WO2022063073A1 - 防抖模组、摄像模组和电子设备 - Google Patents

防抖模组、摄像模组和电子设备 Download PDF

Info

Publication number
WO2022063073A1
WO2022063073A1 PCT/CN2021/119282 CN2021119282W WO2022063073A1 WO 2022063073 A1 WO2022063073 A1 WO 2022063073A1 CN 2021119282 W CN2021119282 W CN 2021119282W WO 2022063073 A1 WO2022063073 A1 WO 2022063073A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
electro
carrier
board
sheet
Prior art date
Application number
PCT/CN2021/119282
Other languages
English (en)
French (fr)
Inventor
杨卓坚
许能华
王丹妹
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022063073A1 publication Critical patent/WO2022063073A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation

Definitions

  • the present application relates to the field of electronic devices, and in particular, to an anti-shake module, a camera module and an electronic device.
  • the anti-shake module with anti-shake function can make the photo effect more stable, the night scene exposure time is longer, and the noise can be reduced.
  • the current traditional anti-shake function is to compensate for the offset of the shake by panning or tilting the lens assembly. In the way of panning or tilting the lens assembly, the lens moves or tilts relative to the photosensitive chip. For the tilted lens assembly, due to the inclination of the molding surfaces of the lens and the photosensitive chip, the molding focus around the lens will not be on the molding surface, resulting in The surrounding area of the picture is blurry, affecting the image quality. That is, the anti-shake function of the existing anti-shake module has poor anti-shake effect.
  • Embodiments of the present application provide an anti-shake module, a camera module and an electronic device to solve the problem that the current anti-shake module has a poor anti-shake effect.
  • a first aspect of the embodiments of the present application provides an anti-shake module, including: a photosensitive component, a carrier board, a base, and an electro-drive sheet;
  • the first end of the electro-driven sheet is arranged on the first surface of the carrier board, the second end of the electro-driven sheet is arranged on the base, and the photosensitive component is arranged on the first side of the carrier board.
  • the second side of the carrier plate faces the base;
  • the electro-driven sheet when a voltage is applied to the electro-driven sheet, the electro-driven sheet is deformed to drive the carrier plate to move.
  • the anti-shake module further includes a bracket disposed on the base, and the carrier plate is located between the base and the bracket;
  • One of the carrier plate and the bracket is provided with a detected piece, the other of the carrier plate and the bracket is provided with a detection piece, and the detection piece is relatively distributed with the detected piece ;
  • the detection element is used to detect the position of the detected element.
  • the anti-shake module further includes a control chip arranged on the carrier board;
  • the detection element has a first pin, the first pin is electrically connected with the control chip, and the detection element transmits the collected data information to the control chip through the first pin.
  • the carrier board is a first circuit board
  • the first side of the electro-driving sheet is electrically connected to the second pin of the first circuit board
  • the second side of the electro-driving sheet is electrically connected to the second pin of the first circuit board.
  • the third pin of the first circuit board is electrically connected;
  • control chip is electrically connected to the second pin and the third pin respectively;
  • the control chip controls the voltages applied to the first side of the electro-drive sheet and the second side of the electro-drive sheet by controlling the voltage output to the second pin and the third pin .
  • the anti-shake module further includes an elastic member, the elastic member is arranged between the base and the carrier plate, the elastic member is provided with a first through hole, and the carrier plate is arranged on the elastic member on the component and covering the first through hole.
  • the elastic member includes an elastic body, and an elastic sheet extending from the elastic body, the elastic sheet is provided with a first fixing hole, and the first fixing hole is connected with the first fixing hole provided on the base. Column fit.
  • the carrier plate and the base are both quadrilateral structural members, the number of the electro-driving pieces is four, and the first ends of the four electro-driving pieces are respectively arranged on the first ends of the carrier board. In the area where the four top corners of the surface are located, the second ends of the four electro-driving pieces are respectively arranged in the area where the four top corners of the base are located.
  • the anti-shake module further includes a mounting frame on which the second end of the electro-driven driving piece is clamped, a second fixing hole is provided on the mounting frame, and the mounting frame is It includes a first electrical connection part and a second electrical connection part, the first electrical connection part (and the second electrical connection part are respectively electrically connected to the first surface and the second surface of the electro-driving sheet;
  • the top corner area of the base is provided with steps, and the steps are provided with a second fixing column adapted to the second fixing hole;
  • the step is further provided with a second through hole, the first electrical connection part and the second electrical connection part are arranged in the second through hole, and the first electrical connection part is connected to the first circuit
  • the second pin of the board is electrically connected, and the second electrical connection part is electrically connected with the third pin of the first circuit board.
  • the electro-driving sheet is an ion-conducting driving sheet
  • the ion-conducting driving sheet includes an ion-exchange resin layer and a first electrode layer and a second electrode layer respectively disposed on two opposite surfaces of the ion-exchange resin layer.
  • the electrode layer has a polymer electrolyte in the ion exchange resin layer.
  • the ion conduction driving sheet drives the carrier to move in a first direction
  • the ion conduction driving sheet drives the carrier to move in the second direction;
  • the polarities of the first voltage and the second voltage are opposite, and the first direction and the second direction are opposite directions to each other.
  • the ion conduction driving sheet drives the carrier plate to move a first distance along a first direction;
  • the ion conduction driving sheet drives the carrier plate to move a second distance along a first direction;
  • the first voltage and the third voltage have the same polarity, the third voltage is greater than the first voltage, and the first distance is different from the second distance.
  • the ion conduction driving sheet drives the carrier to move in a first direction at a first rate
  • the ion conduction driving sheet drives the carrier plate to move in a first direction at a second rate
  • the first voltage and the third voltage have the same polarity, the third voltage is greater than the first voltage, and the first rate is different from the second rate.
  • the ion conduction driving sheet drives the carrier plate to incline at a first angle
  • the ion conduction driving plate drives the carrier plate to incline at a second angle
  • the fourth voltage and the fifth voltage have the same polarity, the fifth voltage is greater than the fourth voltage, and the first angle is smaller than the second angle.
  • a second aspect of the embodiments of the present application provides a camera module, including: a lens assembly and the anti-shake module described in the first aspect, the lens assembly being located on a side of the anti-shake module away from the base.
  • the camera module further includes a soft board connected to the carrier board, the soft board is a second circuit board, and the soft board is disposed outside the anti-shake module;
  • the flexible board includes strip-shaped through holes arranged along the length direction of the flexible board, and grooves are provided on the first side and the second side perpendicular to the length direction of the flexible board;
  • the first groove provided on the first side is opposite to the second groove provided on the second side;
  • the flexible board is bent toward a first bending direction along a line passing through the first groove and the second groove.
  • the third groove provided on the first side is opposite to the fourth groove provided on the second side;
  • the flexible board is bent toward the second bending direction along the connecting line passing through the third groove and the fourth groove;
  • the first bending direction and the second bending direction are opposite.
  • a third aspect of the embodiments of the present application provides an electronic device, including the anti-shake module described in the first aspect.
  • the anti-shake module in the embodiment of the present application includes: a photosensitive component, a carrier board, a base, and an electro-drive sheet; the first end of the electro-drive sheet is arranged on the first side of the carrier board, and the electro- The second end of the driving plate is arranged on the base, the photosensitive component is arranged on the first side of the carrier, and the second side of the carrier faces the base; In the presence of an applied voltage in the drive sheet, the electro-driven sheet deforms to drive the carrier plate in motion. Since the anti-shake module includes an electro-driven driving piece, the carrier plate can be driven to move by applying a voltage to the electro-driven driving piece, thereby driving the photosensitive component to move, thereby improving the anti-shake effect.
  • FIG. 1 is a cross-sectional view of an anti-shake module provided by an embodiment of the present application.
  • FIG. 2 is a top view of an anti-shake module provided by an embodiment of the present application.
  • 3 and 4 are schematic structural diagrams of a camera module provided by an embodiment of the present application.
  • FIG. 5 is an exploded view of a camera module provided by an embodiment of the present application.
  • FIG. 6 is a structural diagram of a base provided by an embodiment of the present application.
  • FIG. 7 is a structural diagram of some components of an anti-shake module provided by an embodiment of the present application.
  • FIG. 8 is a structural diagram of an elastic member provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an electro-driven sheet produced by using IPMC provided by an embodiment of the present application when no voltage is applied;
  • FIG. 10 and FIG. 11 are schematic diagrams of deformation of the electro-driven driving sheet provided by the embodiment of the present application under the condition of applying a voltage
  • 12a is a schematic structural diagram of a flexible board provided by an embodiment of the present application.
  • Fig. 12b is a schematic diagram of the flexible board provided by the embodiment of the present application after bending;
  • 13 is an effect diagram when voltages in different directions are applied to the electro-drive sheet in the camera module provided by the embodiment of the present application;
  • FIG. 14 is a structural diagram of a camera module provided by an embodiment of the present application.
  • an anti-shake module including: a photosensitive assembly 1 , a carrier board 2 , a base 3 and an electro-driven drive sheet 4 ;
  • the first end of the electro-driving piece 4 is arranged on the first surface of the carrier board 2
  • the second end of the electro-driving piece 4 is arranged on the base 3
  • the photosensitive assembly 1 is arranged on the base 3 .
  • the first side of the carrier board 2, the second side of the carrier board 2 faces the base 3;
  • the electro-driven sheet 4 deforms to drive the carrier plate 2 to move.
  • the photosensitive component 1 may be a photosensitive chip, and the first surface and the second surface of the carrier board 2 are opposite sides of the carrier board 2 .
  • the first end of the electro-driving piece 4 is set on the carrier board 2
  • the second end of the electro-driving piece 4 is set on the base 3 .
  • the electro-driven sheet 4 is deformed, and an interaction force is generated between the electro-driven sheet 4 and the carrier 2 , and the electro-driven sheet 4 can drive the carrier 2 to move relative to the base 3 .
  • the carrier plate 2 can be driven to move in the direction toward the base 3 or away from the base 3 according to the different deformation directions of the electro-driven sheet 4 .
  • the movement of the carrier 2 relative to the base 3 includes: the carrier 2 translates relative to the base 3, or the carrier 2 tilts relative to the base 3, and the movement of the carrier 2 drives the photosensitive assembly 1 to move, thereby improving the anti-shake effect.
  • the anti-shake module in this embodiment includes: a photosensitive assembly 1 , a carrier plate 2 , a base 3 and an electro-drive sheet 4 ;
  • the second end of the electro-driven sheet 4 is arranged on the base 3, the photosensitive assembly 1 is arranged on the first side of the carrier plate 2, and the second side of the carrier plate 2 faces the The base 3; wherein, in the case of applying a voltage to the electro-driven sheet 4, the electro-driven sheet 4 is deformed to drive the carrier plate 2 to move.
  • the anti-shake module includes the electro-driven driving piece 4 , the carrier plate 2 can be driven to move by applying a voltage to the electro-driven driving piece 4 , thereby driving the photosensitive assembly 1 to move, thereby improving the anti-shake effect.
  • the anti-shake module further includes a bracket 5 arranged on the base 3 , and the carrier plate 2 is located between the base 3 and the bracket 5 ;
  • One of the carrier plate 2 and the bracket 5 is provided with a detected member 6, and the other of the carrier plate 2 and the bracket 5 is provided with a detection member 7, and the detection member 7 is connected with the detection member 7.
  • the detection member 7 is used to detect the position of the detected member 6 .
  • the carrier plate 2 is provided with a detected part 6, the bracket 5 is provided with a detection part 7, and the detection parts are relatively distributed with the detected part;
  • the detection parts are distributed relative to the detected parts, and the detection parts 7 are used to detect the position of the detected parts 6 .
  • the detection member 7 can be a magnetic sensor, such as a Hall sensor, or a tunnel magnetoresistance angle sensor (Tunnel Magneto resistance, TMR), and the detected member 6 is a magnetic component, such as a magnet, and the detection member 7 detects the magnetic field strength. The position of the detected member 6 is detected, thereby determining the position of the carrier 2 .
  • TMR tunnel magnetoresistance angle sensor
  • the position detection of the carrier 2 can also be realized in other ways, for example, using an optical infrared sensor or an ultrasonic sensor for position detection, or using a detection resistor, piezoelectric effect, etc. to realize position detection.
  • the detector 7 can also detect the tilt angle of the carrier 2, and feed back the tilt angle of the carrier 2 to the control chip, so that the control chip can adjust the voltage applied to the electro-driving chip 4, and improve the accuracy of the specified angle of tilt of the carrier 2.
  • the control chip can be a chip arranged in an external device of the anti-shake module, or can be arranged in the anti-shake module.
  • the anti-shake module further includes a control chip 8 arranged on the carrier board 2;
  • the detection part 7 has a first pin, the first pin is electrically connected to the control chip 8, and the detection part 7 transmits the collected data information to the control chip 8 through the first pin . According to the received data information, the control chip 8 outputs the voltage applied to the electro-driven driving piece 4 , so that the electro-driven driving piece 4 is deformed and drives the carrier 2 to move.
  • the tunneling magnetoresistive angle sensor detects the angle of the magnetic field line and generates angle information, and then further output the angle information to the control chip 8 .
  • the carrier board 2 is a first circuit board
  • the first surface of the electro-driving sheet 4 is electrically connected to the second pin of the first circuit board
  • the electro-driving The second side of the sheet 4 is electrically connected to the third pin of the first circuit board
  • the control chip 8 is electrically connected to the second pin and the third pin respectively;
  • the control chip 8 controls the voltages applied to the first surface of the electro-drive sheet 4 and the second side of the electro-drive sheet 4 by controlling the voltage output to the second pin and the third pin. surface voltage.
  • the control chip 8 applies a voltage to the electro-driving piece 4 by applying a voltage to the second pin and the third pin, so that the electro-driving piece 4 deforms and drives the carrier 2 to move.
  • the anti-shake module further includes an elastic member 9 , the elastic member 9 is arranged between the base 3 and the carrier plate 2 , and the elastic member 9 opens There is a first through hole 93 , the carrier plate 2 is disposed on the elastic member 9 and covers the first through hole 93 .
  • the elastic member 9 supports the carrier board 2 to prevent the first circuit board from falling on the base 3 and unable to move under the driving of the electro-driven driving piece 4 .
  • the elastic member 9 is made of a material with toughness and good support.
  • the elastic member 9 includes an elastic body 91 and an elastic piece 92 extending from the elastic body 91 .
  • the elastic piece 92 is provided with a first fixing hole 94 , and the first fixing hole 94 is connected to the The first fixing column 31 provided on the base 3 is adapted to fit.
  • the elastic body 91 is provided with a first through hole 93
  • the carrier plate 2 is disposed on the elastic body 91 and covers the first through hole 93 .
  • the elastic pieces 92 protrude out of the coverage area of the carrier board 2 .
  • the elastic piece 92 includes a connecting portion and a positioning portion.
  • the first fixing hole 94 is located in the positioning portion.
  • the first fixing hole 94 is adapted to the first fixing post 31 provided on the base 3 , and the positioning portion can be fixed on the base 3 through the first fixing hole 94 .
  • the connecting portion can be a linear bending structure with good elasticity, one end of the connecting portion is connected with the positioning portion, and the other end of the connecting portion is connected with the elastic body 91 .
  • the elastic body 91 is a quadrilateral structure, and the number of elastic pieces is four. The starting position of the positioning part and the connecting part of the same elastic piece is set on the adjacent side of the elastic body 91, and the starting position of the connecting part is the connecting part and the elastic body.
  • the elastic body 91 can be a quadrilateral structure with corners cut off, that is, adjacent sides of the quadrilateral are connected by a short side, and the connecting portion can start from the side where the starting position is located, extend along the side to the short side, and then It extends to the adjacent side and is connected with the positioning part located on the adjacent side.
  • the connecting portion Since the positioning portion is fixed on the base 3, the connecting portion has good elasticity, so that the elastic body 91 can move within a certain range.
  • the restriction of the elastic body 91 affects the movement of the carrier board 2 under the driving of the electro-driven driving piece 4 .
  • the carrier plate 2 and the base 3 are both quadrilateral structural members, the number of the electro-driving pieces 4 is four, and the number of the four electro-driving pieces 4 is four.
  • One end is respectively disposed in the area where the four top corners of the first surface of the carrier board 2 are located, and the second ends of the four electro-driving pieces 4 are respectively located in the area where the four top corners of the base 3 are located.
  • the quadrilateral structure can be a structure composed of four sides such as square, rectangle, rhombus, etc.
  • the quadrilateral structure of the carrier plate 2 can also be a quadrilateral structure with flat corners, as shown in FIG. 2 .
  • the first ends of the four electro-driving pieces 4 are respectively arranged in the areas where the four top corners of the first surface of the carrier board 2 are located, and the second ends of the four electro-driving pieces 4 are respectively arranged on the bottom of the base 3 .
  • the base 3 can be a quadrilateral box structure with an open top surface, and one side of the base 3 has an opening through which the second circuit board B can be connected to the carrier board 2 .
  • the one or more electro-driven slices 4 are deformed, and a force is generated on the carrier board 2, thereby driving the carrier board. 2 movement, the movement of the carrier plate 2 may be at least one of an angularly inclined movement and a certain distance in a vertical direction, wherein the vertical direction may be a direction of movement toward or away from the base 3 .
  • the carrier board 2 can be tilted at an angle by applying a voltage to some of the four electro-driving pieces 4, or, all of the four electro-driving pieces 4 can be tilted.
  • the carrier board 2 can also be tilted at an angle, so as to play an anti-shake effect.
  • the carrier plate 2 moves in the vertical direction.
  • the anti-shake module further includes a mounting frame 10 , and the second end of the electro-driving piece 4 is clamped on the mounting frame 10 , and the mounting frame 10 is provided with The second fixing hole 101, the mounting frame 10 includes a first electrical connection part 102 and a second electrical connection part 103, and the first electrical connection part 102 and the second electrical connection part 103 are respectively connected with the electric drive The first side and the second side of the sheet 4 are electrically connected;
  • the top corner area of the base 3 is provided with steps, and the steps are provided with second fixing posts 32 adapted to the second fixing holes 101 ;
  • the step is further provided with a second through hole 33 , the first electrical connection part 102 and the second electrical connection part 103 are arranged in the second through hole 33 , and the first electrical connection part 102 is connected to the second through hole 33 .
  • the second pin of the first circuit board is electrically connected, and the second electrical connection portion 103 is electrically connected to the third pin of the first circuit board.
  • the electro-driving piece 4 can be a rectangular structure, the mounting frame 10 is clamped at the second end of the electro-driving piece 4 , and the second end of the electro-driving piece 4 is fixed on the base 3 through the second fixing hole 101 of the mounting frame 10 , the first electrical connection part 102 and the second electrical connection part 103 are respectively electrically connected to the first surface and the second surface of the electro-driving sheet 4 , and the first electrical connection part 102 is electrically connected to the second surface of the first circuit board
  • the pins are electrically connected, and the second electrical connection portion 103 is electrically connected to the third pin of the first circuit board, so that the first circuit board can connect to the electro-driving chip 4 through the second pin and the third pin.
  • a voltage is applied to both sides of the electric drive plate 4 to deform, which drives the carrier plate 2 to move.
  • the top corner area of the base 3 is provided with steps, as shown in FIG. 6 , the steps are triangular steps, and the two sides of the triangular steps are in contact with the adjacent sides of the base 3, at the position between the two adjacent steps.
  • a protruding block is provided, and the protruding block is provided with a first fixing column 31 , and the first fixing column 31 is used to fix the elastic member 9 on the base 3 .
  • the above-mentioned electro-driving sheet 4 is an ion-conducting driving sheet, and the ion-conducting driving sheet includes an ion-exchange resin layer and a first electrode layer and a second electrode layer respectively disposed on two opposite surfaces of the ion-exchange resin layer.
  • the ion exchange resin layer has a polymer electrolyte in it.
  • the electro-driven sheet 4 can be made of an ion-exchange polymer metal composite (IPMC for short).
  • IPMC material is a new type of electrically actuated functional material. It uses an ion exchange resin layer (such as fluorocarbon polymer, etc.) as a matrix, and is plated with precious metals (such as platinum, silver, etc.) on the surface of the matrix to form an electrode layer, that is, the first electrode. layer and the second electrode layer, as shown in FIG. 9 , the symbols A and B in FIG. 9 are the first electrode layer and the second electrode layer, respectively.
  • the ion exchange resin layer includes a polymer electrolyte, and the polymer electrolyte contains cations and anions. The positions and numbers of the cations and anions in FIG. 9 are only schematic and do not represent the actual situation.
  • IPMC material is a new type of driving material, which has the advantages of light driving weight, large displacement and low driving voltage.
  • the advantages of using IPMC in the drive device are obvious.
  • IPMC is a non-magnetic material and does not generate magnetic interference; the displacement and velocity generated by IPMC deformation are proportional to the thickness of IPMC, and the force generated by IPMC deformation is proportional to the thickness of IPMC.
  • the cube increases proportionally. Therefore, the thickness of the IPMC can be set according to the actual situation, so as to achieve the desired displacement, speed and force generated by the deformation of the IPMC.
  • the ion conduction driving sheet drives the carrier plate 2 to move in the first direction;
  • the ion conduction driving sheet drives the carrier plate 2 to move in the second direction;
  • the polarities of the first voltage and the second voltage are opposite, and the first direction and the second direction are opposite directions to each other.
  • the ion conduction driving piece can drive the carrier plate 2 to move in the first direction or the second direction.
  • the first direction may be the direction in which the carrier board 2 moves toward the base 3, and the second direction may be the direction in which the carrier board 2 moves away from the base 3; or, the first direction may be the direction in which the carrier board 2 moves away from the base 3, and the second direction It can be the direction in which the carrier plate 2 moves toward the base 3 .
  • the ion conduction driving sheet drives the carrier plate 2 to move a first distance along a first direction;
  • the ion conduction driving sheet drives the carrier plate 2 to move a second distance along a first direction;
  • the first voltage and the third voltage have the same polarity, the third voltage is greater than the first voltage, and the first distance is different from the second distance.
  • the ion conduction driving sheet When the ion conduction driving sheet is energized and there is a change in voltage or current, the ion conduction driving sheet will deform, and the greater the voltage or current change, the greater the amount of deformation of the ion conduction driving sheet.
  • the second distance may be greater than the first distance.
  • the carrier board 2 can be driven to move a large distance by applying a large voltage to the ion conduction driving piece; when the carrier board 2 needs to move a small distance, the ion conduction driving piece can be driven by applying a large voltage A larger voltage is applied to drive the carrier plate 2 to move a smaller distance.
  • the voltage applied to the ion conduction driving plate can be determined according to the corresponding relationship size.
  • the ion conduction driving sheet drives the carrier plate 2 to move in a first direction at a first rate;
  • the ion conduction driving sheet drives the carrier plate 2 to move in a first direction at a second rate;
  • the first voltage and the third voltage have the same polarity, the third voltage is greater than the first voltage, and the first rate is different from the second rate.
  • the second rate may be less than the first rate.
  • the carrier plate 2 can be driven to move at a large speed by applying a large voltage to the ion conduction driving sheet; when the moving speed of the carrier plate 2 is required to be small, it can be driven by driving The sheet applies a smaller voltage to drive the carrier plate 2 to move at a smaller rate.
  • the magnitude of the voltage applied to the ion conduction driving piece and the movement speed of the carrier plate 2.
  • the voltage applied to the ion conduction driving piece can be determined according to the corresponding relationship size.
  • the ion conduction driving sheet drives the carrier plate 2 to tilt at a first angle
  • the ion conduction driving sheet drives the carrier plate 2 to tilt at a second angle;
  • the fourth voltage and the fifth voltage have the same polarity, the fifth voltage is greater than the fourth voltage, and the first angle is smaller than the second angle.
  • the carrier board 2 When the carrier board 2 needs to be tilted at a larger angle, the carrier board 2 can be driven to generate a larger angle tilt by applying a larger voltage to the ion conduction driving plate; when the carrier board 2 needs to be tilted at a smaller angle, it can be The carrier plate 2 is driven to produce a small angle of inclination by applying a small voltage to the ion-conducting drive sheet.
  • the magnitude of the voltage applied to the ion conduction driving plate and the inclination angle of the carrier plate 2.
  • the voltage applied to the ion conduction driving plate can be determined according to the corresponding relationship. size.
  • anti-shake module hereinafter also referred to as the anti-shake platform
  • Rigid-Flex Printed Circuit Board It consists of a flexible board (ie, the second circuit board) and a hard board (ie, the first circuit board).
  • the rigid board can be an RFPC hard board.
  • the main function of the hard board is to fix the photosensitive chip (ie, the photosensitive component 1 ), and the photosensitive chip and the hard board are electrically connected by binding with gold wires 11 .
  • the gold wire 11 is 99.99% pure gold with good conductivity and sufficient toughness. The number depends on the chip design and pixel size. Generally, the higher the pixel, the greater the number of gold wires.
  • the hard board can be electrically connected with other components of the terminal through the soft board.
  • TMR Tunneling magnetoresistance angle sensors
  • Two TMR angle sensors can be fixed on the surface of the hard board by solder paste welding to detect the angle change of the magnetic field line of the magnet; the electrical performance of the TMR is powered by the driver IC (ie the control chip 8) through the RFPC hard board; and TMR detection
  • the angle change information of the magnetic field line to the magnet is transmitted to the data processing system side of the driver IC through the RFPC hard board; after the data processing system side of the driver IC performs corresponding data processing, the feedback mechanism of the driver IC is used to compensate the jitter angle through IPMC.
  • IPMC is placed between the RFPC hard board and the lower base, and its shape is a cuboid structure; it is fixed on the RFPC hard board by solder paste welding; its function is to use the material whose deformation can be controlled by supply voltage or current performance, drive the carrier board 2 to move; the drive IC supplies power to the IPMC through the RFPC hard board, and controls its deformation through the power supply voltage or current, and then drives the photosensitive chip to compensate for the anti-shake angle.
  • Elastic part The function is to support the RFPC hard board and make it in a natural state, otherwise the RFPC hard board slumps on the base 3 and cannot achieve anti-shake movement.
  • the material of the elastic parts should be tough and support well.
  • the IPMC material When the IPMC is energized and there is a voltage or current change, the IPMC material will deform, and the greater the change of ⁇ V or ⁇ I, the greater the deformation of the IPMC material;
  • the carrier 2 and the IPMC are rigidly fixed, and relative displacement cannot occur.
  • an interaction force is generated between the IPMC and the carrier 2, thereby driving the carrier 2 to move, and finally achieve anti-shake focusing.
  • the 4 IPMCs can be controlled by the driver IC (ie, the control chip 8) to give them the power supply voltage or current change, without affecting each other; the power supply voltage or current change output by the driver IC can be determined by the angle change information output by the two TMRs .
  • the driver IC When the camera module shakes, the position of the TMR angle sensor and the magnet will change relatively, and the TMR will output the angle change information to the driver IC, that is, the control chip 8.
  • the driver IC will change the power supply voltage or current to the IPMC, thereby
  • the IPMC generates different deformations, pulls the carrier 2 to move, and then drives the photosensitive chip (ie, the photosensitive component 1) on the carrier 2 to move to realize the anti-shake function. As shown in Figure 6, the carrier 2 is tilted to achieve anti-shake. Function.
  • the tilting of the carrier 2 can be realized by applying voltages in different directions to the two IPMCs.
  • the anti-shake module in this application can improve the image quality by controlling the photosensitive chip to correct the image jitter; it can reduce the volume of the camera module and realize the lightweight of the mobile phone; it can realize the tilt-type anti-shake, and the anti-shake angle is 3 times that of the traditional translation type. times more.
  • the present application also provides a camera module, including: a lens assembly and the anti-shake module in the above-mentioned embodiment, the lens assembly is located at a distance away from the anti-shake module side of base 3.
  • the lens assembly includes a lens A1, a motor A2, a filter A3 and a third circuit board A4, wherein the third circuit board A4 can supply power to the motor A2, and the third circuit board A4 can be an AF flexible circuit board (Flexible Printed Circuit Board). , FPC) board.
  • AF flexible circuit board Flexible Printed Circuit Board
  • the camera module further includes a soft board B connected to the carrier board 2, the soft board B is a second circuit board, and the soft board B is arranged outside the anti-shake module;
  • the flexible board B includes a strip-shaped through hole B1 arranged along the length direction of the flexible board B, and grooves are provided on the first side and the second side perpendicular to the length direction of the flexible board B;
  • the first groove provided on the first side is opposite to the second groove provided on the second side;
  • the flexible board B is bent toward the first bending direction along the connecting line passing through the first groove and the second groove.
  • the strip-shaped through holes B1 are arranged in the middle area of the flexible board B, and the number of the strip-shaped through holes B1 can be multiple, B2 shows the first groove, and B3 shows the second groove groove.
  • the first groove has an arc, so that after the flexible board B is bent toward the first bending direction along the connecting line b passing through the first groove and the second groove, the bending position is a leading circle. Horn.
  • the second groove has an arc, so that after the flexible board B is bent toward the first bending direction along the line passing through the first groove and the second groove, the bending position is Rounded corners.
  • the numbers of the first grooves and the second grooves are the same, and both can be multiple.
  • the third groove provided on the first side is opposite to the fourth groove provided on the second side; the soft board B passes through the third groove and the fourth groove along the The connecting line of the groove is bent toward the second bending direction; the first bending direction is opposite to the second bending direction.
  • the specific number and arrangement of the first grooves and the second grooves can be determined, and the corresponding rounded corners can be obtained.
  • the stress received by the flexible board B during stretching or bending can be further dispersed, and the structural strength of the flexible board B can be improved.
  • the flexible board B when the flexible board B is folded, it can be folded according to the first bending direction and the second bending direction in sequence, that is, the flexible board B is folded in the corresponding direction.
  • the bending directions of the adjacent two first grooves are opposite. It is glued at the bending position to protect the bending life and bending consistency, and fix the bending position.
  • the carrier board 2 needs to move under the drive of the electric drive member 4. Since the carrier board 2 is connected with the soft board B, there is a pulling force between the carrier board 2 and the soft board B during the movement process, which increases the connection between the carrier board 2 and the soft board B. Risk of breakage at the connection site of plate B.
  • the flexible board B is folded multiple times. The more times the flexible board B is folded, the smaller the influence on both ends of the flexible board B, which can reduce the connection between the flexible board B and the carrier board 2. risk of rupture.
  • the flexible board B is provided with strip-shaped through holes B1 along the length direction of the flexible board B, and the flexible board B can be divided into multiple parts. The more the divided parts of the flexible board B, the more dispersed the stress.
  • the bending radius R is greater than or equal to 0.5mm, the bending position b2 and the bending position b3 are not arbitrarily determined, but according to the assembly position of the camera module in the whole machine, measure the bending length and bending radius, and then decide The length and radius of the rounded corners, so that the actual effect of assembly can be simulated and the bending stress of the soft board B can be reduced twice. Concentrating on the area of the flexible board B can reduce the risk of fracture at the connection between the flexible board B and the carrier board 2 .
  • the numeral 44 in the figure is a lens assembly
  • the numeral 42 is an IPMC
  • the numeral 43 is a carrier board
  • the carrier board is connected to the IPMC
  • the carrier board can carry a photosensitive chip.
  • Applying a voltage to the IPMC makes the IPMC deform, drives the carrier board to move, and the carrier board drives the photosensitive chip to move, thereby realizing the anti-shake function.
  • the anti-shake function is realized through IPMC, and the coil and its corresponding magnet in the motor are eliminated, which can realize the miniaturization of the module.
  • conventional 8.5mm*8.5mm modules can be used to make OIS anti-shake 11.3mm*11.3mm size to achieve cost reduction and module miniaturization.
  • Embodiments of the present application further provide an electronic device, including the anti-shake module described in the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

一种防抖模组、摄像模组和电子设备,其中,防抖模组包括:感光组件、载板、底座和电致驱动片;所述电致驱动片的第一端设置在所述载板的第一面,所述电致驱动片的第二端设置在所述底座上,所述感光组件设置于所述载板的第一面,所述载板的第二面朝向所述底座;其中,在对所述电致驱动片中的施加电压的情况下,所述电致驱动片变形以驱动所述载板运动。由于防抖模组包括电致驱动片,可通过对电致驱动片施加电压,来带动载板运动,从而带动感光组件运动,提高防抖效果。

Description

防抖模组、摄像模组和电子设备
相关申请的交叉引用
本申请主张在2020年9月25日在中国提交的中国专利申请No.202011025667.9的优先权,其全部内容通过引用包含于此。
技术领域
本申请涉及电子器件领域,尤其涉及一种防抖模组、摄像模组和电子设备。
背景技术
目前随着电子设备的发展,人们常常通过电子设备拍摄图像。随着人们需求的提高,对图像的质量要求也越来越高。
具有防抖功能的防抖模组,可使得拍照效果更稳定、夜景曝光时间更长,噪声可以减少。目前传统的防抖功能是通过平移或倾斜镜头组件的方式来补正抖动的偏移。平移或倾斜镜头组件的方式,镜头相对于感光芯片发生了相对移动或倾斜,对于倾斜镜头组件来说,由于镜头和感光芯片的成型面倾斜,会使得镜头四周的成型焦点不在成型面上,导致画面四周模糊,影响图像质量。即现有的防抖模组的防抖功能,防抖效果较差。
发明内容
本申请实施例提供一种防抖模组、摄像模组和电子设备,以解决目前防抖模组的防抖效果较差的问题。
为解决上述问题,本申请实施例是这样实现的:
本申请实施例第一方面提供一种防抖模组,包括:感光组件、载板、底座和电致驱动片;
所述电致驱动片的第一端设置在所述载板的第一面,所述电致驱动片的第二端设置在所述底座上,所述感光组件设置于所述载板的第一面,所述载板的第二面朝向所述底座;
其中,在对所述电致驱动片中的施加电压的情况下,所述电致驱动片变形以驱动所述载板运动。
可选地,防抖模组还包括设置在所述底座上的支架,所述载板位于所述底座与所述支架之间;
所述载板和所述支架中的一者上设置有被检测件,所述载板和所述支架中的另一者上设置有检测件,所述检测件与所述被检测件相对分布;
其中,所述检测件用于检测所述被检测件的位置。
可选地,防抖模组还包括设置在所述载板上的控制芯片;
所述检测件具有第一引脚,所述第一引脚与所述控制芯片电连接,所述检测件将采集的数据信息通过所述第一引脚传送给所述控制芯片。
可选地,所述载板为第一电路板,所述电致驱动片的第一面与所述第一电路板的第二引脚电连接,所述电致驱动片的第二面与所述第一电路板的第三引脚电连接;
所述控制芯片分别与所述第二引脚和所述第三引脚电连接;
所述控制芯片通过控制输出至所述第二引脚和所述第三引脚的电压,控制施加在所述电致驱动片的第一面和所述电致驱动片的第二面的电压。
可选地,防抖模组还包括弹性件,所述弹性件设置于所述底座与所述载板之间,所述弹性件开设有第一通孔,所述载板设置在所述弹性件上,且覆盖所述第一通孔。
可选地,所述弹性件包括弹性本体,以及从所述弹性本体延伸形成的弹片,所述弹片上设置有第一固定孔,所述第一固定孔与所述底座上设置的第一固定柱相适配。
可选地,所述载板与所述底座均为四边形结构件,所述电致驱动片的数量为四个,四个电致驱动片的第一端分别设置在所述载板的第一面的四个顶角所在区域,四个电致驱动片的第二端分别设置在所述底座的四个顶角所在区域。
可选地,所述防抖模组还包括安装架,所述电致驱动片的第二端夹设在所述安装架上,所述安装架上设置有第二固定孔,所述安装架包括第一电连接部和第二电连接部,所述第一电连接部(和所述第二电连接部分别与所述 电致驱动片的第一面和第二面电连接;
所述底座的顶角区域设置有台阶,所述台阶上设置有与所述第二固定孔相适配的第二固定柱;
所述台阶还设置有第二通孔,所述第一电连接部和所述第二电连接部设置在所述第二通孔中,且所述第一电连接部与所述第一电路板的第二引脚电连接,所述第二电连接部与所述第一电路板的第三引脚电连接。
可选地,所述电致驱动片为离子传导驱动片,所述离子传导驱动片包括离子交换树脂层以及分别设置于所述离子交换树脂层相对的两个表面的第一电极层和第二电极层,所述离子交换树脂层内具有聚合物电解质。
可选地,在施加于所述离子传导驱动片的电压为第一电压的情况下,所述离子传导驱动片驱动所述载板沿第一方向运动;
在施加于所述离子传导驱动片的电压为第二电压的情况下,所述离子传导驱动片驱动所述载板沿第二方向运动;
其中,所述第一电压和所述第二电压极性相反,所述第一方向与所述第二方向互为反方向。
可选地,在施加于所述离子传导驱动片的电压为第一电压的情况下,所述离子传导驱动片驱动所述载板沿第一方向运动第一距离;
在施加于所述离子传导驱动片的电压为第三电压的情况下,所述离子传导驱动片驱动所述载板沿第一方向运动第二距离;
其中,所述第一电压和所述第三电压极性相同,且所述第三电压大于所述第一电压,所述第一距离与所述第二距离不同。
可选地,在施加于所述离子传导驱动片的电压为第一电压的情况下,所述离子传导驱动片以第一速率驱动所述载板沿第一方向运动;
在施加于所述离子传导驱动片的电压为第三电压的情况下,所述离子传导驱动片以第二速率驱动所述载板沿第一方向运动;
其中,所述第一电压和所述第三电压极性相同,且所述第三电压大于所述第一电压,所述第一速率与所述第二速率不同。
可选地,在施加于所述离子传导驱动片的电压为第四电压的情况下,所述离子传导驱动片驱动所述载板倾斜第一角度;
在施加于所述离子传导驱动片的电压为第五电压的情况下,所述离子传导驱动片驱动所述载板倾斜第二角度;
其中,所述第四电压和所述第五电压极性相同,且所述第五电压大于所述第四电压,所述第一角度小于第二角度。
本申请实施例第二方面提供一种摄像模组,包括:镜头组件以及第一方面所述的防抖模组,所述镜头组件位于所述防抖模组的背离底座的一侧。
可选地,摄像模组还包括与所述载板连接的软板,所述软板为第二电路板,所述软板设置在所述防抖模组外侧;
所述软板包括沿所述软板长度方向设置的条形通孔,所述软板的与所述长度方向垂直的第一侧和第二侧上设置有凹槽;
所述第一侧上设置的第一凹槽与所述第二侧上设置的第二凹槽相对设置;
所述软板沿着穿过所述第一凹槽和所述第二凹槽的连线朝第一弯折方向弯折。
可选地,所述第一侧上设置的第三凹槽与所述第二侧上设置的第四凹槽相对设置;
所述软板沿着穿过所述第三凹槽和所述第四凹槽的连线朝第二弯折方向弯折;
所述第一弯折方向和第二弯折方向相反。
本申请实施例第三方面提供一种电子设备,包括第一方面所述的防抖模组。
本申请实施例中的防抖模组,包括:感光组件、载板、底座和电致驱动片;所述电致驱动片的第一端设置在所述载板的第一面,所述电致驱动片的第二端设置在所述底座上,所述感光组件设置于所述载板的第一面,所述载板的第二面朝向所述底座;其中,在对所述电致驱动片中的施加电压的情况下,所述电致驱动片变形以驱动所述载板运动。由于防抖模组包括电致驱动片,可通过对电致驱动片施加电压,来带动载板运动,从而带动感光组件运动,提高防抖效果。
附图说明
图1是本申请实施例提供的防抖模组的剖面图;
图2是本申请实施例提供的防抖模组的俯视图;
图3、图4是本申请实施例提供的摄像模组的结构示意图;
图5是本申请实施例提供的摄像模组的爆炸图;
图6是本申请实施例提供的底座的结构图;
图7是本申请实施例提供的防抖模组的部分部件的结构图;
图8是本申请实施例提供的弹性件的结构图;
图9是本申请实施例提供的采用IPMC制作的电致驱动片在未施加电压的情况下的示意图;
图10、图11是本申请实施例提供的电致驱动片在施加电压的情况下的形变示意图;
图12a是本申请实施例提供的软板结构示意图;
图12b是本申请实施例提供的软板弯折后的示意图;
图13是本申请实施例提供的摄像模组中的电致驱动片施加不同方向的电压时的效果图;
图14是本申请实施例提供的摄像模组的结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参见图1、图2所示,本实施例提供一种防抖模组,包括:感光组件1、载板2、底座3和电致驱动片4;
所述电致驱动片4的第一端设置在所述载板2的第一面,所述电致驱动片4的第二端设置在所述底座3上,所述感光组件1设置于所述载板2的第一面,所述载板2的第二面朝向所述底座3;
其中,在对所述电致驱动片4中的施加电压的情况下,所述电致驱动片4变形以驱动所述载板2运动。
感光组件1可为感光芯片,载板2的第一面与第二面为载板2相背设置的两面。电致驱动片4的第一端设置在所述载板2上,电致驱动片4的第二端设置在底座3上。当对电致驱动片4施加电压时,所述电致驱动片4变形,与载板2之间产生相互作用力,电致驱动片4可驱动载板2相对底座3运动。例如,根据电致驱动片4的形变方向不同,可驱动所述载板2在朝向底座3或背离底座3的方向上运动。载板2相对于底座3运动包括:载板2相对于底座3平移,或者载板2相对于底座3发生倾斜,载板2的运动带动感光组件1运动,从而提高防抖效果。
本实施例中的防抖模组,包括:感光组件1、载板2、底座3和电致驱动片4;所述电致驱动片4的第一端设置在所述载板2的第一面,所述电致驱动片4的第二端设置在所述底座3上,所述感光组件1设置于所述载板2的第一面,所述载板2的第二面朝向所述底座3;其中,在对所述电致驱动片4中的施加电压的情况下,所述电致驱动片4变形以驱动所述载板2运动。由于防抖模组包括电致驱动片4,可通过对电致驱动片4施加电压,来带动载板2运动,从而带动感光组件1运动,提高防抖效果。
进一步的,如图1所示,防抖模组还包括设置在所述底座3上的支架5,所述载板2位于所述底座3与所述支架5之间;
所述载板2和所述支架5中的一者上设置有被检测件6,所述载板2和所述支架5中的另一者上设置有检测件7,所述检测件7与所述被检测件6相对分布;
其中,所述检测件7用于检测所述被检测件6的位置。
具体的,载板2上设置被检测件6,支架5上设置检测件7,检测件与被检测件相对分布;或者,载板2上设置检测件7,支架5上设置被检测件6,检测件与被检测件相对分布,检测件7用于检测被检测件6的位置。
检测件7可为磁感应器,例如霍尔传感器、或者穿隧磁阻效应角度传感器(Tunnel Magneto resistance,TMR),且被检测件6为磁组件,例如,磁铁,检测件7通过检测磁场强度来检测被检测件6的位置,从而确定载体2的位置。
另外,还可采用其他方式实现对载体2的位置的检测,例如,利用光学 红外传感器或超声波传感器进行位置检测,或者利用检测电阻、压电效应等等实现位置检测。检测件7还能检测出载体2倾斜的角度大小,向控制芯片反馈载体2倾斜的角度,以便控制芯片对施加在电致驱动片4上的电压进行调整,提高载体2倾斜指定角度的精准度。控制芯片可为设置在防抖模组外部设备中的芯片,也可设置在防抖模组中。
如图1、图3-图5所示,防抖模组还包括设置在所述载板2上的控制芯片8;
所述检测件7具有第一引脚,所述第一引脚与所述控制芯片8电连接,所述检测件7将采集的数据信息通过所述第一引脚传送给所述控制芯片8。控制芯片8根据收到的数据信息,输出向电致驱动片4施加的电压,从而使得电致驱动片4发生形变,带动载体2运动。
若检测件7为穿隧磁阻效应角度传感器,被检测件6为磁铁,穿隧磁阻效应角度传感器与磁铁位置发生变化时,穿隧磁阻效应角度传感器检测到磁感线角度,并产生角度信息,然后进一步将角度信息输出给控制芯片8。
在本申请一个实施例中,所述载板2为第一电路板,所述电致驱动片4的第一面与所述第一电路板的第二引脚电连接,所述电致驱动片4的第二面与所述第一电路板的第三引脚电连接;
所述控制芯片8分别与所述第二引脚和所述第三引脚电连接;
所述控制芯片8通过控制输出至所述第二引脚和所述第三引脚的电压,控制施加在所述电致驱动片4的第一面和所述电致驱动片4的第二面的电压。
所述控制芯片8通过对第二引脚和第三引脚施加电压,来实现对电致驱动片4施加电压,使得电致驱动片4产生形变,驱动载体2运动。
如图2图5、图7、图8所示,防抖模组还包括弹性件9,所述弹性件9设置于所述底座3与所述载板2之间,所述弹性件9开设有第一通孔93,所述载板2设置在所述弹性件9上,且覆盖所述第一通孔93。弹性件9支撑载板2,避免第一电路板耷在底座3上而无法在电致驱动片4的驱动下进行移动。弹性件9采用有韧性,支撑性好的材料。
如图8所示,所述弹性件9包括弹性本体91,以及从所述弹性本体91延伸形成的弹片92,所述弹片92上设置有第一固定孔94,所述第一固定孔94 与所述底座3上设置的第一固定柱31相适配。
具体的,弹性本体91上开设有第一通孔93,所述载板2设置在所述弹性本体91上,且覆盖所述第一通孔93。载板2覆盖在第一通孔93上时,弹片92伸出载板2的覆盖区域之外。
弹片92包括连接部和定位部,第一固定孔94位于定位部,第一固定孔94与底座3上设置的第一固定柱31相适配,通过第一固定孔94可将定位部固定在所述底座3上。连接部可为线状的弯折结构,具有较好的弹性,连接部的一端与定位部连接,连接部的另一端与弹性本体91连接。弹性本体91为四边形结构,弹片的数量为四个,同一个弹片的定位部与连接部的起始位置设置在弹性本体91相邻的边上,连接部的起始位置即连接部与弹性本体91的连接位置。弹性本体91可为角部位置削去的四边形结构,即,四边形的相邻边之间通过短边连接,连接部可从起始位置所在的边开始,沿着该边延伸至短边,再延伸至相邻边,与位于相邻边的定位部连接。
由于定位部固定在底座3上,连接部具有较好的弹性,可使得弹性本体91可在一定范围内移动,同时,由于载板2设置在所述弹性本体91上,从而避免载板2受到弹性本体91的限制,影响载板2在电致驱动片4的驱动下移动。
如图2、图6、图7所示,所述载板2与所述底座3均为四边形结构件,所述电致驱动片4的数量为四个,四个电致驱动片4的第一端分别设置在所述载板2的第一面的四个顶角所在区域,四个电致驱动片4的第二端分别设置在所述底座3的四个顶角所在区域。
四边形结构件可为方形、矩形、菱形等由四条边构成的结构件,载板2的四边形结构还可为角部削平的四边形结构如图2所示。四个电致驱动片4的第一端分别设置在所述载板2的第一面的四个顶角所在区域,四个电致驱动片4的第二端分别设置在所述底座3的四个顶角所在区域。
如图6所示,底座3可为顶面开口的四边形盒体结构,底座3的一个侧面具有开口,第二电路板B可通过该开口与载板2连接。
可通过对四个电致驱动片4中的一个或多个电致驱动片4施加电压,使得这一个或多个电致驱动片4发生形变,对载板2产生作用力,从而驱动载 板2运动,载板2的运动可以是发生角度倾斜的运动和在垂直方向上运动一段距离的至少一项,其中,垂直方向可为朝向或者背离底座3运动的方向。
使得载板2发生角度倾斜,可通过对四个电致驱动片4中的部分电致驱动片施加电压,使得载板2发生角度倾斜,或者,对四个电致驱动片4中的全部电致驱动片施加电压,且施加在各电致驱动片上的电压不完全相同时,也可使得载板2发生角度倾斜,起到防抖作用。当施加在各电致驱动片4上的电压完全相同时,载板2在垂直方向上运动。
如图6、图7所示,所述防抖模组还包括安装架10,所述电致驱动片4的第二端夹设在所述安装架10上,所述安装架10上设置有第二固定孔101,所述安装架10包括第一电连接部102和第二电连接部103,所述第一电连接部102和所述第二电连接部103分别与所述电致驱动片4的第一面和第二面电连接;
所述底座3的顶角区域设置有台阶,所述台阶上设置有与所述第二固定孔101相适配的第二固定柱32;
所述台阶还设置有第二通孔33,所述第一电连接部102和所述第二电连接部103设置在所述第二通孔33中,且所述第一电连接部102与所述第一电路板的第二引脚电连接,所述第二电连接部103与所述第一电路板的第三引脚电连接。
电致驱动片4可为矩形结构,安装架10夹持在电致驱动片4的第二端,电致驱动片4的第二端通过安装架10的第二固定孔101固定在底座3上,第一电连接部102和第二电连接部103分别与电致驱动片4的第一面和第二面电连接,所述第一电连接部102与所述第一电路板的第二引脚电连接,所述第二电连接部103与所述第一电路板的第三引脚电连接,使得第一电路板可通过第二引脚和第三引脚向电致驱动片4的两面施加电压,使得电致驱动片4产生形变,带动载板2运动。
底座3的顶角区域设置有台阶,如图6所示,所述台阶为三角台阶,三角台阶的两个侧面与底座3的相邻侧面相接触,在相邻两个台阶之间的位置上设置有突起块,突起块上设置有第一固定柱31,第一固定柱31用于将弹性件9固定在底座3上。
上述电致驱动片4为离子传导驱动片,所述离子传导驱动片包括离子交换树脂层以及分别设置于所述离子交换树脂层相对的两个表面的第一电极层和第二电极层,所述离子交换树脂层内具有聚合物电解质。
具体的,电致驱动片4可采用离子交换聚合金属材料(ion-exchange polymer metal composite,简称IPMC)制作。IPMC材料是一种新型电致动功能材料,以离子交换树脂层(如氟碳聚合物等)为基体,在基体表面镀贵金属(如铂、银等),以形成电极层,即第一电极层和第二电极层,如图9所示,图9中标号A和标号B所示分别为第一电极层和第二电极层。离子交换树脂层包括聚合物电解质,聚合物电解质中含有阳离子和阴离子,图9中阳离子和阴离子的位置及数量仅为示意,不代表实际情况。
如图10、图11所示,当对IPMC在厚度方向施加电压时,聚合物电解质中的水合阳离子会移动到阴极侧,引起IPMC的阳极面和阴极面溶胀的差异,从而产生变形,向阳极面弯曲,这样,可通过控制IPMC的通电电压或者电流来控制IPMC弯曲程度,使得IPMC在横向方向上产生位移。
IPMC材料为一种新型驱动材料,具有驱动质轻、产生位移形变大、驱动电压低等优点。驱动装置中采用IPMC的优势明显,例如,IPMC为非磁性材料,不会产生磁干扰;IPMC变形产生的位移和速度与IPMC的厚度成比例地减小,IPMC变形产生的力与IPMC的厚度的立方成比例地增大。因此,可根据实际情况来设置IPMC的厚度,以达到所需的IPMC变形产生的位移、速度和力度。
进一步的,在施加于所述离子传导驱动片的电压为第一电压的情况下,所述离子传导驱动片驱动所述载板2沿第一方向运动;
在施加于所述离子传导驱动片的电压为第二电压的情况下,所述离子传导驱动片驱动所述载板2沿第二方向运动;
其中,所述第一电压和所述第二电压极性相反,所述第一方向与所述第二方向互为反方向。
通过向离子传导驱动片施加电压,可使得离子传导驱动片驱动所述载板2沿第一方向或第二方向运动。第一方向可为载板2朝向底座3运动的方向,第二方向可为载板2背离底座3运动的方向;或者,第一方向可为载板2背 离底座3运动的方向,第二方向可为载板2朝向底座3运动的方向。
进一步的,在施加于所述离子传导驱动片的电压为第一电压的情况下,所述离子传导驱动片驱动所述载板2沿第一方向运动第一距离;
在施加于所述离子传导驱动片的电压为第三电压的情况下,所述离子传导驱动片驱动所述载板2沿第一方向运动第二距离;
其中,所述第一电压和所述第三电压极性相同,且所述第三电压大于所述第一电压,所述第一距离与所述第二距离不同。
当离子传导驱动片通电,并且有电压或电流变化时,离子传导驱动片便会发生形变,且电压或电流变化越大,离子传导驱动片形变量越大。
第二距离可大于第一距离。当需要载板2运动较大距离时,可通过向离子传导驱动片施加较大电压来驱动载板2运动较大距离;当需要载板2运动较小距离时,可通过向离子传导驱动片施加较大电压来驱动载板2运动较小距离。施加于离子传导驱动片的电压大小与载板2的运动距离之间具有对应关系,在确定载板2需要运动的距离的情况下,可根据该对应关系来确定施加于离子传导驱动片的电压大小。
进一步的,在施加于所述离子传导驱动片的电压为第一电压的情况下,所述离子传导驱动片以第一速率驱动所述载板2沿第一方向运动;
在施加于所述离子传导驱动片的电压为第三电压的情况下,所述离子传导驱动片以第二速率驱动所述载板2沿第一方向运动;
其中,所述第一电压和所述第三电压极性相同,且所述第三电压大于所述第一电压,所述第一速率与所述第二速率不同。
第二速率可小于第一速率。当需要载板2运动速率较大时,可通过向离子传导驱动片施加较大电压来驱动载板2以较大速率进行运动;当需要载板2运动速率较小时,可通过向离子传导驱动片施加较小电压来驱动载板2以较小速率进行运动。施加于离子传导驱动片的电压大小与载板2的运动速率之间具有对应关系,在确定载板2需要运动的速率的情况下,可根据该对应关系来确定施加于离子传导驱动片的电压大小。
进一步的,在施加于所述离子传导驱动片的电压为第四电压的情况下,所述离子传导驱动片驱动所述载板2倾斜第一角度;
在施加于所述离子传导驱动片的电压为第五电压的情况下,所述离子传导驱动片驱动所述载板2倾斜第二角度;
其中,所述第四电压和所述第五电压极性相同,且所述第五电压大于所述第四电压,所述第一角度小于第二角度。
当需要载板2产生较大角度的倾斜时,可通过向离子传导驱动片施加较大电压来驱动载板2产生较大角度的倾斜;当需要载板2产生较小角度的倾斜时,可通过向离子传导驱动片施加较小电压来驱动载板2产生较小角度的倾斜。施加于离子传导驱动片的电压大小与载板2的倾斜角度之间具有对应关系,在确定载板2需要倾斜的角度的情况下,可根据该对应关系来确定施加于离子传导驱动片的电压大小。
以下对本申请提供的防抖模组(以下也称为防抖平台)进行详细说明如下:
防抖平台的结构组成:
软硬结合板(Rigid-Flex Printed Circuit Board,RFPC):由软板(即第二电路板)和硬板(即第一电路板)组成,硬板可为RFPC硬板。如图2所示,硬板的主要作用是固定感光芯片(即感光组件1),感光芯片与硬板通过金线11绑定实现电气连接。金线11是99.99%的纯金,导通性好、韧性足。数量视芯片设计和像素大小而定,一般像素越高则金线数量越多。硬板可通过软板与终端的其他组件电连接。
2个磁铁和2个穿隧磁阻效应角度传感器(Tunnel Magneto resistance,TMR):其中,2个磁铁置于支架5上,2个TMR角度传感器置于硬板表面,2个磁铁与2个TMR分别相对设置;磁铁可通过胶水粘接固定在支架上;磁铁的作用是提供磁场,TMR发生移动时,TMR与磁铁的相对位置发生变化,产生变化的磁场。根据霍尔效应:如果对位于磁场(B)中的导体施加一个电流(I),该磁场的方向垂直于所施加电流的方向,那么则在既与磁场垂直又和所施加电流方向垂直的方向上会产生另一个电压(E),将这个电压叫做霍尔电压。E=SIB(S灵敏度系数,定值;I固定输入电流,B变化则E跟着变化)。
2个TMR角度传感器可通过锡膏焊接固定在硬板表面,用来检测磁铁的磁感线角度变化;TMR的电气性能由驱动IC(即控制芯片8)通过RFPC硬 板进行供电;以及TMR检测到磁铁的磁感线角度变化信息通过RFPC硬板传输给驱动IC的数据处理系统端;驱动IC的数据处理系统端进行相应数据处理后,经过驱动IC的反馈机制,通过IPMC实现补偿抖动角度。
4个IPMC:IPMC置于RFPC硬板和下底座之间,其形状为长方体结构;通过锡膏焊接固定在RFPC硬板上面;其作用是利用通过供电电压或电流可控制其形变量大小的材料性能,驱动载板2移动;由驱动IC通过RFPC硬板为IPMC供电,并通过供电电压或电流大小,控制其变形量大小,进而驱动感光芯片补偿防抖角度。
弹性件:作用是支撑RFPC硬板,使其处于自然状态,否则RFPC硬板耷在底座3上而无法实现防抖移动。弹性件的材质要有韧性,支撑要好。
当IPMC通电,并且有电压或电流变化时,IPMC材料便会发生形变,且△V或△I变化越大,IPMC材料形变量越大;
载体2和IPMC之间为硬固定,不可发生相对位移。IPMC发生形变时,与载板2之间产生相互作用力,从而驱动载体2移动,最终实现防抖对焦。
4个IPMC可由驱动IC(即控制芯片8)分别控制给予其供电电压或电流变化大小,相互之间不受影响;驱动IC输出的供电电压或电流变化大小可由2个TMR输出的角度变化信息决定。
当摄像模组抖动时,TMR角度传感器和磁铁的位置会发生相对变化,TMR将角度变化信息输出给驱动IC即控制芯片8,经过反馈机制,驱动IC会改变给予IPMC供电电压或电流大小,从而使得IPMC产生不同形变量,牵引载板2运动,进而带动位于载板2上的感光芯片(即感光组件1)移动,实现防抖功能,如图6所示,载板2倾斜,实现防抖功能。
如图13所示,向2个IPMC施加不同方向的电压,可实现载体2的倾斜。
本申请中的防抖模组,可以通过控制感光芯片补正图像抖动提高成像质量;可以减少摄像模组体积,实现手机轻簿化;可以实现倾斜式防抖,防抖角度是传统平移式的3倍以上。
如图3、图4、图5所示,本申请还提供一种摄像模组,包括:镜头组件以及上述实施例中的防抖模组,所述镜头组件位于所述防抖模组的背离底座 3的一侧。
具体的,镜头组件包括镜头A1、马达A2、滤波片A3和第三电路板A4,其中,第三电路板A4可给马达A2供电,第三电路板A4可为AF柔性电路板(Flexible Printed Circuit,FPC)板。
进一步的,摄像模组还包括与所述载板2连接的软板B,所述软板B为第二电路板,所述软板B设置在所述防抖模组外侧;
所述软板B包括沿所述软板B长度方向设置的条形通孔B1,所述软板B的与所述长度方向垂直的第一侧和第二侧上设置有凹槽;
所述第一侧上设置的第一凹槽与所述第二侧上设置的第二凹槽相对设置;
所述软板B沿着穿过所述第一凹槽和所述第二凹槽的连线朝第一弯折方向弯折。
如图12a所示,条形通孔B1设置在所述软板B的中间区域,条形通孔B1的数量可为多个,B2所示为第一凹槽,B3所示为第二凹槽。第一凹槽具有弧度,使得软板B在沿着穿过所述第一凹槽和所述第二凹槽的连线b朝第一弯折方向弯折后,弯折位置处为导圆角。同样的,第二凹槽具有弧度,使得软板B在沿着穿过所述第一凹槽和所述第二凹槽的连线朝第一弯折方向弯折后,弯折位置处为导圆角。第一凹槽和第二凹槽的数量相同,且均可为多个。
即,所述第一侧上设置的第三凹槽与所述第二侧上设置的第四凹槽相对设置;所述软板B沿着穿过所述第三凹槽和所述第四凹槽的连线朝第二弯折方向弯折;所述第一弯折方向和第二弯折方向相反。
通过根据软板B的长度、宽度以及防抖模组中载板2的最大位移量,可以确定第一凹槽和第二凹槽的具体数量和排布方式,以及得到各个导圆角对应的具体角度,从而可以将软板B在拉伸或者弯折时受到的应力进一步分散,提升软板B的结构强度。
若第一凹槽和第二凹槽的数量均为多个,则在对软板B进行折叠时,可依次按照第一弯折方向、第二弯折方向进行折叠,即软板B在相邻两个第一凹槽处的弯折方向相反。在弯折位置通过胶水粘合,保护弯折寿命和弯折一致性,固定弯折位置。
载板2需要在电致驱动件4的驱动下运动,由于载板2与软板B连接, 那么载板2在运动过程中与软板B之间有牵扯力,增加了载板2与软板B的连接部位的断裂风险。
如图12b所示,将软板B进行多次折叠,软板B折叠的次数越多,软板B两端所受到的影响力也就越小,可降低软板B与载板2的连接部位的断裂风险。
软板B沿所述软板B长度方向设置有条形通孔B1,可将软板B分成多个部分软板B分割份数越多,则应力越分散。弯折半径R大于或等于0.5mm,弯折位置b2和弯折位置b3不是随意定,而是根据摄像模组在整机中的装配位置,测量出弯折的长度和弯折半径,再决定导圆角的长度和半径,这样就可以模拟组装实际效果而两次减少软板B的弯折应力,同时,由于软板B沿所述软板B长度方向设置有条形通孔B1,应力集中在软板B区域,可降低软板B与载板2的连接部位的断裂风险。
如图14所示,图中标号44为镜头组件,标号42为IPMC,标号43为载板,载板与IPMC相连接,载板可承载感光芯片。对IPMC施加电压,使得IPMC发生形变,带动载板运动,载板带动感光芯片运动,从而实现防抖功能。通过IPMC实现防抖功能,取消马达里面的线圈及其对应磁铁,可实现模组小型化。例如,可以用常规8.5mm*8.5mm模组做成OIS防抖11.3mm*11.3mm尺寸,实现降成本及模组小型化。
本申请实施例还提供一种电子设备,包括上述实施例所述的防抖模组。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (17)

  1. 一种防抖模组,包括:感光组件、载板、底座和电致驱动片;
    其中,所述电致驱动片的第一端设置在所述载板的第一面,所述电致驱动片的第二端设置在所述底座上,所述感光组件设置于所述载板的第一面,所述载板的第二面朝向所述底座;
    其中,在对所述电致驱动片中的施加电压的情况下,所述电致驱动片变形以驱动所述载板运动。
  2. 根据权利要求1所述的防抖模组,还包括设置在所述底座上的支架,其中,所述载板位于所述底座与所述支架之间;
    所述载板和所述支架中的一者上设置有被检测件,所述载板和所述支架中的另一者上设置有检测件,所述检测件与所述被检测件相对分布;
    其中,所述检测件用于检测所述被检测件的位置。
  3. 根据权利要求2所述的防抖模组,还包括设置在所述载板上的控制芯片;
    其中,所述检测件具有第一引脚,所述第一引脚与所述控制芯片电连接,所述检测件将采集的数据信息通过所述第一引脚传送给所述控制芯片。
  4. 根据权利要求3所述的防抖模组,其中,所述载板为第一电路板,所述电致驱动片的第一面与所述第一电路板的第二引脚电连接,所述电致驱动片的第二面与所述第一电路板的第三引脚电连接;
    所述控制芯片分别与所述第二引脚和所述第三引脚电连接;
    所述控制芯片通过控制输出至所述第二引脚和所述第三引脚的电压,控制施加在所述电致驱动片的第一面和所述电致驱动片的第二面的电压。
  5. 根据权利要求1所述的防抖模组,还包括弹性件,其中,所述弹性件设置于所述底座与所述载板之间,所述弹性件开设有第一通孔,所述载板设置在所述弹性件上,且覆盖所述第一通孔。
  6. 根据权利要求5所述的防抖模组,其中,所述弹性件包括弹性本体,以及从所述弹性本体延伸形成的弹片,所述弹片上设置有第一固定孔,所述第一固定孔与所述底座上设置的第一固定柱相适配。
  7. 根据权利要求1所述的防抖模组,其中,所述载板与所述底座均为四边形结构件,所述电致驱动片的数量为四个,四个电致驱动片的第一端分别设置在所述载板的第一面的四个顶角所在区域,四个电致驱动片的第二端分别设置在所述底座的四个顶角所在区域。
  8. 根据权利要求4所述的防抖模组,其中,所述防抖模组还包括安装架,所述电致驱动片的第二端夹设在所述安装架上,所述安装架上设置有第二固定孔,所述安装架包括第一电连接部和第二电连接部,所述第一电连接部和所述第二电连接部分别与所述电致驱动片的第一面和第二面电连接;
    所述底座的顶角区域设置有台阶,所述台阶上设置有与所述第二固定孔相适配的第二固定柱;
    所述台阶还设置有第二通孔,所述第一电连接部和所述第二电连接部设置在所述第二通孔中,且所述第一电连接部与所述第一电路板的第二引脚电连接,所述第二电连接部与所述第一电路板的第三引脚电连接。
  9. 根据权利要求1所述的防抖模组,其中,所述电致驱动片为离子传导驱动片,所述离子传导驱动片包括离子交换树脂层以及分别设置于所述离子交换树脂层相对的两个表面的第一电极层和第二电极层,所述离子交换树脂层内具有聚合物电解质。
  10. 根据权利要求9所述的防抖模组,其中,在施加于所述离子传导驱动片的电压为第一电压的情况下,所述离子传导驱动片驱动所述载板沿第一方向运动;
    在施加于所述离子传导驱动片的电压为第二电压的情况下,所述离子传导驱动片驱动所述载板沿第二方向运动;
    其中,所述第一电压和所述第二电压极性相反,所述第一方向与所述第二方向互为反方向。
  11. 根据权利要求9所述的防抖模组,其中,在施加于所述离子传导驱动片的电压为第一电压的情况下,所述离子传导驱动片驱动所述载板沿第一方向运动第一距离;
    在施加于所述离子传导驱动片的电压为第三电压的情况下,所述离子传导驱动片驱动所述载板沿第一方向运动第二距离;
    其中,所述第一电压和所述第三电压极性相同,且所述第三电压大于所述第一电压,所述第一距离与所述第二距离不同。
  12. 根据权利要求9所述的防抖模组,其中,在施加于所述离子传导驱动片的电压为第一电压的情况下,所述离子传导驱动片以第一速率驱动所述载板沿第一方向运动;
    在施加于所述离子传导驱动片的电压为第三电压的情况下,所述离子传导驱动片以第二速率驱动所述载板沿第一方向运动;
    其中,所述第一电压和所述第三电压极性相同,且所述第三电压大于所述第一电压,所述第一速率与所述第二速率不同。
  13. 根据权利要求9所述的防抖模组,其中,在施加于所述离子传导驱动片的电压为第四电压的情况下,所述离子传导驱动片驱动所述载板倾斜第一角度;
    在施加于所述离子传导驱动片的电压为第五电压的情况下,所述离子传导驱动片驱动所述载板倾斜第二角度;
    其中,所述第四电压和所述第五电压极性相同,且所述第五电压大于所述第四电压,所述第一角度小于第二角度。
  14. 一种摄像模组,包括:镜头组件以及权利要求1-13中任一项所述的防抖模组,其中,所述镜头组件位于所述防抖模组的背离底座的一侧。
  15. 根据权利要求14所述的摄像模组,还包括与所述载板连接的软板,其中,所述软板为第二电路板,所述软板设置在所述防抖模组外侧;
    所述软板包括沿所述软板长度方向设置的条形通孔,所述软板的与所述长度方向垂直的第一侧和第二侧上设置有凹槽;
    所述第一侧上设置的第一凹槽与所述第二侧上设置的第二凹槽相对设置;
    所述软板沿着穿过所述第一凹槽和所述第二凹槽的连线朝第一弯折方向弯折。
  16. 根据权利要求15所述的摄像模组,其中,所述第一侧上设置的第三凹槽与所述第二侧上设置的第四凹槽相对设置;
    所述软板沿着穿过所述第三凹槽和所述第四凹槽的连线朝第二弯折方向弯折;
    所述第一弯折方向和第二弯折方向相反。
  17. 一种电子设备,包括权利要求1-13中任一项所述的防抖模组。
PCT/CN2021/119282 2020-09-25 2021-09-18 防抖模组、摄像模组和电子设备 WO2022063073A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011025667.9A CN114257716B (zh) 2020-09-25 2020-09-25 防抖模组、摄像模组和电子设备
CN202011025667.9 2020-09-25

Publications (1)

Publication Number Publication Date
WO2022063073A1 true WO2022063073A1 (zh) 2022-03-31

Family

ID=80789325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119282 WO2022063073A1 (zh) 2020-09-25 2021-09-18 防抖模组、摄像模组和电子设备

Country Status (2)

Country Link
CN (1) CN114257716B (zh)
WO (1) WO2022063073A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115348382B (zh) * 2022-08-22 2024-09-06 维沃移动通信有限公司 摄像模组和电子设备
CN116033267B (zh) * 2022-10-13 2023-10-24 荣耀终端有限公司 防抖机构、摄像模组及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101364026A (zh) * 2007-08-09 2009-02-11 三洋电机株式会社 防振控制电路
US20140092265A1 (en) * 2012-10-02 2014-04-03 Tdk Taiwan Corp. Integrated Substrate for Anti-Shake Apparatus
US20170146812A1 (en) * 2012-04-03 2017-05-25 Tdk Taiwan Corp. Suspension Mechanism for an Optical Image Anti-Shake Device
CN108174078A (zh) * 2018-03-14 2018-06-15 欧菲影像技术(广州)有限公司 摄像模组及其线路板机构
CN111225130A (zh) * 2018-11-23 2020-06-02 华为机器有限公司 一种成像装置及终端设备
CN111556239A (zh) * 2020-05-25 2020-08-18 维沃移动通信有限公司 拍摄装置、电子设备及控制方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101909155B (zh) * 2009-06-03 2013-04-24 鸿富锦精密工业(深圳)有限公司 防抖装置以及具有该防抖装置的便携式拍照设备
CN106791289B (zh) * 2015-11-20 2019-10-18 宁波舜宇光电信息有限公司 摄像模组及其光学防抖元件和防抖方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101364026A (zh) * 2007-08-09 2009-02-11 三洋电机株式会社 防振控制电路
US20170146812A1 (en) * 2012-04-03 2017-05-25 Tdk Taiwan Corp. Suspension Mechanism for an Optical Image Anti-Shake Device
US20140092265A1 (en) * 2012-10-02 2014-04-03 Tdk Taiwan Corp. Integrated Substrate for Anti-Shake Apparatus
CN108174078A (zh) * 2018-03-14 2018-06-15 欧菲影像技术(广州)有限公司 摄像模组及其线路板机构
CN111225130A (zh) * 2018-11-23 2020-06-02 华为机器有限公司 一种成像装置及终端设备
CN111556239A (zh) * 2020-05-25 2020-08-18 维沃移动通信有限公司 拍摄装置、电子设备及控制方法

Also Published As

Publication number Publication date
CN114257716B (zh) 2023-07-21
CN114257716A (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
US20220187615A1 (en) Voice Coil Motor for Driving Liquid Lens and Lens Assembly having Voice Coil Motor
US10649314B2 (en) Optical member driving system
US10775596B2 (en) Camera system
CN211826675U (zh) 光学元件驱动机构
US11181669B2 (en) Optical system
US8279289B2 (en) Optical unit with shake correcting function
US11256063B2 (en) Optical component driving mechanism
WO2022063073A1 (zh) 防抖模组、摄像模组和电子设备
US10571649B2 (en) Lens driving device, camera module, and camera-mounted device
JP5571089B2 (ja) 複合駆動機構レンズアクチュエーター
US7782533B2 (en) Image stabilizing apparatus
US20060082659A1 (en) Optical image stabilizer for camera lens assembly
JP2016057441A (ja) ステージ装置及び像振補正装置
JP6672488B2 (ja) レンズ駆動装置
JP2005241751A (ja) ステージ装置及びこのステージ装置を利用したカメラの手振れ補正装置
CN100423546C (zh) 摄像模组
JP2019158906A (ja) レンズ駆動装置、カメラモジュール、及びカメラ搭載装置
CN212785518U (zh) 感光组件、摄像模组及电子设备
JP5978635B2 (ja) ステージ装置、及び、カメラの像振補正装置
US11300802B2 (en) Optical unit
US20180234004A1 (en) Driving mechanism
CN113966606B (zh) 相机装置
CN2836369Y (zh) 摄像模组
US11287605B2 (en) Driving mechanism
CN113805302B (zh) 驱动装置和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21871443

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/02/2024)

122 Ep: pct application non-entry in european phase

Ref document number: 21871443

Country of ref document: EP

Kind code of ref document: A1