WO2022063335A1 - 一种基于绝缘带的应变片阵列电路直书写打印方法 - Google Patents

一种基于绝缘带的应变片阵列电路直书写打印方法 Download PDF

Info

Publication number
WO2022063335A1
WO2022063335A1 PCT/CN2021/128570 CN2021128570W WO2022063335A1 WO 2022063335 A1 WO2022063335 A1 WO 2022063335A1 CN 2021128570 W CN2021128570 W CN 2021128570W WO 2022063335 A1 WO2022063335 A1 WO 2022063335A1
Authority
WO
WIPO (PCT)
Prior art keywords
printing
insulating
circuit
layer
silver
Prior art date
Application number
PCT/CN2021/128570
Other languages
English (en)
French (fr)
Inventor
于培师
赵军华
祁立鑫
郭志洋
刘禹
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Priority to US17/702,199 priority Critical patent/US11910536B2/en
Publication of WO2022063335A1 publication Critical patent/WO2022063335A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/467Adding a circuit layer by thin film methods
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1241Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing
    • H05K3/125Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing by ink-jet printing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4664Adding a circuit layer by thick film methods, e.g. printing techniques or by other techniques for making conductive patterns by using pastes, inks or powders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/16Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1275Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by other printing techniques, e.g. letterpress printing, intaglio printing, lithographic printing, offset printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/167Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed resistors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/032Materials
    • H05K2201/0323Carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10151Sensor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1241Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing

Definitions

  • the invention relates to the field of strain gauges and the field of 3D printing layered circuits, in particular to a direct writing and printing method for a strain gauge array circuit based on an insulating tape.
  • a resistance strain gauge is a sensor device that converts the strain change on the measured object into an electrical signal.
  • a single resistance strain gauge can only measure the strain of a single point. Therefore, in order to achieve multi-point strain measurement, an array design is required to form a strain. chip array circuit.
  • the matrix circuit provides an idea for the design of the strain gauge array circuit.
  • the horizontal circuit and the vertical circuit intersect with each other, and each intersecting position forms a measurement point.
  • the electrical signal of each measurement point can be obtained by row scanning or column scanning.
  • the matrix circuit will inevitably have the problem of cross insulation between the horizontal circuit and the vertical circuit.
  • the current practice is usually to print the first layer of circuits at the cross of the horizontal circuit and the vertical circuit. Bridge dispensing is performed at the position, but this will produce a raised step at the dispensing site, which will affect the printing accuracy of the second layer of lines, and it is easy to open circuits under tension.
  • the matrix circuit inevitably has the problem of cross-insulation between the horizontal circuit and the vertical circuit.
  • the current practice is usually to print the first layer of circuits at the intersection of the horizontal and vertical circuits. Bridge dispensing, but this will produce a raised step at the dispensing site, which will affect the printing accuracy of the second layer of lines, and it is easy to open the circuit in the case of tensile stress.
  • the present inventor proposes a direct writing and printing method for strain gauge array circuits based on insulating tapes.
  • the technical solution of the present invention is as follows:
  • a direct writing and printing method for a strain gauge array circuit based on an insulating tape comprising:
  • the first insulating layer is formed by direct writing and printing on the plane substrate with insulating material
  • the second insulating layer is formed by directly writing and printing n parallel and spaced insulating tapes on the first circuit layer using insulating materials.
  • the insulating tapes are perpendicular to the first silver lines and continuously cover the m first silver lines in the area. the first silver traces in the region between the strips of insulating tape are exposed relative to the second insulating layer;
  • each second silver circuit includes a main circuit and m branches connected thereto and each The second silver lines are spaced apart respectively; the main circuit of each second silver line is respectively located on the corresponding insulating tape, perpendicular to the first silver line and one end includes an electrode lead-out end, and each branch part of the second silver line is located on the corresponding on the insulating tape, partially outside the insulating tape and on the first insulating layer;
  • each first silver line is exposed between two adjacent insulating tapes
  • a strain gauge head electrode is printed at the area of the electrode and the exposed area between the electrode lead-out end and the adjacent insulating tape, respectively, and the end of each branch of each second silver circuit on the second circuit layer is printed with a strain gage tail electrode, each strain gage head electrode corresponds to a strain gage tail electrode and is connected by a connecting wire;
  • a third insulating layer is formed by printing an insulating material to complete the encapsulation.
  • the third insulating layer covers the electrode lead-out end of the first circuit layer, the electrode lead-out end of the second circuit layer, and the strain gauge head electrode and strain gauge tail electrode on the functional layer. other areas.
  • each strain gauge head electrode, each strain gauge tail electrode and each connection line used to form the functional layer are all printed on the first insulating layer and are not in contact with the insulating tape.
  • the method also includes:
  • the conductive silver paste when using the conductive silver paste to print to form the first circuit layer and the second circuit layer, the conductive silver paste is packed in a printing syringe for printing, and the conductive silver paste is printed and then cured to form the corresponding circuit layers,
  • the viscosity of the conductive silver paste is 10000cP
  • the inner diameter of the printing needle of the printing barrel is 110 ⁇ m
  • the printing line spacing is 100 ⁇ m
  • the printing speed is 3mm/s
  • the extrusion pressure is 0.65Mpa.
  • a further technical solution is that when the first insulating layer, the second insulating layer and the third insulating layer are formed by printing the insulating material, the insulating material is placed in a printing syringe for printing, and the insulating material is printed and then cured to form the corresponding insulating layer.
  • the inner diameter of the printing needle of the printing syringe is 110 ⁇ m
  • the printing line spacing is 100 ⁇ m
  • the printing speed is 10 mm/s
  • the extrusion pressure is 0.1 MPa
  • the curing is performed under a UV curing lamp for 10 minutes.
  • the method also includes:
  • the carbon slurry material was stirred at 2000 rpm for 2 minutes with a planetary mixer and then loaded into the printing syringe, and then centrifuged at 3000 rpm for 3 minutes to remove air bubbles in the carbon slurry material to prepare a conductive carbon slurry for printing to form a functional layer.
  • the conductive carbon paste is contained in a printing syringe for printing, the viscosity of the conductive carbon paste is 30000cP, the inner diameter of the printing needle of the printing syringe is 110 ⁇ m, and the printing line spacing is 110 ⁇ m. It is 100 ⁇ m, the printing speed is 10mm/s, and the extrusion pressure is 0.65Mpa.
  • a further technical solution is that when the functional layer is formed by printing the conductive carbon paste, after printing the conductive carbon paste, use an oven to dry at 120° C. for 15 minutes or place it at room temperature for 3 days to complete the curing to form the functional layer.
  • the present application discloses a direct writing and printing method for a strain gauge array circuit based on an insulating tape, which can solve the insulation problem of the row-column composite circuit at the intersection of two silver circuits.
  • the functional layer of the strain gauge is printed on it and does not contact the insulating tape.
  • the first and last electrodes of the functional layer are respectively Connect with two layers of horizontal and vertical circuits, and finally print a layer of insulating material for encapsulation.
  • This process uses straight writing to complete the whole process printing, which is convenient and simple, and can effectively complete the printing of array strain gauges and ensure the stability of measurement.
  • the form of printing insulating tape for the routing area solves the problems of poor relative position accuracy caused by local dispensing, excessive positioning error of the needle cylinder in the process of multiple curing and printing, and mutual interference between horizontal and vertical circuits, and at the same time guarantees the strain gauge substrate. Strain transfer efficiency to functional layers.
  • FIG. 1 is a flow chart of the novel direct writing printing method disclosed in the present application.
  • FIG. 2 is an exploded schematic diagram of each layer printed in layers in the method of the present application.
  • FIG. 3 is a structural diagram of the present application after printing the first circuit layer.
  • FIG. 4 is a structural diagram of the present application after printing the second insulating layer.
  • FIG. 5 is a structural diagram of the present application after printing the second circuit layer.
  • FIG. 6 is a structural diagram of the application after printing the functional layer.
  • the present application discloses a direct writing and printing method for a strain gauge array circuit based on an insulating tape. Please refer to the flowchart shown in FIG. 1 and the schematic diagram of stacked printing shown in FIG. 2 .
  • the method includes the following steps:
  • step S1 the first insulating layer 1 is formed by direct writing and printing on the plane substrate by using an insulating material. Before printing the first insulating layer 1 , the flat substrate was thoroughly cleaned with absolute ethanol and absorbent cotton before printing.
  • the insulating material used in this application is photosensitive resin (Anycubic). Before the formal printing, a certain amount of photosensitive resin is put into the opaque printing syringe, and the printing syringe is connected with the air pressure control valve. The axis motion platform is used to print on a flat substrate by 3D printing straight writing. After debugging, for this type of photosensitive resin, this application sets the inner diameter of the printing needle of the printing cylinder to 110 ⁇ m, the printing line spacing to 100 ⁇ m, the printing speed to 10 mm/s, and the extrusion pressure to be 0.1 MPa. Good print quality.
  • the insulating material After printing the insulating material, the insulating material is cured under a UV curing lamp for 10 minutes, and finally a first insulating layer 1 is formed.
  • the thickness of the first insulating layer 1 formed in this application ranges from 45 to 75 ⁇ m. The layer printing can effectively ensure the flatness of the first insulating layer and the insulation between the printed circuit and the plane substrate.
  • Step S2 using conductive silver paste to directly write and print m first silver lines 2 spaced in parallel on the insulating layer to form a first circuit layer, and one end of each first silver line 2 includes an electrode lead-out end 3 .
  • the size of the electrode lead-out end 3 at the end of the first silver line 2 is 1 mm ⁇ 1 mm.
  • the conductive silver paste with high conductivity used in this application needs to be prepared first.
  • the preparation method is as follows: use a planetary mixer to stir the silver paste material (XRK-8000H) at 2000rpm for 3 minutes and then put it into printing needle cylinder, and then centrifuged at 3000 rpm for 3 minutes to remove air bubbles in the silver paste material to prepare conductive silver paste for printing and forming the first circuit layer and the second circuit layer.
  • the step of preparing the conductive silver paste may be performed before printing the circuit layer, or may be performed before the printing is officially started, that is, before step S1, which is not limited in this application.
  • the first circuit layer When printing the first circuit layer, put a certain amount of conductive silver paste into the opaque printing syringe, connect the printing syringe to the air pressure control valve, clamp it on the CNC three-axis motion platform, and use 3D printing to write straight. way to print.
  • the inner diameter of the printing needle of the printing cylinder is set to 110 ⁇ m
  • the printing line spacing is 100 ⁇ m
  • the printing speed is 3mm/s
  • the extrusion pressure is 0.65Mpa. Good print quality.
  • After printing the conductive silver paste use an oven to dry at 70° C. for 15 to 30 minutes, and finally form the first circuit layer.
  • Step S3 using insulating material to directly write and print n insulating tapes 4 with parallel intervals on the first circuit layer to form a second insulating layer, the insulating tapes 4 are perpendicular to the first silver lines 2 and continuously cover m first silver lines in the area.
  • the insulating tape 4 when printing the insulating tape 4, the insulating material, printing steps, printing parameters and curing parameters used are the same as the printing of the first insulating layer 1 in step S1, which will not be repeated in this application.
  • the first silver line 2 in the area between the two adjacent insulating tapes 4 is exposed relative to the second insulating layer, and the electrode lead-out end 3 at one end of the first silver line 2 is also exposed relative to the second insulating layer, and the electrode lead-out end 3
  • the first silver line 2 in the region between the adjacent one of the insulating tapes is also exposed relative to the second insulating layer.
  • the length of the insulating tape 4 is greater than the total width formed by the m first silver lines 2, and is greater than the length of the second silver line to be printed subsequently.
  • the specific shape of the insulating tape 4 is not limited in this application, and it is normally For the rectangular strip structure, in the present application, when the length of the second silver line is 21 mm, the size of each insulating strip 4 is 2 mm ⁇ 26 mm.
  • Step S4 use conductive silver paste to print a second silver circuit 5 at each insulating tape 4 of the second insulating layer to form a second circuit layer, and each second silver circuit 5 includes a main circuit 6 and its connected
  • the m branches 7 and the second silver lines 5 are not connected at intervals.
  • the main circuit 6 of each second silver circuit 5 is respectively located on the corresponding insulating tape 4, is perpendicular to the first silver circuit 2, and includes an electrode lead-out end 8 at one end.
  • each branch 6 of the second silver line 5 is partially located on the corresponding insulating tape 4 , partially outside the insulating tape 4 and on the first insulating layer 1 .
  • the same branch 7 of the same second silver circuit 5 is repeatedly written and printed twice to ensure that the circuits can be effectively connected.
  • the second circuit layer has four second silver lines 2 whose main lines are vertical.
  • the length of the main circuit 6 of the second silver circuit 5 is 21 mm
  • a branch circuit 7 is arranged at an interval of 6.5 mm on the main circuit, and each branch circuit is 2 mm long.
  • the width is smaller than the width of the insulating tape 4 by 2 mm.
  • Step S5 using conductive carbon paste to directly write and print m*n strain gauge head electrodes 9, m*n strain gauge tail electrodes 10 and m*n connection lines 11 to form a functional layer, please refer to FIG. 6 .
  • Each first silver line 2 is printed with a strain at the exposed area between the two adjacent insulating tapes 4 and the exposed area between the electrode lead-out end 3 of the first silver line 2 and the adjacent insulating tape 4
  • the head electrode 9, the end of each branch of each second silver line 5 on the second circuit layer is respectively printed with a strain gauge tail electrode 10, and each strain gauge head electrode 9 corresponds to a strain gauge tail electrode 10 and Connected by connecting wire 11 .
  • each strain gage head electrode 9, each strain gage tail electrode 10 and each connecting line 11 are printed on the first insulating layer 1 and are not in contact with the insulating tape 4, so that the entire functional layer is printed on the first insulating layer 1 without contacting with it. Insulating tape contacts.
  • the size of the strain gauge head electrode 9 and the strain gauge tail electrode 10 are both 1 mm ⁇ 1 mm, and the length of the connecting wire 11 is 1.5 mm.
  • the conductive carbon paste with high conductivity used in this application needs to be prepared first. into a printing syringe, and then centrifuged at 3000 rpm for 3 minutes to remove air bubbles in the carbon slurry material to prepare a conductive carbon slurry for printing to form a functional layer.
  • the step of preparing the conductive carbon paste may be performed before printing the functional layer, or may be performed before the printing is officially started, that is, before step S1, which is not limited in this application.
  • Step S6 using insulating material to print a third insulating layer to complete the encapsulation, and the third insulating layer covers the electrode lead-out end 3 of the first circuit layer, the electrode lead-out end 8 of the second circuit layer, and the strain gauge head electrode 9 on the functional layer. and other areas other than the strain gauge tail electrode 10.
  • the insulating materials, printing steps, printing parameters, and curing parameters used are the same as the printing of the first insulating layer 1 in step S1, which will not be repeated in this application.
  • the third insulating layer is the encapsulation layer to ensure the working performance of the sample, and the electrode terminals on the two circuit layers and each electrode on the functional layer are exposed relative to the third insulating layer, which is convenient for external lead measurement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

本发明公开了一种基于绝缘带的应变片阵列电路直书写打印方法,涉及应变片领域和3D打印分层电路领域,该方法在第一电路层打印固化完成以后,在其上层打印数条绝缘带,然后在绝缘带处打印第二电路层,应变片的功能层打印覆盖在其上并且不与绝缘带接触,功能层的首尾电极分别与两层电路层连接,最后打印一层绝缘材料进行封装;利用直书写完成整个流程打印,较为方便、简单,且行列复合电路在两条银线路交叉部位,采用一种新型的绝缘方式,改局部点胶为走线区域打印绝缘带的形式,可以有效的完成阵列应变片的打印以及确保测量的稳定性,同时保障了应变片基底到功能层的应变传递效率。

Description

一种基于绝缘带的应变片阵列电路直书写打印方法 技术领域
本发明涉及应变片领域和3D打印分层电路领域,尤其是一种基于绝缘带的应变片阵列电路直书写打印方法。
背景技术
电阻应变片是一种将被测物体上的应变变化转换成一种电信号的传感器件,单个电阻应变片只能测量单个点的应变,因此为了实现多点应变的测量需要进行阵列化设计形成应变片阵列电路。
矩阵式电路为应变片阵列电路的设计提供了一种思路,横向电路和纵向电路相互交叉,各个交叉位置形成测量点,通过行扫描或者列扫描的形式即可获得每个测量点的电信号。然而,矩阵式电路不可避免会存在横向电路和纵向电路之间的交叉绝缘问题,为了保证电路之间的绝缘,目前的做法通常是在打印第一层线路的时候在横向电路和纵向电路的交叉位置进行搭桥点胶,但这样会在点胶部位产生凸起状的台阶,对于第二层线路的打印精度会产生影响,在拉伸受力情况下容易产生断路。
技术问题
矩阵式电路不可避免会存在横向电路和纵向电路之间的交叉绝缘问题,为了保证电路之间的绝缘,目前的做法通常是在打印第一层线路的时候在横向电路和纵向电路的交叉位置进行搭桥点胶,但这样会在点胶部位产生凸起状的台阶,对于第二层线路的打印精度会产生影响,在拉伸受力情况下容易产生断路。
技术解决方案
本发明人针对上述问题及技术需求,提出了一种基于绝缘带的应变片阵列电路直书写打印方法,本发明的技术方案如下:
一种基于绝缘带的应变片阵列电路直书写打印方法,该方法包括:
利用绝缘材料在平面基底上直书写打印形成第一绝缘层;
利用导电银浆在绝缘层上直书写打印m条平行间隔的第一银线路形成第一电路层,每条第一银线路的一端均包含电极引出端;
利用绝缘材料在第一电路层上直书写打印n条平行间隔的绝缘带形成第二绝缘层,绝缘带垂直于第一银线路且连续覆盖所在区域内的m条第一银线路,相邻两条绝缘带之间区域内的第一银线路相对于第二绝缘层外露;
利用导电银浆在第二绝缘层的每条绝缘带处分别打印一条第二银线路形成第二电路层,每条第二银线路分别包括一条主路及其相连的m条支路且各条第二银线路分别间隔;每条第二银线路的主路分别位于对应的绝缘带上、垂直于第一银线路且一端包含电极引出端,第二银线路的每条支路部分位于对应的绝缘带上、部分在绝缘带外且位于第一绝缘层上;
利用导电碳浆直书写打印m*n个应变片首电极、m*n个应变片尾电极和m*n个连接线形成功能层,每条第一银线路在相邻两条绝缘带之间外露的区域处以及电极引出端与相邻的绝缘带之间外露的区域处分别打印有一个应变片首电极,第二电路层上的每个第二银线路的每条支路的末端分别打印有一个应变片尾电极,每个应变片首电极分别与一个应变片尾电极对应且通过连接线相连;
利用绝缘材料打印形成第三绝缘层完成封装,第三绝缘层覆盖除第一电路层的电极引出端、第二电路层的电极引出端以及功能层上的应变片首电极和应变片尾电极之外的其他区域。
其进一步的技术方案为,用于形成功能层的各个应变片首电极、各个应变片尾电极以及各个连接线均打印在第一绝缘层上且不与绝缘带接触。
其进一步的技术方案为,在打印第二电路层时,对同一条第二银线路的同一条支路进行重复两次直书写打印。
其进一步的技术方案为,该方法还包括:
利用行星搅拌机将银浆材料以2000rpm搅拌3分钟后装入打印针筒,再以3000rpm离心3分钟去除银浆材料中的气泡,制备得到用于打印形成第一电路层和第二电路层的导电银浆。
其进一步的技术方案为,在利用导电银浆打印形成第一电路层和第二电路层时,将导电银浆盛装在打印针筒中进行打印、打印导电银浆后完成固化形成相应的电路层,导电银浆的黏度为10000cP,打印针筒的打印针头内径为110μm,打印线距为100μm,打印速度为3mm/s,挤出气压为0.65Mpa,固化时利用烘箱以70℃烘干15~30分钟。
其进一步的技术方案为,在利用绝缘材料打印形成第一绝缘层、第二绝缘层和第三绝缘层时,绝缘材料盛装在打印针筒中进行打印、打印绝缘材料后完成固化形成相应的绝缘层,打印针筒的打印针头的内径为110μm、打印线距为100μm、打印速度为10mm/s、挤出的气压为0.1MPa,固化时在UV固化灯下固化10min。
其进一步的技术方案为,该方法还包括:
利用行星搅拌机将碳浆材料以2000rpm搅拌2分钟后装入打印针筒,再以3000rpm离心3分钟去除碳浆材料中的气泡,制备得到用于打印形成功能层的导电碳浆。
其进一步的技术方案为,在利用导电碳浆打印形成功能层时,导电碳浆盛装在打印针筒中进行打印,导电碳浆的黏度为30000cP,打印针筒的打印针头内径为110μm,打印线距为100μm,打印速度为10mm/s,挤出气压为0.65Mpa。
其进一步的技术方案为,在利用导电碳浆打印形成功能层时,在打印导电碳浆后利用烘箱以120℃烘干15分钟或在室温下放置3天完成固化形成功能层。
有益效果
本申请公开了一种基于绝缘带的应变片阵列电路直书写打印方法,该技术可以解决行列复合电路在两条银线路交叉部位的绝缘问题,与以往在交叉部位点胶的方式不同,本发明是在第一电路层打印固化完成以后,在其上层打印数条绝缘带,再打印第二电路层,应变片的功能层打印覆盖在其上并且不与绝缘带接触,功能层的首尾电极分别与两层横纵向电路连接,最后打印一层绝缘材料进行封装。该流程利用直书写完成整个流程打印,较为方便、简单,且可以有效的完成阵列应变片的打印以及确保测量的稳定性,在阵列电路的交互部位采用一种新型的绝缘方式,改局部点胶为走线区域打印绝缘带的形式,解决了局部点胶造成的相关位置精度差、多次固化打印的流程中针筒定位误差过大以及横纵向电路互相干涉的问题,同时保障了应变片基底到功能层的应变传递效率。
附图说明
图1是本申请公开的新型直书写打印方法的流程图。
图2是本申请的方法中层叠打印的各层的爆炸示意图。
图3是本申请打印完第一电路层后的结构图。
图4是本申请打印完第二绝缘层后的结构图。
图5是本申请打印完第二电路层后的结构图。
图6是本申请打印完功能层后的结构图。
本发明的实施方式
下面结合附图对本发明的具体实施方式做进一步说明。
本申请公开了一种基于绝缘带的应变片阵列电路直书写打印方法,请参考图1所示的流程图以及图2所示的层叠打印示意图,该方法包括如下步骤:
步骤S1,利用绝缘材料在平面基底上直书写打印形成第一绝缘层1。在打印第一绝缘层1之前,首先使用无水乙醇和脱脂棉充分清洁平面基底然后进行打印。
本申请使用的绝缘材料为光敏树脂(Anycubic),在正式打印之前,将一定量的光敏树脂装入不透光的打印针筒,将打印针筒与气压控制阀相连厚,夹持在数控三轴运动平台上用3D打印直书写的方式在平面基底进行打印。经过调试,针对此类型的光敏树脂,本申请设置打印针筒的打印针头的内径为110μm、打印线距为100μm、打印速度为10mm/s、挤出的气压为0.1MPa,此时可以取得较好的打印质量。打印绝缘材料后在UV固化灯下固化10min进行固化,最后形成第一绝缘层1,本申请形成的第一绝缘层1的厚度范围为45~75μm。该层打印可以有效保证第一绝缘层的平整性及保证将打印的电路与平面基底之间的绝缘。
步骤S2,利用导电银浆在绝缘层上直书写打印m条平行间隔的第一银线路2形成第一电路层,每条第一银线路2的一端均包含电极引出端3。如图3以m=4且第一银线路2为横向电路为例。本申请中第一银线路2末端的电极引出端3的尺寸为1mm×1mm。
在利用导电银浆打印之前,首先需要制备得到本申请中使用的高导电率的导电银浆,制备方法为:利用行星搅拌机将银浆材料(XRK-8000H)以2000rpm搅拌3分钟后装入打印针筒,再以3000rpm离心3分钟去除银浆材料中的气泡,制备得到用于打印形成第一电路层和第二电路层的导电银浆。该制备导电银浆的步骤可以在打印电路层之前执行,也可以在正式开始打印也即步骤S1之前执行,本申请对此不做限定。
在打印第一电路层时,将一定量的导电银浆装入不透光的打印针筒,将打印针筒与气压控制阀相连厚,夹持在数控三轴运动平台上用3D打印直书写的方式进行打印。经过调试,针对黏度为10000cP的导电银浆,本申请设置打印针筒的打印针头内径为110μm,打印线距为100μm,打印速度为3mm/s,挤出气压为0.65Mpa,此时可以取得较好的打印质量。打印导电银浆后在利用烘箱以70℃烘干15~30分钟,最后形成第一电路层。
步骤S3,利用绝缘材料在第一电路层上直书写打印n条平行间隔的绝缘带4形成第二绝缘层,绝缘带4垂直于第一银线路2且连续覆盖所在区域内的m条第一银线路2,在打印绝缘带4时,所使用的绝缘材料、打印步骤、打印参数以及固化参数均与步骤S1中打印第一绝缘层1相同,本申请不再赘述。实际操作时,m和n的取值通常是相同,如图4以m=n=4为例。相邻两条绝缘带4之间区域内的第一银线路2相对于第二绝缘层外露,第一银线路2一端的电极引出端3也相对于第二绝缘层外露,且电极引出端3与相邻的一条绝缘带之间区域内的第一银线路2也相对于第二绝缘层外露。
绝缘带4的长度大于m条第一银线路2形成的总宽度,且大于后续所要打印的第二银线路的长度,本申请对绝缘带4的具体形状不做限定,在常规情况下其为矩形带结构,则在本申请中,当第二银线路的长度为21mm时,每条绝缘带4的尺寸为2mm×26mm。
步骤S4,利用导电银浆在第二绝缘层的每条绝缘带4处分别打印一条第二银线路5形成第二电路层,每条第二银线路5分别包括一条主路6及其相连的m条支路7且各条第二银线路5分别间隔不相连。每条第二银线路5的主路6分别位于对应的绝缘带4上、垂直于第一银线路2且一端包含电极引出端8,电极引出端8的宽度小于绝缘带4的宽度从而完全位于绝缘带4上,第二银线路5的每条支路6部分位于对应的绝缘带4上、部分在绝缘带4外且位于第一绝缘层1上。且在本申请中,在打印第二电路层时,对同一条第二银线路5的同一条支路7进行重复两次直书写打印,以保证电路能够有效连通。
如图5所示,在第一银线路2为横向线路、n=4的基础上,第二电路层具有四条主路为纵向的第二银线路2。本申请中第二银线路5的主路6长度为21mm,主路上间隔6.5mm设置一条支路7,每条支路长2mm,主路6一端的电极引出端8的尺寸为1mm×1mm,宽度小于绝缘带4的宽度2mm。在打印第二电路层时,所使用的导电银浆、打印步骤、打印参数以及固化参数均与步骤S2中打印第一电路层相同,本申请不再赘述。
步骤S5,利用导电碳浆直书写打印m*n个应变片首电极9、m*n个应变片尾电极10和m*n个连接线11形成功能层,请参考图6。每条第一银线路2在相邻两条绝缘带4之间外露的区域处以及第一银线路2的电极引出端3与相邻的绝缘带4之间外露的区域处分别打印有一个应变片首电极9,第二电路层上的每个第二银线路5的每条支路的末端分别打印有一个应变片尾电极10,每个应变片首电极9分别与一个应变片尾电极10对应且通过连接线11相连。各个应变片首电极9、各个应变片尾电极10以及各个连接线11均打印在第一绝缘层1上且不与绝缘带4接触,从而使得整个功能层在第一绝缘层1上打印而不与绝缘带接触。在本申请中,应变片首电极9和应变片尾电极10的尺寸均为1mm×1mm,连接线11的长度为1.5mm。
在利用导电碳浆打印之前,首先需要制备得到本申请中使用的高导电率的导电碳浆,制备方法为:利用行星搅拌机将碳浆材料(CH-8,JELCON)以2000rpm搅拌2分钟后装入打印针筒,再以3000rpm离心3分钟去除碳浆材料中的气泡,制备得到用于打印形成功能层的导电碳浆。该制备导电碳浆的步骤可以在打印功能层之前执行,也可以在正式开始打印也即步骤S1之前执行,本申请对此不做限定。
在打印功能层时,将一定量的导电碳浆装入不透光的打印针筒,将打印针筒与气压控制阀相连厚,夹持在数控三轴运动平台上用3D打印直书写的方式进行打印。经过调试,针对黏度为30000cP的导电碳浆,打印针筒的打印针头内径为110μm,打印线距为100μm,打印速度为10mm/s,挤出气压为0.65Mpa,此时可以取得较好的打印质量。打印导电碳浆后利用烘箱以120℃烘干15分钟或在室温下放置3天完成固化形成功能层。
步骤S6,利用绝缘材料打印形成第三绝缘层完成封装,第三绝缘层覆盖除第一电路层的电极引出端3、第二电路层的电极引出端8以及功能层上的应变片首电极9和应变片尾电极10之外的其他区域。在打印第三绝缘层时,所使用的绝缘材料、打印步骤、打印参数以及固化参数均与步骤S1中打印第一绝缘层1相同,本申请不再赘述。第三绝缘层为封装层,保证样品的工作性能,而两个电路层上的电极引出端以及功能层上的各个电极均相对于第三绝缘层外露、方便向外引线测量。
以上所述的仅是本申请的优选实施方式,本发明不限于以上实施例。可以理解,本领域技术人员在不脱离本发明的精神和构思的前提下直接导出或联想到的其他改进和变化,均应认为包含在本发明的保护范围之内。

Claims (3)

  1. 一种基于绝缘带的应变片阵列电路直书写打印方法,其特征在于,所述方法包括:
    利用绝缘材料在平面基底上直书写打印形成第一绝缘层;
    利用导电银浆在所述绝缘层上直书写打印m条平行间隔的第一银线路形成第一电路层,每条所述第一银线路的一端均包含电极引出端;
    利用绝缘材料在所述第一电路层上直书写打印n条平行间隔的绝缘带形成第二绝缘层,所述绝缘带垂直于所述第一银线路且连续覆盖所在区域内的m条第一银线路,相邻两条绝缘带之间区域内的第一银线路相对于所述第二绝缘层外露;
    利用导电银浆在所述第二绝缘层的每条绝缘带处分别打印一条第二银线路形成第二电路层,每条第二银线路分别包括一条主路及其相连的m条支路且各条第二银线路分别间隔;每条所述第二银线路的主路分别位于对应的绝缘带上、垂直于所述第一银线路且一端包含电极引出端,所述第二银线路的每条支路部分位于对应的绝缘带上、部分在绝缘带外且位于所述第一绝缘层上;
    利用导电碳浆直书写打印m*n个应变片首电极、m*n个应变片尾电极和m*n个连接线形成功能层,每条所述第一银线路在相邻两条绝缘带之间外露的区域处以及电极引出端与相邻的绝缘带之间外露的区域处分别打印有一个应变片首电极,所述第二电路层上的每个第二银线路的每条支路的末端分别打印有一个应变片尾电极,每个应变片首电极分别与一个应变片尾电极对应且通过连接线相连;
    利用绝缘材料打印形成第三绝缘层完成封装,所述第三绝缘层覆盖除所述第一电路层的电极引出端、第二电路层的电极引出端以及所述功能层上的应变片首电极和应变片尾电极之外的其他区域。
  2. 根据权利要求1所述的方法,其特征在于,用于形成所述功能层的各个应变片首电极、各个应变片尾电极以及各个连接线均打印在所述第一绝缘层上且不与绝缘带接触。
  3. 根据权利要求1所述的方法,其特征在于,在打印所述第二电路层时,对同一条第二银线路的同一条支路进行重复两次直书写打印。
PCT/CN2021/128570 2020-09-22 2021-11-04 一种基于绝缘带的应变片阵列电路直书写打印方法 WO2022063335A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/702,199 US11910536B2 (en) 2020-09-22 2022-03-23 Direct-ink-writing method for printing strain gauge array circuit based on insulating strips

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011000665.4A CN112135443B (zh) 2020-09-22 2020-09-22 一种基于绝缘带的应变片阵列电路直书写打印方法
CN202011000665.4 2020-09-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/702,199 Continuation US11910536B2 (en) 2020-09-22 2022-03-23 Direct-ink-writing method for printing strain gauge array circuit based on insulating strips

Publications (1)

Publication Number Publication Date
WO2022063335A1 true WO2022063335A1 (zh) 2022-03-31

Family

ID=73842182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128570 WO2022063335A1 (zh) 2020-09-22 2021-11-04 一种基于绝缘带的应变片阵列电路直书写打印方法

Country Status (3)

Country Link
US (1) US11910536B2 (zh)
CN (1) CN112135443B (zh)
WO (1) WO2022063335A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112188759B (zh) * 2020-09-22 2021-11-16 江南大学 一种应变片阵列电路的直书写打印方法
CN112135443B (zh) * 2020-09-22 2021-08-24 江南大学 一种基于绝缘带的应变片阵列电路直书写打印方法
CN113022155A (zh) * 2021-03-01 2021-06-25 青岛科技大学 一种人机交互式碳纳米管导电油墨柔性电路打印机
CN114322744B (zh) * 2022-01-13 2022-11-04 江南大学 通过疲劳调控提高直书写打印应变片敏感系数的制作方法
CN115247999B (zh) * 2022-07-01 2023-06-02 江南大学 基于直书写打印的裂纹扩展长度监测用格栅传感器及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120099938A (ko) * 2011-03-02 2012-09-12 한국표준과학연구원 Cmos 회로 방식을 적용한 반도체 스트레인 게이지의 플렉서블 힘 또는 압력 센서 어레이, 그 플렉서블 힘 또는 압력 센서 어레이 제조방법 및 그 플렉서블 힘 또는 압력 센서 어레이를 이용한 플렉서블 힘 또는 압력 측정방법
CN105336582A (zh) * 2015-11-10 2016-02-17 苏州玄禾物联网科技有限公司 一种基于3d打印技术的芯片制造方法
CN106248266A (zh) * 2016-07-18 2016-12-21 梁婵 基于3d打印加工的电阻应变式传感器及其制造方法
CN108196715A (zh) * 2018-01-03 2018-06-22 京东方科技集团股份有限公司 一种柔性显示装置和触控压力的检测方法
CN112135443A (zh) * 2020-09-22 2020-12-25 江南大学 一种基于绝缘带的应变片阵列电路直书写打印方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1021785B1 (en) * 1996-09-10 2004-12-29 Personal Biometric Encoders Ltd. Fingerprint digitizer with deformable substrate
EP1579266A4 (en) * 2001-06-20 2007-10-03 Citala Ltd LOW THICKNESS PLATFORM SWITCHES AND THEIR APPLICATIONS
US7553781B2 (en) * 2004-06-15 2009-06-30 Siemens Energy, Inc. Fabrics with high thermal conductivity coatings
JP5198608B2 (ja) * 2010-03-18 2013-05-15 韓国標準科学研究院 半導体ストレインゲージを用いたフレキシブルな力または圧力センサアレイ、そのフレキシブルな力または圧力センサアレイの製造方法、及びそのフレキシブルな力または圧力センサアレイを用いた力または圧力測定方法
CN202306501U (zh) * 2011-11-02 2012-07-04 原像科技有限公司 触控面板改良结构
CN108108717B (zh) * 2018-01-03 2020-06-05 京东方科技集团股份有限公司 指纹识别面板及其制备方法、驱动方法和指纹识别装置
CN109002214B (zh) * 2018-07-26 2020-05-26 京东方科技集团股份有限公司 一种触控基板及其驱动方法、触控显示装置
KR102087840B1 (ko) * 2019-02-07 2020-03-11 고려대학교 산학협력단 스트레인 센서 및 이의 제조 방법
CN110636708B (zh) * 2019-09-27 2022-05-03 江西省科学院应用物理研究所 单层电路板的交叉轨绝缘子反应材料及印刷技术

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120099938A (ko) * 2011-03-02 2012-09-12 한국표준과학연구원 Cmos 회로 방식을 적용한 반도체 스트레인 게이지의 플렉서블 힘 또는 압력 센서 어레이, 그 플렉서블 힘 또는 압력 센서 어레이 제조방법 및 그 플렉서블 힘 또는 압력 센서 어레이를 이용한 플렉서블 힘 또는 압력 측정방법
CN105336582A (zh) * 2015-11-10 2016-02-17 苏州玄禾物联网科技有限公司 一种基于3d打印技术的芯片制造方法
CN106248266A (zh) * 2016-07-18 2016-12-21 梁婵 基于3d打印加工的电阻应变式传感器及其制造方法
CN108196715A (zh) * 2018-01-03 2018-06-22 京东方科技集团股份有限公司 一种柔性显示装置和触控压力的检测方法
CN112135443A (zh) * 2020-09-22 2020-12-25 江南大学 一种基于绝缘带的应变片阵列电路直书写打印方法

Also Published As

Publication number Publication date
CN112135443B (zh) 2021-08-24
CN112135443A (zh) 2020-12-25
US11910536B2 (en) 2024-02-20
US20220217849A1 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
WO2022063335A1 (zh) 一种基于绝缘带的应变片阵列电路直书写打印方法
WO2022063334A1 (zh) 一种应变片阵列电路的新型直书写打印方法
CN110398259B (zh) 多感知功能的柔性传感器件及制备方法
KR100721261B1 (ko) 마이크로 가스 센서, 그의 제조 방법, 그의 패키지 및 그패키지의 제조 방법
CN101398401A (zh) 物理量传感器及其制造方法
WO2014110941A1 (zh) 触控面板的测试装置
TWI615601B (zh) 透明壓力感測器及其製造方法
WO2019214415A1 (zh) 显示基板及其检测方法、显示面板及显示装置
CN103021985B (zh) 待测传感器芯片的电学引出结构及其应用
CN112014007B (zh) 一种高机械强度的阵列式柔性压力传感器及其制备方法
CN105606247A (zh) 一种耐高温快速响应的热敏电阻及其制成的温度传感器
CN216597585U (zh) 一种可修调电性能的集成电路结构
CN115247999B (zh) 基于直书写打印的裂纹扩展长度监测用格栅传感器及方法
CN207908088U (zh) 陶瓷mems压力传感器
US3890703A (en) Method of making humidity sensor
CN114674465A (zh) 基于柔性材料的电容式压力传感器及其制作方法
JPS5812568B2 (ja) 電気光学的表示装置の製法
US4050787A (en) Electrooptic display device
CN114322744B (zh) 通过疲劳调控提高直书写打印应变片敏感系数的制作方法
CN103928354B (zh) 一种半导体芯片粘接方法
CN112499578B (zh) 一种半导体耐高温压力温度传感器芯片及其制备方法
CN202133491U (zh) 一种压力传感器
CN116337139A (zh) 温湿度传感器的制造方法
JPS63296260A (ja) 混成集積回路の印刷基板
CN117470420A (zh) 高密度柔性传感器阵列及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21871704

Country of ref document: EP

Kind code of ref document: A1