WO2022064734A1 - 電解コンデンサおよびその製造方法 - Google Patents

電解コンデンサおよびその製造方法 Download PDF

Info

Publication number
WO2022064734A1
WO2022064734A1 PCT/JP2021/007188 JP2021007188W WO2022064734A1 WO 2022064734 A1 WO2022064734 A1 WO 2022064734A1 JP 2021007188 W JP2021007188 W JP 2021007188W WO 2022064734 A1 WO2022064734 A1 WO 2022064734A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
base material
electrolytic capacitor
dielectric layer
layer
Prior art date
Application number
PCT/JP2021/007188
Other languages
English (en)
French (fr)
Inventor
徳彦 大形
佑磨 矢野
和秀 後藤
之康 杉原
将之 鳳桐
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202180063960.0A priority Critical patent/CN116325045A/zh
Priority to JP2022551128A priority patent/JPWO2022064734A1/ja
Publication of WO2022064734A1 publication Critical patent/WO2022064734A1/ja
Priority to US18/171,398 priority patent/US20230207224A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0032Processes of manufacture formation of the dielectric layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • H01G9/0525Powder therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/07Dielectric layers

Definitions

  • the present invention relates to an electrolytic capacitor and a method for manufacturing the electrolytic capacitor.
  • Electrolytic capacitors have a small equivalent series resistance (ESR) and excellent frequency characteristics, so they are installed in various electronic devices.
  • the electrolytic capacitor usually includes a capacitor element including an anode portion and a cathode portion.
  • the anode portion contains a porous anode body, and a dielectric layer is formed on the surface of the anode body. The dielectric layer comes into contact with the electrolyte.
  • As the electrolyte there is an electrolytic capacitor using a solid electrolyte such as a conductive polymer (for example, Patent Document 1).
  • One aspect of the present disclosure includes an anode substrate, a porous anode body including a dielectric layer formed on the surface of the anode substrate, and a solid electrolyte layer covering at least a part of the dielectric layer.
  • the present invention relates to an electrolytic capacitor, comprising a condenser element, wherein the anode has a plurality of main surfaces, and at least a part of the surface layer X of the main surface of the anode is denser than the inner Y of the anode.
  • a method for manufacturing a solid electrolytic capacitor including a capacitor element which includes a step of preparing an anode base material containing a binder of metal powder, a step of sintering the anode base material, and a step of sintering the anode.
  • the present invention comprises a step of obtaining the anode body including the anode substrate and the dielectric layer by subjecting the substrate to a chemical conversion treatment, and a step of covering at least a part of the dielectric layer with the solid electrolyte layer.
  • the present invention relates to a method for manufacturing an electrolytic capacitor, which comprises a plurality of main surfaces of the anode base material and further includes a densification step of increasing the density of at least one region of at least one of the plurality of main surfaces of the anode base material.
  • the electrolytic capacitor according to an embodiment of the present invention includes an anode substrate, an anode having a porous dielectric layer formed on the surface of the anode substrate, and a solid electrolyte layer covering at least a part of the dielectric layer. And, including a capacitor element.
  • the anode has a plurality of main surfaces, and at least a part of the surface layer X of the main surface of the anode is denser than the inner Y of the anode.
  • the anode body usually has a rectangular parallelepiped shape.
  • the plurality of main faces refer to each face of a rectangular parallelepiped.
  • the surface layer of the anode refers to a region having a depth of 3 ⁇ m or less from the surface of the anode.
  • the inside of the anode refers to a region having a depth of 20 ⁇ m or more from the surface of each main surface of the anode.
  • the side portion connecting the two main surfaces of the plurality of main surfaces and / or the apex portion connecting the three or more main surfaces of the plurality of main surfaces is formed.
  • the side portion refers to the side where the two main surfaces of the anode intersect and the region in the vicinity thereof.
  • the apex portion refers to the apex where the three main surfaces of the anode intersect and the region in the vicinity thereof.
  • the side portion and the apex portion are collectively referred to as a "corner portion".
  • the dielectric layer is usually formed by subjecting an anode base material to a chemical conversion treatment and oxidizing the surface of the anode base material. Therefore, the properties of the dielectric layer formed by chemical conversion are affected by the surface condition of the anode base material before chemical conversion treatment.
  • the anode base material before chemical conversion treatment can be manufactured, for example, by putting a metal powder in a mold, compacting it, and sintering it.
  • metal fine particles are exposed on the main surface of the anode base material, and when viewed microscopically, the surface is not flat, the surface roughness is large, and the shape tends to have irregularities.
  • the surface of the anode base material is not flat when viewed microscopically, and is a surface surface. It has a large roughness and tends to have an uneven shape.
  • the dielectric layer is grown by chemical conversion treatment in this state, defects are likely to occur in the dielectric layer in the uneven portion.
  • a defect occurs in the dielectric layer, a path through which a current flows between the solid electrolyte and the valve acting metal is created through the defective portion, and the leakage current may increase.
  • the anode body after chemical conversion treatment which has an outer shape that reflects the outer shape of the anode base material before chemical conversion treatment, is fragile and fragile because it is porous.
  • the corner portion of the anode has lower mechanical strength than the portion other than the corner portion, and thermal stress tends to concentrate. Damage to the porous portion may damage the dielectric layer covering the porous portion. Leakage current may increase due to damage to the dielectric layer.
  • the surface layer of the main surface of the anode base material before the chemical conversion treatment is densely formed, so that defects at the time of chemical conversion of the dielectric layer generated when the dielectric layer is formed by the chemical conversion treatment are present. Can be reduced. As a result, the leakage current can be reduced. In addition, the mechanical strength of the dielectric layer can be increased. As a result, damage to the dielectric layer after chemical conversion can be suppressed. As a result, the increase in leakage current is suppressed.
  • the porosity P1 in the surface layer X of the main surface of the anode body is 0.02 times or more and 0.7 times or less the porosity P2 in the inner Y of the anode body. Is preferable.
  • the porosity P1 is 0.7 times or less of the porosity P2
  • the surface layer X is sufficiently dense with respect to the internal Y, damage to the dielectric layer after chemical formation is suppressed, and an increase in leakage current is suppressed.
  • Ru The porosity P1 is more preferably 0.5 times or less of the porosity P2, and further preferably 0.3 times or less.
  • the porosity P1 is 0.02 times or more the porosity P2, it is easy to form a solid electrolyte layer covering the dielectric layer in the pores of the anode.
  • the porosity P1 is more preferably 0.05 times or more the porosity P2, and even more preferably 0.1 times or more.
  • the electrolytic capacitor may contain a trace amount of aluminum due to the manufacturing process in the vicinity of the surface layer of the dielectric layer or the anode body.
  • trace amount means that the content of aluminum in the dielectric layer is 0.001% by weight or more and 10% by weight or less in the region where the depth from the surface of the anode is within 1 ⁇ m.
  • the content of aluminum in the dielectric layer may be 0.01% by weight or more and 10% by weight or less.
  • At least a part of the corner portion of the anode body may have a curved surface shape or a chamfered shape.
  • a curved surface or chamfering at least a part of the corner portion damage to the dielectric layer at the corner portion is suppressed, and an electrolytic capacitor having a small leakage current can be realized. Therefore, the reliability of the electrolytic capacitor can be improved.
  • the corner portions are also densified.
  • the cross-sectional shape of the corner portion may be a polygonal line having a plurality of obtuse angles.
  • the cross-sectional shape is convex, and in the cross-sectional shape, a straight line corresponding to one main surface and a straight line corresponding to another adjacent main surface are connected via at least one straight line and / or a curved line. If so, it can be said that the corner portion has a curved shape or a chamfered shape.
  • the fact that the corner portion has a curved surface shape or a chamfer shape also means that the cross-sectional shape of the corner portion in the cross section perpendicular to the two adjacent main surfaces does not have a region sharpened by 90 ° or less.
  • a solid electrolyte layer is formed so as to cover the dielectric layer.
  • the thickness of the solid electrolyte layer at the corner portion tends to be thin.
  • the thickness of the solid electrolyte layer tends to be thin at the corners.
  • the thinning of the solid electrolyte layer at the corner portion can be suppressed, and the solid electrolyte layer can be formed with a uniform thickness.
  • the electrolytic capacitor becomes strong against external stress, and it is possible to suppress an increase in leakage current and the occurrence of short circuit defects.
  • the withstand voltage is improved.
  • the surface layer Z at the corner portion adjacent to the surface layer X may be denser than the surface layer X and the inner Y. Since the surface layer X of the corner portion is densely formed, the mechanical strength of the corner portion can be further increased. Therefore, it is possible to enhance the effect of suppressing the increase in the leakage current through the corner portion.
  • the corner portion does not have a curved surface and is not chamfered, sufficient mechanical strength can be obtained because the surface layer Z is densely formed. Therefore, the increase in the leakage current through the corner portion can be suppressed.
  • the fact that the surface layer Z is denser than the surface layer X and the inner layer Y means that the porosity P3 in the surface layer Z is smaller than the porosity P1 in the surface layer X and the porosity P2 in the inner layer Y.
  • the surface layer Z may have a portion where the ratio P3 / P1 of the porosity P3 to the porosity P1 is less than 1.
  • P3 / P1 may be 0.8 or less or 0.5 or less.
  • P3 / P1 may be less than 1 in any portion of the surface layer Z.
  • the curvature of the curved surface is, for example, 0.002 (1 / ⁇ m) to 0.05 (1 / ⁇ m), more preferably 0.005 (1). It can be from / ⁇ m) to 0.02 (1 / ⁇ m).
  • the curvature and porosity can be obtained by image analysis of a cross-sectional photograph of the anode body in a predetermined region.
  • the cross section is photographed with a scanning electron microscope (SEM), and image processing such as binarization of the photographed image is performed in a field of view of, for example, 5 ⁇ m ⁇ 10 ⁇ m to distinguish the pore portion from the other portion.
  • the porosity can be obtained as the area ratio of the pore portion to the total area of the pore portion and the other portion. It is desirable that the photographed image is measured at any 10 points and the porosity is obtained as the average value of the area ratio of the pore portion obtained at the 10 points.
  • the porosity P1 (porosity P3) can be obtained from the area ratio of the pore portion in the region A in the surface layer X (surface layer Z).
  • the porosity P2 can be obtained from the area ratio of the pore portion in the region B in the inner Y.
  • the curvature of the corner portion is also calculated by taking a photograph of the anode body from the side of a certain main surface and performing image analysis of the contour shape in the vicinity of the obtained corner portion (vertex).
  • the anode base material before sintering or before forming the dielectric layer after sintering is placed in a container together with a vibrating member such as media particles. This can be done by vibrating the container.
  • the main surface of the anode base material collides with the vibrating member due to vibration, and the surface layer portion of the main surface is formed more densely than the inside by compression.
  • primary molding is performed in which the powder of the valve acting metal particles is pressure-molded into a rectangular shape while being embedded in a pressure molding machine using a mold to obtain an anode base material before forming a dielectric layer.
  • the densification molding is referred to as secondary molding.
  • the vibrating member collides not only with the main surface of the anode base material but also with the corners. Since the corners have low mechanical strength, they are easily compressed by collision. Therefore, the corner portion can be compressed by the collision and the corner portion can be formed into a curved surface shape.
  • the density of the corner portion in the surface layer Z is higher than that in the surface layer X and the inner Y of the main surface (porosity is low).
  • FIG. 1 is a schematic perspective view showing an example of an anode body (or an anode base material) used in the electrolytic capacitor of the present embodiment.
  • the anode body 1 has a substantially rectangular parallelepiped shape, and six main surfaces 101A to 101F are exposed. Note that 101D to 101F are not shown because they are hidden from the paper surface.
  • a connecting surface may be formed in the vicinity of the side where two adjacent main surfaces intersect with each other by taking the corner of the side portion.
  • the connection surface 102C is interposed between the main surfaces 101A and 101B
  • the connection surface 102A is interposed between the main surfaces 101B and 101C
  • the connection surface 102A is interposed between the main surfaces 101B and 101C. Is intervening.
  • a second connecting surface is formed in the vicinity of the apex where the three main surfaces intersect by taking the corner of the apex portion.
  • the second connecting surface 103A is provided at the apex portion where the main surfaces 101A to 101C intersect.
  • the second connection surface 103A connects the connection surfaces 102A to 102C to each other.
  • the connecting surfaces 102A to 102C and the second connecting surface 103A are processed into a rounded curved surface.
  • the connecting surfaces 102A to 102C and the second connecting surface 103A may be curved surfaces, or may be configured by one or a plurality of planes (for example, the corner portions are chamfered).
  • FIG. 1 shows an example of the shape of the anode body
  • the anode base material before the chemical conversion treatment also has a substantially rectangular parallelepiped shape, and the six main surfaces 101A to 101F are exposed to the main surface. The corners of the sides and vertices that connect the faces are removed and processed into a rounded surface.
  • At least a part of the surface layer of the main surfaces 101A to 101F is formed more densely than the inside.
  • the surfaces of the main surfaces 101A to 101F have few irregularities, and the mechanical strength of the anode base material and the anode body is increased.
  • a dielectric layer with few defects is formed on the surface of the anode body 1.
  • the leakage current can be reduced.
  • damage to the dielectric layer is suppressed, an increase in leakage current due to damage to the dielectric layer is suppressed, and leakage current can be kept small.
  • the anode base material has an outer shape in which the corners are chamfered or curved, a dielectric layer having few defects can be formed in the corners, and the effect of reducing leakage current can be enhanced. can.
  • the mechanical strength of the corners of the fragile and fragile anode is increased, and the concentration of thermal stress is alleviated, which enhances the effect of suppressing the increase in leakage current due to damage to the dielectric layer, further reducing leakage current. Can be kept small.
  • the surface layer of the connection surfaces 102A to 102C and / or the second connection surface 103A may be formed more densely than the surface layer of the main surfaces 101A to 101F which are porous. That is, the porosity P3 on the surface layer of the connecting surfaces 102A to 102C and / or the second connecting surface 103A is smaller than the porosity P2 inside the anode body 1, and the porosity P1 on the surface layer of the main surfaces 101A to 101F. May be smaller than.
  • the anode wire 2 extends from the main surface 101B of the anode body 1.
  • the anode body 1 and the anode wire 2 form the anode portion 6.
  • FIG. 2 is a schematic cross-sectional view of the electrolytic capacitor according to the present embodiment.
  • the electrolytic capacitor 20 is electrically connected to the capacitor element 10 having the anode portion 6 and the cathode portion 7, the exterior body 11 that seals the capacitor element 10, and the anode portion 6, and is partially connected to the exterior body 11. It includes an exposed anode lead terminal 13 and a cathode lead terminal 14 that is electrically connected to the cathode portion 7 and is partially exposed from the exterior body 11.
  • the anode portion 6 has an anode body 1 and an anode wire 2.
  • the anode body 1 includes a dielectric layer 3 formed on the surface thereof.
  • the cathode portion 7 has a solid electrolyte layer 4 that covers at least a part of the dielectric layer 3, and a cathode layer 5 that covers the surface of the solid electrolyte layer 4.
  • Capacitor element 10 ⁇ Capacitor element>
  • the capacitor element 10 will be described in detail with reference to a case where a solid electrolyte layer is provided as an electrolyte.
  • the anode portion 6 has an anode body 1 and an anode wire 2 extending from one surface of the anode body 1 and electrically connected to the anode lead terminal 13.
  • the anode body 1 is, for example, a rectangular parallelepiped porous sintered body obtained by sintering metal particles.
  • the metal particles particles of a valve acting metal such as titanium (Ti), tantalum (Ta), and niobium (Nb) are used.
  • a valve acting metal such as titanium (Ti), tantalum (Ta), and niobium (Nb) are used.
  • One kind or two or more kinds of metal particles are used for the anode body 1.
  • the metal particles may be an alloy composed of two or more kinds of metals.
  • an alloy containing a valve acting metal and silicon, vanadium, boron and the like can be used.
  • a compound containing a valve acting metal and a typical element such as nitrogen may be used.
  • the valve-acting metal alloy contains the valve-acting metal as a main component, and for example, contains 50 atomic% or more of the valve-acting metal.
  • the anode wire 2 is made of a conductive material.
  • the material of the anode wire 2 is not particularly limited, and examples thereof include copper, aluminum, and aluminum alloys in addition to the valve acting metal.
  • the materials constituting the anode body 1 and the anode wire 2 may be of the same type or different types.
  • the anode wire 2 has a first portion 2a embedded in the anode body 1 from one surface of the anode body 1 and a second portion 2b extending from the one surface of the anode body 1.
  • the cross-sectional shape of the anode wire 2 is not particularly limited, and includes a circular shape, a track shape (a shape consisting of a straight line parallel to each other and two curves connecting the ends of these straight lines), an ellipse, a rectangle, a polygon, and the like. Be done.
  • the anode portion 6 is manufactured, for example, by embedding the first portion 2a in the powder of the metal particles, pressure-molding it into a rectangular parallelepiped shape, and sintering it. As a result, the second portion 2b of the anode wire 2 is pulled out from one surface of the anode body 1 so as to be planted. The second portion 2b is joined to the anode lead terminal 13 by welding or the like, and the anode wire 2 and the anode lead terminal 13 are electrically connected to each other.
  • the welding method is not particularly limited, and examples thereof include resistance welding and laser welding. After that, a process for forming a curved surface can be performed on the corner portion of the rectangular parallelepiped.
  • a dielectric layer 3 is formed on the surface of the anode body 1.
  • the dielectric layer 3 is made of, for example, a metal oxide.
  • a method of forming a layer containing a metal oxide on the surface of the anode body for example, a method of immersing the anode body 1 in a chemical conversion solution to anodize the surface of the anode body 1 or an anode body 1 with oxygen.
  • a method of heating in a including atmosphere can be mentioned.
  • the dielectric layer 3 is not limited to the layer containing the metal oxide, and may have an insulating property.
  • the cathode portion 7 has a solid electrolyte layer 4 and a cathode layer 5 that covers the solid electrolyte layer 4.
  • the solid electrolyte layer 4 is formed so as to cover at least a part of the dielectric layer 3.
  • a manganese compound or a conductive polymer is used for the solid electrolyte layer 4.
  • the conductive polymer include polypyrrole, polythiophene, polyfuran, polyaniline, polyacetylene, and the like. These may be used alone or in combination of a plurality of types. Further, the conductive polymer may be a copolymer of two or more kinds of monomers. Polythiophene, polyaniline, or polypyrrole may be used because of its excellent conductivity. In particular, polypyrrole may be used because it has excellent water repellency.
  • the solid electrolyte layer 4 containing the conductive polymer is formed, for example, by polymerizing a raw material monomer on the dielectric layer 3. Alternatively, it is formed by applying a liquid containing the conductive polymer to the dielectric layer 3.
  • the solid electrolyte layer 4 is composed of one layer or two or more solid electrolyte layers. When the solid electrolyte layer 4 is composed of two or more layers, the composition and the forming method (polymerization method) of the conductive polymer used for each layer may be different.
  • polypyrrole, polythiophene, polyfuran, polyaniline, etc. mean macromolecules having polypyrrole, polythiophene, polyfuran, polyaniline, etc. as basic skeletons, respectively. Therefore, polypyrrole, polythiophene, polyfuran, polyaniline and the like may also contain their respective derivatives.
  • polythiophene includes poly (3,4-ethylenedioxythiophene) and the like.
  • Various dopants may be added to the polymer solution for forming the conductive polymer, the solution or the dispersion solution of the conductive polymer, in order to improve the conductivity of the conductive polymer.
  • the dopant is not particularly limited, and examples thereof include naphthalene sulfonic acid, p-toluene sulfonic acid, and polystyrene sulfonic acid.
  • the average particle size D50 of the particles is, for example, 0.01 ⁇ m or more and 0.5 ⁇ m or less. When the average particle size D50 of the particles is in this range, the particles easily penetrate into the inside of the anode 1.
  • the cathode layer 5 has, for example, a carbon layer 5a formed so as to cover the solid electrolyte layer 4 and a metal paste layer 5b formed on the surface of the carbon layer 5a.
  • the carbon layer 5a contains a conductive carbon material such as graphite and a resin.
  • the metal paste layer 5b contains, for example, metal particles (eg, silver) and a resin.
  • the configuration of the cathode layer 5 is not limited to this configuration.
  • the cathode layer 5 may be configured as long as it has a current collecting function.
  • the anode lead terminal 13 is electrically connected to the anode body 1 via the second portion 2b of the anode wire 2.
  • the material of the anode lead terminal 13 is not particularly limited as long as it is electrochemically and chemically stable and has conductivity.
  • the anode lead terminal 13 may be a metal such as copper or a non-metal.
  • the shape is not particularly limited as long as it is a flat plate.
  • the thickness of the anode lead terminal 13 (distance between the main surfaces of the anode lead terminal 13) may be 25 ⁇ m or more and 200 ⁇ m or less, and may be 25 ⁇ m or more and 100 ⁇ m or less from the viewpoint of reducing the height.
  • anode lead terminal 13 may be bonded to the anode wire 2 by conductive adhesive or solder, or may be bonded to the anode wire 2 by resistance welding or laser welding.
  • the other end of the anode lead terminal 13 is led out to the outside of the exterior body 11 and is exposed from the exterior body 11.
  • the conductive adhesive is, for example, a mixture of a thermosetting resin described later and carbon particles or metal particles.
  • the cathode lead terminal 14 is electrically connected to the cathode portion 7 at the joint portion 14a.
  • the bonding portion 14a is a portion where the cathode layer 5 and the cathode lead terminal 14 bonded to the cathode layer 5 overlap with the cathode layer 5 of the cathode lead terminal 14 when viewed from the normal direction of the cathode layer 5.
  • the cathode lead terminal 14 is bonded to the cathode layer 5 via, for example, a conductive adhesive 8.
  • One end of the cathode lead terminal 14 constitutes, for example, a part of the joint portion 14a, and is arranged inside the exterior body 11.
  • the other end of the cathode lead terminal 14 is led out to the outside. Therefore, a part including the other end of the cathode lead terminal 14 is exposed from the exterior body 11.
  • the material of the cathode lead terminal 14 is not particularly limited as long as it is electrochemically and chemically stable and has conductivity.
  • the cathode lead terminal 14 may be a metal such as copper or a non-metal.
  • the shape is not particularly limited, and is, for example, long and flat.
  • the thickness of the cathode lead terminal 14 may be 25 ⁇ m or more and 200 ⁇ m or less, or 25 ⁇ m or more and 100 ⁇ m or less, from the viewpoint of reducing the height.
  • the exterior body 11 is provided to electrically insulate the anode lead terminal 13 and the cathode lead terminal 14, and is made of an insulating material (exterior body material).
  • the exterior material includes, for example, a thermosetting resin.
  • the thermosetting resin include epoxy resin, phenol resin, silicone resin, melamine resin, urea resin, alkyd resin, polyurethane, polyimide, unsaturated polyester and the like.
  • a method for manufacturing an electrolytic capacitor is a capacitor including an anode substrate, a porous anode body including a dielectric layer formed on the surface of the anode substrate, and a solid electrolyte layer covering at least a part of the dielectric layer.
  • a method for manufacturing a solid electrolytic capacitor equipped with an element which is a step of preparing an anode base material containing a binder of metal powder, a step of sintering an anode base material, and a step of forming the anode base material after sintering.
  • the treatment includes a step of obtaining an anode body including an anode substrate and a dielectric layer, and a step of covering at least a part of the dielectric layer with a solid electrolyte layer.
  • the anode substrate has a plurality of main surfaces.
  • the manufacturing method further comprises a densification step of increasing the density of at least one region of at least one of the plurality of main surfaces of the anode substrate.
  • an anode base material to be a base material for manufacturing the anode body 1 is prepared.
  • a porous body can be used.
  • the valve-acting metal particles and the anode wire 2 are placed in a mold so that the first portion 2a is embedded in the valve-acting metal particles, pressure-molded, and an anode base material containing a binder of the valve-acting metal particles.
  • the pressure during pressure molding is not particularly limited. If necessary, a binder such as polyacrylic carbonate may be mixed with the valve acting metal particles.
  • Valve-acting metal particles are usually pressure-molded and sintered using a mold having a rectangular parallelepiped internal space (secondary molding).
  • the anode base material before sintering has a plurality of main surfaces corresponding to a rectangular parallelepiped.
  • the shape of the anode base material after sintering is also a rectangular parallelepiped, and has a plurality of main surfaces.
  • a plurality of main surfaces are directly connected to each other to form sides and vertices, and usually, a corner portion which is a side portion and / or a vertex portion connecting a plurality of main surfaces has a sharp tip. It has a shape that does not have a curved surface.
  • the main surface of the anode base material can be densified (higher density) with respect to the anode base material after pressure molding.
  • the densification step for example, the main surface is densified (high density) by colliding the media particles with the main surface of the anode base material.
  • the densification may be performed by vibrating the anode substrate together with the media particles. More specifically, densification can be performed by placing the anode base material together with the media particles on the container or pedestal and vibrating the container or pedestal in the vertical and / or horizontal directions. With the vibration of the container or the pedestal, the anode base material and the media particles vibrate, and the collision between the anode base material and the media particles is promoted.
  • the surface layer of the main surface of the anode base material is compressed and formed at high density.
  • the media particles can also collide with the corner portions (side portions and apex portions) connecting the main surfaces of the anode base material.
  • a curved surface is formed by compressing the corner portions, and at least a part of the corner portions is formed at a higher density than the densified region of the main surface.
  • the pedestal (or the bottom of the container) may be a sieve.
  • the coefficient of static friction is moderately small, and it is easy to induce the motion of the media particles and the collision of the media particles with the anode base material. Due to the collision with the media particles, most of the surface layer of the anode base material is in a compressed state.
  • the mesh opening of the sieve may be less than the minimum value of the external dimensions of the anode base material so that the anode base material does not fall through the opening of the sieve.
  • the mesh size of the sieve may be 1 mm or more, or 2 mm or more and 3.4 mm or less. When the opening is 1 mm or more, it is easy to reduce the variation in curvature at the corner portion to a certain value or less.
  • the anode With the anode base material placed on the media particles, the anode may be vibrated together with the media particles by applying an external force to the media particles. More specifically, for example, the anode base material may be mixed with the media particles, the anode base material may be charged into the shaker together with the media particles, and the shaker may be operated.
  • the shaker is preferably one that can apply vibration in the vertical direction as well as in the horizontal direction.
  • the anode base material and the media particles are put into the rotary barrel, the anode base material and the media particles are not vibrated, so that the effect of densifying the main surface of the anode base material can be obtained. hard.
  • the rotation of the anode base material and the media particles may induce collisions of the media particles with the anode base material, it takes a long time to densify the main surface, and it is difficult to uniformly densify the main surface. be. Further, since the anode base material and the media particles are pushed upward with the rotation of the barrel, the impact when they are dropped is large, and the anode base material is liable to be cracked or chipped.
  • the density of the media particles may be 0.15 to 0.4 times the density (true density) of the anode base material.
  • the density of the media particles is in the above range, the energy due to the collision of the media particles can be efficiently utilized for the compressive deformation of the anode base material.
  • Alumina particles, zirconia particles, etc. can be used as the media particles.
  • the particle size (average particle size) of the media particles may be 1/3 or less of the maximum size of the anode body, or may be 1/5 or less. In this case, the media particles are more likely to collide with the main surface than the corner portions of the anode base material, and the main surface of the anode base material is likely to be uniformly compressed by the collision.
  • the maximum dimension of the anode body refers to the maximum ferret diameter of the anode body excluding the anode wire, and when the anode body is a rectangular parallelepiped, it refers to the length of the longest side.
  • the particle size (average particle size) of the media particles is, for example, 0.1 mm to 3 mm, and may be 0.5 mm to 2 mm.
  • the anode base material is composed of a valve acting metal other than aluminum (for example, tantalum)
  • the media particles collide with the anode base material, so that the alumina derived from the media particles is obtained. May adhere to the anode substrate in a small amount.
  • the anode can include a dielectric layer containing aluminum oxide. If the amount of aluminum oxide contained in the dielectric layer is very small, the insulating property of the dielectric layer is improved, the withstand voltage is improved, and the leakage current is reduced.
  • the dielectric layer may contain a plurality of materials having different dielectric constants, which may lead to a decrease in capacitance.
  • the amount of alumina adhering to the anode base material can be appropriately controlled by the frequency of vibration, the particle size of the media particles, the mixing ratio of the anode base material and the media particles to be charged into the container, the time for the media particles to collide, and the like. ..
  • At least a part of the surface of the media particles may be previously coated with the same metal as the constituent metal of the metal powder of the anode base material.
  • the constituent metal does not mean an impurity contained in the anode base material, but a main component.
  • the media particles for example, alumina particles
  • the alumina derived from the media particles adheres to the anode base material
  • the constituent metals of the anode base material adhere to the surface of the media particles.
  • the surface of the media particles can be coated with the same metal as the constituent metal of the anode base material. In this way, media particles whose surface is coated with the same metal as the constituent metal of the anode base material may be used.
  • the surface layer of the main surface of the anode base material can be easily compressed and densely formed through the media particles, and the main surface of the anode body can be formed in a short time. Can be densified with a uniform density. In addition, the occurrence of bending of the anode wire is suppressed.
  • the anode base material is sintered. Sintering is preferably performed under reduced pressure.
  • the first portion 2a of the anode wire is embedded in the porous sintered body from one surface thereof.
  • the porous sintered body after sintering may be densified.
  • the densification step is preferably performed on the pressure-molded anode base material before sintering.
  • the densification can be performed in the same manner as the densification of the anode base material before sintering.
  • the metal powder When the metal powder is pressure-molded to obtain an anode base material, fine metal particles are attached to the main surface of the anode base material regardless of whether it is before or after sintering, which is microscopic. Looking at it, it is often not flat but has an uneven shape. However, the metal fine particles adhering to the main surface do not contribute to the capacitance because the dielectric layer is formed so as to cover the entire surface of the fine particles when the dielectric layer is formed. In the densification step, by compressing the surface layer of the anode base material together with the metal fine particles, the dielectric layer formed on the surface of the fine particles can also contribute to the capacity, and the capacity is improved.
  • Step of obtaining an anode (chemical conversion treatment step)
  • the anode base material after sintering is subjected to chemical conversion treatment to obtain a porous anode body 1 including an anode base material and a dielectric layer formed on the surface of the anode base material.
  • the anode base material is immersed in a chemical bath filled with an electrolytic aqueous solution (for example, a phosphoric acid aqueous solution), the second portion 2b of the anode wire 2 is connected to the anode body of the chemical tank, and anodization is performed.
  • an electrolytic aqueous solution for example, a phosphoric acid aqueous solution
  • the dielectric layer 3 made of an oxide film of the valve acting metal can be formed on the surface of the porous portion.
  • the electrolytic aqueous solution is not limited to the phosphoric acid aqueous solution, and nitric acid, acetic acid, sulfuric acid and the like can be used.
  • the non-anodized core portion of the anode body 1 constitutes an anode substrate.
  • the main chemical conversion treatment includes a first chemical conversion step and a second chemical conversion step.
  • a dielectric layer is uniformly formed on the surface layer portion and the inside of the porous anode substrate.
  • a dielectric layer thicker than the dielectric layer formed in the first chemical formation step is formed in the surface layer portion and the vicinity of the surface layer of the porous anode body.
  • the second chemical conversion step is preferably carried out after the first chemical conversion step.
  • a series of chemical conversion treatments including the first chemical conversion step and the second chemical conversion step is referred to as double chemical conversion.
  • the anode base material is immersed in an electrolytic aqueous solution (for example, a phosphoric acid aqueous solution) and anodized, so that the surface of the porous portion is surfaced with a dielectric layer 3 made of an oxide film of a valve acting metal. Can be formed.
  • an electrolytic aqueous solution for example, a phosphoric acid aqueous solution
  • the anode base material is immersed in an electrolytic aqueous solution (for example, sodium tetraborate) and anodized, so that the surface of the porous portion is surfaced with a dielectric layer made of an oxide film of a valve acting metal. 3 can be formed.
  • the applied voltage of anodizing in the second chemical conversion step is preferably higher than the applied voltage of anodizing in the first chemical conversion step.
  • the time of anodizing in the second chemical conversion step is preferably shorter than the time of anodizing in the first chemical conversion step.
  • the thickness of the surface layer portion of the anode body 1 in which the dielectric layer 3 is thickly formed by the second chemical conversion step and the region near the surface layer portion may be thicker than the thickness of the region densified by the secondary molding. This is preferable from the viewpoints of reducing the leakage current of the electrolytic capacitor 20, suppressing the occurrence of short circuit defects, and improving the withstand voltage characteristics.
  • the density and mechanical strength of the surface layer portion and the vicinity of the surface layer portion of the anode 1 can be increased, and the strength against external stress becomes stronger.
  • the increase in leakage current of the electrolytic capacitor 20 and the occurrence of short circuit defects are suppressed, and the withstand voltage characteristics are improved.
  • the density and mechanical strength of the surface layer of the anode body 1 can be evaluated by, for example, comparing the Vickers hardness.
  • FIG. 5 is a diagram comparing the Vickers hardness of the anode body 1 with and without secondary molding and duplication.
  • the Vickers hardness is the average value of the measurement results at any eight points on the main surface of the anode body 1.
  • the Vickers hardness was the highest in the secondary molded and duplexed anode 1. That is, by performing secondary molding and duplication, the electrolytic capacitor 20 becomes strong against stress from the outside, it is possible to suppress an increase in leakage current and occurrence of short circuit defects, and the withstand voltage is improved.
  • the solid electrolyte layer 4 containing the conductive polymer is, for example, a method of impregnating an anode 1 on which the dielectric layer 3 is formed with a monomer or an oligomer, and then polymerizing the monomer or the oligomer by chemical polymerization or electrolytic polymerization.
  • the anode 1 on which the dielectric layer 3 is formed is impregnated with a solution or dispersion of a conductive polymer and dried to form at least a part of the dielectric layer 3.
  • the solid electrolyte layer 4 can be formed, for example, by impregnating the anode 1 on which the dielectric layer 3 is formed with a dispersion liquid containing a conductive polymer, a binder, and a dispersion medium, taking it out, and drying it.
  • the dispersion may contain a binder and / or conductive inorganic particles (eg, a conductive carbon material such as carbon black).
  • the conductive polymer may contain a dopant.
  • the conductive polymer and the dopant may be selected from those exemplified for the solid electrolyte layer 4, respectively.
  • As the binder a known one can be used.
  • the dispersion may contain known additives used in forming the solid electrolyte layer.
  • the carbon paste and the metal paste are sequentially applied to the surface of the solid electrolyte layer 4 to form the cathode layer 5 composed of the carbon layer 5a and the metal paste layer 5b.
  • the configuration of the cathode layer 5 is not limited to this, and any configuration may be used as long as it has a current collecting function.
  • the second portion 2b of the anode wire 2 to be planted from the anode body 1 is joined to the anode lead terminal 13 by laser welding, resistance welding, or the like. Further, after the conductive adhesive material 8 is applied to the cathode layer 5, the cathode lead terminal 14 is joined to the cathode portion 7 via the conductive adhesive material 8.
  • the materials of the capacitor element 10 and the exterior body 11 are housed in a mold, and the capacitor element 10 is sealed by a transfer molding method, a compression molding method, or the like. At this time, a part of the anode lead terminal 13 and the cathode lead terminal 14 is exposed from the mold.
  • the molding conditions are not particularly limited, and the time and temperature conditions may be appropriately set in consideration of the curing temperature of the thermosetting resin used.
  • the exposed portions of the anode lead terminal 13 and the cathode lead terminal 14 are bent along the exterior body 11 to form a bent portion.
  • a part of the anode lead terminal 13 and the cathode lead terminal 14 is arranged on the mounting surface of the exterior body 11.
  • the electrolytic capacitor 20 is manufactured by the above method.
  • FIG. 3A and 3B show electron micrographs of the surface of the main surface of the anode base material in the manufacturing method of the present embodiment.
  • the valve acting metal (Ta) is present in the white portion, and the black portion is a void (pore).
  • FIG. 3A is a photograph before the densification step
  • FIG. 3B is a photograph after the densification step.
  • FIG. 3B shows an anode base material (0.8 mm ⁇ 3.7 mm ⁇ 5.2 mm) before sintering, in which an anode wire is embedded and has a substantially rectangular parallelepiped outer shape, together with alumina particles having an average particle size of 1 mm in the densification step. This is the result when the shaker is put into the shaker and the shaker is operated. No cracking or chipping was observed in all anode substrates, and no bending of the anode wire was observed.
  • FIG. 4A and 4B show electron micrographs of the cross section of the anode base material after the densification step.
  • FIG. 4A is a cross-sectional photograph of the surface layer X of the main surface of the anode base material
  • FIG. 4B is a cross-sectional photograph of the inside Y of the anode base material.
  • the surface layer X has fewer voids than the inner Y and is densified.
  • the porosity P1 in the surface layer X was calculated to be 0.016
  • FIG. 4B the porosity P2 in the inner Y was calculated to be 0.057.
  • the anode base material before sintering was put into a stainless steel container having a diameter of 55 mm ⁇ 55 mm, and the rotation process was performed at 150 rpm for 5 minutes on a ball mill rotary table.
  • the surface layer X was not densified, cracks or chips were observed in 20% of the whole anode base material, and remarkable bending of the anode wire was confirmed in 0.7% of the whole anode base material.
  • the rotation speed was less than 150 rpm, the anode base material slipped on the wall surface of the container, and uniform treatment could not be performed.
  • anode base material before sintering and the alumina particles of ⁇ 1 mm were put into a stainless steel container of ⁇ 55 mm ⁇ 55 mm, and the rotation process was performed at 80 rpm for 5 minutes on a ball mill rotary table. In this case, cracks or chips were found in 5% of the entire anode substrate.
  • the present invention can be used for an electrolytic capacitor, and preferably can be used for an electrolytic capacitor using a porous body as an anode body.
  • Electrolytic condenser 10 Condenser element 1: Anode body 2: Anode wire 2a: First part 2b: Second part 3: Dielectric layer 4: Solid electrolyte layer 5: Cathode layer 5a: Carbon layer 5b: Metal paste layer 6: Anode part 7: Cathode part 8: Conductive adhesive 11: Exterior body 13: Anode lead terminal 14: Cathode lead terminal 14a: Joint part 101A to 101C: Main surface of anode body 102A to 102C: Connection surface 103A: Second Connection surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

【解決手段】電解コンデンサ20は、その表面に誘電体層3が形成された多孔質の陽極体1と、誘電体層3の少なくとも一部を覆う固体電解質層4と、を含むコンデンサ素子10を備える。陽極体1は、複数の主面を有し、陽極体の主面の表層の少なくとも一部は、陽極体の内部よりも緻密である。

Description

電解コンデンサおよびその製造方法
  本発明は、電解コンデンサおよびその製造方法に関する。
  電解コンデンサは、等価直列抵抗(ESR)が小さく、周波数特性が優れているため、様々な電子機器に搭載されている。電解コンデンサは、通常、陽極部および陰極部を備えるコンデンサ素子を備える。陽極部は、多孔質の陽極体を含み、陽極体の表面に誘電体層が形成される。誘電体層は、電解質と接触する。電解質として、導電性高分子などの固体電解質を用いた電解コンデンサがある(例えば、特許文献1)。
特開2009-182157号公報
  固体電解質を用いた電解コンデンサの信頼性を高める。
  本開示の一局面は、陽極基体、および、前記陽極基体の表面に形成された誘電体層を含む多孔質の陽極体と、前記誘電体層の少なくとも一部を覆う固体電解質層と、を含むコンデンサ素子を備え、前記陽極体は、複数の主面を有し、前記陽極体の前記主面の表層Xの少なくとも一部は、前記陽極体の内部Yよりも緻密である、電解コンデンサに関する。
  本開示の他の局面は、陽極基体、および、前記陽極基体の表面に形成された誘電体層を含む多孔質の陽極体と、前記誘電体層の少なくとも一部を覆う固体電解質層と、を含むコンデンサ素子を備える固体電解コンデンサを製造する方法であって、金属粉末の結着体を含む陽極基材を準備する工程と、前記陽極基材を焼結する工程と、焼結後の前記陽極基材に化成処理を施すことにより、前記陽極基体および前記誘電体層を含む前記陽極体を得る工程と、前記誘電体層の少なくとも一部を前記固体電解質層で覆う工程と、を含み、前記陽極基材は複数の主面を有し、前記陽極基材の前記複数の主面の少なくとも一つの少なくとも一部の領域の密度を高める緻密化工程をさらに有する、電解コンデンサの製造方法に関する。
  電解コンデンサの信頼性が向上する。
本発明の一実施形態に係る電解コンデンサに用いられる陽極体の形状を模式的に示す斜視図である。 本発明の一実施形態に係る電解コンデンサを模式的に示す断面図である。 陽極基材の主面を緻密化する前の陽極基材の主面の表面の電子顕微鏡写真である。 陽極基材の主面を緻密化した後の陽極基材の主面の表面の電子顕微鏡写真である。 陽極基材の主面を緻密化した後の陽極基材の主面の表層の断面の電子顕微鏡写真である。 陽極基材の主面を緻密化した後の陽極基材の内部の断面の電子顕微鏡写真である。 陽極体のビッカース硬度を二次成形および二重化成の有無で比較した図である。
 [電解コンデンサ]
  本発明の一実施形態に係る電解コンデンサは、陽極基体、および、前記陽極基体の表面に形成された誘電体層を含多孔質の陽極体と、誘電体層の少なくとも一部を覆う固体電解質層と、を含むコンデンサ素子を備える。陽極体は、複数の主面を有し、陽極体の主面の表層Xの少なくとも一部は、陽極体の内部Yよりも緻密である。
  陽極体は、通常、直方体の形状を有している。この場合、複数の主面とは、直方体の各面を指す。陽極体の表層とは、陽極体の表面からの深さが3μm以内の領域を指す。陽極体の内部とは、陽極体の各主面の表面からの深さが20μm以上の領域を指す。
  陽極体が複数の主面を有する場合、複数の主面のうち2つの主面同士を連結する辺部分、および/または、複数の主面のうち3以上の主面同士を接続する頂点部分が形成され得る。辺部分とは、陽極体の2つの主面が交差する辺およびその近傍の領域を指す。頂点部分とは、陽極体の3つの主面が交差する頂点およびその近傍の領域を指す。ここで、辺部分および頂点部分を、「角部分」と総称する。
  誘電体層は、通常、陽極基材に化成処理を施し、陽極基材の表面を酸化させることにより形成される。したがって、化成により形成される誘電体層の性状は、化成処理前の陽極基材の表面状態の影響を受ける。
  化成処理前の陽極基材は、例えば、金属粉末を型に入れて押し固め、焼結することにより製造され得る。この場合、陽極基材の主面には金属の微粒子が露出し、微視的に見ると平坦ではなく、表面粗さが大きく、凹凸を有した形状になり易い。特に、陽極基材の2つの主面同士を連結する辺部分、および、3以上の主面同士を連結する頂点部分では、陽極基材の表面は、微視的に見ると平坦ではなく、表面粗さが大きく、凹凸を有した形状になり易い。この状態で化成処理により誘電体層を成長させると、凹凸部分において、誘電体層に欠陥が生じ易い。誘電体層に欠陥が生じると、欠陥部分を介して固体電解質と弁作用金属との間に電流が流れる経路が生じ、漏れ電流が増加する場合がある。
  また、化成処理前の陽極基材の外形を反映した外形を有する化成処理後の陽極体は、多孔質であるため脆く、壊れ易い。特に陽極体の角部分は、角部分以外の部分と比べて機械的強度が低く、且つ、熱応力が集中し易い。多孔質部分が損傷することにより、多孔質部分を覆っている誘電体層が損傷する場合がある。誘電体層の損傷により、漏れ電流が増加する場合がある。
  本実施形態の電解コンデンサでは、化成処理前の陽極基材の主面の表層が緻密に形成されることで、化成処理により誘電体層を形成する際に生じる誘電体層の化成時の欠陥を低減することができる。結果、漏れ電流を低減できる。また、誘電体層の機械的強度を高めることができる。これにより、化成後の誘電体層の損傷が抑制され得る。結果、漏れ電流の増加が抑制される。
  陽極体の主面の表層における緻密度については、陽極体の主面の表層Xにおける気孔率P1が、陽極体の内部Yにおける気孔率P2の0.02倍以上0.7倍以下であることが好ましい。気孔率P1が気孔率P2の0.7倍以下であると、表層Xは内部Yに対して十分に緻密であり、化成後の誘電体層の損傷が抑制され、漏れ電流の増加が抑制される。気孔率P1は、より好ましくは気孔率P2の0.5倍以下であり、さらに好ましくは0.3倍以下であってもよい。一方で、気孔率P1が気孔率P2の0.02倍以上であると、陽極体の細孔内に、誘電体層を覆う固体電解質層の形成が容易である。気孔率P1は、より好ましくは気孔率P2の0.05倍以上であり、さらに好ましくは0.1倍以上であってもよい。
  電解コンデンサは、誘電体層または陽極体の表層近傍において、製造工程に起因する微量のアルミニウムを含んでいてもよい。なお、「微量」とは、陽極体の表面からの深さが1μm以内の領域において、誘電体層に占めるアルミニウムの含有量が0.001重量%以上10重量%以下であることを意味する。誘電体層に占めるアルミニウムの含有量は、0.01重量%以上10重量%以下であってもよい。
  陽極体の角部分の少なくとも一部は、曲面形状または面取り形状を有していてもよい。角部分の少なくとも一部に曲面を有しているか、もしくは面取りされていることで、角部分における誘電体層の損傷が抑制され、漏れ電流の小さな電解コンデンサを実現できる。よって、電解コンデンサの信頼性を高めることができる。陽極体の主面の表層に加えて、角部分も緻密化されていることが好ましい。
  角部分の少なくとも一部が曲面形状を有するとは、角部分の断面形状が曲線である場合に限られない。例えば、角部分の断面形状は、複数の鈍角を有する折れ線であってもよい。断面形状が凸形状であり、且つ、断面形状において、一方の主面に対応する直線と、隣接する別の主面に対応する直線とが、少なくとも1つの直線および/または曲線を介して連結されている場合には、角部が曲面形状もしくは面取り形状を有しているといえる。換言すると、角部分が曲面形状もしくは面取り形状を有するとは、隣接する2つの主面に垂直な断面における角部分の断面形状において、90°以下に尖った領域を有さないことも意味する。
  誘電体層を覆うように、固体電解質層が形成される。陽極体の角部分に曲面を有しない場合、角部分における固体電解質層の厚みが薄く形成され易い。特に、固体電解質層が導電性高分子を含み、導電性高分子を化学重合により形成する場合に、角部分において固体電解質層の厚みが薄くなり易い。しかしながら、角部分の少なくとも一部を曲面に形成しておくことで、角部分における固体電解質層の薄膜化を抑制でき、固体電解質層を均一な厚みで形成できる。これにより、電解コンデンサは、外部からの応力に対して強くなり、漏れ電流の増加およびショート不良の発生を抑えることができる。また、耐電圧が向上する。
  表層Xに隣接する角部分の表層Zは、表層Xおよび内部Yよりも緻密であってもよい。角部分の表層Xが緻密に形成されていることにより、角部分の機械的強度を一層高めることができる。よって、角部分を介した漏れ電流の増加の抑制効果を高めることができる。
  角部分が曲面を有しておらず、且つ面取りされていない場合であっても、表層Zが緻密に形成されていることにより、十分な機械的強度が得られる。よって、角部分を介した漏れ電流の増加は抑制され得る。しかしながら、表層Zを含む部分の少なくとも一部が曲面形状または面取り形状であると、漏れ電流を一層抑制でき、好ましい。
  表層Zが表層Xおよび内部Yよりも緻密であるとは、表層Zにおける気孔率P3が、表層Xにおける気孔率P1および内部Yにおける気孔率P2よりも小さいことを意味する。表層Zは、気孔率P1に対する気孔率P3の比P3/P1が、1未満を満たす部分を有していてもよい。P3/P1は、0.8以下もしくは0.5以下であってもよい。表層Zの任意の部分において、P3/P1が1未満を満たしていてもよい。
  また、角部分の少なくとも一部が曲面を有する場合、曲面における曲率は、例えば、0.002(1/μm)~0.05(1/μm)であり、より好ましくは、0.005(1/μm)~0.02(1/μm)であり得る。
  なお、曲率および気孔率は、所定の領域における陽極体の断面写真を画像解析することにより求められる。断面を走査電子顕微鏡(SEM)で撮影し、例えば5μm×10μmの視野において、撮影像の二値化などの画像処理を行い、細孔部分とそれ以外の部分とを区別する。気孔率は、細孔部分とそれ以外の部分との合計面積に占める細孔部分の面積割合として求めることができる。撮影像は任意の10箇所で測定し、10箇所で求められる上記細孔部分の面積割合の平均値として、気孔率を求めることが望ましい。表層X(表層Z)内の領域Aにおける細孔部分の面積割合から、気孔率P1(気孔率P3)が求められる。同様に、内部Y内の領域Bにおける細孔部分の面積割合から、気孔率P2が求められる。角部分の曲率についても、陽極体をある主面の側から写真撮影し、得られた角部(頂点)近傍の輪郭形状を画像解析することにより算出される。
  陽極体の表層の緻密化は、例えば、後述するように、焼結前、または、焼結後で誘電体層形成前の陽極基材をメディア粒子などの振動部材とともに容器内に載置し、容器を振動させることにより、行うことができる。振動により陽極基材の主面が振動部材と衝突し、衝突により主面の表層部が圧縮により内部よりも緻密に形成される。ここで、弁作用金属粒子の粉体を、金型による加圧成形機に埋め込んだ状態で直方体状に加圧成形して、誘電体層形成前の陽極基材を得る成形を一次成形、上記緻密化の成形を二次成形と称することとする。
  このとき、振動部材は、陽極基材の主面のほか、角部分にも衝突する。角部分は機械的強度が低いため、衝突により圧縮され易い。よって、衝突により角部分が圧縮されるとともに、角部分が曲面形状に形成され得る。角部分の表層Zにおける緻密度は、主面の表層Xおよび内部Yよりも高く(気孔率が低く)なる。
  一方で、振動部材を設けず、陽極基材同士を直接衝突させる場合、専ら陽極基材の角部分が別の陽極基材の主面と衝突する。結果、衝撃により割れが発生する場合がある。また、主面の緻密化に長時間が必要であり、この結果として緻密度合いのばらつきが大きくなり、電解コンデンサの特性ばらつきが大きくなる。また、陽極基材の割れも発生し易くなる。これに対し、振動部材を陽極基材と衝突させることで、陽極基材の割れが抑制され、短時間で、陽極基材の主面を均一に緻密化することができる。
  図1は、本実施形態の電解コンデンサに用いられる陽極体(または、陽極基材)の一例を示す模式的な斜視図である。図1に示すように、陽極体1は、略直方体の形状を有し、6つの主面101A~101Fが露出している。なお、101D~101Fは、紙面から隠れた位置にあるため、図示されていない。
  主面101A~101Fにおいて、隣接する2つの主面同士が交差する辺の近傍には、辺部分の角を取ることにより、接続面が形成されていてもよい。図1の例では、主面101Aと101Bとの間に接続面102Cが介在し、主面101Bと101Cとの間に接続面102Aが介在し、主面101Bと101Cとの間に接続面102Aが介在している。また、3つの主面が交わる頂点の近傍には、頂点部分の角を取ることにより、第2の接続面が形成されている。図1の例では、主面101A~101Cが交わる頂点部分に、第2の接続面103Aを有する。第2の接続面103Aは、接続面102A~102C同士を相互に接続している。接続面102A~102Cおよび第2の接続面103Aは、丸みを帯びた曲面に加工されている。接続面102A~102Cおよび第2の接続面103Aは、曲面であってもよく、一または複数の平面で(例えば、角部分が面取りされて)構成されていてもよい。
  なお、図1は陽極体の形状の一例を示すものであるが、化成処理前の陽極基材についても、同様に略直方体の形状を有し、6つの主面101A~101Fが露出し、主面間を接続する辺部分および頂点部分の角が取られ、丸みを帯びた局面に加工されている。
  主面101A~101Fは、その表層の少なくとも一部が、内部よりも緻密に形成されている。これにより、主面101A~101Fの表面は凹凸が少なく、陽極基材および陽極体の機械的強度が高められている。これにより、陽極体1の表面に欠陥の少ない誘電体層が形成される。結果、漏れ電流を低減できる。また、誘電体層の損傷が抑制され、誘電体層の損傷による漏れ電流の増加が抑制され、漏れ電流を小さく維持できる。
  また、角部分が面取りまたは曲面加工された外形を陽極基材が有していることにより、角部分にも欠陥の少ない誘電体層を形成することができ、漏れ電流の低減効果を高めることができる。また、脆く壊れ易い陽極体の角部分の機械的強度が高められ、熱応力の集中が緩和されることにより、誘電体層の損傷による漏れ電流の増加を抑制する効果が高まり、漏れ電流を一層小さく維持できる。
  接続面102A~102Cおよび/または第2の接続面103Aの表層は、多孔質である主面101A~101Fの表層よりも緻密に形成されていてもよい。すなわち、接続面102A~102Cおよび/または第2の接続面103Aの表層における気孔率P3は、陽極体1の内部における気孔率P2よりも小さく、且つ、主面101A~101Fの表層における気孔率P1よりも小さくてもよい。
  陽極体1の主面101Bから、陽極ワイヤ2が延出している。陽極体1および陽極ワイヤ2は、陽極部6を構成する。
  以下、本実施形態に係る電解コンデンサの構成について、適宜図面を参照しながら説明する。しかしながら、本発明はこれに限定されるものではない。図2は、本実施形態に係る電解コンデンサの断面模式図である。
  電解コンデンサ20は、陽極部6および陰極部7を有するコンデンサ素子10と、コンデンサ素子10を封止する外装体11と、陽極部6と電気的に接続し、かつ、外装体11から一部が露出する陽極リード端子13と、陰極部7と電気的に接続し、かつ、外装体11から一部が露出する陰極リード端子14と、を備えている。陽極部6は、陽極体1と陽極ワイヤ2とを有する。陽極体1は、その表面に形成された誘電体層3を含む。陰極部7は、誘電体層3の少なくとも一部を覆う固体電解質層4と、固体電解質層4の表面を覆う陰極層5とを有する。
 <コンデンサ素子>
  以下、コンデンサ素子10について、電解質として固体電解質層を備える場合を例に挙げて、詳細に説明する。
  陽極部6は、陽極体1と、陽極体1の一面から延出して陽極リード端子13と電気的に接続する陽極ワイヤ2と、を有する。
  陽極体1は、例えば、金属粒子を焼結して得られる直方体の多孔質焼結体である。上記金属粒子として、チタン(Ti)、タンタル(Ta)、ニオブ(Nb)などの弁作用金属の粒子が用いられる。陽極体1には、1種または2種以上の金属粒子が用いられる。金属粒子は、2種以上の金属からなる合金であってもよい。例えば、弁作用金属と、ケイ素、バナジウム、ホウ素等とを含む合金を用いることができる。また、弁作用金属と窒素等の典型元素とを含む化合物を用いてもよい。弁作用金属の合金は、弁作用金属を主成分とし、例えば、弁作用金属を50原子%以上含む。
  陽極ワイヤ2は、導電性材料から構成されている。陽極ワイヤ2の材料は特に限定されず、例えば、上記弁作用金属の他、銅、アルミニウム、アルミニウム合金等が挙げられる。陽極体1および陽極ワイヤ2を構成する材料は、同種であってもよいし、異種であってもよい。陽極ワイヤ2は、陽極体1の一面から陽極体1の内部へ埋設された第一部分2aと、陽極体1の上記一面から延出した第二部分2bと、を有する。陽極ワイヤ2の断面形状は特に限定されず、円形、トラック形(互いに平行な直線とこれら直線の端部同士を繋ぐ2本の曲線とからなる形状)、楕円形、矩形、多角形等が挙げられる。
  陽極部6は、例えば、第一部分2aを上記金属粒子の粉体中に埋め込んだ状態で直方体状に加圧成形し、焼結することにより作製される。これにより、陽極体1の一面から、陽極ワイヤ2の第二部分2bが植立するように引き出される。第二部分2bは、溶接等により、陽極リード端子13と接合されて、陽極ワイヤ2と陽極リード端子13とが電気的に接続する。溶接の方法は特に限定されず、抵抗溶接、レーザー溶接等が挙げられる。その後、直方体の角部分に曲面を形成する加工が施され得る。
  陽極体1の表面には、誘電体層3が形成されている。誘電体層3は、例えば、金属酸化物から構成されている。陽極体1の表面に金属酸化物を含む層を形成する方法として、例えば、化成液中に陽極体1を浸漬して陽極体1の表面を陽極酸化する方法や、陽極体1を、酸素を含む雰囲気下で加熱する方法が挙げられる。誘電体層3は、上記金属酸化物を含む層に限定されず、絶縁性を有していればよい。
 (陰極部)
  陰極部7は、固体電解質層4と、固体電解質層4を覆う陰極層5とを有している。固体電解質層4は、誘電体層3の少なくとも一部を覆うように形成されている。
  固体電解質層4には、例えば、マンガン化合物や導電性高分子が用いられる。導電性高分子としては、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリン、ポリアセチレン、などが挙げられる。これらは、単独で用いてもよく、複数種を組み合わせて用いてもよい。また、導電性高分子は、2種以上のモノマーの共重合体でもよい。導電性に優れる点で、ポリチオフェン、ポリアニリン、ポリピロールであってもよい。特に、撥水性に優れる点で、ポリピロールであってもよい。
  上記導電性高分子を含む固体電解質層4は、例えば、原料モノマーを誘電体層3上で重合することにより、形成される。あるいは、上記導電性高分子を含んだ液を誘電体層3に塗布することにより形成される。固体電解質層4は、1層または2層以上の固体電解質層から構成されている。固体電解質層4が2層以上から構成されている場合、各層に用いられる導電性高分子の組成や形成方法(重合方法)等は異なっていてもよい。
  なお、本明細書では、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリンなどは、それぞれ、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリンなどを基本骨格とする高分子を意味する。したがって、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリンなどには、それぞれの誘導体も含まれ得る。例えば、ポリチオフェンには、ポリ(3,4-エチレンジオキシチオフェン)などが含まれる。
  導電性高分子を形成するための重合液、導電性高分子の溶液または分散液には、導電性高分子の導電性を向上させるために、様々なドーパントを添加してもよい。ドーパントは、特に限定されないが、例えば、ナフタレンスルホン酸、p-トルエンスルホン酸、ポリスチレンスルホン酸などが挙げられる。
  導電性高分子が、粒子の状態で分散媒に分散している場合、その粒子の平均粒径D50は、例えば0.01μm以上、0.5μm以下である。粒子の平均粒径D50がこの範囲であれば、陽極体1の内部にまで粒子が侵入し易くなる。
  陰極層5は、例えば、固体電解質層4を覆うように形成されたカーボン層5aと、カーボン層5aの表面に形成された金属ペースト層5bと、を有している。カーボン層5aは、黒鉛等の導電性炭素材料と樹脂を含む。金属ペースト層5bは、例えば、金属粒子(例えば、銀)と樹脂とを含む。なお、陰極層5の構成は、この構成に限定されない。陰極層5の構成は、集電機能を有する構成であればよい。
 <陽極リード端子>
  陽極リード端子13は、陽極ワイヤ2の第二部分2bを介して、陽極体1と電気的に接続している。陽極リード端子13の材質は、電気化学的および化学的に安定であり、導電性を有するものであれば特に限定されない。陽極リード端子13は、例えば銅等の金属であってもよいし、非金属であってもよい。その形状は平板状であれば、特に限定されない。陽極リード端子13の厚み(陽極リード端子13の主面間の距離)は、低背化の観点から、25μm以上、200μm以下であってよく、25μm以上、100μm以下であってよい。
  陽極リード端子13の一端は、導電性接着材やはんだにより、陽極ワイヤ2に接合されてもよいし、抵抗溶接やレーザ溶接により、陽極ワイヤ2に接合されてもよい。陽極リード端子13の他方の端部は、外装体11の外部へと導出されて、外装体11から露出している。導電性接着材は、例えば後述する熱硬化性樹脂と炭素粒子や金属粒子との混合物である。
 <陰極リード端子>
  陰極リード端子14は、接合部14aにおいて陰極部7と電気的に接続している。接合部14aは、陰極層5と陰極層5に接合された陰極リード端子14とを、陰極層5の法線方向からみたとき、陰極リード端子14の陰極層5に重複する部分である。
  陰極リード端子14は、例えば、導電性接着材8を介して、陰極層5に接合される。陰極リード端子14の一方の端部は、例えば接合部14aの一部を構成しており、外装体11の内部に配置される。陰極リード端子14の他方の端部は、外部へと導出されている。そのため、陰極リード端子14の他方の端部を含む一部は、外装体11から露出している。
  陰極リード端子14の材質も、電気化学的および化学的に安定であり、導電性を有するものであれば、特に限定されない。陰極リード端子14は、例えば銅等の金属であってもよいし、非金属であってもよい。その形状も特に限定されず、例えば、長尺かつ平板状である。陰極リード端子14の厚みは、低背化の観点から、25μm以上200μm以下であってもよく、25μm以上100μm以下であってもよい。
 <外装体>
  外装体11は、陽極リード端子13と陰極リード端子14とを電気的に絶縁するために設けられており、絶縁性の材料(外装体材料)から構成されている。外装体材料は、例えば、熱硬化性樹脂を含む。熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、シリコーン樹脂、メラミン樹脂、尿素樹脂、アルキド樹脂、ポリウレタン、ポリイミド、不飽和ポリエステル等が挙げられる。
≪電解コンデンサの製造方法≫
 以下に、本実施形態に係る電解コンデンサの製造方法の一例を説明する。
  電解コンデンサの製造方法は、陽極基体、および、前記陽極基体の表面に形成された誘電体層を含む多孔質の陽極体と、誘電体層の少なくとも一部を覆う固体電解質層と、を含むコンデンサ素子を備える固体電解コンデンサを製造する方法であって、金属粉末の結着体を含む陽極基材を準備する工程と、陽極基材を焼結する工程と、焼結後の陽極基材に化成処理を施すことにより、陽極基体および誘電体層を含む陽極体を得る工程と、誘電体層の少なくとも一部を固体電解質層で覆う工程と、を含む。陽極基材は、複数の主面を有する。製造方法は、陽極基材の複数の主面の少なくとも一つの少なくとも一部の領域の密度を高める緻密化工程をさらに有する。
 (1)陽極基材の準備工程
  先ず、陽極体1を製造するための基材となる陽極基材を準備する。陽極基材としては、多孔質体を用いることができる。その場合、弁作用金属粒子と陽極ワイヤ2とを、第一部分2aが弁作用金属粒子に埋め込まれるように型に入れ、加圧成形して、弁作用金属粒子の結着体を含む陽極基材を得る。加圧成形の際の圧力は特に限定されない。弁作用金属粒子には、必要に応じて、ポリアクリルカーボネート等のバインダを混合してもよい。
  弁作用金属粒子は、通常、直方体の内部空間を有する型を用いて加圧成形され、焼結される(二次成形)。この場合、焼結前の陽極基材は直方体に対応する複数の主面を有する。また、焼結後の陽極基材の形状も直方体であり、複数の主面を有している。この場合、複数の主面同士が直接連結して、辺および頂点が形成されており、通常、複数の主面同士を連結する辺部分および/または頂点部分である角部分は、先端部が尖った状態であり、曲面を有しない形状である。
  加圧成形後の陽極基材に対して、陽極基材の主面の緻密化(高密度化)が行われ得る。緻密化工程では、例えば、陽極基材の主面にメディア粒子を衝突させることによって、主面の緻密化(高密度化)が行われる。好ましくは、緻密化は、陽極基材をメディア粒子とともに振動させることで行ってもよい。より具体的には、陽極基材をメディア粒子とともに容器または台座の上に載せ、容器または台座を上下方向および/または左右方向に振動させることで、緻密化が行われ得る。容器または台座の振動に伴い、陽極基材およびメディア粒子が振動し、陽極基材とメディア粒子との衝突が促される。メディア粒子が陽極基材の主面に衝突することにより、陽極基材の主面の表層が圧縮され、高密度に形成される。
  メディア粒子は、陽極基材の主面と衝突するほか、陽極基材の主面同士を連結する角部分(辺部分および頂点部分)にも衝突し得る。この結果、陽極基材の主面に加えて、角部分が圧縮されることにより曲面が形成されるとともに、角部分の少なくとも一部が主面の緻密化された領域よりも高密度に形成され得る。
  台座(または、容器の底部)は、篩(ふるい)であってもよい。静摩擦係数が適度に小さく、メディア粒子の運動およびメディア粒子の陽極基材との衝突を誘起させ易い。メディア粒子との衝突により、陽極基材の表層の大半は圧縮された状態となる。台座が篩であると、陽極ワイヤが直接台座に衝突することが少なるため陽極ワイヤが折れ曲がるリスクを低減することができる。篩の目開きは、陽極基材が篩の開口を通過して落下しないように陽極基材の外形寸法の最小値未満であればよい。篩の目開きは、1mm以上であってもよく、2mm以上3.4mm以下であってもよい。目開きが1mm以上であると、角部分における曲率のばらつきを一定値以下に低減し易い。
  陽極基材をメディア粒子の上に置いた状態で、メディア粒子に外力を作用させることで陽極体をメディア粒子とともに振動させてもよい。より具体的には、例えば、陽極基材をメディア粒子と混合し、陽極基材をメディア粒子とともに振とう機に投入し、振とう機を稼働させてもよい。振とう機は、水平方向のほか、垂直方向の振動を加えることができるものが好ましい。これに対し、陽極基材およびメディア粒子を回転式のバレルに投入しても、陽極基材およびメディア粒子に振動を加えるものではないため、陽極基材の主面を緻密化する効果は得られ難い。陽極基材およびメディア粒子の回転により、メディア粒子の陽極基材との衝突が誘起され得るものの、主面の緻密化には長時間を有し、主面を均一に緻密化することは困難である。また、陽極基材やメディア粒子がバレルの回転とともに上方向に押し上げられるため、それらが落下した時の衝撃が大きく、陽極基材の割れや欠けが発生しやすくなる。
  メディア粒子の密度は、陽極基材の密度(真密度)の0.15~0.4倍であってもよい。メディア粒子の密度が上記範囲である場合、メディア粒子の衝突によるエネルギーが効率的に陽極基材の圧縮変形に利用され得る。
  メディア粒子は、アルミナ粒子、ジルコニア粒子などを用いることができる。メディア粒子の粒径(平均粒径)は、陽極体の最大寸法の1/3以下であってもよく、1/5以下であってもよい。この場合、メディア粒子は陽極基材の角部分よりも主面と衝突し易く、衝突により陽極基材の主面が均一に圧縮され易い。なお、陽極体の最大寸法とは、陽極ワイヤを除いた陽極体の最大フェレ径を指し、陽極体が直方体である場合、最も長い辺の長さを指す。メディア粒子の粒径(平均粒径)は、例えば、0.1mm~3mmであり、0.5mm~2mmであってもよい。
  メディア粒子としてアルミナ粒子を用いる場合に、陽極基材がアルミニウム以外の弁作用金属(例えば、タンタル)で構成されていると、メディア粒子が陽極基材と衝突することにより、メディア粒子に由来するアルミナが微量に陽極基材に付着することがある。アルミナが付着した陽極基材を化成処理することによって、陽極体は、酸化アルミニウムを含む誘電体層を含み得る。誘電体層に含まれる酸化アルミニウムは、微量であれば、誘電体層の絶縁性が向上し、耐圧を向上させるとともに、漏れ電流を低減させる作用を有する。しかしながら、誘電体層に含まれる酸化アルミニウム量が過大であると、誘電率の異なる複数の材料が誘電体層に含まれることにより、容量の低下を招く場合がある。陽極基材に付着するアルミナの量は、振動の周波数、メディア粒子の粒径、容器に投入する陽極基材とメディア粒子との混合割合、メディア粒子を衝突させる時間等により、適量に制御され得る。
  メディア粒子は、表面の少なくとも一部を、予め陽極基材の金属粉末の構成金属と同じ金属で被覆しておいてもよい。ここで、構成金属とは陽極基材に含まれる不純物ではなく、主要な成分を意味する。これにより、メディア粒子が陽極基材と衝突する際に、陽極体を構成する弁作用金属以外の金属(もしくは金属化合物)が陽極基材に付着することが抑制される。例えば、メディア粒子としてアルミナ粒子を用いる場合、アルミナの陽極基材表面への付着が抑制される。メディア粒子の表面の被覆は、公知の方法で行うことができる。しかしながら、メディア粒子(例えば、アルミナ粒子)と陽極基材とが衝突すると、メディア粒子に由来するアルミナが陽極基材に付着する一方で、陽極基材の構成金属がメディア粒子の表面に付着する。結果、メディア粒子の表面が、陽極基材の構成金属と同じ金属で被覆され得る。このようにして、陽極基材の構成金属と同じ金属で表面が被覆されたメディア粒子を用いてもよい。
  このように、陽極基材をメディア粒子とともに振動させ、陽極基材をメディア粒子に衝突させる方法では、陽極基材の主面の表層を効率的に圧縮し、主面を緻密化することが可能となる。
  これに対し、メディア粒子を介さず、陽極基材同士を直接衝突させる場合、専ら陽極基材の角部分が別の陽極基材の主面と衝突する。結果、衝撃により割れが発生し易い。特に、容器の底に位置する陽極基材には他の陽極基材の重量が加わるため、割れまたは欠けが発生し易い。また、陽極基材に設けられた陽極ワイヤが別の陽極基材と衝突し、陽極ワイヤに折れ曲がりが発生する場合もある。また、主面の緻密化に長時間が必要であることから、主面内における緻密度のばらつきも大きくなり、陽極基材の主面を均一な密度で圧縮することは困難である。以上より、メディア粒子を用いない場合には、陽極体の生産性が低下し易い。
  しかしながら、メディア粒子を陽極基材と衝突させることによって、メディア粒子を介して陽極基材の主面の表層を圧縮し、緻密に形成することが容易に実現でき、短時間で陽極体の主面を均一な密度で緻密化することが可能である。また、陽極ワイヤの折れ曲がりの発生も抑制される。
 (2)焼結工程
  その後、陽極基材を焼結する。焼結は、減圧下で行なうことが好ましい。陽極ワイヤの第一部分2aは、多孔質焼結体の一面からその内部に埋設されている。
  焼結後の多孔質焼結体に対し、緻密化を行ってもよい。しかしながら、金属粒子間の結合が強固ではなく、圧縮され易いことから、緻密化工程は、焼結前の加圧成形した陽極基材に対して行うことが好ましい。焼結後の多孔質焼結体である陽極基材に対して緻密化を行う場合、緻密化は、焼結前の陽極基材の緻密化と同様にして行うことができる。
  金属粉末を加圧成型して陽極基材を得る場合、焼結の前であるか後であるかに拘らず、陽極基材の主面には金属の微粒子が付着しており、微視的に見ると平坦ではなく、凹凸を有した形状になっていることが多い。しかしながら、主面に付着した金属微粒子は、誘電体層の形成の際、微粒子の表面全面を覆うように誘電体層が形成されることから、容量に寄与しない。緻密化工程において、陽極基材の表層を金属微粒子とともに圧縮することで、微粒子表面に形成された誘電体層も容量に寄与でき、容量が向上する。
 (3)陽極体を得る工程(化成処理工程)
  次に、焼結後の陽極基材に化成処理を施して、陽極基体、および、陽極基体の表面に形成された誘電体層を含む多孔質の陽極体1を得る。具体的には、電解水溶液(例えば、リン酸水溶液)が満たされた化成槽に、陽極基材を浸漬し、陽極ワイヤ2の第二部分2bを化成槽の陽極体に接続して、陽極酸化を行うことにより、多孔質部分の表面に弁作用金属の酸化被膜からなる誘電体層3を形成することができる。電解水溶液としては、リン酸水溶液に限らず、硝酸、酢酸、硫酸などを用いることができる。陽極体1の陽極酸化されない芯部分は、陽極基体を構成する。
 さらに、本化成処理において、第1化成工程と第2化成工程とを含んでいることが好ましい。第1化成工程は、多孔質の陽極基体の表層部及び内部に均一に誘電体層を形成する。第2化成工程は、多孔質の陽極体の表層部および表層近傍に、第1化成工程で形成した誘電体層よりも厚い誘電体層を形成する。第2化成工程は、第1化成工程の後に実施することが好ましい。なお、第1化成工程および第2化成工程を含む一連の化成処理を、二重化成を称する。
 第1化成工程では、例えば、電解水溶液(例えば、リン酸水溶液)に陽極基材を浸漬し、陽極酸化を行うことにより、多孔質部分の表面に弁作用金属の酸化被膜からなる誘電体層3を形成することができる。
 第2化成工程では、例えば、電解水溶液(例えば、四ホウ酸ナトリウム)に陽極基材を浸漬し、陽極酸化を行うことにより、多孔質部分の表面に弁作用金属の酸化被膜からなる誘電体層3を形成することができる。第2化成工程における陽極酸化の印加電圧は、第1化成工程における陽極酸化の印加電圧よりも高いことが好ましい。第2化成工程における陽極酸化の時間は、第1化成工程における陽極酸化の時間よりも短いことが好ましい。
 また、第2化成工程によって、誘電体層3が厚く形成された陽極体1の表層部および表層部近傍の領域の厚さは、二次成形によって緻密化された領域の厚さよりも厚いことが、電解コンデンサ20の漏れ電流の低減、ショート不良の発生抑制、耐電圧特性の向上の観点で好ましい。
 上記第1化成工程と第2化成工程とを実行することにより、陽極体1の表層部および表層部近傍の密度や機械的強度を高めることができ、外部からの応力に対して強くなり、その結果、電解コンデンサ20の漏れ電流の増大およびショート不良の発生を抑制し、耐電圧特性が向上する。
 陽極体1の表層における密度や機械的強度は、例えば、ビッカース硬度の比較により評価することができる。図5は、陽極体1のビッカース硬度を二次成形および二重化成の有無で比較した図である。ビッカース硬度は、陽極体1の主面における任意の8カ所の測定結果の平均値である。その結果、二次成形および二重化成した陽極体1においてビッカース硬度が最も大きくなった。つまり、二次成形および二重化成をすることで、電解コンデンサ20は、外部からの応力に対して強くなり、漏れ電流の増加およびショート不良の発生を抑えることができ、耐電圧が向上する。
 (4)固体電解質層の形成工程
  続いて、誘電体層3の少なくとも一部を固体電解質層4で覆う。これにより、コンデンサ素子10を得る。
  導電性高分子を含む固体電解質層4は、例えば、誘電体層3が形成された陽極体1に、モノマーやオリゴマーを含浸させ、その後、化学重合や電解重合によりモノマーやオリゴマーを重合させる方法、あるいは、誘電体層3が形成された陽極体1に、導電性高分子の溶液または分散液を含浸し、乾燥させることにより、誘電体層3の少なくとも一部に形成される。
  固体電解質層4は、例えば、誘電体層3が形成された陽極体1を、導電性高分子とバインダと分散媒とを含む分散液に含浸し、取り出して、乾燥させることにより形成され得る。分散液には、バインダ、および/または導電性の無機粒子(例えば、カーボンブラックなどの導電性炭素材料)が含まれていてもよい。また、導電性高分子には、ドーパントが含まれていてもよい。導電性高分子およびドーパントとしては、それぞれ、固体電解質層4について例示したものから選択すればよい。バインダは、公知のものを利用できる。分散液は、固体電解質層を形成する際に使用される公知の添加剤を含んでもよい。
  続いて、固体電解質層4の表面に、カーボンペーストおよび金属ペーストを順次、塗布することにより、カーボン層5aと金属ペースト層5bとで構成される陰極層5を形成する。陰極層5の構成は、これに限られず、集電機能を有する構成であればよい。
  次に、陽極リード端子13と陰極リード端子14とを準備する。陽極体1から植立する陽極ワイヤ2の第二部分2bを、レーザー溶接や抵抗溶接などにより、陽極リード端子13と接合する。また、陰極層5に導電性接着材8を塗布した後、陰極リード端子14を、導電性接着材8を介して陰極部7に接合する。
  続いて、コンデンサ素子10および外装体11の材料(例えば、未硬化の熱硬化性樹脂およびフィラー)を金型に収容し、トランスファー成型法、圧縮成型法等により、コンデンサ素子10を封止する。このとき、陽極リード端子13および陰極リード端子14の一部を金型から露出させる。成型の条件は特に限定されず、使用される熱硬化性樹脂の硬化温度等を考慮して、適宜、時間および温度条件を設定すればよい。
  最後に、陽極リード端子13および陰極リード端子14の露出部分を、外装体11に沿って折り曲げ、屈曲部を形成する。これにより、陽極リード端子13および陰極リード端子14の一部が外装体11の搭載面に配置される。
  以上の方法により、電解コンデンサ20が製造される。
  図3Aおよび図3Bに、本実施形態の製造方法における陽極基材の主面の表面の電子顕微鏡写真を示す。白色の部分に弁作用金属(Ta)が存在し、黒色部分は空隙(細孔)である。図3Aは緻密化工程前の写真であり、図3Bは緻密化工程後の写真である。図3Bは、緻密化工程において、陽極ワイヤが埋め込まれ、略直方体の外形を有する焼結前の陽極基材(0.8mm×3.7mm×5.2mm)を平均粒径1mmのアルミナ粒子とともに振とう機に投入し、振とう機を稼働した場合の結果である。全ての陽極基材において、割れまたは欠けは見られず、陽極ワイヤの曲がりも見られなかった。
  図4Aおよび図4Bに、緻密化工程後の陽極基材の断面の電子顕微鏡写真を示す。図4Aは陽極基材の主面の表層Xにおける断面写真であり、図4Bは陽極基材の内部Yにおける断面写真である。図4Aに示すように、表層Xは、内部Yよりも空隙部分が少なく、緻密化されている。図4Aにおいて、表層Xにおける気孔率P1は0.016と算出され、図4Bにおいて、内部Yにおける気孔率P2は0.057と算出された。
  これに対し、φ55mm×55mmのステンレス製容器に、焼結前の陽極基材を投入し、ボールミル回転台にて150rpmで5分間の回転処理を行った。この場合、表層Xは緻密化されず、陽極基材の全体の20%に割れまたは欠けが見られ、陽極基材の全体の0.7%において、陽極ワイヤの顕著な曲がりが確認された。なお、回転数が150rpm未満では、陽極基材が容器壁面を滑り、均一な処理ができていなかった。
  また、φ55mm×55mmのステンレス製容器に、焼結前の陽極基材と、φ1mmのアルミナ粒子を投入し、ボールミル回転台にて80rpmで5分間の回転処理を行った。この場合、陽極基材の全体の5%に割れまたは欠けが見られた。
  上記のように、焼結前素子を容器内で回転処理した場合、陽極基材の角部と容器壁面等との間で局所的に大きな力が加えられ、割れまたは欠け、あるいは陽極ワイヤの曲がりの原因となったものと考えられる。
  本発明は、電解コンデンサに利用可能であり、好適には、多孔体を陽極体に用いる電解コンデンサに利用することができる。
 20:電解コンデンサ
 10:コンデンサ素子
    1:陽極体
    2:陽極ワイヤ
    2a:第一部分
     2b:第二部分
    3:誘電体層
    4:固体電解質層
    5:陰極層
     5a:カーボン層
     5b:金属ペースト層
    6:陽極部
    7:陰極部
    8:導電性接着材
  11:外装体
  13:陽極リード端子
  14:陰極リード端子
   14a:接合部
  101A~101C:陽極体の主面
  102A~102C:接続面
  103A:第2の接続面
 
 

Claims (17)

  1.   陽極基体、および、前記陽極基体の表面に形成された誘電体層を含む多孔質の陽極体と、
      前記誘電体層の少なくとも一部を覆う固体電解質層と、
    を含むコンデンサ素子を備え、
      前記陽極体は、複数の主面を有し、
      前記陽極体の前記主面の表層Xの少なくとも一部は、前記陽極体の内部Yよりも緻密である、電解コンデンサ。
  2.   前記表層Xにおける気孔率P1は、前記内部Yにおける気孔率P2の0.02倍以上0.7倍以下である、請求項1に記載の電解コンデンサ。
  3.   前記誘電体層は、アルミニウムを、前記陽極体の表面からの深さが1μm以内の領域において、0.001重量%以上10重量%以下の範囲で含む、請求項1または2に記載の電解コンデンサ。
  4.   前記陽極体は、前記複数の主面同士を連結する複数の辺部分および頂点部分を含む角部分をさらに有し、
      前記角部分の少なくとも一部は、曲面形状または面取り形状を有する、請求項1~3のいずれか1項に記載の電解コンデンサ。
  5.   前記表層Xに隣接する前記角部分の表層Zの少なくとも一部は、前記表層Xおよび前記内部Yよりも緻密である、請求項4に記載の電解コンデンサ。
  6.   前記固体電解質層は、導電性高分子を含む、請求項1~5のいずれか1項に記載の電解コンデンサ。
  7.   前記陽極基体は、弁作用を有する金属粒子の焼結体である、請求項1~6のいずれか1項に記載の電解コンデンサ。
  8.   陽極基体、および、前記陽極基体の表面に形成された誘電体層を含む多孔質の陽極体と、前記誘電体層の少なくとも一部を覆う固体電解質層と、を含むコンデンサ素子を備える電解コンデンサを製造する方法であって、
      金属粉末の結着体を含む陽極基材を準備する工程と、
      前記陽極基材を焼結する工程と、
      焼結後の前記陽極基材に化成処理を施すことにより、前記陽極基体および前記誘電体層を含む前記陽極体を得る工程と、
      前記誘電体層の少なくとも一部を前記固体電解質層で覆う工程と、を含み、
      前記陽極基材は、複数の主面を有し、
      前記陽極基材の前記複数の主面の少なくとも一つの少なくとも一部の領域の密度を高める緻密化工程をさらに有する、電解コンデンサの製造方法。
  9.   前記緻密化工程において、前記陽極基材の前記主面にメディア粒子を衝突させる、請求項8に記載の電解コンデンサの製造方法。
  10.   前記緻密化工程において、前記陽極基材を、前記メディア粒子とともに振動させる、請求項9に記載の電解コンデンサの製造方法。
  11.   前記メディア粒子の平均粒径は、前記陽極体の最大寸法の1/3以下である、請求項9または10に記載の電解コンデンサの製造方法。
  12.   前記メディア粒子は、アルミナ粒子を含む、請求項9~11のいずれか1項に記載の電解コンデンサの製造方法。
  13.   前記メディア粒子は、表面の少なくとも一部が前記金属粉末の構成金属と同じ金属で被覆されている、請求項9~12のいずれか1項に記載の電解コンデンサの製造方法。
  14.   前記緻密化工程は、焼結前の前記陽極基材に対して行われる、請求項8~13のいずれか1項に記載の電解コンデンサの製造方法。
  15.   前記緻密化工程は、焼結後で前記化成処理を施す前の前記陽極基材に対して行われる、請求項8~13のいずれか1項に記載の電解コンデンサの製造方法。
  16.   前記緻密化工程において、前記複数の主面同士を連結する辺部分および頂点部分を含む角部分が、前記主面の前記領域よりも高密度に形成される、請求項8~15のいずれか1項に記載の電解コンデンサの製造方法。
  17.  前記化成処理は、第1化成工程と第2化成工程とを含み、
     前記第2化成工程で形成される誘電体層の厚さは、前記第1化成工程で形成される誘電体層の厚さよりも大きい、請求項8~16のいずれか1項に記載の電解コンデンサの製造方法。
     
     
PCT/JP2021/007188 2020-09-25 2021-02-25 電解コンデンサおよびその製造方法 WO2022064734A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180063960.0A CN116325045A (zh) 2020-09-25 2021-02-25 电解电容器及其制造方法
JP2022551128A JPWO2022064734A1 (ja) 2020-09-25 2021-02-25
US18/171,398 US20230207224A1 (en) 2020-09-25 2023-02-20 Electrolytic capacitor and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020161345 2020-09-25
JP2020-161345 2020-09-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/171,398 Continuation US20230207224A1 (en) 2020-09-25 2023-02-20 Electrolytic capacitor and method for producing same

Publications (1)

Publication Number Publication Date
WO2022064734A1 true WO2022064734A1 (ja) 2022-03-31

Family

ID=80845088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007188 WO2022064734A1 (ja) 2020-09-25 2021-02-25 電解コンデンサおよびその製造方法

Country Status (4)

Country Link
US (1) US20230207224A1 (ja)
JP (1) JPWO2022064734A1 (ja)
CN (1) CN116325045A (ja)
WO (1) WO2022064734A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51138855A (en) * 1975-05-26 1976-11-30 Nippon Electric Co Method of transporting capacitor pellet
JPH01113328U (ja) * 1988-01-26 1989-07-31
JP2006080266A (ja) * 2004-09-09 2006-03-23 Nichicon Corp 固体電解コンデンサ素子およびその製造方法
JP2008022041A (ja) * 2002-07-26 2008-01-31 Sanyo Electric Co Ltd 電解コンデンサ
US20080299335A1 (en) * 2007-05-30 2008-12-04 Jeffrey Poltorak Abrasive process for modifying corners, edges, and surfaces of capacitor anode bodies
JP2014167985A (ja) * 2013-02-28 2014-09-11 Sanyo Electric Co Ltd 固体電解コンデンサ及びその製造方法
WO2017026295A1 (ja) * 2015-08-07 2017-02-16 株式会社村田製作所 コンデンサ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51138855A (en) * 1975-05-26 1976-11-30 Nippon Electric Co Method of transporting capacitor pellet
JPH01113328U (ja) * 1988-01-26 1989-07-31
JP2008022041A (ja) * 2002-07-26 2008-01-31 Sanyo Electric Co Ltd 電解コンデンサ
JP2006080266A (ja) * 2004-09-09 2006-03-23 Nichicon Corp 固体電解コンデンサ素子およびその製造方法
US20080299335A1 (en) * 2007-05-30 2008-12-04 Jeffrey Poltorak Abrasive process for modifying corners, edges, and surfaces of capacitor anode bodies
JP2014167985A (ja) * 2013-02-28 2014-09-11 Sanyo Electric Co Ltd 固体電解コンデンサ及びその製造方法
WO2017026295A1 (ja) * 2015-08-07 2017-02-16 株式会社村田製作所 コンデンサ

Also Published As

Publication number Publication date
JPWO2022064734A1 (ja) 2022-03-31
CN116325045A (zh) 2023-06-23
US20230207224A1 (en) 2023-06-29

Similar Documents

Publication Publication Date Title
US7468882B2 (en) Solid electrolytic capacitor assembly
JP4739982B2 (ja) 固体電解コンデンサの製造方法
JP6285138B2 (ja) 固体電解コンデンサ
JP2024038181A (ja) 電解コンデンサおよびその製造方法
US11521801B2 (en) Solid electrolyte capacitor and fabrication method thereof
JP2009071300A (ja) 固体電解コンデンサ
WO2022064734A1 (ja) 電解コンデンサおよびその製造方法
JP6686975B2 (ja) 固体電解コンデンサ
US8057883B2 (en) Abrasive process for modifying corners, edges, and surfaces of capacitor anode bodies
JP2012069788A (ja) 固体電解コンデンサ
JP7515071B2 (ja) 電解コンデンサ
JP7029666B2 (ja) 固体電解コンデンサ
US20200273627A1 (en) Micropatterned Anode and Cathode Surface for Adhesion and Reliability
JP5810262B2 (ja) 固体電解コンデンサ及びその製造方法
WO2023120309A1 (ja) 電解コンデンサの製造方法
JP2008053512A (ja) 固体電解コンデンサ
JPWO2022064734A5 (ja)
WO2022091854A1 (ja) 電解コンデンサ
JP2020167267A (ja) 電解コンデンサおよびその製造方法
KR102078008B1 (ko) 고체 전해커패시터, 그 제조방법 및 칩형 전자부품
KR102016481B1 (ko) 고체 전해 캐패시터 및 이의 제조방법
CN113228211B (zh) 电解电容器及其制造方法
JP5329319B2 (ja) 固体電解コンデンサ
JP2009176972A (ja) 固体電解コンデンサ用陽極体および固体電解コンデンサ
JP2023095573A (ja) 電解コンデンサの製造方法、および、導電性高分子層の評価方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871871

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022551128

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21871871

Country of ref document: EP

Kind code of ref document: A1