジルオキシ-1-ナフチル)アルカン、ナフチレンエーテル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂、リン原子含有エポキシ樹脂、フェノール性水酸基含有化合物とアルコキシ基含有芳香族化合物との共縮合物のポリグリシジルエーテル等が挙げられる。
 前記イソシアネート化合物としては、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート等が挙げられる。
 前記アジド化合物としては、例えば、1,1’-ビフェニル-4,4’-ビスアジド、4,4’-メチリデンビスアジド、4,4’-オキシビスアジド等が挙げられる。
 前記アルケニルエーテル基等の2重結合を含む化合物としては、例えば、エチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、1,2-プロパンジオールジビニルエーテル、1,4-ブタンジオールジビニルエーテル、テトラメチレングリコールジビニルエーテル、ネオペンチルグリコールジビニルエーテル、トリメチロールプロパントリビニルエーテル、ヘキサンジオールジビニルエーテル、1,4-シクロヘキサンジオールジビニルエーテル、1,4-シクロヘキサンジメタノールジビニルエーテル、ペンタエリスリトールトリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ソルビトールテトラビニルエーテル、ソルビトールペンタビニルエーテル、トリメチロールプロパントリビニルエーテル等が挙げられる。
 前記酸無水物としては、例えば、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物、4,4’-(イソプロピリデン)ジフタル酸無水物、4,4’-
(ヘキサフルオロイソプロピリデン)ジフタル酸無水物等の芳香族酸無水物;無水テトラヒドロフタル酸、無水メチルテトラヒドロフタル酸、無水ヘキサヒドロフタル酸、無水メチルヘキサヒドロフタル酸、無水エンドメチレンテトラヒドロフタル酸無水ドデセニルコハク酸、無水トリアルキルテトラヒドロフタル酸等の脂環式カルボン酸無水物等が挙げられる。
 前記硬化剤のうち、高い硬化性が得られ、耐熱性に優れる硬化物が得られることから、グリコールウリル化合物、ウレア化合物、レゾール樹脂が好ましく、グリコールウリル化合物がより好ましい。
 前記硬化剤は、1種単独で用いてもよく、2種以上を併用してもよい。前記レジスト硬化性樹脂組成物における前記硬化剤の含有量は、前記レジスト硬化性樹脂組成物の樹脂成分の合計100質量部に対し、0.5~50質量部であると好ましい。
 前記有機溶媒としては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテルプロピレングリコールモノメチルエーテル等のアルキレングリコールモノアルキルエーテル;ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル等のジアルキレングリコールジアルキルエーテル;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等のアルキレングリコールアルキルエーテルアセテート;アセトン、メチルエチルケトン、シクロヘキサノン、メチルアミルケトン等のケトン化合物;ジオキサン等の環式エーテル;2-ヒドロキシプロピオン酸メチル、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、オキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、蟻酸エチル、酢酸エチル、酢酸ブチル、アセト酢酸メチル、アセト酢酸エチル等のエステル化合物が挙げられる。
 前記有機溶媒は、1種単独で用いてもよく、2種以上を併用してもよい。前記レジスト硬化性樹脂組成物中の前記有機溶媒の含有量は特に限定されず、例えばレジスト硬化性樹脂組成物中の前記フェノール性水酸基含有樹脂及び前記硬化剤を全て溶解できる量に設定するとよい。
 前記レジスト硬化性樹脂組成物は、本発明の効果を損なわない範囲で、任意にその他成分を含んでもよい。前記その他成分としては、前記フェノール性水酸基含有樹脂以外のその他のフェノール樹脂、硬化促進剤、界面活性剤、染料、充填材、架橋剤、溶解促進剤等が挙げられる。
 前記その他のフェノール樹脂としては、例えば、ノボラック樹脂、ジシクロペンタジエン等の脂環式ジエン化合物とフェノール化合物との付加重合樹脂、フェノール性水酸基含有化合物とアルコキシ基含有芳香族化合物との変性ノボラック樹脂、フェノールアラルキル樹脂(ザイロック樹脂)、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ビフェニル変性フェノール樹脂、ビフェニル変性ナフトール樹脂、アミノトリアジン変性フェノール樹脂、ビニル重合体等が挙げられる。
 前記ノボラック樹脂の具体例としては、フェノール、クレゾール、キシレノール等のアルキルフェノール、フェニルフェノール、レゾルシノール、ビフェニル、ビスフェノールAやビスフェノールF等のビスフェノール、ナフトール、ジヒドロキシナフタレン等のフェノール性水酸基含有化合物と、アルデヒド化合物とを酸触媒条件下で反応させて得られる重合体等が挙げられる。
 前記ビニル重合体の具体例としては、ポリヒドロキシスチレン、ポリスチレン、ポリビニルナフタレン、ポリビニルアントラセン、ポリビニルカルバゾール、ポリインデン、ポリアセナフチレン、ポリノルボルネン、ポリシクロデセン、ポリテトラシクロドデセン、ポリノルトリシクレン、ポリ(メタ)アクリレート等のビニル化合物の単独重合体、又はこれらの共重合体等が挙げられる。
 前記その他の樹脂は、1種単独で用いてもよく、2種以上を併用してもよい。
 前記レジスト硬化性樹脂組成物中の前記その他の樹脂の含有量は、特に限定されず、所望の用途により任意に設定するとよい。例えば、前記レジスト硬化性樹脂組成物が含む前記フェノール性水酸基含有樹脂100質量部に対し、前記その他の樹脂が0.5~100質量部であると好ましい。
 前記硬化促進剤の具体例としては、酢酸、シュウ酸、硫酸、塩酸、フェノールスルホン酸、パラトルエンスルホン酸、酢酸亜鉛、酢酸マンガン、光酸発生剤等が挙げられる。
 前記硬化促進剤は、1種単独で用いてもよく、2種以上を併用してもよい。
 前記レジスト硬化性樹脂組成物中の前記硬化促進剤の含有量は特に限定されず、前記レジスト硬化性樹脂組成物の樹脂固形分100質量部に対し、0.1~10質量部であると好ましい。
 前記レジスト硬化性樹脂組成物は、上記各成分を配合し、攪拌機等を用いて混合することにより製造することができる。また、前記レジスト硬化性樹脂組成物が充填材や顔料を含有する場合には、ディゾルバー、ホモジナイザー、3本ロールミル等の分散装置を用いて分散或いは混合して製造することができる。
 前記レジスト硬化性樹脂組成物はレジスト材料として用いることができ、前記レジスト硬化性樹脂組成物を硬化してなる塗膜はレジストとして使用できる。
 前記レジスト硬化性樹脂組成物をレジスト材料として用いる場合、前記レジスト硬化性樹脂組成物を塗材としてそのまま用いてもよいし、前記レジスト硬化性樹脂組成物を支持フィルム上に塗布し、脱溶剤してレジストフィルムとしてもよい。
 前記支持フィルムとしては、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリエチレンテレフタレート等の合成樹脂フィルム等が挙げられる。前記支持フィルムは、単層フィルムでも複数フィルムからなる積層フィルムでもよい。また、前記支持フィルムの表面は、コロナ処理されたものや剥離剤が塗布されたものでもよい。
 前記レジスト硬化性樹脂組成物の塗布方法は、スピンコート、ロールコート、フローコート、ディップコート、スプレーコート、ドクターブレードコート等の何れの方法でもよい。
 前記レジスト硬化性樹脂組成物をレジスト下層膜用途に用いる場合、レジスト下層膜を作成する方法の一例としては、以下が挙げられる。
 前記レジスト硬化性樹脂組成物をシリコン基板、炭化シリコン基板、窒化ガリウム基板等フォトリソグラフィーを行う対象物上に塗布し、100~200℃の温度条件下で乾燥させた後、更に250~400℃の温度条件下で加熱硬化させる等の方法によりレジスト下層膜を形成する。次いで、この下層膜上で通常のフォトリソグラフィー操作を行ってレジストパターンを形成し、ハロゲン系プラズマガス等でドライエッチング処理することにより、多層レジスト法によるレジストパターンを形成する。
 前記レジスト硬化性樹脂組成物は、レジスト平坦膜、及びレジスト反射防止膜等の用途に用いることもできる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
<GPCの測定>測定装置:東ソー株式会社製「HLC-8220 GPC」カラム:昭和電工株式会社製「Shodex KF802」(8.0mmФ×300mm)+昭和電工株式会社製「Shodex KF802」(8.0mmФ×300mm)+昭和電工株式会社製「Shodex KF803」(8.0mmФ×300mm)+昭和電工株式会社製「Shodex KF804」(8.0mmФ×300mm)カラム温度:40℃検出器:RI(示差屈折計)データ処理:東ソー株式会社製「GPC-8020モデルIIバージョン4.30」展開溶媒:テトラヒドロフラン流速:1.0mL/分試料:樹脂固形分換算で0.5質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの注入量:0.1mL標準試料:下記単分散ポリスチレン
(標準試料:単分散ポリスチレン)東ソー株式会社製「A-500」東ソー株式会社製「A-2500」東ソー株式会社製「A-5000」東ソー株式会社製「F-1」東ソー株式会社製「F-2」東ソー株式会社製「F-4」東ソー株式会社製「F-10」東ソー株式会社製「F-20」
<FD-MSの測定>
 FD-MSは日本電子株式会社製の二重収束型質量分析装置AX505H(FD505H)を用いて測定した。
13C-NMRスペクトルの測定>
 13C-NMRスペクトルの測定は、日本電子株式会社製「AL-400」を用い、試料のAcetone-d6溶液を分析して構造解析を行った。以下に、13C-NMRスペクトルの測定条件を示す。
13C-NMRスペクトル測定条件]
 測定モード:SGNNE(NOE消去の1H完全デカップリング法)
 パルス角度:45℃パルス
 試料濃度:30質量%
 積算回数:10000回
<実施例>〔合成例1:フェノール性水酸基含有樹脂(A1)の合成〕
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、2,7-ジヒドロキシナフタレンを320質量部(2.0モル)、37質量%ホルムアルデヒド水溶液244質量部(3.0モル)、イソプロピルアルコール512部、48質量%水酸化カリウム水溶液351質量部(3.0モル)を仕込み、室温下、窒素を吹き込みながら撹拌した。その後、75℃に昇温し2時間攪拌した。反応終了後、第1リン酸ソーダ360質量部を添加して中和した後、イソプロピルアルコールを減圧下除去し、メチルイソブチルケトン(以下、「MIBK」と略記する。)768質量部を加えた。得られた有機層を水480質量部で3回水洗を繰り返した後に、MIBKを加熱減圧下に除去してフェノール性水酸基含有樹脂(A1)を339質量部得た。得られたフェノール性水酸基含有樹脂(A1)は固形で、GPCにて測定された数平均分子量(Mn)は584、重量平均分子量(Mw)は727、多分散度(Mw/Mn)は1.25であった。フェノール性水酸基含有樹脂(A1)のGPCチャートを図1に、FD-MSチャートを図2に、13C-NMRチャートを図3に、それぞれ示す。FD-MSスペクトルにおける332、344、374、498、516、528、700のピーク、及び13C-NMRにより、下記化合物の生成を確認した。
Figure JPOXMLDOC01-appb-C000016
 また、GPCチャート図の面積比から算出された前記フェノール性水酸基含有樹脂(A1)に含有されている各成分の含有量は、前記フェノール性水酸基含有化合物(1)相当成分が12%、前記フェノール性水酸基含有化合物(2)相当成分が5%、前記フェノール性水酸基含有化合物(3)相当成分が12%、前記前記フェノール性水酸基含有化合物
(4)相当成分が28%、前記フェノール性水酸基含有化合物(5)相当成分が29%であった。
〔合成例2:フェノール性水酸基含有樹脂(A2)の合成〕
 合成例1における37質量%ホルムアルデヒド水溶液を203質量部(2.5モル)、48質量%水酸化カリウム水溶液を292質量部(2.50モル)に、第1リン酸ソーダを300質量部に変更した以外は合成例1と同様の方法でフェノール性水酸基含有樹脂(A2)を得た。得られたフェノール性水酸基含有樹脂(A2)は固形で、GPCにて測定された数平均分子量(Mn)は550、重量平均分子量(Mw)は687、多分散度(Mw/Mn)は1.25であった。フェノール性水酸基含有樹脂(A2)のGPCチャートを図4に示す。
 GPCチャート図の面積比から算出された前記フェノール性水酸基含有樹脂(A2)に含有されている各成分の含有量は、前記フェノール性水酸基含有化合物(1)相当成分が10%、前記フェノール性水酸基含有化合物(2)相当成分が5%、前記フェノール性水酸基含有化合物(3)相当成分が10%、前記フェノール性水酸基含有化合物(4)相当成分が27%、前記フェノール性水酸基含有化合物(5)相当成分が34%であった。
〔合成例3:フェノール性水酸基含有樹脂(A3)の合成〕
 合成例1における37質量%ホルムアルデヒド水溶液を325質量部(4.0モル)、48質量%水酸化カリウム水溶液を585質量部(5.0モル)に、第1リン酸ソーダを600質量部に変更した以外は合成例1と同様の方法でフェノール性水酸基含有樹脂(A3)を得た。得られたフェノール性水酸基含有樹脂(A3)は固形で、GPCにて測定された数平均分子量(Mn)は613、重量平均分子量(Mw)は773、多分散度(Mw/Mnは1.26であった。フェノール性水酸基含有樹脂(A3)のGPCチャートを図5に示す。
 GPCチャート図の面積比から算出された前記フェノール性水酸基含有樹脂(A3)に含有されている各成分の含有量は、前記フェノール性水酸基含有化合物(1)相当成分が11%、前記フェノール性水酸基含有化合物(2)相当成分が5%、前記フェノール性水酸基含有化合物(3)相当成分が11%、前記フェノール性水酸基含有化合物(4)相当成分が31%、前記フェノール性水酸基含有化合物(5)相当成分が29%であった。
〔比較合成例1:フェノール性水酸基含有樹脂(B1)の合成〕
 合成例1における37質量%ホルムアルデヒド水溶液を162部(2.0モル)、48質量%水酸化カリウム水溶液を117質量部(1.0モル)に、第1リン酸ソーダを120質量部に変更した以外は合成例1と同様の方法でフェノール樹脂(B1)を得た。得られたフェノール樹脂(B1)は固形で、GPCは数平均分子量(Mn)=528、重量平均分子量(Mw)=552、多分散度(Mw/Mn)=1.04であり、GPCの面積比から求める単結合をもつ二量体が72%、カルド構造含有のオリゴマーが25%であった。フェノール性水酸基含有樹脂(B1)のGPCチャートを図6に示す。
 GPCチャート図の面積比から算出された前記フェノール性水酸基含有樹脂(B1)に含有されている各成分の含有量は、前記化合物(1)相当成分は観測されず、前記化合物
(2)相当成分が18%、前記化合物(3)相当成分が2%、前記高分子量成分が5%、前記化合物(4)相当成分が72%であった。
<評価>〔保存安定性(溶剤溶解性)の評価〕
 各合成例及び合成比較例で得られたフェノール性水酸基含有樹脂を10mlバイアル瓶に入れ、80℃の水浴で加温しながらプロピレングリコールモノメチルエーテルアセテート(PGMEA)およびプロピレングリコールモノメチルエーテル(PGME)に溶解させ、不揮発分20質量%になるように調整した樹脂溶液を室温まで放冷した。得られた樹脂溶液を室温で7日間放置した後、目視で不溶物の有無を評価した。評価基準は以下の通りである。A:不溶物が観測されない。B:PGMEA、PGMEいずれか一方に不溶物が観測された。C:溶解時に完全溶解しない溶媒がある。あるいは両溶媒とも不溶物が観測された。
〔光学特性〕
 各合成例及び合成比較例で得られたフェノール性水酸基含有樹脂をプロピレングリコールモノメチルエーテルアセテート(PGMEA)に溶解させ、不揮発分5質量%の樹脂溶液とした。得られた樹脂溶液をシリコンウェハー上に塗布し、スピンコーターを使用して1500rpmで30秒スピンコートした。これを100℃のホットプレートで60秒間加熱して乾燥し、膜厚0.1μmの塗膜を得た。これらの膜について分光エリプソメーター(J.A.Woollam製:VUV-VASE GEN-1)を用い、波長193、248nmでのn値(屈折率)とk値(減衰係数)を測定した。
〔耐エッチング性、及び穴埋め性の評価用レジスト下層膜組成物の調製〕
 各合成例及び合成比較例で得られたフェノール性水酸基含有樹脂1.6質量部、硬化剤
(東京化成工業株式会社製「1,3,4,6-テトラキス(メトキシメチル)グリコールウリル」)0.4質量部、p-トルエンスルホン酸0.1質量部をプロピレングリコールモノメチルエーテルアセテート(PGMEA)100質量部に加え、混合、溶解し、0.2μmのメンブレンフィルターでろ過し、各実施例及び比較例に係るレジスト下層膜組成物を得た。
〔耐エッチング性〕
 得られたレジスト下層膜用組成物を直径5インチのシリコンウェハー上にスピンコーターを用いて塗布した後、酸素濃度20容量%のホットプレート内にて、180℃で60秒間加熱した。更に、350℃で120秒間加熱して、膜厚0.3μmの塗膜(レジスト下層膜)付きシリコンウェハーを得た。形成したレジスト下層膜を、エッチング装置(神鋼精機社製の「EXAM」)を使用して、CF/Ar/O(CF4:40mL/分、Ar:20mL/分、O:5mL/分 圧力:20Pa RFパワー:200W 処理時間:40秒 温度:15℃)の条件でエッチング処理した。このときのエッチング処理前後の膜厚を測定して、エッチングレートを算出し、エッチング耐性を評価した。評価基準は以下の通りである。A:エッチングレートが150nm/分以下の場合B:エッチングレートが150nm/分を超える場合
〔穴埋め性(微細空間への浸透性)〕
 φ110nm、深さ300nmのホールパターンが形成された直径5インチのシリコンウェハーを用いた以外は前記同様に各実施例及び比較例に係る塗膜(レジスト下層膜)付きシリコンウェハーを得た。シリコンウェハーをホールパターン線上で割り、走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製:SU-3500)で断面の観察を行い穴埋め性を評価した。評価基準は以下の通りである。A:ホール底まで樹脂硬化物で満たされている場合B:ホール底まで樹脂硬化物が満たされていない、または一部に空隙がある場合。
〔アルカリ溶解性〕
 各合成例及び合成比較例で得られた前記フェノール性水酸基含有樹脂32質量部をプロピレングリコールモノメチルエーテルアセテート60質量部に溶解させ、溶液とした。当該溶液を5インチシリコンウェハー上に約1μmの厚さになるようにスピンコーターで塗布し、110℃のホットプレート上で60秒乾燥させ、更に、140℃、60秒間の条件で加熱処理を行った。得られた塗膜付きウェハーをアルカリ現像液(2.38%水酸化テトラメチルアンモニウム水溶液)に60秒間浸漬した後、110℃のホットプレート上で60秒乾燥させた。各サンプルの現像液浸漬前後の膜厚を測定し、その差分を60で除した値をアルカリ溶解性[ADR(Å/s)]とした。
 各評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000017
 表1の結果から明らかなように、本発明の実施例に係るフェノール性水酸基含有樹脂(A1)~(A3)は溶剤溶解性、及び穴埋め性に優れ、フェノール性水酸基含有樹脂(A1)~(A3)を硬化してなる塗膜は光学特性、及び耐エッチング性に優れることから、低粘度・低極性を有し、超微細化された配線パターン形成に用いることができることが判る。一方、本発明の比較例に係るフェノール性水酸基含有樹脂(B1)は、そもそも、レジスト用途における汎用樹脂への溶解性に劣り、本発明の課題を解決できていないことが判る。

Claims (9)

  1.  下記構造式(1)で表される化合物(1)及び下記構造式(1’)で表される化合物(1’)からなる群より選ばれる1種以上のフェノール性水酸基含有化合物(1)を含有することを特徴とするフェノール性水酸基含有樹脂。
    Figure JPOXMLDOC01-appb-C000001
    [式中Rは、それぞれ独立して、水素原子、脂肪族炭化水素基、アルコキシ基、又はハロゲン原子であり、nは、それぞれ独立して、0~2の整数である。]
    Figure JPOXMLDOC01-appb-C000002
    [式中Rは、それぞれ独立して、水素原子、脂肪族炭化水素基、アルコキシ基、又はハロゲン原子であり、nは、それぞれ独立して、0~2の整数である。]
  2.  下記構造式(2)で表される化合物(2)及び下記構造式(2’)で表される化合物(2’)からなる群より選ばれる1種以上のフェノール性水酸基含有化合物(2)を含有することを特徴とする請求項1に記載のフェノール性水酸基含有樹脂。
    Figure JPOXMLDOC01-appb-C000003
    [式中Rは、それぞれ独立して、水素原子、脂肪族炭化水素基、アルコキシ基、又はハロゲン原子であり、nは、それぞれ独立して、0~2の整数である。]
    Figure JPOXMLDOC01-appb-C000004
    [式中Rは、それぞれ独立して、水素原子、脂肪族炭化水素基、アルコキシ基、又はハロゲン原子であり、nは、それぞれ独立して、0~2の整数である。]
  3.  前記フェノール性水酸基含有樹脂中の前記フェノール性水酸基含有化合物(1)と前記フェノール性水酸基含有化合物(2)との合計の含有量が、GPCチャート図の面積比から算出される値で9%以上から45%以下までの範囲である請求項2に記載のフェノール性水酸基含有樹脂。
  4.  前記フェノール性水酸基含有樹脂が、2,7-ジヒドロキシナフタレン類とホルムアルデヒドとを、2,7-ジヒドロキシナフタレン類に対して、モル基準で1.1倍以上から10倍以下までの範囲のホルムアルデヒド、及び2,7-ジヒドロキシナフタレン類に対して、モル基準で1.1倍以上から10倍以下までの範囲のアルカリ触媒の存在下で反応させて得られるものである、請求項1~3のいずれか1項に記載のフェノール性水酸基含有樹脂。
  5.  請求項1~4のいずれか1項に記載のフェノール性水酸基含有樹脂、
     感光剤、及び
     有機溶剤を含有する、アルカリ現像性レジスト用樹脂組成物。
  6.  請求項5に記載のアルカリ現像性レジスト用樹脂組成物を硬化した、塗膜。
  7.  請求項1~4のいずれか1項に記載のフェノール性水酸基含有樹脂、
     硬化剤、及び
     有機溶剤を含有する、レジスト硬化性樹脂組成物。
  8.  請求項7に記載のレジスト硬化性樹脂組成物を硬化した、塗膜。
  9.  2,7-ジヒドロキシナフタレン類とホルムアルデヒドとを、2,7-ジヒドロキシナフタレン類に対して、モル基準で1.1倍以上から10倍以下までの範囲のホルムアルデヒド、及び2,7-ジヒドロキシナフタレン類に対して、モル基準で1.1倍以上から10倍以下までの範囲のアルカリ触媒の存在下で反応させる工程を有する、フェノール性水酸基含有樹脂の製造方法。
PCT/JP2021/033079 2020-09-28 2021-09-09 フェノール性水酸基含有樹脂、アルカリ現像性レジスト用樹脂組成物、及びレジスト硬化性樹脂組成物、並びにフェノール性水酸基含有樹脂の製造方法 WO2022065041A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022516672A JP7124989B1 (ja) 2020-09-28 2021-09-09 フェノール性水酸基含有樹脂、アルカリ現像性レジスト用樹脂組成物、及びレジスト硬化性樹脂組成物、並びにフェノール性水酸基含有樹脂の製造方法
CN202180064580.9A CN116209690A (zh) 2020-09-28 2021-09-09 含酚性羟基树脂、碱显影性抗蚀剂用树脂组合物、和抗蚀剂固化性树脂组合物、以及含酚性羟基树脂的制造方法
KR1020237000562A KR20230021721A (ko) 2020-09-28 2021-09-09 페놀성 수산기 함유 수지, 알칼리 현상성 레지스트용 수지 조성물, 및 레지스트 경화성 수지 조성물, 그리고, 페놀성 수산기 함유 수지의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-162575 2020-09-28
JP2020162575 2020-09-28

Publications (1)

Publication Number Publication Date
WO2022065041A1 true WO2022065041A1 (ja) 2022-03-31

Family

ID=80845257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033079 WO2022065041A1 (ja) 2020-09-28 2021-09-09 フェノール性水酸基含有樹脂、アルカリ現像性レジスト用樹脂組成物、及びレジスト硬化性樹脂組成物、並びにフェノール性水酸基含有樹脂の製造方法

Country Status (5)

Country Link
JP (1) JP7124989B1 (ja)
KR (1) KR20230021721A (ja)
CN (1) CN116209690A (ja)
TW (1) TW202222877A (ja)
WO (1) WO2022065041A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202750A (ja) * 2009-03-03 2010-09-16 Dic Corp 硬化性樹脂組成物、その硬化物、プリント配線基板、新規フェノール樹脂、及びその製造方法
JP2010230773A (ja) * 2009-03-26 2010-10-14 Jsr Corp レジスト下層膜形成用組成物、レジスト下層膜、レジスト下層膜の形成方法、及びパターン形成方法
JP2010235643A (ja) * 2009-03-30 2010-10-21 Dic Corp 硬化性樹脂組成物、その硬化物、プリント配線基板、エステル化合物、エステル系樹脂、及びその製造方法
JP2011016891A (ja) * 2009-07-08 2011-01-27 Dic Corp エポキシ樹脂、その製造方法、硬化性樹脂組成物、その硬化物、及びプリント配線基板
WO2015008560A1 (ja) * 2013-07-19 2015-01-22 Dic株式会社 フェノール性水酸基含有化合物、感光性組成物、レジスト用組成物、レジスト塗膜、硬化性組成物、レジスト下層膜用組成物、及びレジスト下層膜

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285403A (ja) 2009-06-15 2010-12-24 Nissan Chem Ind Ltd 架橋剤及び該架橋剤を含有するレジスト下層膜形成組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202750A (ja) * 2009-03-03 2010-09-16 Dic Corp 硬化性樹脂組成物、その硬化物、プリント配線基板、新規フェノール樹脂、及びその製造方法
JP2010230773A (ja) * 2009-03-26 2010-10-14 Jsr Corp レジスト下層膜形成用組成物、レジスト下層膜、レジスト下層膜の形成方法、及びパターン形成方法
JP2010235643A (ja) * 2009-03-30 2010-10-21 Dic Corp 硬化性樹脂組成物、その硬化物、プリント配線基板、エステル化合物、エステル系樹脂、及びその製造方法
JP2011016891A (ja) * 2009-07-08 2011-01-27 Dic Corp エポキシ樹脂、その製造方法、硬化性樹脂組成物、その硬化物、及びプリント配線基板
WO2015008560A1 (ja) * 2013-07-19 2015-01-22 Dic株式会社 フェノール性水酸基含有化合物、感光性組成物、レジスト用組成物、レジスト塗膜、硬化性組成物、レジスト下層膜用組成物、及びレジスト下層膜

Also Published As

Publication number Publication date
CN116209690A (zh) 2023-06-02
JPWO2022065041A1 (ja) 2022-03-31
JP7124989B1 (ja) 2022-08-24
TW202222877A (zh) 2022-06-16
KR20230021721A (ko) 2023-02-14

Similar Documents

Publication Publication Date Title
JP5700269B1 (ja) フェノール性水酸基含有化合物、感光性組成物、レジスト用組成物、レジスト塗膜、硬化性組成物、レジスト下層膜用組成物、及びレジスト下層膜
KR102313190B1 (ko) 나프톨형 칼릭스아렌 화합물 및 그 제조 방법, 감광성 조성물, 레지스트 재료, 그리고 도막
TWI711655B (zh) 含酚性羥基之樹脂及抗蝕劑膜
JP6025011B1 (ja) フェノール性水酸基含有化合物、これを含む組成物及びその硬化膜
JP6940834B2 (ja) フェノール性水酸基含有樹脂、感光性組成物、レジスト膜、硬化性組成物及び硬化物
KR20170088824A (ko) 노볼락형 페놀 수지, 그 제조 방법, 감광성 조성물, 레지스트 재료, 및 도막
JP6123967B1 (ja) ノボラック型フェノール性水酸基含有樹脂及びレジスト膜
JP5939450B1 (ja) フェノール性水酸基含有樹脂、その製造方法、感光性組成物、レジスト材料、塗膜、硬化性組成物とその硬化物、及びレジスト下層膜
WO2016114000A1 (ja) レジスト永久膜用硬化性組成物及びレジスト永久膜
TWI722135B (zh) 酚醛清漆型樹脂及抗蝕劑材料
WO2022065041A1 (ja) フェノール性水酸基含有樹脂、アルカリ現像性レジスト用樹脂組成物、及びレジスト硬化性樹脂組成物、並びにフェノール性水酸基含有樹脂の製造方法
WO2017175590A1 (ja) ノボラック型樹脂の製造方法
JP6863077B2 (ja) デンドリマー型樹脂及びレジスト材料
WO2017098880A1 (ja) ノボラック型樹脂及びレジスト膜
JP6590085B2 (ja) フェノール性水酸基含有樹脂及びレジスト材料
JP6590084B2 (ja) フェノール性水酸基含有樹脂及びレジスト材料
JP6328350B2 (ja) ノボラック型樹脂及びレジスト材料
JP6828279B2 (ja) ノボラック型樹脂及びレジスト膜

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022516672

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872172

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237000562

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21872172

Country of ref document: EP

Kind code of ref document: A1